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This paper deals thoroughly with the scalar and electromagnetic fields of uniformly
accelerated charges in de Sitter space–time. It gives details and makes various
extensions of our Physical Review Letter from 2002. The basic properties of the
classical Born solutions representing two uniformly accelerated charges in flat
space–time are first summarized. The worldlines of uniformly accelerated particles
in de Sitter universe are defined and described in a number of coordinate frames,
some of them being of cosmological significance, the others are tied naturally to the
particles. The scalar and electromagnetic fields due to the accelerated charges are
constructed by using conformal relations between Minkowski and de Sitter space.
The properties of the generalized “cosmological” Born solutions are analyzed and
elucidated in various coordinate systems. In particular, a limiting procedure is
demonstrated which brings the cosmological Born fields in de Sitter space back to
the classical Born solutions in Minkowski space. In an extensive Appendix, which
can be used independently of the main text, nine families of coordinate systems in
de Sitter space–time are described analytically and illustrated graphically in a num-
ber of conformal diagrams. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2009647�

. INTRODUCTION

In 1969, on the 60th anniversary of Max Born’s1 first analysis of the field of a uniformly
ccelerated charge, Ginzburg, Nobelist in 2003, reanalyzed2–4 this—what he called—“perpetual
roblem of classical physics,” with the conclusion that the problem “is already clear enough not to
e regarded as perpetual.” Ginzburg confirmed the presence of radiation and emphasized that the
anishing of the radiation reaction force during the uniformly accelerated motion of the charge “is
n no way paradoxical, in spite of the presence of radiation,” since “a nonzero total energy flux
hrough a surface surrounding a charge at a zero radiation force is exactly equal to the decrease of
he field energy in the volume enclosed by this surface.” Despite Ginzburg’s view, however, the
roblem does not seem to lose its “perpetuity.” A number of distinguished physicists who dealt
ith it before Ginzburg like Sommerfeld, Schott, von Laue, Pauli and others have, after Ginzburg,
een followed by such authors as, for example, Bondi,5 Boulware,6 Peierls,7 Thirring8 and
thers.9–12

The fields and radiation patterns from uniformly accelerated general multipole particles were
lso studied.13 The December 2000 issue of Annals of Physics contains three papers by Eriksen
nd Grøn14–16 with numerous references on “electrodynamics of hyperbolically accelerated
harges.” �Yet, except for Refs. 1 and 6, the explicit citations above are not contained in Refs.
4–16.�

Space–times describing “uniformly accelerated particles or black holes” play fundamental role
n general relativity. They are the only explicit solutions of Einstein’s field equations known which
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re radiative and represent the fields of finite sources. Born fields in electrodynamics are produced
y two charges moving along an “axis of symmetry” in opposite directions with uniform accel-
rations of the same magnitude. They have two symmetries: they are axially symmetric and
ymmetric with respect to the boosts along the axis of symmetry. Their general-relativistic coun-
erparts, the boost-rotation symmetric space–times, are unique because of a theorem which
oughly states that in axially symmetric, locally asymptotically flat space–times the only additional
ymmetry that does not exclude radiation is the boost symmetry. The boost-rotation symmetric
pace–times have been used in gravitational radiation theory, quantum gravity, and as test beds in
umerical relativity; their general structure is described in Ref. 17, their applications and new
eferences are given in the reviews.18–20 One of the best known examples, the so-called C-metric,
escribing uniformly accelerated black holes, is the only boost-rotation symmetric solution known
lso for a nonvanishing cosmological constant �. Asymptotically this “generalized” C-metric
pproaches de Sitter space–time if ��0. It is well known from the classical work of Penrose21 on
he asymptotic properties of fields and space–times that, in contrast to asymptotically

inkowskian space–times with null �lightlike� conformal infinities I ±, asymptotically de Sitter
acuum space–times have two disjoint conformal infinities, past and future, which are both space-
ike. When ��0, as in anti-de Sitter space, the conformal infinity is timelike, and it is not disjoint.
In the analytically extended C-metrics, there is an infinite number of such infinities which can be
eached by going “through” black holes like with a Reissner-Nordtröm black hole, but this is not
ertinent to the present work.�

The importance of de Sitter space–time in the history of modern cosmology seems to grow
teadily. The “flat” de Sitter universe became the standard cosmological model in steady state
heory, more recently, as the “first approximation” of inflationary models, and today, with indica-
ions that ��0 in our Universe, it is an asymptote of all indefinitely expanding Friedmann-
obertson-Walker models with ��0. In fact much more general cosmological models with
�0 approach de Sitter model asymptotically in time. This manifestation of the validity of the

cosmic no-hair conjecture,”22,23 will also be noticed in the properties of the fields analyzed in this
ork.

Motivated by the role of the Born solution in classical electrodynamics, by the importance of
he boost-rotation symmetric space–times in general relativity, and by the relevance of de Sitter
pace in contemporary cosmology, we have recently generalized the Born solution for scalar and
lectromagnetic fields to the case of two charges uniformly accelerated in de Sitter universe.24 In
he present paper we give calculations and detailed proofs of the results and statements briefly
ketched in our paper.25 In addition, we investigate the character of the field in a number of
arious coordinate systems which are relevant either in a general-relativistic context or from a
osmological perspective.

The appropriate coordinates and corresponding tetrad fields were important in finding our
ecent results on a general asymptotic behavior of fields in the neighborhood of future infinity I +

n asymptotically de Sitter space–times.26 In obtaining these results we were inspired by the
nspection of the electromagnetic fields from uniformly accelerated charges in de Sitter universe.

It was known from the work of Penrose since late 1960s that the radiation field is “less
nvariantly” defined when I + is spacelike—that it depends on the direction in which I + is
pproached. However, no explicit models were available. The investigation of the test fields of
ccelerated charges in de Sitter universe has served as a useful example; it was then generalized
lso to the study of asymptotic and radiative properties of the C-metric with ��0 �Ref. 27�, as
ell as to the case of the C-metric with ��0 when infinity is timelike.28 �For other recent works
n the “cosmological” C-metric, see, e.g., Refs. 29 and 30.� These studies led to a more general
onclusion26 that the directional pattern of gravitational and electromagnetic radiation near de
itter-like conformal infinity has a universal character, determined by the algebraic �Petrov� type
f a solution of the Maxwell/Einstein equations considered. In particular, the radiation field van-
shes along directions opposite to principal null directions. Very recently analogous conclusions
ave been obtained for space–times with anti-de Sitter asymptotics.31
Since past and future infinities are spacelike in de Sitter space–time, there exist particle and
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vent horizons. Under the presence of the horizons, purely retarded fields �appropriately defined�
ecome singular or even cannot be constructed at the “creation light cones,” i.e., at future light
ones of the “points” at I − at which the sources “enter” the universe. In Ref. 24 we analyzed this
henomenon in detail and constructed smooth �outside the sources� fields involving both retarded
nd advanced effects. As demonstrated in Ref. 24, to be “born in de Sitter” is quite a different
atter than to be “born in Minkowski.” This reveals the double meaning of the second—perhaps

omewhat enigmatic—part of the title of this paper.
Its plan is as follows. In order to gain an understanding of the generalized Born solution in de

itter space it is advantageous to be familiar with some details of the classical Born solution in
inkowski space. Hence, its properties most relevant for our purpose are summarized in Sec. II.
ere we also discuss why in Minkowski space problems with purely retarded fields of uniformly

ccelerated particles do not arise.
There exists vast literature on de Sitter space in which various types of coordinates are

mployed. We shall construct fields in de Sitter space by using its conformal relations to
inkowski space. For our aim coordinate systems on conformally compactified spaces and their

roperties will be particularly useful. These, together with several “cosmological” and “static”
oordinate systems, will be described and graphically illustrated in conformal diagrams in Sec. III.

hat is meant by “uniformly accelerated particles in de Sitter space” is defined and the properties
f the corresponding worldlines are studied in Sec. IV. For technical reasons it is more advanta-
eous to consider particles which asymptotically start and end at the poles of coordinates covering
e Sitter space, i.e., particles “born at the poles” �Sec. IV A�. In order to find a direct relation
etween the standard form of the Born solution produced by two charges at each time located
ymmetrically with respect to the origin of Minkowski space and the generalized Born solution in
e Sitter space, it is necessary to construct also worldlines of uniformly accelerated particles
hich are “born at the equator” �Sec. IV B�.

With the worldlines of accelerated particles available, it is advantageous to consider coordi-
ates in de Sitter space which are centered on these worldlines. These “accelerated coordinates”
nd “Robinson-Trautman coordinates” are obtained, in a constructive manner, in Sec. V.

Section VI is devoted to the fields from particles “born at the poles.” Here we also study in
etail their properties in various coordinate systems introduced before. The fields of particles
born at the equator” are found in Sec. VII by a simple rotation. Starting from these fields we
emonstrate by means of which limiting procedure the standard Born field in Minkowski space
an be regained. Finally, we conclude by few remarks in Sec. VIII.

The paper contains a rather extensive Appendix in which nine families of coordinate systems
mployed in the main text are described in detail, illustrated graphically, their relations are given,
nd corresponding metric forms as well as orthonormal tetrads are presented. We believe the
ppendix can be used as a general-purpose catalogue in other studies of physics in de Sitter

pace–time.

I. BORN IN MINKOWSKI

It was Einstein in 1908, inspired by a letter from Planck, who first defined a uniformly
ccelerated motion in special relativity.32,33 A particle is in uniformly accelerated motion if its
cceleration has a fixed constant value in instantaneous rest frames of the particle. This can be
tated in a covariant form �see, e.g., Ref. 34� as

P�
�ȧ� = ȧ� − �a�a��u� = 0, �2.1�

� being four-velocity, ·�u��� covariant derivative with respect to proper time, a�=u̇� four-
cceleration, and P�

� =��
� +u�u� is the projection tensor into the hypersurface orthogonal to u�.

quation �2.1� implies ȧ�a�=0 so that the condition of uniform acceleration guarantees that the

agnitude of the four-acceleration is constant,
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aM = �a�a� = constant, �2.2�

lthough ȧ��0. Integrating Eq. �2.1� in Minkowski space–time, one finds that the worldline of a
niformly accelerated particle is a hyperbola.35,36 One can then choose an inertial frame, in which
he initial three-velocity and three-acceleration are parallel; in such frames the motion is spatially
ne-dimensional. It can be produced by placing a test charged particle into a homogeneous electric
eld with initial velocity aligned with the field. The motion along the z axis is illustrated in
ig. 1. There, in fact, two particles uniformly accelerated in opposite directions are shown, the one
oving along the positive ��= +1 for particle w� in the figure� and the second one along the

IG. 1. A pair of uniformly accelerated charges in Minkowski space–time �with the conformal diagram below�. The boost
illing vector is timelike in regions L and R; it is spacelike in F and P. The charges are causally disconnected by null
ypersurfaces �“the roof”� −t2+z2=0. These hypersurfaces represent the acceleration horizon for uniformly accelerated
bservers with respect to which the charges are at rest.
egative z axis ��=−1 for particle w��; their worldlines parametrized by proper time �M are
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z = �bo cosh
�M

bo
, t = bo sinh

�M

bo
, x = y = 0, �2.3�

r

z = ��t2 + bo
2. �2.4�

ere we have chosen the particles to be at rest at z=�bo at t=0. Then their three-acceleration at
nitial moment t=0 is aM= �d2z /dt2�=1/bo. As t→	, the three-velocity vM= �dz /dt�= t /�t2+bo

2

pproaches the velocity of light. This is the well-known hyperbolic motion.
The worldlines of the particles coincide with the orbits of the boost Killing vector in the t–z

lane,


boost = z
�

�t
+ t

�

�z
. �2.5�

hese orbits, given by −t2+z2=constant, x ,y=constant, are timelike at −t2+z2�0, but they are
pacelike at −t2+z2�0. The fields �scalar, electromagnetic, higher-spin� produced by charged
articles in the hyperbolic motion will have boost-rotational symmetry. They are thus static in the
egion −t2+z2�0—“below the roof” as introduced in Ref. 17, however, we can expect them to be
adiative in the region −t2+z2�0—“above the roof.”

Consider a massless scalar field � with the scalar charge source S satisfying, in a general
our-dimensional space–time, the wave equation

�� − 1
6R�� = S , �2.6�

n which ��g������ is the curved-space d’Alambertian, and R is the scalar curvature �of course,
n Minkowski space R=0�. We are interested in a field due to two monopole particles with the
ame constant scalar charge of magnitude s moving along hyperbolae �2.3�. The source at a
pace–time point x is thus given by

S = S� + S�, S� = s� ��x − w���M��d�M, �2.7�

here w���M� denotes the worldlines of the particles. The resulting fields may be written as

� = �� + �� , �2.8�

here �� is produced by S�. The retarded and advanced fields of these sources are constructed and
nalyzed in detail in Ref. 17. It can be demonstrated that the retarded and advanced fields due to
he particle w� or w� are all given by exactly identical expression

�BM =
s

4


1

R , �2.9�

hich, however, occurs in different regions of space–time. Namely,

�ret/adv � =
s

4


1

R� ��z ± t� , �2.10�

being the step function and upper/lower sign is valid for retarded/advanced case. The quantity R

n the denominator is given by
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R =
1

2bo
��bo

2 + t2 − r2�2 + 4bo
2r2 sin2 ��1/2. �2.11�

t has the meaning of a retarded or advanced distance—it is a spatial distance of the “observation”
field� point from the position of the source at retarded or advanced time. Here, as usual,
=r sin � cos � , y=r sin � sin � , z=r cos �. The fields �2.9�, as well as �2.10�, are, at first glance,
xially �rotationally� symmetric. They are also unchanged under the boost along the z axis.

The field �BM can, in fact, be viewed as the field due to both accelerated particles, i.e., as the
eld corresponding to the source �2.7�. Inspecting regions at which the retarded and advanced
elds �2.10� are nonvanishing we discover that �BM admits the interpretation as arising from
-parametric combination of retarded and advanced effects from both particles,

�BM = 
 �ret� + �1 − 
� �adv� + �1 − 
� �ret� + 
 �adv� , �2.12�

here 
�R is an arbitrary constant parameter. In particular, choosing 
= 1
2 , the field �BM arises

rom 1
2 ��ret+�adv� from both particles. With 
=1, the field can be interpreted as being caused by

urely retarded effects from particle w� in region z+ t�0, and by purely advanced effects from
article w� in region z+ t�0.

The case of electrodynamics is very similar. The solution corresponding to the scalar field
2.9� was found by Born in 1909.1 It is customarily given in cylindrical coordinates �see, e.g.,
efs. 34, 37, and 14�, however, in order to compare it with its generalization to de Sitter universe,

t is more convenient to write it down in spherical coordinates,

FBM = −
e

4


1

2bo

1

R3 �− �bo
2 + t2 − r2�cos � dt ∧ dr + �bo

2 + t2 + r2�r sin � dt ∧ d� .

�2.13�
− 2tr2 sin � dr ∧ d�

he field can be obtained from the Liénard-Wiechert retarded and advanced potentials of two
harged particles moving along hyperbolae �2.3�, however, in contrast to the scalar case when
harges are exactly the same, the electric charges have opposite signs. Similarly to the scalar case,
he field is smooth everywhere, except for the places where the particles occur. FBM can be
nterpreted in the precisely same way as the scalar field �2.9�, i.e., as the 1-parametric combination
f retarded and advanced effects from both charges, analogously to Eq. �2.12�. However, in the
lectromagnetic case an exact form of retarded and advanced fields from a single particle is a more
ubtle issue. Considering that the field in the region z+ t�0 may be interpreted as the retarded
ffect emitted from the charge which moves along z�0, it is natural to try to exclude advanced
ffects of the other particle by requiring the field to vanish in the region z+ t�0 �cf. Fig. 1�. The
eld is then not smooth at the null hypersurface z=−t. In the scalar case such a field does represent

he pure retarded field of the single particle, cf. Eq. �2.10�. However, in the electromagnetic case
he field FBM� �z+ t� corresponds to sources consisting not only of the particle but also of a
charged wall” moving along hypersurface z+ t=0 with velocity of light.38,5 Nevertheless, it is
ossible to obtain6,39,40 a pure retarded field of the only single particle by modifying the field with
delta function valued term localized on z+ t=0.

In de Sitter space such a modification is not feasible because the advanced fields cannot be
xcluded. The underlying cause is the null character of the past conformal infinity in Minkowski
pace–time, whereas in de Sitter space–time both future and past conformal infinities are space-
ike. As a consequence, the Gauss constraint restricts the data at the spacelike past infinity, and it
an be shown that a purely retarded field of a pointlike charge cannot satisfy this constraint.24 The
bsence of purely retarded fields is also related to a different character of the past horizon of a
article. Since the worldline of a particle “enters” the universe through the past spacelike infinity,
here exists the past particle horizon, called also the creation light cone. In de Sitter space a purely
etarded electromagnetic field of a pointlike charge cannot be constructed on the whole cone. In
inkowski space–time the creation light cone of a particle moving asymptotically in the past
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reely, coincides with the whole past null infinity, and thus it does not belong to the physical
pace–time. Eternally accelerated particles can “enter” the Minkowski space–time at a point of the
ast null infinity—as, for example, uniformly accelerated particles do. Like in de Sitter case, in
onformal space–time the past horizon of such particles forms the null cone but, in contrast to de
itter space, it has one generator in common with the null infinity. In physical space–time this
orizon thus corresponds to a null hyperplane—for the particle w� it is just the hyperplane
+ t=0 �cf. Fig. 1�—and so its spatial sections are not compact. Thanks to this noncompactness the
bad” behavior of the retarded field on the horizon can be “pushed out of sight” to the infinity. We
nalyzed this issue in detail in Ref. 24.

II. MANY FACES OF DE SITTER

The fields due to various types of uniformly accelerated sources in de Sitter space–time found
n Ref. 24, as well as those described briefly in Ref. 25, were constructed by employing the
onformal relation between Minkowski and de Sitter space–times. When analyzing the worldlines
f the sources in de Sitter space–time and their relation to the corresponding worldlines in
inkowski space–time we need to introduce appropriate coordinate systems. Suitable coordinates
ill later be used to exhibit various properties of the fields. An extensive literature exists on
arious types of coordinates in de Sitter space �e.g., Refs. 41 and 42�; we will survey some of them
n this section. In particular, we relate them to the corresponding coordinates on conformally
elated Minkowski spaces since this does not appear to be given elsewhere. In the next section,
fter identifying the worldlines of uniformly accelerated particles in de Sitter space, we shall
onstruct coordinate systems tied to such particles, such as Rindler-type “accelerated” coordinates,
r Robinson-Trautman-type coordinates in which the null cones emanating from the particles have
specially simple forms. These coordinate systems will turn out to be very useful in analyzing the
elds. Here, in the main text, however, only a brief description of relevant coordinates will be
iven. More details, including both formulas and illustrations, are relegated to the Appendix.

As it is well known from textbooks on general relativity �for a recent pedagogical exposition,
ee Ref. 43�, de Sitter space–time, which is the solution of Einstein vacuum equations with a
osmological term ��0, is best visualized as the four-dimensional hyperboloid imbedded in flat
ve-dimensional Minkowski space. It is the homogeneous space of constant curvature equal to
�. Hereafter, we use the quantity

�� =� 3

�
�3.1�

with the dimension of length� to parametrize the radius of the curvature.
The entire de Sitter space–time can be covered by a single coordinate system—which we call

tandard coordinates—��R , �� �0,
� , �� �0,
� , �� �−
 ,
� in which the metric reads

gdS = − d�2 + ��
2 cosh2 �

��

�d�2 + sin2 � d�2� , �3.2�

d�2 = d�2 + sin2 � d�2. �3.3�

learly, we can imagine the space–time as the time evolution of a 3-sphere which shrinks from
nfinite extension at �→−	 to a radius ��, and then expands again in a time-symmetric way.
ence, we also call � ,� the spherical cosmological coordinates. The coordinate lines are shown in

he conformal diagram, Fig. 2.
In cosmology the most popular “flat” de Sitter universe is obtained by considering only a half

f de Sitter hyperboloid foliated by flat three-dimensional spacelike hypersurfaces labeled by
imelike coordinate �̌�R, cf. Fig. 3. Together with appropriate radial coordinate ř�R+, the

oordinates, which we call flat cosmological coordinates, are given in terms of � ,� by
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�̌ = �� log	sinh
�

��

+ cosh
�

��

cos �
, ř = ��

sin �

cos � + tanh��/���
, �3.4�

mplying the well-known “inflationary” metric

IG. 2. The spherical cosmological coordinates and a pair of uniformly accelerated particles w� and w� in de Sitter
niverse: the conformal diagram �above� and projection on the spacelike cut �=constant in the standard cosmological
pherical coordinates �angle � suppressed�. The whole de Sitter space–time could be represented by just the “right half” of
he conformal diagram. For convenience, we admit negative values of radial coordinates and identify r̃=�=−
 and
=�=
 �see the text below Eq. �3.12� and the Appendix�.

IG. 3. The flat cosmological coordinates and particles w� ,w� in de Sitter space and in conformally related Minkowski
pace. The flat cosmological coordinates cover shaded region. Its boundary, ř= ±	, represents the horizon for observers at

est in these coordinates.
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gdS = − d�̌2 + exp
2�̌

��

�dř2 + ř2 d�2� . �3.5�

hese coordinates cover only “one-half” of de Sitter space as indicated by shading in Fig. 3.
de Sitter introduced his model in what we call hyperbolic cosmological coordinates

�R , ��R+ �see Fig. 4� related to � ,� by

cosh
�

��

= cosh
�

��

cos �, tanh
�

��

= coth
�

��

sin � . �3.6�

he metric

gdS = − d�2 + sinh2 �

��
	d�2 + ��

2 sinh2 �

��

d�2
 �3.7�

hows that the time slices �=constant have the geometry of constant negative curvature, i.e., as
he standard time slices in an open FRW universe.

The last commonly used coordinates in de Sitter space–time are static coordinates T�R,
��0,���,

T =
��

2
log� cos � + tanh��/���

cos � − tanh��/���
�, R = �� cosh

�

��

sin � , �3.8�

overing also only a part of the universe. The metric in these coordinates reads

gdS = − 	1 −
R2

��
2 
dT2 + 	1 −

R2

��
2 
−1

dR2 + R2 d�2, �3.9�

evealing that � /�T is a timelike Killing vector in the region 0�R���.
Among the coordinates introduced until now only the standard coordinates � ,� ,� ,� cover the

hole de Sitter space–time globally. One can easily extend flat cosmological coordinates to cover
though not smoothly� the whole de Sitter hyperboloid, which will be useful in discussion of the
onformally related Minkowski space–time, cf. Eq. �3.13�. We shall also use extensions of the
tatic coordinates into the whole space–time, using definitions �3.8�, but allowing R�R+. In
egions where R��� coordinates T and R interchange their character, � /�T becomes a spacelike
illing vector �analogously to � /�t inside a Schwarzschild black hole�. However, the static coor-
inates T ,R are not globally smooth and uniquely valued. Namely, T→	 at the cosmological
orizons R=��. The static coordinates, extended to the whole de Sitter space, are illustrated in
ig. 5. Here we also indicate the regions in which � /�T is spacelike by bold F �“future”� and P
“past”�, whereas the regions in which it is timelike are denoted by N �containing the “north pole”

IG. 4. The hyperbolic cosmological coordinates. They cover only the shaded region and, therefore, only a part of the
orldline w�. The horizon Hhyp arises for the observers who are at rest in the hyperbolic cosmological coordinates.
=0� and S �containing the “south pole” �=
�. Hereafter, this notation will be used repeatedly.
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The conformal structure of Minkowski and de Sitter space–times, their conformal relation,
nd their conformal relation to various regions of the Einstein static universe have been discussed
xtensively in literature �see, e.g., Refs. 44–47�. The complete compactified picture of these
pace–times, in particular the three-dimensional diagram of the compactified Minkowski and de
itter spaces M# as parts of the Einstein universe represented by a solid cylinder can be found in
ef. 24. We refer the reader especially to Sec. III of Ref. 24 where we explain and illustrate the
ompactification in detail. In the present paper we shall confine ourselves to the two-dimensional
enrose diagrams.

The basic standard rescaled coordinates covering globally de Sitter space–time including the
onformal infinity are simply related to the standard coordinates as follows:

tan
t̃

2
= exp

�

��

, r̃ = � , �3.10�

� �0,
� , r̃� �0,
�. The metric �3.2� becomes

gdS = ��
2 sin−2 t̃ �− dt̃ 2 + d r̃2 + sin2 r̃ d�2� , �3.11�

emonstrating explicitly the conformal relations of de Sitter space–time to the Einstein universe,

gE = �dS
2 gdS, �dS = sin t̃ . �3.12�

herefore, we also call coordinates t̃ , r̃ the conformally Einstein coordinates. The conformal dia-
ram of de Sitter space–time is illustrated in Fig. 2. The past and future infinities, t̃=0 and t̃=
 are
pacelike, the worldlines of the north and south poles �given by the choice of the origin of the
oordinates� are described by r̃=�=0 and r̃=�=
.

The whole de Sitter space–time could be represented by just the “right half” of Fig. 2. Indeed,
t is customary to draw this half only and to consider any point in the figure as a 2-sphere, except
or the poles r̃=0,
. As we shall see, the formulas relating coordinates on the conformally related
e Sitter and Minkowski space–times have simpler forms if we admit negative values of the radial
oordinate r̃� �−
 ,0� covering the left half of the diagram. We shall thus consider the two-
imensional diagrams as in Fig. 2 to represent the cuts of de Sitter space–time along the axis going
hrough the origins �through north and south poles—analogously to the cuts along the z axis in

3�. The axis, i.e., the main circle of the spatial spherical section of de Sitter space–time, is
ypically chosen as �=0,
. Thus, in the diagram the point with r̃=−r̃o�0, �=�o , �=�o is
dentical to that with r̃= r̃o, �=
−�o, and �=�o+
. We use the same convention also for other

IG. 5. The static coordinates and the worldlines of particles w� and w�. These coordinates can be defined in the whole
pace–time, however several coordinate patches, in diagram indicated by shaded and nonshaded regions, have to be used
cf. sections 5 and 6 of the Appendix�. These regions are separated by the cosmological horizons at R=��, where T
±	. The vector � /�T is a Killing vector of de Sitter space–time. It is timelike in the domains N and S �shaded regions�

nd spacelike in the domains F and P. The histories of both particles w� and w� belong to the domains N and S.
adial coordinates appearing later, as explicitly stated in the Appendix �cf. also Appendix in
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ef. 24�. We admit negative radial coordinates only when describing various relations between the
oordinate systems. In the expressions for the fields in the following sections only positive radial
oordinates are considered.

As mentioned above, in Ref. 24 we constructed fields on de Sitter space–time by conformally
ransforming the fields from Minkowski space–time. Now “different Minkowski spaces” can be
sed in the conformal relation to de Sitter space, depending on which region of a Minkowski space
s mapped onto which region of de Sitter space. Consider, for example, Minkowski space with

etric gM given in spherical coordinates ť , ř ,� ,�. Identify it with de Sitter space by relations

ť =
�� sin t̃

cos t̃ − cos r̃
, ř =

�� sin r̃

cos r̃ − cos t̃
, �3.13�

he inverse relation �A11� is given in the Appendix. In the coordinates ť , ř , � , � the de Sitter
etric �3.11� becomes

gdS =
��

2

ť2
�− dť2 + dř2 + ř2 d�2� , �3.14�

o that

gdS = �
M̌

2
gM̌, �M̌ =

��

ť
. �3.15�

he coordinates ť , ř , � , � can, of course, be used in both de Sitter and Minkowski spaces.
igure 3 illustrates the coordinate lines. It also shows how four regions I, II, III, and IV of
inkowski space are mapped onto four regions of de Sitter space by relations �3.13�. We call ť , ř

escaled flat cosmological coordinates since their radial coordinate ř coincides with that of the flat
osmological coordinates �3.4� and the time coordinate is simply related to �̌ as

ť = − �� exp�− �̌/��� . �3.16�

he caron or the check �still better “háček”� “∨” formed by cosmological horizon at ť= ±	 in de
itter space �cf. Fig. 3� inspired our notation of these coordinates. It is possible to introduce
nalogously the coordinates t̂ , r̂ given in the Appendix, Eqs. �A39� and �A40�, that cover nicely
he past conformal infinity but are not smooth at the cosmological horizon t̂= ±	; in this case they
orm the hat “∧” in the conformal diagram �see Fig. 16 in the Appendix�.

From relations �3.13� it is explicitly seen why, when writing down mappings between de Sitter
nd Minkowski spaces and drawing the corresponding two-dimensional conformal diagrams, it is
dvantageous to admit negative radial coordinates. If we would restrict all radial coordinates to be
on-negative, we would have to consider the second relation in Eq. �3.13� with different signs for
egions III and II in de Sitter space: in III ř=�� sin r̃ / �cos r̃−cos t̃�, but in III we would have

ˇ =−�� sin r̃ / �cos r̃−cos t̃�.
Another mapping of Minkowski on de Sitter space will be used to advantage in the explicit

anifestation that the generalized Born solution in de Sitter space goes over to the classical
olution �2.13�. Instead of the mapping �3.13�, consider the relations

t = −
�� cos t̃

cos r̃ + sin t̃
, r =

�� sin r̃

cos r̃ + sin t̃
�3.17�
see Eq. �A17� for the inverse mapping�, which turn the metric �3.11� into
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gdS = 	 2��
2

��
2 − t2 + r2
2

�− dt2 + dr2 + r2 d�2� . �3.18�

e again obtain the de Sitter metric in the form explicitly conformal to the Minkowski metric
ith, however, a different conformal factor from that in Eq. �3.15�,

gdS = �M
2 gM, �M =

2��
2

��
2 − t2 + r2 . �3.19�

For the use of the de Sitter metric in “atypical” form �3.18� in the work on the domain wall
pace–times, see Ref. 48�. The relation of Minkowski space to de Sitter space based on the
apping �3.17� is illustrated in Fig. 6. Clearly, the Minkowski space in this figure is shifted

downwards” by 
 /2 in t̃ coordinate, as compared with Minkowski space in Fig. 3. Indeed,
eplacing t̃ by t̃+
 /2 in Eq. �3.13�, we get ť= t , ř=r with t , r given by Eq. �3.17�. Since coordi-
ates t , r , � , � are not connected directly with any cosmological model and correspond to
inkowski space “centered” on de Sitter space �Fig. 6�, we just call them conformally Minkowski

oordinates.
In Ref. 24 still another Minkowski space is related to de Sitter space—one which is shifted

downward” in t̃ coordinate by another 
 /2. As mentioned below Eq. �3.16�, the cosmological
orizon forms hat “∧” in this case and the corresponding coordinates are accordingly denoted as
, r̂. They are given explicitly in section 3 of the Appendix and Fig. 16.

The three sets of coordinates ť, ř, t, r, and t̂ , r̂ �with the same � , �� relating naturally “three”
inkowski spaces to de Sitter space are suitable for different purposes. The third set describes

onveniently the past infinity of de Sitter space—that is why it was used extensively in Ref. 24
here we were interested in how the sources enter �are “born in”� de Sitter universe. The second

et will be needed in Sec. VII for exhibiting the flat-space limit of the generalized Born solution.
he first set describes nicely the future infinity and will be employed when analyzing radiative
roperties of the fields.

With all the coordinates discussed above, corresponding double null coordinates can be asso-
iated; some of them will also be used in the following. Their more detailed description and

IG. 6. The conformally Minkowski coordinates. They cover the whole conformally related Minkowski space but only a
art of corresponding de Sitter space. This Minkowski space is related to that in Fig. 3 by a shift “downwards” by 
 /2 in
he direction of the conformally Einstein coordinate t̃.
llustration is presented in section 10 of the Appendix.
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Before concluding this section let us notice that the observers which are at rest in cosmologi-
al coordinate systems �, �, �̌, ř, and � , � move along the geodesics with proper time �, �̌, and �
espectively. These geodesics are also the orbits of the conformal Killing vectors. Indeed, the
ymmetries of Minkowski space–time and of the Einstein universe become conformal symmetries
n conformally related de Sitter space–time. In particular, we shall employ the fact that since � /�ť
nd � /�t are timelike Killing vectors in Minkowski space–time and � /�t̃ is a timelike Killing
ector in the Einstein universe, the vectors

�

� t̃
,

�

� ť
, and

�

�t
�3.20�

re timelike conformal Killing vectors in de Sitter space–time. As mentioned below Eq. �3.9�,
/�T is a Killing vector which is timelike for �R����.

V. UNIFORMLY ACCELERATED PARTICLES IN DE SITTER

. Particles born at the poles

In Sec. II we defined uniformly accelerated motion in Minkowski space–time. However, the
ormulas given there, being in covariant forms, remain valid in de Sitter space–time. As explained
n Ref. 24 in detail, a simple way of obtaining a worldline of a uniformly accelerated particle in de
itter space–time is to consider a suitable particle moving with a uniform velocity in Minkowski
pace–time and use the conformal relation between the spaces.

Consider a particle moving with a constant velocity of magnitude

vM̌ = tanh �o = constant, �4.1�

uch that for �o�0 it moves in a negative direction along the ž axis of the inertial frame in

inkowski space M̌ with coordinates ť , ř , � , � and passes through ř=0 at ť=0,

ť = �M̌ cosh �o, ř = − �M̌ sinh �o, � = 0. �4.2�

ubstituting into transformation �A11�, we find

t̃ = arctan	− 2��

�M̌ cosh �o

�
M̌

2
− ��

2 
, r̃ = arctan	− 2��

�M̌ sinh �o

�
M̌

2
+ ��

2 
 , �4.3�

r expressing Minkowski proper time �M̌ in terms of the proper time of de Sitter space–time,

�M̌ = � �� exp���cosh �o��dS/��� , �4.4�

e obtain

t̃ = arccot	−
sinh��cosh �o��dS/���

cosh �o

, r̃ = arccot	±

cosh��cosh �o��dS/���
sinh �o


, � = 0.

�4.5�

ere �dS�R, arccot takes values such that t̃� �0,
� and r̃� �0,
� for �o�0, or r̃� �−
 ,0� for

o�0. Upper sign is valid for the particle starting and ending with r̃=0 �particle w� in Fig. 7�,
ower sign for the particle starting and ending at r̃=
 �particle w� in Fig. 7�.

One can make sure by direct calculations of the four-acceleration �for its simplest form in the
tatic coordinates, see below� that these worldlines describe the uniformly accelerated motion as

efined in Sec. II, the magnitude of the acceleration being
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adS = �a�a� = ���
−1 sinh �o� . �4.6�

ince de Sitter universe represents the asymptotic state of all three types of indefinitely expanding
RW models with ��0, it is of interest to find out the form of these worldlines in the three types
f cosmological frames—spherical, flat, and hyperbolic—introduced in Sec. II.

In terms of cosmological spherical coordinates the worldlines are given by

� = �� arcsinh	 sinh��cosh �o��dS/���
cosh �o


, � = arccot	±
cosh��cosh �o��dS/���

sinh �o

, � = 0.

�4.7�

n flat cosmological coordinates, which cover only half of de Sitter space, we obtain just particle

� described by the worldline

�̌ = �dS cosh �o − �� log cosh �o, ř = �� sinh �o exp�− �cosh �o��dS/��� . �4.8�

inally, in hyperbolic cosmological coordinates, which are also not global, we obtain again one
article’s worldline only given in terms of its proper time as

� = �� arccosh
cosh��cosh �o��dS/���

cosh �o
, � = �� arccoth

sinh��cosh �o��dS/���
sinh �o

. �4.9�

hese formulas have no meaning for ��dS/�� cosh �o�� ��o� where the inverse hyperbolic func-
ions are not defined. This corresponds to the fact that for such �dS the particle occurs in the region
here the hyperbolic cosmological coordinates are not defined �cf. Fig. 4�. Excluding the proper

ime we find the worldlines to be given by remarkably simple formulas in the three systems of the
osmological coordinates,

a� spherical,

sin � = ± tanh �o � cosh
�

��

; �4.10�

b� flat,

ř

��

= tanh �o � exp
�̌

��

; �4.11�

IG. 7. The worldlines of uniformly accelerated charges. The particles w� and w�� start and end at the “north pole,” w� ,w
�
�

tart and end at the south pole. Particles w�� ,w
�
� have a higher magnitude of acceleration adS than particles w� ,w�. They

re characterized by a negative parameter �o, whereas particles w� ,w� have a positive �o.
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c� hyperbolic,

sinh
�

��

= tanh �o � sinh
�

��

. �4.12�

It is of interest to see what are the physical radial velocities which will be observed by three
ypes of the fundamental cosmological observers, i.e., those with fixed �, ř, and �, respectively,
hose proper times are �, �̌, and �, respectively. Such velocities can be defined by the covariant

xpression

vobs = u� e1
� d�dS

d�obs
, �4.13�

here u� is the particle’s four-velocity, �dS its proper time, e1
� is the unit spacelike vector in the

irection of the radial coordinate x1=�, ř, and �, respectively, i.e., in directions � /��, � /�ř, and
/��, and �obs is the proper time of an observer, i.e., � , �̌, or �, respectively. Since all three
osmological metrics are diagonal the expression �4.13� takes on the form

vobs = �gdS11
dx1

d�obs
. �4.14�

he results are of interest,

vobs��� = �
sign � sinh �o

�sinh2 �o + coth2��/���
, �4.15�

vobs�ř� = − tanh �o, �4.16�

vobs��� = −
sinh �o

�sinh2 �o + tanh2��/���
. �4.17�

Consider first the picture in spherical cosmological coordinates, Eqs. �4.7� and �4.10�. Only in
his frame both particles are present. They start asymptotically at antipodes of the spatial section
f de Sitter space at I−��→−	� and move one towards the other until �=0, the moment of
aximal contraction of de Sitter space �“the neck” of de Sitter hyperboloid�, when they stop,

obs���=0. Then they move, in a time-symmetric manner, apart from each other until they reach
uture infinity asymptotically at the antipodes from which they started. In contrast to the flat space
ase, the particles do not approach the velocity of light in this global spherical cosmological
oordinate system, the asymptotical magnitude of their velocity being equal to �tanh �o� �cf. Eq.
4.15��. Hence, curiously enough, the particles approach the antipodes asymptotically with a finite
onvanishing velocity �for an intuitive insight into this effect, see below�.

Although the particles w� and w� do not approach infinities with velocity of light, they are
ausally disconnected as the analogous pair of particles in Minkowski space �cf. Fig. 1 and Fig. 7�.
o retarded or advanced effects from the particle w� can reach the particle w� and vice versa.

Next, consider flat and hyperbolic observers. As seen from Eq. �4.16�, with respect to the flat
osmological coordinates the particle w� moves with the same velocity �tanh �o� all the time. And
he same velocity is asymptotically, at �→	, reached by this particle in the hyperbolic cosmo-
ogical coordinates. The magnitude of the asymptotic values of the velocity at I+ is, in fact, equal
o the velocity �4.1� of the particle in Minkowski space from which we constructed uniformly
ccelerated worldlines by a conformal transformation. The identity of all these velocities is un-
erstandable, the magnitude of the velocity with respect to an observer can be determined by
rojecting the particle’s four-velocity on the observer’s four-velocity, i.e., by the angle between
hese directions. In de Sitter space all three types of cosmological observers reach I+ with the

+
ame four-velocity; moreover, this four-velocity is at I identical to the four-velocity of observers

7 Oct 2005 to 195.113.23.45. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



a
a
s
t

l
a
c
c
c
b
t
v

f
�

T

w
i

w

s
o
s
o
t
m
t
o
“
a
a
R
w

c
�
t
o
�
r
b

102504-16 J. Bičák and P. Krtouš J. Math. Phys. 46, 102504 �2005�

Downloaded 2
t rest in conformally related Minkowski space. But a conformal transformation preserves the
ngles and thus, the velocities with respect to the three types of cosmological observers in de Sitter
pace and the velocity in the conformally related Minkowski space must all be equal—given by
he “Lorentzian” angle �o.

It is worth noticing yet what is the initial velocity of the particle w� in hyperbolic cosmo-
ogical coordinates. Regarding Fig. 4 we have �→−	 , �→0 at the “starting point” of the particle
t I−. From Eq. �4.17� we get vobs���→−tanh �o which in the magnitude is the same as in spherical
osmological coordinates but has opposite sign since the particle moves in the direction of in-
reasing negative �. More interesting is how the particle enters the upper region of the hyperbolic
oordinates. Figure 4 suggests that its velocity must approach the velocity of light since at this
oundary the fundamental observers of the hyperbolic cosmological frame themselves approach
he velocity of light. Indeed, at this boundary �=0,�=	, and the expression �4.17� implies

obs���→−1.
By far the simplest description of the particles is obtained in the static coordinates T ,R. Using,

or example, the relation R=�� sin r̃ / sin t̃ �cf. Eqs. �A64� and �A77��, and substituting from Eq.
4.5�, we find that the worldlines of both particles w� and w� are given by remarkably lucid forms

T = �dS cosh �o =
�dS

�1 − Ro
2/��

2
, R = �� tanh �o � Ro. �4.18�

hese expressions imply that the four-acceleration a�=u���u� is simply

a = −
Ro

��
2

�

�R
= −

1

��

tanh �o
�

�R
= aoeR, �4.19�

here eR is a unit spatial vector in the direction � /�R of the static radial coordinate R, and we
ntroduced constant

ao = − ��
−1 sinh �o = −

Ro/��
2

�1 − Ro
2/��

2
�4.20�

hich represents the “oriented” value of the acceleration of the particles.
We thus find the uniformly accelerated particles in de Sitter space–time to be at rest in the

tatic coordinates at fixed values R=Ro of the radial coordinate. Two charges moving along the
rbits of the boost Killing vector �2.5� in Minkowski space are at rest in the Rindler coordinate
ystem and have a constant distance from the space–time origin, as measured along the slices
rthogonal to the Killing vector. Similarly, we see that the worldlines w� and w� are the orbits of
he static Killing vector � /�T of de Sitter space. The particle w� �respectively, w�� has, as

easured at fixed T, a constant proper distance from the origin t̃=
 /2 ��=0� , r̃=�=0 �respec-
ively, r̃=�=
�. As with Rindler coordinates in Minkowski space, the static coordinates cover
nly a “half” of de Sitter space. In the other half the Killing vector becomes spacelike. Owing to
cosmic repulsion” caused by the presence of �, fundamental cosmological observes moving
long geodesics � ,� ,� constant are “repelled” one from the others. Their initial implosion starting
t �→−	 is stopped at �=0 and changes into expansion. Clearly, a particle with constant
=Ro—hence a constant proper distance from the particle at R=0=�—must be accelerated to-
ards that “central” particle.

In Eq. �4.20� we have denoted the radial tetrad component of the acceleration in the static
oordinates by ao; notice that, in contrast to the magnitude of the acceleration adS= �ao� �cf. Eq.
4.6��, ao can be negative as, in fact, it is the case with both particles w� and w�, assuming that
he static radial coordinate of the particles is positive, R=Ro�0. Geometrically, the four-vectors
f the acceleration of the particles point in opposite directions—towards �=0, the other towards
=
. Since, however, one needs two sets of the static coordinates to cover both particles, and the

adial coordinate R increases from both �=0 and �=
 worldlines �cf. Fig. 5�, the accelerations of

oth particles point in the direction of decreasing R’s and is thus negative. All the particles we are
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onsidering perform one-dimensional motion only, hence we use for the description of their
orldlines the same convention as for the two-dimensional diagrams with time and radial

oordinates—we allow the radial coordinate to take negative values. Thus, for example, consider
particle with worldline w�� which is a “reflection” of the worldline w� with respect to r̃=�=0

see Fig. 7�. The particle w�� moves in the region of negative r̃, respectively R, it has an accel-
ration positive, ao=−��

−1 sinh �o�0 �i.e., �o�0�, and its four-acceleration vector is pointing in
he direction of increasing R. With our convention, the particle w�� is just that which moves from
=0 along the �=
 direction. This convention will be particularly useful when we shall construct
orldlines of uniformly accelerated particles which start and end at the equator. Those which
ove in the region ��
 /2 will have negative ao, those moving with ��
 /2 will have positive

o—see Sec. IV B.
An intuitive geometrical understanding of the worldlines of uniformly accelerated particles in

e Sitter space–time can be gained by considering de Sitter space as a four-dimensional hyperbo-
oid −Z0

2+Z1
2+Z2

2+Z3
2+Z4

2=��
2 in five-dimensional Minkowski space. The spherical cosmological

oordinates � ,� ,� ,� are then identical to the hyperspherical coordinates on this hyperboloid. The
orldlines of the north and south poles, �=0,
, can be obtained by cutting the hyperboloid by a

imelike 2-plane T2, given by Z2=Z3=Z4=0. The worldlines of our uniformly accelerated particles

� and w� then arise when the hyperboloid is cut by a timelike 2-plane T2
* parallel to T2 at a

istance Ro=�� tanh��o /��� from the origin.43 T2
* is thus given by Z2=Ro , Z3=Z4=0. From

he definition of the hyperspherical coordinates it follows �=0,
 and

2=�� cosh�� /��� sin � cos �=Ro, i.e., sin �= ±tanh �o /cosh�� /���, which is just Eq. �4.10� de-
cribing w� and w�.

From this construction, the curious result mentioned above—that w� and w� approach an-
ipodes �=0 and �=
 asymptotically with a fixed speed �tanh �o� in spherical cosmological
oordinates—is not so surprising: thanks to the expansion of de Sitter space–time fundamental
osmological observers with arbitrarily small �=constant�0 will, in the limit �→	, eventually
ross the plane T2

*, and thus the particle w�; however at any finite but arbitrarily large � there will
e observers with �=constant which are still moving towards the particle w�. The same, of
ourse, is true with the symmetrically located particle w� and corresponding observers close to
=
.

. Particles born at the equator

In the classical Born solutions both charges are, at all times, located symmetrically with
espect to the origin of the Minkowski coordinates �see Fig. 1�. In order to demonstrate explicitly
hat a limiting procedure exists in which our generalized Born’s solution goes over to its classical
ounterpart, we shall now construct the pair of uniformly accelerated particles which are, at all
imes, symmetrically located with respect to the origin of the standard spherical coordinates in de
itter space, i.e., with respect to the “north pole” at �=0. Asymptotically at �→−	 these two
articles both start �“are born”� with the same speed at the equator, �=
 /2, at the antipodal points
=0 and �=
. As the universe contracts, they both move symmetrically along the axis �=0,
,

each some limiting value �o at the moment of time symmetry, and accelerate back towards the
quator, reaching the initial positions asymptotically at �→ +	. These two particles are illustrated
n Fig. 8, with their worldlines denoted by w� and w�. In Fig. 9, a snapshot at �=constant is
epicted. Comparing Fig. 8 with Fig. 7, it is evident that the particles w� and w� are located with
espect to the point �=
 /2 , �=0 in exactly the same manner as the particles w� and w� are
ocated with respect to the pole �=0 �or, rather, as the particles w�� , w

�
� , since we chose w� , w�

o have positive ao in Fig. 8�.
Owing to the global homogeneity of de Sitter space and the spherical geometry of its slices

=constant, the worldlines of the particles w� and w� can be constructed by a suitable rotation of

he worldlines of the particles w� and w�. In Sec. VII the same rotation will be applied to obtain
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he fields of these particles “born at the equator.” We rotate the coordinates � , � , � into coordi-

ates �̄ , �̄ , �̄ which, as a pole, have the point �=
 /2 , �=0 �see Fig. 9�. The relations between
hese coordinates follow from the spherical geometry:

cos �̄ = sin � cos �, tan �̄ = − tan � sin �, �̄ = � . �4.21�

he new worldlines, w� and w�, will then be given by Eqs. �4.7� in which � , � , � are replaced

y rotated coordinates �̄ , �̄ , �̄. Substituting for these by using relations �4.21�, we find the
orldlines w� , w� in the original coordinates to be described by the expressions

� = �� arcsinh	 sinh��cosh �o��dS/���
cosh �o


, � = ± arctan	−
cosh��cosh �o��dS/���

sinh �o

, � = 0,

�4.22�

ith the values of arctan from �0,
� and upper �lower� sign corresponding to the particle starting
t the positive �negative� value of �, i.e., to the particle w� �or w�, respectively�.

Excluding the proper time �dS, we arrive at simple result �cf. Eq. �4.10��

cos � = −
tanh �o

cosh��/���
. �4.23�

s �→ ±	, then indeed ���→
 /2; at �=0, ���=arccos�−tanh �o�=arccos�−Ro /���, in agreement
ith the “deviation” of the “original” particles w� , w� from �=0 at �=0. In the spherical rescaled

oordinates, Eqs. �4.22� read

IG. 8. The worldlines of uniformly accelerated charges located symmetrically with respect to the origin �north pole� of
he standard spherical coordinates in de Sitter space. The particles “start” and “end” at the equator. They are causally
isconnected as a corresponding pair in Minkowski space �cf. Fig. 1�. The “oriented” value ao of the acceleration of these
articles is positive �cf. the “rotated” version of Eq. �4.20��.

IG. 9. The rotated spherical coordinates �̄ , �̄ on 3-sphere �the cut �=constant�. The relation between the coordinates is

iven in Eq. �4.21�.
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t̃ = arccot	−
sinh��cosh �o��dS/���

cosh �o

 ,

r̃ = ± arccot	−
cosh��cosh �o��dS/���

sinh �o

 , �4.24�

� = 0,

gain with the values of arctan and arccot from �0,
�. Equation �4.23� becomes

cos r̃ = − tanh �o sin t̃ . �4.25�

Although the flat �rescaled� cosmological coordinates cover only parts of the worldlines

� , w� �see Figs. 8 and 3�, we transcribe the equations above also into these frames in which the
articles “emerge” at �̌ , ť→−	 at the cosmological horizon at ř= ±	. We find

�̌

��

= − log	 − cosh �o

− sinh��cosh �o��dS/��� + sinh �o

 ,

ť

��

=
cosh �o

− sinh��cosh �o��dS/��� + sinh �o
, �4.26�

ř

��

= �
cosh��cosh �o��dS/���

− sinh��cosh �o��dS/��� + sinh �o
,

o that Eq. �4.25� translates into the relations

ř = ± ���
2 + ť2 − 2��ť tanh �o,

�4.27�
ř = ± ��

�1 + 2 tanh �o exp�− �̌/��� + exp�− 2�̌/��� .

s �̌→ +	, we have ř→ ±��, as it corresponds to �→ ±
 /2; at �̌→−	, we get ř→ ±	—here
he particles enter flat cosmological frame at the horizon �cf. Fig. 8�.

The worldlines w� , w� are situated outside the regions covered by our choice of the hyper-
olic cosmological coordinates. Similarly, we get only finite parts of w� , w� in our static coor-
inates. Of course, we could rotate the static coordinates to cover both particles but then we arrive
t exactly the same picture as with the particles w� , w� considered above.

Our primary reason to discuss the pair w� , w� is to demonstrate explicitly how our fields go
ver into the classical Born solution in the limit of vanishing �. For this purpose, it will be
mportant to have available also the description of the worldlines w� , w� in the Minkowski
oordinates introduced in Eqs. �3.17�. As it is obvious from Fig. 6, these coordinates cover both
orldlines w� and w� completely. Using the relations inverse to Eqs. �3.17� given in the Appen-
ix, Eq. �A17�, we find Eqs. �4.24� to imply

t = bo sinh
�M

bo
, r = ± bo cosh

�M

bo
, � = 0, �4.28�
here
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bo

��

= exp �o = �1 + ao
2��

−2 − ao�� =��� + Ro

�� − Ro
, �4.29�

nd �M is the proper time measured in Minkowski space M related to de Sitter space by conformal
apping �3.18� and �3.19�,

�M = exp �o cosh �o �dS. �4.30�

onsequently,

r = ± �t2 + bo
2, � = 0, �4.31�

hich is the simplest form of the hyperbolic motion with the uniform acceleration 1/bo as mea-
ured in Minkowski space �cf. Eqs. �2.3��.

. FRAMES CENTERED ON ACCELERATED PARTICLES

For the investigation of the radiative properties and other physical aspects of the fields, the use
f �physically equivalent� particles w� ,w�, i.e., those “born at the poles” of spherical coordinates
s technically more advantageous. We shall now return back and construct frames with the origins
ocated directly on these particles. In such frames, various properties of the fields will become

ore transparent than in the coordinates introduced so far.
As we have seen in the preceding section, the uniformly accelerated particles w� and w� are

t rest in static coordinates T ,R at given R=Ro=−ao��
2 /�1+ao

2��
2 , where �ao� is the magnitude of

he acceleration. In order to investigate the properties of the fields, in particular, in order to see
hat is the structure of the field along the null cones with vertices at the particle’s position, i.e.,
hat is the field “emitted” by the particle at a given time, it is useful to construct coordinate

rames centered on the accelerated particles. Such systems of coordinates are used to describe
ccelerating black holes in general relativity �like C-metrics, known also for ��0, cf. Refs. 27
nd 28�, so that their properties on de Sitter background may indicate what is their meaning in
ore general cases—in situations when they are centered on gravitating objects rather than on test

articles.
We shall now describe three coordinate systems of this type: the accelerated coordinates, the

-metric-like coordinates, and the Robinson-Trautman coordinates, all centered on the worldlines

� and w�. Instead of writing down just the transformation formulas, we wish to indicate some
teps how these coordinates can be obtained naturally. We list only the main transformation
elations here, many other formulas and forms of the metrics can be found in the Appendix. Let us
lso note that in this section we assume Ro ,�o�0, i.e., ao�0, and we use only static radial
oordinate with positive values, i.e., R�0.

. Accelerated coordinates

We begin with the construction of accelerated coordinates T� ,R� ,�� ,�. This type of coordi-
ates was recently introduced49 by another method in the context of the C-metric with ��0. In
he preceding section we obtained the worldlines w� ,w� of uniformly accelerated particles in
e Sitter space by starting from a particle moving with a uniform velocity vM̌ =tanh �o in a

egative direction of the ž axis in the inertial frame ť , ř ,� ,� in Minkowski space M̌ which passes
hrough ř=0 at ť=0 �see Eqs. �4.1� and �4.2��; and we used then the conformal relation between

inkowski and de Sitter spaces to find w� ,w�. Therefore, let us first construct a frame centered

n the uniformly moving particle in M̌. Using spherical coordinates again, this boosted frame
enoted by primes is related to the original one simply by

ť� = ť cosh �o + ř cos � sinh �o,

ˇ ˇ ˇ
r� cos �� = t sinh �o + r cos � cosh �o, �5.1�
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ř� sin �� = r sin � ,

he �-coordinate does not change and will be suppressed in the following. From here

− ť�2 + ř�2 = − ť2 + ř2,

�5.2�

tan �� =
sin �

�ť/ř�sinh �o + cos � cosh �o

.

he original frame ť , ř ,� in Minkowski space M̌ is related to the static coordinates T ,R ,� in de
itter space by �cf. Eqs. �A67� and �A80��

T = −
��

2
log� ť2 − ř2

��
2 �, R = − ��

ř

ť
, � = � . �5.3�

he metrics of the two spaces are related by gdS= ���
2 / ť2�gM̌ , gdS being given by Eq. �3.9�—cf. Eq.

3.14�. Now, let us introduce coordinates T� ,R� ,�� given in terms of ť� , ř� ,�� by exactly the same
ormulas as coordinates T ,R ,� are given in terms of ť , ř ,� in Eq. �5.3�. In this way we obtain

dS�= ���
2 / ť�2�gM̌. Combining the last relation with gdS= ���

2 / ť2�gM̌, we find the metric of the
riginal de Sitter space in the new coordinates T� ,R� ,�� in the form

gdS =
ť�2

ť2
gdS�, �5.4�

dS� is given by the “primed” version of Eq. �3.9�. Expressing then the factor �ť� / ť�2 by using Eqs.
5.1� and �5.2�, and “primed” relations �5.3�, we arrive at the de Sitter metric in the accelerated
oordinates in the form

gdS =
1 − Ro

2/��
2

�1 + �R�Ro/��
2 �cos ���2	− 	1 −

R�2

��
2 
dT�2 + 	1 −

R�2

��
2 
−1

dR�2 + R�2�d��2 + sin2 �� d�2�
 .

�5.5�

ere the accelerated coordinates T� ,R� ,�� ,� are given in terms of static coordinates by the
elation obtained by the procedure described above as follows:

R� = ���1 −
�1 − R2/��

2 ��1 − Ro
2/��

2 �
�1 − �RRo/��

2 �cos ��2 ,

�5.6�

T� = T, tan �� =
�1 − Ro

2/��
2 R sin �

R cos � − Ro
.

Notice that the time coordinate of static and accelerated frames coincide. Technically, this is
asy to see from the first relation in Eqs. �5.2� and �5.3�. Intuitively, this is evident since the
niformly accelerated particles are at rest in the static coordinates, as well as in the accelerated
oordinates, the only difference being that they are located at the origin of the accelerated frame.
etting Ro=0 in Eq. �5.6�, we get R�=R , ��=�, as expected. The static coordinates are centered
n the poles �=0,
, hence, on the unaccelerated worldlines. The name accelerated coordinates is
hus inspired by the fact that their origin is accelerated, and the value of this acceleration enters the
orm of the metric �5.5� explicitly through the quantity Ro.

The two-dimensional conformal diagram of de Sitter space with coordinate lines
�=constant, R�=constant of the accelerated frame is given in Fig. 10. For details, see the figure

2 2
aption. Here let us just notice that the cosmological horizons are still described by R� =��.
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nfinite values of R� can, however, be encountered “before” the conformal infinities I± are
eached. This depends on the angle ��. Indeed, R�=	 corresponds to ť�=0, whereas I ± is given
y ť=0, i.e.,

R� = −
��

2

Ro

1

cos ��
, �5.7�

cf. metric �5.5��. Relation of these two surfaces is best viewed in Minkowski space M̌. We see
hat for � ,���
 /2, the conformal infinity I + �I −� lies “above” �“below”� the surface R�= ±	.
hus the infinity R�= ±	 is just a coordinate singularity, which can be removed using, for ex-

IG. 10. The two-dimensional conformal diagrams of de Sitter space based on the static, nonaccelerated coordinates
upper diagram�, and on the accelerated coordinates �lower diagram�. Starting from static coordinates T ,R ,� ,�, one can
raw the conformal diagram of the axis �=0,
 in which the conformal past and future infinities, I ± �R= ±	�, are
orizontal �double� lines. In addition to static coordinates T ,R, also accelerated coordinates T� ,R� are indicated in both
iagrams. These have a coordinate singularity for R�=	 �drawn as a dashed line�. The origins of the accelerated coordi-
ates, R�=0 �thick lines�, are worldlines of uniformly accelerated particles. In the conformal diagram of the axis
�=0,
 based on accelerated coordinates, the origins R�=0 and the coordinate singularity R�=	 of the accelerated frame
re straight lines; the true infinities I ± have a “bulge” upwards or “downwards,” depending on the angle ��. The
ypersurface R�=	 corresponds to the boosted hyperplane ť�=0, whereas the conformal infinity corresponds to ť=0 �the

elation of both hyperplanes can be well understood in the diagram of the conformally related Minkowski space M̌�. The
iagrams in which the conformal infinities I ± are not straight naturally arise in the studies of the C-metric with ��0 �de
itter space being a special case of this class of the metrics �Ref. 27��. In general, outside the axis �=��=0,
, the

ransformations between the static and accelerated coordinates mix radial and angular coordinates R, � and R� ,��, as is
een also in the following Fig. 11. The sections ��=constant �for some general ��� are also shown in Fig. 21 in the
ppendix.
mple, the C-metric-like coordinate v introduced below.
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Figure 11�a� shows the cut T=T�=constant located in the region of de Sitter space where the
illing vector � /�T=� /�T� is timelike �R ,R�����; �-direction is suppressed. The cut is a space-

ike sphere S3 with homogeneous spherical metric. The coordinate lines R�=constant and
�=constant are plotted, with two origins R�=0 indicated, here the accelerated particles occur.
he coordinate R� grows from R�=0 at the origins to the equator where R�=��. In Fig. 11�b� the
ut T=T�=constant located in the regions where � /�T=� /�T� is spacelike �R ,R����� is illus-
rated, again with �-direction suppressed. Here the cut is timelike with the geometry of three-
imensional de Sitter space. The coordinate lines R�=constant and ��=constant are also shown.

As we have just seen, the points with R�=	 can be “nice” points in de Sitter manifold. It may
hus be convenient to introduce the inverse of R� as a new coordinate. Also, we consider −cos ��
s a coordinate, and make the time coordinate dimensionless. We thus arrive at the C-metric-like
oordinates � ,v ,
 ,�,

� =
T�

��

, v =
��

R�
, 
 = − cos ��. �5.8�

he metric �5.5� becomes

gdS = r2	− �v2 − 1�d�2 +
1

v2 − 1
dv2 +

1

1 − 
2d
2 + �1 − 
2�d�2
 , �5.9�

ith the conformal factor r given by

r =
��

v cosh �o − 
 sinh �o
. �5.10�

his is de Sitter space–time in the “C-metric form:” setting the mass and charge parameters, m and
, equal to zero in the the C-metric with a positive cosmological constant �written in the form �2.8�
f Ref. 27�, and choosing the acceleration parameter equal to A=��

−1�sinh �o�= �ao�, we obtain the

IG. 11. The accelerated coordinates R� ,�� on the sections T�=constant of de Sitter space �coordinate � suppressed�. In
he region where � /�T� is timelike �0�R�����, the cut T�=constant is a spacelike sphere �diagram �a��. In the region
here � /�T� is spacelike ����R� and R��0�, it is a timelike hyperboloid �diagram �b��. The diagrams are not in the same

cale—the radius of the sphere and of the neck of the hyperboloid should be the same. The axis ��=0,
 corresponds to
he lines T�=constant of Fig. 10. The coordinate singularity R�= ±	 is also indicated. For more details see the text.
etric �5.9�.
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. Robinson-Trautman coordinates

In order to arrive naturally to the Robinson-Trautman form of the metric, notice that the
oefficients in the metric �5.9� become singular at v→ ±1, similarly as they do on the horizon of
he Schwarzschild space–time in the standard Schwarzschild coordinates. Analogously to that
ase, we choose a “tortoise-type” coordinate v� by

v� =
1

2
log�1 − v

1 + v
� . �5.11�

imilarly to the Schwarzschild case again, we introduce a suitable null coordinate u in terms of the
adial and time coordinates � and v� as follows:

u = ��� tanh �o��� + v�� . �5.12�

ogether with the conformal factor r defined in Eq. �5.10�, we arrive at the de Sitter metric in
oordinates u ,r ,
 ,� �cf. Eq. �A109�� which is very near to being in the Robinson-Trautman form.
owever, there is a nonvanishing mixed metric coefficient at du∨d
 which is absent in the
obinson-Trautman metric. Such a term can be made to vanish by introducing a new angular
oordinate � by

� = arctanh 
 +
u

��

sinh �o. �5.13�

he de Sitter metric then becomes

gdS = − H du2 − du ∨ dr +
r2

P2 �d�2 + d�2� , �5.14�

here

H = −
r2

��
2 + 2

r

��

sinh �o tanh	� −
u

��

sinh �o
 + 1,

�5.15�

P = cosh	� −
u

��

sinh �o
 .

his is precisely the form of the Robinson-Trautman metric—see, e.g., Ref. 50. Tracking back the
ransformations leading to the metric �5.14�, the connection between the Robinson-Trautman
oordinates and the static coordinates T ,R ,� ,� turns out to be not as complicated as our proce-
ure might have indicated, in particular, for the radial coordinate. We find a nice formula for r,

r =
��

�1 −
Ro

2

��
2

		1 −
RRo

��
2 cos �
2

− 	1 −
R2

��
2 
	1 −

Ro
2

��
2 

1/2

, �5.16�

hereas the other two coordinates are simply expressed only in terms of accelerated coordinates
�=T ,R� ,�� ,�,

u =�1 −
Ro

2

��
2 	T� +

��

2
log�R� − ��

R� + ��

�
, � =
Ro

��
	 T�

��

+
1

2
log�R� − ��

R� + ��

�
 + log�tan
��

2
� .

�5.17�

oordinates R� ,�� can then be obtained in terms of the original static coordinates by using Eqs.

5.6�.
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The Robinson-Trautman coordinates with metric �5.14� are centered on the accelerated par-
icles. As with static or accelerated frames, we need two sets of such coordinates to cover both w�

nd w�. The relations to the static coordinates become, of course, much simpler if the particles are
ot accelerated, Ro=0, and when both the Robinson-Trautman and static coordinates are centered
n the pole �=0,

r = R, � = log tan
�

2
, u = T +

��

2
log�R − ��

R + ��

� . �5.18�

owever, even “accelerated” Robinson-Trautman coordinates possess some very convenient fea-
ures. The radial coordinate r is an affine parameter along null rays u ,� ,�=constants, normalized
t the particle’s worldline by the condition

��

�r
gdS��u� = − 1, �5.19�

here u is the particle’s four-velocity. These null rays form a diverging but nonshearing and
onrotating congruence of geodesics. The null vector � /�r, tangent to the rays, is parallelly
ropagated along them. Its divergence is given by ����� /�r�=2/r so that r is both the affine
arameter and the luminosity distance �see, e.g., Ref. 51�. With Robinson-Trautman coordinates,
ne can also associate a null tetrad �explicitly written down in the Appendix, Eq. �A114�� which
s parallelly transported along the null rays from the particle �r=0� up to infinity �r=	�.

Owing to the boost symmetry of both the worldlines and de Sitter space, an interesting feature
rises, which is analogous to the situation in Minkowski space. Consider a point B in region N
Fig. 12�. There are two generators of the null cone with the origin at B which cross the worldline

� at two points, Bret and Badv. Then the affine parameter distance BBret is the same as BBadv. �In
rder to go towards the past from Badv to B, the “advanced” Robinson-Trautman coordinates built
n the past null cones with origins on w� can easily be introduced.� This is evident because B lies
n one orbit of the boost Killing vector � /�T and a boost can be applied which leaves the
orldline w� invariant but moves B into event B� on the slice of time symmetry, �=0 �also
=T�=0�, where the particle is at rest. Then Badv and Bret move to the new points Badv� ,Bret� , which
re located symmetrically with respect to �=0. The equality of the affine parameter distances then
ollows from the symmetry immediately. Similarly, for an event A in region F one can show that
he affine parameter distance AA� is equal to the distance AA� �see Fig. 12�. The point A lies on
boost orbit �which now has a spatial character� along which it can be brought, by an appropriate
oost, to the point located symmetrically between the worldlines w� and w� �lying so on the
quator, �=
 /2�. The same consideration can, of course, be applied to an event in the “past”
egion P—showing that the affine distances along future-oriented null rays from an event to the

IG. 12. The field at an event A can be interpreted as 1/2 of the sum of the retarded fields produced by particle w� at A�

nd particle w� at A�. The field at B can be interpreted as 1/2 of the sum of the retarded and advanced effects from particle

�. The affine parameter distances BBret and BBadv are equal, the same being true for the distances AA� and AA�.
articles are equal.
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Although the symmetries just described are common to the worldlines of uniformly acceler-
ted particles in Minkowski and de Sitter space–times, an important difference exists. In
inkowski space, the affine parameter distance along the null ray from an event on particle’s
orldline, such as A�, to an “observation” point A is equal to the proper distance between A� and

� where A� is the orthogonal projection of A onto the spacelike slice T=T�A��. This is not the
ase in de Sitter space if, as it appears natural, under an orthogonal projection we understand the
rojection of the observation point A onto the spacelike slice T=constant containing A� performed
long a timelike geodesic orthogonal to such a slice. Nevertheless, the proper distance s between

� and A� is still related to the affine parameter distance r by a simple expression

r

��

= tan
s

��

. �5.20�

his relation can be derived as follows. Consider, without loss of generality, A� located at the
urning point of the particle w� at T=0. The condition that the events A and A� are connected by
null ray implies that the distance s between A� and A� is the same as the time interval between

� and A as measured by the metric �3.12� of the conformally related static Einstein universe.
ince A occurs at some time t̃ whereas A� and A� at t̃=
 /2 �i.e., at static time T=0�, this time

nterval is equal to ���t̃−
 /2�, cf. Eq. �3.11�. The static radial coordinate R of A thus reads �cf.
qs. �A64� and �A77��

R =
sin r̃

sin t̃
=

sin r̃

cos�s/���
. �5.21�

he slice T=0 has a geometry of the 3-sphere of radius ��. Using the standard law of cosines in
pherical trigonometry for the sides of the triangle spanned by A� ,A�, and the north pole, we can
liminate r̃. Finally, employing Eq. �5.16�, we obtain the result �5.20�. Clearly, near the particle w�

e have s���, and Eq. �5.20� then gives r�s, as in Minkowski space.
In the following section we shall explore the character of the fields of the particles w� and w�.

e shall see that the affine parameter distance r will play most important role, simplifying their
escription enormously. Namely, as we will see in Sec. VI B, Eq. �6.28�, the affine parameter r is
dentical to the factor Q which will be introduced in the following and will appear in all expres-
ions for the fields.

I. FIELDS OF UNIFORMLY ACCELERATED SOURCES AND THEIR MANY FACES

In this section we wish to construct the scalar and electromagnetic fields of uniformly accel-
rated �scalar and electric� charges in de Sitter universe. A general procedure, suitable in case of
ny—not necessarily uniform—acceleration would be to seek for appropriate Green’s functions.
lternatively, in particular for sources moving along uniformly accelerated worldlines, we can
ake use of the conformal relations between Minkowski and de Sitter spaces, and of the proper-

ies of scalar and electromagnetic fields under conformal mappings. This method is advantageous
ot only for finding the fields in de Sitter space–time, but also for understanding their relationships
o the known fields of corresponding sources in special relativity. The only delicate issue is the fact
hat there are no conformal mappings between Minkowski and de Sitter space which are globally
mooth. We discussed, in Sec. III, how various regions of one space can be mapped onto the
egions of the other space. In Ref. 24 we carefully treated the fields at the hypersurfaces where the
onformal transformation fails to be regular. In order to obtain well-behaved fields, one must
ontinue analytically across such a hypersurface the field obtained in one region into the whole de
itter space. In Sec. II in Ref. 24, we also analyzed in detail the behavior of the scalar field wave
quation with sources and of Maxwell’s equations with sources under �general� conformal trans-
ormations.

In Ref. 24 we primarily concentrated on the absence of purely retarded fields at the past
− −
nfinity I of de Sitter space–time—in fact, in any space–time in which I is spacelike. In order
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o analyze this problem we also considered, in addition to monopole charges, more complicated
ources like rigid and geodesic dipoles; and we constructed some retarded solutions to show their
atological features. However, we confined ourselves to the sources the worldlines of which start
nd end at the poles; we did not employ coordinates best suited for exhibiting the properties of the
elds at future infinity I +, and the frames corresponding to cosmological models like flat �k=0� or
yperbolic �k=−1� cosmological coordinates; and we did not give the physical components of the
elds. In the following we shall find the fields and discuss their properties in various physically

mportant coordinate systems, in particular those significant at I + or in a cosmological context. In
he next section, we also obtain the fields due to the uniformly accelerated scalar and electric
harges starting at I − at �=
 /2 �“born at the equator”�. This, among others, will be important
hen we wish to regain the classical Born fields in the limit �→0.

We start by using the analysis of the conformal behavior of the fields and sources given in
ec. II in Ref. 24, and we also take over from Ref. 24 the resulting forms of the fields due to the
ources starting and ending at the poles of de Sitter space, as described in standard coordinates.

. Fields in coordinates centered on the poles

Consider two uniformly accelerated point sources starting at I − �i.e., at �→−	 , t̃→0� at the
oles �= r̃=0 and �= r̃=
 �Fig. 7�. Their worldlines w� ,w� are given by Eqs. �4.7� �or �4.24�� in
hese standard �rescaled� coordinates, by Eqs. �4.8� and �4.9� in the flat and hyperbolic cosmo-
ogical coordinates, and by Eqs. �4.18� in the static coordinates. Their simplest description is, of
ourse, given by R�=0 and r=0 in the accelerated and Robinson-Trautman coordinates since these
rames are centered exactly on their worldlines. In Sec. IV we discussed physical velocities and
ther properties of these particles.

Now, as noticed at the beginning of Sec. IV, these two worldlines can be obtained by confor-
ally mapping the worldline of one uniformly moving particle in Minkowski space into de Sitter

pace. The fields of uniformly moving sources in Minkowski space are just boosted Coulomb
elds. Under a conformal rescaling of the metric, g��→ ĝ��=�2g��, the fields behave as follows:

→�̂=�−1� , F��→ F̂��=F�� �see Ref. 24, Sec. II, where the behavior of the source terms is
lso analyzed�. Hence, the fields due to two uniformly accelerated sources in de Sitter space–time
an be obtained by conformally transforming the boosted Coulomb fields in Minkowski space–
ime. Employing the conformal mapping �3.13�–�3.15�, we arrive at the following results.52 The
calar field is given by the expression

� =
s

4


1

Q , �6.1�

here

Q = ��
	�1 + ao
2��

2 + ao�� cosh
�

��

sin � cos �
2

− 	1 − cosh2 �

��

sin2 �
�1/2

, �6.2�

r, written in the standard rescaled coordinates,

Q = ��
	�1 + ao
2��

2 + ao��

sin r̃

sin t̃
cos �
2

− 1 +
sin2 r̃

sin2 t̃
�1/2

. �6.3�

his field is produced by two identical charges of magnitude s moving along worldlines w� and

�. It is smooth everywhere outside the charges and it can be written as a symmetric combination
f retarded and advanced effects from both charges �cf. Eq. �6.6� in Ref. 24�.

Similarly to the scalar-field case, by using conformal technique the electromagnetic field
roduced by two uniformly accelerated charges moving along w� and w� can be obtained in the

orm
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F =
e

4


��
2

Q3 cosh
�

��

ao�� sin � cos � sin � d� ∧ d�

− 	�1 + ao
2��

2 cosh
�

��

sin � + ao�� cos �
d� ∧ d�

+ ao��
2 sinh

�

��

cosh
�

��

sin2 � sin � d� ∧ d� �6.4�

here Q is again given by Eq. �6.2�. As in the scalar-field case, the field is smooth, nonvanishing
n the whole de Sitter space–time and involving thus both retarded and advanced effects �cf.
ec. VII A in Ref. 24�. However, an important difference between the scalar and electromagnetic
ase exists: the magnitude of the scalar charges is the same, whereas the electromagnetic charges
roducing the fields �6.4� have opposite signs. This is analogous to the situation in Minkowski
pace–time described in Sec. II �see the discussion below Eq. �2.13��. At the root of this fact
ppears to be CPT theorem—cf. Ref. 53 for the analogous gravitational case where the masses of
he particles uniformly accelerated in the opposite direction are the same. In de Sitter space–time,
s in any space–time with compact spacelike sections, a simpler argument exists: the total charge
n a compact space must vanish as a consequence of the Gauss theorem.24

To gain a better physical insight into the electromagnetic fields, we shall introduce the ortho-
ormal tetrad �e�� and the dual tetrad �e�� tied to each coordinate frame used, and we shall
ecompose the electromagnetic field F into the electric and magnetic parts. Such a decomposition,
f course, depends on the choice of the tetrad. For example, in the standard spherical coordinates
, � , � , � the electromagnetic field �2-form� F can be written as

F = E�e� ∧ e� + E�e� ∧ e� + E�e� ∧ e� + B�e� ∧ e� + B�e� ∧ e� + B�e� ∧ e�, �6.5�

nd the electric and magnetic field spatial vectors are given in terms of their frame components as
ollows:

E = E�e� + E�e� + E�e�,

�6.6�
B = B�e� + B�e� + B�e�.

n the present case of the standard spherical coordinates, using the explicit forms of the tetrad
iven in Appendix �Eqs. �A10��, we find

Esph =
e

4


��

Q3
− ao�� cos � sin � e� + 	�1 + ao
2��

2 cosh
�

��

sin � + ao�� cos �
e�� ,

�6.7�

Bsph =
e

4


ao��
2

Q3 sinh
�

��

sin � sin � e�.

In Appendix the orthonormal tetrads tied to the coordinate systems considered in this paper
re all listed explicitly. The only exception is the Robinson-Trautman coordinate system with one
oordinate null and thus with a nondiagonal metric; in this case the null tetrad is given in which
he Newman-Penrose-type components are more telling.

The tetrad components of the electric intensity and the magnetic induction vectors are physi-
ally meaningful objects, they can be measured by observers who move with the four-velocities
iven by the timelike vector of the tetrad �as, e.g., e� for spherical cosmological observers�, and
re equipped with an orthonormal triad of the spacelike vectors �e.g., e� , e� , e��.

We first list the resulting electromagnetic field tensor and its electric and magnetic parts in the

oordinate systems centered on the poles �=0,
. The scalar field is always given by expression
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6.1�, the explicit form of the scalar factor Q changes according to the coordinates used. Since this
actor enters all the electromagnetic quantities as well, we always give Q first and then write the
lectromagnetic field quantities.

In the flat cosmological coordinates �see Eqs. �3.4� and �3.5�� we find

Q = ��
	cosh �o − sinh �o
ř

��

exp
�̌

��

cos �
2

− 	1 −
ř2

��
2 exp	2

�̌

��


�1/2

, �6.8�

F = −
e

4


1

Q3 exp
�̌

��

��ř sinh �o sin � d�̌ ∧ d� + 	ř cosh �o exp

�̌

��

− �� sinh �o cos �
d�̌ ∧ dř

+ ř2 sinh �o exp	2
�̌

��

sin � dř ∧ d�� , �6.9�

Eflat =
e

4


��

Q3
sinh �o sin � e� − 	cosh �o
ř

��

exp
�̌

��

− sinh �o cos �
eř� ,

�6.10�

Bflat = −
e

4


�� sinh �o

Q3

ř

��

exp
�̌

��

sin � e�.

n the hyperbolic cosmological coordinates �see Eqs. �3.6� and �3.7��, the results are slightly
engthier,

Q = ��
	cosh �o − sinh �o sinh
�

��

sinh
�

��

cos �
2

− 	1 − sinh2 �

��

sinh2 �

��

�1/2

,

�6.11�

F = −
e

4


��

Q3
sinh
�

��
	cosh �o sinh

�

��

sinh
�

��

− sinh �o cos �
d� ∧ d�

+ sinh �o sinh
�

��

sinh
�

��

cosh
�

��

sin � ��d� ∧ d�

+ sinh �o sinh2 �

��

cosh
�

��

sinh2 �

��

sin � �� d� ∧ d� �6.12�

Ehyp =
e

4


��

Q3
sinh �o cosh
�

��

sin � e� + 	cosh �o sinh
�

��

sinh
�

��

− sinh �o cos �
e�� ,

�6.13�

Bhyp = −
e

4


��

Q3 sinh �o cosh
�

��

sinh
�

��

sin � e�.

uch simpler expressions for the fields arise in the static coordinates �see Eqs. �3.8� and �3.9��.
e obtain

Q2 =
���

2 − RRo cos ��2

���
2 − Ro

2�
− ���

2 − R2� , �6.14�
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F = −
e

4


��

���
2 − Ro

2

1

Q3
�R − Ro cos �� dT ∧ dR + 	1 −
R2

��
2 
RRo sin � dT ∧ d�� , �6.15�

Estat =
e

4


1

Q3
���R − Ro cos ��
���

2 − Ro
2

eR + Ro sin � e��, Bstat = 0. �6.16�

Since for practical calculations and for an understanding of the conformal relations between
inkowski and de Sitter spaces the rescaled coordinates are very useful, we also give the fields in

hese coordinates. The rescaled coordinates are tied with the same orthonormal tetrad as nonres-
aled ones, and they define the same splitting into electric and magnetic parts �E and B are the
ame spatial vectors�; the functional dependence on the coordinates, however, is different. In the
tandard rescaled �conformally Einstein� coordinates �see Eqs. �3.10�–�3.12��, which cover the
hole de Sitter space–time including its conformal infinities globally, we get Eq. �6.3� for Q and

F = −
e

4


1

Q3

��
3

sin3 t̃
�ao�� cos t̃ sin2 r̃ sin � dr̃ ∧ d� + ��1 + ao

2��
2 sin r̃ + ao�� sin t̃ cos ��dt̃ ∧ dr̃

− ao�� sin t̃ cos r̃ sin r̃ sin � dt̃ ∧ d�� , �6.17�

Esph =
e

4


��

Q3
− ao�� cos r̃ sin � e� + 	�1 + ao
2��

2 sin r̃

sin t̃
+ ao�� cos �
e�� ,

�6.18�

Bsph = −
e

4


ao��
2

Q3 cot t̃ sin r̃ sin � e�,

hereas in the flat rescaled cosmological coordinates �3.13�–�3.15�, which cover globally the
onformally related Minkowski space �see also Fig. 3�, we arrive at

Q = ��
	cosh �o + sinh �o
ř

ť
cos �
2

− 	1 −
ř2

ť2
�1/2

, �6.19�

F =
e

4


1

Q3

��
3

ť3
�sinh �o ř2 sin � dř ∧ d� + �cosh �o ř + sinh �o ť cos ��dť ∧ dř

− sinh �o ťř sin � dť ∧ d�� , �6.20�

Eflat =
e

4


��

Q3
sinh �o sin � e� − 	cosh �o
ř

ť
+ sinh �o cos �
eř� ,

�6.21�

Bflat =
e

4


�� sinh �o

Q3

ř

ť
sin � e�.

In various contexts the electromagnetic field four-potential form A, implying the field
=dA, may be needed. In the standard rescaled �conformally Einstein� coordinates the potential
eads
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A = −
e

4


1

Q
��

sin t̃

�1 + ao
2��

2 sin t̃ + ao�� sin r̃ cos �

sin2 t̃ − sin2 r̃
�sin t̃ cos r̃ dt̃ − cos t̃ sin r̃ dr̃� .

�6.22�

rom this expression the frame components can easily be obtained and the four-potential form can
e transformed directly to any coordinate system of interest. The four-potential acquires a particu-
arly simple form in static coordinates,

A = −
e

4


1

Q
��

2 − RRo cos �

��
���

2 − Ro
2

dT . �6.23�

Inspecting now the expressions �6.4�–�6.21�, we first notice few basic features of the fields. As
consequence of the axisymmetry, the azimuthal � component of the electric field vanishes. On

he other hand, only the azimuthal � component of the magnetic field is nonzero. At the axis of
ymmetry, �=0,
, the latitudinal � component of the electric field and magnetic field vanish as
sin �. The electric field points along the axis.

In the classical Born solution in Minkowski space, both charges are, at any time, located
ymmetrically with respect to the equatorial plane �=
 /2. Consequently, the radial part of the
lectric field vanishes for �=
 /2 �cf. Eq. �2.13��. In de Sitter space–time the charges outgoing
rom the poles are, at all times, symmetrically located with respect to the sphere �=
 /2 �illus-
rated as the circle in Fig. 2�. We thus expect the � component of the electric field to vanish for
=
 /2. This, indeed, follows from Eq. �6.7�. This symmetry can be seen only in the standard

pherical coordinates since the sphere �=
 /2 is not covered by the hyperbolic cosmological
oordinates and in the flat cosmological coordinates only one particle occurs.

Another typical feature of the Born solution in Minkowski space is its time symmetry. As a
onsequence, the magnetic field vanishes at t=0 �cf. Eq. �2.13��. In the past, it was this fact which
ed some investigators, Pauli54 among them, to the conclusion that there is “no formation of a
ave zone nor any corresponding radiation” since B=0 at t=0. However, it is not at a spacelike
ypersurface t=constant but at I +, which is reached by taking u= t−r constant, t ,r→	, where the
orn field has typical radiative features, i.e., �E�= �B��r−1 �see Refs. 37, 53, and 25�. In our
eneralized Born solution, the time symmetry of the fields is clearly demonstrated in the global
tandard coordinates, under inversion �→−� the electric field in Eq. �6.7� is invariant, whereas the
agnetic field changes the sign; B�=0 at �=0. The field also exhibits radiative character when we

pproach I + in an appropriate way, as it is briefly indicated in Ref. 25. A detailed analysis of the
adiative properties of the generalized Born field will be given elsewhere.

The fields take the simplest form in the static coordinates, Eq. �6.15�. In these coordinates the
articles are at rest, and they both have a constant distance from the poles; their world lines are the
rbits of the “static” Killing vector � /�T of de Sitter space. The electric field is time independent,
he magnetic field vanishes. This is fully analogous to the Born field in Minkowski space–time, it
s static, and purely electric in the Rindler coordinates, the time coordinate of which is aligned
long the orbit of the boost Killing vectors �see, e.g., Ref. 6�. However, as we discussed in Sec. III,
he static coordinates cover only a “half” of de Sitter space. In the other half, the Killing vector
/�T becomes spacelike. It is in this nonstatic domain �regions F and P in Fig. 12� where we
xpect, in analogy with the results in Minkowski space–time, to find fields which have radiative
roperties. � /�T is the Killing vector also in the nonstatic regions, however, it is spacelike here, as
t is typical for a boost Killing vector in Minkowski space. The fields of uniformly accelerated
harges in de Sitter space–time are invariant under the boosts along � /�T everywhere. They are
hus boost-rotation symmetric as the Born fields in Minkowski space–time.

In the cosmological coordinates, respectively, in their rescaled versions, the fields are, of
ourse, time dependent. Here we expect the effects of the expansion/contraction of de Sitter
niverse to be manifested. Indeed, considering in any of the cosmological frames the spatial
oordinates fixed, and examining the fields along the timelike geodesics, we discover that the

+
elds exponentially decay at large times, i.e., as I is approached. More specifically, with the
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pherical coordinates � ,� ,� fixed, the factor Q behaves as exp�� /��� at large times �, and hence,
e obtain Esph�c1 exp�−2� /���e�+c2 exp�−3� /���e� , Bsph�b1 exp�−2� /���e� ,c1 ,c2 ,b1 being

onstants. The electric field thus becomes radial at large �. Similarly, in flat cosmological coordi-
ates we find Eflat�c1 exp�−2�̌ /���eř , Bflat�b1 exp�−2�̌ /���e�. In the hyperbolic cosmological
oordinates the proper time � appears instead of �̌. The rapid decay of the fields along timelike
orldlines at large times is caused by the exponential expansion �at large times� of the spatial

lices �=constant �respectively, �̌ ,�=constant�. Although our fields are just test fields, their ex-
onential decay is another manifestation of the “cosmic no-hair phenomenon:” geodesic observers
n space–times with ��0 see at large times these space–times to approach the de Sitter universe
xponentially fast—the universe becomes “bald” �see, e.g., Refs. 22 and 23�. Clearly, as one
pproaches past infinity I− ��→−	�, the fields also decay exponentially.

It is interesting to notice the character of the field as it would be seen by the observers at rest
ith respect to the hyperbolic cosmological coordinates in the limit at which the particles “enter”

he region covered by these observers across the horizon t̃= r̃ �cf. Fig. 4�, given in the hyperbolic
oordinates by �→0, �→	. As discussed in Sec. IV, the observed velocity �4.17� of the charges
t this boundary is �in the limit� equal to the velocity of light. Employing the transformation
ormulas �A86�, it is easy to see that at this boundary �sinh�� /���sinh�� /����→1. Hence, the
actor Q is finite here �as it is evident from its scalar character and its finiteness in the global
tandard coordinates�. Also, the radial part of the electric field remains finite. However, E� di-
erges as exp�� /��� here, indicating that the field has a character of an impulse, in fact, rather of
n impulsive wave—indeed, Eq. �6.10� implies �E��= �B��. The situation appears to be analogous
o the field of a static charge viewed from an inertial frame boosted to the velocity of light in

inkowski space–time �see, e.g., Ref. 55�.

. Fields in coordinates centered on the particles

As expected, a remarkable simplification occurs when the fields are evaluated in the coordi-
ates at the origin of which the charges are situated at all times. Since the accelerated coordinates
� , R� , �� and the C-metric-like coordinates are simply related by Eqs. �5.8�, the discussion of the
eld properties is the same in both these frames. Namely, notice that both coordinate systems are

ied with the same orthonormal tetrad, and they thus define the same splitting of the field into the
lectric and magnetic parts. In these coordinates, we find the factor Q to read

Q = cosh �o
1

R�
+ sinh �o

1

��

cos �� =
1

��

�v cosh �o − 
 sinh �o� . �6.24�

he scalar field is again given by �= �s /4
�Q−1, and the electromagnetic field also acquires now
n extremely simple form,

F =
e

4


1

R�2dR� ∧ dT� =
e

4

d� ∧ dv , �6.25�

Eacc =
e

4


1

Q2eR�, Bacc = 0. �6.26�

he magnetic field vanishes in the frame tied to the accelerated and C-metric coordinates, the
lectric field has precisely the Coulomb form, with the factor Q playing the role of a distance.

As signalized above already, the factor Q turns out to be the Robinson-Trautman radial
oordinate �see Eq. �6.28� below�, i.e., the affine parameter distance along null geodesics. The
eometrical role of Q was elucidated in Sec. V B. Considering a fixed point in de Sitter universe
nd a light cone emanating from this point, three typical situations can arise as illustrated in Fig.
2. For a point B from the regions N or S, there are two null geodesics, one past-pointing, the
ther future-pointing, each of which crosses the worldline of the same particle, say w� �in case of

from N�, at points Bret and Badv �see Fig. 12�. Since Q is equal to the �specific� affine parameter
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istance which is the same from Bret as from Badv �see Sec. V B�, we can interpret the field �6.26�
s arising from purely retarded, respectively, advanced effects from Bret, respectively Badv; or,
quivalently, as a combination of retarded and advanced effects from these points. In the second
ituation, when the fixed point, say A, is located “above the roof” �in the region F�, there are two
ast-oriented null geodesics emanating from it which cross now both particles w� and w� at
oints A� and A� �see Fig. 12�. The field can be interpreted as arising from retarded effects only,
ither as a combination from both particles w� and w�, or as the retarded field from just one of
hem. Finally, for a point from the region P the field can analogously be interpreted in terms of
dvanced effects.

As we discussed in Sec. V A and illustrate in detail in Appendix, the accelerated coordinates
similarly as the static coordinates to which they go over for a vanishing acceleration� are static,
.e., the vector � /�T� tangent to the orbits of the Killing vector is timelike, only in the regions N
nd S �cf. Figs. 10 and 12�. Observers following the orbits of the Killing vector are thus confined
o the regions N and S, and they cannot detect the fields in the region F �respectively, P�.
evertheless, notice that although the time coordinate T� diverges at the horizon R=��, the radial

oordinate R� is perfectly finite there, R�=�� �cf. Eq. �5.6� with R=���, and the field �6.25� is
eaningful in the region F �or P� as well. Since here the roles of the coordinates R� and T� are

nterchanged, R� becoming a time coordinate, the field becomes time dependent. As mentioned
bove, we do not expect to find radiative properties in the regions N and S. Indeed, in accelerated
oordinates the field �6.26� is static Coulomb field, with Q playing the role of a distance. How-
ver, the radiative properties of the whole field in the wave zone in the region F are not evident
rom the time-dependent, purely electric field in the accelerated coordinates with R� as a time
oordinate.

It is worthwhile to recall that with finite sources in Minkowski space–time the field at any
vent is of a general algebraic type; only asymptotically, at large distances, its features approach
hose of a null field �E2−B2=0, E·B=0�, if there is a radiation �see, e.g., Refs. 56 and 45�. In case
f a non-null field, one can always introduce a frame in which the electric and magnetic fields are
ollinear, or, in the language of the Newman-Penrose formalism, to choose such a null tetrad
, l , m, m̄, corresponding to the orthonormal tetrad, that the only nonvanishing null-tetrad com-
onent is �1=1/ �2�2� �E− iB� · �k−1� �see Eqs. �A114� for the explicit expressions of the null
etrad and Eqs. �A4� for the null-tetrad components of the electromagnetic field�. Such a situation
rises precisely for the null tetrad associated with the accelerated coordinates: the null-tetrad
omponents are simply

�1
acc = −

1

2

e

4


1

Q2 , �0
acc = �2

acc = 0. �6.27�

he vanishing of the other two null-tetrad components, �0
acc and �2

acc, has a deeper algebraic
xplanation: the null tetrad tied to the accelerated coordinates is special in the sense that it contains
oth principal null directions of the electromagnetic field. Inspecting the form of the null tetrad
onstructed from the orthonormal tetrad �A95�, we observe that both these principal null directions
re tangent to the “radial” surfaces �� , �=constant in the accelerated coordinates.

The radiative properties are well exhibited in the Robinson-Trautman coordinates. As we
iscussed in Sec. V B, these coordinates are tied to the future null cones centered on the worldline
f a particle. We consider the null cones with vertices on the particle w�. Let us recall that the
adial coordinate r is the affine parameter along the generators of the null cones, each of which is
iven by u , � , � fixed. Now, as mentioned above, it turns out that the factor Q is precisely equal
o this affine parameter r,

Q = r . �6.28�
he scalar field is then simply given by
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� =
s

4


1

r
. �6.29�

remarkably nice form also acquires the electromagnetic field,

F =
e

4

	 1

r2du ∧ dr + ao sin2 ��du ∧ d��
=
e

4

	 1

r2du ∧ dr + ao sin2 ��du ∧ d�
 . �6.30�

he Newman-Penrose scalars are defined in terms of the null tetrad �A114�, which is parallelly
ropagated from the source to the “observation point” along the rays u , � , �=constant. They look
s follows:

�0
RT = 0, �1

RT = −
1

2

e

4


1

r2 , �2
RT =

1
�2

e

4


1

r
ao sin ��. �6.31�

ow the radiative character of the field is transparent: the first term entering the peeling behavior,
he scalar �2, decays indeed as r−1, and it is nonvanishing for a nonzero acceleration ao. In the
xpressions �6.30� and �6.31�, the de Sitter background is completely “hidden.” The same form of
he fields are obtained in case of uniformly accelerated charges in Minkowski space if the coor-
inates built on the null cones emanating from the particles are employed. A difference between
oth cases reveals itself only in the explicit dependence of the affine parameter r on the coordi-
ates of space–time points.

II. BORN IN DE SITTER

Finally, we turn to the fields from the particles symmetrically located with respect to the origin
=0 �the “north pole”� of the standard spherical coordinates. The particles are thus “born”
symptotically at the equator, �=
 /2, at �→−	, and return back at �→	 with the opposite
peeds �Fig. 8�. Their fields, of course, are intrinsically the same as those considered in the
receding section but only now they represent the direct generalization of the classical Born
olutions due to uniformly accelerated charges symmetrically located with respect to the origin of

inkowski space.
We shall find the generalized Born fields easily by using the transformation �4.21� which we

pplied to obtain the worldlines of the particles born at the equator from those born at the poles.
he scalar field due to two equal scalar charges s moving along the worldlines w� and w� reads

� =
s

4

�M

−1 1

R
, �7.1�

here the factor R is determined by

R =
��

1 + cosh
�

��

cos �


cosh2 �

��

sin2 � sin2 � + 	�1 + ao
2��

2 cosh
�

��

cos � − ao��
2�1/2

,

�7.2�

nd the conformal factor �M is given by �cf. Eq. �3.19��

�M = 1 + cosh
�

��

cos � . �7.3�

his factor is left in the explicit form here, in contrast to the preceding section, since it explicitly
xhibits conformal relation of the scalar field under conformal mappings �3.19� between de Sitter
pace and Minkowski space M. This relation will be used in the following to perform the limit

rom the Born field in de Sitter to the Born field in Minkowski space–time.
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The electromagnetic field produced by charge e moving along the worldline w� and by
ymmetrically located charge −e moving along w� has the following form:

FBdS =
e

4


��
2

R3

cosh
�

��

sin �

	1 + cosh
�

��

cos �
3
ao��
2 sinh

�

��

cosh
�

��

sin2 � d� ∧ d�

+ 	�1 + ao
2��

2 cosh
�

��

cos � − ao��
cot � d� ∧ d� �7.4�


 − 	�1 + ao
2��

2 cosh
�

��

− ao�� cos �
sin � d� ∧ d�� .

ith factor R given by �7.2�. In the tetrad tied to the standard spherical coordinates the electric
nd magnetic fields become

Esph
BdS = −

e

4


��

R3

1

	1 + cosh
�

��

cos �
3
	�1 + ao
2��

2 cosh
�

��

cos � − ao��
cot � e�

− 	�1 + ao
2��

2 cosh
�

��

− ao�� cos �
sin � e�� ,

�7.5�

Bsph
BdS =

e

4


ao��
2

R3

sinh
�

��

sin � sin �

	1 + cosh
�

��

cos �
3 e�.

In the standard rescaled �conformally Einstein� coordinates the expressions �7.4� and �7.5�
lightly simplify

R
��

=
��ao�� sin t̃ − �1 + ao

2��
2 cos r̃�2

+ sin2 r̃ sin2 ��1/2

sin t̃ + cos r̃
, �7.6�

�M =
cos r̃ + sin t̃

sin t̃
, �7.7�

FBdS = −
e

4


��
3

R3

sin �

�sin t̃ + cos r̃�3
�ao�� sin2 r̃ cos t̃ dr̃ ∧ d�

− ��1 + ao
2��

2 cos r̃ − ao�� sin t̃ � cot � dt̃ ∧ dr̃ �7.8�

+ ��1 + ao
2��

2 − ao�� cos r̃ sin t̃ �sin r̃ dt̃ ∧ d�
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ECE
BdS =

e

4


�� sin2 t̃

R3�sin t̃ + cos r̃�3�− ��1 + ao
2��

2 cos r̃ − ao�� sin t̃ �cos � er̃

+ ��1 + ao
2��

2 − ao�� sin t̃ cos r̃�sin � e�� , �7.9�

BCE
BdS = −

e

4


ao��
2 sin2 t̃

R3�sin t̃ + cos r̃�3
cos t̃ sin r̃ sin � e�.

The character of these fields was discussed in the preceding section for the particles w� and

�. One must only rotate all the structures by 
 /2 in the � direction; hence, for example, the
phere of symmetry changes from �=
 /2 to �=
 /2.

There is some interest in having the fields available also in the hyperbolic cosmological
oordinates. They cover only those regions of the fields in which we assume the radiative prop-
rties will be manifested. The sources producing the fields are not covered by these coordinates
cf. Fig. 8�. The fields in the hyperbolic cosmological coordinates look as follows:

R =
1

2bo

	bo

2 + ��
2 tanh2 �

2��

2

+ 4bo
2 tanh2 �

2��

sinh2 �

��

sin2 ��1/2

, �7.10�

�M = 1 + cosh
�

��

= 2 cosh2 �

2��

, �7.11�

FBdS =
e

4


��
3

R3

1

2bo�M
2

� 
	 bo
2

��
2 + tanh2 �

2��

sinh

�

��
	 1

��

cos � d� ∧ d� − sinh
�

��

cosh
�

��

sin � d� ∧ d�

− 	 bo

2

��
2 − tanh2 �

2��

sinh2 �

��

sinh2 �

��

sin � d� ∧ d�� , �7.12�

Ehyp
BdS =

e

4


��
2

R3

1

2bo�M
2 	 bo

2

��
2 + tanh2 �

2��

	− cos � e� + cosh

�

��

sin � e�
 ,

�7.13�

Bhyp
BdS = −

e

4


��
2

R3

sinh
�

��

2bo�M
2 	 bo

2

��
2 − tanh2 �

2��

sin � e�.

Finally, we wish to describe the limiting procedure which leads from the generalized Born
olutions directly to their counterparts in Minkowski space–time. For this purpose it is natural to
mploy the conformally Minkowski coordinates t ,r ,� ,� introduced in Eq. �3.17�, with the in-
erse transformation given in Appendix, Eq. �A17�. Transforming the fields of the particles

� , w� from the conformally Einstein coordinates to the conformally Minkowski coordinates, we
rrive at the following intriguing forms. The scalar field is given by Eq. �7.1� where now the
actors R and �M are determined by

R =
1 ��bo

2 + t2 − r2�2 + 4bo
2r2 sin2 � , �7.14�
2bo
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�M =
2��

2

��
2 − t2 + r2 . �7.15�

otice that factor R coincides with the expression �2.11� in Minkowski space. The electromag-
etic field reads

FBdS = −
e

4


1

2bo

1

R3 �− 2tr2 sin � dr ∧ d� − �bo
2 + t2 − r2�cos � dt ∧ dr

+ r�bo
2 + t2 + r2�sin � dt ∧ d�� , �7.16�

nd the electric and magnetic parts of the field turn out to be

ECM
BdS =

e

4


1

R3

1

2bo�M
2 ��bo

2 + t2 − r2�cos � er − �bo
2 + t2 + r2�sin � e�� ,

�7.17�

BCM
BdS =

e

4


1

R3

1

bo�M
2 tr sin � e�.

To connect these fields with their counterparts in flat space, note first that they are conformally
elated by the conformal transformation �3.19�. Under the conformal mapping, the field �BdS must
e multiplied by factor �M, which gives �M= �s /4
�R−1, and FBdS in �7.16� remains unchanged.
he transformed fields then coincide with the classical Born fields �2.9�, �2.11�, and �2.13�.

In order to see the limit for �→0, we parametrize the sequence of de Sitter spaces by �, and
dentify them in terms of coordinates t ,r ,� ,�. As �=3/��

2 →0, Eq. �3.19� implies
�M��→2, �gdS��→4gM. After the trivial rescaling of t ,r by factor 2, the standard Minkowski
etric is obtained. The limit of the scalar and electromagnetic fields �7.1� and �7.16�, in which bo

s kept constant �with ao= �1−bo
2��

−2� / �2bo�—cf. Eq. �4.29��, leads precisely to the scalar and
lectromagnetic Born fields �2.9� and �2.13� in flat space. Because of the rescaling of the coordi-
ates by factor 2, we get the physical acceleration equal to 1/bo=2ao, and the scalar field rescaled
y 1/2. The explicit limiting procedure carrying the generalized Born fields in de Sitter universe
ack into the classical Born solution in Minkowski space has thus been demonstrated.

III. CONCLUDING REMARKS

Since 1998 the observations of high-redshift supernovae indicate, with an increasing evidence,
hat we live in an accelerating universe with a positive cosmological constant �for most recent
bservations see, e.g., Ref. 57�. Vacuum energy seems to dominate in the universe and it is thus of
nterest to understand fundamental physics in the vacuum dominated de Sitter space–time.

In the present work, we constructed the fields of uniformly accelerated charges in this uni-
erse. They go over to the classical Born fields in Minkowski space in the limit of a vanishing
osmological constant. Aside from some similarities found, the generalized fields provide the
odels showing how a positive cosmological constant implies essential differences from physics

n flat space–time. For example, advanced effects occur inevitably due to the spacelike character
f the past infinity I− and its consequence—the existence of the past particles’ horizons, respec-
ively, of the “creation light cones” of the particles’ worldlines.

Since de Sitter space–time, according to our present understanding, appears to be not only an
ppropriate basic model for studying future cosmological epochs, but it is commonly used also for
xploring the inflationary era, various physical processes have been investigated in de Sitter space
rom the perspective of the early universe, among them, the effects of quantum field theory. Also
n quantum contexts, however, problems arise from combining the causal structure of the full de
itter space–time with the constraint equations �see Ref. 58 for a recent review�. These problems
re associated with the “insufficiency of purely retarded fields” in space–times with a spacelike I−.
e analyzed this issue in detail for the classical electromagnetic and scalar fields with sources in

ef. 24.
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Another intriguing implication of the rapid expansion of de Sitter universe due to a positive
osmological constant is manifested in the exponential decay of the fields at large times. We
oticed this “cosmic no-hair phenomenon” explicitly on the late-time behavior of the fields due to
ccelerated charges.

In the present paper we wished to give all details on the construction of the fields and on
oordinate frames useful in understanding their various aspects, including their relation to their
ounterparts in flat space–time. We did not here analyze the radiative characteristics of the fields.
n the Introduction we indicated that radiative properties depend on the way in which a given point
f infinity is approached. This is briefly described at the end of our paper.25

In de Sitter space–time it is not a priori clear, as it is in special relativity, how to define global
hysical quantities like energy or energy flux. Such issues connected with the question of radiation
rom “Born in de Sitter” will be considered in a future presentation.
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PPENDIX A: THE PALETTE OF COORDINATE SYSTEMS IN DE SITTER SPACE–TIME

Nine families of coordinate systems are here introduced, described analytically and illustrated
raphically. The corresponding forms of de Sitter metric, orthonormal tetrads and interrelations
etween the systems are given. All these systems are suitable for exhibiting various features of de
itter space; two families are directly associated with uniformly accelerated particles. Although

he majority �though not all� of these coordinate systems undoubtedly appeared in literature in
ome form already, they are scattered and, as far as we know, not summarized as comprehensively
s in the following. In the main text we refer frequently to this Appendix, but the Appendix can be
ead independently. We hope it can serve as a catalogue useful for analyzing various aspects of
hysics in de Sitter universe.

By a family of coordinate systems we mean the systems with the same coordinate lines; e.g.,
x�� and �y�� where x1=x1�y1� , x2=x2�y2�, etc. Seven of our families have the same spherical
ngular coordinates � ,�, accelerated and Robinson-Trautman coordinates mix three coordinates,
nly azimuthal coordinate � remains unchanged.

The homogeneous normalized metric on two-spheres �the metric “in angular direction”� is
enoted by

d�2 = d�2 + sin2 � d�2. �A1�

The radial coordinates label directions pointing out from the pole and acquire only positive
alues. However, transformations among coordinates take simpler forms if we allow radial coor-
inates to take on negative values as well. This causes no problems if, denoting by t and r the
rototypes of time and radial coordinates, we adopt the convention that the following two values
f coordinates describe the same point:

�t,r,�,�� ↔ �t,− r,
 − �,� + 
� . �A2�

ence, intuitively we may consider a point with −r�0 and � ,� fixed to lie on diametrically
pposite side of the pole r=0 with respect to the point r�0,� ,�.

The orthonormal tetrad et , er , e� , e� associated with a coordinate system is tangent to the
oordinate lines and oriented �with few exceptions� in the directions of growing coordinates. It is

t r � �
hosen in such a way that the external product e ∧e ∧e ∧e of 1-forms of the dual tetrad has
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lways the same orientation. Since all forms of the metric contain the term �A1� the only compo-
ent �e��� of the tetrad vector e� in coordinate frame �� /�x�� is related to the �-component of e�

s

�e��� =
1

sin �
�e���, �A3�

nd we thus omit e� henceforth.
In the standard Newman-Penrose null complex tetrad k , l , m, m̄ with only nonvanishing

nner products k · l=−1, m·m̄=1, the electromagnetic field F is represented by three complex
omponents:

�0 = F�� k�m�, �2 = F�� m̄�l�, �1 = 1
2 F�� �k�l� − m�m̄�� . �A4�

he null tetrad can be specified directly �as it will be done in the case of Robinson-Trautman
oordinates in Eq. �A114��, or it can be associated with any orthonormal tetrad, say t , q , r , s, by
elations

k =
1
�2

�t + q�, l =
1
�2

�t − q�, m =
1
�2

�r − i s�, m̄ =
1
�2

�r + i s� . �A5�

ere, t and q are timelike and spacelike unit vectors, respectively, typically in a direction of “time”
nd “radial” coordinate, and r , s are spacelike unit vectors in angular directions, r=e� , s=e�.

For each coordinate family we give the diagram illustrating section � , �=constant with the
adial coordinate taking on both positive and negative values. The diagrams thus represent the
istory of the entire main circle of the spatial spherical section of de Sitter universe. The left and
ight edges of the diagrams represent the south pole and should be considered as identified; the
entral vertical line describes the history of the north pole. Recalling the meaning of the negative
adial coordinate we could eliminate the left half of each of the diagrams by transforming it into
he right one by replacements �� ,��→ �
−� ,�+
�. However, it is instructive to keep both
alves for better understanding of the spatial topology of the sections. All diagrams are
ompactified—they are adapted to the standard rescaled coordinates t̃ , r̃ �see below�. The past and
uture conformal infinites are drawn as double lines. The ranges of time and radial coordinates are
hown, the orientation of coordinate labels indicates the directions of the growth of corresponding
oordinates.

We will also introduce several sign factors. The values of these factors in different domains of
pace–time are indicated in Fig. 13.

1. The spherical cosmological family:
The first family consists of the standard or spherical cosmological coordinates � , � , � , �, and

f the standard rescaled or conformally Einstein coordinates t̃ , r̃ , � , � �where r̃���. These
oordinates cover de Sitter space–time globally. They are associated with cosmological observers
ith homogeneous spatial sections of positive spatial curvature. The coordinates are adjusted to

he spherical symmetry of the spatial sections, �, �, and � are standard angular coordinates. The
oordinate � is a proper time along the worldlines of the cosmological observers given by
, � , �=constant. The vector � /�� is a conformal Killing vector which is everywhere timelike.
he rescaled coordinates t̃ , r̃ , � , � can also be viewed as the standard coordinates of the confor-
ally related Einstein universe; they cover smoothly both conformal infinities I ± of de Sitter

pace–time. �See Fig. 14.�
Metric and relation between coordinates

g = − d�2 + ��
2 cosh2��/����d�2 + sin2 � d�2� , �A6�

g = �2 sin−2 t̃ �− dt̃ 2 + dr̃ 2 + sin2 r̃ d�2� , �A7�
�
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tan
t̃

2
= exp

�

��

, cot t̃ = − sinh
�

��

, sin t̃ = cosh−1 �

��

, cos t̃ = − tanh
�

��

, �A8a�

r̃ = � . �A8b�

he ranges of coordinates are

� � R, � � �− 
,
�, t̃ � �0,
�, r̃ � �− 
,
� , �A9�

ith negative values of radial coordinates � , r̃ interpreted in accordance with Eq. �A2�.
Orthonormal tetrad,

e� =
�

��
=

1

��

sin t̃
�

� t̃
,

e� =
1

��

cosh−1 �

��

�

��

=
1

��

sin t̃
�

� r̃
, �A10�

IG. 13. The values of the factors sI, sNS, s�, š, ŝ, su, and sv in various regions of de Sitter space. The factors are defined
n Eqs. �A21�, �A36�, �A61�, �A73�, �A74�, and �A128�, respectively. The factor s� is used only in the expressions for static
oordinates in the region where the Killing vector is spacelike. Therefore, we indicated the values of s� only in those
egions, although Eq. �A74� defines s� everywhere. The factors s�, su, and sv are defined only for any given section
=constant, but not as unique functions on the whole space–time �they are not symmetric with respect to the pole�. This

s related to our convention using negative radial coordinates, cf. the text below Eq. �A1�.
FIG. 14. The spherical cosmological family of coordinates.
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e� =
1

��

1

cosh��/���sin �

�

��
=

1

��

sin t̃

sin r̃

�

��
.

Relation to flat cosmological family,

tan t̃ =
2��t̂

��
2 − t̂2 + r̂2

=
2��ť

��
2 − ť2 + ř2

, tan r̃ =
2��r̂

��
2 + t̂2 − r̂2

=
2��ř

��
2 + ť2 − ř2

. �A11�

Relation to hyperbolic cosmological coordinates,

cot t̃ = − sinh
�

��

cosh
�

��

, tan r̃ = tanh
�

��

sinh
�

��

. �A12�

Relation to static family in timelike domains N , S,

tan t̃ = − sNS
��

���
2 − R2

sinh−1 T

��

, tan r̃ = sNS
R

���
2 − R2

cosh−1 T

��

, �A13�

tan t̃ = − sNS

cosh
r̄

��

sinh
t̄

��

, tan r̃ = sNS

sinh
r̄

��

cosh
t̄

��

, �A14�

here sNS= +1�−1� in domain N �S�, cf. Eq. �A61�.
Relation to static family in spacelike domains F , P,

tan t̃ =
− sI��

�R2 − ��
2

cosh−1 T

��

, tan r̃ =
sIR

�R2 − ��
2

sinh−1 T

��

, �A15�

tan t̃ = s�

sinh
r̄

��

cosh
t̄

��

, tan r̃ = s�

cosh
r̄

��

sinh
t̄

��

, �A16�

here sI=−sign cos t̃ and s�=−sI sign r̃, cf. Eqs. �A73� and �A74�.
Relation to conformally Minkowski coordinates,

cot t̃ =
2��t

t2 − r2 − ��
2 , tan r̃ =

2��r

t2 − r2 + ��
2 . �A17�

2. The flat cosmological family, type “∨”:
The first flat cosmological coordinate family �Fig. 15� consists of the flat cosmological coor-

inates �̌ , ř , � , � and of the rescaled flat cosmological coordinates ť , ř , � , �. Hypersurfaces �̌
constant are homogeneous flat spaces and coordinate lines ř , � , �=constant are worldlines of
osmological observers orthogonal to these hypersurfaces. They are geodesic with proper time �̌,
he vector � /��̌ is a conformal Killing vector. The coordinates cover de Sitter space–time
moothly, except for the past cosmological horizon, r̃= t̃, of the north pole where ř , ť→ ±	. The
oordinates thus split into two coordinate patches—“above” and “below” the horizon. The domain
bove the horizon has a cosmological interpretation of an exponentially expanding flat three-
pace. The rescaled coordinates can be viewed as inertial coordinates in the conformally related

inkowski space M̌, cf. Fig. 3; the domain above the horizon corresponds to the “lower half,”
ˇ ˇ
�0, of M, the domain below corresponds to the “upper half,” t�0.
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Metric and relation between coordinates,

g =
��

2

ť2
�− dť2 + dř2 + ř2 d�2� , �A18�

g = − d�̌2 + exp�− š2�̌/����dř2 + ř2 d�2� . �A19�

ť = š �� exp	š
�̌

��

 , �A20�

š = sign ť . �A21�

he ranges of coordinates are

�̌ � R, ť � R−, ř � R above the horizon,

�A22�
�̌ � R, ť � R+, ř � R below the horizon,

ith negative values of radial coordinate ř interpreted as described in Eq. �A2�.
Orthonormal tetrad,

eť =
�

� �̌
=

šť

��

�

� ť
, eř = exp

š�̌

��

�

� ř
=

šť

��

�

� ř
,

�A23�

e� = −
š

ř
exp

š�̌

��

�

��
= −

1

��

ť

ř

�

��
.

Relation to spherical cosmological family,

ť =
− �� cosh−1��/���
cos � + tanh��/���

, ř =
�� cosh−1��/���

cos � + tanh��/���
, �A24�

ť =
�� sin t̃

cos t̃ − cos r̃
, ř =

�� sin r̃

cos r̃ − cos t̃
. �A25�

FIG. 15. The flat cosmological family, type “∨.”
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Relation to flat cosmological family, type “∧”,

ť = −
t̂��

2

t̂2 − r̂2
, ř =

r̂��
2

t̂2 − r̂2
, �A26�

ťr̂ + t̂ř = 0 , t̂ť + r̂ř = − ��
2 ,

�A27�
�− t̂2 + r̂2��− ť2 + ř2� = ��

4 , �t̂ + r̂��ť + ř� = �t̂ − r̂��ť − ř� = − ��
2 .

Relation to static family in timelike domains N ,S,

ť

��

= − sNS
��

���
2 − R2

exp	−
T

��

,

ř

��

= sNS
R

���
2 − R2

exp	−
T

��

 , �A28�

ť = − sNS�� exp	−
t̄

��


cosh
r̄

��

, ř = sNS�� exp	−
t̄

��


sinh
r̄

��

, �A29�

here sNS= +1�−1� in domain N�S�, cf. Eq. �A61�.
Relation to static family in spacelike domains F ,P,

ť

��

= s�

��

�R2 − ��
2

exp	−
T

��

,

ř

��

= − s�

R

�R2 − ��
2

exp	−
T

��

 , �A30�

ť = s��� exp	−
t̄

��


sinh
r̄

��

, ř = − s��� exp	−
t̄

��


cosh
r̄

��

, �A31�

here s�=sign r̃ sign cos t̃, cf. Eqs. �A73� and �A74�.
Relation to conformally Minkowski coordinates,

ť

��

= −
��

2 − t2 + r2

��� + t�2 − r2 ,
ř

��

=
2��r

��� + t�2 − r2 . �A32�

3. The flat cosmological family, type “∧”:
The second flat cosmological coordinate family �Fig. 16� consists of the flat cosmological

oordinates �̂ , r̂ ,� ,� and of the rescaled flat cosmological coordinates t̂ , r̂ ,� ,�. They can be built
nalogously to the flat coordinates introduced above, with north and south poles interchanged
nly. They thus have similar properties. Hypersurfaces t̂=constant are homogeneous flat three-
paces, coordinate lines r̂ ,� ,�=constant are geodesics with proper time �̂, and � /��̂ is a confor-

FIG. 16. The flat cosmological family, type “∧.”
al Killing vector. The coordinates cover de Sitter space–time everywhere except the future
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osmological horizon, r̃=
− t̃, of the north pole �i.e., the past horizon of the south pole�, and the
escaled coordinates can be viewed as inertial coordinates in the conformally related Minkowski

pace M̂.
Metric and relation between coordinates,

g =
��

2

t̂2
�− dt̂2 + dr̂2 + r̂2 d�2� , �A33�

g = − d�̂2 + exp�− ŝ2�̂/����dr̂2 + r̂2 d�2� , �A34�

t̂ = ŝ�� exp	ŝ
�̂

��

 , �A35�

here

ŝ = sign t̂ . �A36�

he ranges of coordinates are

�̂ � R, t̂ � R−, r̂ � R above the horizon,

�A37�
�̂ � R, t̂ � R+, r̂ � R below the horizon,

ith negative values of radial coordinate r̂ interpreted as described in Eq. �A2�.
Orthonormal tetrad,

et̂ =
�

� �̂
=

ŝt̂

��

�

� t̂
, er̂ = exp

ŝ�̂

��

�

� r̂
=

ŝt̂

��

�

� r̂
,

�A38�

e� =
ŝ

r̂
exp

ŝ�̂

��

�

��
=

1

��

t̂

r̂

�

��
.

Relation to spherical cosmological family,

t̂ =
�� cosh−1��/���

cos � − tanh��/���
, r̂ =

�� cosh−1��/���
cos � − tanh��/���

, �A39�

t̂ =
�� sin t̃

cos t̃ + cos r̃
, r̂ =

�� sin r̃

cos r̃ + cos t̃
. �A40�

Relation to flat cosmological family, type “∧”,

t̂ = −
ť��

2

ť2 − ř2
, r̂ =

ř��
2

ť2 − ř2
, �A41�

ťr̂ + t̂ř = 0, t̂ť + r̂ř = − ��
2 ,

�A42�
�− t̂2 + r̂2��− ť2 + ř2� = ��

4 , �t̂ + r̂��ť + ř� = �t̂ − r̂��ť − ř� = − ��
2 .
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Relation to static family in timelike domains N , S,

t̂

��

= sNS
��

���
2 − R2

exp
T

��

,
r̂

��

= sNS
R

���
2 − R2

exp
T

��

, �A43�

t̂ = sNS�� exp
t̄

��

cosh
r̄

��

, r̂ = sNS�� exp
t̄

��

sinh
r̄

��

, �A44�

here sNS= +1�−1� in domain N �S�, cf. Eq. �A61�.
Relation to static family in spacelike domains F , P,

t̂

��

= s�

��

�R2 − ��
2

exp
T

��

,
r̂

��

= s�

R

�R2 − ��
2

exp
T

��

, �A45�

t̂ = s��� exp
t̄

��

sinh
r̄

��

, r̂ = s��� exp
t̄

��

cosh
r̄

��

, �A46�

here s�=sign r̃ sign cos t̃, cf. Eqs. �A73� and �A74�.
Relation to conformally Minkowski coordinates,

t̂

��

=
��

2 − t2 + r2

��� − t�2 − r2 ,
r̂

��

=
2��r

��� − t�2 − r2 . �A47�

4. The conformally Minkowski family:
The conformally Minkowski coordinates t ,r ,� ,� can be understood as spherical coordinates

n the conformally related Minkowski space M. The coordinates do not cover de Sitter space–time
lobally—they cover only a region around north pole, see Fig. 17. The boundary of this region is
iven by the conformal infinity of the Minkowski space–time. These coordinates are useful for
tudying the limit �→0.

The metric,

g = 	 2��
2

��
2 − t2 + r2
2

�− dt2 + dr2 + r2 d�2� , �A48�

he ranges of coordinates

t � R, r � R, such that t2 − r2 � ��
2 , �A49�

FIG. 17. The conformally Minkowski family of coordinates.
ith negative values of radial coordinate r interpreted as described in Eq. �A2�.
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Orthonormal tetrad,

et =
��

2 − t2 + r2

2��
2

�

�t
, er =

��
2 − t2 + r2

2��
2

�

�r
, e� =

��
2 − t2 + r2

2��
2

1

r

�

�t
. �A50�

Relation to spherical cosmological family,

t = −
�� cos t̃

cos r̃ + sin t̃
, r =

�� sin r̃

cos r̃ + sin t̃
. �A51�

Relation to flat cosmological family,

t

��

= −
��

2 − t̂2 + r̂2

��� + t̂�2 − r̂2
=

��
2 − ť2 + ř2

��� − ť�2 − ř2
,

�A52�
r

��

=
2��r̂

��� + t̂�2 − r̂2
=

2��ř

��� − ť�2 − ř2
.

Relation to hyperbolic cosmological coordinates,

t

��

= tanh
�

2��

cosh
�

��

,
r

��

= tanh
�

2��

sinh
�

��

. �A53�

Relation to static family in timelike domains N , S,

t

��

=

sinh
t̄

��

cosh
t̄

��

+ sNS cosh
r̄

��

,
r

��

=

sinh
r̄

��

cosh
r̄

��

+ sNS cosh
t̄

��

, �A54�

t

��

=

���
2 − R2 sinh

T

��

sNS�� + ���
2 − R2 cosh

T

��

,
r

��

=
R

�� + sNS
���

2 − R2 cosh
T

��

, �A55�

here sNS= +1�−1� in domain N �S�, cf. Eq. �A61�.
Relation to static family in spacelike domains F , P,

t

��

=

cosh
t̄

��

sinh
t̄

��

− s� sinh
r̄

��

,
r

��

=

cosh
r̄

��

sinh
r̄

��

− s� cosh
t̄

��

, �A56�

t

��

=

�R2 − ��
2 cosh

T

��

− s��� + �R2 − ��
2 sinh

T

��

,
r

��

=
R

�� − s�
�R2 − ��

2 sinh
T

��

, �A57�

ith s�=sign r̃ sign cos t̃, cf. Eqs. �A73� and �A74�.
5. The static family in timelike domains N and S: This family consists of the static coordi-

ates T , R , � , � and the “tortoise” static coordinates t̄ , r̄ , � , �. The metric does not depend on
¯
ime coordinate T= t—the coordinates are associated with a Killing vector. Since the Killing vector
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hanges its character, the coordinates do not cover the space–time smoothly. We first describe the
tatic coordinates in domains N and S, where the Killing vector is timelike. In domain N the orbits
f the Killing vector �corresponding to the worldlines of static observers� start and end at the north
ole, in domain S—at the south pole. They are orthogonal to slices T=constant, each of which
onsists of two hemispheres �one in domain N, the other in S� with homogeneous spherical
-metric. The distances between static observers �measured within these slices� do not change.
ince the static observers must overcome first the cosmological contraction and then the expan-
ion, they move with a �uniform� acceleration. �See Fig. 18.�

Metric and relation between coordinates,

g = cosh−2 r̄

��
	− dt̄ 2 + dr̄2 + ��

2 sinh2 r̄

��

d�2
 , �A58�

g = − 	1 −
R2

��
2 
dT2 + 	1 −

R2

��
2 
−1

dR2 + R2 d�2, �A59�

T = t̄ , �A60a�

exp
r̄

��

=��� + R

�� − R
, sinh

r̄

��

=
R

���
2 − R2

,

�A60b�

tanh
r̄

��

=
R

��

, cosh
r̄

��

=
��

���
2 − R2

,

sNS = �+ 1 in domain N ,

− 1 in domain S .
� �A61�

he ranges of coordinates are

T � R, R � �− ��,���, t̄ � R, r̄ � R , �A62�

ith negative values of coordinates R and r̄ interpreted as described in Eq. �A2�.
Orthonormal tetrad,

eT = 	1 −
R2

��
2 
−1/2 �

�T
= cosh

r̄

��

�

� t̄
, eR = 	1 −

R2

��
2 
1/2 �

�R
= cosh−1 r̄

��

�

� r̄
,

�A63�

FIG. 18. The static family of coordinates, timelike domains.
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e� =
1

R

�

��
=

1

��

coth
r̄

��

�

��
.

Relation to spherical cosmological family,

T =
��

2
log

cos r̃ − cos t̃

cos r̃ + cos t̃
, R = ��

sin r̃

sin t̃
, �A64�

t̄ =
��

2
log	tan

t̃ + r̃

2
tan

t̃ − r̃

2

, r̄ =

��

2
log	tan

t̃ + r̃

2
cot

t̃ − r̃

2

 ,

exp
t̄

��

=�cos r̃ − cos t̃

cos r̃ + cos t̃
, sinh

t̄

��

=
− sNS cos t̃

�cos2 r̃ − cos2 t̃
,

tanh
t̄

��

= −
cos t̃

cos r̃
, cosh

t̄

��

=
sNS cos r̃

�cos2 r̃ − cos2 t̃
, �A65�

exp
r̄

��

=�sin t̃ + sin r̃

sin t̃ − sin r̃
, sinh

r̄

��

=
sin r̃

�sin2 t̃ − sin2 r̃
,

tanh
r̄

��

=
sin r̃

sin t̃
, cosh

r̄

��

=
sin t̃

�sin2 t̃ − sin2 r̃
.

Relation to flat cosmological family,

t̄ =
��

2
log

t̂2 − r̂2

��
2 = −

��

2
log

ť2 − ř2

��
2 , r̄ =

��

2
log

t̂ + r̂

t̂ − r̂
=

��

2
log

ť − ř

ť + ř
, �A66�

T

��

=
1

2
log

t̂2 − r̂2

��
2 = −

1

2
log

ť2 − ř2

��
2 ,

R

��

=
r̂

t̂
= −

ř

ť
. �A67�

Relation to conformally Minkowski coordinates,

tanh
T

��

=
2��t

��
2 + t2 − r2 ,

R

��

=
2��r

��
2 + r2 − t2 , �A68�

t̄ =
��

2
log

��� + t�2 − r2

��� − t�2 − r2 , r̄ =
��

2
log

��� + r�2 − t2

��� − r�2 − t2 . �A69�

6. The static family in spacelike domains F and P:
Here we describe the static coordinates T ,R ,� ,� and the “tortoise” static coordinates t̄ , r̄ ,� ,�

rom the preceding section in domains F and S where the Killing vector is spacelike. These
nonstatic” domains extend up to infinity, namely, domain F up to I+, domain P up to I−. The
rbits of the Killing vector start at the south pole and end at the north pole in F, and they point in
pposite direction in P. The motion along them could thus be characterized as a “translation” from
ne pole to the other. The Lorentzian hypersurfaces T=constant are homogeneous spaces with

ositive curvature, i.e., three-dimensional de Sitter space–times. �See Fig. 19.�
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Metric and relation between coordinates,

g = sinh−2 r̄

��
	− dr̄2 + dt̄2 + ��

2 cosh2 r̄

��

d�2
 , �A70�

g = − 	1 −
R2

��
2 
dT2 + 	1 −

R2

��
2 
−1

dR2 + R2 d�2, �A71�

T = t̄ , �A72a�

exp
r̄

��

=�R + ��

R − ��

, �sinh
r̄

��

� =
��

�R2 − ��
2

,

�A72b�

tanh
r̄

��

=
��

R
, cosh

r̄

��

=
�R�

�R2 − ��
2

.

he signature factors sI and s� are defined as

sI = �+ 1 in domain F ,

− 1 in domain P ,
� �A73�

s� = − sI sign r̃ . �A74�

he coordinates ranges are

T � R, �R� � ���,	�, t̄ � R, r̄ � R , �A75�

ith negative values of coordinates R and r̄ interpreted as described in Eq. �A2�.
Orthonormal tetrad,

eT = 	R2

��
2 − 1
−1/2 �

�T
= �sinh

r̄

��

� �

� t̄
,

�A76�

eR = 	R2

��
2 − 1
1/2 �

�R
= − �sinh−1 r̄

��

� �

� r̄
, e� =

1

R

�

��
=

1

��

�tanh
r̄

��

� �

��
.

FIG. 19. The static family of coordinates, spacelike domains.
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Relation to spherical cosmological family,

T =
��

2
log

cos t̃ − cos r̃

cos t̃ + cos r̃
, R = ��

sin r̃

sin t̃
, �A77�

t̄ =
��

2
log	− tan

t̃ + r̃

2
tan

t̃ − r̃

2

, r̄ =

��

2
log	− tan

t̃ + r̃

2
cot

t̃ − r̃

2

 ,

exp
t̄

��

=�cos t̃ − cos r̃

cos t̃ + cos r̃
, sinh

t̄

��

=
sI cos r̃

�cos2 t̃ − cos2 r̃
,

tanh
t̄

��

= −
cos r̃

cos t̃
, cosh

t̄

��

=
− sI cos t̃

�cos2 t̃ − cos2 r̃
, �A78�

exp
r̄

��

=�sin r̃ + sin t̃

sin r̃ − sin t̃
, �sinh

r̄

��

� =
sin t̃

�sin2 r̃ − sin2 t̃
,

tanh
r̄

��

=
sin t̃

sin r̃
, cosh

r̄

��

=
�sin r̃�

�sin2 r̃ − sin2 t̃
.

Relation to flat cosmological family,

t̄ =
��

2
log

− t̂2 + r̂2

��
2 = −

��

2
log

− ť2 + ř2

��
2 , r̄ =

��

2
log

r̂ + t̂

r̂ − t̂
=

��

2
log

ř − ť

ř + ť
, �A79�

T

��

=
1

2
log

− t̂2 + r̂2

��
2 = −

1

2
log

− ť2 + ř2

��
2 ,

R

��

=
r̂

t̂
= −

ř

ť
. �A80�

Relation to conformally Minkowski coordinates,

coth
T

��

=
2��t

��
2 + t2 − r2 ,

R

��

=
2��r

��
2 + r2 − t2 , �A81�

t̄ =
��

2
log	−

��� + t�2 − r2

��� − t�2 − r2
, r̄ =
��

2
log	−

��� + r�2 − t2

��� − r�2 − t2
 . �A82�

7. The hyperbolic cosmological family:
The third type of cosmological coordinates are the hyperbolic cosmological coordinates

, � , � , �. The hypersurfaces �=constant are homogeneous spaces with negative curvature,
oordinate lines � ,� ,�=constant correspond to the worldlines of cosmological observers orthogo-
al to these slices, and the vector � /�� is a timelike conformal Killing vector. The coordinates
over space–time only partially—they can be introduced in two disconnected domains near the
orth pole, namely, in the past of the event t̃=
 /2 , r̃=0 �where ��0�, and in the future of this
vent �where ��0�. �see. Fig. 20.�
The metric,
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g = − d�2 + sinh2 �

��
	d�2 + ��

2 sinh2 �

��

d�2
 . �A83�

he ranges of coordinates and the signature factor sI are

� � R+, � � R, sI = + 1 in the future patch,

�A84�
� � R−, � � R, sI = − 1 in the past patch,

ith negative values of radial coordinate � interpreted as described in Eq. �A2�.
Orthonormal tetrad,

e� =
�

��
, e� = sinh−1 �

��

�

��
, e� = sinh−1 �

��

sinh−1 �

��

�

��
. �A85�

Relation to spherical cosmological family,

tanh
�

2��

= sI�cos r̃ − sin t̃

cos r̃ + sin t̃
, tanh

�

��

= −
sin r̃

cos t̃
. �A86�

Relation to conformally Minkowski coordinates,

tanh
�

2��

= sI
�t2 − r2

��

, tanh
�

��

=
r

t
. �A87�

8. The accelerated coordinate family:
This family consists of the accelerated coordinates T� ,R� ,�� ,�, and the C-metric-like coor-

inates � ,v ,
 ,� �� being different from � of the standard coordinates�. Contrary to the previous
ases the accelerated coordinates are centered on uniformly accelerated origins, R�=0 corresponds
o two worldlines with acceleration �ao�. The transformation relations to the systems introduced
bove mix these three coordinates in general.

The accelerated coordinates are closely related to the static system. Their time coor-
inates coincide, T�=T, and coordinate lines R� ,�� ,�=constant are the same as those with
,� ,�=constant. Both coordinate systems are identical for ao=0. Sections T ,T� ,�=constant with
,R���� have geometry of 2-sphere with parallels and meridians given by the coordinate lines of

he static coordinates R ,�. The lines of coordinates R� ,�� are the deformed version of static ones,
heir poles are shifted along meridian �=0 towards each other, cf. Fig. 11.

Two conformal diagrams of sections �� ,�=constant ����
 /2 on the right, ���
 /2 on the
eft�, adapted to the accelerated coordinates, are depicted in Fig. 21. The shape of the diagram
aries with different values of ��; indeed, the position of infinity is given by R�

2 −1

FIG. 20. The hyperbolic cosmological family of coordinates.
=−�� /Ro cos ��. See also Fig. 10 for sections ��=0,
.
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The C-metric-like coordinates rescale only the values of the accelerated coordinates and
egularize the coordinate singularity R�= ±	. de Sitter metric in these coordinates is a zero-mass
imit of the C-metric �the metric describing accelerated black holes; see, e.g., Refs. 28 and 29, cf.
lso Ref. 59�.

Finally, we use four parameters ao ,�o ,Ro ,bo to parametrize the acceleration. They are related
s follows:

sinh �o =
Ro

���
2 − Ro

2
=

bo
2 − ��

2

2��bo
= − ao��,

cosh �o =
��

���
2 − Ro

2
=

bo
2 + ��

2

2��bo
= �1 + ao

2��
2 ,

�A88�

tanh �o =
Ro

��

=
bo

2 − ��
2

bo
2 + ��

2 = −
ao��

�1 + ao
2��

2
,

exp �o =��� + Ro

�� − Ro
=

bo

��

= �1 + ao
2��

2 − ao��.

Metric and relation between coordinates,

g = �2
− 	1 −
R�2

��
2 
dT�2 + 	1 −

R�2

��
2 
−1

dR�2 + R�2 d�2�� , �A89�

g = r2
− �v2 − 1�d�2 +
1

v2 − 1
dv2 +

1

1 − 
2d
2 + �1 − 
2�d�2� , �A90�

here

d�2� = �d��2 + sin2 �� d�2� , �A91�

� =
�1 − Ro

2/��
2

1 + �R�Ro/��
2 �cos ��

=
r

R�
=

rv
��

, �A92�

r =
�� = �R� = �

�� , �A93�

FIG. 21. The accelerated family of coordinates.
v cosh �o − 
 sinh �o v
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� =
T�

��

, v =
��

R�
, 
 = − cos ��, �A94�

Orthonormal tetrad:

eT� = ���−1	1 −
R�2

��
2 
−1/2 �

�T�
=

1

r�v2 − 1

�

�T�
,

eR� = ���−1	1 −
R�2

��
2 
1/2 �

�R�
=

1

r
�v2 − 1

�

�R�
, �A95�

e�� =
1

�R�

�

���
=

1

r

�

���
.

Relation to static coordinates,

T = T�,

R cos � =
R�cos �� + Ro

1 + �R�Ro/��
2 �cos ��

, R sin � =

R� sin ���1 −
Ro

2

��
2

1 + �R�Ro/��
2 �cos ��

,

�A96�

R2

��
2 = 1 −

�1 − R�2/��
2 ��1 − Ro

2/��
2 �

�1 + �R�Ro/��
2 �cos ���2 , tan � =

R� sin ���1 −
Ro

2

��
2

R� cos �� + Ro
.

he inverse relations have the same form with T, R, � and T� , R� , �� interchanged only and �o

eplaced by −�o,

� =
�1 − Ro

2/��
2

1 + �R�Ro/��
2 �cos ��

=
1 − �RRo/��

2 �cos �

�1 − Ro
2/��

2
, �A97�

	1 +
R�Ro

��
2 cos ��
	1 −

RRo

��
2 cos �
 = 1 −

Ro
2

��
2 , �A98�

1 − R�2/��
2

1 + �R�Ro/��
2 �cos ��

=
1 − R2/��

2

1 − �RRo/��
2 �cos �

. �A99�

Relation to Robinson-Trautman coordinates,

T� = u cosh �o −
��

2
log��� − r�sinh �o cos �� + cosh �o�

�� − r�sinh �o cos �� − cosh �o�
� ,

�A100�

R� =
r cosh �o

1 − �r/���sinh �o cos ��
, �tan

��

2
� = exp	� −

u

��

sinh �o
 ,

� =
u

��

cosh �o −
1

2
log��� − r�sinh �o cos �� + cosh �o�

�� − r�sinh �o cos �� − cosh �o�
� ,

�A101�
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� =
��

r cosh �o
− tanh �o cos ��, 
 = tanh	� −

u

��

sinh �o
 ,

here cos ��=−
 is given in terms of the Robinson-Trautman coordinates by the last equation.
Relation to flat cosmological family: If we introduce the spherical coordinates ť� , ř� , �� , �

oosted with respect to the flat cosmological coordinates ť , ř , � , � by a boost �o �in the sense of

inkowski space M̌�, we find that the accelerated coordinates T� , R� are related to t̂� , r̂� in
xactly the same way as the static coordinates T , R are related to the coordinates ť , ř. The boost
�= ť cosh �o+ ž sinh �o , x̌�= x̌ , y̌�= y̌ , ž�= ť sinh �o+ ž cosh �o, rewritten in the spherical coordi-
ates ř� cos ��= ž� , ř� sin ��=�x̌�2+ y̌�2, reads

ť� = ť cosh �o + ř cos � sinh �o,

ř� cos �� = ť sinh �o + ř cos � cosh �o,

�A102�
ř� sin �� = ř sin � ,

nd relations analogous to Eqs. �A67� and �A80� are

T� = −
��

2
log� ť�2 − ř�2

��
2 �, R� = − ��

ř�

ť�
. �A103�

Similarly, the formulas relating the accelerated coordinates to the coordinates t̂ , r̂ , � are

t̂� = t̂ cosh �o − r̂ cos � sinh �o,

r̂� cos �� = − t̂ sinh �o + r̂ cos � cosh �o, �A104�

r̂� sin �� = r̂ sin � ,

T� =
��

2
log� t̂�2 − r̂�2

��
2 �, R� = ��

r̂�

t̂�
. �A105�

The conformal factor takes the form

� =
ť�

ť
=

t̂�

t̂
= cosh �o −

R

��

sinh �o cos � . �A106�

9. The Robinson-Trautman coordinates:
In the Robinson-Trautman coordinates u ,r ,� ,� �or in their complex version u ,r ,� , �̄�, de

itter metric takes the standard Robinson-Trautman form �see Fig. 22�.50 The coordinate u is null,
he “radial” coordinate r is an affine parameter along coordinate lines u ,� ,�=constant. These
ines are null geodesics generating light cones with vertices at the origin r=0. The coordinates

,� �or � , �̄� are angular coordinates, however, they are not functions of the accelerated angular
oordinates �� ,� only �cf. Eq. �A112��. Because �� ,� have a clearer geometrical meaning, we list
ome formulas also in the mixed coordinate system u ,r ,�� ,�.

The origin r=0 of the Robinson-Trautman coordinates is centered on the worldline of the
niformly accelerated observer moving with the acceleration �ao�= ���

−1 sinh �o�. The coordinates
re thus closely related to the accelerated coordinates.

The coordinates u ,r ,� ,� do not cover the whole space–time smoothly. They can be intro-
uced smoothly in the future of the north pole, or in the past of the south pole. At the boundary of

hese two domains, u→ ±	.
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Metric and relation between coordinates,

g = − H du2 − du ∨ dr +
r2

P2 �d�2 + d�2� , �A107�

g = − H du2 − du ∨ dr +
r2

P2d� ∨ d�̄ , �A108�

g = − cosh2 �o
r2

��
2 �v2 − 1�du2 − du ∨ dr + cosh �o

r2

��

sin �� du ∨ d�� + r2�d��2 + sin2 �� d�2� ,

�A109�

H = −
r2

��
2 + 2

r

��

sinh �o tanh	� −
u

��

sinh �o
 + 1 = −
r2

��
2 − 2

r

��

sinh �o cos �� + 1,

�A110�

P = cosh	� −
u

��

sinh �o
 =
1

sin ��
, �A111�

� =
u

��

sinh �o + log�tan
��

2
� ,

�A112�

�tan
��

2
� = exp	� −

u

��

sinh �o
 ,

� =
1
�2

�� − i��, � =
1
�2

�� + �̄� ,

�A113�

�̄ =
1
�2

�� + i��, � =
i

�2
�� − �̄� .

Null tetrad: Since the Robinson-Trautman coordinates are closely related to the congruence of
ull geodesics, it is convenient to introduce the null tetrad which is parallelly transported along

FIG. 22. The Robinson-Trautman coordinates.
hese geodesics u ,� ,�=constant,

7 Oct 2005 to 195.113.23.45. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



T
c
t
m
�
�
c
d

102504-56 J. Bičák and P. Krtouš J. Math. Phys. 46, 102504 �2005�

Downloaded 2
kRT =
1
�2

�

�r
, lRT = −

1
�2

H
�

�r
+ �2

�

�u
,

�A114�

mRT =
1
�2

P

r
	 �

��
− i

�

��

, m̄RT =

1
�2

P

r
	 �

��
+ i

�

��

 .

Relation to accelerated coordinate family,

r =
R��1 − Ro

2/��
2

1 + �R�Ro/��
2 �cos ��

,

u =�1 −
Ro

2

��
2 	T� +

��

2
log�R� − ��

R� + ��

�
 , �A115�

� =
Ro

��
	 T�

��

+
1

2
log�R� − ��

R� + ��

�
 + log�tan
��

2
� ,

r =
��

v cosh �o − 
 sinh �o
,

u =
��

cosh �o
	� +

1

2
log�1 − v

1 + v
�
 , �A116�

� = tanh �o	� +
1

2
log�1 − v

1 + v
�
 +

1

2
log�1 + 


1 − 

� .

Relation to static family,

r =
��

�1 − Ro
2/��

2 
	1 −
RRo

��
2 cos �
2

− 	1 −
R2

��
2 
	1 −

Ro
2

��
2 
�1/2

, �A117�

r sin �� = R sin �, r cos �� =
R cos � − Ro

�1 − Ro
2/��

2
, �A118�

R sin � = r sin ��, R cos � = r cos ���1 − Ro
2/��

2 + Ro. �A119�

10. The null family:
Finally, we return back to the coordinate systems which employ standard coordinates � , �.

ime and radial coordinates can be transformed into two null coordinates. Such null coordinates
an be associated with most coordinate families introduced above. Coordinates ũ , ṽ are related to
he standard coordinates; ǔ, v̌ and û , v̂ to the flat cosmological coordinates; u , v to the confor-

ally Minkowski; and ū , v̄ to the static coordinates. Coordinate vectors
� /�ũ ,� /�ṽ� , �� /�ǔ ,� /�v̌�, etc., are the pairs of independent null vectors in the radial 2-slices
, �=constant. We do not allow the radial coordinate to be negative in the definitions of null

oordinates because this would interchange the meaning of u and v. The null coordinates are thus

rawn in the right half of Fig. 23 only.
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Metric and relation to other coordinates,

g =
��

2

1 − cos�ũ + ṽ�
�− dũ ∨ dṽ + �1 − cos�ũ − ṽ��d�2� , �A120�

g =
��

2

�û + v̂�2 �− 2 dû ∨ dv̂ + �û − v̂�2 d�2� , �A121�

g =
��

2

�ǔ + v̌�2 �− 2 dǔ ∨ dv̌ + �ǔ − v̌�2 d�2� , �A122�

g = 	 ��
2

��
2 − uv


2

�− 2 du ∨ dv + �u − v�2 d�2� , �A123�

g = 	exp
ū

��

+ exp
v̄

��

−2	− 2 exp

ū + v̄
��

dū ∨ dv̄ + ��
2 	exp

ū

��

− exp
v̄

��

2

d�2
 .

�A124�

�A125�

Relation between null coordinates: The coordinates û, v̂, u, v, and ǔ , v̌ can be viewed as null

oordinates in the conformally related Minkowski spaces M̂, M, and M̌; these are shifted with
espect to each other by 
 /2 in the direction of the conformally Einstein time coordinate t̃, or
ssociated null coordinates,

û
= tan

ũ
,

v̂
= tan

ṽ
,

FIG. 23. The null family of coordinates
�� 2 �� 2

7 Oct 2005 to 195.113.23.45. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



T
t

H

R

T

102504-58 J. Bičák and P. Krtouš J. Math. Phys. 46, 102504 �2005�

Downloaded 2
u

��

= tan	 ũ

2
−




4

,

v
��

= tan	 ṽ
2

−



4

 , �A126�

ǔ

��

= tan	 ũ

2
−




2

,

v̌
��

= tan	 ṽ
2

−



2

 .

he remaining coordinates ū , v̄ are related to the conformally Einstein null coordinates ũ , ṽ by
he “compactification transformation,”

tan
ũ

2
= su exp

ū

��

, tan
ṽ
2

= sv exp
v̄

��

. �A127�

ere the sign factors su and sv are given by

su = sign tan
ũ

2
, sv = sign tan

ṽ
2

. �A128�

elations �A126� and �A127� between null coordinates can also be rewritten as follows:

tan
ũ

2
= su exp

ū

��

=
û

��

= −
��

ǔ
=

�� + u

�� − u
,

tan ũ = − su sinh−1 ū

��

=
2û��

��
2 − û2 =

2ǔ��

��
2 − ǔ2 =

u2 − ��
2

2u��

,

�A129�

sin ũ = su cosh−1 ū

��

=
2û��

��
2 + û2 =

− 2ǔ��

��
2 + ǔ2 =

��
2 − u2

��
2 + u2 ,

cos ũ = − tanh
ū

��

=
��

2 − û2

��
2 + û2 =

û2 − ��
2

û2 + ��
2 =

− 2u��

��
2 + u2 ,

û

��

= tan
ũ

2
= su exp

ū

��

= −
��

ǔ
=

�� + u

�� − u
, �A130�

−
ǔ

��

= cot
ũ

2
= su exp	−

ū

��

 =

��

û
=

�� − u

�� + u
, �A131�

u

��

= −
1 − sin ũ

cos ũ
= −

cos ũ

1 + sin ũ
= 	tanh

ū

2��

su

=
û − ��

û + ��

=
�� + ǔ

�� − ǔ
, �A132�

ū

��

= log�tan
ũ

2
� = log� û

��

� = log���

ǔ
� = log��� + u

�� − u
� = 2 arctanh	 u

��

su

, �A133�

ûǔ = − ��
2 ,

û

��

+
��

ǔ
= 0. �A134�

he same relations hold for coordinates v , ṽ , v̂ , v̌ and v̄.
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