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This paper deals thoroughly with the scalar and electromagnetic fields of uniformly
accelerated charges in de Sitter space—time. It gives details and makes various
extensions of our Physical Review Letter from 2002. The basic properties of the
classical Born solutions representing two uniformly accelerated charges in flat
space—time are first summarized. The worldlines of uniformly accelerated particles
in de Sitter universe are defined and described in a number of coordinate frames,
some of them being of cosmological significance, the others are tied naturally to the
particles. The scalar and electromagnetic fields due to the accelerated charges are
constructed by using conformal relations between Minkowski and de Sitter space.
The properties of the generalized “cosmological” Born solutions are analyzed and
elucidated in various coordinate systems. In particular, a limiting procedure is
demonstrated which brings the cosmological Born fields in de Sitter space back to
the classical Born solutions in Minkowski space. In an extensive Appendix, which
can be used independently of the main text, nine families of coordinate systems in
de Sitter space—time are described analytically and illustrated graphically in a num-
ber of conformal diagrams. © 2005 American Institute of Physics.
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I. INTRODUCTION

In 1969, on the 60th anniversary of Max Born’s' first analysis of the field of a uniformly
accelerated charge, Ginzburg, Nobelist in 2003, reanalyzedz_4 this—what he called—"perpetual
problem of classical physics,” with the conclusion that the problem “is already clear enough not to
be regarded as perpetual.” Ginzburg confirmed the presence of radiation and emphasized that the
vanishing of the radiation reaction force during the uniformly accelerated motion of the charge “is
in no way paradoxical, in spite of the presence of radiation,” since “a nonzero total energy flux
through a surface surrounding a charge at a zero radiation force is exactly equal to the decrease of
the field energy in the volume enclosed by this surface.” Despite Ginzburg’s view, however, the
problem does not seem to lose its “perpetuity.” A number of distinguished physicists who dealt
with it before Ginzburg like Sommerfeld, Schott, von Laue, Pauli and others have, after Ginzburg,
been followed by such authors as, for example, Bondi,5 Boulware,6 Peierls,7 Thirring8 and
others.” "2

The fields and radiation patterns from uniformly accelerated general multipole particles were
also studied.”” The December 2000 issue of Annals of Physics contains three papers by Eriksen
and Grgn'*™'® with numerous references on “electrodynamics of hyperbolically accelerated
charges.” (Yet, except for Refs. 1 and 6, the explicit citations above are not contained in Refs.
14-16.)

Space—times describing “uniformly accelerated particles or black holes” play fundamental role
in general relativity. They are the only explicit solutions of Einstein’s field equations known which
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are radiative and represent the fields of finite sources. Born fields in electrodynamics are produced
by two charges moving along an “axis of symmetry” in opposite directions with uniform accel-
erations of the same magnitude. They have two symmetries: they are axially symmetric and
symmetric with respect to the boosts along the axis of symmetry. Their general-relativistic coun-
terparts, the boost-rotation symmetric space—times, are unique because of a theorem which
roughly states that in axially symmetric, locally asymptotically flat space—times the only additional
symmetry that does not exclude radiation is the boost symmetry. The boost-rotation symmetric
space—times have been used in gravitational radiation theory, quantum gravity, and as test beds in
numerical relativity; their general structure is described in Ref. 17, their applications and new
references are given in the reviews.' *° One of the best known examples, the so-called C-metric,
describing uniformly accelerated black holes, is the only boost-rotation symmetric solution known
also for a nonvanishing cosmological constant A. Asymptotically this “generalized” C-metric
approaches de Sitter space—time if A>0. It is well known from the classical work of Penrose”' on
the asymptotic properties of fields and space—times that, in contrast to asymptotically
Minkowskian space—times with null (lightlike) conformal infinities Z *, asymptotically de Sitter
vacuum space—times have two disjoint conformal infinities, past and future, which are both space-
like. When A <0, as in anti-de Sitter space, the conformal infinity is timelike, and it is not disjoint.
(In the analytically extended C-metrics, there is an infinite number of such infinities which can be
reached by going “through” black holes like with a Reissner-Nordtrom black hole, but this is not
pertinent to the present work.)

The importance of de Sitter space—time in the history of modern cosmology seems to grow
steadily. The “flat” de Sitter universe became the standard cosmological model in steady state
theory, more recently, as the “first approximation” of inflationary models, and today, with indica-
tions that A>0 in our Universe, it is an asymptote of all indefinitely expanding Friedmann-
Robertson-Walker models with A>0. In fact much more general cosmological models with
A >0 approach de Sitter model asymptotically in time. This manifestation of the validity of the
“cosmic no-hair conjecture,”zz’23 will also be noticed in the properties of the fields analyzed in this
work.

Motivated by the role of the Born solution in classical electrodynamics, by the importance of
the boost-rotation symmetric space—times in general relativity, and by the relevance of de Sitter
space in contemporary cosmology, we have recently generalized the Born solution for scalar and
electromagnetic fields to the case of two charges uniformly accelerated in de Sitter universe.”* In
the present paper we give calculations and detailed proofs of the results and statements briefly
sketched in our paper.25 In addition, we investigate the character of the field in a number of
various coordinate systems which are relevant either in a general-relativistic context or from a
cosmological perspective.

The appropriate coordinates and corresponding tetrad fields were important in finding our
recent results on a general asymptotic behavior of fields in the neighborhood of future infinity Z*
in asymptotically de Sitter space—times.26 In obtaining these results we were inspired by the
inspection of the electromagnetic fields from uniformly accelerated charges in de Sitter universe.

It was known from the work of Penrose since late 1960s that the radiation field is “less
invariantly” defined when Z7* is spacelike—that it depends on the direction in which Z% is
approached. However, no explicit models were available. The investigation of the test fields of
accelerated charges in de Sitter universe has served as a useful example; it was then generalized
also to the study of asymptotic and radiative properties of the C-metric with A>0 (Ref. 27), as
well as to the case of the C-metric with A <0 when infinity is timelike.*® (For other recent works
on the “cosmological” C-metric, see, e.g., Refs. 29 and 30.) These studies led to a more general
conclusion®® that the directional pattern of gravitational and electromagnetic radiation near de
Sitter-like conformal infinity has a universal character, determined by the algebraic (Petrov) type
of a solution of the Maxwell/Einstein equations considered. In particular, the radiation field van-
ishes along directions opposite to principal null directions. Very recently analogous conclusions
have been obtained for space-times with anti-de Sitter asymptotics.31

Since past and future infinities are spacelike in de Sitter space—time, there exist particle and
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event horizons. Under the presence of the horizons, purely retarded fields (appropriately defined)
become singular or even cannot be constructed at the “creation light cones,” i.e., at future light
cones of the “points” at Z ~ at which the sources “enter” the universe. In Ref. 24 we analyzed this
phenomenon in detail and constructed smooth (outside the sources) fields involving both retarded
and advanced effects. As demonstrated in Ref. 24, to be “born in de Sitter” is quite a different
matter than to be “born in Minkowski.” This reveals the double meaning of the second—perhaps
somewhat enigmatic—part of the title of this paper.

Its plan is as follows. In order to gain an understanding of the generalized Born solution in de
Sitter space it is advantageous to be familiar with some details of the classical Born solution in
Minkowski space. Hence, its properties most relevant for our purpose are summarized in Sec. II.
Here we also discuss why in Minkowski space problems with purely retarded fields of uniformly
accelerated particles do not arise.

There exists vast literature on de Sitter space in which various types of coordinates are
employed. We shall construct fields in de Sitter space by using its conformal relations to
Minkowski space. For our aim coordinate systems on conformally compactified spaces and their
properties will be particularly useful. These, together with several “cosmological” and “static”
coordinate systems, will be described and graphically illustrated in conformal diagrams in Sec. III.
What is meant by “uniformly accelerated particles in de Sitter space” is defined and the properties
of the corresponding worldlines are studied in Sec. IV. For technical reasons it is more advanta-
geous to consider particles which asymptotically start and end at the poles of coordinates covering
de Sitter space, i.e., particles “born at the poles” (Sec. IV A). In order to find a direct relation
between the standard form of the Born solution produced by two charges at each time located
symmetrically with respect to the origin of Minkowski space and the generalized Born solution in
de Sitter space, it is necessary to construct also worldlines of uniformly accelerated particles
which are “born at the equator” (Sec. IV B).

With the worldlines of accelerated particles available, it is advantageous to consider coordi-
nates in de Sitter space which are centered on these worldlines. These “accelerated coordinates”
and “Robinson-Trautman coordinates” are obtained, in a constructive manner, in Sec. V.

Section VI is devoted to the fields from particles “born at the poles.” Here we also study in
detail their properties in various coordinate systems introduced before. The fields of particles
“born at the equator” are found in Sec. VII by a simple rotation. Starting from these fields we
demonstrate by means of which limiting procedure the standard Born field in Minkowski space
can be regained. Finally, we conclude by few remarks in Sec. VIIL.

The paper contains a rather extensive Appendix in which nine families of coordinate systems
employed in the main text are described in detail, illustrated graphically, their relations are given,
and corresponding metric forms as well as orthonormal tetrads are presented. We believe the
Appendix can be used as a general-purpose catalogue in other studies of physics in de Sitter
space—time.

Il. BORN IN MINKOWSKI

It was Einstein in 1908, inspired by a letter from Planck, who first defined a uniformly
accelerated motion in special relativity.32’33 A particle is in uniformly accelerated motion if its
acceleration has a fixed constant value in instantaneous rest frames of the particle. This can be
stated in a covariant form (see, e.g., Ref. 34) as

PZ&“: i%— (a*a,)u“=0, (2.1)

u® being four-velocity, '=u*V, covariant derivative with respect to proper time, a“=u® four-
acceleration, and PZ=(§‘;+u“uM is the projection tensor into the hypersurface orthogonal to u®.
Equation (2.1) implies d#a,=0 so that the condition of uniform acceleration guarantees that the
magnitude of the four-acceleration is constant,
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FIG. 1. A pair of uniformly accelerated charges in Minkowski space—time (with the conformal diagram below). The boost
Killing vector is timelike in regions L and R; it is spacelike in F and P. The charges are causally disconnected by null
hypersurfaces (“the roof”) —2+z%>=0. These hypersurfaces represent the acceleration horizon for uniformly accelerated
observers with respect to which the charges are at rest.

ay = \s"aTaM = constant, (2.2)
although a* # 0. Integrating Eq. (2.1) in Minkowski space—time, one finds that the worldline of a
uniformly accelerated particle is a hyperbola.35’36 One can then choose an inertial frame, in which
the initial three-velocity and three-acceleration are parallel; in such frames the motion is spatially
one-dimensional. It can be produced by placing a test charged particle into a homogeneous electric
field with initial velocity aligned with the field. The motion along the z axis is illustrated in
Fig. 1. There, in fact, two particles uniformly accelerated in opposite directions are shown, the one
moving along the positive (e=+1 for particle wg, in the figure) and the second one along the
negative z axis (e=—1 for particle w); their worldlines parametrized by proper time Ay are
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A A
z=¢b, coshb—M, 1=b, sinhb—M, x=y=0, (2.3)

[} ¢}

or

z=eViP+ b2 (2.4)

Here we have chosen the particles to be at rest at z=gb,, at r=0. Then their three-acceleration at
initial moment =0 is ay=|d’z/d?|=1/b,. As t— =, the three-velocity vy =|dz/dt|=1/\1*+b>
approaches the velocity of light. This is the well-known hyperbolic motion.

The worldlines of the particles coincide with the orbits of the boost Killing vector in the #—z
plane,

oo = T+ 1 23)
=z +t—. .
boost ot 9z
These orbits, given by —2+7%2=constant, x, y=constant, are timelike at —2472>0, but they are
spacelike at —>+72<<0. The fields (scalar, electromagnetic, higher-spin) produced by charged
particles in the hyperbolic motion will have boost-rotational symmetry. They are thus static in the
region —1>+7>>0—"below the roof” as introduced in Ref. 17, however, we can expect them to be
radiative in the region —r>+z><0—*"“above the roof.”
Consider a massless scalar field ® with the scalar charge source S satisfying, in a general
four-dimensional space—time, the wave equation

[O-1R]® =5, (2.6)

in which (0= g#*V MV,, is the curved-space d’ Alambertian, and R is the scalar curvature (of course,
in Minkowski space R=0). We are interested in a field due to two monopole particles with the
same constant scalar charge of magnitude s moving along hyperbolae (2.3). The source at a
space—time point x is thus given by

S=Ss+S., S£=sf Sx = wy(\y)d\y, (2.7)
where w,(\y) denotes the worldlines of the particles. The resulting fields may be written as

d=dy+P,, (2.8)

where @, is produced by S,. The retarded and advanced fields of these sources are constructed and
analyzed in detail in Ref. 17. It can be demonstrated that the retarded and advanced fields due to
the particle wg, or w are all given by exactly identical expression

M= s 1 (2.9)
MT4r R ’
which, however, occurs in different regions of space—time. Namely,
) - : 0( ) (2.10)
: S, +t s .
ret/adv & A7 R €z

0 being the step function and upper/lower sign is valid for retarded/advanced case. The quantity R
in the denominator is given by
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R= i((bg+t2—r2)2+4bgr2 sin® 9)"2. (2.11)
It has the meaning of a retarded or advanced distance—it is a spatial distance of the “observation”
(field) point from the position of the source at retarded or advanced time. Here, as usual,
x=rsin ¥ cos ¢, y=rsin ¥ sin ¢, z=r cos J. The fields (2.9), as well as (2.10), are, at first glance,
axially (rotationally) symmetric. They are also unchanged under the boost along the z axis.

The field dgy can, in fact, be viewed as the field due to both accelerated particles, i.e., as the
field corresponding to the source (2.7). Inspecting regions at which the retarded and advanced
fields (2.10) are nonvanishing we discover that ®py; admits the interpretation as arising from
1-parametric combination of retarded and advanced effects from both particles,

CDBM = f CDretéB + (1 - g) CDadVEB + (1 - g) (I)rete + é: q)adve’ (212)

where £ € R is an arbitrary constant parameter. In particular, choosing §=%, the field Ppy, arises
from %((Dreﬁ ®,4,) from both particles. With ¢=1, the field can be interpreted as being caused by
purely retarded effects from particle wg, in region z+¢>0, and by purely advanced effects from
particle w, in region z+¢<<0.

The case of electrodynamics is very similar. The solution corresponding to the scalar field
(2.9) was found by Born in 1909." 1t is customarily given in cylindrical coordinates (see, e.g.,
Refs. 34, 37, and 14), however, in order to compare it with its generalization to de Sitter universe,
it is more convenient to write it down in spherical coordinates,

e 1 1

Fgy = — Ez_boﬁ(_ (b2 + 12 = r¥)cos O dt Adr+ (b2 + 1%+ 1?)r sin 9 dr A d.
(2.13)

=2t sin 9 dr Add

The field can be obtained from the Liénard-Wiechert retarded and advanced potentials of two
charged particles moving along hyperbolae (2.3), however, in contrast to the scalar case when
charges are exactly the same, the electric charges have opposite signs. Similarly to the scalar case,
the field is smooth everywhere, except for the places where the particles occur. Fgy; can be
interpreted in the precisely same way as the scalar field (2.9), i.e., as the 1-parametric combination
of retarded and advanced effects from both charges, analogously to Eq. (2.12). However, in the
electromagnetic case an exact form of retarded and advanced fields from a single particle is a more
subtle issue. Considering that the field in the region z+7>0 may be interpreted as the retarded
effect emitted from the charge which moves along z>0, it is natural to try to exclude advanced
effects of the other particle by requiring the field to vanish in the region z+1<<0 (cf. Fig. 1). The
field is then not smooth at the null hypersurface z=—t. In the scalar case such a field does represent
the pure retarded field of the single particle, cf. Eq. (2.10). However, in the electromagnetic case
the field Fgy 0 (z+1) corresponds to sources consisting not only of the particle but also of a
“charged wall” moving along hypersurface z+¢=0 with velocity of light.38’S Nevertheless, it is
possible to obtain®*** a pure retarded field of the only single particle by modifying the field with
a delta function valued term localized on z+7=0.

In de Sitter space such a modification is not feasible because the advanced fields cannot be
excluded. The underlying cause is the null character of the past conformal infinity in Minkowski
space—time, whereas in de Sitter space—time both future and past conformal infinities are space-
like. As a consequence, the Gauss constraint restricts the data at the spacelike past infinity, and it
can be shown that a purely retarded field of a pointlike charge cannot satisfy this constraint.”* The
absence of purely retarded fields is also related to a different character of the past horizon of a
particle. Since the worldline of a particle “enters” the universe through the past spacelike infinity,
there exists the past particle horizon, called also the creation light cone. In de Sitter space a purely
retarded electromagnetic field of a pointlike charge cannot be constructed on the whole cone. In
Minkowski space—time the creation light cone of a particle moving asymptotically in the past
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freely, coincides with the whole past null infinity, and thus it does not belong to the physical
space—time. Eternally accelerated particles can “enter”” the Minkowski space—time at a point of the
past null infinity—as, for example, uniformly accelerated particles do. Like in de Sitter case, in
conformal space—time the past horizon of such particles forms the null cone but, in contrast to de
Sitter space, it has one generator in common with the null infinity. In physical space—time this
horizon thus corresponds to a null hyperplane—for the particle wg, it is just the hyperplane
z+1=0 (cf. Fig. 1)—and so its spatial sections are not compact. Thanks to this noncompactness the
“bad” behavior of the retarded field on the horizon can be “pushed out of sight” to the infinity. We
analyzed this issue in detail in Ref. 24.

lll. MANY FACES OF DE SITTER

The fields due to various types of uniformly accelerated sources in de Sitter space—time found
in Ref. 24, as well as those described briefly in Ref. 25, were constructed by employing the
conformal relation between Minkowski and de Sitter space—times. When analyzing the worldlines
of the sources in de Sitter space—time and their relation to the corresponding worldlines in
Minkowski space-time we need to introduce appropriate coordinate systems. Suitable coordinates
will later be used to exhibit various properties of the fields. An extensive literature exists on
various types of coordinates in de Sitter space (e.g., Refs. 41 and 42); we will survey some of them
in this section. In particular, we relate them to the corresponding coordinates on conformally
related Minkowski spaces since this does not appear to be given elsewhere. In the next section,
after identifying the worldlines of uniformly accelerated particles in de Sitter space, we shall
construct coordinate systems tied to such particles, such as Rindler-type “accelerated” coordinates,
or Robinson-Trautman-type coordinates in which the null cones emanating from the particles have
especially simple forms. These coordinate systems will turn out to be very useful in analyzing the
fields. Here, in the main text, however, only a brief description of relevant coordinates will be
given. More details, including both formulas and illustrations, are relegated to the Appendix.

As it is well known from textbooks on general relativity (for a recent pedagogical exposition,
see Ref. 43), de Sitter space—time, which is the solution of Einstein vacuum equations with a
cosmological term A >0, is best visualized as the four-dimensional hyperboloid imbedded in flat
five-dimensional Minkowski space. It is the homogeneous space of constant curvature equal to

4. Hereafter, we use the quantity
3
{h= \/j 3.1
=V (3.1)

(with the dimension of length) to parametrize the radius of the curvature.
The entire de Sitter space—time can be covered by a single coordinate system—which we call
standard coordinates—7e R, y € (0,7), 9 € (0,7), ¢ € (—7,7) in which the metric reads

gas=—d7 + €3 coshzel(d)(2 +sin® y dw?), (3.2)
A

dw®=d9? +sin> 9 de’. (3.3)

Clearly, we can imagine the space—time as the time evolution of a 3-sphere which shrinks from
infinite extension at 7— — to a radius €,, and then expands again in a time-symmetric way.
Hence, we also call 7, x the spherical cosmological coordinates. The coordinate lines are shown in
the conformal diagram, Fig. 2.

In cosmology the most popular “flat” de Sitter universe is obtained by considering only a half
of de Sitter hyperboloid foliated by flat three-dimensional spacelike hypersurfaces labeled by
timelike coordinate 7e R, cf. Fig. 3. Together with appropriate radial coordinate 7e R*, the
coordinates, which we call flat cosmological coordinates, are given in terms of 7, y by
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FIG. 2. The spherical cosmological coordinates and a pair of uniformly accelerated particles we and wg in de Sitter
universe: the conformal diagram (above) and projection on the spacelike cut 7=constant in the standard cosmological
spherical coordinates (angle ¢ suppressed). The whole de Sitter space—time could be represented by just the “right half” of
the conformal diagram. For convenience, we admit negative values of radial coordinates and identify 7=y=-7 and

7=x= [see the text below Eq. (3.12) and the Appendix].

. LT T . sin x
7=4, log| sinh— +cosh — cos x|, 7=4, , (3.4)
N N cos x + tanh(7/€ )
implying the well-known “inflationary” metric
=00
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FIG. 3. The flat cosmological coordinates and particles wg,wg in de Sitter space and in conformally related Minkowski
space. The flat cosmological coordinates cover shaded region. Its boundary, 7=+, represents the horizon for observers at

rest in these coordinates.
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South T North South

FIG. 4. The hyperbolic cosmological coordinates. They cover only the shaded region and, therefore, only a part of the
worldline we. The horizon Hj,y, arises for the observers who are at rest in the hyperbolic cosmological coordinates.

.
gas = — AP + exp e—T(df2+f2dw2). (3.5)
A

These coordinates cover only “one-half” of de Sitter space as indicated by shading in Fig. 3.
de Sitter introduced his model in what we call hyperbolic cosmological coordinates
nel, pe R* (see Fig. 4) related to 7, y by

h -2 = cosh — tanh £ = coth —si (3.6)
cosn —— =cosh — Cos Y, ann — =Co —SIin y. .
(5 T 0 g X
The metric
_ 2 M2 2 2 P
84s =—d 7 +sinh dp? + €3 sinh? —dw (3.7)
€ €y

shows that the time slices np=constant have the geometry of constant negative curvature, i.e., as
the standard time slices in an open FRW universe.

The last commonly used coordinates in de Sitter space—time are static coordinates 7T e R,
Re(0,€A),

¢
T:—Alo
2

cos x + tanh(7/€ )

-
, R=¢, coshf—sin)(, (3.8)

cos y — tanh(7/€ ) A

covering also only a part of the universe. The metric in these coordinates reads

R2 RZ -1
gds=—<1——2)dT2+<1——2> dR* + R* do?, (3.9)
€A €A

revealing that d/dT is a timelike Killing vector in the region 0 <R <{,.

Among the coordinates introduced until now only the standard coordinates 7, x, ¥, ¢ cover the
whole de Sitter space—time globally. One can easily extend flat cosmological coordinates to cover
(though not smoothly) the whole de Sitter hyperboloid, which will be useful in discussion of the
conformally related Minkowski space-time, cf. Eq. (3.13). We shall also use extensions of the
static coordinates into the whole space-time, using definitions (3.8), but allowing R € R*. In
regions where R> €, coordinates T and R interchange their character, d/JdT becomes a spacelike
Killing vector (analogously to d/dt inside a Schwarzschild black hole). However, the static coor-
dinates 7,R are not globally smooth and uniquely valued. Namely, T— % at the cosmological
horizons R=¢,. The static coordinates, extended to the whole de Sitter space, are illustrated in
Fig. 5. Here we also indicate the regions in which d/dT is spacelike by bold F (“future”) and P
(“past”), whereas the regions in which it is timelike are denoted by N (containing the “north pole”
x=0) and S (containing the “south pole” y=1r). Hereafter, this notation will be used repeatedly.
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~

g

South

FIG. 5. The static coordinates and the worldlines of particles ws and wg. These coordinates can be defined in the whole
space—time, however several coordinate patches, in diagram indicated by shaded and nonshaded regions, have to be used
(cf. sections 5 and 6 of the Appendix). These regions are separated by the cosmological horizons at R={,, where T
==+, The vector d/JT is a Killing vector of de Sitter space-time. It is timelike in the domains N and S (shaded regions)
and spacelike in the domains F and P. The histories of both particles wg and wg, belong to the domains N and S.

The conformal structure of Minkowski and de Sitter space—times, their conformal relation,
and their conformal relation to various regions of the Einstein static universe have been discussed
extensively in literature (see, e.g., Refs. 44-47). The complete compactified picture of these
space—times, in particular the three-dimensional diagram of the compactified Minkowski and de
Sitter spaces M” as parts of the Einstein universe represented by a solid cylinder can be found in
Ref. 24. We refer the reader especially to Sec. III of Ref. 24 where we explain and illustrate the
compactification in detail. In the present paper we shall confine ourselves to the two-dimensional
Penrose diagrams.

The basic standard rescaled coordinates covering globally de Sitter space—time including the
conformal infinity are simply related to the standard coordinates as follows:

tan — T F (3.10)
an —=exp —, =y, .
2 TP A

fe(0,m),7(0,). The metric (3.2) becomes

gas =3 sin 27 (= d7% + d 7 + sin® F dw?), (3.11)

demonstrating explicitly the conformal relations of de Sitter space—time to the Einstein universe,

85 =005 gas: Qus=sinT. (3.12)

Therefore, we also call coordinates 7,7 the conformally Einstein coordinates. The conformal dia-
gram of de Sitter space—time is illustrated in Fig. 2. The past and future infinities, 7=0 and 7= are
spacelike, the worldlines of the north and south poles (given by the choice of the origin of the
coordinates) are described by 7=x=0 and 7= y=r.

The whole de Sitter space—time could be represented by just the “right half” of Fig. 2. Indeed,
it is customary to draw this half only and to consider any point in the figure as a 2-sphere, except
for the poles 7=0, 7. As we shall see, the formulas relating coordinates on the conformally related
de Sitter and Minkowski space—times have simpler forms if we admit negative values of the radial
coordinate 7 e (—,0) covering the left half of the diagram. We shall thus consider the two-
dimensional diagrams as in Fig. 2 to represent the cuts of de Sitter space—time along the axis going
through the origins (through north and south poles—analogously to the cuts along the z axis in
E®). The axis, i.e., the main circle of the spatial spherical section of de Sitter space—time, is
typically chosen as ¥=0, . Thus, in the diagram the point with 7=-7, <0, 9=19,, ¢=¢, is
identical to that with 7=7,, 9=7—1,, and ¢=¢,+ 7. We use the same convention also for other
radial coordinates appearing later, as explicitly stated in the Appendix (cf. also Appendix in
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Ref. 24). We admit negative radial coordinates only when describing various relations between the
coordinate systems. In the expressions for the fields in the following sections only positive radial
coordinates are considered.

As mentioned above, in Ref. 24 we constructed fields on de Sitter space—time by conformally
transforming the fields from Minkowski space—time. Now “different Minkowski spaces” can be
used in the conformal relation to de Sitter space, depending on which region of a Minkowski space
is mapped onto which region of de Sitter space. Consider, for example, Minkowski space with
metric gy given in spherical coordinates 7,7, 9, ¢. Identify it with de Sitter space by relations

. €y sin? €psin 7
[=————, F=————, (3.13)
cosT—cos T Cos F—cos 7

the inverse relation (A11) is given in the Appendix. In the coordinates 7, 7, ¢, ¢ the de Sitter
metric (3.11) becomes

2

4
gus = (-dP+dP+ 72 dw?), (3.14)
t
so that
2 . . €A
gdS:QMgM, QM=?~ (3.15)

The coordinates 7, 7, ¥, ¢ can, of course, be used in both de Sitter and Minkowski spaces.
Figure 3 illustrates the coordinate lines. It also shows how four regions I, II, III, and IV of
Minkowski space are mapped onto four regions of de Sitter space by relations (3.13). We call 7, 7
rescaled flat cosmological coordinates since their radial coordinate 7 coincides with that of the flat
cosmological coordinates (3.4) and the time coordinate is simply related to 7 as

f=—4L, exp(-7L,). (3.16)

The caron or the check (still better “hacek”) “v” formed by cosmological horizon at 7=+ in de
Sitter space (cf. Fig. 3) inspired our notation of these coordinates. It is possible to introduce
analogously the coordinates 7, # given in the Appendix, Eqs. (A39) and (A40), that cover nicely
the past conformal infinity but are not smooth at the cosmological horizon 7= +0; in this case they
form the hat “A” in the conformal diagram (see Fig. 16 in the Appendix).

From relations (3.13) it is explicitly seen why, when writing down mappings between de Sitter
and Minkowski spaces and drawing the corresponding two-dimensional conformal diagrams, it is
advantageous to admit negative radial coordinates. If we would restrict all radial coordinates to be
non-negative, we would have to consider the second relation in Eq. (3.13) with different signs for
regions IIT and II in de Sitter space: in III #=¢ sin 7/(cos F—cos 7), but in III we would have
F=={ , sin 7/ (cos F—cos 7).

Another mapping of Minkowski on de Sitter space will be used to advantage in the explicit
manifestation that the generalized Born solution in de Sitter space goes over to the classical
solution (2.13). Instead of the mapping (3.13), consider the relations

€pcost €psin 7
r=- ——, r= — (3.17)
cos F+sin 7 cos F+sin7

[see Eq. (A17) for the inverse mapping], which turn the metric (3.11) into
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FIG. 6. The conformally Minkowski coordinates. They cover the whole conformally related Minkowski space but only a
part of corresponding de Sitter space. This Minkowski space is related to that in Fig. 3 by a shift “downwards” by 7/2 in
the direction of the conformally Einstein coordinate 7.

( 203 )2
=\ 52— (dP+dr’ + * de?). 3.18
8ds ei _ [2 + I"2 ( ) ( )
We again obtain the de Sitter metric in the form explicitly conformal to the Minkowski metric
with, however, a different conformal factor from that in Eq. (3.15),

204

- - 3.19
G-+ (3.19)

8ds = le\/[gM’ Qu=
[For the use of the de Sitter metric in “atypical” form (3.18) in the work on the domain wall
space—times, see Ref. 48). The relation of Minkowski space to de Sitter space based on the
mapping (3.17) is illustrated in Fig. 6. Clearly, the Minkowski space in this figure is shifted
“downwards” by /2 in 7 coordinate, as compared with Minkowski space in Fig. 3. Indeed,
replacing 7 by 7+ /2 in Eq. (3.13), we get =¢, #=r with ¢, r given by Eq. (3.17). Since coordi-
nates t, r, ¥, ¢ are not connected directly with any cosmological model and correspond to
Minkowski space “centered” on de Sitter space (Fig. 6), we just call them conformally Minkowski
coordinates.

In Ref. 24 still another Minkowski space is related to de Sitter space—one which is shifted
“downward” in 7 coordinate by another /2. As mentioned below Eq. (3.16), the cosmological
horizon forms hat “A” in this case and the corresponding coordinates are accordingly denoted as
f, 7. They are given explicitly in section 3 of the Appendix and Fig. 16.

The three sets of coordinates £, 7, ¢, r, and 7, # (with the same ¥, ¢) relating naturally “three”
Minkowski spaces to de Sitter space are suitable for different purposes. The third set describes
conveniently the past infinity of de Sitter space—that is why it was used extensively in Ref. 24
where we were interested in how the sources enter (are “born in”) de Sitter universe. The second
set will be needed in Sec. VII for exhibiting the flat-space limit of the generalized Born solution.
The first set describes nicely the future infinity and will be employed when analyzing radiative
properties of the fields.

With all the coordinates discussed above, corresponding double null coordinates can be asso-
ciated; some of them will also be used in the following. Their more detailed description and
illustration is presented in section 10 of the Appendix.

Downloaded 27 Oct 2005 to 195.113.23.45. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



102504-13  Fields of accelerated sources: Born in de Sitter J. Math. Phys. 46, 102504 (2005)

Before concluding this section let us notice that the observers which are at rest in cosmologi-
cal coordinate systems 7, x, 7, , and 7, p move along the geodesics with proper time 7, 7, and 7
respectively. These geodesics are also the orbits of the conformal Killing vectors. Indeed, the
symmetries of Minkowski space—time and of the Einstein universe become conformal symmetries
in conformally related de Sitter space—time. In particular, we shall employ the fact that since d/df
and /ot are timelike Killing vectors in Minkowski space—time and d/47 is a timelike Killing
vector in the Einstein universe, the vectors

d d J
— —, and — (3.20)
Jf I ot

are timelike conformal Killing vectors in de Sitter space-time. As mentioned below Eq. (3.9),
3/ 9T is a Killing vector which is timelike for |R| <€ .

IV. UNIFORMLY ACCELERATED PARTICLES IN DE SITTER

A. Particles born at the poles

In Sec. I we defined uniformly accelerated motion in Minkowski space—time. However, the
formulas given there, being in covariant forms, remain valid in de Sitter space—time. As explained
in Ref. 24 in detail, a simple way of obtaining a worldline of a uniformly accelerated particle in de
Sitter space—time is to consider a suitable particle moving with a uniform velocity in Minkowski
space—time and use the conformal relation between the spaces.

Consider a particle moving with a constant velocity of magnitude

vy = tanh a,, = constant, (4.1)
such that for @,>0 it moves in a negative direction along the Z axis of the inertial frame in
Minkowski space M with coordinates 7, 7, ¥, ¢ and passes through #=0 at /=0,

f=N\ycosha, F=-MN\ysinha, 4=0. (4.2)

Substituting into transformation (A11), we find

Ay cosh « A sinh ¢,
= arctan<—2€A¥>, 7= arctan(—2€AM), (4.3)

2
)\1\;[—512\ )\1\7[+€/2\

or expressing Minkowski proper time Ay; in terms of the proper time of de Sitter space—time,

Mi= T € exp(F (cosh ag)\gs/€A), (4.4)

we obtain

_ inh h ay)\gs/€ h h ag)\gs/€
t=arccot(— sinh((cosh ag)has A)>, F=arccot(tcos ((cosh ao)Aqs A)), 9O=0.

cosh a, sinh «,

(4.5)

Here \yg € R, arccot takes values such that 7e (0, ) and Fe (0, ) for a,>0, or Fe (—,0) for
a,<0. Upper sign is valid for the particle starting and ending with 7=0 (particle wg in Fig. 7),
lower sign for the particle starting and ending at 7= (particle wy, in Fig. 7).

One can make sure by direct calculations of the four-acceleration (for its simplest form in the
static coordinates, see below) that these worldlines describe the uniformly accelerated motion as
defined in Sec. II, the magnitude of the acceleration being
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We Weo
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FIG. 7. The worldlines of uniformly accelerated charges. The particles wg and wg, start and end at the “north pole,” wg,, w,
start and end at the south pole. Particles w(,,w, have a higher magnitude of acceleration a,g than particles we,we. They
are characterized by a negative parameter «,, whereas particles wg,wg have a positive «,.

R
ata

ags =\ = |€/_\1 sinh a0|. (4.6)

Since de Sitter universe represents the asymptotic state of all three types of indefinitely expanding
FRW models with A >0, it is of interest to find out the form of these worldlines in the three types
of cosmological frames—spherical, flat, and hyperbolic—introduced in Sec. II.

In terms of cosmological spherical coordinates the worldlines are given by

sinh((cosh a,)Ngs/€A)

cosh «a

cosh((cosh a,)Ngs/€y)

sinh a,

) om0

(4.7)

=40, arcsinh( ), X= arccot(i

In flat cosmological coordinates, which cover only half of de Sitter space, we obtain just particle
we described by the worldline

7=MN\gs cosh o, — € log cosh oy, F7={ sinh a, exp(— (cosh a,)\4s/€ ). (4.8)

Finally, in hyperbolic cosmological coordinates, which are also not global, we obtain again one
particle’s worldline only given in terms of its proper time as

cosh((cosh ay)\gs/€ sinh((cosh a,)\ys/€
n={, arccosh (« to)has A), p =4 arccoth inh(( . %) Nas/€n) . (49
cosh a sinh a

These formulas have no meaning for [\gg/€, cosh a,| <|a,| where the inverse hyperbolic func-
tions are not defined. This corresponds to the fact that for such Ayg the particle occurs in the region
where the hyperbolic cosmological coordinates are not defined (cf. Fig. 4). Excluding the proper
time we find the worldlines to be given by remarkably simple formulas in the three systems of the
cosmological coordinates,

(a) spherical,

. T
sin y = * tanh a,/cosh R (4.10)
A
(b) flat,
L tanh a,/exp l; (4.11)
N {a
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(c) hyperbolic,

sinh - = tanh @ /sinh —~. (4.12)
€\ €A

It is of interest to see what are the physical radial velocities which will be observed by three
types of the fundamental cosmological observers, i.e., those with fixed y, F, and p, respectively,
whose proper times are 7, 7, and 7, respectively. Such velocities can be defined by the covariant
expression

Ugps=Uu, el ——, 4.13

obs avl d)\obs ( )

where u® is the particle’s four-velocity, \gg its proper time, ef is the unit spacelike vector in the

direction of the radial coordinate x'= X 1> and p, respectively, i.e., in directions d/dy, d/drF, and

d/dp, and A, is the proper time of an observer, i.e., 7, 7, or 7, respectively. Since all three
cosmological metrics are diagonal the expression (4.13) takes on the form

— dx'

Ugbs = \‘"gd811f~ (4.14)
obs

The results are of interest,

sign 7sinh «

1% = F T ’ (4 1 5)
obs(x) Vsinh? a,, + coth?(7/€ )
Uobs(7) =~ tanh &y, (416)
sinh a,
Uobs(p) = o

~ Vsinh? a, + tanh®(9/€,)

Consider first the picture in spherical cosmological coordinates, Egs. (4.7) and (4.10). Only in
this frame both particles are present. They start asymptotically at antipodes of the spatial section
of de Sitter space at Z-(7——) and move one towards the other until 7=0, the moment of
maximal contraction of de Sitter space (“the neck” of de Sitter hyperboloid), when they stop,
Uobs(y)=0- Then they move, in a time-symmetric manner, apart from each other until they reach
future infinity asymptotically at the antipodes from which they started. In contrast to the flat space
case, the particles do not approach the velocity of light in this global spherical cosmological
coordinate system, the asymptotical magnitude of their velocity being equal to |tanh a,| [cf. Eq.
(4.15)]. Hence, curiously enough, the particles approach the antipodes asymptotically with a finite
nonvanishing velocity (for an intuitive insight into this effect, see below).

Although the particles wg and wg do not approach infinities with velocity of light, they are
causally disconnected as the analogous pair of particles in Minkowski space (cf. Fig. 1 and Fig. 7).
No retarded or advanced effects from the particle wg can reach the particle wg, and vice versa.

Next, consider flat and hyperbolic observers. As seen from Eq. (4.16), with respect to the flat
cosmological coordinates the particle we moves with the same velocity |tanh | all the time. And
the same velocity is asymptotically, at 77— %, reached by this particle in the hyperbolic cosmo-
logical coordinates. The magnitude of the asymptotic values of the velocity at Z* is, in fact, equal
to the velocity (4.1) of the particle in Minkowski space from which we constructed uniformly
accelerated worldlines by a conformal transformation. The identity of all these velocities is un-
derstandable, the magnitude of the velocity with respect to an observer can be determined by
projecting the particle’s four-velocity on the observer’s four-velocity, i.e., by the angle between
these directions. In de Sitter space all three types of cosmological observers reach Z* with the
same four-velocity; moreover, this four-velocity is at Z* identical to the four-velocity of observers
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at rest in conformally related Minkowski space. But a conformal transformation preserves the
angles and thus, the velocities with respect to the three types of cosmological observers in de Sitter
space and the velocity in the conformally related Minkowski space must all be equal—given by
the “Lorentzian” angle «,,.

It is worth noticing yet what is the initial velocity of the particle wg in hyperbolic cosmo-
logical coordinates. Regarding Fig. 4 we have n— —%, p— 0 at the “starting point” of the particle
at 7. From Eq. (4.17) we get v, — —tanh &, which in the magnitude is the same as in spherical
cosmological coordinates but has opposite sign since the particle moves in the direction of in-
creasing negative p. More interesting is how the particle enters the upper region of the hyperbolic
coordinates. Figure 4 suggests that its velocity must approach the velocity of light since at this
boundary the fundamental observers of the hyperbolic cosmological frame themselves approach
the velocity of light. Indeed, at this boundary 7=0,p=%, and the expression (4.17) implies
Unbs( ) ——1.

By far the simplest description of the particles is obtained in the static coordinates 7', R. Using,
for example, the relation R={, sin 7/sin 7 [cf. Egs. (A64) and (A77)], and substituting from Eq.
(4.5), we find that the worldlines of both particles wg and w, are given by remarkably lucid forms

N
T'=\gs cosh @y=——"—. R={, tanh o, = R, (4.18)
\"1 _R0/€A

These expressions imply that the four-acceleration a*=u*V ,u® is simply

R, 9 1 d
a=———=-—tanh ¢ é’_zaOeR’ (4.19)
where ep is a unit spatial vector in the direction d/dR of the static radial coordinate R, and we
introduced constant

iy Ry}
a,=-4 sinh q,=- —— (4.20)
V1 =R/
which represents the “oriented” value of the acceleration of the particles.

We thus find the uniformly accelerated particles in de Sitter space—time to be at rest in the
static coordinates at fixed values R=R, of the radial coordinate. Two charges moving along the
orbits of the boost Killing vector (2.5) in Minkowski space are at rest in the Rindler coordinate
system and have a constant distance from the space—time origin, as measured along the slices
orthogonal to the Killing vector. Similarly, we see that the worldlines wg and w, are the orbits of
the static Killing vector d/dT of de Sitter space. The particle wg (respectively, wg) has, as
measured at fixed T, a constant proper distance from the origin 7=7/2 (7=0), 7= x=0 (respec-
tively, 7=x=1r). As with Rindler coordinates in Minkowski space, the static coordinates cover
only a “half” of de Sitter space. In the other half the Killing vector becomes spacelike. Owing to
“cosmic repulsion” caused by the presence of A, fundamental cosmological observes moving
along geodesics y, 9, ¢ constant are “repelled” one from the others. Their initial implosion starting
at 7——% is stopped at 7=0 and changes into expansion. Clearly, a particle with constant
R=R,—hence a constant proper distance from the particle at R=0=y—must be accelerated to-
wards that “central” particle.

In Eq. (4.20) we have denoted the radial tetrad component of the acceleration in the static
coordinates by a,; notice that, in contrast to the magnitude of the acceleration agg=|a,| [cf. Eq.
(4.6)], a, can be negative as, in fact, it is the case with both particles wg and wg, assuming that
the static radial coordinate of the particles is positive, R=R,>0. Geometrically, the four-vectors
of the acceleration of the particles point in opposite directions—towards y=0, the other towards
x=. Since, however, one needs two sets of the static coordinates to cover both particles, and the
radial coordinate R increases from both y=0 and y= worldlines (cf. Fig. 5), the accelerations of
both particles point in the direction of decreasing R’s and is thus negative. All the particles we are
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considering perform one-dimensional motion only, hence we use for the description of their
worldlines the same convention as for the two-dimensional diagrams with time and radial
coordinates—we allow the radial coordinate to take negative values. Thus, for example, consider
a particle with worldline w¢, which is a “reflection” of the worldline we with respect to 7=x=0
(see Fig. 7). The particle w¢, moves in the region of negative 7, respectively R, it has an accel-
eration positive, aO:—C\l sinh a,>0 (i.e., @,<0), and its four-acceleration vector is pointing in
the direction of increasing R. With our convention, the particle w, is just that which moves from
x=0 along the 9= direction. This convention will be particularly useful when we shall construct
worldlines of uniformly accelerated particles which start and end at the equator. Those which
move in the region x> m/2 will have negative a,, those moving with y <m/2 will have positive
a,—see Sec. IV B.

An intuitive geometrical understanding of the worldlines of uniformly accelerated particles in
de Sitter space—time can be gained by considering de Sitter space as a four-dimensional hyperbo-
loid —~Zj+Z3+Z5+Z3+Z3={3 in five-dimensional Minkowski space. The spherical cosmological
coordinates 7, x, ¥, ¢ are then identical to the hyperspherical coordinates on this hyperboloid. The
worldlines of the north and south poles, y=0, 7, can be obtained by cutting the hyperboloid by a
timelike 2-plane 7,, given by Z,=Z3;=7,=0. The worldlines of our uniformly accelerated particles
we and wg then arise when the hyperboloid is cut by a timelike 2-plane ’]j parallel to 7, at a
distance R,={, tanh(a,/€,) from the origin.* 7, is thus given by Z,=R,, Z;=Z,=0. From
the  definition of the  hyperspherical coordinates it follows 9=0,7 and
Z,=4, cosh(7/€,) sin x cos 9=R,, i.e., sin y==tanh a,/cosh(7/€,), which is just Eq. (4.10) de-
scribing wg and wg.

From this construction, the curious result mentioned above—that wg and wg approach an-
tipodes x=0 and y= asymptotically with a fixed speed |tanh a,| in spherical cosmological
coordinates—is not so surprising: thanks to the expansion of de Sitter space-time fundamental
cosmological observers with arbitrarily small y=constant>0 will, in the limit 7— %0, eventually
cross the plane 7, , and thus the particle wo; however at any finite but arbitrarily large  there will
be observers with y=constant which are still moving towards the particle wg. The same, of
course, is true with the symmetrically located particle wg and corresponding observers close to

X=TT.

B. Particles born at the equator

In the classical Born solutions both charges are, at all times, located symmetrically with
respect to the origin of the Minkowski coordinates (see Fig. 1). In order to demonstrate explicitly
that a limiting procedure exists in which our generalized Born’s solution goes over to its classical
counterpart, we shall now construct the pair of uniformly accelerated particles which are, at all
times, symmetrically located with respect to the origin of the standard spherical coordinates in de
Sitter space, i.e., with respect to the “north pole” at y=0. Asymptotically at 7— —o these two
particles both start (“are born”) with the same speed at the equator, y=7/2, at the antipodal points
U¥=0 and U=. As the universe contracts, they both move symmetrically along the axis 9=0, 7,
reach some limiting value y, at the moment of time symmetry, and accelerate back towards the
equator, reaching the initial positions asymptotically at 7— +oc. These two particles are illustrated
in Fig. 8, with their worldlines denoted by w, and w,. In Fig. 9, a snapshot at 7=constant is
depicted. Comparing Fig. 8 with Fig. 7, it is evident that the particles wq, and w, are located with
respect to the point y=m/2, 9=0 in exactly the same manner as the particles wg and wg are
located with respect to the pole x=0 (or, rather, as the particles wé, w{g, since we chose wq,, Wg
to have positive a, in Fig. 8).

Owing to the global homogeneity of de Sitter space and the spherical geometry of its slices
t=constant, the worldlines of the particles w, and w, can be constructed by a suitable rotation of
the worldlines of the particles wg and wg. In Sec. VII the same rotation will be applied to obtain
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FIG. 8. The worldlines of uniformly accelerated charges located symmetrically with respect to the origin (north pole) of
the standard spherical coordinates in de Sitter space. The particles “start” and “end” at the equator. They are causally
disconnected as a corresponding pair in Minkowski space (cf. Fig. 1). The “oriented” value a, of the acceleration of these
particles is positive [cf. the “rotated” version of Eq. (4.20)].

the fields of these particles “born at the equator.” We rotate the coordinates y, ¥, ¢ into coordi-

nates y, 5, @ which, as a pole, have the point y=7/2, 9=0 (see Fig. 9). The relations between
these coordinates follow from the spherical geometry:

cos Y=sin ycos ¥, tan O=—tan ysin 9, &=¢. (4.21)

The new worldlines, w,, and w, will then be given by Egs. (4.7) in which y, ¥, ¢ are replaced

by rotated coordinates y, O, . Substituting for these by using relations (4.21), we find the
worldlines wg,, wg in the original coordinates to be described by the expressions

sinh((cosh a,)N\gs/€ )

cosh a;,

cosh((cosh ay)N\gs/€5)

sinh a,

)a 19:0’

(4.22)

T=4{, arcsinh( ), X= iarctan(—

with the values of arctan from (0, 7r) and upper (lower) sign corresponding to the particle starting
at the positive (negative) value of y, i.e., to the particle wg, (or wo, respectively).
Excluding the proper time \4g, we arrive at simple result [cf. Eq. (4.10)]

tanh «,

cosh(7/€,)" (4.23)

cos y=-

As 7— =0, then indeed |y| — 7/2; at 7=0, |x| =arccos(~tanh a,)=arccos(-R,/{ ), in agreement
with the “deviation” of the “original” particles wq, wg from y=0 at 7=0. In the spherical rescaled
coordinates, Egs. (4.22) read

FIG. 9. The rotated spherical coordinates y,9 on 3-sphere (the cut @=constant). The relation between the coordinates is
given in Eq. (4.21).
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_ ( sinh((cosh a,)\gs/€ A))
f=arccot| — ,

cosh a

cosh((cosh a,)\4q/€
r= = arccot(— « : )N A)>, (4.24)
sinh ¢,
9=0,
again with the values of arctan and arccot from (0, 7). Equation (4.23) becomes
cos 7= —tanh a, sin 7. (4.25)

Although the flat (rescaled) cosmological coordinates cover only parts of the worldlines
we, Wo (see Figs. 8 and 3), we transcribe the equations above also into these frames in which the
particles “emerge” at 7, f— —o at the cosmological horizon at 7= . We find

T ) ( —cosh «, )
210 )
{a 8\ Z sinh((cosh a,)Ags/€ ) + sinh
i cosh
Lo %o : , (4.26)
€, —sinh((cosh a,)\gg/€,) + sinh «,
oo cosh((cosh ay)N\gs/€ )
Lo i
N — sinh((cosh a,)A\gs/€ ) + sinh
so that Eq. (4.25) translates into the relations
F= + €2 + £ -20,itanh a,,
(4.27)

F= % €A\/l + 2 tanh a, exp(— 7€) + exp(—27/€,).

As 7— 4+, we have F— x¢{,, as it corresponds to y— *+/2; at T— —%, we get F— +%—here
the particles enter flat cosmological frame at the horizon (cf. Fig. 8).

The worldlines wg,, wo are situated outside the regions covered by our choice of the hyper-
bolic cosmological coordinates. Similarly, we get only finite parts of wg, wg in our static coor-
dinates. Of course, we could rotate the static coordinates to cover both particles but then we arrive
at exactly the same picture as with the particles wg, wg considered above.

Our primary reason to discuss the pair wy,, W, is to demonstrate explicitly how our fields go
over into the classical Born solution in the limit of vanishing A. For this purpose, it will be
important to have available also the description of the worldlines wg,, ws in the Minkowski
coordinates introduced in Egs. (3.17). As it is obvious from Fig. 6, these coordinates cover both
worldlines wq, and w completely. Using the relations inverse to Egs. (3.17) given in the Appen-
dix, Eq. (A17), we find Egs. (4.24) to imply

) )
t:bosinhb—M, rzibocoshb—M, 9=0, (4.28)

(3} 0

where
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b — {y+R
< zexpa,=Vl+al i —al,= \/u, (4.29)
€A €A_R0

and A\, is the proper time measured in Minkowski space M related to de Sitter space by conformal
mapping (3.18) and (3.19),

NM = €Xp @, cosh a, Ngg. (4.30)
Consequently,
r= 2 A +b, 9=0, (4.31)

which is the simplest form of the hyperbolic motion with the uniform acceleration 1/b, as mea-
sured in Minkowski space [cf. Egs. (2.3)].

V. FRAMES CENTERED ON ACCELERATED PARTICLES

For the investigation of the radiative properties and other physical aspects of the fields, the use
of (physically equivalent) particles wg,wg, i.e., those “born at the poles” of spherical coordinates
is technically more advantageous. We shall now return back and construct frames with the origins
located directly on these particles. In such frames, various properties of the fields will become
more transparent than in the coordinates introduced so far.

As we have seen in the preceding section, the uniformly accelerated particles wo and wy, are
at rest in static coordinates 7,R at given R:Roz—aoﬁ/ V1 +a§€2, where |a,| is the magnitude of
the acceleration. In order to investigate the properties of the fields, in particular, in order to see
what is the structure of the field along the null cones with vertices at the particle’s position, i.e.,
what is the field “emitted” by the particle at a given time, it is useful to construct coordinate
frames centered on the accelerated particles. Such systems of coordinates are used to describe
accelerating black holes in general relativity (like C-metrics, known also for A # 0, cf. Refs. 27
and 28), so that their properties on de Sitter background may indicate what is their meaning in
more general cases—in situations when they are centered on gravitating objects rather than on test
particles.

We shall now describe three coordinate systems of this type: the accelerated coordinates, the
C-metric-like coordinates, and the Robinson-Trautman coordinates, all centered on the worldlines
we and wg. Instead of writing down just the transformation formulas, we wish to indicate some
steps how these coordinates can be obtained naturally. We list only the main transformation
relations here, many other formulas and forms of the metrics can be found in the Appendix. Let us
also note that in this section we assume R,,a,>0, i.e., a,<0, and we use only static radial
coordinate with positive values, i.e., R>0.

A. Accelerated coordinates

We begin with the construction of accelerated coordinates 7’ ,R’, ', ¢. This type of coordi-
nates was recently introduced® by another method in the context of the C-metric with A>0. In
the preceding section we obtained the worldlines wg,wg of uniformly accelerated particles in
de Sitter space by starting from a particle moving with a uniform velocity v,;=tanh «, in a
negative direction of the ¥ axis in the inertial frame 7,7, ¥, ¢ in Minkowski space M which passes
through 7#=0 at /=0 [see Egs. (4.1) and (4.2)]; and we used then the conformal relation between
Minkowski and de Sitter spaces to find wg,wg. Therefore, let us first construct a frame centered
on the uniformly moving particle in M. Using spherical coordinates again, this boosted frame
denoted by primes is related to the original one simply by

v,

' =i cosh a, + ¥ cos ¥ sinh «,,

7' cos ¥ ={sinh a, + ¥ cos ¥ cosh «,, (5.1)

Downloaded 27 Oct 2005 to 195.113.23.45. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



102504-21 Fields of accelerated sources: Born in de Sitter J. Math. Phys. 46, 102504 (2005)

7 sin® =rsin 9,

the ¢-coordinate does not change and will be suppressed in the following. From here

—? 4=+ P,

(5.2)
sin ¥

tan 9’ = ——— .
(#/F)sinh «, + cos ¥ cosh a;

The original frame 7,7, 9 in Minkowski space M is related to the static coordinates T,R,V in de
Sitter space by [cf. Egs. (A67) and (A80)]

P

€3

€y
T=—A
) %

. R=—0,", 9=9. (5.3)
I3

The metrics of the two spaces are related by ggs=(€3/7)gy;, gas being given by Eq. (3.9)—cf. Eq.
(3.14). Now, let us introduce coordinates T’ ,R’, ¥’ given in terms of 7', ,®' by exactly the same
formulas as coordinates T,R, ¥ are given in terms of 7,7, ¥ in Eq. (5.3). In this way we obtain
gas'=(€3/'%)gy1. Combining the last relation with gqq=(¢3/1%)gy;, we find the metric of the
original de Sitter space in the new coordinates 7’ ,R’', " in the form

l‘(/2

8ds = ?gds” (5.4)

gas' is given by the “primed” version of Eq. (3.9). Expressing then the factor (' /7)? by using Egs.
(5.1) and (5.2), and “primed” relations (5.3), we arrive at the de Sitter metric in the accelerated
coordinates in the form

1 -RY€3
1+ (R'R0/€i)cos ']

R/2 RI2 -1
2us (_ (1 —)dT’2 + (1 - 6—2) dR"?+ R"*(d9"? + sin*> d<p2)>.

G A
(5.5)

Here the accelerated coordinates 7',R’,V0’,¢ are given in terms of static coordinates by the
relation obtained by the procedure described above as follows:

1 - RY€3)(1 - RY/€3
P I
[1—(RR,/€})cos 9]
(5.6)
V1 — R%/€3R sin &

Rcos O —R,

T'=T, tan?d =

Notice that the time coordinate of static and accelerated frames coincide. Technically, this is
easy to see from the first relation in Eqgs. (5.2) and (5.3). Intuitively, this is evident since the
uniformly accelerated particles are at rest in the static coordinates, as well as in the accelerated
coordinates, the only difference being that they are located at the origin of the accelerated frame.
Setting R,=0 in Eq. (5.6), we get R'=R, 9'=1, as expected. The static coordinates are centered
on the poles y=0, m, hence, on the unaccelerated worldlines. The name accelerated coordinates is
thus inspired by the fact that their origin is accelerated, and the value of this acceleration enters the
form of the metric (5.5) explicitly through the quantity R,.

The two-dimensional conformal diagram of de Sitter space with coordinate lines
T' =constant, R’ =constant of the accelerated frame is given in Fig. 10. For details, see the figure
caption. Here let us just notice that the cosmological horizons are still described by R’2=€i.

Downloaded 27 Oct 2005 to 195.113.23.45. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



102504-22  J. Bi¢ak and P. Krtou$ J. Math. Phys. 46, 102504 (2005)

FIG. 10. The two-dimensional conformal diagrams of de Sitter space based on the static, nonaccelerated coordinates
(upper diagram), and on the accelerated coordinates (lower diagram). Starting from static coordinates T,R,J, ¢, one can
draw the conformal diagram of the axis ¥=0,7 in which the conformal past and future infinities, Z * (R=+®), are
horizontal (double) lines. In addition to static coordinates 7, R, also accelerated coordinates 7" ,R’ are indicated in both
diagrams. These have a coordinate singularity for R’ = (drawn as a dashed line). The origins of the accelerated coordi-
nates, R'=0 (thick lines), are worldlines of uniformly accelerated particles. In the conformal diagram of the axis
¥’ =0, 7 based on accelerated coordinates, the origins R’ =0 and the coordinate singularity R’ = of the accelerated frame
are straight lines; the true infinities Z* have a “bulge” upwards or “downwards,” depending on the angle ¥'. The
hypersurface R’ = corresponds to the boosted hyperplane 7' =0, whereas the conformal infinity corresponds to =0 (the

relation of both hyperplanes can be well understood in the diagram of the conformally related Minkowski space M) The
diagrams in which the conformal infinities Z * are not straight naturally arise in the studies of the C-metric with A>0 [de
Sitter space being a special case of this class of the metrics (Ref. 27)]. In general, outside the axis 9=9'=0, 1, the
transformations between the static and accelerated coordinates mix radial and angular coordinates R, ¥ and R, ¥, as is
seen also in the following Fig. 11. The sections ' =constant (for some general ') are also shown in Fig. 21 in the
Appendix.

Infinite values of R’ can, however, be encountered “before” the conformal infinities 7* are
reached. This depends on the angle . Indeed, R’ = corresponds to '=0, whereas Z* is given
by 7=0, i.e.,

2
G
R, cos ¥’

R' = (5.7)
[cf. metric (5.5)]. Relation of these two surfaces is best viewed in Minkowski space M. We see
that for ¥, %’ <r/2, the conformal infinity Z* (Z ") lies “above” (“below”) the surface R’ =+,
Thus the infinity R’ =+ is just a coordinate singularity, which can be removed using, for ex-
ample, the C-metric-like coordinate v introduced below.
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¥'=7 R'=const.
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R'=const. 9=0" R'<0

FIG. 11. The accelerated coordinates R’,®9’ on the sections 7’ =constant of de Sitter space (coordinate ¢ suppressed). In
the region where 9/JT" is timelike (0<R'<{,), the cut 7" =constant is a spacelike sphere [diagram (a)]. In the region
where 3/dT" is spacelike (€, <R’ and R’ <0), it is a timelike hyperboloid [diagram (b)]. The diagrams are not in the same
scale—the radius of the sphere and of the neck of the hyperboloid should be the same. The axis ¥'=0, 7 corresponds to
the lines 7" =constant of Fig. 10. The coordinate singularity R’ =+ is also indicated. For more details see the text.

Figure 11(a) shows the cut T=T"=constant located in the region of de Sitter space where the
Killing vector d/dT=49/dT" is timelike (R,R’ <{,); ¢-direction is suppressed. The cut is a space-
like sphere S® with homogeneous spherical metric. The coordinate lines R’=constant and
U’ =constant are plotted, with two origins R’ =0 indicated, here the accelerated particles occur.
The coordinate R’ grows from R’=0 at the origins to the equator where R'=¢,. In Fig. 11(b) the
cut T=T'=constant located in the regions where d/dT=3/JT' is spacelike (R,R'>¢€,) is illus-
trated, again with ¢-direction suppressed. Here the cut is timelike with the geometry of three-
dimensional de Sitter space. The coordinate lines R’ =constant and ' =constant are also shown.

As we have just seen, the points with R’ =00 can be “nice” points in de Sitter manifold. It may
thus be convenient to introduce the inverse of R’ as a new coordinate. Also, we consider —cos 9’
as a coordinate, and make the time coordinate dimensionless. We thus arrive at the C-metric-like
coordinates 7,v, ¢, ¢,

T €
T:a’ U=R—/}, §=—COS Y. (58)

The metric (5.5) becomes

1
gds =r2(— - 1)d7 + ldv2+ " §2d§2+ (1- 52)d<p2), (5.9)
v - -
with the conformal factor t given by
¢
t= A (5.10)

v cosh a, — €sinh

This is de Sitter space—time in the “C-metric form:” setting the mass and charge parameters, m and
e, equal to zero in the the C-metric with a positive cosmological constant [written in the form (2.8)
of Ref. 27], and choosing the acceleration parameter equal to A=€/_\1|sinh a,|=la,|, we obtain the
metric (5.9).
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B. Robinson-Trautman coordinates

In order to arrive naturally to the Robinson-Trautman form of the metric, notice that the
coefficients in the metric (5.9) become singular at v — * 1, similarly as they do on the horizon of
the Schwarzschild space—time in the standard Schwarzschild coordinates. Analogously to that
case, we choose a “tortoise-type” coordinate v, by

(5.11)

Similarly to the Schwarzschild case again, we introduce a suitable null coordinate u in terms of the
radial and time coordinates 7 and v, as follows:

u= (€, tanh a,)(7+v,). (5.12)

Together with the conformal factor v defined in Eq. (5.10), we arrive at the de Sitter metric in
coordinates u,t, &, ¢ [cf. Eq. (A109)] which is very near to being in the Robinson-Trautman form.
However, there is a nonvanishing mixed metric coefficient at duvdé which is absent in the
Robinson-Trautman metric. Such a term can be made to vanish by introducing a new angular
coordinate ¢ by

u
= arctanh &+ 7. sinh «,. (5.13)
A

The de Sitter metric then becomes

t2

gas=—H du*—du vdt+P2(dtﬁ2+d<pZ), (5.14)

where

? t u
H=-—+2—sinh a, tanh(:,b— — sinh ao> +1,
(5.15)
u
P= cosh(t,b— — sinh ao) .

€A
This is precisely the form of the Robinson-Trautman metric—see, e.g., Ref. 50. Tracking back the
transformations leading to the metric (5.14), the connection between the Robinson-Trautman
coordinates and the static coordinates T,R, 4, ¢ turns out to be not as complicated as our proce-
dure might have indicated, in particular, for the radial coordinate. We find a nice formula for t,

¢ RR ) R? R2\\ 172
t:—ARZ((l—g—zocosﬂ> —(1—;)(1—7;)) . (5.16)
/1__; A A A
€\

whereas the other two coordinates are simply expressed only in terms of accelerated coordinates
T'=T,R",¥, ¢,

| R ¢ R' -t R,(T 1 |R-¢ '
u= 1——2°<T’+—A10g A ), w:—o(—+—log A )+log tan —
€A 2 R,+€A €A €A 2 R’ €A

Coordinates R’, ' can then be obtained in terms of the original static coordinates by using Eqs.
(5.6).
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FIG. 12. The field at an event A can be interpreted as 1/2 of the sum of the retarded fields produced by particle w¢, at Ag
and particle wg, at Ag. The field at B can be interpreted as 1/2 of the sum of the retarded and advanced effects from particle
we. The affine parameter distances BB, and BB, are equal, the same being true for the distances AAg and AA.

The Robinson-Trautman coordinates with metric (5.14) are centered on the accelerated par-
ticles. As with static or accelerated frames, we need two sets of such coordinates to cover both wg,
and w. The relations to the static coordinates become, of course, much simpler if the particles are
not accelerated, R,=0, and when both the Robinson-Trautman and static coordinates are centered
on the pole =0,

O €\
v=R, ¢=logtan E, u=T+?10g

R—€,

. 5.18
R+€A ( )

However, even “accelerated” Robinson-Trautman coordinates possess some very convenient fea-
tures. The radial coordinate t is an affine parameter along null rays u, i, ¢=constants, normalized
at the particle’s worldline by the condition

M Y
ﬁtgdsm,u =-1, (5.19)
where u is the particle’s four-velocity. These null rays form a diverging but nonshearing and
nonrotating congruence of geodesics. The null vector d/d, tangent to the rays, is parallelly
propagated along them. Its divergence is given by V,(d*/dct)=2/t so that ¢t is both the affine
parameter and the luminosity distance (see, e.g., Ref. 51). With Robinson-Trautman coordinates,
one can also associate a null tetrad [explicitly written down in the Appendix, Eq. (A114)] which
is parallelly transported along the null rays from the particle (t=0) up to infinity (t=0).

Owing to the boost symmetry of both the worldlines and de Sitter space, an interesting feature
arises, which is analogous to the situation in Minkowski space. Consider a point B in region N
(Fig. 12). There are two generators of the null cone with the origin at B which cross the worldline
wg at two points, B and B,g,. Then the affine parameter distance BB, is the same as BB,q,. (In
order to go towards the past from B,y, to B, the “advanced” Robinson-Trautman coordinates built
on the past null cones with origins on wg, can easily be introduced.) This is evident because B lies
on one orbit of the boost Killing vector d/dT and a boost can be applied which leaves the
worldline wg invariant but moves B into event B’ on the slice of time symmetry, 7=0 (also
T=T'=0), where the particle is at rest. Then B,q, and B, move to the new points B,4,,B,.,, which
are located symmetrically with respect to 7=0. The equality of the affine parameter distances then
follows from the symmetry immediately. Similarly, for an event A in region F one can show that
the affine parameter distance AA is equal to the distance AAg (see Fig. 12). The point A lies on
a boost orbit (which now has a spatial character) along which it can be brought, by an appropriate
boost, to the point located symmetrically between the worldlines wg and wg, (lying so on the
equator, y=m/2). The same consideration can, of course, be applied to an event in the “past”
region P—showing that the affine distances along future-oriented null rays from an event to the
particles are equal.
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Although the symmetries just described are common to the worldlines of uniformly acceler-
ated particles in Minkowski and de Sitter space-times, an important difference exists. In
Minkowski space, the affine parameter distance along the null ray from an event on particle’s
worldline, such as Ag, to an “observation” point A is equal to the proper distance between A | and
Ag where A | is the orthogonal projection of A onto the spacelike slice T=T(Ag). This is not the
case in de Sitter space if, as it appears natural, under an orthogonal projection we understand the
projection of the observation point A onto the spacelike slice 7=constant containing A performed
along a timelike geodesic orthogonal to such a slice. Nevertheless, the proper distance s between
A and A | is still related to the affine parameter distance v by a simple expression

t s

0 tan R (5.20)
This relation can be derived as follows. Consider, without loss of generality, Ag located at the
turning point of the particle wg at T=0. The condition that the events A and A are connected by
a null ray implies that the distance s between Ap and A | is the same as the time interval between
A, and A as measured by the metric (3.12) of the conformally related static Einstein universe.
Since A occurs at some time 7 whereas Ag and A | at 7=m/2 (i.e., at static time 7=0), this time
interval is equal to €, (7—m/2), cf. Eq. (3.11). The static radial coordinate R of A thus reads [cf.
Egs. (A64) and (A77)]

sin 7 sin 7
R= =

=—7. 5.21
sin? cos(s/€,) ( )

The slice T=0 has a geometry of the 3-sphere of radius €,. Using the standard law of cosines in
spherical trigonometry for the sides of the triangle spanned by An,A |, and the north pole, we can
eliminate 7. Finally, employing Eq. (5.16), we obtain the result (5.20). Clearly, near the particle we,
we have s<{,, and Eq. (5.20) then gives t=s, as in Minkowski space.

In the following section we shall explore the character of the fields of the particles wg and w.
We shall see that the affine parameter distance v will play most important role, simplifying their
description enormously. Namely, as we will see in Sec. VI B, Eq. (6.28), the affine parameter t is
identical to the factor Q which will be introduced in the following and will appear in all expres-
sions for the fields.

VI. FIELDS OF UNIFORMLY ACCELERATED SOURCES AND THEIR MANY FACES

In this section we wish to construct the scalar and electromagnetic fields of uniformly accel-
erated (scalar and electric) charges in de Sitter universe. A general procedure, suitable in case of
any—not necessarily uniform—acceleration would be to seek for appropriate Green’s functions.
Alternatively, in particular for sources moving along uniformly accelerated worldlines, we can
make use of the conformal relations between Minkowski and de Sitter spaces, and of the proper-
ties of scalar and electromagnetic fields under conformal mappings. This method is advantageous
not only for finding the fields in de Sitter space—time, but also for understanding their relationships
to the known fields of corresponding sources in special relativity. The only delicate issue is the fact
that there are no conformal mappings between Minkowski and de Sitter space which are globally
smooth. We discussed, in Sec. III, how various regions of one space can be mapped onto the
regions of the other space. In Ref. 24 we carefully treated the fields at the hypersurfaces where the
conformal transformation fails to be regular. In order to obtain well-behaved fields, one must
continue analytically across such a hypersurface the field obtained in one region into the whole de
Sitter space. In Sec. II in Ref. 24, we also analyzed in detail the behavior of the scalar field wave
equation with sources and of Maxwell’s equations with sources under (general) conformal trans-
formations.

In Ref. 24 we primarily concentrated on the absence of purely retarded fields at the past
infinity Z ~ of de Sitter space—time—in fact, in any space—time in which Z ~ is spacelike. In order
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to analyze this problem we also considered, in addition to monopole charges, more complicated
sources like rigid and geodesic dipoles; and we constructed some retarded solutions to show their
patological features. However, we confined ourselves to the sources the worldlines of which start
and end at the poles; we did not employ coordinates best suited for exhibiting the properties of the
fields at future infinity Z *, and the frames corresponding to cosmological models like flat (k=0) or
hyperbolic (k=—1) cosmological coordinates; and we did not give the physical components of the
fields. In the following we shall find the fields and discuss their properties in various physically
important coordinate systems, in particular those significant at Z* or in a cosmological context. In
the next section, we also obtain the fields due to the uniformly accelerated scalar and electric
charges starting at Z~ at y=m/2 (“born at the equator”). This, among others, will be important
when we wish to regain the classical Born fields in the limit A —0.

We start by using the analysis of the conformal behavior of the fields and sources given in
Sec. IT in Ref. 24, and we also take over from Ref. 24 the resulting forms of the fields due to the
sources starting and ending at the poles of de Sitter space, as described in standard coordinates.

A. Fields in coordinates centered on the poles

Consider two uniformly accelerated point sources starting at Z - (i.e., at 7— -, 7—0) at the
poles x=7=0 and y=rF=m (Fig. 7). Their worldlines wg,wg, are given by Eqs. (4.7) [or (4.24)] in
these standard (rescaled) coordinates, by Eqgs. (4.8) and (4.9) in the flat and hyperbolic cosmo-
logical coordinates, and by Egs. (4.18) in the static coordinates. Their simplest description is, of
course, given by R’=0 and t=0 in the accelerated and Robinson-Trautman coordinates since these
frames are centered exactly on their worldlines. In Sec. IV we discussed physical velocities and
other properties of these particles.

Now, as noticed at the beginning of Sec. IV, these two worldlines can be obtained by confor-
mally mapping the worldline of one uniformly moving particle in Minkowski space into de Sitter
space. The fields of uniformly moving sources in Minkowski space are just boosted Coulomb
fields. Under a conformal rescaling of the metric, gaﬁ—>ga3=92gaﬁ, the fields behave as follows:
O—-d=0"'D, Faﬁ—>15aB=Faﬁ (see Ref. 24, Sec. II, where the behavior of the source terms is
also analyzed). Hence, the fields due to two uniformly accelerated sources in de Sitter space—time
can be obtained by conformally transforming the boosted Coulomb fields in Minkowski space—
time. Employing the conformal mapping (3.13)~(3.15), we arrive at the following results.”* The
scalar field is given by the expression

s 1
Eé, (6.1)

where

2 12
Q= 61{(\/1 +ali +a,l, cosh €lsin X €Os 19) - (1 — cosh? €l sin’ Xﬂ , (6.2)

A A
or, written in the standard rescaled coordinates,
.~ 2 -2 ~112
sin 7 sin” 7
Q=€A[<\1+a§€i+ao€,&.—~cosﬁ> 14— 2~1 . (6.3)
sin 7 sin” 7

This field is produced by two identical charges of magnitude s moving along worldlines wq and
wg. It is smooth everywhere outside the charges and it can be written as a symmetric combination
of retarded and advanced effects from both charges [cf. Eq. (6.6) in Ref. 24].

Similarly to the scalar-field case, by using conformal technique the electromagnetic field
produced by two uniformly accelerated charges moving along we and wg can be obtained in the
form
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e 04 T

T 4n O €A|:a0€A sin y cos x sin 3 d7 A dY

- ( 1 +a§€i cosh €l sin y + ay€ 5 cos ﬂ)dr/\ dy
A

2 . T T ., .
+ a3 sinh — cosh — sin” x sin 9 dy A dd (6.4)
) €A
where Q is again given by Eq. (6.2). As in the scalar-field case, the field is smooth, nonvanishing
in the whole de Sitter space-time and involving thus both retarded and advanced effects (cf.
Sec. VII A in Ref. 24). However, an important difference between the scalar and electromagnetic
case exists: the magnitude of the scalar charges is the same, whereas the electromagnetic charges
producing the fields (6.4) have opposite signs. This is analogous to the situation in Minkowski
space—time described in Sec. II [see the discussion below Eq. (2.13)]. At the root of this fact
appears to be CPT theorem—cf. Ref. 53 for the analogous gravitational case where the masses of
the particles uniformly accelerated in the opposite direction are the same. In de Sitter space—time,
as in any space—time with compact spacelike sections, a simpler argument exists: the total charge
in a compact space must vanish as a consequence of the Gauss theorem.**

To gain a better physical insight into the electromagnetic fields, we shall introduce the ortho-
normal tetrad {e,} and the dual tetrad {e*} tied to each coordinate frame used, and we shall
decompose the electromagnetic field F into the electric and magnetic parts. Such a decomposition,
of course, depends on the choice of the tetrad. For example, in the standard spherical coordinates
7, X» U, ¢ the electromagnetic field (2-form) F can be written as

F=EXeXne"+E%% Ae ™ +E%?Ae”+BXe? Ae?+B%? AeX+BfeX ne?, (6.5)

and the electric and magnetic field spatial vectors are given in terms of their frame components as
follows:

—EX, I ®
E=E*e, +E"y+Ef,,

(6.6)
B=B%, + B’ +B%,.

In the present case of the standard spherical coordinates, using the explicit forms of the tetrad
given in Appendix [Egs. (A10)], we find

eeA

r
Egpn = 4—5 —ayl, cos xsin Uey+ (\ 1 + a2} cosh N sin x + a,{ cos 6)6)(],
aw

A
(6.7)
¢ aoeﬁ .

r
B, ,=——= sinh — sin y sin Je,.
T 3 Ty X ¢

In Appendix the orthonormal tetrads tied to the coordinate systems considered in this paper
are all listed explicitly. The only exception is the Robinson-Trautman coordinate system with one
coordinate null and thus with a nondiagonal metric; in this case the null tetrad is given in which
the Newman-Penrose-type components are more telling.

The tetrad components of the electric intensity and the magnetic induction vectors are physi-
cally meaningful objects, they can be measured by observers who move with the four-velocities
given by the timelike vector of the tetrad (as, e.g., e, for spherical cosmological observers), and
are equipped with an orthonormal triad of the spacelike vectors (e.g., €, €y, €,).

We first list the resulting electromagnetic field tensor and its electric and magnetic parts in the
coordinate systems centered on the poles =0, . The scalar field is always given by expression
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(6.1), the explicit form of the scalar factor Q changes according to the coordinates used. Since this
factor enters all the electromagnetic quantities as well, we always give Q first and then write the
electromagnetic field quantities.

In the flat cosmological coordinates [see Egs. (3.4) and (3.5)] we find

. v 2 2 Y 12
Q=4 (cosh a, — sinh ay— : exp L cos ﬁ) - (1 : exp( T )) (6.8)
A ° RN a N ’
e 1 7 .. ) . . T ) .
F=-——exp —[fAr sinh ¢, sin 9 d7A dd+ (r cosh @, exp — — € sinh g, cos 0>dr/\ dr
47 QP T L, €a
+ 2 sinh exp<2€l>sin 9 dF A df}] , (6.9)
A

Eq. = LA h in ¥ ( h —; _V - h 19)
; sinh «a, sin U ¢ cosh a, ex sinh ¢, cos
flat A Q3 o 9= f p ¢

(6.10)

v

e {ysinha, 7 T

——exp o sinde,.

Bs..=—
P R T T

In the hyperbolic cosmological coordinates [see Egs. (3.6) and (3.7)], the results are slightly
lengthier,

2 12
Q= €A{(cosh a, — sinh ¢, sinh 61 sinh LA cos 1‘)) - <1 — sinh? eﬁ sinh? ﬁ)} s

A A 19
(6.11)
e €y 7
F:———3 sinh —{ cosh a, smh—smh——smha cos U0 |dnpAadp
mQ €A A A
+ sinh a, sinhisinhﬂcoshﬁsin VL pdyadd
A €y €A
. .2 7 N ., P .
+ sinh a, sinh® — cosh — sinh” — sin 9 €, dp A d O (6.12)
€y A €y
e €
Epyp =73/ sinh a, cosh—sm Yes+ | cosh a, smh—smh——smha cos U |e
4mQ €y €n A
(6.13)
e €y
Bhyp=— "3 sinh a, cosh— smh— sin ¥ e,.
T 19N A

Much simpler expressions for the fields arise in the static coordinates [see Egs. (3.8) and (3.9)].
We obtain

(€% - RR, cos 9)?
(3~ RY)

Q2= - ({3 -RY), (6.14)

Downloaded 27 Oct 2005 to 195.113.23.45. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



102504-30  J. Bi¢ak and P. Krtou$ J. Math. Phys. 46, 102504 (2005)

R2
{(R—R0 cos ) dT AdR + (1 - €—2)RRO sin 9 dT A dﬂ], (6.15)
A

e fA 1

F=o———2A
4m \r@\—Rg o’

e 1| €x(R-R,cos D) .
stat = ZTE WCR-FR() sindey |, Bgyu=0. (6.16)
Since for practical calculations and for an understanding of the conformal relations between
Minkowski and de Sitter spaces the rescaled coordinates are very useful, we also give the fields in
these coordinates. The rescaled coordinates are tied with the same orthonormal tetrad as nonres-
caled ones, and they define the same splitting into electric and magnetic parts (E and B are the
same spatial vectors); the functional dependence on the coordinates, however, is different. In the
standard rescaled (conformally Einstein) coordinates [see Egs. (3.10)—(3.12)], which cover the
whole de Sitter space—time including its conformal infinities globally, we get Eq. (6.3) for Q and

e 1 € _ 53 - ~
F=- ——3—A~[aO€A cos 7sin’ 7sin 9 dF A dO + (\,1 + a3 sin 7+ ay € sin 7 cos ﬂ)dt/\ dr
4w Q’sin’ 7
—ayl  sin7cos 7sin 7 sin ¥ df A dﬂ], (6.17)
e ¢ 55 sin?
Esph=4——A3 —a0€Ac0s7sin1‘}e,9+(\'1+a§€iﬁ+ao€Acos ﬁ)ex},
T Q sin 7
(6.18)
B ¢ afy t 7 sin 7'sin O
wh=" 303 cot 7'sin 7sin ¥ e,

whereas in the flat rescaled cosmological coordinates (3.13)—(3.15), which cover globally the
conformally related Minkowski space (see also Fig. 3), we arrive at

. 2 2\ 112
Q=€A[<cosh a, + sinh aorv cos 19) —(1—%)] , (6.19)
t r
e VO ., o B B
= ——3—[s1nh a, 7~ sin 9 dif A dO + (cosh a, ¥+ sinh a, 7 cos 0)df A dF
47Q° P
— sinh a, i# sin & df A d©], (6.20)

e €A . . f .
Efiq= —— 3| sinh a, sin % ey — | cosh @, + sinh a,, cos ¥ |e; |,
47 Q {

(6.21)
e €y sinha,r .
B = ;TT;V sin ¥ e,.

In various contexts the electromagnetic field four-potential form A, implying the field

F=dA, may be needed. In the standard rescaled (conformally Einstein) coordinates the potential
reads
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e 1 €4 V1+at}sin+ayl, sin7cos &

47 Q §in7 sin®7—sin® 7

(sin 7 cos ¥ df — cos 7 sin 7 d7).

(6.22)

From this expression the frame components can easily be obtained and the four-potential form can
be transformed directly to any coordinate system of interest. The four-potential acquires a particu-
larly simple form in static coordinates,

ilﬁ\—RRo cos ¥
4mQ ¢4 - R?

(6.23)

Inspecting now the expressions (6.4)—(6.21), we first notice few basic features of the fields. As
a consequence of the axisymmetry, the azimuthal ¢ component of the electric field vanishes. On
the other hand, only the azimuthal ¢ component of the magnetic field is nonzero. At the axis of
symmetry, 9=0, 77, the latitudinal 9 component of the electric field and magnetic field vanish as
~sin 9. The electric field points along the axis.

In the classical Born solution in Minkowski space, both charges are, at any time, located
symmetrically with respect to the equatorial plane ¥=m/2. Consequently, the radial part of the
electric field vanishes for 9=/2 [cf. Eq. (2.13)]. In de Sitter space—time the charges outgoing
from the poles are, at all times, symmetrically located with respect to the sphere y=/2 (illus-
trated as the circle in Fig. 2). We thus expect the ¥ component of the electric field to vanish for
x=m/2. This, indeed, follows from Eq. (6.7). This symmetry can be seen only in the standard
spherical coordinates since the sphere y=m/2 is not covered by the hyperbolic cosmological
coordinates and in the flat cosmological coordinates only one particle occurs.

Another typical feature of the Born solution in Minkowski space is its time symmetry. As a
consequence, the magnetic field vanishes at r=0 [cf. Eq. (2.13)]. In the past, it was this fact which
led some investigators, Pauli™ among them, to the conclusion that there is “no formation of a
wave zone nor any corresponding radiation” since B=0 at r=0. However, it is not at a spacelike
hypersurface r=constant but at Z*, which is reached by taking u=¢—r constant, ¢, — oo, where the
Born field has typical radiative features, i.e., |E|=|B|~r"! (see Refs. 37, 53, and 25). In our
generalized Born solution, the time symmetry of the fields is clearly demonstrated in the global
standard coordinates, under inversion 7— —7 the electric field in Eq. (6.7) is invariant, whereas the
magnetic field changes the sign; B =0 at 7=0. The field also exhibits radiative character when we
approach Z* in an appropriate way, as it is briefly indicated in Ref. 25. A detailed analysis of the
radiative properties of the generalized Born field will be given elsewhere.

The fields take the simplest form in the static coordinates, Eq. (6.15). In these coordinates the
particles are at rest, and they both have a constant distance from the poles; their world lines are the
orbits of the “static” Killing vector d/dT of de Sitter space. The electric field is time independent,
the magnetic field vanishes. This is fully analogous to the Born field in Minkowski space—time, it
is static, and purely electric in the Rindler coordinates, the time coordinate of which is aligned
along the orbit of the boost Killing vectors (see, e.g., Ref. 6). However, as we discussed in Sec. III,
the static coordinates cover only a “half” of de Sitter space. In the other half, the Killing vector
d/ T becomes spacelike. It is in this nonstatic domain (regions F and P in Fig. 12) where we
expect, in analogy with the results in Minkowski space—time, to find fields which have radiative
properties. d/JT is the Killing vector also in the nonstatic regions, however, it is spacelike here, as
it is typical for a boost Killing vector in Minkowski space. The fields of uniformly accelerated
charges in de Sitter space—time are invariant under the boosts along d/JT everywhere. They are
thus boost-rotation symmetric as the Born fields in Minkowski space—time.

In the cosmological coordinates, respectively, in their rescaled versions, the fields are, of
course, time dependent. Here we expect the effects of the expansion/contraction of de Sitter
universe to be manifested. Indeed, considering in any of the cosmological frames the spatial
coordinates fixed, and examining the fields along the timelike geodesics, we discover that the
fields exponentially decay at large times, i.e., as Z* is approached. More specifically, with the
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spherical coordinates y, 9, ¢ fixed, the factor Q behaves as exp(7/{,) at large times 7, and hence,
we obtain Egy,=~c; exp(=27/€,)e,+c, exp(=37/€,)ey, Byn=by exp(=27/€)e,,cy,c5,b; being
constants. The electric field thus becomes radial at large 7. Similarly, in flat cosmological coordi-
nates we find Eq, =~ c; exp(=27/€)ez, Bpy=b; exp(-27/€,)e,. In the hyperbolic cosmological
coordinates the proper time 7 appears instead of 7. The rapid decay of the fields along timelike
worldlines at large times is caused by the exponential expansion (at large times) of the spatial
slices 7=constant (respectively, 7, 7=constant). Although our fields are just test fields, their ex-
ponential decay is another manifestation of the “cosmic no-hair phenomenon:” geodesic observers
in space-times with A >0 see at large times these space—times to approach the de Sitter universe
exponentially fast—the universe becomes “bald” (see, e.g., Refs. 22 and 23). Clearly, as one
approaches past infinity Z~ (7— —), the fields also decay exponentially.

It is interesting to notice the character of the field as it would be seen by the observers at rest
with respect to the hyperbolic cosmological coordinates in the limit at which the particles “enter”
the region covered by these observers across the horizon 7=7 (cf. Fig. 4), given in the hyperbolic
coordinates by 7—0, p— . As discussed in Sec. IV, the observed velocity (4.17) of the charges
at this boundary is (in the limit) equal to the velocity of light. Employing the transformation
formulas (A86), it is easy to see that at this boundary |sinh(2/€,)sinh(p/€,)|— 1. Hence, the
factor Q is finite here (as it is evident from its scalar character and its finiteness in the global
standard coordinates). Also, the radial part of the electric field remains finite. However, E? di-
verges as exp(p/€,) here, indicating that the field has a character of an impulse, in fact, rather of
an impulsive wave—indeed, Eq. (6.10) implies |[E?|=|B¢|. The situation appears to be analogous
to the field of a static charge viewed from an inertial frame boosted to the velocity of light in
Minkowski space—time (see, e.g., Ref. 55).

B. Fields in coordinates centered on the particles

As expected, a remarkable simplification occurs when the fields are evaluated in the coordi-
nates at the origin of which the charges are situated at all times. Since the accelerated coordinates
T', R', ¥ and the C-metric-like coordinates are simply related by Egs. (5.8), the discussion of the
field properties is the same in both these frames. Namely, notice that both coordinate systems are
tied with the same orthonormal tetrad, and they thus define the same splitting of the field into the
electric and magnetic parts. In these coordinates, we find the factor Q to read

1 1 1
Q = cosh @, — + sinh a,— cos ¥’ = —(v cosh a, — & sinh a,). (6.24)
The scalar field is again given by ®=(s/4)Q"', and the electromagnetic field also acquires now
an extremely simple form,

e

1
—dR' AdT' = ~—drAdv, (6.25)
4R 4ar

e 1
Epe = E&ew, B...=0. (6.26)
The magnetic field vanishes in the frame tied to the accelerated and C-metric coordinates, the
electric field has precisely the Coulomb form, with the factor Q playing the role of a distance.
As signalized above already, the factor Q turns out to be the Robinson-Trautman radial
coordinate [see Eq. (6.28) below], i.e., the affine parameter distance along null geodesics. The
geometrical role of Q was elucidated in Sec. V B. Considering a fixed point in de Sitter universe
and a light cone emanating from this point, three typical situations can arise as illustrated in Fig.
12. For a point B from the regions N or S, there are two null geodesics, one past-pointing, the
other future-pointing, each of which crosses the worldline of the same particle, say wg (in case of
B from N), at points B, and B,q, (see Fig. 12). Since Q is equal to the (specific) affine parameter
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distance which is the same from B, as from By, (see Sec. V B), we can interpret the field (6.26)
as arising from purely retarded, respectively, advanced effects from B, respectively B,4,; o,
equivalently, as a combination of retarded and advanced effects from these points. In the second
situation, when the fixed point, say A, is located “above the roof” (in the region F), there are two
past-oriented null geodesics emanating from it which cross now both particles wg and wg at
points Ag and A (see Fig. 12). The field can be interpreted as arising from retarded effects only,
either as a combination from both particles wg and wg, or as the retarded field from just one of
them. Finally, for a point from the region P the field can analogously be interpreted in terms of
advanced effects.

As we discussed in Sec. V A and illustrate in detail in Appendix, the accelerated coordinates
(similarly as the static coordinates to which they go over for a vanishing acceleration) are static,
i.e., the vector d/JT" tangent to the orbits of the Killing vector is timelike, only in the regions N
and S (cf. Figs. 10 and 12). Observers following the orbits of the Killing vector are thus confined
to the regions N and S, and they cannot detect the fields in the region F (respectively, P).
Nevertheless, notice that although the time coordinate 7" diverges at the horizon R=¢ , the radial
coordinate R’ is perfectly finite there, R'=€, [cf. Eq. (5.6) with R={,], and the field (6.25) is
meaningful in the region F (or P) as well. Since here the roles of the coordinates R’ and T’ are
interchanged, R’ becoming a time coordinate, the field becomes time dependent. As mentioned
above, we do not expect to find radiative properties in the regions N and S. Indeed, in accelerated
coordinates the field (6.26) is static Coulomb field, with Q playing the role of a distance. How-
ever, the radiative properties of the whole field in the wave zone in the region F are not evident
from the time-dependent, purely electric field in the accelerated coordinates with R’ as a time
coordinate.

It is worthwhile to recall that with finite sources in Minkowski space—time the field at any
event is of a general algebraic type; only asymptotically, at large distances, its features approach
those of a null field (E>~B2?=0, E-B=0), if there is a radiation (see, e.g., Refs. 56 and 45). In case
of a non-null field, one can always introduce a frame in which the electric and magnetic fields are
collinear, or, in the language of the Newman-Penrose formalism, to choose such a null tetrad
k, 1, m, m, corresponding to the orthonormal tetrad, that the only nonvanishing null-tetrad com-
ponent is CD1=1/(2vE) (E-iB)-(k—1) [see Egs. (A114) for the explicit expressions of the null
tetrad and Egs. (A4) for the null-tetrad components of the electromagnetic field]. Such a situation
arises precisely for the null tetrad associated with the accelerated coordinates: the null-tetrad
components are simply

acc__l e 1

e damgr WTOrSO (627

The vanishing of the other two null-tetrad components, @ and ®5, has a deeper algebraic

explanation: the null tetrad tied to the accelerated coordinates is special in the sense that it contains
both principal null directions of the electromagnetic field. Inspecting the form of the null tetrad
constructed from the orthonormal tetrad (A95), we observe that both these principal null directions
are tangent to the “radial” surfaces U’, ¢=constant in the accelerated coordinates.

The radiative properties are well exhibited in the Robinson-Trautman coordinates. As we
discussed in Sec. V B, these coordinates are tied to the future null cones centered on the worldline
of a particle. We consider the null cones with vertices on the particle wg. Let us recall that the
radial coordinate v is the affine parameter along the generators of the null cones, each of which is
given by u, i, ¢ fixed. Now, as mentioned above, it turns out that the factor Q is precisely equal
to this affine parameter v,

Q=rt. (6.28)

The scalar field is then simply given by
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s 1
b=—-. (6.29)
darv

A remarkably nice form also acquires the electromagnetic field,

1 1
- i(—zdu/\dt+ao sin 9'du A dﬂ’):i<—2dm de +a, sin® &' du A dl,b). (6.30)
4a\t 4\t

The Newman-Penrose scalars are defined in terms of the null tetrad (A114), which is parallelly
propagated from the source to the “observation point” along the rays u, ¢, ¢=constant. They look
as follows:

el
DRT =0, @?Tz-iﬁt—z, DRT =

e

1 1
,—54 —a, sin 9. (6.31)
\ mr

Now the radiative character of the field is transparent: the first term entering the peeling behavior,
the scalar ®,, decays indeed as vl and it is nonvanishing for a nonzero acceleration a,. In the
expressions (6.30) and (6.31), the de Sitter background is completely “hidden.” The same form of
the fields are obtained in case of uniformly accelerated charges in Minkowski space if the coor-
dinates built on the null cones emanating from the particles are employed. A difference between
both cases reveals itself only in the explicit dependence of the affine parameter t on the coordi-
nates of space—time points.

VIl. BORN IN DE SITTER

Finally, we turn to the fields from the particles symmetrically located with respect to the origin
x=0 (the “north pole”) of the standard spherical coordinates. The particles are thus “born”
asymptotically at the equator, y=7/2, at 7——2, and return back at 7— o with the opposite
speeds (Fig. 8). Their fields, of course, are intrinsically the same as those considered in the
preceding section but only now they represent the direct generalization of the classical Born
solutions due to uniformly accelerated charges symmetrically located with respect to the origin of
Minkowski space.

We shall find the generalized Born fields easily by using the transformation (4.21) which we
applied to obtain the worldlines of the particles born at the equator from those born at the poles.
The scalar field due to two equal scalar charges s moving along the worldlines w,, and w, reads

s 1
=—QOy—, 7.1
47 MR (7.1)
where the factor R is determined by
¢ 2712
R=—2 | cosh? €l sin® y sin® O + (\'1 +a§€i cosh 61 cosx—a0€A> } ,
T
1+ cosh — cos x A A
€r
(7.2)
and the conformal factor () is given by [cf. Eq. (3.19)]
T
Q=1+ cosh — cos y. (7.3)
€\

This factor is left in the explicit form here, in contrast to the preceding section, since it explicitly
exhibits conformal relation of the scalar field under conformal mappings (3.19) between de Sitter
space and Minkowski space M. This relation will be used in the following to perform the limit
from the Born field in de Sitter to the Born field in Minkowski space—time.
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The electromagnetic field produced by charge ¢ moving along the worldline wg and by
symmetrically located charge —e moving along w, has the following form:

T .
cosh — sin 9

Py = <A A €2 sinh h dy A dd
=—— sinh — cosh — sin® A
BT 4nR3 T 3| 9ot N N XX
1+ cosh — cos x
€a
(\/l +a*f3 cosh €l cos X—aO€A>cot ddrady (7.4)
A

- (\1+a§€ﬁcosh€l

—a,l cos X)sin xdra dﬁ} .
A

with factor R given by (7.2). In the tetrad tied to the standard spherical coordinates the electric
and magnetic fields become

e €A 1 T
E?pt}lsz_aﬁ< . )3{(\1+a§€i coshacosx—a0€A>cotﬁeX
1 +cosh — cos x

N

- <\/1 +a(2)€i cosh {l —a,f cos X)sin)(eﬁ},
A

(7.5)
smh—sm sin
was_ € alh g XY

Bon = 4 R ; 3%
1+ cosh — cos x
LN

In the standard rescaled (conformally Einstein) coordinates the expressions (7.4) and (7.5)
slightly simplify

R [(a €Asmt—\r1+a 1 cos 7 )+sin273in21?]1/2

€\ sin 7+ cos 7
cosF+sin7t
Q= (7.7)
sin 7
e 03 sin ¥ C e
Fpas=-— __3_~—3[a0€,\ sin“ 7cos 7drAdd
4R (sin T+ cos 7)
- (yl + a3} cos F—ayl , sin 7) cot 9 df A dF (7.8)

+ (\ 1 +a263 — a,€, cos Fsin f)sin Fdradd
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. 2~
e € sin“ 7 _ .
EBIS = ——[— (V1 +a2€3 cos F—ayl, sin 7 )cos O e;
CE 47 R3(sin 7+ cos 7)° oA ¢ '

+ (yl +ali —ayl, sinTcos F)Sin ﬁeﬁ], (7.9
2 0
e ayl;y sin” 7 .
B =— ———""————cos7sin7sin Je,.

47 R3(sin T+ cos 7)°

The character of these fields was discussed in the preceding section for the particles we and
Wwg. One must only rotate all the structures by 7/2 in the y direction; hence, for example, the
sphere of symmetry changes from y=7/2 to O=1/2.

There is some interest in having the fields available also in the hyperbolic cosmological
coordinates. They cover only those regions of the fields in which we assume the radiative prop-
erties will be manifested. The sources producing the fields are not covered by these coordinates
(cf. Fig. 8). The fields in the hyperbolic cosmological coordinates look as follows:

1 2 12
R:—[<b§+€f\tanh2 l) +4b2tanh2—smh2—sm |, (7.10)
2b, 20, 20, N
QM—l+cosh—=ZCosh2 A (7.11)
N 20,
po_ef 1
BT 4m R 2,03,
><|:(b2+t hZ”) h (1 9dnAdp—sinh h 9d dﬁ)
an sinh —| — cos nAdp —sin —cos —sm nA
4 2¢ e\ €y N N
b 7 7 p
—< — tanh? )sinh2—sinh2—sin ddpadd|, (7.12)
N 20, N N

S U P
gBds _ € ZA <— +tanh> —— || = cos ¥ e, + cosh — sin Fey |,
T 4R 26,05\ & 20, ’ €a ’

(7.13)

sinh
BBdS e 62 €A

7.
— tanh? de,.
e =T 4 R 2bOQ§,,<€2 eA)Sln Ce

Finally, we wish to describe the limiting procedure which leads from the generalized Born
solutions directly to their counterparts in Minkowski space—time. For this purpose it is natural to
employ the conformally Minkowski coordinates #,r,J, ¢ introduced in Eq. (3.17), with the in-
verse transformation given in Appendix, Eq. (A17). Transforming the fields of the particles
Wg, We from the conformally Einstein coordinates to the conformally Minkowski coordinates, we
arrive at the following intriguing forms. The scalar field is given by Eq. (7.1) where now the
factors R and () are determined by

1
= b \r’/(bg + 12— 1?)% + 4b2r7 sin® 9, (7.14)
o
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204

Oyv=—5——.
€/2\—t2+r2

(7.15)

Notice that factor R coincides with the expression (2.11) in Minkowski space. The electromag-
netic field reads

e 1 1

o 2tr* sin & dr A9 = (b} + £ = r*)cos & dr A dr
T 2Dg

Fpgs =

+r(b2+ 1+ r*)sin O dr A d 9], (7.16)

and the electric and magnetic parts of the field turn out to be

e 1 1
Egﬁf =—— [(bg +12—r*)cos de, — (bi +22+r%)sin 9 eg],
47 R 2b 02,
(7.17)
ps_ ¢ 1 1

= ——trsin Je,.
M7 4rR3 b0 ¢

To connect these fields with their counterparts in flat space, note first that they are conformally
related by the conformal transformation (3.19). Under the conformal mapping, the field ®g4q must
be multiplied by factor {;, which gives ®y,=(s/4m) R, and Fyyg in (7.16) remains unchanged.
The transformed fields then coincide with the classical Born fields (2.9), (2.11), and (2.13).

In order to see the limit for A — 0, we parametrize the sequence of de Sitter spaces by A, and
identify them in terms of coordinates ¢,r,0,¢. As A=3/€f\—>0, Eq. (3.19) implies
() a—2, (gas)p — 4gm. After the trivial rescaling of ¢,r by factor 2, the standard Minkowski
metric is obtained. The limit of the scalar and electromagnetic fields (7.1) and (7.16), in which b,
is kept constant [with a,=(1 —bgé’f)/ (2b,)—cf. Eq. (4.29)], leads precisely to the scalar and
electromagnetic Born fields (2.9) and (2.13) in flat space. Because of the rescaling of the coordi-
nates by factor 2, we get the physical acceleration equal to 1/b,=2a,, and the scalar field rescaled
by 1/2. The explicit limiting procedure carrying the generalized Born fields in de Sitter universe
back into the classical Born solution in Minkowski space has thus been demonstrated.

VIil. CONCLUDING REMARKS

Since 1998 the observations of high-redshift supernovae indicate, with an increasing evidence,
that we live in an accelerating universe with a positive cosmological constant (for most recent
observations see, e.g., Ref. 57). Vacuum energy seems to dominate in the universe and it is thus of
interest to understand fundamental physics in the vacuum dominated de Sitter space—time.

In the present work, we constructed the fields of uniformly accelerated charges in this uni-
verse. They go over to the classical Born fields in Minkowski space in the limit of a vanishing
cosmological constant. Aside from some similarities found, the generalized fields provide the
models showing how a positive cosmological constant implies essential differences from physics
in flat space—time. For example, advanced effects occur inevitably due to the spacelike character
of the past infinity Z~ and its consequence—the existence of the past particles’ horizons, respec-
tively, of the “creation light cones” of the particles” worldlines.

Since de Sitter space—time, according to our present understanding, appears to be not only an
appropriate basic model for studying future cosmological epochs, but it is commonly used also for
exploring the inflationary era, various physical processes have been investigated in de Sitter space
from the perspective of the early universe, among them, the effects of quantum field theory. Also
in quantum contexts, however, problems arise from combining the causal structure of the full de
Sitter space—time with the constraint equations (see Ref. 58 for a recent review). These problems
are associated with the “insufficiency of purely retarded fields” in space—times with a spacelike Z~.
We analyzed this issue in detail for the classical electromagnetic and scalar fields with sources in
Ref. 24.
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Another intriguing implication of the rapid expansion of de Sitter universe due to a positive
cosmological constant is manifested in the exponential decay of the fields at large times. We
noticed this “cosmic no-hair phenomenon” explicitly on the late-time behavior of the fields due to
accelerated charges.

In the present paper we wished to give all details on the construction of the fields and on
coordinate frames useful in understanding their various aspects, including their relation to their
counterparts in flat space—time. We did not here analyze the radiative characteristics of the fields.
In the Introduction we indicated that radiative properties depend on the way in which a given point
of infinity is approached. This is briefly described at the end of our paper.25

In de Sitter space—time it is not a priori clear, as it is in special relativity, how to define global
physical quantities like energy or energy flux. Such issues connected with the question of radiation
from “Born in de Sitter” will be considered in a future presentation.
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APPENDIX A: THE PALETTE OF COORDINATE SYSTEMS IN DE SITTER SPACE-TIME

Nine families of coordinate systems are here introduced, described analytically and illustrated
graphically. The corresponding forms of de Sitter metric, orthonormal tetrads and interrelations
between the systems are given. All these systems are suitable for exhibiting various features of de
Sitter space; two families are directly associated with uniformly accelerated particles. Although
the majority (though not all) of these coordinate systems undoubtedly appeared in literature in
some form already, they are scattered and, as far as we know, not summarized as comprehensively
as in the following. In the main text we refer frequently to this Appendix, but the Appendix can be
read independently. We hope it can serve as a catalogue useful for analyzing various aspects of
physics in de Sitter universe.

By a family of coordinate systems we mean the systems with the same coordinate lines; e.g.,
{x*} and {y#} where x'=x'(y'"), x>=x%(y?), etc. Seven of our families have the same spherical
angular coordinates 1, ¢, accelerated and Robinson-Trautman coordinates mix three coordinates,
only azimuthal coordinate ¢ remains unchanged.

The homogeneous normalized metric on two-spheres (the metric “in angular direction”) is
denoted by

dw®=d9? +sin> I d¢’. (A1)

The radial coordinates label directions pointing out from the pole and acquire only positive
values. However, transformations among coordinates take simpler forms if we allow radial coor-
dinates to take on negative values as well. This causes no problems if, denoting by ¢ and r the
prototypes of time and radial coordinates, we adopt the convention that the following two values
of coordinates describe the same point:

{t,r,ﬁ,QD}H{t,—r,Tr—ﬂ,(p+77'}. (A2)

Hence, intuitively we may consider a point with —r<<0 and U, ¢ fixed to lie on diametrically
opposite side of the pole r=0 with respect to the point r>0, 3, ¢.

The orthonormal tetrad e,,e,,ey,e, associated with a coordinate system is tangent to the
coordinate lines and oriented (with few exceptions) in the directions of growing coordinates. It is
chosen in such a way that the external product e’Ae”Ae?Ae® of 1-forms of the dual tetrad has
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always the same orientation. Since all forms of the metric contain the term (A1) the only compo-
nent (e,)? of the tetrad vector e, in coordinate frame {0/ ox*} is related to the ¥-component of e
as

1
e, )= eq)?, A3
(ey) n ﬁ( 9 (A3)
and we thus omit e, henceforth.
In the standard Newman-Penrose null complex tetrad k, 1, m, m with only nonvanishing
inner products k-1=—1, m-m=1, the electromagnetic field F is represented by three complex
components:

CI)O = FC’B kamﬂ, q)z = FQ’B 1,1—1011,3, q)l = % Faﬁ (kalﬁ - man_lﬁ) (A4)

The null tetrad can be specified directly [as it will be done in the case of Robinson-Trautman
coordinates in Eq. (A114)], or it can be associated with any orthonormal tetrad, say t, q, r, s, by
relations

k=Lr(t+q), 1=Lr(t—q), m=Lr(r—is), rﬁ=ir(r+is). (A5)
V2 \2 \2 V2
Here, t and q are timelike and spacelike unit vectors, respectively, typically in a direction of “time”
and “radial” coordinate, and r, s are spacelike unit vectors in angular directions, r=ey, s=¢,.

For each coordinate family we give the diagram illustrating section ¥, ¢=constant with the
radial coordinate taking on both positive and negative values. The diagrams thus represent the
history of the entire main circle of the spatial spherical section of de Sitter universe. The left and
right edges of the diagrams represent the south pole and should be considered as identified; the
central vertical line describes the history of the north pole. Recalling the meaning of the negative
radial coordinate we could eliminate the left half of each of the diagrams by transforming it into
the right one by replacements {9, ¢} —{m—, ¢+}. However, it is instructive to keep both
halves for better understanding of the spatial topology of the sections. All diagrams are
compactified—they are adapted to the standard rescaled coordinates 7, 7 (see below). The past and
future conformal infinites are drawn as double lines. The ranges of time and radial coordinates are
shown, the orientation of coordinate labels indicates the directions of the growth of corresponding
coordinates.

We will also introduce several sign factors. The values of these factors in different domains of
space—time are indicated in Fig. 13.

1. The spherical cosmological family:

The first family consists of the standard or spherical cosmological coordinates 7, x, ¥, ¢, and
of the standard rescaled or conformally Einstein coordinates 7, 7, ¥, ¢ (where 7=y). These
coordinates cover de Sitter space—time globally. They are associated with cosmological observers
with homogeneous spatial sections of positive spatial curvature. The coordinates are adjusted to
the spherical symmetry of the spatial sections, y, 9, and ¢ are standard angular coordinates. The
coordinate 7 is a proper time along the worldlines of the cosmological observers given by
X, U, e=constant. The vector d/d7 is a conformal Killing vector which is everywhere timelike.
The rescaled coordinates 7, 7, 9, ¢ can also be viewed as the standard coordinates of the confor-
mally related Einstein universe; they cover smoothly both conformal infinities Z* of de Sitter
space—time. (See Fig. 14.)

Metric and relation between coordinates

g=—d7 + €3 cosh?(7/€,,)(dx? + sin” y dw?), (A6)

g =40} sin 27 (= d7? +d7? + sin’ Fdw?), (A7)
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| Sx=+1
<) S =l =
I snp=—1 sns=+1 sns=11
sz=—1 < l>
sx==+1
< g=|_1 > §=-1 s§=-—1
F=+1 F=+1 = s= el >
a| su=—1 > Sy——1I
Sp—t Sy=-+1
Su=—1 S sy=—1 >

FIG. 13. The values of the factors sz, sns, Sx S, §, §,, and s, in various regions of de Sitter space. The factors are defined
in Egs. (A21), (A36), (A61), (A73), (A74), and (A128), respectively. The factor s is used only in the expressions for static
coordinates in the region where the Killing vector is spacelike. Therefore, we indicated the values of s, only in those
regions, although Eq. (A74) defines s everywhere. The factors s, s,, and s, are defined only for any given section
J=constant, but not as unique functions on the whole space-time (they are not symmetric with respect to the pole). This
is related to our convention using negative radial coordinates, cf. the text below Eq. (A1).

[

T - . T o T _ T
tan-=exp —, cotfi=-sinh—, sinf=cosh™ —, cosf=—tanh—, (A8a)
2 €r A A €A
F=x. (A8b)
The ranges of coordinates are
relR, xe(-mm, 70,7, 7Fe(-mm, (A9)
with negative values of radial coordinates y, 7 interpreted in accordance with Eq. (A2).
Orthonormal tetrad,
d 1 -
e.=—=—sinf—,
Toar JaF
1 4 T 1 . _d
e,=——cosh™ ——=—sin7—, (A10)
A fA (9X €A ar
7+
TZIOO f:‘_'/r
< P
H ﬁx ﬁz
1 > >
1 i i
3 o K
T=—00 =0
=

FIG. 14. The spherical cosmological family of coordinates.
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1 1 d 1 sin7 4
e =YY = .
97 ¢, cosh(7/€,)sin x 99 €, sin 7 9O

Relation to flat cosmological family,

_ 20 ,F 20,F 20,7 26,7
tan 7= - = , tan7= - = . (A1)
G-FP+P G-+ G+P-F G+P-F
Relation to hyperbolic cosmological coordinates,
- .7 P _ 7 . P
cotf=-—sinh — cosh —, tan7=tanh — sinh — . Al2
I 0y LN 7Y 1
Relation to static family in timelike domains N, S,
tan 7 4 o' L, an7 K bl (A13)
anf=—syg———= sinh™ —, tan7=syg——=—= cosh™ —,
VER - R? €\ VE; - R? €\
r . r
cosh — sinh —
~ A ~ A
tan7=—syg—— , tan7=syg =, (A14)
t t
sinh — cosh —
A A
where syg=+1(—1) in domain N (S), cf. Eq. (A61).
Relation to static family in spacelike domains F, P,
- - Sz‘eA _1 T - SIR .1
tanT= ————=cosh™ —, tan7=———=sinh™ —, (A15)
VR* - 64 N VR* - 64 N
T 7
sinh— cosh —
- A ~ €a
tanf=sy ——, tanr=sy——, (A16)
t t
cosh — sinh —
19N 19N
where s;=-sign cos 7 and sy« =-s7sign 7, cf. Egs. (A73) and (A74).
Relation to conformally Minkowski coordinates,
— 2€At 2€Ar
cotf=—5—>5—, tanrf=—5—5 . Al7
t2—r2—€i t2—r2+€i (AL7)

[TNELR

2. The flat cosmological family, type “v:

The first flat cosmological coordinate family (Fig. 15) consists of the flat cosmological coor-
dinates 7, 7, ¥, ¢ and of the rescaled flat cosmological coordinates 7, 7, &, ¢. Hypersurfaces 7
=constant are homogeneous flat spaces and coordinate lines 7, 9, ¢=constant are worldlines of
cosmological observers orthogonal to these hypersurfaces. They are geodesic with proper time 7,
the vector d/d7 is a conformal Killing vector. The coordinates cover de Sitter space-time
smoothly, except for the past cosmological horizon, 7=7, of the north pole where 7, f— +o. The
coordinates thus split into two coordinate patches—“above” and “below” the horizon. The domain
above the horizon has a cosmological interpretation of an exponentially expanding flat three-
space. The rescaled coordinates can be viewed as inertial coordinates in the conformally related

Minkowski space M, cf. Fig. 3; the domain above the horizon corresponds to the “lower half,”
7<0, of M, the domain below corresponds to the “upper half,” 7>0.
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0=4
77,
oo/)
)
III
22
N
qj\
\\\
0=4

FIG. 15. The flat cosmological family, type “v.”

Metric and relation between coordinates,

€2
g=—(-dP+dP + P do?),
t

g=—d7P +exp(—527€,)(dP? + 7 dow?).

The ranges of coordinates are

7eR, feR", Fe R above the horizon,

7e R, feR* Fe R below the horizon,

with negative values of radial coordinate 7 interpreted as described in Eq. (A2).

Orthonormal tetrad,

d St ST9 ST 9
e =—=—— ex=exp——=—"-—,
ar Caot’ peAaf €A oF
S ST 0 179
€9g=—T€Xp o To=—"—TT=

Relation to spherical cosmological family,

€, cosh™!(7/€,)
cos x + tanh(7/€,) °

=ty cosh™(7/€ )
" cos x +tanh(7/€,)

F=

¢

. €psint . €y sinF
f=———, Ff=————.
cosT—cos T COS 7 —cos 7

J. Math. Phys. 46, 102504 (2005)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)
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FIG. 16. The flat cosmological family, type “A.”

[T

Relation to flat cosmological family, type “A”,

i3 3
f=-- , F=- , (A26)
[2 _ ’a2 l2 _ f2
iF+ir=0, fi+i=-4€3,
(A27)
P+ =P+ =€y, (+NE+7)=F-N{F-7)=-(3.
Relation to static family in timelike domains N,S,
i N ( T ) ¥ R ( T ) (A28)
=S expl- S, =SS TE—=expl -, |
7 " VO3 - R? € e VE3 - R? €a
. 3 7 . T\, T
f=—snsfa exp(——)cosh—, F=snsta exp(— —)smh —, (A29)
9N €A €A 1N
where syg=+1(—1) in domain N(S), cf. Eq. (A61).
Relation to static family in spacelike domains F,P,
i N ( T ) F R < T ) (A30)
—=sy———=c¢xp|l—-— |, —=-sy————cexp|-—|,
o - TN 6T ke T e
f € ( ?>'h7 ; 4 ( ?> h’7 (A31)
= exp| — — |sinh—, 7F=- exp| — — |cosh—,
Sxtp exp A s SxtA €Xp ‘A 'R
where sy =sign 7 sign cos 7, cf. Egs. (A73) and (A74).
Relation to conformally Minkowski coordinates,
i G-+ F 20,1
2 - (A32)

Y - N T E

@, 9,

3. The flat cosmological family, type “A’:

The second flat cosmological coordinate family (Fig. 16) consists of the flat cosmological
coordinates 7,7, ¥, ¢ and of the rescaled flat cosmological coordinates 7,7, 9, ¢. They can be built
analogously to the flat coordinates introduced above, with north and south poles interchanged
only. They thus have similar properties. Hypersurfaces /=constant are homogeneous flat three-
spaces, coordinate lines 7,1, ¢=constant are geodesics with proper time 7, and d/d7 is a confor-
mal Killing vector. The coordinates cover de Sitter space—time everywhere except the future
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cosmological horizon, 7=7—7, of the north pole (i.e., the past horizon of the south pole), and the
rescaled coordinates can be viewed as inertial coordinates in the conformally related Minkowski

space M.
Metric and relation between coordinates,

2

14
g=—(-dP +d? + P do?), (A33)
t
g=—-d? +exp(- §27/€,)(d/* + * dw?), (A34)
. T
=80, exp(s—), (A35)
19N
where
§=sign?. (A36)

The ranges of coordinates are

7e R, feR-, #e R above the horizon,

(A37)
7eR, feR*, #eR below the horizon,
with negative values of radial coordinate 7 interpreted as described in Eq. (A2).
Orthonormal tetrad,
d st §STd §td
C=——=""—", er:e =
"ot ot Py or €yor
(A38)
§ ST 4 174
ey=<eXp o= TT .
U N N
Relation to spherical cosmological family,
€, cosh™'(7/¢ €, cosh™(7/¢
jo baeos ity Ly coshatty) A39)
cos x — tanh(7/€ ) cos y — tanh(7/€ )
R €)sint £ysin7
t=f—, f=A—~. (A40)
cost+cosT cos 7+ cos t
Relation to flat cosmological family, type “A”,
(5 U 4
t:_tvz_;z’ r:tvz_;z’ (A41)
fF+ir=0, fi+f=—103,
(A42)

2+ (-P+P) =y, G+DF+P)=F-DF-P=-€3.
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FIG. 17. The conformally Minkowski family of coordinates.

Relation to static family in timelike domains N, S,

i L T 7 R T as3)

) —FT— X -, —_— —— e

€ NS Vi - R? P 0 O N2 R Ve - Pl €y

P r h xr ¢ r h xr (A44)
=SNs Aexp€ cos R 7=5Ns Aexpe sin R

where syg=+1(=1) in domain N (S), cf. Eq. (A61).
Relation to static family in spacelike domains F, P,

Pt T F R T as5)
— =5y exp—, —— =Sy F——=¢exp —,
€A VR? - €2 € b VR €3 €y
f r i r
f=s54€)exp — sinh —, 7F=s.{,exp— cosh— A46
Sxtp €Xp s ‘s =3xtp eXp ‘, €A ( )

where sy =sign 7 sign cos 7, cf. Egs. (A73) and (A74).
Relation to conformally Minkowski coordinates,
i Ga-r+r 7 26,r

L B — A47
€A (€A_t)2_r2’ €y (fA—l‘)z—rz ( )

4. The conformally Minkowski family:

The conformally Minkowski coordinates ¢, 7, U, ¢ can be understood as spherical coordinates
in the conformally related Minkowski space M. The coordinates do not cover de Sitter space—time
globally—they cover only a region around north pole, see Fig. 17. The boundary of this region is
given by the conformal infinity of the Minkowski space—time. These coordinates are useful for
studying the limit A —0.

The metric,
203 )2
=\ 5| (-df+dr +r* do?), A48
8 (gi_tzwz ( ) (Ad8)
the ranges of coordinates
treR, reR, suchthat?—r><{(3, (A49)

with negative values of radial coordinate r interpreted as described in Eq. (A2).
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Orthonormal tetrad,

G-+ 9 -2+ 9 C -7+ 9
=t e = AT AT (A50)
2¢Ot 20y or 26y rot
Relation to spherical cosmological family,
€y cost €y sin7
fm- = (AS1)
COS F+sin coS F+sint
Relation to flat cosmological family,
t G-+ G -P+P
€ (p+D>=F (=D
(A52)
L _ 2€Af _ 2€A;
O O+ =7 (==
Relation to hyperbolic cosmological coordinates,
t
— =tanh A cosh B , L tanh /A sinh B . (A53)
N 2€ 5 [T 2€ 5 N
Relation to static family in timelike domains N, S,
inh [ b
sinh — sinh —
t ¢ €
a2 . = E— (A54)
B o h L o h—
cosh — + syg cosh — cosh — + sng cosh —
€A NS €A €A NS €A
[ aa— T
V€4 - R? sinh —
t €A r R
P L
A sNS€A+ \€i—R2COSh€_ A €A+SN3\€?\—RZCOSh€_
A A
where syg=+1(=1) in domain N (S), cf. Eq. (A61).
Relation to static family in spacelike domains F, P,
h r h r
cosh — cosh —
t €A r €A
= - . o= -, (A56)
LT n 2 ih A T n
sinh — — s sinh — sinh — — s, cosh —
€T € €A
T
VR? — €} cosh —
t €A r R
0 T —— T’ (A57)
A —sX€A+\/R2—€f\sinh€— A €A—S><\R2—€isil‘lh€_
A A

with s =sign 7 sign cos 7, cf. Egs. (A73) and (A74).

5. The static family in timelike domains N and S: This family consists of the static coordi-
nates T, R, ¥, ¢ and the “tortoise” static coordinates 7, , U, ¢. The metric does not depend on
time coordinate T=7—the coordinates are associated with a Killing vector. Since the Killing vector
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FIG. 18. The static family of coordinates, timelike domains.

changes its character, the coordinates do not cover the space—time smoothly. We first describe the
static coordinates in domains N and S, where the Killing vector is timelike. In domain N the orbits
of the Killing vector (corresponding to the worldlines of static observers) start and end at the north
pole, in domain S—at the south pole. They are orthogonal to slices T=constant, each of which
consists of two hemispheres (one in domain N, the other in S) with homogeneous spherical
3-metric. The distances between static observers (measured within these slices) do not change.
Since the static observers must overcome first the cosmological contraction and then the expan-
sion, they move with a (uniform) acceleration. (See Fig. 18.)
Metric and relation between coordinates,

g =cosh™ €i<— dr?+d/ + €4 sinhszdaP) , (AS8)
A A
R2 RZ -1
g=—(1—€—2>dT2+<1—€—2> dR?> + R?* do?, (A59)
A A
T=t, (A60a)
7 €A+R ) 7 R
exp — = , sinh 7= = ———=,
1N {A-R €h VO -R?
(A60b)
r R r €
tanhL=—, coshL=2—A,
€ €y VO -R?

+1 indomain N, (A61)
NS = _ 1 indomain S.

The ranges of coordinates are

TeR, Re(-4€y\€,)), TR, FeR, (A62)

with negative values of coordinates R and 7 interpreted as described in Eq. (A2).
Orthonormal tetrad,

Rz)—m J Fd ( R*\'" 9 Fd
er=(1-— —=cosh——, ez=|(1-—] ——=cosh’!——,
r ( 2 g K ei) IR N

(A63)

Downloaded 27 Oct 2005 to 195.113.23.45. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



102504-48  J. Bi¢ak and P. Krtou$ J. Math. Phys. 46, 102504 (2005)

149 1 r Jd
ey=-—-=—coth——.
RJY €, €\ 09
Relation to spherical cosmological family,

€y, cosF—cost sin 7
T=2log "0 R={y—, (A64)
2 COS 7+ cos 7 sin 7

2 2 2 2
7 [cos F—cosT T —SNg COS T
exp —=1/————, sinh — =777,
N cos F+cos T A Vcos?F—cos?T
7 cost i3 SNS COS 7
tanh —=-——, cosh—= ——Ns , (A65)
N cos 7 €r Veos? F—cos? T
7 [sinf+sin7 7 sin 7
exp - = —————, sinh—=—F—,
N Sinf—sin 7 €r  Vsin?7-sin® 7
FoosinF 7 sin?
tanh —=——, cosh — = —————.
€A sinT €A Vsin?7-sin? 7
Relation to flat cosmological family,
_ ¢ P2 -7 € I ¢ f+7 ¢ -7
i= —Alog 5= —Alog >, = —Alog — = —Alog —, (A66)
2 O\ 2 Oy 2 -7 2 i+7
r_1L P L FP-# R F F (A67)
—=-lo —lo , —=-=-—-.
628 T2 e T
Relation to conformally Minkowski coordinates,
2€At R 2€Ar
tanh —=——->-"—", —=—F5—-—, A68
N €%+t2—r2 €\ €3\+r2—t2 ( )
I U () L € (Up+n)?=1?
f=—log———5——, F=—log——5— . A69
2 % (-1 r 2 By -rP-r (A89)

6. The static family in spacelike domains F and P:

Here we describe the static coordinates 7', R, ¥, ¢ and the “tortoise” static coordinates 7,7, 9, ¢
from the preceding section in domains F and S where the Killing vector is spacelike. These
“nonstatic” domains extend up to infinity, namely, domain F up to Z*, domain P up to Z". The
orbits of the Killing vector start at the south pole and end at the north pole in F, and they point in
opposite direction in P. The motion along them could thus be characterized as a “translation” from
one pole to the other. The Lorentzian hypersurfaces T=constant are homogeneous spaces with
positive curvature, i.e., three-dimensional de Sitter space-times. (See Fig. 19.)
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i
~

FIG. 19. The static family of coordinates, spacelike domains.

Metric and relation between coordinates,

g= sinh-ZL(—d# +d? + €3 coshZidaﬂ), (A70)
€A €r
R2 R2 -1
g=—<1——2>dT2+(1——2> dR*+R* do?, (A71)
€A €A
T=T7, (A72a)
r R+€A . r €A
exp —— = , sinh — | =
€A R-{, Oyl VR*- 63
(A72b)
wanh Py N 7 R|
anh —— =", COSN—— = "TT/—/—5.
€A R €A \y’Rz—fi

The signature factors s; and s« are defined as

{+ 1 in domain F,
S7=

AT73
—1 indomain P, ( )
Sy =—srsignT. (A74)
The coordinates ranges are
TeR, |Rle(,»), feR, reR, (A75)
with negative values of coordinates R and 7 interpreted as described in Eq. (A2).
Orthonormal tetrad,
R2 12 4 7 la
er=|—5 -1 — =|sinh—|—,
€A oT €A ot
(A76)
(R2 )1/2(9 ,h_lfa 14 1th7 d
e — - —=—|sinh” —|—, eyg=———-=—|tanh —|——.
e IR o’ VT RaY €, REE]
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Relation to spherical cosmological family,

€y, cosf—cosT sin 7
R=¢

T=—"log——, =l —, (A77)
2 T cosT+cosF sin 7
N T+7  I-F _ A +7  I-F
t=—log|-tan —tan — |, 7=—_log|—tan — cot — |,
2 2 2 2 2 2
T cosT—cos 7 T S7COSF
exp —=\/————, sinh—=—F———,
N cos T+ cos 7 €r Veos?T—cos? 7
T cos 7 T —s7cost
tanh —=-——, cosh — = ———, (A78)
€y cosT €a Veos?T—cos? 7
7 sinF+sin7 T sin?
exp—=1/————, |[sihh—|=—F—7——7=,
N sin7—sin7 ol Vsin?F—sin?T
¥ osin? r |sin 7]
tanh —=——, cosh—=—F———.
€y sinF €r  sin? F—sin?7
Relation to flat cosmological family,
_t -2+ ¢ -2+ ? ¢ T -t
t:—Alog—zz——Alog—z, r= —Alog - A:—Alog —, (A79)
2 €A 2 €x 2 T h-f 2 T F+i
T 11 242 11 -2+ R 7 ¥ (A80)
5 =,log 5 log s, ELET
Oy 2 = 2 R 0 F
Relation to conformally Minkowski coordinates,
T 2€At R 2€Ar
coth—=—-"—, —=—F57-—, A81
I €%+t2—r2 0 C+r2-7 ( )
_ ( (€A+t)2—r2) ) ( (€A+r)2—t2)
f=—logl-——F—/, r=—logl-—F— . A82
) 08 (Lr—0>*-1 2 08 (o (A82)

7. The hyperbolic cosmological family:

The third type of cosmological coordinates are the hyperbolic cosmological coordinates
7, p, ¥, @. The hypersurfaces n=constant are homogeneous spaces with negative curvature,
coordinate lines p, ¥, ¢=constant correspond to the worldlines of cosmological observers orthogo-
nal to these slices, and the vector d/d is a timelike conformal Killing vector. The coordinates
cover space—time only partially—they can be introduced in two disconnected domains near the
north pole, namely, in the past of the event 7=7/2, 7=0 (where 7<0), and in the future of this
event (where 7>0). (see. Fig. 20.)

The metric,
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FIG. 20. The hyperbolic cosmological family of coordinates.

g=—d*+ sinhzei(dpz +0% sinhzfﬁdwz) . (A83)
A A

The ranges of coordinates and the signature factor s; are

neR*, peR, s;=+1 inthe future patch,

(A84)
ne R, peR, sr=-1 Iinthe pastpatch,
with negative values of radial coordinate p interpreted as described in Eq. (A2).
Orthonormal tetrad,
J J J
€,= T, €,= sinh_li— , €g= sinh_'i sinh"ﬁ— . (A85)
(977 EA c?p €A €A &p

Relation to spherical cosmological family,

cosF—sint sin 7
tanhi:s1\1—~, tanhﬂz——N. (A86)
205 cos F+sin 7 €y cos 7

Relation to conformally Minkowski coordinates,

[2_ 2
rt -
tanhi:szu, tanhﬂzf. (A87)

8. The accelerated coordinate family:

This family consists of the accelerated coordinates 7",R’,9’, ¢, and the C-metric-like coor-
dinates 7,v,&, ¢ (7 being different from 7 of the standard coordinates). Contrary to the previous
cases the accelerated coordinates are centered on uniformly accelerated origins, R’ =0 corresponds
to two worldlines with acceleration |a,|. The transformation relations to the systems introduced
above mix these three coordinates in general.

The accelerated coordinates are closely related to the static system. Their time coor-
dinates coincide, 7"=T, and coordinate lines R’,9',p=constant are the same as those with
R, 9, p=constant. Both coordinate systems are identical for a,=0. Sections T, T’ , o=constant with
R,R’ <{, have geometry of 2-sphere with parallels and meridians given by the coordinate lines of
the static coordinates R, 9. The lines of coordinates R’ , 9’ are the deformed version of static ones,
their poles are shifted along meridian 9=0 towards each other, cf. Fig. 11.

Two conformal diagrams of sections ¥, ¢=constant (3’ < /2 on the right, 3’ > /2 on the
left), adapted to the accelerated coordinates, are depicted in Fig. 21. The shape of the diagram
varies with different values of '; indeed, the position of infinity is given by R’
=—€3/R,cos™' 9. See also Fig. 10 for sections &' =0, .
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FIG. 21. The accelerated family of coordinates.

The C-metric-like coordinates rescale only the values of the accelerated coordinates and
regularize the coordinate singularity R'=+o. de Sitter metric in these coordinates is a zero-mass
limit of the C-metric (the metric describing accelerated black holes; see, e.g., Refs. 28 and 29, cf.
also Ref. 59).

Finally, we use four parameters a,, «,,R,, b, to parametrize the acceleration. They are related

as follows:
R b2 — €3
sinh @, = —= = == A=_ay,,
“EA_RO 2€Ab0
¢ b2+ ——
cosh @ = — 2A == A V1+d262,
\’€A—RO 2€Abo
(A88)
tanh Ro bi—fi aoeA
anho,,=—=—F7F"-7 =— - —,
by bty VI +aey
€A\+R, by, =5
exp a, = EA_RZ=a=\r1+a(2)€f\—ao€A.
Metric and relation between coordinates,
2 R,2 12 Rlz - 12 12 27
g=0|-|1-— |dT""+(1-—] dR'“+R"“do™ |, (A89)
€5 €5
g:tz{—(uz— d7 +— 1du 1 §2d§2+(1 —§2)d<p2], (A90)
v —
where
dw? =(dd'? +sin’ ¥ d¢?), (A91)
_ NI-RYEL r w (A%2)
T 1+ (R'RJ)cos ¥ R €y
¢ ¢
t= A __ =QR' =02, (A93)
v cosh @, — & sinh a, v
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T {
T=—, U= —/) &=—-cos V¥,
N R
Orthonormal tetrad:
R12 -1/2 a l L?
o1 e
€A ﬁT Vo — 1 aT
R!2 1/2 a 1 &
err = |Q|_1(l - —2> = _\Uz_ 1—, N
0y JR" ¢ JR
1 9 1 49
ey = —=———.
YT QR 99 v oY
Relation to static coordinates,
T=T,
2
R’ sinf}’\/l—R—;
R'cos 9 + R, ) €
R cos 0= - 3 , Rsind= - 3 -,
1+ (R'R/{3)cos ¥ 1 + (R'R /€3 )cos ¥
R>
R sin ¥ \[1-—
R (=R - RYEY) e i
i (1+ (R'R,/€3)cos ©')? R' cos ¥ +R,

J. Math. Phys. 46, 102504 (2005)

(A94)

(A95)

(A96)

The inverse relations have the same form with 7, R, J and 7", R’, ¥’ interchanged only and «,

replaced by —a,,

VI =R}

1= (RR/€%)cos O

- 1+ (R’R0/€f\)cos S

R'R, RR, R?
l+—5—cos? |[1-—cos¥|=1-—
14 14

A

’ 2
1-R"/€3

VI-RYG,

2 9
A €A

2
1 - R/¢€5

1+ (R'R/€3)cos &'

1 - (RR,/€3)cos O

Relation to Robinson-Trautman coordinates,

€A

T' =u cosh o, — —log

2

, t cosh a,

bl

‘ £ — t(sinh a, cos ¥’ + cosh a)

£ — t(sinh a, cos ¥’ — cosh a)

’

e (t/€,)sinh , cos ¥~

u

7= — cosh a, — ~log

'K 2
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A

€ — t(sinh a, cos ¥’ + cosh a)

k)

€ —t(sinh a, cos ¥ — cosh «,)

u .
=exp z,/f—e—smhao ,

(A97)

(A98)

(A99)

(A100)

(A101)
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14 A ( u )
v=—"——tanh aq,cos &', &=tanh|¢—— sinha, |,
t cosh o €\

where cos ' =—¢§ is given in terms of the Robinson-Trautman coordinates by the last equation.

Relation to flat cosmological family: If we introduce the spherical coordinates 7', ¥, &', ¢
boosted with respect to the flat cosmological coordinates 7, 7, ¥, ¢ by a boost «, (in the sense of
Minkowski space M), we find that the accelerated coordinates 7”7, R’ are related to 7', #' in
exactly the same way as the static coordinates T, R are related to the coordinates 7, 7. The boost
{'=f cosh ay+7 sinh a,, X'=X, ¥’ =Y, ' =1 sinh a,+Z cosh a,, rewritten in the spherical coordi-

nates # cos ' =z', ¥ sin ¥ =\x'2+y'?, reads

' =i cosh a, + ¥ cos ¥ sinh «,,

7 cos ¥ =1{sinh @, + i cos O cosh a,,

(A102)
7 sin ¥ =7sin O,
and relations analogous to Egs. (A67) and (A80) are
€A tvlz _ ’\;/2 ’\;I
T =-—1 ——|, R'=—4{,—. A103
2% 2 A 0%

Similarly, the formulas relating the accelerated coordinates to the coordinates 7, 7, ¥ are

' =7 cosh a, — # cos ¥ sinh a,,
7' cos ¥ =—isinh a, + 7 cos ¥ cosh a,, (A104)

# sin ¥ =#sin 9,

€ l’:/2 _ f.!Z f’
T'=2log| —5—|, R'=(,—. (A105)
2 €A 4
The conformal factor takes the form
rof R
QO =—=—=cosh a,— — sinh ¢, cos 9. (A106)
i i €A

9. The Robinson-Trautman coordinates:

In the Robinson-Trautman coordinates u,t,#, ¢ (or in their complex version u,t,{ ,Z), de
Sitter metric takes the standard Robinson-Trautman form (see Fig. 22).> The coordinate u is null,
the “radial” coordinate v is an affine parameter along coordinate lines u, s, p=constant. These
lines are null geodesics generating light cones with vertices at the origin t=0. The coordinates

W, (or £,0) are angular coordinates, however, they are not functions of the accelerated angular
coordinates %', ¢ only [cf. Eq. (A112)]. Because ¥, ¢ have a clearer geometrical meaning, we list
some formulas also in the mixed coordinate system u,t, ', ¢.

The origin t=0 of the Robinson-Trautman coordinates is centered on the worldline of the
uniformly accelerated observer moving with the acceleration |a,|=|€3' sinh a,|. The coordinates
are thus closely related to the accelerated coordinates.

The coordinates u,t, ¢, ¢ do not cover the whole space—time smoothly. They can be intro-
duced smoothly in the future of the north pole, or in the past of the south pole. At the boundary of
these two domains, 1 — =+,
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FIG. 22. The Robinson-Trautman coordinates.

Metric and relation between coordinates,
(A107)

2
T
g=—Hdu’—duvde+ E(d¢2+dcp2),

2
g=—Hdu2—duvdt+#d§vdZ, (A108)

2
L sin &' duv dd’ +2(d9’? +sin®> 9 d¢?),

2
T
g =-cosh? a,— (v* - 1)du® - du v dr + cosh a,
A A
(A109)
2 2
T L u v ’
H———2+2—smhaotanh<1p——smhao>+1=——2—2—s1nhaocosz‘} +1,
A A €y Oy L
(A110)
u 1
P=cosh{ y— —sinh o, | = ——, (A111)
N sin ¥’
u o !
y=—sinh a, + log|tan — |,
A 2
(A112)
oo 2me)
an — | =ex — —sinh o, |,
o | TP\, M
(==(W-ig). b=—r(+D
=7=\yY—-19), ==+ ),
R 2
(A113)

1 o
(= \E(df"‘UP)» <P—\E(§ 0.

Null tetrad: Since the Robinson-Trautman coordinates are closely related to the congruence of
null geodesics, it is convenient to introduce the null tetrad which is parallelly transported along

these geodesics u, ¢, ¢=constant,
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ke =2 Ly o2
=—=—), =——=H— +\2—,
RT V/Eﬁt RT \/E \

1 P( g 9 ) B 1P
mpr=—"7=—|—=i—], MmMgr=—F=—

RT \E \ap e RT="57
Relation to accelerated coordinate family,

R'\1-RYE,

t= ,
1+ (R’R0/€f\)cos ¥

(A114)

; ¢
o ’ A
u= 1——2<T +?log

R ¢,
R,+€A

), (A115)

’l‘},
tan—
2

>

A >+log

. b
v cosh ¢, — & sinh a,

1-v

), (A116)

N ( 1
u= 7+ —~log
cosh a, 2 1+v

1-v
1+v

1
= tanh a0< T+ Elog

Relation to static family,

N [( RR )z ( R2)< R2):|1/2
t=————er|(1-—2cos¥| -|1-= || 1 - , (A117)
1 -RY} 5 % e

in &' = R sin & & Reos 9-R, (A118)
T Sin = Sin v, T COS =T,
Vl—R(z)/fﬁ

Rsin9=rtsin ¥, Rcos &=rtcos ¥ \VI—RY,+R,. (A119)

10. The null family:

Finally, we return back to the coordinate systems which employ standard coordinates ¥, ¢.
Time and radial coordinates can be transformed into two null coordinates. Such null coordinates
can be associated with most coordinate families introduced above. Coordinates i7, U are related to
the standard coordinates; i, U and #, U to the flat cosmological coordinates; u, v to the confor-
mally  Minkowski; and #,0 to the static coordinates. Coordinate vectors
{a/dui,d/ v}, {0/ dii,d! I}, etc., are the pairs of independent null vectors in the radial 2-slices
¥, ¢=constant. We do not allow the radial coordinate to be negative in the definitions of null
coordinates because this would interchange the meaning of u and v. The null coordinates are thus
drawn in the right half of Fig. 23 only.
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FIG. 23. The null family of coordinates

Metric and relation to other coordinates,

€A

= oos(ieg) 47V 0+ (1 - cos(@-0))de?), (A120)

8

€2
g=—2=(-2davdd+ (@ -0)* dw?), (A121)
(1 +9)

€2
g= S (-2diivdy+ (i - ) de?), (A122)
(u+0)

€2 2
g=<2—A) (=2duvdv+(u-v)*de?), (A123)
€A—MU

( i 5)‘2< o T4 d_+€2< i 0] >2d 2)
=\eXp — +EeXp — — 2 €X uv av CXp — —¢ExXp — w” ).
g Py texp Py Alexp - exp

(A124)

The relation of time and radial coordinates 7, r to the corresponding null coordinates i, U is
given by the usual formulas,

i=i@ i), =it
s 1% * s E
r=5(v—u), v=t+r. (A125)

Here {f,r} stands for {F,7}, {#,7}, {f,#, {r.r}, and {7, 7}, respectively; similarly with {i,0}.
Relation between null coordinates: The coordinates i, 0, u, v, and u, v can be viewed as null

coordinates in the conformally related Minkowski spaces M, M, and M ; these are shifted with
respect to each other by 77/2 in the direction of the conformally Einstein time coordinate 7, or
associated null coordinates,

N )
NSNS}

i t. 0 t
—=tan—, —— =tan —,
€A eA
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u u m v v ow
— tan(———), —=tan(———>, (A126)
N 2 4 N 2 4
i (ﬁ w) i, (5 77)
—=tan|{ - -—), —=tan|--—].
' 2 2 N 2 2
The remaining coordinates iz, 0 are related to the conformally Einstein null coordinates i, U by
the “compactification transformation,”
t i u t o (A127)
an —=s,exp —, tan_=s,exp —.
2 TSP 2 Pes
(A128)

s, =signtan —.
v g >

Here the sign factors s, and s, are given by
. u
s, = sign tan 2

Relations (A126) and (A127) between null coordinates can also be rewritten as follows:

w i i €y fytu
an —=§5,exXxp——=-"=—"_"= .
2 " pfA €A u €A—M

R N 5
O G- G- 2uby’
(A129)

tan i = — s, sinh™!
i 20€, -2k, A -u?
O G+ G+ G+d

sin 7 = 5, cosh™!

o G-i® -0 -2ul,
cos ii=—tanh — = = = ,
O G+i> P+ (+ud
i i u €y Ch+u
— —tan—=5 exp — =— A — , A130
N A S T (A130)
u i u\ €y €-u
L L .7 A131
€A 2 Su Xp( €A> i €A+u ( )
1 —sin cos it i \ a-4€y €y+tu
Lo to _u~=(tanh—) IO _CATE (A132)
N cos il l1+sinu 2€ 5 u+€y Cr\—u
7} i i N € Su
— =log|tan = | =log| —| =log| — | =log =2 arctanh| — | , (A133)
€A 2 €A u €A—M A
7B
=N (A134)

The same relations hold for coordinates v, ¢, 0, U and 0.
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