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The C-metric is one of few known exact solutions of Einstein’s field equations which describes the
gravitational field of moving sources. For a vanishing or positive cosmological constant, the C-metric
represents two accelerated black holes in asymptotically flat or de Sitter spacetime. For a negative
cosmological constant the structure of the spacetime is more complicated. Depending on the value of the
acceleration, it can represent one black hole or a sequence of pairs of accelerated black holes in the
spacetime with an anti-de Sitter-like infinity. The global structure of this spacetime is analyzed and
compared with an empty anti-de Sitter universe. It is illustrated by 3D conformal-like diagrams.
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I. INTRODUCTION

TheC-metric without cosmological constant � is a well-
known solution of the Einstein(-Maxwell) equations. It
belongs to a class of spacetimes with boost-rotational
symmetry [1] which represent the gravitational field of
uniformly accelerated sources. The C-metric was discov-
ered back in 1917 by Levi-Civita [2] and Weyl [3], and
named by Ehlers and Kundt [4]. An understanding of the
global structure of the C-metric spacetime as a universe
with a pair of accelerated black holes came with the
fundamental papers by Kinnersley and Walker [5],
Ashtekar and Dray [6], and Bonnor [7]. Various aspects
and properties of this solution were consequently studied,
including the generalization to spinning black holes.
References and overviews can be found, e.g., in
Refs. [1,8–10]; for recent results see, e.g., Refs. [11–13].

A generalization of the standard C-metric for nonvan-
ishing cosmological constant � has also been known for a
long time [14–16]. However, until recently a complete
understanding of global structure of this solution was
missing. It was elucidated in a series of papers [17–19]
in the case �> 0, and in Refs. [20–22] for �< 0 (cf. also
Refs. [23–26] for related work and discussion of special
and degenerated cases).

The C-metric is one of few explicitly known spacetimes
representing the gravitational field of nontrivially moving
sources. Therefore, it is interesting, for example, as a test
bed for numerical simulations. It plays also an important
role in a study of radiative properties of gravitational fields.
Namely, in the case of a nonvanishing cosmological con-
stant it may provide us with an insight into the character of
radiation, which in the asymptotically nontrivial space-
times is not yet well understood. In Refs. [19,22] the
C-metric spacetimes with � � 0 were used to investigate
the directional structure of radiation. These results were
later generalized [27,28] for general spacetimes with
spacelike and timelike conformal infinity. The C-metric
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spacetimes have found also a successful application to the
problem of cosmological pair creation of black holes [29–
34]. In addition to spacetime with accelerated black holes,
the C-metric can also describe accelerated naked singular-
ities or, for special choice of parameters, empty spacetime
described in a coordinate system adapted to accelerated
observers [17,35,36].

In the present work we wish to give a complete descrip-
tion of the case when the C-metric describes black holes
moving with an acceleration in anti-de Sitter universe. As
was already observed in [21,22,26], there are three quali-
tatively different cases according to value of the black hole
acceleration A. For small values of acceleration, A< 1=‘,
(‘ being a length scale given by the cosmological constant,
cf. Eq. (2.3)) the C-metric describes one accelerated black
hole in asymptotically anti-de Sitter spacetime. For large
acceleration, A> 1=‘, it describes a sequence of pairs of
black holes. In the critical case A � 1=‘ it describes a
sequence of single accelerated black holes entering and
leaving asymptotically anti-de Sitter spacetime. Here we
concentrate on the generic situation A � 1=‘; the critical
case will be discussed separately [37] (cf. also
Refs. [24,25]).

The main goal of the work is to give a clear visual
representation of the global structure of the spacetimes. It
is achieved with help of a number of two-dimensional and
three-dimensional diagrams. Also, the relation to an empty
anti-de Sitter universe is explored. Understanding of the
anti-de Sitter spacetime in accelerated coordinates plays a
key role in the construction of three-dimensional diagrams
for the full C-metric spacetime.

The paper is organized as follows. In Sec. II we over-
view the C-metric solution with a negative cosmological
constant in various coordinate systems. Namely, we intro-
duce coordinates �, �, �, ’, closely related to those of
[5,14], accelerated static coordinates T, R, �, �, very
useful for physical interpretation, and global null coordi-
nates u, v essential for a study of the global structure. In
Secs. III and IV we discuss the two qualitatively different
cases of small and large acceleration, respectively. Finally,
-1 © 2005 The American Physical Society
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Sec. V studies the weak field limit, i.e., the limit of vanish-
ing mass and charge. In this case the C-metric describes
empty anti-de Sitter universe in accelerated coordinates.
The relation of these coordinates to the standard cos-
mological coordinates is presented, again separately for
A + 1=‘.

An even more elaborated visual presentation of the
studied spacetimes, including animations and interactive
three-dimensional diagrams, can be found in [38]. Let us
also note that the online version of this work includes
figures in color.
II. THE C-METRIC WITH A NEGATIVE
COSMOLOGICAL CONSTANT

The C-metric with a cosmological constant �< 0 can
be written as

g �
1

A2�x� y�2

�
�Fdt2 �

1

F
dy2 �

1

G
dx2 �Gd’2

�
;

(2.1)

where F and G are polynomially dependent on y and z,
respectively,

F �
1

A2‘2 � 1� y2 � 2mAy3 � e2A2y4;

G � 1� x2 � 2mAx3 � e2A2x4:
(2.2)

Here ‘ is a length scale given by the cosmological constant
�,

‘ �

���������
�

3

�

s
: (2.3)

The metric is a solution of the Einstein-Maxwell equations
with the electromagnetic field given by

F � edy ^ dt: (2.4)

Depending on the choice of parameters and of ranges of
coordinates, the metric (2.1) can describe different space-
times. In the physically most interesting cases, it describes
black holes uniformly accelerated in anti-de Sitter uni-
verse. In these cases the constants A, m, e, and C (such
that ’ 2 ���C;�C�) characterize the acceleration, mass,
and charge of the black holes, and the conicity of the ’
symmetry axis, respectively. These parameters have to
satisfy m � 0, e2 <m2, A;C > 0, and the function G
must be vanishing for four different values of x in the
charged case (e;m � 0), or for three different values in
the uncharged case (e � 0, m � 0). The coordinate xmust
belong to an interval around zero on which G is positive,
and y 2 ��x;1�, cf. Figures 1 and 5. It follows that
0 � G � 1. The boundary values of the allowed range of
the coordinate x correspond to different parts of the axis of
’ symmetry separated from each other by black holes.
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The spacetime described by the C-metric is static and
axially symmetric with Killing vectors @t and @’, respec-
tively. Killing horizons of the vector @t are given by
condition F � 0. They coincide with horizons of various
kinds as will be described below. Beside the Killing vec-
tors, the geometry of spacetime possesses one conformal
Killing tensor Q,

Q �
1

A4�x� y�4

�
Fdt2 �

1

F
dy2 �

1

G
dx2 �Gd’2

�
:

(2.5)

There exist two doubly degenerate principal null directions

k 1 / @t � F@y ; k2 / @t � F@y ; (2.6)

so that the spacetime is of the Petrov type D. The metric
has a curvature singularity for y! �1.

The constants m and e parametrize the mass and charge
of black holes. Let us emphasize that they are not directly
the mass or charge defined through some invariant integral
procedure. For example, the total charge defined by inte-
gration of the electric field over a surface around one black
hole is Q � 1

2 �xCe. It is proportional to e, but besides the
trivial dependence on the conicity C, it depends also on the
mass and the acceleration parameters through the length
�x of the allowed range of the coordinate x.

The parameter C defines a range of the angular coordi-
nate ’, and thus it governs a regularity of the ’ symmetry
axis. Typically, the axis has a conical singularity which
corresponds to a string or strut. By an appropriate choice of
C, a part of the axis can be made regular. However, for
nonvanishing acceleration it is not possible to achieve
regularity of the whole axis—objects on the axis are
physically responsible for the ’accelerated motion’ of
black holes.

The constant A parametrizes the acceleration of the
black holes. But it is not a simple task to define what is
the acceleration of a black hole. The acceleration of a test
particle is defined with respect of a local inertial frame
given by a background spacetime. However, black holes
are objects which deform the spacetime in which they are
moving; they define the notion of inertial observers, and
they are actually dragging inertial frames with themselves.
Therefore, it is not possible to measure the acceleration of
black holes with respect to their surroundings. The motion
of black holes can be partially deduced from a structure of
the whole spacetime, e.g., from a relation of black holes
and asymptotically free observers, and partially by inves-
tigating a weak field limit in which the black holes become
test particles and cease to deform the spacetime around
them. Namely, in the limit of vanishing mass and charge,
the spacetime (2.1) reduces to the anti-de Sitter universe
with black holes changed into world lines of uniformly
accelerated particles. Such a limit will be discussed in
Sec. V.
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Depending on the value of the parameter A, the metric
(2.1) describes qualitatively different spacetimes. For A
smaller then a critical value 1=‘ given by the cosmological
constant, cf. Eq. (2.3), the metric represents asymptotically
anti-de Sitter universe with one uniformly accelerated
black hole inside.1 For A > 1=‘ the metric (2.1) describes
asymptotically anti-de Sitter spacetime which contains a
sequence of pairs of uniformly accelerated black holes
which enter and leave the universe through its conformal
infinity.2 The extremal case A � 1=‘ corresponds to accel-
erated black holes entering and leaving the anti-de Sitter
universe, one at a time. This extreme case will not be
discussed here; however, see Refs. [24,25,37].

Coordinates t, y, x, ’ can be rescaled in a various way.
We will introduce coordinates �, �, �,’ and closely related
accelerated static coordinates T, R, �, � which are appro-
priate for a discussion of the limits of weak field and of
vanishing acceleration. They will be used thoroughly in the
following sections. We will also mention coordinates t, y,
x,� (used in Ref. [14]) in which the global prefactor A�2 in
the metric (2.1) is transformed into metric functions, coor-
dinates �, !, �, ’ adapted to the infinity, and global null
coordinates u, v , �, ’. However, detailed transformations
among these coordinates differs for the qualitatively differ-
ent cases A + 1=‘. Therefore, we list first only metric
forms in these coordinate systems and coordinate trans-
formation which are general, and we postpone specific
definitions to the next sections.

The metric (2.1) in the coordinate systems t, y, x, ’,
�, �, �, ’, and t, y, x, � has actually the same form, only
with different metric functions (cf. Eqs. (3.5), (3.7), and
(4.5), (4.7))

g �
‘2

!2

�
�Fd�2 �

1

F
d�2 �

1

G
d�2 � Gd’2

�
: (2.7)

g �
‘2

�x� y�2

�
�Fdt2 �

1

F
dy2 �

1

G
dx2 �Gd�2

�
:

(2.8)

Accelerated static coordinates T, R, �, � are given by

T � ‘�; R �
‘
�
; � � ’;

d�2 �
1����
G

p d�; � �
�
2

for � � 0:
(2.9)

The metric takes a form
1As for nonaccelerated black holes, it is possible to extend the
spacetime through the interior of the black hole to other asymp-
totically anti-de Sitter domain(s). However, for A < 1=‘, there is
only one black hole in each of these domains.

2Again, there can be more asymptotically anti-de Sitter do-
mains, each of them with the described structure.
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g �
‘2

!2R2

�
�HdT2 �

1

H
dR2 � R2�d�2 �Gd�2�

�
;

(2.10)

H �
1

v
F ; (2.11)

see (3.9) and (4.8).
The coordinate R is not well defined at � � 0. It is a

coordinate singularity which can be avoided by using the
coordinate �. However, near the black hole, the coordinate
R has a more direct physical meaning—it is the radial
coordinate measured by area, at least in the conformally
related geometry. Because � can be negative, R can take
also negative values. However, it happens only far away
from the black holes or in spacetime domains in which R
changes into a time coordinate.

The coordinate � is given by � � �x (cf. Eqs. (3.2) and
(4.2)), so we can use what was said about range of defini-
tion of x. Let 	�b; �f
 be the interval of allowed values of �,
i.e., the interval where G is positive and �b < 0< �f . The
value �f corresponds to the axis of ’ symmetry (since
G � 0 at � � �f) pointing out of the black hole in the
forward direction of the motion.3 The value �b corresponds
to the axis (again, Gj���b

� 0) going in the opposite (back-

ward) direction. Integrating 1=
����
G

p
in (2.9), we find that the

longitudinal angular coordinate � belongs into an interval
	�b;�f
 which, in general, differs from 	0; �
.

If we use the conformal prefactor in the metric (2.7) as a
coordinate, and if we find a complementary coordinate �
such that the metric is diagonal (see (3.10) and (4.9)), we
get

g �
‘2

!2

�
�Fd�2 �

1

E
�d!2 �FGd�2� �Gd’2

�
:

(2.12)

This coordinate system is well adapted to the infinity I ,
since I is given by ! � 0.

Finally, for discussion of global structure of the space-
time it is useful to introduce global null coordinates4 u, v ,
�, ’. We start with the ’tortoise’ coordinate ��

d�� �
1

F
d�: (2.13)

It expands each of the intervals between successive zeros
of F to the whole real line. Next we define null coordinates
�u, �v
3By the direction of motion we mean the direction from which
the black hole is pulled by the cosmic string or toward which it is
pushed by the strut. In the weak field limit it is the direction of
the acceleration.

4Notice the difference between v (v) and � (upsilon). It should
be always clear from the context if we speak about null v or
radial �.
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�u � �� � �; �v � �� � �: (2.14)

These coordinates cover distinct domains of the spacetime
which are separated from each other by horizons, i.e., by
null surfaces F � 0. The coordinates can be extended
across a chosen horizon with help of global coordinates
u, v :

tan
u
2
� ��1�m exp

�u
2j�j

; tan
v
2
� ��1�n exp

�v
2j�j

:

(2.15)

Integers m, n label the domains; see Figs. 2, 6, and 16
below. � is a real constant. The metric reads5

g �
‘2

!2

�
2�2F

sinu sinv
du _ dv �

1

G
d�2 � Gd’2

�
: (2.16)

For a suitable choice of the constant � the metric coeffi-
cients turn to be smooth and nondegenerate as functions of
coordinates u, v across a chosen horizon. For such a choice
we require that the coordinate map u, v , �, ’ on a neigh-
borhood of that horizon belongs to the differential atlas of
the manifold. The metric is thus smoothly extended across
the chosen horizon.
6The relations are integrable since F depends only on v and G
on �.

7

III. A SINGLE ACCELERATED BLACK HOLE

A. Coordinate systems

We start a specific discussion with the simpler case

A<
1

‘
: (3.1)

The coordinates �, �, �, ’ and t, y, x, � are in this case
defined by

� � cos�ot � cot�ot; v � 1
cos�o

y � tan�oy;

’ � sin�o� � ’; � � �
1

sin�o
x � �x;

(3.2)

where �o 2 	0;
�
2� is a parameter characterizing the accel-

eration,

A �
1

‘
sin�o: (3.3)

Its geometrical meaning in the weak field limit will be
discussed in Sec. V. The metric functions in (2.7) and (2.8)
are given by

F � 1� �2 � 2
m
‘

cos�o �3 �
e2

‘2 cos2�o �4; (3.4)
5du _ dv � dudv � dvdu is a symmetric tensor product,
which is usually loosely written as 2dudv .
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G � 1� �2 � 2
m
‘

sin�o �
3 �

e2

‘2 sin2�o �
4;

! � � cos�o � � sin�o;

(3.5)

and

F � cos2�o � y2 � 2
m
‘

y3 �
e2

‘2 y4;

G � sin2�o � x2 � 2
m
‘

x3 �
e2

‘2 x4:

(3.6)

They are related by

F � cos�2�o F � tan2�o F � 1�
‘2

cos2�o

S
�
cos�o

‘
�
�
;

G � sin�2�oG � G � 1�
‘2

sin2�o

S
�
sin�o

‘
�
�
; (3.7)

where S�w� is a simple polynomial
S�w� � �w2�1� 2mw� e2w2�: (3.8)

The functions H is (cf. Eq. (2.11))

H � 1�
R2

‘2 � cos�o
2m
R
� cos2�o

e2

R2 : (3.9)

The coordinate ! was already defined in Eq. (3.5). The
complementary orthogonal coordinate � can be, in gen-
eral, given simply only in differential form6

d� �
sin�o

F
d��

cos�o

G
d�;

d! � � cos�odv� sin�od�:
(3.10)

(Here we included also the gradient of ! for complete-
ness.) The metric function � is given by

E � F cos2�o �Gsin2�o: (3.11)

At infinity, ! � 0 and � � 1.

B. Global structure

Now we are prepared to discuss the global structure of
the spacetime in more details. We start inspecting the
metric in the accelerated static coordinates (2.10) with
H given by (3.9). It has a familiar form—if we ignore
prefactor ‘2=�!R�2 we get the metric of a nonaccelerated
black hole in anti-de Sitter universe in standard static
coordinates—except for a different range of � and except
for G instead of sin2� in front of the d�2 term.
Fortunately,

����
G

p
on the allowed range of � resembles

sin�, and the difference does not affect qualitative prop-
erties of the geometry.7 The conformal prefactor ‘2=�!R�2
Let us mention that for A � 0, i.e., for �o � 0, the metric
(2.10) becomes exactly the Reissner-Nordström–anti-de Sitter
solution with � � � cos�, G � sin2�, and H � 1� R2

‘2 �
2m
R �

e2

R2 .
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(a) (b)

FIG. 1. The diagrams of the allowed range of coordinates v
and � (the shaded region) in the case of small acceleration
A < 1=‘. Diagram (a) is applicable in the charged case, (b) is
valid for m � 0, e � 0. �b and �f are zeros of the metric
function G closest to � � 0. These values correspond to the
axis of ’ symmetry. The diagonal double line represents the
infinity, cf. Eq. (3.12). The bottom zigzag line is the singularity
at � � 1. �o and �i are zeros of the metric function F . They
define the outer and inner black hole horizons. They separate the
allowed range of coordinates into regions II, III, and IV. These
regions correspond to different domains in spacetime, each of
them covered by its own coordinates �, �, �, ’. These coordinate
systems cannot be smoothly extended over the horizon.
Coordinates smooth across the horizon are used in Fig. 2, where
sections � � constant are depicted. Such a section is represented
in the diagrams above by the vertical thick line.
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does not change the causal structure of the black hole. It
justifies our claim that the spacetime contains a black hole.
It also gives the interpretation for the coordinates—the
accelerated static coordinates are centered around the hole,
with R being a radial coordinate, and � and � longitudinal
and latitudinal angular coordinates. T is a time coordinate
of external observers staying at a constant distance above
the horizon of the black hole. The coordinates �, �, �,’ are
only a different parametrization of the time, radial, and
angular directions.

However, the prefactor ‘2=�!R�2 in (2.10) changes the
’position’ of the infinity—the conformal infinity I is
localized at ! � 0, i.e., at

� � tan�o �: (3.12)

It means that the radial position of the infinity depends on
the direction �. This corresponds to the fact that the black
hole is not in a symmetrical position with respect to the
asymptotically anti-de Sitter universe. Nevertheless, it is in
equilibrium—the cosmological compression of anti-de
Sitter spacetime (which would push a test body toward
any chosen center of the universe) is compensated by a
string (or strut) on the axis which keeps the black hole in a
static nonsymmetric position with respect to the infinity.
We can thus say that the black hole is moving with uniform
acceleration equal to the cosmological compression, de-
spite the fact that it cannot be measured locally. Remember
that in anti-de Sitter universe a static observer which stays
at a fixed spatial position in the spacetime eternally feels
the cosmological deceleration of a constant magnitude
from the range 	0; 1=‘�, depending on his position. This
corresponds to the assumption (3.1). As we will see in a
moment, we are dealing with one black hole which stays
eternally in equilibrium in asymptotically anti-de Sitter
spacetime.

We already said that zeros of F correspond to Killing
horizons of the Killing vector @�. Inspecting properties of
the polynomial S�w�, we find that F � 0 for two values
� � �o, �i (�o < �i) in the charged case (e;m � 0), and
for just one value � � �o if e � 0,m � 0. The null surface
v � vo corresponds to the outer black hole horizon, and
� � �i corresponds to the inner black hole horizon.

Allowed ranges of coordinates �, � are shown in Fig. 1.
Boundary ’zigzag’ lines correspond to the curvature singu-
larity at �; �! �1. The horizons separate the allowed
range into qualitatively different regions II, III, and IV.
Region II describes the asymptotically anti-de Sitter do-
main outside of the black hole, and regions III and IV
correspond to the interior of the black hole.

The coordinate systems �, �, �, ’ or T, R, �, � are
defined in each of the regions II, III, IV; however, they are
singular at the horizons. To extend the spacetime through
the horizons, global null coordinates u, v , �,’ can be used.
It turns out that the global manifold contains more domains
of the type II, III, IV, labeled by integers m, n; see
124019
Eq. (2.15). From the domain II outside the outer black
hole horizon, the spacetime continues into two domains
III inside the black hole. These are connected to other
asymptotically anti-de Sitter domains II (behind the
Einstein-Rosen bridge through the black hole), and, in
the charged case, to domains IV behind inner black hole
horizons. Each of these domains is covered by its own
coordinate system �, �, �, ’. This global structure is well
illustrated in two-dimensional conformal diagrams of
�;’ � constant sections; see Fig. 2.

As already mentioned, the inner structure of the black
hole is qualitatively the same as the structure of the interior
of the standard Schwarzschild or Reissner-Nordström
black holes. Therefore we focus mainly on the exterior of
the black hole. A more detailed conformal diagram of the
domain outside of the outer horizon can be found in
Fig. 3(b). The position of the infinity in the diagrams for
various values of � changes according to (3.12). We can
glue sheets of different � together into a three-dimensional
diagram in Fig. 3(a), where only the coordinate ’ is sup-
pressed. The ’gluing’ is done using an intuition that � is a
’deformed cosine’ of longitudinal angle and that v parame-
trizes the radial direction. The three-dimensional diagram
in Fig. 3(a) is thus obtained by a rotation of the conformal
diagram in Fig. 3(b).

The outer black hole horizon has a form of two conelike
surfaces joined in the neck of the black hole. The conical
-5



(a) (b)

FIG. 3 (color online). (a) Three-dimensional representation of
the exterior of the black hole accelerated in anti-de Sitter
universe with acceleration smaller than 1=‘. The dark surface
represents the outer black hole horizon H o, and the boundary of
the diagram corresponds to the conformal infinity I .
Embeddings of a typical section � � constant (section S) and
of the axis � � �f ; �b are shown. The nonsymmetric shape of the
infinity reflects the fact that the coordinate system used is
centered around the black hole which is moving with accelera-
tion with respect to the infinity. (b) Two-dimensional conformal
diagram of � � constant section. Only the exterior of the black
hole is shown (compare with Fig. 2). This part of the conformal
diagram corresponds exactly to the section � � constant indi-
cated in the diagram on the left.

FIG. 4 (color online). Another three-dimensional representa-
tion of the exterior of the accelerated black hole with A < 1=‘.
The outer black hole horizon of a conical shape from Fig. 3(a) is
here deformed to the surface of a shape of two joined drops. The
black hole is thus represented as a localized object. Such a
representation is useful for a study of the weak field limit
when the black hole changes into the world line of a point
particle.

(a) (b)

FIG. 2. The conformal diagrams of the sections
�; ’ � constant for (a) charged and (b) uncharged C-metric
with the acceleration A < 1=‘. These diagrams are based on
null coordinates u, v which grow in diagonal directions. Integers
(m, n) in the diagrams, identifying different spacetime domains,
are those from definition (2.15). Double lines represent confor-
mal infinity I (cf. Eq. (3.12)), zigzag lines the singularity at
� � �1, and thin diagonal lines the outer and inner black hole
horizons � � �o and � � �i, respectively. We can recognize
familiar structure of the interior of Reissner-Nordström or
Schwarzschild black holes, respectively, (domains III and IV).
The exterior of the black holes is, however, asymptotically
different—it has the asymptotics of anti-de Sitter universe.
The whole spacetime consists of more exterior domains II which
are connected (not necessary causally) with each other through
the black holes. A more detailed diagram of a typical domain
outside of the black hole (a darker area indicated above) can be
found in Fig. 3(b). The thick line corresponds to a section
� � constant which is discussed in Fig. 1.

PAVEL KRTOUŠ PHYSICAL REVIEW D 72, 124019 (2005)
shape suggests that horizon is a null surface with null
generators originating from the neck. Of course, the
three-dimensional diagram does not have the nice feature
of the two-dimensional conformal diagrams that each line
with angle �=4 from the vertical is null; however, for
Fig. 3(a) this feature still holds for lines in radial planes,
i.e., it holds for generators of the black hole horizon.

In the weak field limit the black hole changes into a test
particle. For such a transformation the diagram in Fig. 3(a)
is not very intuitive—the black hole is represented there as
an ’extended’ object, and the qualitative shape of the
horizon does not change with varying mass and charge.
For this reason it is useful to draw another diagram in
which the black hole horizon is deformed into a shape
composed of two droplike surfaces, see Fig. 4. The conical
form of the horizon from Fig. 3(a) is squeezed into more
localized form, which in the limit of vanishing mass and
charge shrinks into a world line of the particle—cf.
Figure 13(b) in Sec. V.
124019
Because of the assumption A< 1=‘, we cannot take a
limit of a vanishing cosmological constant keeping A � 0.
It is possible to set A � 0 first which leads to Reissner-
Nordström–anti-de Sitter spacetime, cf. footnote 7. After
that an appropriate limit of vanishing � gives a Reissner-
Nordström metric representing a single unaccelerated
black hole.
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IV. PAIRS OF ACCELERATED BLACK HOLES

A. Coordinate systems

Next we turn to the discussion of the more intricate case
of the acceleration bigger than the critical one,

A> 1=‘: (4.1)

First, the coordinates t, y, x, � and �, �, �, ’ can be
defined in an analogous way as in the previous section:

� � sh	o t � tanh	o t; v �
1

sh	o
y � coth	o y;

’ � ch	o � � ’; � � �
1

ch	o
x � �x:

(4.2)

Ranges of the coordinates �, � are indicated in Fig. 5. The
acceleration is parametrized by the parameter 	o 2 R�,

A �
1

‘
cosh	o: (4.3)

The metric functions in (2.7) and (2.8) are

�F � 1� �2 � 2
m
‘

sh	o �
3 �

e2

‘2 sh2	o �
4;

G � 1� �2 � 2
m
‘

ch	o �3 �
e2

‘2 ch2	o �4;

(4.4)

! � �sh	o � �ch	o; (4.5)

and
(a) (b)

FIG. 5. Diagrams analogous to Fig. 1 in the case A > 1=‘. The
allowed range of coordinates v, � (shaded area) is again re-
stricted by the infinity (diagonal double line), by the axis
(vertical border lines), and by the singularity (zigzag line).
Additionally to outer and inner black hole horizons, acceleration
and cosmological horizons (at v � va and v � vc) are also
present. Horizons divide the allowed range into regions O–IV
which corresponds to qualitatively different domains of space-
time; cf. Figure 6. Different sections � � constant cross different
number of horizons. Typical representatives SA, SB, and SC of
these sections are indicated by thick vertical lines. They corre-
spond to different shapes of the conformal diagrams in Fig. 6.
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�F � sh2	o � y2 � 2
m
‘

y3 �
e2

‘2 y4;

G � ch2	o � x2 � 2
m
‘

x3 �
e2

‘2 x4:

(4.6)

They are again related to the polynomial (3.8)

�F � �sh�2�o F � �coth2�o F

� 1�
‘2

sh2	o

S
�
sh	o

‘
�
�
;

G � ch�2	oG � G � 1�
‘2

ch2	o

S
�
ch	o

‘
�
�
:

(4.7)

For the metric function H , given by Eq. (2.11), we obtain

H � 1�
R2

‘2 � sh	o
2m
R
� sh2	o

e2

R2 : (4.8)

Differential relations for the coordinates � and ! are

d� �
ch	o

F
d��

sh	o

G
d�;

d! � �sh	od�� ch	od�;
(4.9)

and the metric function � takes the form

E � F sh2	o � Gch2	o: (4.10)
B. Global structure

As in the previous case, we start with a discussion of the
metric in accelerated static coordinates, Eq. (2.10). Near
the outer and inner horizon (the smallest two zeros of H ),
the metric function (4.8) has a similar behavior as the
function (3.9). It means that we deal again with a black
hole, and near (or inside of) the black hole we can apply
the previous discussion. Namely, T is again a time coor-
dinate for observers staying outside the black hole, R is a
radial coordinate, and �, � are spherical-like angular
coordinates. A similar interpretation holds for the coordi-
nates �, �, �, ’. However, for A> 1=‘ the metric function
H (or, equivalently, F , cf. Eq. (2.11)) has two additional
zeros for R � Ra; Rc (� � �a; �c, respectively), which cor-
respond to acceleration and cosmological horizons. It
means that we have to expect a more complicated structure
of spacetime outside the black hole.

Indeed, from the �-� diagram in Fig. 5 we see that new
zeros divide the allowed range of coordinates into more
regions O, I, II, III, and IV. An exact way how these
domains can be reached through the horizons can be
seen from the conformal diagrams of the sections
�;’ � constant. However, in Fig. 5 we see that sections
�;’ � constant can cross a different number of horizons,
depending on the value of �, since they can reach the
infinity, given in this case by

v � coth	o �; (4.11)
-7
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before they cross the acceleration or cosmological hori-
zons. There are three different generic classes of sections
�; ’ � constant labeled SA (sections crossing all hori-
zons), SB (sections which do not cross cosmological hori-
zons), and SC (which cross only black hole horizons).
Special limiting cases are � � �c � �c tanh	o and
� � �a � �a tanh	o. For each of these sections a different
shape of conformal diagram is obtained as can be found in
Fig. 6. For section SA the domain II outside a black hole is
connected through the acceleration horizon to domains of
type I which are connected through other acceleration
horizons to another domain II with another black hole.
(a)

FIG. 6. The conformal diagrams of the sections �; ’ � constant fo
ones are for the uncharged case. The diagrams are based on coordina
domains of the spacetime. Analogously to Fig. 2, double lines represe
horizons. Domains O–II correspond to the exterior of black holes and
similar causal structure to that of unaccelerated black holes. The
indicated by dark shading. The description below is from a point
correspond to the sections with a different value of the coordinate �.
are moving with respect to each other along a common axis. It is also
domains O and I. In the middle, section SB is spanned only between t
because it intersects the conformal infinity in spacelike lines located i
each black hole directly into infinity—it does not connect different
correspond to thick vertical lines in Fig. 5. Thick lines in the diag
section discussed in Fig. 5. The embedding of these two-dimensiona
two-dimensional diagrams of the exterior of black holes (the dark a
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The domain I is also connected through the cosmological
horizon with two domains of type O. From these domains it
is possible to reach another domain I, and so on.

The spacetime thus seems to describe a universe which
at one moment contains a pair of black holes (domains III
and IV) separated by the acceleration horizon (domains II
and I), and at another moment does not contain any black
hole (domains I and O)—see Fig. 6(a). However, the
sections SB do not contain domains O, and sections SC
do not even contain the domains I. How is it possible that
one spacetime is described by three qualitatively different
diagrams? And how is it possible that the spacetime with
(b) (c)

r A > 1=‘. The top diagrams are valid for m; e � 0, the bottom
tes u, v . Integers (m, n) from definition (2.15) identify different
nt the infinity, zigzag lines the singularity, and diagonal lines the
domains III and IV to interiors of black holes. The interior has a

spacetime contains more asymptotic domains, one of which is
of view of this domain. Three different shapes of the diagrams
On the left, section SA is spanned between two black holes which

spanned between different pairs of such black holes through the
wo black holes. It does not continue to the other pair of black hole
nside domains I. The section SC, depicted on the right, goes from
black holes through the exterior domains. These three sections

rams above represent the section � � constant, i.e., exactly the
l diagrams into spacetime is shown in Figs. 8–10. More detailed
rea above) are also presented there.
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(b)(a)

FIG. 7 (color online). Three-dimensional visualizations of the
exterior of black holes which are moving with acceleration
parameter A > 1=‘ in asymptotically anti-de Sitter universe.
The diagrams show a compactified picture of the whole uni-
verse—borders of the diagrams correspond to the conformal
infinity. Diagram (a) is obtained by gluing together two-
dimensional diagrams from Fig. 6. Black hole outer horizons
H o are represented by dark surfaces of a conical shape which
indicates the null character of these surfaces. In the alternative
representation (b), the black hole outer horizons are squeezed
into droplike shapes. Such a representation shows the black hole
as a localized object and it is useful in the weak field limit when
the black hole changes to a pointlike particle—compare with
Fig. 17(b). The universe represents a sequence of pairs of black
holes which repeatedly enter and leave the universe through their
timelike infinity—the diagrams should continue periodically in
the vertical direction. Black holes of each pair are causally
separated by the acceleration horizon H a; consequent pairs of
black holes are separated by cosmological horizons H c. These
are null surfaces—light cones of the entry points of black holes
into the spacetime. Embedding of different types of two-
dimensional conformal diagrams into the three-dimensional
one is depicted in Figs. 8–10.

(a) (b)

FIG. 8 (color online). (a) Embedding of section SA [cf. Figs. 5
and 6(a)] into a three-dimensional representation of the C-metric
spacetime. (b) The part of the two-dimensional conformal dia-
gram of SA representing the exterior of the black holes [corre-
sponds to the dark area in Fig. 6(a)].
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anti-de Sitter asymptotic has a conformal diagram with
conformal infinity which looks spacelike as it occurs for
sections SB [see Fig. 6(b)]?

The answer can be given by drawing a three-
dimensional diagram obtained by ’gluing’ different sec-
tions of � � constant together. The inspiration how to do
it can be obtained by a study of accelerated static coordi-
nates in empty anti-de Sitter universe as will be done in
Sec. V. There we will learn that coordinates �, �, �, ’ (or
T, R, �, �) are sorts of bipolar coordinates—coordinates
with two poles centered on two black holes. The coordinate
R (respectively �) is running through domain II from both
black holes toward the acceleration horizon. It plays the
role of a radial coordinate in domain II, but it changes its
124019
meaning into a time coordinate above and below the ac-
celeration horizon, in domains of type I. It becomes again a
space coordinate in domains O. The angular coordinates
�, � (or �,’) label different directions connecting the two
holes. With this insight we can draw the three-dimensional
diagrams reflecting the global structure of the universe, see
Fig. 7. Embeddings of three typical surfaces �; ’ �
constant into such a diagram are shown in Figs. 8–10.
Here we can see an origin of different shapes of conformal
diagrams.

The global picture of the universe is thus the following:
into an empty anti-de Sitter-like universe (domains O and
I) enters through the infinity I a pair of black holes
(domains III and IV). The holes are flying toward each
other (domains II) with deceleration until they stop and fly
back to the infinity where they leave the universe. They are
causally disconnected by the acceleration horizon. There
follows a new phase without black holes (again, the domain
I and O) followed by a new phase with a pair of black holes.
Different pairs of black holes are separated by cosmologi-
cal horizons.

Again, for the purpose of the weak field limit it is
convenient to use a visualization with squeezed black
hole horizons in Fig. 7(b). In this representation, the in-
finity has a shape which one would expect for asymptoti-
cally anti-de Sitter universe. The deformation of the
infinity is related to the fact that we use coordinates cen-
tered around the black holes. Indeed, the black holes are
drawn along straight lines in the vertical direction. As we
will see in the next section, such a deformation of the
-9



(a) (b)

FIG. 9 (color online). (a) Embedding of section SB [cf. Figs. 5
and 6(b)] into a three-dimensional picture of spacetime. (b) The
corresponding part of the two-dimensional conformal diagram of
SB [cf. the dark area in Fig. 6(b)].
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infinity is obtained even for an empty anti-de Sitter uni-
verse if it is represented using accelerated coordinates.

In the case A> 1=‘ there is no lower bound on the
cosmological constant. An appropriate limit of vanishing
� leads to C-metric spacetime with � � 0 representing a
(a) (b)

FIG. 10 (color online). (a) Embedding of section SC [cf. Fig. 5
and 6(c)] into a three-dimensional diagram. (b) The correspond-
ing part of the two-dimensional conformal diagram of SC [cf. the
dark areas in Fig. 6(c)].
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pair of accelerated black holes in the asymptotically flat
universe.
V. ANTI-DE SITTER UNIVERSE IN ACCELERATED
COORDINATES

The spacetime (2.1) reduces to the anti-de Sitter universe
for m � 0, e � 0. However, the limiting metric is not the
anti-de Sitter metric in standard cosmological coordinates.
Instead, it is the anti-de Sitter metric in so-called acceler-
ated coordinates which prefer certain accelerated observ-
ers. These observers are remnants of the black holes.
Investigating this form of the anti-de Sitter metric is useful
for understanding of asymptotical structure of the C-metric
universe, and of the nature of the coordinate systems used.

The anti-de Sitter metric can be written in cosmological
spherical coordinates ~t, �, #, ’ as

g AdS �
‘2

cos2�
��d~t� d�2 � sin2��d#2 � sin2#d’2��:

(5.1)

They can be also called conformally Einstein because they
are the standard coordinates on the conformally related
Einstein universe. Another useful set of coordinates are
cosmological cylindrical coordinates ~t, 
 , �, ’ which
redefine coordinates � and #. Surfaces ~t; � � constant
represent cylinders of constant distance from the axis,
and surfaces ~t; 
 � constant are planes orthogonal to the
axis. They are related to spherical coordinates by a rotation
on the conformally related sphere of the Einstein universe
by an angle �=2:

cos� � cos
 cos�; sin
 � sin� cos#;

tan# � cot
 sin�; tan� � tan� sin#:
(5.2)

The metric in the cylindrical coordinates reads

gAdS �
‘2

cos2
cos2�

� ��d~t2 � d
2 � cos2
�d�2 � sin2�d’2��: (5.3)

The anti-de Sitter universe admits four qualitatively
different types of Killing vectors representing time trans-
lations, boosts, null boosts, and spatial rotations. Orbits of
time translations and boosts correspond to world lines of
observers with uniform acceleration. The limit of the
C-metric is related exactly to these observers. The cases
A< 1=‘ and A> 1=‘ correspond to time translation and
boost Killing vectors respectively; the case A � 1=‘ cor-
responds to a null boost Killing vector.

It is possible to introduce static coordinates associated
with the Killing vector that is at least partially timelike. In
the case of the time translation Killing vector, both cos-
mological spherical and cylindrical coordinates play the
roles of such coordinates. It is also possible to rescale the
-10



(a) (b)

FIG. 11. A shaded region in diagram (a) indicates allowed
ranges of coordinates � 
 �0I � ‘=R0I � cot�0I and � 
 �0I �
� cos�0I � � cos# 0I . The diagonal double line corresponds to
the infinity, vertical borders to the axis of symmetry, and the
bottom line to the origin �0I � 0. The diagram (a) is an analogue
of Fig. 1. However, this diagram does not respect the angular
meaning of the � coordinate. A more natural representation (b)
of the shaded region is obtained by shrinking the bottom line to a
point, forming thus a deformed semicircle.
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radial coordinate � to obtain metric in ’standard static’
form. Namely, defining static coordinates of type I

TI�‘~t; RI�‘tan�; �I�#; �I�’ (5.4)

we obtain

gAdS � �

�
1�

R2
I

‘2

�
dT2

I �

�
1�

R2
I

‘2

�
�1

dR2
I

� R2
I �d�2

I � sin2�Id�2
I �: (5.5)

Static coordinates of type II are associated with the boost
Killing vector and can be related to the cosmological
cylindrical coordinates

TII �
‘
2

log

��������sin~t� sin

sin~t� sin


��������; RII � ‘
cos

cos~t

;

�II � �; �II � ’;

(5.6)

leading to the metric

gAdS �
‘2

R2
IIcos2�II

�
�

�
1�

R2
II

‘2

�
dT2

II �

�
1�

R2
II

‘2

�
�1

dR2
II

� R2
II�d�2

II � sin2�IId�2
II�

�
: (5.7)

In the case of the full C-metric we do not have to use a
different notation for coordinates defined in the case
A < 1=‘ and A> 1=‘, because these two cases describe
completely different spacetimes, and the coordinates can-
not be mixed. However, in the weak field limit both cases
describe one spacetime—anti-de Sitter universe—and we
have a whole set of coordinate systems, parametrized by
acceleration, living on this spacetime. To avoid a confu-
sion, in the next two subsections we add a prime and
subscript I (for A< 1=‘) or II (for A> 1=‘) to all coor-
dinates introduced in the previous sections.8 For example,
accelerated static coordinates T, R, �, � will be renamed
as T0I, R

0
I, �0I, �0I or T0II, R

0
II, �0II, �0II for small or large

acceleration, respectively.
Let us note that for both cases A + 1=‘ in the weak field

limit, the metric function G reduces to G � 1� �2

(see (3.4) and (4.4)). By integrating (2.9) we then get
� � � cos� and G � sin2�.

A. A < 1=‘

In the limit of vanishing mass and charge, the metric
(2.10) with H given by Eq. (3.9) takes the form
8We use the subscript to distinguish two qualitatively different
cases (although, we still have a hidden parametrization of the
coordinate systems by the acceleration), and the prime to in-
dicate a nontrivial acceleration. Corresponding unprimed coor-
dinates refer to special values of the acceleration: A � 0 in the
case I, and A � 1=‘ in the case II. This notation is consistent
with Ref. [36].
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g �
‘2

�‘ cos�o � R
02
I sin�o cos�0I�

2

�
�

�
1�

R02I
‘2

�
dT02I

�

�
1�

R02I
‘2

�
�1

dR02I � R
02
I �d�02I � sin2�0Id�02I �

�
:

(5.8)

The allowed ranges of coordinates can be read from
Fig. 11. For vanishing acceleration, �o � 0, the metric
becomes exactly of the form (5.5); i.e., C-metric acceler-
ated static coordinates become anti-de Sitter static coordi-
nates of type I. For nonvanishing acceleration the form of
the metric (5.8) differs from (5.5) by a scalar prefactor.
However, we still claim that g � gAdS. The relation be-
tween coordinates TI, RI, �I, �I and T0I, R

0
I, �0I, �0I is thus a

coordinate conformal transformation of anti-de Sitter
space. It has a nice geometrical interpretation: if we define
accelerated spherical coordinates of type I, ~t0I, �

0
I, #

0
I , ’

0
I,

related to T0I, R
0
I, �0I, �0I analogously to definition (5.4),

these coordinates differ from ~t, �, #, ’ only by a rotation
of the Einstein sphere in the direction of the axis # � � by
the angle �o,

~t 0I � ~t; cos�0I � cos�o cos�� sin�o sin� cos#;

’0I � ’; cot#0I � cos�o cot# � sin�o cot�sin�1#:

(5.9)

Coordinates ~t0I, �
0
I, #

0
I , ’

0
I are thus sort of spherical coor-

dinates9 centered on the observer given by � � �o,
# � �. This observer remains eternally at a constant dis-
tance from the origin � � 0, and has a unique acceleration
of magnitude A � sin�o which compensates for the cos-
9They are spherical in the sense of conformally related
Einstein universe.
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FIG. 12. Conformal diagrams of the section �0I;�
0
I � constant

(or, equivalently, #0I ; ’
0
I � constant). Diagram (a) is based on

coordinates �u0I, �v 0I. Horizontal and vertical lines are given by
coordinate lines ~t0I � constant and �0I � constant, since for
m; e � 0, definitions (2.13) and (2.14) give �u0I � �0I � ~t0I and
�v 0I � �0I � ~t0I. The coordinate �0I is a radial coordinate; the left
border of the diagram thus corresponds to the world line of an
accelerated observer at the origin. The right double line repre-
sents conformal infinity I (formed by limiting end points of
spacelike and null geodetics). The diagram should continue
infinitely in the vertical direction. (b) Compactified version of
the same conformal diagram based on the coordinates u0I, v 0I,
related to �u0I, �v 0I by Eq. (2.15). The whole spacetime is here
squeezed into a compact region which beside the conformal
infinity includes also pointlike future and past infinities (limiting
end points of timelike geodesics). This diagram is analogous to
those in Fig. 2. An exact position of I depends on an angular
direction of the plane of the diagram (i.e., on a value of
coordinate #0I) through the relation tan�0I � �‘ cot�o= cos#0I
[cf. Eq. (3.12)]. For A � 0 these diagrams reduce to the standard
conformal diagrams based on the cosmological spherical coor-
dinates.

(a) (b)

FIG. 13 (color online). Three-dimensional schematical dia-
grams of anti-de Sitter universe obtained by rotation (varying
angular coordinate #0I) of two-dimensional diagrams from
Fig. 12. The diagrams are centered on the world line of a static
observer (thick line) which is accelerated with acceleration
A < 1=‘. The horizontal section ~t � constant corresponds to
two copies of Fig. 11(b) (one copy for ’ � 0, another for
’ � �).

(a) (b)

FIG. 14. A shaded region in diagram (a) represents the allowed
range of coordinates � 
 �0II � ‘=R0II and � 
 �0II � � cos�0II.
The notation is the same as in Fig. 5, except there are no black
hole horizons, and the bottom line does not represent a singu-
larity but poles of the coordinates. Diagram (a) does not respect
the bipolar nature of coordinates � and �. A more accurate
picture of region II is drawn in diagram (b). It depicts section
~t; ’ � 0 through two spacetime domains of type II. Each of them
contains one pole of the coordinate system. Both domains are
separated by an acceleration horizon. The coordinate � decreases
from � � �1 at poles to � � �a at the acceleration horizon,
and the coordinate � labels different coordinate lines starting
from the poles.
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mological compression of anti-de Sitter universe. For more
details see [36].

Two-dimensional conformal diagrams of T0I-R
0
I sections

(i.e., of ~t0I-�
0
I sections) can be found in Fig. 12. Three-

dimensional diagrams obtained by gluing together two-
dimensional sections with changing �0I are in Fig. 13.
The diagram in Fig. 13(b) is clearly the limiting case of
Fig. 4.

B. A > 1=‘

In this case, the metric (2.10) with H given by Eq. (4.8)
for vanishing mass and charge becomes

g �
‘2

�‘sh	o � R0IIch	o cos�0II�
2

�

�
�

�
1�

R02II
‘2

�
dT02II �

�
1�

R02II
‘2

�
�1

dR02II

� R2�d�02II � sin2�0IId�02II �
�
: (5.10)

The allowed range of coordinates R0II, �0II can be read from
124019
Fig. 14. For 	o � 0 (i.e., in the limit A! 1=‘) we get
exactly the metric (5.7). For nonzero 	o both metrics (5.10)
and (5.7) have the same form up to a scalar prefactor. How-
ever, as in the previous case, it is possible to find a trans-
formation between T0II, R

0
II, �0II, �0II and TII, RII, �II, �II

such that g � gAdS. First, we introduce accelerated spheri-
-12



(a) (b) (c)

FIG. 16. The conformal diagrams of sections �0II; ’
0
II �

constant (or, equivalently, �0II; ’
0
II � constant) for different val-

ues of � 
 �0II. The diagrams are based on null coordinates
u0II, v 0II. They are spanned between two poles which correspond
to observers with uniform acceleration A > 1=‘ (straight vertical
lines on the border of the diagrams, cf. also Fig. 17 for the three-
dimensional localization of the poles). Three different shapes of
the diagrams correspond to qualitatively different possibilities
of how sections �0II; ’

0
II � constant are embedded into the anti-

de Sitter universe. They correspond to the three sections
� � constant indicated in Fig. 14. Diagonal lines represent
acceleration and cosmological horizons. The acceleration hori-
zon causally separates both poles. It is formed by future light
cones of points where the poles enter the anti-de Sitter universe.
The cosmological horizon is formed by future light cones of
points where the poles leave the universe. The thick line is an
example of � 
 �0II � constant section—it corresponds to the

0
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cal and cylindrical coordinates of type II, ~t0II, �
0
II, #

0
II, ’

0
II

and ~t0II, 

0
II, �

0
II, ’

0
II, which are related to T0II, R

0
II, �0II, �0II as

~t, �, #, ’ and ~t, 
 , �, ’ are related to TII, RII, �II, �II, i.e.,
by the relations (5.2) and (5.6). Transformations between
cosmological and accelerated coordinates then are

cot ~t0II �
ch	o cos~t� sh	o cos�

sin~t
;

cot�0II �
�sh	o cos~t� ch	o cos�

sin�
;

# 0II � #; ’0II � ’:

(5.11)

It is interesting, that these transformations leave angular
coordinates untouched. It means that they are a time de-
pendent radial ’sqeezing’ of anti-de Sitter universe; see
Fig. 15.

Surprisingly, if we compose all partial transformations
between T0II, R

0
II, �0II, �0II and TII, RII, �II, �II together,

the resulting transformation is such that T0II � TII and
�0II � �II, see Ref. [36]—time surfaces of both the static
coordinates of type II and of the accelerated static coor-
dinates are the same.

Now, let us study global null coordinates uII, v II related
to the static coordinates of type II TII, RII by the relations
(2.14) and (2.15). With vanishing mass and charge (and
setting � � 1=2 in (2.15)) these definitions give

u II � ~t� 
; �II � �; v II � ~t� 
;

�II � ’:
(5.12)
FIG. 15 (color online). Cosmological spherical coordinates
~t, � and accelerated spherical coordinates ~t0II, �

0
II drawn on a

two-dimensional section of anti-de Sitter universe. The coordi-
nate systems are related by the ’squeezing transformation’
(5.11). Left: Coordinate lines of both systems drawn in such a
way that lines ~t � constant and � � constant are horizontal and
vertical, respectively. Right: A complementary representation
with vertical and horizontal lines given by coordinate system
~t0II, �

0
II. The conformal infinity is given by � � �=2 and is thus

deformed in the squeezed diagram on the right.

diagram in Fig. 11. Gluing together diagram (a) for �II � �1
(the axis �0II � �0II � 0 between poles) with diagram (c) for
�0II � �1 (the axis �0II � �0II � �) gives the history of the whole
axis of symmetry. It is the same section as that depicted in
Fig. 15.
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Horizontal and vertical lines of the conformal diagram
based on uII, v II are thus coordinate lines ~t � constant
and 
 � constant. The surface of this conformal diagram,
i.e., the surface �;’ � constant, is a history of a line with a
constant distance from the axis of symmetry. All such lines
have common limiting end points 
 � ��=2 located at the
infinity of the anti-de Sitter universe. We will call them
poles of the cylindrical coordinates.10

The conformal diagrams constructed in Sec. IV are
based on coordinates u0II, v 0II, i.e., on an ’accelerated’
10Lines of constant distance from the axis are not geodesics
(except the axis itself ) in the sense of the Lobachevsky geometry
of the spatial section ~t � constant. However, in the conformally
related spherical geometry of the spatial section of Einstein
universe, these lines are meridians with common poles. These
two poles lie on the boundary of the hemisphere which corre-
sponds to the Lobachevsky plane, i.e., at its infinity.
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(a) (b)

FIG. 17 (color online). Three-dimensional representations of
anti-de Sitter universe based (a) on cosmological coordinates
~t, �, #, ’ and (b) on ’squeezed’ accelerated coordinates
~t0II, �

0
II, #

0
II, ’

0
II. They can be obtained by a rotation of the

corresponding diagrams from Fig. 15. Alternatively, they can
be constructed by gluing together two-dimensional diagrams
from Fig. 16. These are spanned between world lines of poles
moving with the uniform acceleration A � 1=‘ along the axis.
World lines of the poles are indicated in the diagrams by thick
lines. A pair of the poles enter anti-de Sitter universe through the
conformal infinity, they approach each other, and then return
back to the infinity—all this in a finite cosmological time �~t �
�. After a stage without poles, a new pair of poles enters the
universe, and so on. The diagram (b) is clearly the limit of
Fig. 7(b) in which the black holes are shrunk to the accelerated
particles located at the poles.
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version of u, v discussed in the previous paragraph. For
m; e � 0, these diagrams are depicted in Fig. 16. Different
124019
sections �0II; ’
0
II � constant again correspond to histories

of curves which end at common poles 
 0II � ��=2.
However, the infinity of the anti-de Sitter universe in
accelerated cylindrical coordinates is given by (cf. (4.11))

cos
 0II cos�0II � � tanh	o cos ~t0II : (5.13)

The poles thus, in general, do not lie at the infinity.
Coordinates ~t0II, 


0
II, �

0
II,’

0
II are sort of ’bipolar coordinates’

with poles which correspond to the observers with accel-
eration A > 1=‘; see Fig. 11(b). These observers, however,
do not remain in anti-de Sitter universe eternally. Their
histories periodically enter and leave the spacetime as
shown in Fig. 17. The section �0II; ’

0
II � constant, spanned

between the poles, intersect anti-de Sitter universe in vari-
ous ways, depending on a value of �0II. Different intersec-
tions lead to qualitatively different conformal diagrams in
Fig. 16. This is in the agreement with analogous discussion
in Sec. IV.
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[8] J. Bičák and V. Pravda, Phys. Rev. D 60, 044004 (1999).
[9] P. S. Letelier and S. R. Oliveira, Phys. Rev. D 64, 064005

(2001).
[10] V. Pravda and A. Pravdová, Czech. J. Phys. 50, 333
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124004 (2003).
[23] O. J. C. Dias and J. P. S. Lemos, Phys. Rev. D 68, 104010

(2003).
-14



ACCELERATED BLACK HOLES IN AN ANTI-DE . . . PHYSICAL REVIEW D 72, 124019 (2005)
[24] R. Emparan, G. T. Horowitz, and R. C. Myers, J. High
Energy Phys. 01 (2000) 007.

[25] A. Chamblin, Classical Quantum Gravity 18, L17 (2001).
[26] R. Emparan, G. T. Horowitz, and R. C. Myers, J. High

Energy Phys. 01 (2000) 021.
[27] P. Krtouš and J. Podolský, Classical Quantum Gravity 21,

R233 (2004).
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