
Conical singularity in spacetimes with NUT is observer dependent
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We discuss the issue of defining and measuring conical deficits (conicity) in spacetimes with the torsion
singularity such as the Misner string in Taub-NUT spacetime. We propose a geometric definition that
generalizes the standard notion of conicity to stationary axially symmetric spacetimes with torsion
singularity, where the conical deficit becomes observer dependent—it depends on the choice of a timelike
Killing vector. This implies the existence of observers who perceive no conical singularity along the
symmetry axis. As a result, in any spacetime with a nonvanishing NUT parameter, there are observers for
whom the conicity has the same value on both semiaxes. This challenges the usual interpretation of conicity
differences as indicators of string/rod-induced acceleration along the axis. We illustrate our definition
across the full Plebański–Demiański class, including the recently identified accelerated Taub-NUT
solution. Our attempts in determining a canonical observer lead to even less desirable definitions of
conicity.
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I. INTRODUCTION

Many axially symmetric solutions of general relativity
possess a singular symmetry axis [1,2]. The simplest
example is the conical singularity. On a distinguished
spacelike 2-surface (constant in time and perpendicular to
the axis), it is understood as a deficit or excess of an angle
parametrizing the orbits of the axial symmetry, such that the
2-surface locally resembles a cone. It is a standard example
of the so-called quasiregular singularity [3–5], i.e., a
singular boundary point to which the Riemann tensor in
any frame parallel propagated along any curve is regular,
and yet the spacetime is not globally extendable through it;
it is typically locally extendable. The reason for the
incomplete curves being inextendible is not due to diverg-
ing curvature but due to the lack of differentiable structure
at the cone’s tip—the putative tangent space would essen-
tially have too many or too few directions. To characterize
the conical singularity one typically associates a quantity
measuring the deviation from a regular point (with the
neighborhood being diffeomorphic to flat 2-space), called
the conical deficit δ or conicity C ¼ 1 − δ=ð2πÞ. It is
defined as the limit, for small radius, of the orbit’s
circumference divided by 2π times the radius (all within
the 2-surface). The simplest spacetime with a conical
singularity is obtained from the global Minkowski

spacetime by removing a four-dimensional wedge bounded
by two 3-half-spaces meeting along an axis and identifying
them at the same t, ρ, z in cylindrical coordinates [2,6].
Based on calculations with (nonlinear) distributions, this
has been interpreted as describing a cosmic string/strut
that is under tension/stress [7,8]. Apart from this locally
flat example, it also occurs in other exact solutions. The
most prominent is the C-metric [9–11] describing black
holes that accelerate due to the tension/stress of cosmic
strings/struts represented by conical singularities [12,13].
When compared to flat cosmic string spacetime, here the
conical singularity cannot be globally eliminated by
changing the identification of spacetime points. At best,
it can be moved from one semiaxis to another. Conical
deficits play an important role in the black-hole thermo-
dynamics of the C-metric [14–18].
Another important quasiregular singularity occurring in

well-known exact solutions is the torsion singularity [2,19]
with the simplest example being the spinning cosmic
string/strut [19–22]. It differs from the nonspinning cosmic
string construction and from the global Minkowski space-
time by identifying the two semi-3-spaces such that they
are shifted by a constant in time coordinates t (at the same ρ
and z) and is characterized by this time-shift. [Similarly, one
could also construct the “screw dislocations” by shifts in z
(instead of t) or “boost dislocations” by boosts in the t–z
plane, all of which can be characterized in terms of the
affine holonomy and interpreted as distributional torsion
[22–24] in contrast to distributional curvature for conical
singularity arising from linear holonomy [25]. We will not
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consider these generalizations here.] Unlike the conical
singularity, the torsion singularity is typically accompanied
by a region of closed timelike curves in its vicinity of the
axis. Awell-known example of a spacetime with the torsion
singularity, which is then usually refereed to as the Misner
string, is the Taub-NUT spacetime [26,27]. In this work, we
adopt Bonnor’s interpretation [28–30], in which the time
direction is not considered periodic and the Misner string is
treated as a physical singularity. (Alternatively, there exists
Misner’s construction [31], which regularizes the axis by
imposing special time periodicity—at the cost of turning
the horizon into a quasiregular singularity [32] and intro-
ducing more prominent regions of closed timelike curves.)
Similar to the conical singularity in the C-metric, the
torsion singularity cannot be globally eliminated by chang-
ing the identification of spacetime points—unlike in the
case of the flat spinning cosmic string spacetime. It can
only be transferred from one semiaxis to another. A revival
of the Taub–NUT spacetime (without time periodicity)
came with [33,34], which demonstrated that geodesics may
be formally continued through the axis.1 Most studies
focused on the black-hole thermodynamics of Taub-NUT,
with several proposals put forward [35–43]. Recent studies
have even proposed that the collapsed objects GRO J1655–
40 and M87� could carry NUT charges [44–46].
The list of known spacetimes that includes either conical

or torsional singularity or both is long. Among the most
famous ones are spacetimes belonging to the Plebański–
Demiański class [47], i.e., a generic Petrov type D electro-
vacuum solutions of Einstein’s field equations, with better
coordinates and various properties investigated in [48–51].
Recently, it was extended to also include the combination
of C-metric and Taub–NUT [52], the accelerated Taub–
NUT spacetime. This solution is of Petrov type D and
should not be mistaken for the previously known solution
by Chng, Mann, and Stelea [53] (interpreted in [54]), which
is of Petrov type I.
In this work, we address the issue of calculating the

conical deficit in the presence of torsion singularity.
Naively, the conicity should be given by the limit of the
ratio of the circumference of small circles around the axis
to 2π times their radius. The problem with the torsion
singularity arises due to the fact that the only closed orbits
of Killing vectors near the axis have nonvanishing length in
the limit of small radius; hence, we get the infinite conicity.
The immediate generalization of the definition is to con-
sider an orbit of a Killing vector that vanishes toward the
axis instead. Unfortunately, the price to pay for this is that
the corresponding orbits have an infinite length unless
we choose a finite segment of them. This introduces

arbitrariness, which can be reformulated into observer
dependence. If the torsion singularity is absent, e.g., in
the C-metric, the result does not depend on any observer.
A few hints of problems with the conical deficit in the

presence of a torsion singularity have appeared in the prior
literature. First, it was indirectly noticed that a different
Killing vector is needed already in [48–51], but it was not
realized that its orbit is not closed and the integration
segment (which is not a circle) was unknowingly fixed by
the used coordinates. An important indication of the extra
arbitrariness was observed in [55], where the conicity of the
(higher-dimensional) Kerr-NUT-(A)dS spacetime was found
to depend on an additional freedom associated with the choice
of timelike Killing vector. A similar observation appeared
in papers concerned with the generalization of Misner’s
construction to (accelerated) Kerr-NUT-(A)dS spacetimes
[56–58], where it was proposed to calculate the conicity in
the auxiliary space of orbits of a generic Killing vector, on
which such an orbit-space conicity naturally depended.
Despite this, the problem was somewhat overlooked and not
sufficiently explained in the above references for the lack of
a rigorous coordinate-independent definition of (spacetime)
conicity that would be applicable to any stationary axially
symmetric spacetime with a torsion singularity.
Let us mention that we focus on the kinematical

character of the conicity. Our goal is to identify the conicity
as a property of the metric and other geometric structures
(e.g., the choice of a Killing vector). We do not study its
relation to potential matter sources causing the geometry.
Although it is important and relevant, we do not seek a
precise link between the conicity or the time-shift and
physical properties such as the energy density, tension, or
angular momentum of the involved sources. Our priority is
to clarify the geometric nature of the singularity first.
The paper is structured as follows: After giving the

motivation and a general overview in Sec. II, in Sec. III we
provide a new geometric definition of conicity that applies
to such spacetimes and only requires identifying a Killing
vector that defines the axis and comparing it with one that
has closed orbits. In Sec. IV, we relate our definition to the
standard notion of conical deficit, which is appropriately
extended to cases with torsion singularity. In Sec. V, we
apply our definition to several examples within Plebański-
Demiański class. In each case, we calculate the conicity and
time-shift, and identify the observers who measure no
conical deficit, and others who detect no conicity difference
between the two semiaxes. Finally, in Sec. VI, we conclude
with a brief summary of the results and a discussion of
various attempts to define a canonical observer, none of
which ultimately proves fully satisfactory.

II. GENERALIZED STATIONARY
AXISYMMETRIC SPACETIMES

Our goal is to extend the usual definition of conicity to a
more general class of spacetimes where the direct intuitive

1Despite this fact, the axis should not be viewed as consisting
of regular points of the manifold. The torsion singularity prevents
the neighborhood of the axis from being diffeomorphic to the flat
spacetime.
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definition fails. We focus on general stationary axisym-
metric spacetimes with a generalized (possibly singular)
axis of rotational symmetry. The singularity localized on
the axis is taken to be associated solely with the rotational
symmetry. In a closed neighborhood of the axis, the
spacetime is assumed to be regular, though it may not
be possible to extend it regularly all the way to the axis.
This structure is typically associated with a singular

source on the axis, known as a (possibly spinning) cosmic
string. There are attempts in literature to describe such
sources in a distributional sense; however, due to possible
high nonregularity of the axis and nonlinearity of the
Einstein equation, this approach requires major modifica-
tions to distribution theory [8]. We do not follow this
theory-dependent approach here. Instead, we describe the
singular axis via its neighborhood and define conicity using
geometric quantities there.
Let us first intuitively identify the structures related to the

symmetries of the spacetimes under consideration. We will
formulate them more rigorously in the next section.
Our aim is to describe a spacetime with an axis of

symmetry. Although the axis itself may not be a regular part
of the spacetime, we nevertheless refer to its neighborhoods
as “near the axis,” assuming they are well defined.
Importantly, we require the spacetime to admit two inde-
pendent commuting symmetries. One of them corresponds
to the stationarity near the axis. It is generated by a
stationary Killing vector t, which is timelike and non-
vanishing near the axis. The second symmetry is usually
referred to as axial or rotational symmetry. We use this
ambiguity in naming to distinguish two features that
coincide in regular cases but differ in general.
By rotational symmetry we mean the symmetry with

closed orbits, which are at least in some part of spacetime
spacelike. It is generated by a Killing vector c, which we
call cyclic. It is expected to be spacelike in a domain of the
spacetime, and in this domain, it generates a rotation in a
traditional sense. However, the cyclic Killing vector does
not have to be spacelike near the axis.
Any combination of the stationary and cyclic Killing

vectors also generates the symmetry. We assume that one of
them, the axial Killing vector a, generates axial symmetry.
Namely, it identifies the generalized symmetry axis by the
requirement that it is spacelike near the axis and its norm
vanishes when approaching the axis. Moreover, we normal-
ize the axial vector so that its norm jaj corresponds to radial
distance from the axis.
In regular axisymmetric spacetimes, rotational and axial

symmetry coincide. They are generated by the same Killing
vector. However, already in the case of a plain conical
singularity generated by changing periodicity in the angular
direction of a regular axisymmetric spacetime, the cyclic
and axial Killing vectors differ. They differ by a normali-
zation. The cyclic Killing vector is normalized to have
2π-periodic orbits. The normalization of the axial Killing

vector is related by the approach of its norm to the axis. The
factor between these two Killing vectors is exactly the
conicity in the common sense.
However, the axis of the spacetimes under study may be

more singular. A typical example is a spacetime with a
torsion singularity obtained by cutting a regular spacetime
along a surface and regluing the created surfaces with an
arbitrary symmetry shift (we will discuss particular exam-
ples below). This causes the orbits of the near-the-axis-
spacelike axial Killing vector to become open, not closed
into circles. The cyclic Killing vector with closed orbits
must then be a combination of the axial and stationary
Killing vectors, which results in its closed orbits being
timelike near the axis. This construction is characterized by
the conicity and time-shift parameters introduced in the
regluing. An interesting feature of the studied spacetimes is
the possibility that there may exist different axial Killing
vectors near different parts of the symmetry axis. This
allows conicity and time-shift to vary along the axis.
In our discussion, we explore two related structures:

global identification of the axis by Killing vectors and a
local limiting procedure along specifically selected classes
of curves to identify axis points. On the global side, we
assume the existence of independent symmetries. It means
that the spacetime possesses a two-dimensional group of
symmetries generated by a two-dimensional Abelian Lie
algebra Γ of Killing vectors. Killing vectors are rigid
enough to define global structures, such as foliation by
their orbits. As we described, the closed orbits determine
the rotational symmetry, and the existence of the axial
Killing vector identifies the axis.
However, global Killing vectors alone are not sufficient.

We also need to distinguish various points on the gener-
alized axis. Unfortunately, the generalized axis cannot
always be treated as formed by regular points in the
manifold M. Nevertheless, there exist various ways of
attaching the set of points to M to represent the boundary
points ∂M, for example, by the constructions known as the
g-boundary [59], b-boundary [32,60], etc. However, in our
opinion, none of these constructions is fully satisfactory in
giving a comprehensive understanding of the structure
of the generalized axis. Depending on the spacetime and
boundary construction used, the extension/completion
M ∪ ∂M may not even be Hausdorff, let alone have a
differentiable structure (of a manifold with a boundary).
Nevertheless, the important aspect for us is that in all

these constructions the boundary points ∂M are determined
solely by the properties of regular points inM, and one can
uniquely identify families of incomplete geodesics (or other
curves) with their “endpoints” in ∂M. We will use exactly
this common feature of the boundary constructions. It
allows us to speak of approaching a point on the axis as a
limiting process along a chosen class of curves.
In this work, we will not select a particular boundary

construction. Different constructions can yield a boundary
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(representing the generalized axis) with various coarseness
of point resolution. Various constructions could, for exam-
ple, represent the axis of a plain conical singularity as:
(i) a two-dimensional set of points (a point representing
different position and time on the axis); or (ii) a three-
dimensional cylinder S1 ×R2 (each point represented by a
class of curves approaching the axis from one angular
direction, keeping thus a directional information for the
points on the axis); or (iii) a single point (erasing thus
significant information about the structure of the axis). We
allow “fine-grained” resolution of axis points, but assume it
is not too coarse. Namely, we allow only such boundary
constructions in which all important characteristics, such
as norms and products of Killing vectors, approach the
same values along all curves from the class specifying a
single boundary point. We discuss a particular boundary
construction—the g-boundary—in the spinning cosmic
string spacetime (Appendix) as a prototypical example
of a torsion singularity. Similar features are expected in
spacetimes with a NUT parameter, although we do not
explicitly construct the g-boundary there.

III. NEW GEOMETRIC DEFINITION
OF CONICITY

Let us consider a general stationary axially symmetric
spacetime, i.e., a Lorentzian manifold ðM;gÞ with a two-
dimensional commutative group of symmetries generated
by a two-dimensional Abelian algebra of Killing vectors Γ.
If the spacetime has more than two independent Killing
vectors (e.g., in the case of spherical symmetry), we choose
Γ to be the subalgebra of the full algebra of symmetries
with such properties.
We assume that the spacetime is periodic when circum-

venting the generalized axis. The periodic direction is
generated by a unique global cyclic Killing vector c∈Γ.
It has closed orbits, and we normalize it in such a way that
the parameter of its flow has the period 2π.
Furthermore, the spacetime is stationary. It contains a (at

least somewhere) timelike Killing vector t∈Γ with non-
closed orbits. Killing vectors t and c are linearly indepen-
dent and generate the Lie algebra Γ. We are interested in
the stationary Killing vectors, which are timelike near the
symmetry axis. However, such a Killing vector is not
unique. Γ contains infinitely many noncyclic timelike
Killing vectors. They correspond to various stationary
observers revolving near the symmetry axis.
Every orbit generated by Γ is a two-dimensional surface

locally isometric to Minkowski space, which, we assume,
has the topology R × S1. The space of orbits could be
labeled by two parameters. Intuitively, one represents a
“radial coordinate” and the other a “position” along the axis
(an analog of ρ and z in cylindrical coordinates).
Let us discuss first the case of a spacetime with a

regular axis. In this case, the orbits of the cyclic Killing
vector c are spacelike and shrink to a vanishing length

when approaching the axis. In other words, the cyclic
Killing vector has fixed points on the axis. Namely, a
regular (symmetry) axis point is defined as a regular point
in the manifold that is a fixed point of c, i.e., the point x∈M
where the cyclic Killing vector vanishes,

cjx ¼ 0: ð3:1Þ

The set of these points forms a regular (part of the) axis. It
is a two-dimensional timelike surface and c is spacelike in
its vicinity. Furthermore, a necessary condition that ensures
smooth Lorentzian geometry in the vicinity of the axis is
the elementary flatness condition [1,61–63],

lim
jcj→0

jdjcjj ¼ 1; ð3:2Þ

where d is the gradient and j • j denotes the norm of a
spacelike vector, jcj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c · g · c
p

. Observe that djcj is
spacelike,2 so its norm is well defined. The regular part
of the axis has no conical singularity, meaning that the
conicity we define below is trivial, C ¼ 1.
Next, let us turn to the discussion of a singular axis. As

we said in the previous section, in general, it cannot be
represented as a set of regular points in spacetime M. The
singularity cannot be removed by extension of ðM; gÞ into a
larger spacetime ðM0; g0Þ containing it as a regular interior
point. Furthermore, we want to consider only such a
singular axis that does not exhibit (scalar or nonscalar)
curvature singularities. We thus assume that the local
geometry remains well behaved in the vicinity of the
singular axis, yet no extension is possible, i.e., it is a
quasiregular singularity in the terminology of [3].
We will deal with the singular axis by adding generalized

boundary points ∂M to the spacetime, which represent the
axis. Each boundary point x∈ ∂M is characterized by a
suitable class of curves, which we understand as approach-
ing the given boundary point x. In the following, when we
refer to approaching the axis or taking a limit toward a point
on the axis, we mean the limit along the curves from the
class representing the point.
There exist several such constructions, and we do not

specify a particular one. However, we state the necessary
conditions that such a construction must satisfy.
First, the existence of the singular axis has to be

indicated by the existence of the axial Killing vector.
We require that the spacetime admits a Killing vector
a∈Γwhich becomes spacelike and its norm vanishes when
we approach a generalized axis point x∈ ∂M,

jaj → 0: ð3:3Þ

2For v∈Γ, the gradient djvj is annihilated by any w∈Γ
(thanks to w · djvj ¼ £wjvj, £wg ¼ 0, and £wv ¼ ½w;v� ¼ 0).
Since orbits of Γ are Lorentzian, djvj must be spacelike.
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We also require that the scalar products of the axial Killing
vector with other Killing vectors from Γ vanish,

a · g · w → 0; ∀w∈Γ; ð3:4Þ

and that the limits of scalar products of Killing vectors from
Γ are independent of the choice of a curve from the class
representing x∈ ∂M,

v · g · w → awell-defined finite value; ∀v;w∈Γ:

ð3:5Þ

The first two conditions substitute for the condition (3.1)
valid in the regular case. We cannot require a → 0 since the
generalized axis points do not have, in general, a well-
defined tangent structure, and the axial Killing vector a is
not well defined as a vector at these points. Therefore, we
have to rely only on the projections onto other Killing
vectors, since we can only limit scalar quantities when
approaching the axis. The last condition (3.5) is a natural
consistency condition imposed on the boundary point
construction.
Finally, we also employ an analogy of the elementary

flatness condition (3.2). We require

lim
jaj→0

jdjajj ¼ 1: ð3:6Þ

Intuitively, the norm jaj plays the role of a radial coordinate
around the axis, the surfaces jaj ¼ const are 3-dimensional
cylinders S1 ×R2 wrapped around the axis. The gradient
djaj points in the radial direction, and the condition (3.6)
guarantees that jaj measures the radial distance.
After we have specified in more detail the procedure for

approaching the axis, we can make our requirement on the
stationary Killing vector near the axis more precise. For
each generalized point on the axis, we assume the existence
of a stationary Killing vector t which is timelike, with a
nonvanishing square norm, when approaching the axis
point,

t · g · t → −ν2 < 0: ð3:7Þ

For a given generalized axis point x∈ ∂M, the axial
Killing vector a is given uniquely (up to orientation).
Moreover, all Killing vectors different from the axial one
become timelike near the axis. Indeed, any other Killing
vector v∈Γ can be written as a combination of the axial
vector a and the stationary Killing vector t, v ¼ vaaþ vtt,
with va, vt being real constants. Using (3.3), (3.4), and
(3.7), we have v · g · v → −ðvtÞ2ν2. It means that v is a
timelike vector with nonvanishing square norm except for
vt ¼ 0. The Killing vector v is thus either stationary or
proportional to the axial vector. (In the latter case, the
condition (3.6) applied to v then implies that v ¼ �a.)

Moreover, the cyclic Killing vector c is equal to the axial
one (the regular axis), non trivially proportional to the axial
one (a conical singularity), or timelike with nonvanishing
square norm (a torsion singularity).
Although the axial Killing vector is unique for a given

axis point, different axis points can be associated with
different axial Killing vectors. The simplest example is that
axial vectors a1 and a2, associated with two axis points x1
and x2, are proportional to each other, but different, since
the condition (3.6) may fix different normalizations in the
two points. More complicated cases will be discussed
below.
The set of all singular axis points sharing the same a is

the singular (part of the) axis associated with a. There is
just one cyclic Killing vector c but there may be multiple
distinct noncyclic axial Killing vectors aι labeled by ι. The
cyclic Killing vector may become the axial on a part of the
axis. The entire (generalized) axis of the spacetime can thus
be formed by several parts corresponding to each aι, where
one of them may be regular, corresponding to c. Although
the label ι is often one discrete parameter, it may also be
continuous (e.g., in spacetimes with variable conicity along
the axis) or encapsulate several parameters.
We now introduce a new geometric definition of con-

icity. It is defined with respect to an arbitrarily chosen
stationary observer given by a timelike Killing vector t∈Γ.
We express the axial Killing vector a in terms of t and the
unique cyclic Killing vector c as

a ¼ 1

K
ðcþ T tÞ; C≡ jKj: ð3:8Þ

Here, C > 0 (determined by K) and T ∈R are two
constants referred to as the conicity and the time-shift,
respectively. The conicity is related to the conical
deficit δ as

δ≡ 2πð1 − CÞ: ð3:9Þ

The nontrivial conicity, C ≠ 1—that is, a nonvanishing
conical deficit δ ≠ 0—corresponds to the presence of the
conical singularity, commonly interpreted as a string with a
tension. The nonzero time-shift, T ≠ 0, on the other hand,
is related to the presence of the torsion singularity [2,19],
which is often viewed as a string with spin.
The three Killing vectors c, a, and t are depicted in Fig. 1.

Although our definition may appear somewhat abstract at
this stage, its motivation will become clearer in the next
section, where we compare C directly to a natural extension
of the common notion of conicity.
Recall that a (for the given singular part of the axis) and c

are fixed uniquely by the spacetime properties, however, t is
completely arbitrary as we do not assume any specifics of
the stationary observers that measure the conicity and time-
shift. Therefore, the two quantities C and T should be
viewed as functions of t, C ¼ CðtÞ and T ¼ T ðtÞ. If we now
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choose another stationary observer, t̃ ¼ ϰtþ βc, ϰ ≠ 0,3

then

a¼ 1

K

�
cþ T

t̃− βc
ϰ

�
¼ ϰ − βT

ϰK

�
cþ T

ϰ − βT
t̃

�
; ð3:10Þ

meaning the conicity and time-shift transform as

Cðt̃Þ ¼ CðtÞ
j1 − β

ϰ T ðtÞj ; T ðt̃Þ ¼ T ðtÞ
ϰ − βT ðtÞ : ð3:11Þ

Notice that vanishing T for a single t implies that T has
to vanish identically for all t and also that C becomes
independent of t. If T ≠ 0, then there always exist
observers t̃ that do not measure any conical deficit,
Cðt̃Þ ¼ 1; they are given by

tI=ϰ ¼ tþ 1þK
T

c; tII=ϰ ¼ tþ 1 −K
T

c; ð3:12Þ

where K and T are quantities measured by a reference
observer t. Since the Killing vectors tI;II can never coincide
or become proportional to cyclic, there are always exactly
two such observers. Using (3.8) one may express tI;II also
using the axial and cyclic Killing vectors,

tI;II=ϰ ¼ K
T
ða� cÞ: ð3:13Þ

Due to this, their orbits are exact mirror images with respect
to the orbit of a and intersect it at the same points. This can
be seen in Fig. 2.

Considering the above, given the periodic identification
of the spacetime, the conicity measured at the axis with
the torsion singularity is always observer dependent; and
therefore unphysical unless a canonical observer is speci-
fied. We are not aware of any natural geometric condition
that canonically selects such an observer in a general
spacetime. While we outline some possible choices in
Sec. VI, they are strongly spacetime dependent and their
inclusion would not lead to a satisfactory notion of conicity.
As we will see, in spacetimes with the NUT parameter,

the axis is typically split into two parts, which we denote by
“þ” and “−” and refer to as the top/bottom semiaxes,
respectively. Each of them is associated with a different
axial Killing vector aþ and a−, i.e., ι ¼ �1. Motivated
by the fact that, in the C-metric and similar spacetimes,
differences in conicity between the two semiaxes represent
an imbalance of string tensions responsible for accelera-
tion, one may introduce the conicity difference by

ΔC≡ Cþ − C−
Cþ þ C−

; ð3:14Þ

which was chosen so that the formula remains invariant
under a rescaling of the conicity by the same factor on both
semiaxes, C� → qC�, where q is a positive constant. The
first equation in (3.11) implies the following transformation
of the conicity difference:

ΔCðt̃Þ ¼
CþðtÞ

j1−β
ϰT þðtÞj

− C−ðtÞ
j1−β

ϰT −ðtÞj
CþðtÞ

j1−β
ϰT þðtÞj

þ C−ðtÞ
j1−β

ϰT −ðtÞj
: ð3:15Þ

For4 T þ ¼ T −, ΔC becomes independent of t (even if C�
are t-dependent, i.e., for T � ≠ 0). In contrast, if T þ ≠ T −

FIG. 1. Cyclic c (blue), axial a (Green), and timelike t (red) Killing vectors are shown on the orbit of Γ. The orbit of the Killing vectors
Γ has the topology of a cylinder and the induced flat Minkowski geometry. The left picture corresponds to T ¼ 0, while the middle and
right pictures depict two equivalent representations of the case T ≠ 0. The cylinder in the right picture has been “untwisted” in the
angular direction and oriented horizontally to highlight the spacelike and timelike character of the Killing vectors.

3Naturally, only the fraction ϰ=β matters for the observer’s
trajectory. The overall constant can be fixed (at a given orbit of Γ)
by the usual normalization t2 ¼ −1, but we will not do so.

4Notice that if T þ ¼ T − holds for one observer t, it holds also
for any other observer t̃, cf. the transformation relation (3.11).

KOLÁŘ, KRTOUŠ, and OSSOWSKI PHYS. REV. D 112, 104021 (2025)

104021-6



for a given t, then there always exist observers that measure
no conicity difference, ΔC ¼ 0, namely,

t1=ϰ ¼ tþ Cþ þ C−
CþT − þ C−T þ

c;

t2=ϰ ¼ tþ Cþ − C−
CþT − − C−T þ

c; ð3:16Þ

where C� and T � are quantities measured by a reference
observer t. Since t1;2 can never coincide and only one may
become proportional to cyclic at once, there is always at
least one such observer. The case with T þ ¼ T − for all t
corresponds to the eliminable torsion singularity as it can
be removed by changing the periodic identification of
points, i.e., promoting a different Killing vector to cyclic
one. On the other hand, the spacetimes with a nonzero NUT
parameter always feature the ineliminable torsion singu-
larity commonly known as the Misner string, T þ ≠ T −,
which can only be moved from one semiaxis to another by
regluing spacetime points but not eliminated globally. As a
consequence, irrespective of the periodic identification of
points, the conicity difference in spacetimes with a nonzero
NUT parameter is always observer dependent.

IV. RELATION TO “STANDARD” DEFINITION

Having established the new geometric definition of
conicity let us see how it compares to the standard notions
commonly used in the literature. The conical singularity in
stationary axially symmetric spacetimes typically refers to a
“point” on the symmetry axis, where the topology of a
distinguished two-dimensional surface S going through it
resembles that of a cone [2,6]. The conicity itself is then
calculated by measuring the length L ∘ of circles on S

centered around that point divided by 2π times their
radius ρ ∘ in the limit ρ ∘ → 0þ,

Cstandard ≡ lim
ρ ∘→0þ

L ∘
2πρ ∘

: ð4:1Þ

The surface S is rarely specified geometrically, but it
should be orthogonal to the axis and tangent to the cyclic
Killing vector c. The length L ∘ should be the length of an
orbit of c in S and the distance ρ ∘ should be measured
along the integral curves that emanate orthogonally from
the axis.
Unfortunately, such a definition has one major flaw: The

limit (4.1) only exists if the lengths of small circles shrink
to zero, L ∘ → 0þ, when approaching the axis, ρ ∘ → 0þ.
This is not satisfied in spacetimes with the torsion singu-
larity, T ≠ 0, so the above definition needs to be extended
to be comparable to ours.
Virtually the only possible extension that will make the

limit well defined is to replace the circles (the closed orbits
of c) by the orbits of a, whose norm shrinks to zero by
definition. To define the analogy of the two-dimensional
surface S that is “orthogonal” to the axis, we first define
the radial direction given by the normalized vector-gradient
of jaj,

r≡ g−1 ·
djaj
jdjajj ; ð4:2Þ

where g−1 is the inverse metric. Since ½a; r� ¼ 0 (a conse-
quence of ½a; •� ¼ £a, £ag ¼ 0, £ad ¼ d£a, and ½a; a� ¼ 0),
the Frobenius theorem implies that these two vector fields
define a set of two-dimensional integrable submanifolds.
Furthermore, every such submanifold is further foliated by

FIG. 2. Picture shows two timelike tI;II (magenta) Killing vectors measuring trivial conicity, which are proportional to the sum and
difference of the cyclic c (blue) and axial a (Green) Killing vectors via (3.13). Both pictures are equivalent representation of the case
T ≠ 0. The cylinder in the right picture has been untwisted and oriented horizontally (relative to the left one) to highlight the spacelike
and timelike character of the Killing vectors.
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one-dimensional leaves of constant jaj generated by a
(because a · djaj ¼ 0). Given how this compares to S for
c ∝ a, we propose that the two-dimensional surface S
should be replaced by the integral submanifold generated
by a and r.
Since the orbits of a are not closed (unlike orbits of c),

and because the norms of Killing vectors are always
constant along their orbits, these orbits have infinite
lengths. For this reason, we need to provide additional
information to determine the endpoints of the orbit segment
of a, the length of which should enter into the conicity
formula. Any two points on the orbit of a, when translated
close enough to the axis along r, can be connected by
orbits of a timelike Killing vector t. Hence, the inherent
freedom in fixing these endpoints can be equivalently
described by two successive intersections with the orbits
of some stationary observer t. From the perspective of
such an observer, these two points are located at the
“same spatial position” (though at different times), natu-
rally extending the idea of standard circle integration to a
spiral-segment integration; see Fig. 3. An immediate draw-
back of such a generalized notion of conicity is its observer
dependence.
This extended notion of conicity can be formulated more

precisely as follows: Let yðλÞ and zðσÞ be the integral lines
of a and t (within the orbit generated by Γ),

aðyðλÞÞ ¼ ẏðλÞ; tðzðσÞÞ ¼ żðσÞ; ð4:3Þ

with their two successive intersections being yðλ1Þ ¼ zðσ1Þ
and yðλ2Þ ¼ zðσ2Þ. Here, ẏðλÞ denotes the tangent vector to
the curve yðλÞ. From (3.6) and (4.2) it follows that jaj ≈ ρ

where ρ is a small distance measured along r.5 [This
follows directly by rewriting the argument of the limit as an
ordinary derivative: jdjajj ¼ r · djaj ¼ djaj=dρ, where all
expressions are understood to be evaluated at xðρÞ.] Since ρ
remains constant along the orbit of a, the length L of yðλÞ
between the two successive intersections is simply
ρjλ2 − λ1j. Hence, the extended definition of conicity reads

Cextended ≡ lim
ρ→0þ

L
2πρ

¼ jλ2 − λ1j
2π

ð4:4Þ

which clearly reduces back to Cstandard if T ¼ 0, i.e.,
for c ∝ a.
Let us show that Cextended actually measures the same

conicity as C defined by (3.8). By assumption of cyclicity
of c, there exist (various) 2π periodic coordinates φ
satisfying c · dφ ¼ 1. To select a single coordinate system
on the orbit of Γ, we need to fix arbitrary t and demand the
coordinate φ to also satisfy t · dφ ¼ 0, which implies
a · dφ ¼ 1=K. The remaining coordinate, which we denote
by τ, can be chosen by t · dτ ¼ 1 and c · dτ ¼ 0,6 which
leads to a · dτ ¼ T =K. This fixes the coordinate system on
the orbit of Γ, see Fig. 3. The coordinate descriptions
of (4.3) [φ0ðλÞ ¼ 1=K, τ0ðλÞ ¼ T =K, and φ0ðσÞ¼0,
τ0ðσÞ ¼ 1] imply φðλÞ¼ðλ−λ1Þ=K, τðλÞ¼ðλ−λ1ÞðT =KÞ
and φðσÞ ¼ 0, τðσÞ ¼ σ − σ1, where we adjusted the first

FIG. 3. Orbit of Γ covered by coordinates τ (blue) and φ (red). The left picture corresponds to T ¼ 0, while the middle and right
pictures depict two equivalent representations of the case T ≠ 0. The left picture shows the circle of circumference L ∘ for T ¼ 0, while
the middle and right pictures show the segment of length L for T ≠ 0 (cyan); these are used in the conicity formulas (4.1) and (4.4),
respectively. Going from T ¼ 0 to T ≠ 0, we clearly see the necessity of introducing an observer t, corresponding to the lines of
constant φ, which defines the notion of “same spatial position.” This replaces the integration along the circle with integration along the
spiral segment (straightened in the representation on the right).

5The distance ρ itself can then be calculated by integrating and
inverting the equation for integral curves of r, i.e., rðxðρÞÞ ¼ ẋðρÞ.

6It is worth noting that c · dτ ¼ 0 is independent of t meaning
that the surfaces of constant time, τ ¼ const:, remain unchanged
for different observers t; they are just relabeled due to t · dτ ¼ 1.
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intersection (i.e., λ ¼ λ1, σ ¼ σ1) to be at the origin
φ ¼ τ ¼ 0. Since points φ ¼ 0 are identified with points
φ ¼ 2π, the second intersection (i.e., λ ¼ λ2, σ ¼ σ2) is
for λ2 and σ2 satisfying 2π ¼ jλ2 − λ1j=C ¼ jσ2 − σ1j=jT j,
which confirms that the extended notion of conicity (4.4)
matches our geometric definition (3.8),

Cextended ¼ C: ð4:5Þ

V. APPLICATIONS

In this section, we apply the geometric definition of
conicity from Sec. III to several spacetimes with a singular
axis. We begin with the spinning cosmic string spacetime,
which not only provides an explicit compatibility check
with the standard notion in the nonspinning case, but more
importantly serves as an example of a prototypical topo-
logical defect—the Misner string—which appears in sol-
utions with a nonzero NUT parameter. Next, we apply our
conicity definition to the Plebański-Demiański metric.7

Although this whole class with all subcases can be written
in Astorino coordinates [52], we first perform all necessary
calculations for the Plebański-Demiański metric in the
convenient Griffiths-Podolský (GP) coordinates [48,49]
(see also [2]) and discuss two subcases of high interest,
the C-metric and Taub-NUT spacetime. Finally, in a
separate section, we consider the accelerated Taub-NUT
spacetime of Petrov type D recently discovered by Astorino
in [52], which cannot be directly obtained from the
Plebański-Demiański in the GP coordinates. Neverthe-
less, a form of the metric resembling GP coordinates still
exists [64] for Λ ¼ 0, so we make use of it to simplify our
calculations. The case of the accelerated Taub-NUT is
especially interesting since switching on the NUT param-
eter in the C-metric changes the situation from nontrivial
well-defined conicity to an observer-dependent quantity
that can be even measured as zero by special observers.

A. Spinning cosmic string

The spacetime of the spinning cosmic string is given by
the metric

g≡ −ðdt − sdϕÞ2 þ dq2 þ b2q2dϕ2 þ dz2; ð5:1Þ

where we demand the Killing vector c ¼ ∂ϕ to be cyclic,
which fixes the periodic identification of points for all
values of the two parameters b > 0 and s∈R. If b ≠ 1 or
s ≠ 0, this geometry represents an infinitely long string/
strut that is under tension/stress and rotates around its own
axis. The metric is locally flat (for q > 0) but differs from
the global Minkowski spacetime by a topological defect

at q ¼ 0. Indeed, it is possible to perform a coordinate
transformation,

ðt0; q0;ϕ0; z0Þ≡ ðt − sϕ; q; bϕ; zÞ; ð5:2Þ

which brings the metric to the usual form of Minkowski
spacetime in cylindrical coordinates,

g ¼ −dt02 þ dq02 þ q02dϕ02 þ dz02; ð5:3Þ

effectively eliminating both parameters from (5.1).
However, the resulting manifold still differs nontrivially
from the global Minkowski spacetime in which

∂ϕ0 ¼ 1

b
ð∂ϕ þ s∂tÞ ð5:4Þ

would be a cyclic Killing vector instead. These coordinates
also reflect a common method of constructing the spinning
cosmic string spacetime by identifying points in global
Minkowski spacetime,

ðt0; q0;ϕ0 ¼ 0; z0Þ ¼ ðt0 − 2πs; q0;ϕ0 ¼ 2πb; z0Þ: ð5:5Þ

It also explains why b and s are genuine geometric
parameters that cannot be absorbed into coordinate trans-
formation unless accompanied by a change in the periodic
identification of points (promoting a new Killing vector
to the cyclic one). It is well known that the spacetime
features a quasiregular singularity at q ¼ 0 [22], charac-
terized by b and s.
The global Minkowski spacetime corresponding to

b ¼ 1 and s ¼ 0 has a regular axis at q ¼ 0. Let us show
that for b ≠ 1 or s ≠ 0 the quasiregular singularity at q ¼ 0
corresponds to a singular axis as defined above and
calculate the conicity and time-shift according to our
new geometric definition.
Consider a general Killing vector a∈Γ,

a ¼ aϕ∂ϕ þ at∂t; ð5:6Þ

with aϕ and at being two constants, and analyze the
conditions (3.3) and (3.6) for the axial Killing vector.
The norm of a is given by

jaj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaϕÞ2b2q2 − ðat − aϕsÞ2

q
; ð5:7Þ

and the norm of its gradient further reads

jdjajj ¼ ðaϕÞ2b2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaϕÞ2b2q2 − ðat − aϕsÞ2

p : ð5:8Þ

For concreteness, let us consider the boundary points ∂M to
be given by the g-boundary ∂gM. As we show in the
Appendix, it is characterized by inequivalent incomplete

7We restrict ourselves to the expanding subclass with
2-surfaces of positive curvature as they describe black-hole-like
objects.
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geodesics leading to q ¼ 0 (A5) that can be parametrized
by the terminal coordinates ť, ž, and the (initial) angle ϕ̂.
Clearly, jaj approaches 0 along these curves if and only if
at ¼ aϕs. Assuming this, then jdjajj tends to 1 if and only
if aϕ ¼ 1=b, where we ignored the overall sign ambiguity
(i.e., the two possible orientations), which is irrelevant due
to the absolute value in the definition of conicity. Together,
we find that the axial Killing vector is given by

a ¼ 1

b
ð∂ϕ þ s∂tÞ: ð5:9Þ

This Killing vector could, in principle, differ for each point
in ∂M, but here it turns out to be the same for all x∈ ∂M,
which also satisfies (3.4); furthermore, (3.5) holds and in
particular, (3.7) is met for t ¼ ∂t with ν2 ¼ 1.
After inserting a general timelike Killing vector t∈Γ,

t ¼ tt∂t þ tϕ∂ϕ; ð5:10Þ
where tt and tϕ are constant, into (5.9) and rearranging, we
arrive at

a ¼ 1

b

�
cþ s

t − tϕc
tt

�
¼ 1 − s tϕ

tt

b

�
cþ s 1

tt

1 − s tϕ
tt
t

�
: ð5:11Þ

Comparing this expression with our definition (3.8) [or,
alternatively, from (3.11) by renaming t → ∂t, t̃ → t,
ϰ → tt, β → tϕ], we can easily read out the conicity and
time-shift,

CðtÞ ¼ b

j1 − s tϕ
tt j

; T ðtÞ ¼ s 1
tt

1 − s tϕ
tt
: ð5:12Þ

Due to its observer dependence, the conicity C should
be viewed as unphysical whenever s ≠ 0 (i.e., in the
presence of torsion singularity T ≠ 0). Notice also that
the parameter b corresponds to the value of conicity
measured only by t ∝ ∂t, i.e., Cðtt∂tÞ ¼ b. This contrasts
with [2], which refers to b as the conicity regardless of an
observer.
Finally, one can see [e.g., using (3.12) with the above

replacements] that, as long as s ≠ 0, there always exist two
observers that do not measure any conical deficit (trivial
conicity),

tI ¼ tt
�
∂t þ

1þ b
s

∂ϕ
�
; tII ¼ tt

�
∂t þ

1 − b
s

∂ϕ
�
:

ð5:13Þ

Interestingly, the observer tII becomes proportional to ∂t for
the tensionless spinning cosmic string, b ¼ 1.

B. Plebański-Demiański (in GP coordinates)

The Plebański-Demiański metric is commonly inter-
preted as describing the spacetime of a charged accelerated
rotating black hole with the NUT parameter and the cosmo-
logical constant. This exact solution of the Einstein-
Maxwell equations is parametrized by seven real numbers
α, a, l,m, e, g, andΛ called the acceleration, rotation, NUT,
mass, electric/magnetic charges, and the cosmological
constant, respectively. Let us stress that despite these
names, their physical meaning is only known in special
subcases. In the GP coordinates the metric of the
Plebański–Demiański solution reads

g≡ 1

Ω2

�
−
Q
Σ
ðdt − AdϕÞ2 þ Σ

Q
dr2 þ Σ

P
dθ2 þ P

Σ
sin2θðadt − RdϕÞ2

�
; ð5:14Þ

where we introduced the following functions:

Ωðr; θÞ≡ 1 −
α

ω
rðlþ a cos θÞ;

Σðr; θÞ≡ r2 þ ðlþ a cos θÞ2;
PðθÞ≡ 1 − a3 cos θ − a4 cos2 θ;

QðrÞ≡ ω2k − 2Mrþ ϵr2 − 2
αν

ω
r3 −

�
αkþ Λ

3

�
r4;

AðθÞ≡ bða sin2 θ − 2lðcos θ þ sÞÞ;
RðrÞ≡ bΣþ aA ¼ bðr2 þ l2 þ a2 þ 2alsÞ: ð5:15Þ
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The constants appearing above are given by,

a3 ≡ 2
αaM
ω

− 4α2
al
ω2

kðω2kþ e2 þ g2Þ − 4

3
Λal;

a4 ≡ −α2
a2

ω2
ðω2 þ e2 þ g2Þk − 1

3
Λa2;

ϵ≡ ω2k
a2 − l2

þ 4
αlM
ω

− ða2 þ 3l2Þ
�
α2

ω2
ðω2kþ e2 þ g2Þ þ Λ

3

�
;

n≡ ω2kl
a2 − l2

−
αMða2 − l2Þ

ω
þ ða2 − l2Þ

�
α2

ω2
ðω2kþ e2 þ g2Þ þ Λ

3

�
;

k≡ 1þ 2αlMω−1 − 3α2l2ω−2ðe2 þ g2Þ − l2Λ
3α2l2 þ ω2ða2 − l2Þ−1 : ð5:16Þ

Notice that there are three additional parameters ω, s, and
b > 0. The parameter ω is a gauge parameter that may be
set to any nonzero value. Convenient choices exist for
taking various limits of the metric. In particular, recently it
was found that setting ω ¼ ða2 þ l2Þ=a allows both a ¼ 0
and l ¼ 0 limits simultaneously at the cost of different
parametrization [51]. We keep the parameter ω free for the
sake of generality.
On the other hand, the parameters s and b govern the

behavior of the singular axis. As we will see below, the
parameter s (sometimes called the Manko–Ruiz parameter
due to [65]) encodes the presence of the Misner string,
determining how the torsion singularity is distributed
between the two halves of the symmetry axis. In contrast,
the parameter b changes the overall conicity. We will see
that the choices s ¼ −1 and s ¼ þ1 correspond to vanish-
ing time-shift for the semiaxes θ ¼ 0 (top semiaxis) and
θ ¼ π (bottom semiaxis), respectively. Note that irrespec-
tive of the values of s and b we assume c ¼ ∂ϕ to be the
cyclic Killing vector, i.e., the periodic identification of
points is fixed. Clearly, a coordinate change

ðt0; r0; θ0;ϕ0Þ≡ ðtþ 2lsbϕ; r; θ; bϕÞ ð5:17Þ

could eliminate both s and b from the metric tensor (5.14)
but it would also imply the transformation

∂ϕ0 ¼ 1

b
∂ϕ − 2ls∂t: ð5:18Þ

From this we can see that the parameters s and b cannot be
globally absorbed into a coordinate transformation unless
one also were to change the periodic identification of points
so that a different Killing vector would become cyclic
(specifically ∂ϕ0). Clearly, both s and b are geometric
parameters describing global properties of the spacetime.

We denote values of P and A at the endpoints of θ by

Pþ ≡ Pð0Þ ¼ 1− a3 − a4; Aþ ≡ Að0Þ ¼ −2lbðsþ 1Þ;
P− ≡ PðπÞ ¼ 1þ a3 − a4; A− ≡ AðπÞ ¼ −2lbðs− 1Þ:

ð5:19Þ

Assuming the Lorentzian signature of g we have P > 0
and therefore both Pþ and P− are necessarily positive. It is
well known [48,49] (see also [2]) that the coordinate
singularities at Σ ¼ 0, Q ¼ 0, and Ω ¼ 0 are curvature
singularities, horizons, and conformal infinities, respec-
tively. The only remaining irregular points are the poles of
coordinates, θ ¼ 0 and θ ¼ π. These are either regular
points representing the regular axis (e.g., in Kerr space-
time) or quasiregular singularities (e.g., in Taub–NUT
spacetime [66]).
To show that quasiregular singularities θ ¼ 0 and θ ¼ π

(if present) fit to our definition of the singular axis and to
compute the corresponding C and T , we first need to
identify the axial Killing vectors a. Let us consider a
generic Killing vector,

a ¼ aϕ∂ϕ þ at∂t; ð5:20Þ

and study the two conditions given by (3.3) and (3.6) for
the curves approaching the boundary points ∂M given by
θ ¼ 0 or θ ¼ π; these will specify the constants aϕ and at.
The quantities jaj and jdjajj are given by

jaj ¼ sin2 θPX2 −QY2

ΩΣ
ð5:21Þ

and
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jdjajj ¼ �
P
�
sin2θP0ΣΩX2 − sin θPX2

	
sin θ∂θΣΩþ Σðsin θ∂θΩ − 2 cos θΩÞ
þQY

	
Σð2aϕA0Ωþ ∂θΩYÞ þ ∂θΣΩY


�
2

−Q
�
∂rΣΩðQY2 − sin2θPX2Þ − Σ

	
Ωð2aϕsin2θPR0X þQ0Y2Þ þ ∂rΩðsin2θPX2 −QY2Þ
�

×
�
Σ
	
Ωð2aϕsin2θPR0X þQ0Y2Þ þ ∂rΩðsin2θPXÞ2 −QY2


�þ ∂rΣΩðsin2θPX2 −QY2Þ�
×
	
4Σ4Ω2ðsin2θPX2 −QY2Þ
−1; ð5:22Þ

where we introduced the shorthand notation

X ≡ aat − aϕR; Y ≡ at − aϕA: ð5:23Þ

Clearly, jaj approaches zero toward θ ¼ 0 or θ ¼ π if and
only if we have at� ¼ A�a

ϕ
�. Now, inserting this into jdjajj

and taking the limit, we arrive at one if and only if
aϕ� ¼ 1=ðbP�Þ, again ignoring the overall sign ambiguity.
Putting these two results together, we can find the axial
Killing vectors aþ and a− associated with θ ¼ 0 and θ ¼ π,
respectively,

a� ¼ 1

bP�
ð∂ϕ þ A�∂tÞ; ð5:24Þ

which again satisfies the assumption (3.4). Moreover, we
can show that (3.5) holds, and that (3.7) is satisfied for
t ¼ ∂t in the stationary region, QðrÞ > 0, with ν2 ¼
QðrÞ=ðΩ2ðr; cos−1ð�1ÞÞΣðr; cos−1ð�1ÞÞÞ. The above con-
firms that, in general, θ ¼ 0 or θ ¼ π are two singular parts
of the axis each of which is associated with a different axial
Killing vector.
Inserting a general timelike Killing vector t∈Γ,

t ¼ tt∂t þ tϕ∂ϕ; ð5:25Þ

with tt and tϕ being its constant components, into (5.24)
yields

a� ¼ 1

P�b

�
cþA�

t− tϕc
tt

�
¼ 1−A� tϕ

tt

P�b

�
cþ A� 1

tt

1−A� tϕ
tt
t

�
:

ð5:26Þ

By comparing with our definitions (3.8) [or from (3.11)
with t → ∂t, t̃ → t, ϰ → tt, β → tϕ] we obtain for the
conicity and time-shift

C�ðtÞ ¼
P�b

j1 − A� tϕ
tt j

; T �ðtÞ ¼
A� 1

tt

1 − A� tϕ
tt
: ð5:27Þ

One can see that T � depends only on parameters l and s
while C� is also sensitive to other spacetime parameters
throughP�. Clearly, T þ ≠ T − for nonzero NUT parameter
l ≠ 0, which means that all such Plebański-Demiański
spacetimes have an ineliminable torsion singularity, i.e.,
the Misner string. In particular, for a suitable choice of s,

only one of the time-shifts vanishes and the corresponding
conicity is independent of an observer. One can find [see
(3.12) with the above replacements] that the following two
observers do not measure any conical deficit at a given
semiaxis,

tI ¼ tt
�
∂t þ

1þP�b
A�

∂ϕ
�
; tII ¼ tt

�
∂t þ

1−P�b
A�

∂ϕ
�
:

ð5:28Þ

If s ¼ −1, then for all observers,

Cþ ¼ Pþb; T þ ¼ 0; ð5:29Þ

while

C−ðtÞ ¼
P−b

j1 − 4l t
ϕ

tt j
; T −ðtÞ ¼

4l 1tt

1 − 4l t
ϕ

tt
: ð5:30Þ

Naturally, the conicity at the top semiaxis could be removed
by the choice b ¼ 1=Pþ, but the conicity at the bottom
semiaxis will remain nontrivial except for the two special
observers tI;II in (5.28) with A− ¼ 4l.
Previous calculations of conicity in spacetimes with a

nonzero NUT parameter [48–51] can be reconstructed for
the observer t ¼ tt∂t.

8 Such a choice may be sometimes
singled out as the only observer that remains timelike far
from the axis but typically not for the spacetimes that do not
flatten far from the axis (e.g., if Λ ≠ 0). Furthermore, the
definition of conicity should be insensitive to the regions
far from the symmetry axis. Hence, we conclude that the
value of C is unphysical for the semiaxis with the torsion
singularity, T ≠ 0. As a special case, this applies to any
spacetime with a nonzero NUT parameter, for which the
torsion singularity necessarily appears as a Misner string.

8In these references, it is incorrectly stated that the integration
is performed along “circles.” Yet the orbits of Killing vectors that
shrink to zero are not closed on the semiaxis with torsion
singularity—unless it was removed by periodic identification
of points which, however, cannot be done simultaneously on both
semiaxes. Instead, in view of our definition, these calculations
can be understood as integrations along a segment of the orbit of
the axial Killing vectors a�, determined by the choice t ¼ tt∂t.
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The conicity difference (3.14) [using (3.15)] then reads

ΔCðtÞ ¼ Pþj1 − A−
tϕ
tt j − P−j1 − Aþ tϕ

tt j
Pþj1 − A−

tϕ
tt j þ P−j1 − Aþ tϕ

tt j

¼ 2

1þ




 1−Aþtϕ

tt

1−A−
tϕ

tt





 P−
Pþ

− 1: ð5:31Þ

It vanishes for observers [cf. (3.16)],9

t1 ¼ tt
�
∂t −

Pþ þ P−

A−Pþ þ AþP−
∂ϕ

�
;

t2 ¼ tt
�
∂t −

Pþ − P−

A−Pþ − AþP−
∂ϕ

�
: ð5:32Þ

If Pþ ¼ P−, the above conditions take a simplified
form. As pointed out in [49], this happens if and only if
a3 ¼ 0 meaning that (i) a ¼ 0, or (ii) α ¼ lΛ ¼ 0, or
(iii) 2α2lω2k − ð2=3Þω2lΛ ¼ αωm. Then, one of the
observers measuring zero conicity difference reduces to
t2 ¼ tt∂t. (Nevertheless, the observers different from t1;2
will still measure nonzero conicity difference even for
a3 ¼ 0.) Let us now investigate two specific subcases of
high interest.

C. C-metric

As a consistency check, we evaluate the case a ¼ l ¼
e ¼ g ¼ Λ ¼ 0 of (5.14) (after setting the gauge parameter
ω ¼ a) corresponding to the spacetime of the accelerated
black hole known as the C-metric.10 Its metric tensor reads

g≡ 1

Ω2

�
−Qdt2 þ dr2

Q
þ r2

�
dθ2

P
þ b2Psin2θdϕ2

��
;

ð5:33Þ

where

Ωðr; θÞ≡ 1 − αr cos θ;

PðθÞ≡ 1 − 2αm cos θ;

QðrÞ≡
�
1 −

2m
r

�
ð1 − α2r2Þ: ð5:34Þ

Since A� ¼ 0, both axial Killing vectors are proportional
to the cyclic Killing vector a� ∝ c, but with different
factors. Therefore, the time-shifts on both sides of the axis
vanish, T � ¼ 0; any remaining singularity is purely
conical and the conicity is independent of the observer.
Specifically, from (5.27), the conicities on each semiaxis
are given by

C� ¼ bP� ¼ bð1 ∓ 2αmÞ; ð5:35Þ

for any choice of t. Clearly, setting either b ¼ ð1 − 2αmÞ−1
or b ¼ ð1þ 2αmÞ−1 regularizes one semiaxis, but not the
other one, meaning that the conical singularity is inelimin-
able. In general, the conicity difference obtained from
(5.31) reads

ΔC ¼ Pþ − P−

Pþ þ P−
¼ −αm; ð5:36Þ

which supports the interpretation of the conicity difference
as the acceleration per unit mass of the black hole. Our
calculation of the conicity reproduces the result from [13]
(see also [2]).

D. Taub–NUT
To demonstrate the observer-dependence of conicity

difference explicitly, let us consider the simplest case in
which it occurs: the Taub-NUT spacetime. By setting α ¼
a ¼ e ¼ g ¼ Λ ¼ 0 (irrespective of chosen ω) and b ¼ 1
in (5.14), we obtain its metric tensor

g≡ −fðrÞðdtþ 2lðcos θ þ sÞdϕÞ2 þ dr2

fðrÞ
þ ðl2 þ r2Þðdθ2 þ sin2θdϕ2Þ: ð5:37Þ

Here, Pþ ¼ P− ¼ 1 and the function Q=Σ becomes

fðrÞ≡ r2 − 2mr − l2

r2 þ l2
: ð5:38Þ

From (5.27), we obtain expressions for the conicities and
time-shifts on both semiaxes,

C�ðtÞ ¼
1


1þ 2lðs� 1Þ tϕtt




 ; T �ðtÞ ¼ −
2lðs� 1Þ 1tt

1þ 2lðs� 1Þ tϕtt
;

ð5:39Þ

and from (5.31) the corresponding conicity difference,

9Let us remark that these timelike Killing vectors appeared
already in [56–58], where they gave rise to the nonsingular
(accelerated) Kerr-NUT-(A)dS in the generalized Misner inter-
pretation. There, the conicity was calculated in the space of orbits
rather than in the spacetime. Along the lines of the original
Misner’s construction [31], one of these two vector fields t1;2 was
promoted to an extra cyclic Killing vector. The direct relation
between the orbits-space calculation of conicity and our geo-
metric definition remains open.

10Note that the parameter s will disappear for l ¼ 0. While we
do not consider it here, the C-metric with a constant torsion
singularity identical on both semiaxes (i.e., different from
accelerated Taub-NUT spacetime we will discuss in Sec. V E)
can be obtained via the limit l → 0, s → ∞, sl → const.
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ΔC ¼ 2

1þ




 1þ2ðsþ1Þltϕ

tt

1þ2ðs−1Þltϕ
tt






− 1: ð5:40Þ

The observers that do not measure any conicity at a given
semiaxis are [see (5.28)]

tI ¼ tt
�
∂t −

1

lðs� 1Þ ∂ϕ
�
; tII ¼ tt∂t; ð5:41Þ

while the observers for which the conicity difference of the
two semiaxis vanishes read [see (5.32)]

t1 ¼ tt
�
∂t −

1

2sl
∂ϕ

�
; t2 ¼ tt∂t: ð5:42Þ

Clearly, here, the observer tt∂t does not measure any
conical deficit, hence, also no conicity difference.

E. Accelerated Taub-NUT (in GP-like coordinates)

The accelerated Taub-NUTof Petrov type D was recently
found in [52]. This metric is not easily obtainable from the
general case (5.14) by setting some parameters to appro-
priate values; thus, we analyze it separately. Recently, a
convenient transformation has been found for the Λ ¼ 0
subcase [64], which allows for casting the metric tensor
into GP-like form similar to (5.14), which is more concise
then the original form from [52]. For simplicity, we also
take e ¼ g ¼ 0. Then, the metric reads11

g≡ 1

Ω2

�
−
Q
Σ
ðdt − AdϕÞ2 þ Σ

Q
dr2 þ Σ

P
dθ2 þ P

Σ
sin2θ

�
2αl2

1 − α2l2
dt − Rdϕ

�
2
�
; ð5:43Þ

where

Ωðr; θÞ≡ 1 −
1þ α2l2 þ 2αl cos θ

1 − α2l2
r
l
;

Σðr; θÞ≡ r2 þ l2
�
1þ α2l2 þ 2αl cos θ

1 − α2l2

�
2

;

PðθÞ≡ 1

1 − α2l2
ð1 − 2α2ml − α4l4 þ 2αðl −mð1þ α2l2Þ þ α2lðe2 þ g2 − l2ÞÞ cos θ þ α2ðe2 þ g2 − 2mlÞcos2θÞ;

QðrÞ≡ 1

4l2
ððr − lÞ2 − α2l2ðrþ lÞ2Þð2mlðr2 − l2Þ þ 4l3rþ ðe2 þ g2Þðr − lÞ2Þ;

AðθÞ≡ b
2lðαlsin2θ − ðcos θ þ sÞðα2l2 þ 1ÞÞ

1 − α2l2
;

RðrÞ≡ b

�
r2 þ l2ðαlð−4sðα2l2 þ 1Þ þ α3l3 þ 6αlÞ þ 1Þ

ð1 − α2l2Þ2
�
: ð5:44Þ

In these coordinates, we assume the cyclic Killing vector to
be c ¼ ∂ϕ, which fixes the periodic identification of the
spacetime. The parameters s and b have analogous mean-
ings as in (5.14). Again, we will denote Pþ ≡ Pð0Þ,
P− ≡ PðπÞ, and Aþ ≡ Að0Þ, A− ≡ AðπÞ with their explicit
values being

P� ¼ 1 − 4α2lm − α4l4 � 2αðl − α2l3 −mðα2l2 þ 1ÞÞ
1 − α2l2

;

A� ¼ 2ðs� 1Þlðα2l2 þ 1Þ
1 − α2l2

: ð5:45Þ

Given the similarity between the forms of (5.43) and
(5.14), the formulas for the norm of a general Killing vector

and the norm of its gradient are formally the same as for
the Plebański–Demiański given by (5.21) and (5.22) but
with a replaced by 2αl2=ð1 − α2l2Þ. Thanks to an identity
R − 2αl2A=ð1 − α2l2ÞÞ ¼ Σ, the axial Killing vectors
(5.24), conicity and time-shift (5.27), conicity difference
(5.31), and special observers (5.28) and (5.32) remain
unchanged, except for the updated expressions for P� and
A� in (5.45). For convenience, we include the explicit

11This form differs from the one obtained in [64]. It has be
transformed by means of ðt;ϕÞ → ðtþ bð2ðsþ 1Þlðα2l2 þ 1Þ=
ð1 − α2l2ÞÞϕ; bϕÞ, which affects functions A and R while
introducing the parameters s and b > 0.
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expressions appearing in (5.32),

Pþ þ P−

A−Pþ þ AþP−
¼ ð−α2l2 þ 1Þðα4l4 þ 4α2lm − 1Þ

2lðα2l2 þ 1Þðsðα4l4 þ 4α2lm − 1Þ þ 2αðl −m − α2l2ðlþmÞÞÞ ;

Pþ − P−

AþP− − A−Pþ
¼ αðα4l4ðlþmÞ − 2α2l3 þ l −mÞ

lðα2l2 þ 1Þð2αsðl −m − α2l2ðlþmÞÞ þ α4l4 þ 4α2lm − 1Þ : ð5:46Þ

VI. CONCLUSIONS

In this work, we analyzed the notion of conical deficits
(conicity) in spacetimes with torsion singularities, such as
the Misner string in the Taub-NUT geometry, and proposed
a natural geometric definition applicable to stationary,
axially symmetric spacetimes containing such quasiregular
singularities. We found that conicity becomes observer
dependent in this generalized setting, as it depends on the
choice of a timelike Killing vector. This leads to the striking
result that certain observers perceive no conical singularity
along the axis, and more generally, that there always exist
observers for whom the conicity is equal on both semiaxes
in spacetimes with nonzero NUT charge.
The observer dependence challenges the usual interpre-

tation linking conicity difference to the physical force along
the axis that causes the acceleration. It may also pose poten-
tial issues for the black hole thermodynamics of spacetimes
with a nonzero NUT parameter [35–37,39–42], as the first
law for spacetimes with a nonzero conical deficit—such
as the C-metric—often appears to include an extra term
related to acceleration [14–17]. On the other hand, the
observer dependence may help identify which observers the
thermodynamic quantities correspond to—for instance, those
who measure no conical deficit. Rather than relying on coni-
cal deficits, perhaps a more appropriate measure of accel-
eration may come from the presence of gravitational radiation
at conformal infinity, which is proportional to α [67]; it
therefore vanishes for α ¼ 0, regardless of the value of l.
Let us emphasize that we have not analyzed the detailed

structure of the axis containing the torsion singularity,

which may in part depend on the choice of boundary
construction. Moreover, our definition of conicity is purely
kinematical in nature—that is, it remains independent of
the field equations and any specific description of the
associated distributional sources.
Given above results, one may ask whether there exists a

canonical observer, defined by a geometric condition, that
could be incorporated into the definition of conicity. In
certain spacetimes, a unique observer can be fixed by
demanding it to remain timelike far from the axis. In the
spinning cosmic string or the Taub–NUT examples above,
this would geometrically select tt∂t, which are, for b ¼ 1,
the observers tII that measure no conical deficit. Although
the conical singularity is a topological defect, it would be
undesirable for the conical deficit to depend on properties
far from the axis—especially since it does not when torsion
singularities are absent. Furthermore, such observers may
not exist or be unique in spacetime that do not flatten far
from the axis.
Another geometric condition, which is axis local but

somewhat artificial, is to require the canonical observer to
satisfy ða · g · tÞ=jaj2 ¼ 0 close to the axis jaj → 0þ. This
would again identify tt∂t in the spinning cosmic string
spacetime, because

a · g · t
jaj2 ¼ btϕ ð6:1Þ

vanishes only for tϕ ¼ 0. The situation with Taub-NUT
spacetime would, however, be more complicated because

a� · g · t
ja�j2

¼ 2lfðrÞðcos θ ∓ 1Þð2ltϕðsþ cos θÞ þ ttÞ − tϕsin2θðl2 þ r2Þ
4l2fðrÞðcos θ ∓ 1Þ2 − sin2θðl2 þ r2Þ : ð6:2Þ

This expression vanishes at the horizon, fðrhorÞ ¼ 0, only
for tϕ ¼ 0, which corresponds again to tt∂t. However, if
r ¼ r0, fðr0Þ ≠ 0, (6.2) can only vanish close to θ ¼ 0 or
θ ¼ π for tϕ ¼∓ lttfðr0Þ=ð�2l2ðs� 1Þfðr0Þ þ l2 þ r20Þ,
respectively. This would select r0-dependent observer
tðr0Þ corresponding to non trivial r0-dependent conicity
Cðr0Þ ≠ 1.
Since there is insufficient motivation for these conditions

and the observers they distinguish are highly sensitive to

the specific spacetime, we conclude that, at present,
conicity is not a physically meaningful quantity in space-
times with a torsion singularity.
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APPENDIX: G-BOUNDARY OF SPINNING
COSMIC STRING

In this section, we briefly review the g-boundary
construction and carry it out explicitly for the spinning
cosmic string discussed in Sec. VA.12 A standard notion of
spacetime singularities is based on geodesic incomplete-
ness. The boundary is constructed as a space of equivalence
classes of incomplete geodesics; the result depends on the
choice of equivalence relation. We follow the general
prescription by Geroch [59], applicable to geodesics of
any causal type.
Let us denote a subset of tangent bundle TM consisting

of nonzero vectors by G≡ fðp;vÞ∈TM∶v ≠ 0g ⊂ TM.
Any γ ≡ ðp;vÞ∈G can serve as the initial data for the
geodesic equation and therefore uniquely defines a maxi-
mal geodesic γ̄ðσÞ with affine parameter σ through
γ̄ð0Þ ¼ p and ˙̄γð0Þ ¼ v. A directed geodesic γ̄∶I → M is
said to be incomplete if I ¼ ½0; σ�Þ for some σ� < ∞,
corresponding to the singularity. Otherwise, if I ¼ ½0;∞Þ,
the geodesic is said to be complete. The set of incomplete
geodesics is distinguished as follows: Consider a function
l∶G → Rþ ∪ f∞g, which outputs the total affine length
of a geodesic starting with ðp;vÞ. Let us define a set
corresponding to the initial data for incomplete geodesics,

Gi ≡ fðp;vÞ∈G∶lðp;vÞ < ∞g; ðA1Þ

together with two auxiliary sets,

H≡G×R; Hþ ≡ fðp;v; τÞ∈H∶τ < lðp;vÞg: ðA2Þ

The first describes all geodesics with all possible values of
the affine parameter, while the second restricts the affine
parameter only to admissible values. For Hþ a map
Ψ∶Hþ ∋ ðp;v; σÞ ↦ γ̄ðσÞ∈M may be defined which out-
puts the point in the spacetime obtained by following the
geodesics starting with ðp;vÞ by the affine parameter σ.
To define the equivalence relation of the incomplete

geodesics, we wish to topologize Gi. For an open set
U ⊂ M consider SðUÞ ⊂ Gi given by

SðUÞ≡ fðp;vÞ∈Gi∶ ∃O open in H;

with ðp;v;lðp;vÞÞ∈H

such thatΨðO ∩ HþÞ ⊂ Ug; ðA3Þ

describing incomplete geodesics for which all geodesics
with neighboring (in the H topology) initial conditions
terminate in U. Consequently for small enough U, with
compact closure, which is not “near” the singularity we
have SðUÞ ¼ ∅. The collection of sets SðUÞ for all U open
in M defines a topological basis on Gi. Initial data
γ1; γ2 ∈Gi are equivalent γ1 ∼ γ2 if every open set of Gi
containing γ1 also contains γ2 and vice versa. The idea
behind the equivalence relation ∼ is to equate geodesics
with endpoints that cannot be distinguished by any open set
of the form SðUÞ. Hence, the equivalence classes of γ ∈Gi
define abstract endpoints of the corresponding incomplete
geodesics and form the g-boundary of M

∂gM≡ f½γ�∶γ ∈Gig: ðA4Þ
Now we turn to the geodesics of the spinning cosmic

string spacetime (5.1). Since the spacetime is locally flat,
any geodesics is a straight line with the incomplete geo-
desics being radial (constant ϕ) and pointing toward the
smaller values of q. The Gi can be parametrized by the
initial coordinates given by p ¼ ðt̂; q̂; ẑ; ϕ̂Þ, the “terminal”
coordinates ðť; žÞ and the “velocity” parameter χ. Then any
incomplete geodesic may be written as

γ̄∶
�
0;
q̂
a

�
∋ σ ↦

�
ťþðť− t̂Þ χ

q̂
σ; q̂− χσ; žþðž− ẑÞ χ

q̂
σ; ϕ̂

�

∈M; ðA5Þ

which corresponds to a (generic) initial velocity

v ¼ ðť − t̂Þ χ
q̂
∂t − χ∂q þ ðž − ẑÞ χ

q̂
∂z

and the total affine length lðp;vÞ ¼ q̂=χ.
A set U0 ⊂ M that is characterized by a sum of sets

It × ðq1; q2Þ × Iz × Iϕ where q1, q2 > 0 and I are open
intervals in the respective coordinates does not “border” the
singularity and thus SðU0Þ ¼ ∅. This may be seen by
considering any γ ¼ ðp;vÞ∈Gi. Close to it, there always
exists ðp;v;lðp;vÞ − δlÞ∈Hþ terminating at q3 < q1, for
some δl > 0. Therefore it is enough to consider sets B
given by It × ð0; q1Þ × Iz × Iϕ. Because the region B is
reached by any geodesic with the terminal values ť, ž,
and ϕ̂ in B, irrespective of the initial t̂, q̂, and ẑ and the
parameter χ, we have

SðBÞ ¼ ft̂∈Rg × fq̂∈Rþg × fẑ∈Rg × fϕ̂∈ Iϕg
× fχ ∈Rþg × fť∈ Itg × fž∈ Izg; ðA6Þ

12See also [68] for an explicit calculation in the two-
dimensional Misner spacetime.

KOLÁŘ, KRTOUŠ, and OSSOWSKI PHYS. REV. D 112, 104021 (2025)

104021-16



where we moved from point–vector pairs to an equivalent
description in terms of their associated parameters.
Clearly SðB1 ∩ B2Þ ¼ SðB1Þ ∩ SðB2Þ and so the sets

SðBÞ constitute a topological basis forGi. As anyU open in
M is a union of sets of the form B as above and sets B0 for
whom SðB0Þ ¼ ∅ the topologies constructed from fSðBÞg
and fSðUÞg are equivalent. Consequently the geodesics
with the same ť; ž, and ϕ̂ give rise to the same singular point
½γ�∈ ∂gM, i.e., for

γ1 ¼ ðt̂1; q̂1; ẑ1; ϕ̂1; χ1; ť1; ž1Þ;
γ2 ¼ ðt̂2; q̂2; ẑ2; ϕ̂2; χ2; ť2; ž2Þ;

we have

γ1 ∼ γ2 iff ðť1; ž1; ϕ̂1Þ ¼ ðť2; ž2; ϕ̂2Þ: ðA7Þ

This is because γ1 and γ2 are in all each others’ neighbor-
hoods of the form (A6),

B ¼ ðť − δt; ťþ δtÞ × ð0; qÞ × ðž − δz; žþ δzÞ
× ðϕ̂ − δϕ; ϕ̌þ δϕÞ; ðA8Þ

if and only if they have same values of ť, ž, and ϕ̂. Then in
turn ť, ž, and ϕ̂ parametrize the g-boundary ∂gM.
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