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The directional behavior of dominant components of algebraically special spin-s fields
near a spacelike, timelike or null conformal infinity is studied. By extending our pre-
vious general investigations, we concentrate on fields which admit a pair of equivalent
algebraically special null directions, such as the Petrov type-D gravitational fields or alge-
braically general electromagnetic fields. We introduce and discuss a canonical choice of the
reference tetrad near infinity in all possible situations, and we present the corresponding
asymptotic directional structures using the most natural parametrizations.

PACS : 04.20.Ha, 98.80.Jk, 04.40.Nr
Key words: gravitational radiation, asymptotic structure, cosmological constant

1 Introduction

In the series of papers [1–4] we analyzed the asymptotic directional properties
of electromagnetic and gravitational fields in spacetimes with a nonvanishing cos-
mological constant Λ. It had been known for a long time [5–7] that — contrary to
the asymptotically flat spacetimes — the dominant (radiative) component of the
fields is not unique since it substantially depends on the direction along which a null
geodesic approaches a given point at conformal infinity I. We demonstrated that,
somewhat surprisingly, such directional structure of radiation can be described in
closed explicit form. It has a universal character that is essentially determined by
the algebraic type of the field, i.e., by the specific local degeneracy and orientation
of the principal null directions.

Our results were summarized and thoroughly discussed in the recent topical
review [8]. They apply not only to electromagnetic or gravitational fields but to
any field of spin s. In addition, the expression representing the directional behavior
of radiation can be written in a unified form which covers all three possibilities
Λ > 0, Λ < 0 or Λ = 0, corresponding to a spacelike, timelike or null character
of I, respectively.

This paper further elaborates and supplements some aspects of our work re-
viewed in [8]. It extends possible definitions of the canonical reference tetrad for
the algebraically simple fields — those which admit an equivalent pair of distinct
(degenerate) principal null directions. We systematically describe the most natural
choices of the reference tetrad for all possible algebraic structures of type D fields,
and for any value of Λ.

∗) Dedicated to Prof. Jǐŕı Horáček on the occasion of his 60th birthday
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The notation used in the present paper is the same as in [8]; in fact, we shall
frequently employ the material already described and derived there. For brevity,
we shall refer directly to the equations and sections of the review [8] by prefixing
the letter ‘R’ in front of the reference: equation (R.1.1), section R.2.1, etc.

2 Summary of general results

We wish to study the behavior of radiative component of fields near confor-
mal infinity I. An overview of the concept of conformal infinity can be found in
textbooks (e.g., [9]; our notation is described in section R.2 of the work [8]).

Let us only recall that it is possible to define a normalized vector n normal to the
conformal infinity. The causal character of the infinity — spacelike, null, or timelike
— is given by the sign of the square of this vector, σ = n · n = −1, 0,+1 (see also
Fig. 1). Here and in the following, the dot ‘·’ denotes the scalar product, defined
using the spacetime metric g. Typically, the causal character of I is correlated with
the sign of the cosmological constant, σ = − signΛ (see section R.2.2 for details).

2.1 Null tetrads

To study various components of the fields, we introduce suitable orthonormal, and
associated with them null tetrads. We denote the vectors of an orthonormal tetrad
as t, q, r, s, where t is a future-oriented unit timelike vector. With this tetrad we
associate a null tetrad of null vectors k, l, m, m̄ by

k = 1√
2
(t + q) , l = 1√

2
(t− q) , m = 1√

2
(r − i s) , m̄ = 1√

2
(r + i s) . (1)

The normalization conditions for these tetrads are

−t · t = q · q = r · r = s · s = 1 , − k · l = m · m̄ = 1 , (2)

respectively, with all other scalar products being zero.
The crucial tetrad in our study is the interpretation tetrad ki, li, mi, m̄i. It is a

tetrad which is parallelly transported along a null geodesic z(η), the vector ki being
tangent to the geodesic. With respect to this tetrad we define the radiative com-
ponent of the field. The precise definition and description of asymptotic behavior
of the interpretation tetrad was thoroughly presented in sections R.3.3 and R.3.4,
where more details can be found.

Here, we are going to concentrate on the reference tetrad ko, lo, mo, m̄o. It is
a tetrad conveniently defined near the conformal infinity. It serves as the reference
frame for parametrization of directions near I. It can be defined using special fea-
tures of the spacetime geometry (e.g., the Killing vectors, direction toward sources,
etc.). Alternatively, it can be adapted to the studied fields — namely, it can be
‘aligned’ with algebraically special directions of the fields under consideration. A
general situation was discussed in sections R.5.4 and R.5.5. In the present work we
will offer other possible privileged definitions of the reference tetrad for algebraically
simple fields of type D.

120 Czech. J. Phys. 55 (2005)



Asymptotic directional structure of radiation . . .

Fig. 1. The reference tetrad adjusted to conformal infinity I of various character, deter-
mined by σ which is a norm of the vector n normal to I. If the vector ko is oriented along
an outgoing direction (outward from the physical spacetime M) we have εo = +1, if it is

ingoing (oriented inward to M) then εo = −1.

Following [8], we require that the reference tetrad is adjusted to conformal in-
finity, i.e., that the vectors ko and lo satisfy the relation

n = εo
1√
2
(−σko + lo) , (3)

where the sign εo = ±1 indicates the outgoing/ingoing orientation of the vector ko

with respect to I (see also below). This adjustment condition guarantees that the
vectors ko and lo are collinear with the normal n to I, and normalized such that

n =




εo to for a spacelike infinity (σ = −1) ,

−εo qo for a timelike infinity (σ = +1) ,

εo lo/
√

2 for a null infinity (σ = 0) .

(4)

All possible orientations of the reference tetrad with respect to I are shown in
Fig. 1.
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The normalization and adjustment conditions do not fix the reference tetrad
uniquely. Additional necessary conditions — the alignment with the algebraically
special directions — will be specified in Sect. 3.

2.2 Parametrization of null directions

In the following, it will be necessary to parametrize a general null direction k near I.
This can be done with respect to the reference tetrad by a complex directional
parameter R:

k ∝ ko + R̄mo +R m̄o +RR̄ lo . (5)

The value R = ∞ is also permitted — it corresponds to k oriented along lo.
In addition, we introduce the orientation parameter ε which indicates whether

the null direction k is an outgoing direction (pointing outside the spacetime),
ε = +1, or if it is an ingoing direction (pointing inside the spacetime), ε = −1.

When the infinity I has a spacelike character, it is also possible to parametrize
the null direction k using spherical angles, which specify its normalized spatial
projection into I. We define the angles θ, φ by

q = cos θ qo + sin θ (cosφ ro + sinφ so) , (6)

where q is the unit vector pointing into the spatial (q · n = 0) direction given
by k, see (R.5.5). The complex parameter R of (5) is actually a stereographic
representation of the spatial direction q:

R = tan
(

1
2θ

)
exp(−iφ) . (7)

Near a timelike infinity I we can analogously describe null direction k by pseu-
dospherical parameters ψ, φ of its projection into I. If we label the normalized
projection of k by t, cf. (R.5.8), ψ and φ are given by

t = coshψ to + sinhψ (cosφ ro + sinφ so) . (8)

These parameters have to be supplemented by the orientation ε of k with respect
to I. The parameter R is the pseudostereographic representation of t:

R = tanhεεo
(

1
2ψ

)
exp(−iφ) . (9)

In fact, we can introduce both these parametrizations simultaneously, indepen-
dently of the causal character of the infinity, just with respect to the reference
tetrad — the angles θ, φ using a projection onto the 3-space orthogonal to the time
vector to of the reference tetrad, and the parameters ψ, φ using a projection to the
2+1-space orthogonal to qo. In such a case they are related by expressions

tanhψ = sin θ , sinhψ = tan θ , coshψ = cos−1θ , tanh
(

1
2ψ

)
= tan

(
1
2θ

)
.

(10)
If the infinity has a timelike character, all future-oriented null directions at one

point at I naturally split into two families of outgoing and ingoing directions. The
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directions of each of these families form a hemisphere which can be projected onto
a unit circle, parametrized by ρ and φ, such that

ρ = tanhψ = sin θ , (11)

see also figure R.3.

2.3 Asymptotic directional structure of radiation

The main result of paper [8] is derivation of the explicit dependence of the radiative
component of the field on a direction along which the infinity is approached — we
call this dependence the asymptotic directional structure of radiation.

In [8] we investigated a general spin-s field, and in more detail gravitational
(s = 2) and electromagnetic (s = 1) fields. These fields can be characterized by
2s+ 1 complex components Υj , j = 0, . . . , 2s, evaluated with respect to a null
tetrad. Relation of these components to a spinor representation of the fields, and
their transformation properties can be found in R.4.1 and appendix R.B. The
components of gravitational and electromagnetic fields are traditionally called Ψj ,
j = 0, . . . , 4, and Φj , j = 0, 1, 2, respectively — see [10] or equations (R.4.1) and
(R.4.2).

To study the asymptotic behavior, we evaluated the field with respect to the
interpretational tetrad — the tetrad which is parallelly transported along a null
geodesic z(η). It turned out that these field components satisfy the standard peeling-
off property, namely that they exhibit a different fall-off in η when approaching I,
η being the affine parameter of the geodesic. The leading component of the field
is the component Υ i

2s with the fall-off of order η−1, and we call it the radiative
component. In sections R.4.3 and R.4.4 we found that the radiative field compo-
nent depends on the direction R of the null geodesic along which a fixed point at
the infinity is approached. This directional structure is determined mainly by the
algebraic structure of the field, and it reads

Υ i
2s ≈ 1

η
εsoΥ

o
2s∗

(
1 − σR1R̄

)(
1 − σR2R̄

)
. . .

(
1 − σR2sR̄

)
(
1 − σRR̄

)s . (12)

The complex constantsR1, . . . , R2s represent the principal null directions k1, . . . ,k2s

of the spin-s field, the sign σ = ±1, 0 specifies the causal character of the confor-
mal infinity, εo denotes orientation of the reference tetrad, and Υ o

2s∗ is a constant
normalization factor of the field evaluated with respect to the reference tetrad,
Υ o

2s ≈ Υ o
2s∗η

−s−1 (cf. section R.4.4).
The principal null directions (PNDs) are special directions along which some

of the field components vanish — see [9, 10] or section R.4.2 for a precise defi-
nition. The field of spin s has 2s PNDs. However, these can be degenerate and
this degeneracy (or, more generally, mutual relations of all the PNDs) is called the
algebraic structure of the field. Distinct PNDs are also called algebraically special
directions of the field. The classification according to the degeneracy of PNDs for
a gravitational field is the well-known Petrov classification.
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3 Fields of type D

In this paper we wish to discuss the situation when the field has two distinct
and equivalent algebraically special directions. This may occur only for fields of an
integer spin, s ∈ N, with PNDs having the degeneracy

k1 = · · · = ks and ks+1 = · · · = k2s . (13)

The directional structure (12) of such a field takes the form

Υ i
2s ≈ 1

η
εsoΥ

o
2s∗

(
1 − σR1R̄

)s(1 − σR2sR̄
)s

(
1 − σRR̄

)s , (14)

with the constants R1 and R2s parametrizing the two distinct PNDs. The direc-
tional dependence of the magnitude of a gravitational type-D field and of an alge-
braically general electromagnetic field are thus quite similar. This similarity is even
closer if we recall that the square of the electromagnetic component Φi

2 is propor-
tional to the magnitude of the Poynting vector with respect to the interpretation
tetrad, |Si| ≈ (1/4π)

∣∣Φi
2

∣∣2. Indeed, we have

∣∣Ψ i
4

∣∣ ≈ 1
|η| |Ψ

o
4∗|

∣∣1 − σR1R̄
∣∣2 ∣∣1 − σR4R̄

∣∣2
∣∣1 − σRR̄

∣∣2 , (15)

4π |Si| ≈
∣∣Φi

2

∣∣2 ≈ 1
η2

|Φo
2∗|2

∣∣1 − σR1R̄
∣∣2 ∣∣1 − σR2R̄

∣∣2
∣∣1 − σRR̄

∣∣2 . (16)

As discussed in section R.4.5, the form of the directional structure (12) depends
on the choice of the normalization factor Υ o

2s∗. Other choices can sometimes be more
convenient, in particular if the factor Υ o

2s∗ vanishes, which happens when one of the
PNDs points along the direction lo of the reference tetrad. For the type-D fields
there exists a more natural ‘symmetric’ choice of normalization of the directional
structure of radiation which is guaranteed to be non-degenerate. For these fields we
can define a canonical field component, namely, the only nonvanishing component
with respect of the null tetrad associated with the PNDs (13).

Having two distinct algebraic directions k1 and k2s, we can define algebraically
special null tetrad ks, ls, ms, m̄s (and associated orthonormal tetrad ts, qs, rs, ss)
by requiring that ks, ls are proportional to the PNDs and future-oriented, and that
the spatial vector ss is tangent to I,

ks ∝ k1 , ls ∝ k2s , ss · n = 0 . (17)

For PNDs, which are not tangent to the conformal infinity, the normalization of
null vectors ks, ls can be fixed by condition

ε1 ks · n = ε2s ls · n , (18)
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where ε1, ε2s = ±1 parametrize orientations of the PNDs with respect to I. The
special case of PNDs tangent to I will be discussed below.

Using the definition of PNDs (see section R.4.2), we find that the field compo-
nents with respect to the algebraically special tetrad have very special form — only
the component Υ s

s is nonvanishing (Ψ s
2 for gravitational and Φs

1 for electromagnetic
fields). This component is, in fact, independent of the choice of the spatial vectors
rs, ss, and thus it does not depend on the normal vector n, which we used in the
definition (17). It also does not depend on the normalization (18), provided that
the normalization (2) is satisfied. We shall use the privileged component Υ s

s for the
normalization of the directional structure of radiation. However, the algebraically
special tetrad is not adjusted to the infinity (cf. condition (3)) since ks and ls are
not in general collinear with n and thus it cannot be used as a reference tetrad.

Nevertheless, we can define privileged reference tetrad which is ‘somehow aligned’
with the algebraically special tetrad, and which shares some of the symmetries of
the geometric situation. We shall always assume that the reference tetrad satisfies
the normalization and adjustment conditions (2), (3), and we set so = ss. This is,
however, still not sufficient to completely fix the reference tetrad. The remaining
necessary condition cannot be prescribed in general — we have to discuss sepa-
rately several possible cases, depending on the character of the infinity I, and on
the orientation of the PNDs with respect to I.

Below we shall define the reference tetrad for all possible cases. We shall present
the relation between the component Υ o

2s and the canonical component Υ s
s , which

can be substituted into the directional structure (14). Finally, we shall rewrite the
results in terms of the angular variables introduced with respect to the reference
tetrad.

3.1 Spacelike I
We begin with a spacelike conformal infinity, σ = −1. In this case the two distinct
future-oriented algebraically special directions are either both ingoing or both out-
going, and we accordingly set the orientation εo of the reference tetrad. We define
the reference tetrad by conditions

qo = qs , so = ss , εo = ε1 = ε2s , (19)

and by adjustment condition (4). It follows that the algebraically special direc-
tions ks and ls are parametrized with respect to the reference tetrad by a single
parameter θs as

ks = 1√
2

cos−1 θs
(
to + cos θs qo + sin θs ro

)
,

ls = 1√
2

cos−1 θs
(
to − cos θs qo + sin θs ro

)
.

(20)

The algebraically special and reference tetrads are thus related by

ts = cos−1 θs to + tan θs ro , qs = qo , rs = cos−1 θs ro + tan θs to , ss = so ,
(21)
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Fig. 2. Algebraically special and reference tetrads at a spacelike infinity. Vectors ko, lo
(ks, ls, respectively) of the null tetrad, and to, qo, ro (ts, qs, rs) of the orthonormal ref-
erence (algebraically special, respectively) tetrad are shown; the direction so = ss tangent
to I and orthogonal to PNDs is hidden. The vectors ks, ls are aligned with algebraically
special directions (degenerate PNDs), to is normal to the infinity I, and qo, ro are tangent
to I. The relation of both the tetrads is parametrized by the angle θs between qo and the
projection of ks onto I. The special tetrad can be obtained from the reference tetrad by

a boost in to-ro plane with rapidity parameter ψs given by sinhψs = tan θs, cf. (21).

which is actually a boost in to-ro plane with rapidity parameter ψs related to θs by
(10), see Fig. 2.

Inspecting the spatial projections of ks and ls onto conformal infinity I, we
find that their angular coordinates with respect to the reference tetrad are θ1 = θs,
φ1 = 0, and θ2s = π − θs, φ2s = 0, respectively. It means that the complex param-
eters R1 and R2s of both these algebraic special directions are

R1 = tan
(

1
2θs

)
, R2s = cot

(
1
2θs

)
. (22)

Straightforward calculation shows that the transformation (21) from the al-
gebraically special to the reference tetrad can be decomposed into boost (R.3.5),
subsequent null rotation with k fixed (R.3.4), and null rotation with l fixed (R.3.3),
given by the parametersB = 2(1 + cos−1 θs)−1, L = − 1

2 tan θs, andK = − tan(θs/2).
Applying these transformations to the field components (relations (R.4.6), (R.4.5),
and (R.4.4)) we easily find that

Υ o
2s =

(
2s
s

)
L̄s Υ s

s = (−1)s (2s)!
2s(s!)2

tans θs Υ
s
s . (23)

For gravitational and electromagnetic fields we can write explicit expressions for
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all field components with respect to the reference tetrad as

Ψo
0 = Ψo

4 =
3
2

tan2 θs Ψ
s
2 , Ψo

1 = Ψo
3 = −3

2
tan θs
cos θs

Ψ s
2 , Ψo

2 =
(
1 +

3
2

tan2 θs

)
Ψ s

2 ,

(24)

Φo
0 = Φo

2 = − tan θs Φs
1 , Φo

1 = cos−1θs Φ
s
1 . (25)

Following the discussion in section R.4.4 we assume asymptotic behavior (R.4.18),
i.e., Υ o

j ≈ Υ o
j∗ η

−s−1 with constant coefficients Υ o
j∗. Similarly, we introduce the co-

efficient Υ s
s∗ by Υ s

s ≈ Υ s
s∗ η

−s−1. Clearly, the relations (23)–(25) hold also in their
‘stared’ forms.

Substituting (22), the ‘stared’ version of (23), (7), and σ = +1 into (14) we
finally obtain the asymptotic directional structure of radiation for type-D fields

Υ i
2s ≈ (−εo)s

η

(2s)!
2s(s!)2

Υ s
s∗

[exp(iφ)
cos θs

(
sin θ + sin θs cosφ− i sin θs cos θ sinφ

)]s

. (26)

The null direction along which the field is measured is parametrized by angles
θ, φ, the field itself is characterized by the normalization component Υ s

s∗ and by
the parameter θs which encodes the directions of the algebraically special direc-
tions with respect to a spacelike infinity I. As discussed in section R.4.5, only the
magnitude of this radiative component has a physical meaning. For the magnitude

Fig. 3. Directional structure of radiation near a spacelike infinity. Directions in the dia-
grams correspond to spatial directions (projections onto I) of null geodesics along which
the infinity is approached. The diagrams show the directional dependence of the mag-
nitude of the radiative-field component (27) (or (28)). The arrows depict the directions
which are spatially opposite to algebraically special directions (PNDs); the radiative com-
ponent evaluated along the geodesics in these directions is asymptotically vanishing. The
diagram (a) shows a general orientation of algebraically special directions, the diagram

(b) corresponds to the case, when both distinct PNDs are spatially opposite.
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of the Ψ i
4 component of the gravitational field and for the Poynting vector of the

electromagnetic field we thus obtain

∣∣Ψ i
4

∣∣ ≈ 1
|η|

3
2

|Ψ s
2∗|

cos2 θs

∣∣sin θ + sin θs cosφ− i sin θs cos θ sinφ
∣∣2 , (27)

4π |Si| ≈
∣∣Φi

2

∣∣2 ≈ 1
η2

|Φs
1∗|2

cos2 θs

∣∣sin θ + sin θs cosφ− i sin θs cos θ sinφ
∣∣2 . (28)

These are exactly the expressions for the asymptotic directional structure of ra-
diation as derived in [11] for test electromagnetic field of accelerated charges in
de Sitter spacetime, and for gravitational field and electromagnetic fields of the
C-metric spacetime with Λ > 0, as presented in [1]. This directional structure is
illustrated in Fig. 3.

3.2 Timelike I with non-tangent PNDs, ε1 �= ε2s

Now we shall study the situation near a timelike conformal infinity (σ = −1), when
both distinct algebraic directions are not tangent to I, such that one of them is
outgoing and the other ingoing, ε1 �= ε2s. In this case we require that the orientation
εo of the reference tetrad is adjusted to ε1, and that ts is aligned along to,

to = ts , so = ss , εo = ε1 = −ε2s , (29)

together with the adjustment condition (4). Again, the algebraically special direc-
tions ks and ls are parametrized with respect to the reference tetrad by a single
parameter θs:

ks = 1√
2

(
to + cos θs qo + sin θs ro

)
,

ls = 1√
2

(
to − cos θs qo − sin θs ro

)
.

(30)

The algebraically special and reference tetrads are thus related by

ts = to , qs = cos θs qo + sin θs ro , rs = − sin θs qo + cos θs ro , ss = so , (31)

which is a spatial rotation in qo-ro plane by angle θs, see Fig. 4a.
To read out the normalized projection into I of the null vectors ks, ls, it is

useful to rewrite (30) in a different way

ks = 1√
2

cosh−1 ψs

(
qo + coshψs to + sinhψs ro

)
,

ls = 1√
2

cosh−1 ψs

(−qo + coshψs to − sinhψs ro

)
,

(32)

where we have used the parameter ψs instead of θs related by (10). Comparing the
normalized projections of k1 = ks and k2s = ls with (8), we find that the pseu-
dospherical parameters ψ, φ, ε of the algebraically special directions are ψ1 = ψs,
φ1 = 0, ε1 = εo, and ψ2s = ψs, φ2s = π, ε2s = −εo respectively. The corresponding
complex parameters are

R1 = tanh
(

1
2ψs

)
, R2s = − coth

(
1
2ψs

)
. (33)
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Fig. 4. Algebraically special and reference tetrads near a timelike infinity. Vectors ko, lo
(ks, ls) of the null reference (algebraically special, respectively) tetrad are shown. The axes
correspond to the timelike direction to and the spatial directions qo, ro of the reference
tetrad. The direction so = ss tangent to I and orthogonal to PNDs is hidden. The vectors
ks, ls are aligned with the algebraically special directions (degenerate PNDs), qo is normal
to infinity I and to, ro are tangent to it. The vectors ts, qs, rs of the algebraically special
tetrad are drawn only in diagrams (a), (b) and (d); for simplicity they are omitted in the
diagram (c), but see (53). Different diagrams correspond to different orientations of PNDs
with respect to the infinity I: in the diagram (a) one PND is ingoing and one is outgoing
(cf. Subsect. 3.2), in (b) both PNDs are outgoing (or ingoing, respectively, cf. Subsect. 3.3),
the diagram (c) shows the situation when one PND is tangent to I (Subsect. 3.4), and,
finally, both PNDs are tangent in (d) (Subsect. 3.5). The relation of the reference and
algebraically special tetrads in the generic cases (a) and (b) can be parametrized by the
angle θs (the angle between qo and the projection of ks to the space normal to to), or
by pseudospherical parameter ψs (the lorenzian angle between to and the projection of
ks to I). These parameters are related by (10). In the case (a) the special tetrad can be
obtained from the reference tetrad by a spatial rotation in qo-ro plane by θs, cf. (31);
in the case (b) the special tetrad is the reference tetrad boosted by rapidity βs given by

sinh βs = cot θs = sinh−1ψs, cf. (42). (continued)

Again, the transformation (31) can be decomposed into boost, null rotation
with k fixed, and null rotation with l fixed, given by B = 2 coshψs(1 + coshψs)−1,
L = 1

2 tanhψs, and K = − tanh(ψs/2). Applying these transformations to the field
components we obtain

Υ o
2s =

(2s)!
2s(s!)2

tanhsψs Υ
s
s , (34)
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Fig. 4. (continued)

and, in more detail, for gravitational and electromagnetic fields

Ψo
0 = Ψo

4 = 3
2 tanh2ψs Ψ

s
2 , − Ψo

1 = Ψo
3 =

3
2

tanhψs

coshψs
Ψ s

2 ,

Ψo
2 =

(
1 − 3

2 tanh2ψs

)
Ψ s

2 ,
(35)

−Φo
0 = Φo

2 = tanhψs Φ
s
1 , Φo

1 = cosh−1ψs Φ
s
1 . (36)

Substituting (33), ‘stared’ version of (34), (9), and σ = +1 into expression (14),
we obtain the asymptotic directional structure of radiation in the form

Υ i
2s ≈ εs

η

(2s)!
2s(s!)2

Υ s
s∗

[exp(iφ)
coshψs

(
sinhψ + εεo sinhψs cosφ− i sinhψs coshψ sinφ

)]s

.

(37)
The direction is given by pseudospherical parameters ψ, φ, ε, the field is charac-
terized by the component Υ s

s∗ and by the parameter ψs, which fixes the orientation
of the algebraically special directions with respect to infinity I. Again, only the
magnitude of component Υ i

2s has a physical meaning so that

∣∣Ψ i
4

∣∣ ≈ 1
|η|

3
2

|Ψ s
2∗|

cosh2 ψs

∣∣sinhψ + εεo sinhψs cosφ− i sinhψs coshψ sinφ
∣∣2 , (38)

4π |Si| ≈
∣∣Φi

2

∣∣2 ≈ 1
η2

|Φs
1∗|2

cosh2 ψs

∣∣sinhψ + εεo sinhψs cosφ− i sinhψs coshψ sinφ
∣∣2 .

(39)

This directional structure is illustrated in Fig. 5a.
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3.3 Timelike I with non-tangent PNDs, ε1 = ε2s

In the previous case we have studied the directional structure of radiation near a
timelike I with two PNDs oriented in opposite directions with respect to the infinity.
Now, we shall discuss the situation when both PNDs are outgoing, or both ingoing,
ε1 = ε2s. The derivation of the directional structure is similar to the previous case
and we shall thus sketch it only briefly.

The reference tetrad is fixed by the conditions

ro = qs , so = ss , εo = ε1 = ε2s , (40)

together with the adjustment condition (4). Therefore

ks = 1√
2

sin−1θs
(
to + cos θs qo + sin θs ro

)

= 1√
2

sinh−1 ψs

(
qo + coshψs to + sinhψs ro

)
,

ls = 1√
2

sin−1θs
(
to + cos θs qo − sin θs ro

)

= 1√
2

sinh−1 ψs

(
qo + coshψs to − sinhψs ro

)
,

(41)

where parameters θs and ψs are again related by Eqs. (10). The algebraically special
and reference tetrads are thus

ts = sin−1θs to + cot θs qo , qs = ro , − rs = cot θs to + sin−1θs qo , ss = so ,
(42)

see Fig. 4(b). Pseudospherical parameters ψ, φ, ε of projections of the PNDs into
I are ψ1 = ψs, φ1 = 0, ε1 = εo and ψ2s = ψs, φ2s = π, ε2s = εo, respectively, i.e.,

R1 = tanh(1
2ψs) , R2s = − tanh(1

2ψs) . (43)

The transformation from the algebraically special to the reference tetrad can
be decomposed into boost (R.3.5), null rotation with k fixed (R.3.4), and null
rotation with l fixed (R.3.3) with parameters B = 2 tanh(ψs/2), L = 1

2 coth(ψs/2),
and K = − tanh(ψs/2). For the field components we obtain

Υ o
2s =

(2s)!
2s(s!)2

coths ψs

2
Υ s

s , (44)

and, in more detail, for gravitational and electromagnetic fields

Ψo
0 = 3

2 tanh2
(

1
2ψs

)
Ψ s

2 , Ψo
2 = − 1

2Ψ
s
2 , Ψo

4 = 3
2 coth2

(
1
2ψs

)
Ψ s

2 , Ψo
1 = Ψo

3 = 0 ,
(45)

Φo
0 = − tanh

(
1
2ψs

)
Φs

1 , Φo
1 = 0 , Φo

2 = cot
(

1
2ψs

)
Φs

1 . (46)

Substituting into the expression (14) we finally obtain

Υ i
2s ≈ εs

η

(2s)!
2s(s!)2

Υ s
s∗

×
[exp(iφ)

sinhψs

(
(coshψ + εεo coshψs) cosφ− i(εεo + coshψs coshψ) sinφ

)]s

.

(47)
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Fig. 5. Directional structure of gravitational radiation near a timelike infinity. The four
diagrams, each consisting of a pair of radiation patterns, correspond to different orientation
of algebraically special directions with respect to the infinity I: (a) one PND outgoing and
one ingoing (cf. Subsect. 3.2), (b) both PNDs outgoing (Subsect. 3.3; the case with both
PNDs ingoing is analogous), (c) one PND tangent to I and one outgoing (Subsect. 3.4),
(d) both PNDs tangent to I (Subsect. 3.5). In each diagram the circles in horizontal plane
represent spatial projections of hemispheres of ingoing (left circle) and outgoing (right
circle) directions. The circles are parametrized by coordinates ρ, φ defined in Subsect. 2.2,
cf. Eq. (11). On the vertical axis the magnitude of the radiative field component is plotted
(cf. (38), (49), (59) and (69)). The arrows indicate mirror reflections with respect to I
of the algebraically special directions (PNDs). The radiative component evaluated along
the geodesics in these directions is (for non-tangent PNDs) asymptotically vanishing. The
radiative component diverges for unphysical geodesics tangent to I (the border of the

circles) due to fixed normalization of the null directions — see section R.5.5.

The phase of this component is unphysical, its magnitude can be put into the form

∣∣Υ i
2s

∣∣ ≈ 1
|η|

(2s)!
2s(s!)2

|Υ s
s∗|

(
sinh−2ψs

(
coshψs + εεo coshψ

)2
+ sinh2 ψ sin2 φ

)s/2

.

(48)
For gravitational and electromagnetic fields it gives

∣∣Ψ i
4

∣∣ ≈ 1
|η|

3
2
|Ψ s

2∗|
(
sinh−2ψs

(
coshψs + εεo coshψ

)2 + sinh2 ψ sin2 φ
)

, (49)
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4π |Si| ≈
∣∣Φi

2

∣∣2 ≈ 1
η2

|Φs
1∗|2

(
sinh−2ψs

(
coshψs + εεo coshψ

)2 + sinh2 ψ sin2 φ
)

,

(50)

which is illustrated in Fig. 5b.

3.4 Timelike I , one PND tangent to I
Until now we have concentrated on a generic orientation of algebraically special
directions with respect to the conformal infinity. In this and the next sections we
are going to study the special cases when the PNDs are tangent to I. This can
only occur for timelike or null conformal infinity, the latter case will be discussed
in Subsect. 3.6.

First, we assume that only one of two distinct PNDs, say k2s, is tangent to I. Let
us note that in such a case we require normalization (18) only for the vector ks ∝ k1,
the normalization of the other PND ls is fixed by the condition ks · ls = −1. We
use the PND ks as the vector ko, i.e., we define the reference tetrad by conditions

ko = ks , so = ss , εo = ε1 , (51)

together with the condition (4). The algebraically special directions ks and ls are
then given in terms of the reference tetrad as

ks =
1√
2

(to + qo) , ls =
√

2 (to + ro) , (52)

see Fig. 4c. The tetrads are related by

ts = 3
2to + 1

2qo + ro , qs = − 1
2to + 1

2qo − ro , rs = to + qo + ro , ss = so .
(53)

Complex parametrizations of k1 and k2s are then

R1 = 0 , R2s = +1 . (54)

The transformation from the algebraically special to the reference tetrad is just
the null rotation with k fixed with L = −1. Applying this transformation, we obtain

Υ o
2s = (−1)s (2s)!

(s!)2
Υ s

s , (55)

specifically for s = 2, 1,

Ψo
0 = Ψo

1 = 0 , Ψo
2 = Ψ s

2 , Ψo
3 = −3Ψ s

2 , Ψo
4 = 6Ψ s

2 , (56)
Φo

0 = 0 , Φo
1 = Φs

1 , Φo
2 = −2Φs

1 . (57)

Substituting into (14), we get the asymptotic directional structure of radiation

Υ i
2s ≈ εs

η

(2s)!
2s(s!)2

Υ s
s∗

(
εεo + coshψ − sinhψ exp(iφ)

)s , (58)
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i.e.,

∣∣Ψ i
4

∣∣ ≈ 3
|Ψ s

2∗|
|η|

(
εεo + coshψ

) (
coshψ − sinhψ cosφ

)
, (59)

4π |Si| ≈
∣∣Φi

2

∣∣2 ≈ 2
|Φs

1∗|2
η2

(
εεo + coshψ

) (
coshψ − sinhψ cosφ

)
, (60)

for gravitational and electromagnetic field, see Fig. 5c and (R.5.37).

3.5 Timelike I, two PNDs tangent to I
Next, let both the PNDs be tangent to a timelike conformal infinity. In such a
situation there exists no natural normalization of both PNDs analogous to the con-
dition (18) used above. This is related to an ambiguity in the choice of the timelike
unit vector ts — we can choose any of the (future-oriented) unit vectors in the
plane k1–k2s. However, despite the fact that we cannot fix the algebraically special
tetrad uniquely, the nonvanishing component Υ s

s is independent of this ambiguity:
different choices of the special tetrad only differ by a boost in k1–k2s plane, and
Υ s

s does not change under such a boost. In the following, we arbitrarily choose one
particular algebraically special tetrad with respect to which we define the reference
tetrad. The reference tetrad thus shares the same ambiguity as the algebraically
special tetrad.

The reference tetrad is simply fixed by conditions

to = ts , so = ss , εo = ε1 , (61)

and (4). PNDs ks and ls are given by

ks = 1√
2

(to + ro) , ls = 1√
2

(to − ro) , (62)

so that the algebraically special and reference tetrads are related by

ts = to , qs = ro , rs = −qo , ss = so . (63)

It is just a simple spatial rotation by π/2 in qo-ro plane, as illustrated in Fig. 4d.
The complex directional parameters of k1 and k2s are

R1 = +1 , R2s = −1 . (64)

The transformation can be decomposed into boost B = 2, null rotation with
k fixed L = −1/2, and null rotation with l fixed K = 1. Applying them, we obtain

Υ o
2s = (−1)s (2s)!

2s(s!)2
Υ s

s , (65)

and

Ψo
0 = Ψo

4 = 3
2 Ψ

s
2 , Ψo

2 = − 1
2Ψ

s
2 , Ψo

1 = Ψo
3 = 0 , (66)

Φo
0 = −Φo

2 = Φs
1 , Φo

1 = 0 . (67)
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Substituting into (14), we get

Υ i
2s ≈ (−εo)s

η

(2s)!
2s(s!)2

Υ s
s∗

(
exp(iφ)

(
cosφ− i εεo coshψ sinφ

))s

,

∣∣Υ i
2s

∣∣ ≈ 1
|η|

(2s)!
2s(s!)2

|Υ s
s∗|

(
1 + sinh2ψ sin2φ

)s/2 ,
(68)

which for gravitational and electromagnetic fields gives

∣∣Ψ i
4

∣∣ ≈ 3
2

1
|η| |Ψ

s
2∗|

(
1 + sinh2ψ sin2φ

)
, (69)

4π |Si| ≈
∣∣Φi

2

∣∣2 ≈ 1
η2

|Φs
1∗|2

(
1 + sinh2ψ sin2φ

)
, (70)

see Fig. 5d and (R.5.36).

3.6 Null I
Finally, we investigate the case of conformal infinity I of a null character, σ = 0. It
can be easily observed from (12) (cf. section R.5.1 for more detail) that the direc-
tional structure of radiation near the null infinity is independent of the direction

Fig. 6. Algebraically special and reference tetrads at a null infinity. Vectors ko, lo (ks, ls)
of the null tetrad, and to, qo, ro (ts, qs, rs) of the orthonormal reference (algebraically
special, respectively) tetrad are shown; the direction so = ss tangent to I and orthogonal
to PNDs is not plotted. The vectors ks, ls are aligned with algebraically special directions.
The diagram (a) depicts the situation with one PND tangent to I. In this case the alge-
braically special tetrad can be used as the reference tetrad. In the diagram (b) neither of
both distinct PNDs is tangent to I. The algebraically special tetrad can be then obtained

from the reference tetrad by a spatial rotation in qo–ro plane by π/2.
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along which the infinity is approached. The only interesting question is whether the
dominant field component is vanishing or not — in other words: whether the field
is radiative or nonradiative. It follows from the definition of PNDs that the nor-
malization factor Υ o

2s∗ in (12) is vanishing if and only if one of the PNDs is tangent
to I. Thus, the tangency of PNDs to I serves as the geometrical characterization
of radiative/nonradiative fields.

Let us first assume that one of the PNDs, say ls, is tangent to I. As in the
previous section we cannot fix the normalization of algebraically special tetrad using
the condition (18); the algebraically special tetrad cannot be selected uniquely.
Nevertheless, the field component Υ s

s is still unique. If we choose one algebraically
special tetrad, we can use it also as the reference tetrad — it satisfies the adjustment
condition (4), cf. Fig. 6. As mentioned above, the component Υ o

2s is then vanishing:

Υ i
2s ≈ 0 . (71)

If both distinct PNDs are not tangent to I, we may normalize them by (18)
and fix the reference tetrad by the condition to = ts, namely,

to = ts , so = ss , εo = ε1 , (72)

together with the adjustment condition (4), see Fig. 6. In terms of the reference
tetrad the PNDs ks and ls are given by

ks = 1√
2

(to + ro) , ls = 1√
2

(to − ro) (73)

and their complex parameters are

R1 = +1 , R2s = −1 . (74)

The relation between the algebraically special and reference tetrads is thus the same
as in Subsect. 3.5. Using (12), σ = 0, and relation (65), we find that the radiative
component has no directional structure:

Υ i
2s ≈ εso

(2s)!
(s!)2

Υ s
s∗

1
η

. (75)

In particular, for gravitational and electromagnetic field we obtain

∣∣Ψ i
4

∣∣ ≈ 3 |Ψ s
2∗|

1
|η| , (76)

4π |Si| ≈
∣∣Φi

2

∣∣2 ≈ 2|Φs
1∗|2

1
η2

. (77)

4 Conclusions

We have analyzed the asymptotic directional structure of fields, that are char-
acterized by the existence of two distinct, but equivalent algebraicaly special null
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directions. This involves a generic electromagnetic field (s = 1), the Petrov type D
gravitational fields (s = 2) having double-degenerate principal null directions, and
other possible fields of an integer spin s, which admit a pair of s-degenerate PNDs.

The structure of such fields near the conformal infinity depends on the specific
orientation of these algebraically special directions with respect to I, and on the
causal character of I. In the case of a spacelike conformal infinity (Λ > 0) there
is essentially only one possibility which is described in Subsect. 3.1, whereas for a
timelike conformal infinity (Λ < 0) four different situations may occur that have
to be discussed separately, see Subsects. 3.2–3.5. For the conformal infinity having
a null character (Λ = 0), the asymptotic directional structure disappears: when
one of the (degenerate) PNDs is tangent to I, the radiative component vanishes,
otherwise the radiation is present and it is independent of the direction along which
the infinity is approached, cf. Subsect. 3.6.

In all such cases we have introduced the privileged ‘symmetric’ reference tetrad
which is naturally adapted to the algebraically special directions and to I. These
are illustrated in Figs. 2, 4, and 6. With respect to these reference tetrads it is
possible to characterize any null direction by standard (pseudo)spherical parame-
ters. The corresponding explicit directional structure of radiation for a spacelike I
is presented in expression (26), and the four possibilities for a timelike I are given
by (37), (47), (58), (68).

These results generalize our previous study of the asymptotic directional struc-
ture of gravitational and electromagnetic radiation in the C-metric spacetimes [1, 2]
to other fields which are of the type D. On the other hand, the expressions pre-
sented here are more detailed and more explicit than those given in the review
article [8]. It would now be an interesting task to apply them on particular exact
model spacetimes of type D. This may provide a deeper insight into the geomet-
ric relation between the structure of the sources and the properties of radiation
generated by them, as observed at spacelike or timelike conformal infinities.

This work was supported by the grant GAČR 202/02/0735.
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