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It was proposed by Ryu and Takayanagi that the entanglement entropy in conformal field theory
(CFT) is related through AdS/CFT correspondence to the area of a minimal surface in the bulk.
We apply this holographic geometrical method of calculation of the entanglement entropy to study
the vacuum case of CFT which is holographically dual to empty anti-de Sitter (AdS) spacetime. We
present all possible minimal surfaces spanned on one or two spherical boundaries at AdS infinity.
We give exact analytical expressions for regularized areas of these surfaces and identify finite renor-
malized quantities. In the case of two disjoint boundaries the existence of two nontrivial phases is
confirmed, as well as the discontinuous character of the phase transition to the trivial phase. The
exact analytical results are thus consistent with previous numerical and approximative computa-
tions. We also briefly discuss the character of a spacetime extension of the minimal surface spanned
on two uniformly accelerated boundaries.

PACS numbers: 03.65.Ud, 11.25.Tq, 04.60.-m

INTRODUCTION

The famous Bekenstein–Hawking area law [1, 2]

SBH =
kBc

3

~
A

4G
(1)

for the entropy of black holes connects thermodynam-
ics, gravity and relativistic quantum field theory. This
relation remains valid not only for the Einstein grav-
ity in four dimensions but in higher dimensions too, as
soon as the gravitational constant G is the D-dimensional
one and the area A is understood as the volume of
(D−2)-dimensional surface of the horizon.

If quantum field theory (QFT) is defined on the mani-
fold with a boundary an entanglement entropy is known
to have a very similar dependence on the area of the
boundary [3, 4]. This analogy with the black hole en-
tropy is not accidental. If one considers black hole hori-
zon as the surface separating the interior of the black hole
from its exterior, then the corresponding entanglement
entropy reduces to the Bekenstein–Hawking entropy [5].
Quantum fields on a curved background spacetime also
lead to the renormalization of the effective gravitational
constant. It’s amazing that quantum corrections to the
entropy per unit area of a horizon are equivalent to the
quantum corrections to the gravitational coupling [6].
The interpretation of the Bekenstein–Hawking formula
as an entanglement entropy becomes even more striking
in the framework of induced gravity models [7–11]. It
was proposed in [5], that in generic static spacetimes with
horizons, the the minimal area surface on the t = const
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slice of the spacetime may play an important role in defin-
ing the entanglement entropy of the black hole.

Recently, holographic computations of the entangle-
ment entropy in conformal field theory (CFT) at infinity
of Anti-de Sitter (AdS) spacetime got a lot of attention
and developments. The original conjecture for entangle-
ment entropy by Ryu and Takayanagi [12–14] is that in
a static configuration the entanglement entropy of a sub-
system localized in a domain Ω is given by the formula1

SΩ =
AΣΩ

4G
. (2)

Given a static time slice (the (D−1)-dimensional bulk
space), the (D−2)-dimensional domain Ω belongs to infi-
nite boundary I of the bulk and the area AΣΩ in Eq. (2)
is to be understood as the area of a (D−2)-dimensional
minimal surface ΣΩ in the bulk spanned on the boundary
∂Ω of the subsystem (i.e., ∂ΣΩ = ∂Ω).

The QFT derivation of the Ryu–Takayanagi formula
was given by Fursaev [15] using the replica trick. In QFT
with gravity duals the formula (2) was proven for AdS3

[16, 17]. In a more general case of Euclidean gravity
solutions without Killing vectors the arguments support-
ing a validity of Ryu-Takayanagi formula were given in
[18, 19]. In the last few years the conjecture by Ryu
and Takayanagi has been generalized to gravity theories
with higher curvature interactions [20–23] or some other
deformations of the gravity theory [24]. The excellent
up-to-date review of the entanglement entropy and black
holes one can find in [25].

The computation of an entanglement entropy for sub-
system localized in two disjoint regions is particularly

1 From now on we use kB = c = ~ = 1 system of units.



2

interesting, since it can be used as a probe of the confine-
ment [26, 27]. It was demonstrated [26, 28] that in con-
fining backgrounds there are generally more solutions for
minimal surfaces in the bulk spanned on the boundaries
of these disjoint regions. However, there is a maximum
distance between the regions for which the tube-like min-
imal surface connecting both components ceases to exist.
There is also a critical scale when disconnected minimal
surfaces solution dominates over the connected one. In
the QFT language this critical behavior is analogous to
finite temperature deconfinement transition.

In the case of a few disjoint regions the minimal
surfaces connecting their boundaries are generally not
unique and their areas differ. The conventional wisdom
is that the entanglement entropy is related with the sur-
faces with the least area. This choice guarantees the
required strong subadditivity property [29] of the entan-
glement entropy. There were some proposals [30] how
to modify this “least area” rule while still satisfying the
strong subadditivity property.

In this paper we study minimal surfaces in pure AdS
spacetime. We show that many properties of the entan-
glement entropy, like critical behavior [26] demonstrated
for the asymptotically AdS spacetimes with a black holes
in the bulk, exist already in the pure AdS. The main
result is that we are able to find exact solutions for all
minimal surfaces spanned on one or two spherical bound-
aries arbitrary positioned at conformal infinity I. In this
short paper we give analytical formulas for the regular-
ized and renormalized area of these minimal surfaces.
The explicit form of the surfaces and its derivation is
presented in more detailed paper [31]. We also shortly
discuss spacetime character of a minimal surface spanned
on two accelerated spherical domains.

SPHERICAL BOUNDARIES AT INFINITY

We start with geometrical preliminaries concerning
the bulk space and with the characterization of the
spherical domains at infinity. We will discuss only
3+1-dimensional AdS spacetime, although, the most of
the discussion can be extended to higher dimensions.

AdS spacetime has many Killing symmetries and can
be viewed as a static spacetime in various ways. However,
in all cases the spatial section—the bulk space—has the
hyperbolic geometry of Lobachevsky space. To describe
it, we use cylindrical coordinates ρ, ζ, ϕ and Poincaré
coordinates x̄, ȳ, z̄ in which the metric reads

1
`2

gLob=dρ2+ ch2ρdζ2+ sh2ρdϕ2=
1
z̄2

(
dx̄2+dȳ2+dz̄2

)
.

(3)
Here, ` is the characteristic scale describing the radius of
curvature of AdS, as well as of its spatial section. The
coordinates are related by z̄ = r̄/ ch ρ, x̄ = r̄ th ρ cosϕ,
ȳ = r̄ th ρ sinϕ, with r̄ = exp ζ.

The conformal infinity I of the spatial section is con-
formal sphere. In cylindrical coordinates it is given by

ρ→∞ or ζ → ±∞. In Poincaré coordinates it is repre-
sented by plane z̄ = 0 plus one improper point r̄ →∞.

By the circular (in higher dimension, spherical)
boundary ∂Ω of a ball-like domain Ω at infinity I we
mean a 1-dimensional surface given by infinite points of
a 2-dimensional hyperplane in the bulk (hyperplane in
the sense of hyperbolic geometry). The circular bound-
aries at infinity are thus in one-to-one correspondence
with hyperplanes in the bulk. The boundary ∂Ω can be
understood also as the boundary of the complementary
domain I\Ω.

From a point of view of the conformally spherical ge-
ometry on I, all such boundaries are equivalent. It is a
reflection of the trivial fact that all hyperplanes in the
bulk are isometric. Therefore we do not have any quan-
tity measuring a ‘size’ of spherical boundaries at infinity.

However, in many calculations, both in the bulk or at
infinity, we need to regularize various quantities. Instead
of working at I we restrict on some cut-off surface which
is almost at infinity. Then we can measure a size of the
circular boundaries using geometry on the cut-off sur-
face. But, since the choice of the cut-off can be rather
arbitrary, the regularized size of the spherical boundary
can be only an intermediate quantity and physically mea-
surable quantities should be cut-off independent.

Two circular boundaries can be in three qualitatively
distinct positions: (i) disjoint boundaries (corresponding
hyperplanes are ultraparallel), 2 (ii) boundaries crossing
each other (the hyperplanes intersect in a line), and (iii)
boundaries touching in one point (the corresponding hy-
perplanes are asymptotic).

In the first case we can define the distance of the
boundaries as a distance of the corresponding hyper-
planes. To the crossing circular boundaries we can assign
an angle of the corresponding hyperplanes. Finally, all
pairs of touching boundaries are equivalent. Indeed, all
pairs of asymptotic hyperplanes in an arbitrary position
are isometric to each other. In global hyperbolic space
there is no measure which could distinguish them.

SURFACE SPANNED ON ONE BOUNDARY

Now we remind known results for a minimal surface
spanned on one circular boundary. Such a minimal sur-
face is trivial: it is the hyperplane which defines the
boundary. If we choose the axis of the cylindrical coor-
dinates perpendicular to the hyperplane, the hyperplane
is given by ζ = const. For the axis inside the hyper-
plane, the hyperplane is given by ϕ = ϕ0, ϕ0 + π. In
the Poincaré coordinates the hyperplane is represented
as a plane orthogonal to the infinity surface z = 0 or as

2 Let us note that two circles positioned ‘side by side’ or ‘one
inside of another’ in Poincaré planar representation of infinity
are equivalent; they differ only by a choice of the improper point
which closes planar part of infinity into sphere.
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(a) (b) (c)

Figure 1. Minimal surfaces spanned on circular boundaries. The surfaces are visualized in Poincaré spherical (top) and
Poincaré half-space (bottom) models. (a) The tube-like surface spanned on two disjoint boundaries. (b) The surface spanned
on two semicircles joining the opposite poles. (c) The surfaces spanned on two touching circles.

a hemisphere with the center at z = 0 (here we used a
language of the conformally related Euclidian geometry
with Cartesian coordinates x̄, ȳ, z̄).

To demonstrate different regularizations used later, we
can write down the area of a hyperplane measured up to
cut-off. For the hyperplane othogonal to the axis we have

Ahp = 2π`2(
√

1 + P 2−1) = C`
[
1− 1

P
+O

( 1
P 2

)]
, (4)

where C = 2π`P , with P = sh ρ∗, is the circumference of
the circular boundary on the cut-off surface ρ = ρ∗ � 1.

For the hyperplane which includes the axis we have

Ahp = 2L `
√

1− Z−2 = 2L`
[
1 +O

( 1
Z2

)]
, (5)

where L = Z∆ζ∗`, with Z = ch ρ∗, is the length of the
boundary at the cut-off surface. In this case, the circular
boundary is represented by two lines ρ =∞, ϕ = const,
ζ ∈ R. We thus have to introduce two cut-offs: ultravio-
let one, ρ = ρ∗, in the direction away from the axis, and
infrared3 one, ζ = ±∆ζ∗/2, along the axis.

3 The distinction between ultraviolet (UV) and infrared (IR) cut-
off is moreless conventional here. The cut-off labeling the regu-
larized surface near infinity is called UV since it corrresponds to
UV cut-off in related CFT. IR cut-off is extensive one, it corre-
sponds to the length along a translation symmetry.

Finally, the area of the hyperplane represented by a
half-plane in the Poincaré coordinates, say x̄ = const, is

Ahp = L` . (6)

L = ∆ȳ∗/z̄∗ is again the length of the circular bound-
ary at the cut-off surface z̄ = z̄∗ � 1. It is also infrared
divergent: one has to cut-off ȳ direction at ȳ = ±∆ȳ∗/2.

In all three cases we recognize well-known property
that the leading diverging term of the minimal surface is
(up to a constant scale) given by the regularized size of
the boundary at infinity. Clearly, the exact expression for
the divergent term depends on the regularization scheme,
however, in all cases it can be interpreted as regularized
size of the boundary at infinity [28, 32, 33].

The area of the trivial minimal surface spanned on
one circular boundary can be used to eliminate infinite
contributions to area for more complicated surfaces. We
define the renormalized area of a surface by subtracting
the area of hyperplanes spanned on the same boundaries
at infinity. In this sense, the trivial minimal surface has
vanishing renormalized area.
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Figure 2. Renormalized area of the minimal surface spanned on two boundaries. (a) Relation between the distance
s of the boundaries and the closest approach P0 of the tube to the axis. (b) Renormalized area of the tube as a function of P0.
(c) Renormalized area as a function of the distance s.

SURFACES SPANNED ON TWO BOUNDARIES

Disjoint boundaries. Given two circular boundaries
at infinity, we can always find the unique line perpen-
dicular to the corresponding hyperplanes in the bulk. If
we adjust the cylindrical coordinates to this axis, the cir-
cular boundaries are represented by two circles ρ =∞,
ζ = ±ζ∞. It is possible to find [31] a tube-like minimal
surface joining these two boundaries, see Fig. 1a. It is
described by the function ζ(P ) with P = ch ρ and it is
parametrized by P0 = ch ρ0 where ρ0 is the closest ap-
proach of the surface to the axis:4

ζ(P )=
±P0√

1+P 2
0

√
1+2P 2

0

[
(1+P 2

0 ) F
(

arccos P0
P ,
√

1+P 2
0

1+2P 2
0

)
− P 2

0 Π
(

arccos P0
P ,

1
1+P 2

0
,
√

1+P 2
0

1+2P 2
0

)]
. (7)

Setting P =∞ we can read out the coordinates ±ζ∞ of
the circular boundaries:

ζ∞(P0) =
P0√

1 + P 2
0

√
1 + 2P 2

0

×
[
(1 + P 2

0 ) K
(√

1+P 2
0

1+2P 2
0

)
− P 2

0 Π
(

1
1+P 2

0
,
√

1+P 2
0

1+2P 2
0

)]
.

(8)

The distance between both boundaries s = 2`ζ∞ as a
function of the parameter P0 is depicted in Fig. 2a. It
reveals that the tube exists only for distances smaller
than the maximal distance smax ≈ 1.00229` and for these
small distances there actually exist two tube-like minimal
surfaces. One shallow one, remaining at large distances
from the axis, and a deep one, approaching the axis. If
the distance of circular boundaries is enlarged, the tube
tears off and the minimal surface discontinuously splits
into two trivial hyperplanes spanned on both boundaries.

4 The solutions are expressed in terms of eliptic integrals with a
convention of [34].

To estimate which surface is the smallest one, we have
to write down the regularized area:

A(P ) =
4π`2P 2

0√
1 + 2P 2

0

Π
(

arccos P0
P , 1,

√
1+P 2

0
1+2P 2

0

)
= 2Ahp +Aren +O

( 1
P 3

)
.

(9)

The divergent term Ahp is given by (4), the finite part
Aren reads

Aren

4π`2
= 1+ P 2

0√
1+2P 2

0

K
(√

1+P 2
0

1+2P 2
0

)
−
√

1+2P 2
0 E
(√

1+P 2
0

1+2P 2
0

)
.

(10)
The renormalized area as a function of P0 or of the dis-

tance s is shown in Fig. 2. We see that the shallow tube
has always smaller area than the deeper one. However,
for scr < s < smax, the renormalized area of the tube is
positive, i.e., the tube has larger area than the trivial so-
lutions of two hyperplanes. The tube is thus the smallest
minimal surface only for s < scr ≈ 0.876895`.

All these results are consistent with the previous nu-
merical and approximate analysis [28].

Crossing circular boundaries. In the case of two
crossing circular boundaries at infinity we naturally ad-
just the cylindrical coordinates to the axis going through
the intersection points. Thus, the semicircles between
these intersection points are represented by lines ρ =∞,
ϕ = const. In Poincaré coordinates they are half-lines in
the plane z̄ = 0 starting at r̄ = 0. The minimal surface
spanned on two such semicircles is depicted in Fig. 1b. Its
explicit form can be found in [31]. It exists for any angle
φ between both semicircles and can be parametrized by
Z0 = ch ρ0 with ρ0 corresponding to the closest approach
of the surface to the axis. The relation between of φ and
Z0 is one-to-one [31]. The regularized area takes form:

A(Z) =
2L`Z2

0

Z
√

2Z2
0 − 1

Π
(

arccos Z0
Z , 1,

√
Z2

0−1

2Z2
0−1

)
= Ahp + ∆ζ∗`

[
aren +O

( 1
Z3

)]
.

(11)
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The leading term Ahp is given by (5). It is divergent
because both UV and IR divergencies. The next term
is proportional to IR cut-off ∆ζ∗. The reason is that
the minimal surface is invariant under the translation
along the axis. However, we can write down the finite
renormalized area density aren = Aren

∆ζ∗`
:

aren=2`
[

Z2
0√

2Z2
0−1

K
(√

Z2
0−1

2Z2
0−1

)
−
√

2Z2
0−1 E

(√
Z2

0−1

2Z2
0−1

)]
.

(12)
It is always negative. Naturally, the surface has always
smaller area then two half-hyperplanes starting at the
axis reaching the semi-circles at infinity.

Touching circular boundaries Tangent circular
boundaries are trivially represented in Poincaré coordi-
nates. If oriented in ȳ direction, they are given by z̄ = 0,
x̄ = ±x̄∞. The minimal surface spanned on such a ‘strip’
is in Fig. 1c, [31, 35]. It reaches the maximal value
of the coordinate z̄ for z̄0 = x̄∞/X0, which we call the
‘top-line’ of the surface. The constant X0 is given by
X0 = Γ(3/4)2

√
2π
≈ 0.59907. The area regularized at z̄ � 1

is

A(z̄) =
2A`2

z̄0

[√
z̄2

0

z̄2
− z̄2

z̄2
0

−
√

2 E
(

arccos
z̄

z̄0
,

1√
2

)
+

1√
2

F
(

arccos
z̄

z̄0
,

1√
2

)]
= Ahp + L0

[
−2X0`+O(z̄3)

]
. (13)

The leading divergent term Ahp is given by (6). The
next term is IR divergent since the surface has the horo-
cyclic symmetry ȳ → ȳ + ȳs. It is thus proportional to
the length L0 = ∆ȳ∗`

z̄0
measured on the ‘top-line’ of the

surface. The renormalized area density aren = Aren
L0

=
−2X0` is, as expected, a constant independent of the
position of the touching circular boundaries.

DISCUSSION

Returning to the conjecture (2), we can now associate
the entanglement entropy for any two generally posi-
tioned spherical domains at infinity. The most interesting
case occurs for two disjoint domains. For the boundaries
closer than smax there are three possible minimal sur-
faces, which indicates that the corresponding system in
CFT can be in three various phases. The physical one
would be that with the smallest area. Inspecting Fig. 2b,
one can see that the phase transition occurs at the dis-
tance s = scr, when the area of the tube-like surface
starts to exceed the area of the trivial solution of two hy-
perplanes. Although the entanglement entropy changes
continuously with the distance between the boundaries
at s = scr, the corresponding minimal surface changes
discontinuously.

To move from the trivial phase to tube-like phase con-
tinuously, one would have to start with two very close
hyperplanes. At a point, where they almost touch, a
very deep tube-like surface can appear. By enlarging the
distance of the boundaries, the tube starts to grow wider.
It follows the upper branch of the curve in Fig. 2c (i.e.
the non-physical phase) till the maximal possible distance
smax of the boundaries. Here, one has to start decreasing
the distance of the boundaries in such a way that the tube
grows even wider (following the lower branch in Fig. 2c).
After decreasing the distance under scr one obtains, in
the continuous way, the physical tube-like phase.

The fact that the tube-like minimal surface does not
exist for too distant boundaries can be explored also in
a dynamical way. We consider a static Killing vector or-
bits of which have the acceleration larger than 1/`. This
Killing vector has a bifurcation character similar to the
boost Killing vector in Minkowski spacetime. Its Killing
horizons divide AdS space into pairs of static regions po-
sitioned acausally with respect to each other, with non-
static regions between, cf. Fig. 3a. The hyperbolic space
in which we found the tube-like solution is the spatial
section of both opposite static regions. We can position
one circular boundary at infinity of one static region and
other one at infinity of opposite static region. The world-
sheets of corresponding hyperplanes describe uniformly
accelerated motion along the Killing vector, see Fig. 3a.
The tube-like minimal surface can be also evolved into
both static regions. However, it does reach the Killing

(a) (b)

Figure 3. World-sheets of minimal surfaces. Vertical
cylinder represents 3+1 dimensional AdS spacetime with an-
gular direction ϕ suppressed. The world-sheet of one circular
boundary is thus reduced only to two curves at infinity. One
circular boundary is localized in the left static region, other
in the right one. (a) Two uniformly accelerated hyperplanes
spanned on these circular boundaries. Killing horizons are in-
dicated. (b) The world-sheet of the tube-like minimal surface
joining the same circular boundaries.
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horizons and there it must be extended into non-static
regions. The resulting surface is depicted in Fig. 3b.

We see that the surface is non-smooth along two spatial
edges, one describing the formation of the surface in the
past, other its termination in the future. If the surface is
viewed from the point of a globally static observer (the
vertical direction in the figure), the future edge can be
interpret as tearing off the surface for the boundaries
positioned too far from each other and subsequent motion
of the teared pieces. For more details see [31].

Beside the case of two spherical domains we can inves-
tigate even more complicated situations: let us consider
spherical domains Ωi, each of them being a subdomain of
all following: Ωi ⊂ Ωj for i < j. They do not have to be
all simultaneously concentric! The circular boundaries
of these domains correspond to ultraparallel hyperplanes
in the bulk. For such a configuration we know minimal
surfaces for any pair of the boundaries. Employing (2)
we find that the renormalized entropy depends only on
the distance of the boundaries, cf. (8), (9). We can thus
test entropy properties for domains obtained by a com-
bination of several subdomains. Namely, one can check
the strong subadditivity inequalities to find that they are
satisfied, as expected from general considerations [28].

Similarly one can study the systems of strips between
several semicircles joined at the same poles.

We have found exact analytical solutions for minimal
surfaces in AdS spacetime for two disjoint domains at its
infinity. These classical geometrical solutions reveal the
existence of different phases that reflect the phase transi-
tion in the corresponding quantum CFT, similar to con-
finement/deconfinement phase transition at finite tem-
perature [26, 27]. The holographic entanglement entropy
becomes an effective tool for testing phase transitions in
CFT. Note that purely classical gravity calculations pro-
vide an insight to non-trivial quantum properties of the
corresponding field theories.
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