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It was proposed by Ryu and Takayanagi that the entanglement entropy in conformal field theory (CFT) is
related through the AdS/CFT correspondence to the area of a minimal surface in the bulk. We apply this
holographic geometrical method of calculating the entanglement entropy to study the vacuum case of a
CFT which is holographically dual to empty anti-de Sitter (AdS) spacetime. We present all possible
minimal surfaces spanned on one or two spherical boundaries at AdS infinity. We give exact analytical
expressions for the regularized areas of these surfaces and identify finite renormalized quantities. In the
case of two disjoint boundaries the existence of two different phases of the entanglement entropy is
confirmed. A trivial phase corresponds to two disconnected minimal surfaces, while the other one
corresponds to a tube connecting the spherical boundaries. A transition between these phases is reminiscent
of the finite temperature deconfinement transition in the CFT on the boundary. The exact analytical results
are thus consistent with previous numerical and approximate computations. We also briefly discuss the
character of a spacetime extension of the minimal surface spanned on two uniformly accelerated
boundaries.
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I. INTRODUCTION

The famous Bekenstein–Hawking area law [1,2]

SBH ¼ kBc3

ℏ
A
4G

(1)

for the entropy of black holes connects thermodynamics,
gravity and relativistic quantum field theory. This relation
remains valid not only in Einstein’s gravity in four
dimensions but in higher dimensions too, as long as the
gravitational constant G is D-dimensional and the area A is
understood as the volume of the ðD − 2Þ-dimensional
horizon surface.
In quantum field theory (QFT) an entanglement

entropy can be attributed to any surface formally dividing
the system in two parts. The leading UV contribution of
quantum fields to the entanglement entropy is propor-
tional to the area of the dividing surface [3–5]. This
property is strikingly similar the Bekenstein–Hawking
area law. The analogy with black hole entropy is not
accidental. One may consider a black hole horizon as a
surface separating the interior of the black hole from its
exterior. To define a wave function of all quantum fields
in the black hole spacetime [6] one can use an analogue

to the Hartle-Hawking no-boundary proposal. Using this
wave function one can construct the density matrix for
the fields inside the black hole and derive the corre-
sponding entanglement entropy, which is proportional to
the area of the horizon, but the coefficient of proportion-
ality formally diverges. However, one has to take into
account that quantum fields on a curved background
spacetime also contribute to the effective gravitational
constant. It is amazing that quantum contributions to the
entropy per unit area of a horizon are described by the
same functions as quantum corrections to the gravita-
tional coupling [7]. The interpretation of the Bekenstein–
Hawking formula as the entanglement entropy becomes
even more striking in the framework of induced gravity
models [8] where the gravitational coupling is completely
defined by quantum field contributions. In these models
the leading UV contribution to the entanglement entropy
of the horizon [9–12] is given by the formula A=ð4GindÞ
and is finite as soon as the induced gravitational constant
Gind is finite. It was also proposed [6] that in generic
static spacetimes with horizons, the minimal area surface
inside the slice of a constant time may play an important
role in the definition of the entanglement entropy of a
black hole.
Recently, holographic computations of the entanglement

entropy in conformal field theory (CFT) at infinity of the
anti-de Sitter (AdS) spacetime have seen a lot of attention
and development. The original conjecture for entanglement
entropy by Ryu and Takayanagi [13–15] is that in a static
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configuration the entanglement entropy of a subsystem
localized in a domain Ω is given by the formula1

SΩ ¼ AΣΩ

4
: (2)

Given a static time slice [the ðD − 1Þ-dimensional bulk
space], the ðD − 2Þ-dimensional domain Ω belongs to an
infinite boundary I of the bulk and the area AΣΩ

in Eq. (2) is
to be understood as the area of a ðD − 2Þ-dimensional
minimal surface ΣΩ in the bulk spanned on the boundary
∂Ω of the subsystem (i.e., ∂ΣΩ ¼ ∂Ω).
The holographic derivation of the Ryu–Takayanagi

formula for the entanglement entropy was proposed in
[16] using the replica trick. In the replica method there
naturally appears a more general notion of the Renyi
entanglement entropy. But the QFT derivation of the
Ryu–Takayanagi relation based on the calculation of
Renyi entropies requires a different approach [17,18]. In
QFT with gravity duals, formula (2) was proven for AdS3
[17,18]. In a more general case of Euclidean gravity
solutions without Killing vectors, arguments supporting
the validity of the Ryu-Takayanagi formula were given in
[19,20]. In the last few years the conjecture by Ryu and
Takayanagi has been generalized to gravity theories with
higher curvature interactions [21–24] or some other defor-
mations of the gravity theory [25]. An excellent up-to-date
review of the entanglement entropy and black holes can be
found in [26].
Calculation of entanglement entropy for a subsystem

localized in two disjoint regions is particularly interesting,
since it can be used as a probe of confinement [27,28]. It
was demonstrated [27,29] that in confining backgrounds
there are generally more solutions for minimal surfaces in
the bulk spanned on the boundaries of these disjoint
regions. However, there is a maximum distance between
the regions beyond which the tubelike minimal surface
connecting both components ceases to exist. There is also a
critical scale beyond which a solution with disconnected
minimal surfaces dominates over the connected one. In the
QFT language this critical behavior is analogous to a
deconfinement transition at a finite temperature.
In the case of a few disjoint regions the minimal surfaces

connecting their boundaries are generally not unique and
their areas differ. The conventional wisdom is that the
entanglement entropy is related to the surfaces of minimum
area. This choice guarantees the required strong subaddi-
tivity property [30] of the entanglement entropy. There
were some proposals [31] how to modify this “least area”
rule while still satisfying the strong subadditivity property.
In this paper we study minimal surfaces in the pure AdS

spacetime. We show that many properties of the entangle-
ment entropy, such as the critical behavior [27]

demonstrated for the asymptotically AdS spacetimes with
black holes in the bulk, exist already in the pure AdS.
The main result is that we are able to find exact solutions

for all minimal surfaces spanned on one or two spherical
boundaries positioned arbitrarily at conformal infinity I. In
this short paper we give analytical formulas for the
regularized and renormalized area of these minimal surfa-
ces. The explicit form of the surfaces and its derivation is
presented in a more detailed paper [32]. We also shortly
discuss the spacetime character of a minimal surface
spanned on two accelerated spherical domains.

II. SPHERICAL BOUNDARIES AT INFINITY

We start with geometrical preliminaries concerning
the bulk space and with the characterization of the
spherical domains at infinity. We will discuss only a
3þ 1-dimensional AdS spacetime although most of the
discussion can be extended to higher dimensions.
The AdS spacetime has many Killing symmetries and

can be viewed as a static spacetime in various ways.
However, in all cases the spatial section—the bulk
space—has the hyperbolic geometry of Lobachevsky space.
To describe it, we use cylindrical coordinates ρ; ζ;φ and
Poincaré coordinates x̄; ȳ; z̄ in which the metric reads

1

l2
gLob ¼ dρ2 þ ch2ρ dζ2 þ sh2ρ dφ2

¼ 1

z̄2
ðdx̄2 þ dȳ2 þ dz̄2Þ: (3)

Here, l is the characteristic scale describing the radius of
curvature of AdS, as well as of its spatial section. The
coordinates are related by z̄ ¼ r̄=chρ, x̄ ¼ r̄ th ρ cosφ,
ȳ ¼ r̄ th ρ sinφ, with r̄ ¼ exp ζ.
The conformal infinity I of the spatial section is the

conformal sphere. In cylindrical coordinates it is given by
ρ → ∞ or ζ → �∞. In Poincaré coordinates it is repre-
sented by the plane z̄ ¼ 0 plus one improper point r̄ → ∞.
By the circular (in higher dimension, spherical) boun-

dary ∂Ω of a ball-like domain Ω at infinity I we mean a
1-dimensional surface given by infinite points of a
2-dimensional hyperplane in the bulk (hyperplane in the
sense of hyperbolic geometry, a hypersurface with zero
extrinsic curvature). The circular boundaries at infinity are
thus in one-to-one correspondence with hyperplanes in
the bulk. Visualization of such a hyperplane and the
corresponding circular boundary can be found in Fig. 1.
The boundary ∂Ω can be understood also as the boundary
of the complementary domain I∖Ω.
From a point of view of the conformally spherical

geometry on I , all such boundaries are equivalent. It is
a reflection of the trivial fact that all hyperplanes in the bulk
are isometric. Therefore we do not have any quantity
measuring a “size” of spherical boundaries at infinity.1From now on we use a kB ¼ c ¼ ℏ ¼ G ¼ 1 system of units.
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However, in many calculations, both in the bulk or at
infinity, we need to regularize various quantities. Instead of
working at I we restrict on some cutoff surface at large
finite size. Then we can measure the size of the circular
boundaries using the geometry on the cutoff surface. But,
since the choice of the cutoff can be rather arbitrary, the
regularized size of the spherical boundary can be only an
intermediate quantity, and physically measurable quantities
should be cutoff independent.
Two circular boundaries can be in three qualitatively

distinct positions: (i) disjoint boundaries (corresponding
hyperplanes are ultraparallel),2 (ii) boundaries crossing
each other (the hyperplanes intersect in a line), and
(iii) boundaries touching in one point (the corresponding
hyperplanes are asymptotic).
In the first case we can define the distance of the

boundaries as a distance of the corresponding hyperplanes.
To the crossing circular boundaries we can assign an
angle of the corresponding hyperplanes. Finally, all pairs
of touching boundaries are equivalent. Indeed, all pairs
of asymptotic hyperplanes in an arbitrary position are
isometric to each other. In global hyperbolic space there
is no measure which could distinguish them.

III. SURFACE SPANNED ON ONE BOUNDARY

Now we review known results for a minimal surface
spanned on one circular boundary. Such a minimal surface
is trivial: it is the hyperplane which defines the boundary. If
we choose the axis of the cylindrical coordinates
perpendicular to the hyperplane, the hyperplane is given
by ζ ¼ const. If we choose the axis inside the hyperplane,
the hyperplane is given by φ ¼ φ0, φ0 þ π. In the Poincaré
coordinates the hyperplane is represented as a plane

orthogonal to the infinity surface z̄ ¼ 0 or as a hemisphere
with the center at z̄ ¼ 0 (here we used a language of the
conformally related Euclidian geometry with Cartesian
coordinates x̄; ȳ; z̄).
To demonstrate different regularizations used later, we

can write down the area of a hyperplane measured up to a
cutoff. For the hyperplane orthogonal to the axis we have

Ahp ¼ 2πl2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

p
− 1Þ ¼ Cl

�
1 −

1

P
þO

�
1

P2

��
;

(4)

where C ¼ 2πlP, with P ¼ shρ�, is the circumference of
the circular boundary on the cutoff surface ρ ¼ ρ� ≫ 1.
For the hyperplane which contains the axis we have

Ahp ¼ 2Ll
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z−2

p
¼ 2Ll

�
1þO

�
1

Z2

��
; (5)

where L ¼ ZΔζ�l, with Z ¼ chρ�, is the length of the
boundary at the cutoff surface. In this case, the circular
boundary is represented by two lines ρ ¼ ∞, ζ ∈ R,
φ ¼ φ0, φ0 þ π. We thus have to introduce two cutoffs:
an ultraviolet one, ρ ¼ ρ�, in the direction away from the
axis, and an infrared3 one, ζ ¼ �Δζ�=2, along the axis.
Finally, the area of the hyperplane represented by a half-

plane in the Poincaré coordinates, say x̄ ¼ const, is

Ahp ¼ Ll: (6)

L ¼ Δȳ�=z̄� is again the length of the circular boundary at
the cutoff surface z̄ ¼ z̄� ≪ 1. It is also infrared divergent:
one has to cut off the ȳ direction at ȳ ¼ �Δȳ�=2.
In all three cases we recognize the well-known property

that the leading diverging term of the minimal surface is (up
to a constant scale) given by the regularized size of the
boundary at infinity. Clearly, the exact expression for the
divergent term depends on the regularization scheme,
however, in all cases it can be interpreted as the regularized
size of the boundary at infinity [29,33,34].
The area of the trivial minimal surface spanned on one

circular boundary can be used to eliminate the infinite
contributions to the area for more complicated surfaces. We
define the renormalized area of a surface by subtracting the
area of hyperplanes spanned on the same boundaries at
infinity. In this sense, the trivial minimal surface has
vanishing renormalized area.

FIG. 1 (color online). Hyperplane corresponding to the circular
boundary at infinity. The hyperplane (the hypersurface of zero
extrinsic curvature) reaches infinity at the circular boundary
which divides infinity into two domains. The Poincaré spherical
(left) and spherical half-space (right) representation of hyperbolic
space is shown.

2Let us note that two disjoint circles positioned “side by side”
or “one inside of another” in the Poincaré planar representation of
infinity are equivalent; they differ only by a choice of the
improper point which closes planar part of infinity into sphere.

3The distinction between ultraviolet (UV) and infrared (IR)
cutoff is more or less conventional here. The cutoff labeling the
regularized surface near infinity is called UV since it corresponds
to a UV cutoff in the related CFT. The IR cutoff is an extensive
one; it corresponds to the length along a translation symmetry.
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IV. SURFACES SPANNED ON TWO BOUNDARIES

A. Disjoint boundaries

Given two circular boundaries at infinity, we can always
find the unique line perpendicular to the corresponding
hyperplanes in the bulk. If we adjust the cylindrical
coordinates to this axis, the circular boundaries are repre-
sented by two circles ρ ¼ ∞, ζ ¼ �ζ∞. It is possible to
find [32] a tubelike minimal surface joining these two
boundaries, see Fig. 2a. It is described by the function ζðPÞ
with P ¼ chρ, and it is parametrized by P0 ¼ chρ0, where
ρ0 is the closest approach of the surface to the axis4:

ζðPÞ ¼ �P0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2P2

0

p
×

"
ð1þ P2

0ÞF
 
arccos

P0

P
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

0

1þ 2P2
0

s !

− P2
0⊓

 
arccos

P0

P
;

1

1þ P2
0

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

0

1þ 2P2
0

s !#
: (7)

Setting P ¼ ∞ we can read out the coordinates �ζ∞ of the
circular boundaries:

ζ∞ðP0Þ ¼
P0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ P2
0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2P2

0

p
"
ð1þ P2

0ÞK
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ P2
0

1þ 2P2
0

s !

− P2
0⊓

 
1

1þ P2
0

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

0

1þ 2P2
0

s !#
: (8)

The distance between both boundaries, s ¼ 2lζ∞, as a
function of the parameter P0 is depicted in Fig. 3a. It
reveals that the tube exists only for distances smaller than
the maximal distance smax ≈ 1.00229l, and for these small
distances there actually exist two tubelike minimal surfa-
ces, one shallow one, remaining at large distances from the
axis, and a deep one, approaching the axis. If the distance of
circular boundaries is enlarged, the tube tears off and the
minimal surface discontinuously splits into two trivial
hyperplanes spanned on both boundaries.
To estimate which surface is the smallest one, we have to

write down the regularized area:

FIG. 2 (color online). Minimal surfaces spanned on circular boundaries. The surfaces are visualized in Poincaré spherical (top) and
Poincaré half-space (bottom) models. (a) The tubelike surface spanned on two disjoint boundaries. (b) The surface spanned on two
semicircles joining opposite poles. (c) The surfaces spanned on two touching circles.

4The solutions are expressed in terms of elliptic integrals with
the convention of [35].
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AðPÞ ¼ 4πl2P2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2P2
0

p ⊓
 
arccos

P0

P
; 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

0

1þ 2P2
0

s !

¼ 2Ahp þ Aren þO
�

1

P3

�
: (9)

The divergent term Ahp is given by (4), the finite part Aren
reads

Aren

4πl2
¼ 1þ P2

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2P2

0

p K

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

0

1þ 2P2
0

s !

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2P2

0

q
E
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ P2
0

1þ 2P2
0

s �
: (10)

The renormalized area as a function of P0 or of the
distance s is shown in Fig. 3. We see that the shallow tube
has always a smaller area than the deeper one. However, for
scr < s < smax, the renormalized area of the tube is pos-
itive, i.e., the tube has larger area than the trivial solutions
of two hyperplanes. The tube is thus the smallest minimal
surface only for s < scr ≈ 0.876895l.
All these exact results confirm the previously conjec-

tured properties based on numerical and approximate
analysis [29].

B. Crossing circular boundaries

In the case of two crossing circular boundaries at infinity
we naturally adjust the cylindrical coordinates to the axis
going through the intersection points. Thus, the semicircles
between these intersection points are represented by lines
ρ ¼ ∞, φ ¼ const. In Poincaré coordinates they are half-
lines in the plane z̄ ¼ 0 starting at r̄ ¼ 0. The minimal
surface spanned on two such semicircles is depicted in
Fig. 2b. Its explicit form can be found in [32]. It exists for
any angle ϕ between both semicircles and can be para-
metrized by Z0 ¼ chρ0 with ρ0 corresponding to the closest
approach of the surface to the axis. The relation between ϕ

and Z0 is one-to-one [32]. The regularized area takes the
form:

AðZÞ ¼ 2LlZ2
0

Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z2

0 − 1
p ⊓

 
arccos

Z0

Z
; 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
0 − 1

2Z2
0 − 1

s !

¼ Ahp þ Δζ�l
�
aren þO

�
1

Z3

��
: (11)

The leading term Ahp is given by (5). It is divergent because
of both UV and IR divergences. The next term is propor-
tional to the IR cutoff Δζ�. The reason is that the minimal
surface is invariant under the translation along the axis.
However, we can write down the finite renormalized area
density aren ¼ Aren

Δζ�l
:

aren ¼ 2l

"
Z2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Z2
0 − 1

p K

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
0 − 1

2Z2
0 − 1

s !

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z2

0 − 1

q
E

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
0 − 1

2Z2
0 − 1

s !#
: (12)

It is always negative. Naturally, the surface has always
smaller area then two half-hyperplanes starting at the axis
reaching the semicircles at infinity.

C. Touching circular boundaries

Tangent circular boundaries are trivially represented in
Poincaré coordinates. If oriented in the ȳ direction, they are
given by z̄ ¼ 0, x̄ ¼ �x̄∞. The minimal surface spanned on
such a “strip” is in Fig. 2c, [32,36]. It reaches the maximal
value of the coordinate z̄ for z̄0 ¼ x̄∞=X0, which we call the
‘“top-line” of the surface. The constant X0 is given by

X0 ¼ Γð3=4Þ2ffiffiffiffi
2π

p ≈ 0.59907. The area regularized at z̄ ≪ 1 is

2 4 6 8max

00

0.4

0.8

1.2

smax

s

2 3crmax
0

1

0

Areg
2

0.2 0.4 0.6 1.2scr smax

s

1

0

Areg
2

(a) (b) (c)

FIG. 3 (color online). Renormalized area of the minimal surface spanned on two boundaries. (a) Relation between the distance s of the
boundaries and the closest approach P0 of the tube to the axis. (b) Renormalized area of the tube as a function of P0. (c) Renormalized
area as a function of the distance s.
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Aðz̄Þ ¼ 2Al2

z̄0

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z̄20
z̄2

−
z̄2

z̄20

s
−

ffiffiffi
2

p
E
�
arccos

z̄
z̄0
;
1ffiffiffi
2

p
�

þ 1ffiffiffi
2

p F
�
arccos

z̄
z̄0
;
1ffiffiffi
2

p
�#

¼ Ahp þ L0½−2X0lþOðz̄3Þ�: (13)

The leading divergent term Ahp is given by (6). The next
term is IR divergent since the surface has the horocyclic
symmetry ȳ → ȳþ ȳs. It is thus proportional to the length
L0 ¼ Δȳ�l

z̄0
measured on the “top-line” of the surface. The

renormalized area density aren ¼ Aren
L0

¼ −2X0l is, as
expected, a constant independent of the position of the
touching circular boundaries.

V. DISCUSSION

Returning to the conjecture (2), we can now associate
entanglement entropy with any two generally positioned
spherical domains at infinity. The most interesting case
occurs for two disjoint domains. For boundaries closer than
smax there are three possible minimal surfaces, which
correspond to three possibilities (phases) for the holo-
graphic entanglement entropy in CFT. The physical choice
would correspond to the surface of the smallest area.
Inspecting Fig. 3b, one can see that the transition between
these phases occurs at the distance s ¼ scr, when the area of
the tubelike surface starts to exceed the area of the trivial
solution with two hyperplanes.
If we accept that the entanglement entropy for disjoint

subsystems is given by the absolute minimal surface
according to (2),5 then the renormalized area (10) is directly
related to the mutual information IðΩ1;Ω2Þ ¼ SΩ1

þ SΩ2
−

SΩ1∪Ω2
which quantifies correlations between the disjoint

subsystems. Indeed, since the entanglement entropy SΩ of a
single spherical domain Ω is given by the area Ahp of the
trivial hyperplane boundary ∂Ω, the renormalized area Aren
of the tube joining the boundaries of two such domains
gives directly the mutual information IðΩ1;Ω2Þ, provided
that the tube does give the minimal area, i.e., for s < scr.
Although the entanglement entropy changes continu-

ously with the distance between the boundaries at s ¼ scr,
the corresponding minimal surface changes discontinu-
ously. To move from the trivial phase to the tubelike phase
continuously, one would have to start with two very close
hyperplanes. At a point, where they almost touch, a very
deep tubelike surface can appear. By enlarging the distance
of the boundaries, the tube starts to grow wider. It follows
the upper branch of the curve in Fig. 3c (i.e., the
nonphysical phase) up to the maximal possible distance
smax of the boundaries. Here, one has to start decreasing the

distance of the boundaries in such a way that the tube grows
even wider (following the lower branch in Fig. 3c).
After decreasing the distance under scr one obtains, in a
continuous way, the physical tubelike phase.
The fact that the tubelike minimal surface does not

exist for too distant boundaries can be explored also
in a dynamical way. Although we consider only static
situations—calculation of the minimal surface area
given in a spatial section of a static region of the AdS
spacetime—we can take advantage of the rich structure of
AdS symmetries and investigate the situation which looks
rather dynamical in the global picture. Let us consider a
static Killing vector with orbits that have an acceleration
larger than 1=l. This Killing vector has a bifurcation
character similar to the boost Killing vector in the
Minkowski spacetime. Its Killing horizons divide the
AdS space into pairs of static regions positioned acausally
with respect to each other, with nonstatic regions between,
cf. Fig. 4a. The hyperbolic space in which we found the
tubelike solution is a spatial section of both opposite static
regions. We can position one circular boundary at infinity of
one static region and the other one at infinity of the opposite
static region. The world sheets of the corresponding hyper-
planes describe uniformly accelerated motion along the
Killing vector, see Fig. 4a. The tubelike minimal surface can
be also evolved into both static regions. However, it does
reach the Killing horizons and there it must be extended into
nonstatic regions. The resulting surface is depicted
in Fig. 4b.

FIG. 4 (color online). World sheets of minimal surfaces. The
vertical cylinder represents a 3þ 1 dimensional AdS spacetime
with the angular direction φ suppressed. The world sheet of one
circular boundary is thus reduced only to two curves at infinity.
One circular boundary is localized in the left static region, the
other in the right one. (a) Two uniformly accelerated hyperplanes
spanned on these circular boundaries. Killing horizons are
indicated. (b) The world sheet of the tubelike minimal surface
joining the same circular boundaries.

5See [31] for alternative proposals.
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We see that the surface is nonsmooth along two spatial
edges, one describing the formation of the surface in the
past, the other its termination in the future. If the surface is
viewed from the perspective of a globally static observer
(the vertical direction in the figure), the future edge can be
interpreted as a tear-off line for the boundaries positioned
too far from each other and the subsequent motion of the
separate pieces. For more details, see [32].
Beside the case of two spherical domains we can

investigate even more complicated situations: let us con-
sider spherical domainsΩi, each of them a subdomain of all
the subsequent ones:Ωi ⊂ Ωj for i < j. They do not have to
be all simultaneously concentric. The circular boundaries
of these domains correspond to ultraparallel hyperplanes in
the bulk. For such a configuration we know the minimal
surfaces for any pair of the boundaries. Employing (2) we
find that the renormalized entropy depends only on the
distance of the boundaries, cf. (8), (9). We can thus test
properties of the entropy for domains obtained by a
combination of several subdomains. Namely, one can
check the strong subadditivity inequalities to find that they
are satisfied, as expected from general considerations [29].

Similarly one can study systems of strips between
several semicircles joined at the same poles.
Summarizing, we have found exact analytical solutions

for minimal surfaces in AdS for two disjoint domains at
infinity. These classical geometrical solutions reveal the
existence of different phases that reflect a phase transition
in the corresponding quantum CFT, similar to the confine-
ment/deconfinement phase transition at a finite temperature
[27,28]. The holographic entanglement entropy becomes
an effective tool for testing phase transitions in CFT.
Note that calculations in purely classical gravity provide
an insight to nontrivial quantum properties of the corre-
sponding field theories.
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