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We investigate properties of higher-dimensional generally rotating black-hole spacetimes, so-called
Kerr–NUT–(anti)–de Sitter spacetimes, as well as a family of related spaces which share the same explicit
and hidden symmetries. In these spaces, we study a particle motion in the presence of a weak
electromagnetic field and compare it with its operator analogies. First, we find general commutativity
conditions for classical observables and for their operator counterparts, then we investigate a fulfillment
of these conditions in the Kerr–NUT–(anti)–de Sitter and related spaces. We find the most general form
of the weak electromagnetic field compatible with the complete integrability of the particle motion and
the comutativity of the field operators. For such a field we solve the charged Hamilton-Jacobi and
Klein-Gordon equations by separation of variables.
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I. INTRODUCTION

Investigation of higher-dimensional black-hole space-
times has become important not only in connection with
string theory [1], but also due to the fact that they serve as
nontrivial examples of integrable systems.
The most general known geometries describing

higher-dimensional, generally rotating black holes with
spherical horizon topology, Newman-Unti-Tamburino
(NUT) parameters, and an arbitrary cosmological constant
are Kerr-NUT-(anti)–de Sitter [(A)dS] spacetimes [2]. Such
spacetimes have many remarkable properties. Namely, they
possess a nondegenerate closed conformal rank-two Killing-
Yano tensor (the so-called principal Killing-Yano tensor) [3].
It was shown that this object generates the tower of explicit
and hidden symmetries1 associated with Killing vectors and
rank-two Killing tensors [4]. This exceptional symmetry
of Kerr-NUT-(A)dS enables integrability of geodesic
motion [5] as well as separability of the Hamilton-Jacobi,
Klein-Gordon [6,7], and Dirac equations [8].
It turns out that the structure of spacetime symmetries

following from the existence of the principal Killing-Yano
tensor is rather restrictive. It was proved in [9–11] that any
spacetime admitting the principal Killing-Yano tensor can

be written in the off-shell Kerr-NUT-(A)dS form. In this
paper, we demonstrate that there exist geometries which
have the same explicit and hidden symmetries as the
Kerr-NUT-(A)dS spacetimes, but without having the prin-
cipal Killing-Yano tensor.
Since the higher-dimensional generalization of the

charged black-hole spacetime has not been found yet,
some effort was devoted to the study of weakly
charged higher-dimensional black holes, in particular
Kerr-NUT-(A)dS spacetimes with a test electromagnetic
field [12–16]. Although this electromagnetic field does not
affect the geometry, it can dramatically change the motion
of charged particles [17,18]. The separability of the
mentioned fundamental equations was generalized to a
presence of such an additional weak electromagnetic field
aligned along the primary Killing vector [19,20].
The aim of this paper is to find the most general

electromagnetic field admitting integrability of the charged
particle motion and commutation of the charged scalar field
operators in the Kerr-NUT-(A)dS spacetimes and related
spaces. Then, for such a field, we demonstrate separations
of the Hamilton-Jacobi and Klein-Gordon equations.
For this purpose we derive some general commutativity

conditions of classical phase-space observables and
scalar field operators. It is well known that conditions
for vanishing Poisson brackets of classical observables
are equivalent to the conditions of vanishing Schouten-
Nijenhuis brackets [21–23]. However, commutativity of
operators requires that additional anomalous conditions
are satisfied. In the special case of the commutator of
d’Alembertian with the second-order operators, this was
shown already in [24].
The paper is organized as follows. Section II deals with a

general problem of the commutation of classical phase-
space observables and their analogy for scalar field
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1The name hidden symmetries is used in the literature in

various contexts. In this paper we mean by hidden symmetry the
existence of a conserved quantity for the geodesic motion which
is not linear in momenta. If such a quantity is a simple power of
the momentum, it is generated by a Killing tensor. By hidden
symmetry we thus mean the existence of a Killing tensor of rank
two (or higher). The explicit symmetry is generated by a Killing
vector (i.e., by a Killing tensor of rank one) and, contrary to
hidden symmetries, it corresponds to a spacetime isomorphism.
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operators. We derive commutativity conditions for quad-
ratic classical observables and second-order operators with
an added electromagnetic field. In the case of operators, we
obtain additional conditions. We discuss also the most
interesting case when one element of the set of mutually
commuting classical observables or operators represents
Hamiltonian or d’Alembertian, respectively.
In Sec. III we introduce Kerr-NUT-(A)dS spacetimes

and spaces which share the same explicit and hidden
symmetries. We find the most general form of the weak
electromagnetic field preserving complete integrability of
charged particle motion and the commutation of the
operators. For such a field we solve the Hamilton-
Jacobi and Klein-Gordon equations by separation of
variables.
Section IV is devoted to conclusions. In the Appendix,

we gather some useful identities which are used repeatedly
in this paper.

II. COMMUTATIVITY CONDITIONS

A. Classical phase-space observables

Particle motion in D-dimensional configuration space
M can be described in the language of Hamiltonian
mechanics, where the phase space S is the cotangent
bundle T�M equipped with the standard symplectic struc-
turewhich induces the Poisson bracket. A phase-space point
is described by a pair ½x; p� with position x ∈ M and
momentum p ∈ T�

xM. The manifoldM can represent either
the generalization of a three-dimensional space in a non-
relativistic case or a four-dimensional spacetime in a
relativistic case.2

The Poisson bracket of two observables A; B can be
written in terms of phase-space quantities as

fA; Bg ¼ dA · Ω−1 · dB; ð2:1Þ

where Ω is the standard symplectic structure [25,26].
To write it down in terms of configuration space quantities,
we need to introduce an auxiliary structure. Namely, we
assume that the manifoldM is endowed with a torsion-free

covariant derivative3 ∇. Then, the Poisson bracket can be
written [26] as4

fA;Bg ¼ ∇aA
∂x

∂B
∂pa

−
∂A
∂pa

∇aB
∂x

: ð2:2Þ

If the observables are homogeneous powers of the
momenta,

A ¼ Aa1…arpa1…par ; B ¼ Ba1…aspa1…pas ð2:3Þ

(with the coefficients A, B being rank-r and rank-s
symmetric tensors), their Poisson bracket is also the
homogeneous observable of type (2.3) with the coefficient
given by the Schouten-Nijenhuis bracket [21–23],

½A;B�a1…arþs−1
SN ≡ rAbða1…ar−1∇bBar…arþs−1Þ

− sBbða1…as−1∇bAas…arþs−1Þ: ð2:4Þ

Let us stress, that although expressions (2.2) and (2.4)
contain the derivative ∇, the Poisson and Schouten-
Nijenhuis brackets themselves are independent of the
choice of the derivative, cf. [26].
A general classical phase-space observable Q, which is

at most quadratic in the momentum p, has the form

Q≡ kabpapb þ lapa þ v; ð2:5Þ
where k is a rank-two symmetric tensor, l is a vector, and v
is a scalar. For further reference, we define homogeneous
observables quadratic, linear, and constant in momenta,

K ≡ kabpapb; L≡ lapa; V ≡ v; ð2:6Þ
i.e., Q ¼ K þ Lþ V.
Consider a set5 of the classical observables Ki, Lj of the

form (2.6). The Poisson brackets of these observables may
be written as6

fKi; Kjg ¼ −½ik; jk�abcSN p3abc;

fLi; Kjg ¼ −½il; jk�abSN p2ab;

fLi; Ljg ¼ −½il; jl�aSN pa; ð2:7Þ

and the Poisson brackets with the observable V indepen-
dent of momenta as

2In the relativistic case the full spacetime M plays a role of an
extended configuration space and its cotangent bundle defines
the extended phase space S. Hamiltonian formalism describes
the evolution in particle inner time (time parameter along the
trajectory). The expansion to the spacetime setting and the
reparametrization freedom in inner time is compensated by
the presence of the constraint (for the geodesic motion
gabpapb þm2 ¼ 0) and by the appropriate gauge fixing (e.g.,
the choice of the proper time along the trajectory). Since the
constraint is given by the observable which is conserved (actually,
by the Hamiltonian itself), we do not have to concentrate on the
constraint at the beginning. The constraint can be satisfied at the
end just by choosing the correct value of the corresponding
observable.

3At this moment, the derivative ∇ is not necessarily related to
any metric. It could also be any coordinate derivative.

4Here, ∂

∂p is a derivative with respect to the momentum at a
fixed cotangent fiber T�

xM. ∇
∂x is the covariant differential with

respect to the position, which ignores p dependence.
5The indices fi; j…g labels the observables and their tensorial

coefficients k and l. They are not tensor indices and therefore they
do not enter tensorial operations in various expressions below.

6Here, p3 denotes the tensorial power, p3abc ¼ papbpc. Sim-
ilarly, in the next section, A2

ab ¼ AaAb.
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fV;Kig ¼ −½v; ik�aSN pa; fV; Lig ¼ −½v; il�SN: ð2:8Þ

We thus see from (2.7) that Ki, Lj mutually Poisson
commute (are in involution) if and only if the correspond-
ing Schouten-Nijenhuis brackets vanish

½ik; jk�SN ¼ 0; ð2:9Þ

½il; jk�SN ¼ 0; ð2:10Þ

½il; jl�SN ¼ 0: ð2:11Þ

B. Scalar field operators

Now we would like to study an operator analogy of the
classical observables discussed above. Applying the stan-
dard heuristic rule p → −i∇ and employing symmetric
operator ordering, the quadratic observable (2.5) yields a
general second-order Hermitian operator Q of the form7

Q≡ −∇akab∇b −
i
2
½la∇a þ ∇ala� þ v

¼ −kab∇2
ab − ð∇akab þ ilbÞ∇b −

i
2
ð∇alaÞ þ v: ð2:12Þ

Here, we introduce the symmetric higher-order covariant
derivative

∇r
a1…ar ¼ ∇ða1…∇arÞ: ð2:13Þ

When applying the rule p → −i∇, we have to choose the
order of x dependent tensorial coefficients and derivatives.
As we said, we used the symmetric ordering as can be seen
in the first expression of (2.12). The second expression is an
equivalent “normal” form when the derivatives are placed
on the right. Other operator orderings would differ from
the symmetric one by terms of lower derivative orders.
Therefore, we can restrict ourselves to the operator of the
form above, remembering that the operator coefficients of
lower order can be, in principle, different from those in the
classical version of the observable.
Even if we fix the operator ordering, the operators do not

depend just on the tensorial coefficients as the classical
observables, but also on the choice of the covariant
derivative ∇. We do not assume at this moment that it
has to be the Levi-Civita derivative, although, it will be a
typical choice. But we assume that it is a torsion-free
derivative flat on densities, i.e., satisfying Rab

n
n ¼ 0,

which is equivalent to

Ricab ¼ RicðabÞ: ð2:14Þ

Since, two such covariant derivatives differ only by a
tensorial term, the corresponding operators would differ
only in lower derivative terms. The freedom in the choice of
the derivative is thus similar to the freedom of the operator
ordering. A particular choice of the covariant derivative
thus does not change a whole class of operators of a given
order, it only changes how we parametrize operators in the
class. Moreover, the highest order coefficient (the principal
symbol) is independent of the choice of the derivative.
Similarly to the classical case (2.6), we introduce

homogeneous Hermitian operators of the second order,
the first order, and the zeroth order, respectively,

K≡ −∇akab∇b ¼ −kab∇2
ab − ð∇akabÞ∇b;

L≡ −
i
2
½la∇a þ ∇ala� ¼ −ila∇a −

i
2
ð∇alaÞ;

V≡ v; ð2:15Þ

i.e., Q ¼ Kþ Lþ V.
Let us now consider a set of operators Ki, Lj of the form

(2.15). A rather involved calculation [using identities (A1)
from the Appendix and (2.14)] shows that the commutators
of these operators may be written as

½Ki;Kj� ¼ ½ik; jk�abcSN ∇3
abc þ

3

2
ð∇c½ik; jk�abcSN Þ∇2

ab

þ 1

2
ð∇að∇c½ik; jk�abcSN þ ijmabÞÞ∇b;

½Li;Kj� ¼ i½il; jk�abSN∇2
ab þ ið∇a½il; jk�abSNÞ∇b

−
i
2
ð∇aðjkab∇bð∇c

ilcÞÞÞ;

½Li; Lj� ¼ −½il; jl�aSN∇a −
1

2
ð∇a½il; jl�aSNÞ; ð2:16Þ

and commutators with zeroth order operator V as

½V;Ki� ¼ −½v; ik�aSN∇a −
1

2
ð∇a½v; ik�aSNÞ;

½V; Li� ¼ −i½v; il�SN: ð2:17Þ

Here, ijm is an antisymmetric tensor defined by

ijmab ≡ 2

3
ðikc½a∇d∇c

jkb�d − jkc½a∇d∇c
ikb�dÞ

−
2

3
ð∇d

ikc½aÞð∇c
jkb�dÞ − 2ikc½aRiccd

jkb�d: ð2:18Þ

Checking the coefficients in front of all symmetric
derivatives in (2.16) we find that the operators Ki, Lj
mutually commute if and only if (2.9)–(2.11) hold and, in
contrast to the commutation of the classical observables,
additional conditions

7In operator equations we use the convention that the round
brackets around a derivative end the action of the derivative
to the right, however, the square brackets do not. It means
½∇ala� ¼ la∇a þ ð∇alaÞ. Applying the operator on a scalar ϕ we
get ½∇ala�ϕ ¼ ð∇aðlaϕÞÞ ¼ lað∇aϕÞ þ ϕð∇alaÞ.
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∇aðikab∇bð∇c
jlcÞÞ ¼ 0; ð2:19Þ

∇a
ijmab ¼ 0 ð2:20Þ

must be also met.
We call these conditions anomalous conditions.

Depending on the choice of the covariant derivative ∇,
some of these conditions can be consequences of the
classical conditions (2.9)–(2.11); but, in general, they
constitute new nontrivial requirements on the operator
coefficients, ik and jl.

C. Charged classical observables

Besides the geodesic motion, it is interesting to study
also particle motion in an electromagnetic field. To obtain a
system with conserved quantities in involution in such a
case, the symmetries of the background geometry have to
be accompanied by an analogous symmetry of the electro-
magnetic field. In this section we find such general
compatibility conditions.
We define “charged” classical observables as follows:

qK ≡ ðpa − qAaÞkabðpb − qAbÞ
¼ K − 2qAakabpb þ q2A2

abk
ab;

qL≡ lapa ¼ L; ð2:21Þ
where A is the vector potential describing the electromag-
netic field and q is a charge of the particle. K and L
represent the uncharged classical observables (2.6)
defined above.
Consider a set of classical observables qKi, qLj, now of

the form (2.21). With the help of relations (2.7), (2.8), and
(A2), the Poisson brackets of these classical observables
may be written in the form

fqKi; qKjg ¼ fKi; Kjg
þ qð3Ac½ik; jk�abcSN þ 4ikcðaFcd

jkbÞdÞp2ab
− q2ð3A2

bc½ik; jk�abcSN þ 8Ab
ikcðaFcd

jkbÞdÞpa
þ q3ðA3

abc½ik; jk�abcSN þ 4A2
ab

ikcðaFcd
jkbÞdÞ;

fqLi; qKjg ¼ fLi; Kjg
þ 2qðAa½il; jk�abSN þ ð£ilAaÞjkabÞpb
− q2ðA2

ab½il; jk�abSN þ 2ð£ilAaÞjkabAbÞ;
fqLi; qLjg ¼ fLi; Ljg: ð2:22Þ
Here, F≡ dA denotes the Maxwell tensor.
The requirement that the observables qKi, qLj mutually

Poisson commute gives us conditions both on the tensor
coefficients ik, jl, as well as on the vector potential A.
Reading out different powers in the charge, it follows from
(2.7) that “uncharged” conditions (2.9)–(2.11) must still
hold, and, additionally, the field A has to satisfy

£ilA ¼ 0; ð2:23Þ

ikcðaFcd
jkbÞd ¼ 0. ð2:24Þ

The first condition has the clear meaning: the vector
potential cannot change along the explicit symmetries
given by the generators il. The second condition expresses
the compatibility with the hidden symmetries. It has an
algebraic form in terms of the Maxwell tensor F.

D. Charged field operators

Similarly to the uncharged case, we define operator
analogues of the classical charged observables (2.21)

qK≡ −½∇a − iqAa�kab½∇b − iqAb�
¼ Kþ 2iqAakab∇b þ iqð∇aðkabAbÞÞ þ q2A2

abk
ab;

qL≡ −
i
2
½la∇a þ ∇ala� ¼ L; ð2:25Þ

where K and L are uncharged operators (2.15).
Likewise, consider a set of the field operators qKi, qKj of

the form (2.25). Employing relations (2.16), (2.17),
and (A2), commutators of these charged operators may
be written in the form

½qKi; qKj� ¼ ½Ki;Kj�
− iqð3Ac½ik; jk�abcSN þ 4ikcðaFcd

jkbÞdÞ∇2
ab

−
�
iq∇bð3Ac½ik; jk�abcSN þ 4ikcðaFcd

jkbÞdÞ

þ q2ð3A2
bc½ik; jk�abcSN þ 8Ab

ikcðaFcd
jkbÞdÞ

�
∇a

þ
�
iq3ðA3

abc½ik; jk�abcSN þ 4A2
ab

ikcðaFcd
jkbÞdÞ

−
1

2
q2∇að3A2

bc½ik; jk�abcSN þ 8Ab
ikcðaFcd

jkbÞdÞ

þ iq∇a

�
jkab∇bð∇cðikcdAdÞÞ

− ikab∇bð∇cðjkcdAdÞÞ
��

;

½qLi; qKj� ¼ ½Li;Kj�
þ 2qðAa½il; jk�abSN þ ð£ilAaÞjkabÞ∇b

þ qð∇bðAa½il; jk�abSN þ ð£ilAaÞjkabÞÞ
− iq2ðA2

ab½il; jk�abSN þ 2ð£ilAaÞjkabAbÞ;
½qLi; qLj� ¼ ½Li; Lj�: ð2:26Þ
Requiring the mutual commutativity for the operators

qKi, qLj we find that, in addition to the “uncharged”
conditions (2.9)–(2.11), (2.19), and (2.20), we need the
field A to satisfy the “classical” conditions (2.23), (2.24),
and the new anomalous condition

∇aðikab∇bð∇cðjkcdAdÞÞ − ði ↔ jÞÞ ¼ 0: ð2:27Þ
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Notice that this condition depends on the choice of the
covariant derivative.

E. Conserved quantities

Let us concentrate on a physical situation when the
configuration space is endowed with a particular geometry
given by the metric g. The motion of a relativistic as well as
a nonrelativistic particle in this spacetime can be described
by a Hamiltonian which is quadratic in momentum8

H ≡ gabp2ab: ð2:28Þ

We are interested in the case when there exists a set of
independent mutually Poisson-commuting classical observ-
ablesKi,Lj, of the form (2.6) andH is one of the observables
Ki. It implies that all observables Ki; Lj are conserved
quantities.
The conditions (2.9) and (2.10) of the Poisson commu-

tation with the Hamiltonian then imply that ik and jl must
be the Killing tensors and vectors of the metric g,
respectively. Indeed, choosing the covariant derivative ∇
associated with the metric g, these conditions become

∇ða ikbcÞ ¼ 0; ∇ða ilbÞ ¼ 0: ð2:29Þ

Here, the indices are raised using the metric g.
Similarly, we define the d’Alembertian

□≡ gab∇2
ab ð2:30Þ

and we assume a set of independent mutually commuting
operatorsKi, Lj of the form (2.15), where the d’Alembertian
□ is one of the operators Ki. Then, the tensorial coefficients
ik and il must be Killing tensors and vectors of the metric g,
respectively, and additionally, the anomalous conditions,
(2.19) and (2.20), must be satisfied. Those anomalous
conditions, which arise from the commutation with □,
thanks to (2.14) and (2.29), simplify to9

∇aðRicacikcb − ikacRiccbÞ ¼ 0: ð2:31Þ

The indices are raised again by the metric g.
Condition (2.31) (for a given i) is automatically met in

several situations. For instance, it is satisfied if g solves
vacuum Einstein equations (admitting the cosmological
constant), or if the Ricci tensor and the Killing tensor can be
simultaneously diagonalized, or if the Killing tensor can be
written as ikab ¼ f ac f cb for a Killing-Yano 2-form f .
The last statement, mentioned in [27], can be generalized

to the case when the Killing tensor is a square of the
Killing-Yano p-form generated from the principal closed

conformal Killing-Yano tensor. The existence of such a
structure leads us, thanks to the uniqueness result [11], to
Kerr-NUT-(A)dS spacetimes.

III. KERR-NUT-(A)DS AND RELATED SPACES

A. Kerr-NUT-(A)dS metric

Kerr-NUT-(A)dS spacetimes [2] in an even dimension10

D ¼ 2n are given by the metric11

g ¼
X
μ

�
Uμ

Xμ
ðdxμÞ2 þ

Xμ

Uμ

�X
j

AðjÞ
μ dψ j

�
2
�
: ð3:1Þ

Coordinates xμ, μ ¼ 1;…; n, correspond to the radial
and azimuthal directions and Killing coordinates ψ j,
j ¼ 0;…; n − 1, denote the temporal and rotational direc-
tions. The metric is written in a Euclidean form in which the
radial coordinate and some other quantities are multiplied
by the imaginary unit i in order to achieve a more
symmetric form. However, for a suitable choice of ranges
of coordinates, the metric is real and has a Lorentzian
signature ð−þþ � � �Þ [2,28].
Functions Uμ and AðiÞ

μ are defined by

Uμ ≡
Y

ν
ν≠μ

ðx2ν − x2μÞ;

AðiÞ
μ ≡ X

ν1 ;…;νiν1<…<νi
νk≠μ

x2ν1…x2νi : ð3:2Þ

In order to satisfy vacuum Einstein equations, the metric
function Xμ must have the form

Xμ ¼ bμxμ þ
Xn
k¼0

ckx2kμ ; ð3:3Þ

where the constants ck and bμ relate to the cosmological
constant, angular momenta, mass, and NUT charges of a
black hole. However, in the following, we can consider the
so-called off-shell metric, when we just assume that
Xμ ¼ XμðxμÞ. It means that each Xμ is an arbitrary function
of a single variable xμ. Our conclusions do not depend on
particular forms of these functions.
We introduce an un-normalized orthogonal vector frame

ϵμ; ϵ̂μ, related normalized orthonormal frame eμ; êμ, and the
dual covector frames ϵμ; ϵ̂μ and eμ; êμ,

8We ignore a possible multiplicative constant which affects only
a scale of the time parameter.

9This anomalous condition has been already derived in [24].

10We restrict ourselves to even dimensions mainly because
of the simplicity of equations. All results can be generalized to
odd dimensions, when some of the expressions below include
additional odd terms.

11In the following, we do not assume an implicit sum over
greek indices μ; ν;… and latin indices i; j;…. Unless otherwise
stated, indices have ranges μ; ν ¼ 1;…; n and i; j ¼ 0;…; n − 1,
respectively. We use shortened notations

P
μ ≡P

n
μ¼1,P

i ≡P
n−1
i¼0 and

Q
μ ≡Q

n
μ¼1,

Q
i ≡Q

n−1
i¼0 .
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ϵμ ¼
1ffiffiffiffiffiffi
Qμ

p eμ ¼
∂
∂xμ

;

ϵ̂μ ¼
ffiffiffiffiffiffi
Qμ

p
êμ ¼

X
k

ð−x2μÞn−1−k
Uμ

∂

∂ψk
;

ϵμ ¼ ffiffiffiffiffiffi
Qμ

p
eμ ¼ dxμ;

ϵ̂μ ¼ 1ffiffiffiffiffiffi
Qμ

p êμ ¼
X
k

AðkÞ
μ dψk; ð3:4Þ

where

Qμ ≡ Xμ

Uμ
: ð3:5Þ

It was shown in [4] that the geometry (3.1) possess
hidden and explicit symmetries encoded by rank-two
Killing tensors ik and Killing vectors il, respectively,

ik≡X
μ

AðiÞ
μ

�
Qμ

�
∂
∂xμ

�
2
þ 1

Qμ

�X
k

ð−x2μÞn−1−k
Uμ

∂
∂ψk

�
2
�

¼
X
μ

AðiÞ
μ ðeμeμ þ êμêμÞ;

il≡ ∂
∂ψ i

¼
X
μ

AðiÞ
μ

ffiffiffiffiffiffi
Qμ

p
êμ: ð3:6Þ

The corresponding classical observables

Ki ¼ ikabp2ab; Li ¼ ilapa ð3:7Þ
mutually Poisson commute [29] and the quantities ik and il
satisfy (2.9)–(2.11). The Hamiltonian for geodesic motion
is given by H ¼ K0, i.e., 0k is inverse of the metric (3.1).
Moreover, all Killing tensors ik can be written as a
contracted square of Killing-Yano forms [29].
As can be observed from (3.6), the frames (3.4) are

formed by common eigenvectors of all Killing tensors ik. It
turns out that the Ricci tensor can be diagonalized in the
same frame [30], which implies that the anomalous con-
ditions (2.31) are satisfied. Actually, the scalar field oper-
ators Ki; Lj given by (2.25) employing the standard metric
derivative ∇ mutually commute. Direct proof of this prop-
erty, based on the coordinate expressions for the operators,
has been presented in [7]. We can thus conclude that all
anomalous conditions (2.19) and (2.20) are satisfied.

B. Geometries related to Kerr-NUT-(A)dS spaces

We can define a set of new metrics inverting each
tensor ik,

ig≡ ik−1 ¼
X
μ

1

AðiÞ
μ

ðeμeμ þ êμêμÞ: ð3:8Þ

With each of these metrics we associate the corresponding
metric covariant derivative i∇, i.e., a torsion-free covariant

derivative satisfying i∇ig ¼ 0. The metric 0g is the original
metric g of the off-shell Kerr-NUT-(A)dS spacetimes.
Unfortunately, contrary to the Kerr-NUT-AdS, spacetime
metrics (3.8) with i > 0 do not solve vacuum Einstein
equations for any functions Xμ. It also seems that these
metrics do not admit a principal closed conformal Killing-
Yano tensor.12

By an appropriate choice of the covariant derivative,
namely, ∇ ¼ i∇, in the Schouten-Nijenhuis brackets in
(2.9) and (2.10), we get

i∇ða jkbcÞ ¼ 0; i∇ða jlbÞ ¼ 0. ð3:9Þ

Here, the index of i∇a is raised by metric ig. We see that
quantities jk and kl are Killing tensors and Killing vectors
in the sense of the geometry given by the metric ig. In other
words, all spaces given by the metrics (3.8) have the same
explicit and hidden symmetries as the original off-shell
Kerr-NUT-(A)dS geometry.
It suggests that the whole family of geometries (3.8)

could share the same properties as the Kerr-NUT-(A)dS
spacetimes. It is true for properties related to the classical
observables, but, unfortunately, not for the properties
related to the operators.
Namely, the geodesic motion is completely integrable for

all geometries (3.8). It is guaranteed by the same set of
conditions (2.9)–(2.11). The choice of the geometry just
specifies which of the conserved quantities in involution
plays a role of the Hamiltonian.
However, the commutation of the scalar field operators

depends on the choice of the geometry ig. First, the
definitions (2.25) of the field operators themselves depend
on the choice of a covariant derivative and one has to decide
what is a natural choice. If one uses the same covariant
derivative ∇ ¼ i∇ in the definitions of all operators Kj, the
curvature quantities in the anomalous conditions, (2.19),
(2.20), or (2.31), are related to this derivative. It turns out
that the curvature tensors for each of the metrics ig do not
share the same structure. Only the curvature of the basic
Kerr-NUT-(A)dS metric 0g is special. In particular, only the
Ricci tensor 0Ric can be diagonalized in the frame (3.4) of
common eigenvectors of the Killing tensors; all higher
Ricci tensors iRic, i > 0, are not diagonal in this frame
[31]. The direct check for particular low dimensions
indicates that the anomalous conditions (2.20) and (2.31)
are, in general, not satisfied for the higher metrics ig, i > 0,
cf. [31]. It means, that although classical variables Ki

12The principal closed conformal Killing-Yano tensor of the
original metric 0g ceases to be a closed conformal Killing-Yano
tensor for metrics (3.8) with i > 0. It can also be proved that these
metrics do not posses a principal closed conformal Killing-Yano
tensor which would be compatible with the symmetries discussed
below. However, we have not excluded the existence of an
unrelated closed conformal Killing-Yano tensor.
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commute between each other and with the Hamiltonian
given by ig, the corresponding operators created using
derivative i∇ do not commute.
However, there exists a surprising exception: the anoma-

lous conditions are met for the highest metric n−1g in an
arbitrary dimension [32].

C. Electromagnetic field preserving commutation
of classical observables

A full generalization of the Kerr-NUT-(A)dS spacetimes
to the charged case is not known. However, one can study,
at least, a weak electromagnetic field on the uncharged
background, cf. e.g., [19,26]. The existence of 2n con-
served quantities in involution shows that the geodesic
motion in Kerr-NUT-(A)dS spacetimes is a highly special
dynamical system: it is completely integrable. It is natural
to ask for which test electromagnetic field the charged
particle motion remains completely integrable.
We thus want to study conditions of mutual commuta-

tivity of classical charged observables qKj and qLk of the
form (2.21) with coefficients jk and kl given by (3.6). Since
classical uncharged observables Kj and Lk mutually com-
mute, the field A must meet conditions (2.23) and (2.24).
Let Aμ, Aμ̂ denote components13 of the field A with

respect to the un-normalized frame ϵμ; ϵ̂μ,

A ¼
X
μ

ðAμϵμ þ Aμ̂ϵ̂μÞ: ð3:10Þ

The Killing tensors and vectors (3.6) in this frame read

jk¼
X
μ

AðjÞ
μ

�
Qμϵμϵμþ

1

Qμ
ϵ̂μϵ̂μ

�
; jl¼

X
μ

AðjÞ
μ ϵ̂μ:

ð3:11Þ
Condition (2.23) implies that components Aμ and Aμ̂ are

independent of ψ j,

Aμ ¼ Aμðx1;…; xnÞ; Aμ̂ ¼ Aμ̂ðx1;…; xnÞ: ð3:12Þ

Now we can turn to condition (2.24). Thanks to (3.12), the
exterior derivative F ¼ dA of the vector potential yields

F ¼
X
μ;ν

Aμ;νϵν ∧ ϵμ þ
X
μ;ν

Aμ̂;νϵν ∧ ϵ̂μ þ
X
μ

Aμ̂dϵ̂μ

¼
X
μ;ν
ν≠μ

�
Aμ;νϵν ∧ ϵμ

�
Aμ̂;ν þ Aμ̂

2xν
x2ν − x2μ

�
ϵν ∧ ϵ̂μ

�

þ
X
ν

�
Aν̂;ν −

X
μ

μ≠ν

Aμ̂
2xν

x2ν − x2μ

�
ϵν ∧ ϵ̂ν; ð3:13Þ

where we have substituted

dϵμ ¼ 0; dϵ̂μ ¼
X

ν
ν≠μ

2xν
x2ν − x2μ

ðϵν ∧ ϵ̂μ − ϵν ∧ ϵ̂νÞ;

ð3:14Þ
cf. (3.4) and (A5). Using (3.13) we can rewrite (2.24) as

0 ¼
X
μ;ν
ν≠μ

1

2
QμQνðAðjÞ

ν AðkÞ
μ − AðjÞ

μ AðkÞ
ν ÞAμ;νðϵνϵμ þ ϵμϵνÞ

þ
X
μ;ν
ν≠μ

1

2

Qν

Qμ
ðAðjÞ

ν AðkÞ
μ − AðjÞ

μ AðkÞ
ν Þ

×

�
Aμ̂;ν þ Aμ̂

2xν
x2ν − x2μ

�
ðϵνϵ̂μ þ ϵ̂μϵνÞ; ð3:15Þ

or equivalently

A½μ;ν� ¼ 0; ð3:16Þ

ðAμ̂ðx2μ − x2νÞÞ;ν ¼ 0. ð3:17Þ

Equations (3.16) and (3.12) ensure (locally) the exist-
ence of a potential φ ¼ φðx1;…; xnÞ

X
μ

Aμϵμ ¼ dφ: ð3:18Þ

Integrating (3.17) we find

Aμ̂ ¼
fμ
Uμ

; ð3:19Þ

where fμ are arbitrary functions of a single variable,
fμ ¼ fμðxμÞ. Thus, conditions (2.23) and (2.24) lead to
the field

A ¼ dφþ
X
μ

fμ
Uμ

ϵ̂μ: ð3:20Þ

Clearly, term dφ is gauge trivial. The Maxwell tensor F
corresponding to (3.20) can be obtained from (3.13),
cf. Eqs. (A4) and (A6),

F ¼
X
ν

�
Aν̂;ν −

X
μ

μ≠ν

Aμ̂
2xν

x2ν − x2μ

�
ϵν ∧ ϵ̂ν

¼
X
ν

�
f0ν
Uν

þ 2xν
X

μ
μ≠ν

1

Uμ

fμ − fν
x2μ − x2ν

�
ϵν ∧ ϵ̂ν: ð3:21Þ

We thus found a general electromagnetic field preserving
mutual commutation of conserved quantities and hence
the complete integrability of a charged particle motion on
Kerr-NUT-(A)dS spacetimes.

13The components Aμ of the vector potential A are not related
to the metric functions AðiÞ

μ .
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Actually, the derivation of the electromagnetic field
satisfying (2.23) and (2.24) is metric independent [except
the assumption of the existence of Killing tensors and
Killing vectors (3.6)] and therefore the charged particle
motion is completely integrable in any of the spaces with
metric ig.
The field (3.20), (3.21) has been already discussed in a

slightly different context. In [16], it has been derived
from the assumptions of the algebraic alignment with
background geometry, and in [33], its special subcase
has appeared in the study of harmonic 2-forms on
Kerr-NUT-(A)dS background.
The special case of (3.20) is the field, considered in [19]

and [20], of the form

A ¼ eξ ð3:22Þ

with e being a constant parameter of the field strength. ξ is
the Killing-Yano 1-form given by

ξ ¼
X
μ

Qμϵ̂μ; ð3:23Þ

which is actually directly related to Killing vectors as
ξa ¼ jgabjlb for arbitrary j ¼ 0;…; n − 1. In this case,
components Aμ̂ are given by the functions

fμ ¼ eXμ: ð3:24Þ
Another special case of (3.20) is a field satisfying the

vacuum Maxwell equations

0∇bFba ¼ 0: ð3:25Þ
The index of the covariant derivative is raised by metric 0g.
Because of the involvement of the metric and its covariant
derivative, the source Maxwell equation is metric depen-
dent. It was shown in [16] that the field satisfying (3.25) has
the form

A ¼
X
μ

eμxμ
Uμ

ϵ̂μ; ð3:26Þ

where eμ are constants parametrizing the field strength. It
corresponds to the choice

fμ ¼ eμxμ: ð3:27Þ

It is not known if the vacuum Maxwell equations can be
satisfied in the class of electromagnetic fields (3.20) for the
higher metrics (3.8).

D. Separability of the Hamilton-Jacobi equation

It was shown in [6] that not only is geodesic motion in
Kerr-NUT-(A)dS spacetimes completely integrable, but
also the Hamilton-Jacobi equation can be solved by a

separation of variables. Now we demonstrate that this
property remains valid also for a charged particle in the
test electromagnetic field (3.20).
We consider the field (3.20) with the gauge trivial part set

to zero, φ ¼ 0, but with generic functions fμ. It means that
the field does not necessarily satisfy the source-free
Maxwell equation. For such a field we can investigate
motion of a charged scalar particle simultaneously in all
spaces ig, because qKj and qLk are mutually commuting
independent conserved quantities in each space ig.
The corresponding Hamiltonian qHi is equal to the
observable qKi.
In what follows, we solve the equations qKj ¼ Ξj and

qLj ¼ Ψj, where Ξj and Ψj are constants of motion. If we
substitute p≡ ∇S in these equations, we obtain

ð∇aS − qAaÞjkabð∇bS − qAbÞ ¼ Ξj; ð3:28Þ

jla∇aS ¼ Ψj: ð3:29Þ

Equation (3.28) for j ¼ i is just the Hamilton-Jacobi
equation with the time independent Hamiltonian qHi. By
time we mean the world line parameter.
These equations can be simultaneously solved by a

separation of variables. We use the following additive-
separability ansatz for the Jacobi function:

S ¼
X
μ

Sμ þ
X
k

Ψkψk; ð3:30Þ

where Sμ are functions of a single variable, Sμ ¼ SμðxμÞ.
This form automatically guaranties that the conditions
(3.29) are satisfied.
Substituting (3.11) and (3.20) with φ ¼ 0 and (3.30) into

(3.28) yields

X
μ

AðjÞ
μ

Uμ

�
ðS0μÞ2 þ

1

Xμ
ð ~Ψμ − qfμÞ2

�
¼ Ξj; ð3:31Þ

where ~Ψμ ≡P
kΨkð−x2μÞn−1−k. Using (A3) we can rewrite

this equation as a set of ordinary differential equations for
functions Sμ

ðS0μÞ2 ¼
~Ξμ

Xμ
−

1

X2
μ
ð ~Ψμ − qfμÞ2; ð3:32Þ

where ~Ξμ ≡P
kΞkð−x2μÞn−1−k.

Notice that the differential equation (3.32) for Sμ differs
from the uncharged case just by the term qfμ. For a solution
of the source-free Maxwell equations the function fμ is
given by (3.27) and Eq. (3.32) is thus modified only by
this term.
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Functions Sμ are fixed by Eq. (3.32) up to an additive
constant. Finally, the Jacobi function S is identical for all
metrics ig.

E. Electromagnetic field preserving
commutation of operators

As we discussed above, the definition of the operators
(2.25) and its relation depends on the choice of the metric.
Therefore, in the following we restrict ourselves to the case
of the off-shell Kerr-NUT-(A)dS geometry given by the
metric g ¼ 0g and we also set ∇ ¼ 0∇.14
The commutation of the charged operators qKi and qLj

with coefficients given by Killing tensors and vectors (3.6)
leads to conditions (2.23), (2.24), and (2.27). Conditions
(2.23) and (2.24) have been already investigated; they
imply that A has the form (3.20). It turns out that the last
condition (2.27) is a consequence of the previous. Indeed,
since ∇aϵ̂aμ ¼ 0 and ϵ̂aμdaxν ¼ 0, we have ∇cðjkcdAdÞ ¼
∇cðjkcd∇dφÞ, and the right-hand side of the condition
(2.27) takes the form

∇aðikab∇bð∇cðjkcdAdÞÞÞ − ði ↔ jÞ ¼ ½Ki;Kj�φ: ð3:33Þ

It vanishes thanks to the commutation of the uncharged
operators Ki.
The electromagnetic field (3.20) thus preserves the

mutual commutation of charged operators (2.25) defined
using the Kerr-NUT-(A)dS metric (3.1) and the correspond-
ing covariant derivative ∇.

F. Separability of the Klein-Gordon equation

Finally, we generalize the results of [6] and [7] to the
charged case. It was shown there that the Klein-Gordon
equation and analogous equations for operators Ki can be
solved by a separation of variables.
Charged operators qKi, qLj mutually commute and

therefore they have common eigenfunctions ϕ, which
satisfy

qKjϕ ¼ Ξjϕ; ð3:34Þ

qLjϕ ¼ Ψjϕ; ð3:35Þ

where Ξj and Ψj are corresponding eigenvalues.
Equation (3.34) for j ¼ 0 is the Klein-Gordon equation,
because qK0 ¼ q

□.
If we chose the trivial gauge φ ¼ 0 for the electromag-

netic field (3.20), the eigenfunctions can be found in the
separated form

ϕ ¼
Y
μ

Rμ

Y
k

exp ðiΨkψkÞ; ð3:36Þ

where Rμ are functions of a single variable, Rμ ¼ RμðxμÞ.
The ansatz (3.36) automatically satisfies (3.35). In order

to find functions Rμ from (3.34), we need to express
operator qKj in coordinates. Using (3.11) and (3.20) we
write each term of this operator [cf. the second equality of
qK in (2.25)] as

−∇a
jkab∇b ¼ −g−1

2∂ag
1
2
jkab∂b

¼ −
X
μ

AðjÞ
μ

Uμ

�
∂

∂xμ
Xμ

∂

∂xμ
þ 1

Xμ

�X
k

ð−x2μÞn−1−k
∂

∂ψk

�
2
�
;

2iqAa
jkab∇b ¼ 2iq

X
μ

AðjÞ
μ

Uμ

fμ
Xμ

X
k

ð−x2μÞn−1−k
∂

∂ψk
;

∇aðjkabAbÞ ¼ Kjφþ g−
1
2∂a

�
g
1
2

X
μ

fμ
Uμ

jkabϵ̂μb

�
¼ 0;

q2A2
ab

jkab ¼ q2
X
μ

AðjÞ
μ

Uμ

f2μ
Xμ

; ð3:37Þ

where ∂ is the coordinate derivative with respect to the
coordinates xμ, ψk and g ¼ U2 is the determinant of the
metric in these coordinates [cf. definition (A7) and useful
relation (A8)]. Putting all this together, operator qKj can be
written in the form

qKj ¼
X
μ

AðjÞ
μ

Uμ

�
−

∂

∂xμ
Xμ

∂

∂xμ

þ 1

Xμ

�
−i
X
k

ð−x2μÞn−1−k
∂

∂ψk
− qfμ

�
2
�
: ð3:38Þ

Substituting (3.36) and (3.38) into Eq. (3.34), we obtain

X
μ

AðjÞ
μ

Uμ

�
−

1

Rμ
ðXμR0

μÞ0 þ
1

Xμ
ð ~Ψμ − qfμÞ2

�
¼ Ξj; ð3:39Þ

where ~Ψμ ≡P
kΨkð−x2μÞn−1−k. Inverting this relation using

(A3), we obtain the set of ordinary differential equations for
functions Rμ

ðXμR0
μÞ0 þ

�
~Ξμ −

1

Xμ
ð ~Ψμ − qfμÞ2

�
Rμ ¼ 0; ð3:40Þ

where ~Ξμ ≡P
kΞkð−x2μÞn−1−k.

We thus proved that the set of the second-order equa-
tions (3.34) and of the first order equations (3.35), with
operators defined using the standard covariant derivative
and the test electromagnetic field (3.20), can be solved

14Actually, everything works also for the metric n−1g and the
derivative n−1∇; see [32]. Namely, Eq. (3.33) holds and the Klein-
Gordon equation can be solved by a separation of variables.
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by the multiplicative separation of variables (3.36).
Differential equations (3.40) for functions Rμ differ from
the uncharged case by terms qfμ. For the electromagnetic
field (3.27), which solves the source-free Maxwell equa-
tions (3.25), the character of equations (3.40) does not
change significantly, since the terms ~Ψμ − qfμ remain
polynomial.

IV. CONCLUSIONS

In this paper, we have derived several commutativity
conditions of classical observables, as well as field oper-
ators, where additional conditions (the so-called anoma-
lous) must hold. We have further generalized classical
observables and field operators to the case when a back-
ground electromagnetic field is present and found corre-
sponding commutativity conditions. We have concentrated
on the physical situation when the manifold is endowed
with a metric which defines the Hamiltonian and
d’Alembert operator.
We have investigated a fulfillment of derived commu-

tativity conditions in Kerr-NUT-(A)dS spacetimes (3.1)
and spaces (3.8) which share the same set of explicit and
hidden symmetries. In particular, we have found the most
general electromagnetic field preserving integrability
and commutation of operators in Kerr-NUT-(A)dS and
related spaces; see (3.20). For such a field we have
solved Hamilton-Jacobi and Klein-Gordon equations by
the separation of variables. We have thus generalized
results of [19] and [20].
We have introduced the new family of geometries (3.8)

with the same explicit and hidden symmetries as the off-
shell Kerr-NUT-(A)dS geometry. These related spaces
share certain properties with the Kerr-NUT-(A)dS space-
times. In particular, the motion of a charged particle in
electromagnetic field (3.20) is completely integrable
(classical observables Poisson commute) for all related
geometries. Corresponding Hamilton-Jacobi equations can
be solved simultaneously by the same Jacobi function.

However, an analogous property does not hold in the case
of the operators. Only the off-shell Kerr-NUT-(A)dS metric
is exceptional because it satisfies necessary anomalous
conditions and enables thus the separation of the Klein-
Gordon equation.
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APPENDIX: USEFUL IDENTITIES

1. Symmetrization of covariant derivatives

Second order torsion-free covariant derivatives of a
scalar field are symmetric ∇a∇b ¼ ∇2

ab. The higher-order
derivatives do not have this property, but they can always
be split into a symmetric part and a part which contains
derivatives of the lower order. In this paper, we have
repeatedly employed the following relations:

∇a∇b∇c ¼ ∇3
abc − 2

3
RaðbdcÞ∇d;

∇2
ab∇2

cd − ∇2
cd∇2

ab ¼ 2½RðcjðaebÞ∇jdÞ∇e − RðajðcedÞ∇jbÞ∇e�
− ð∇ðaRbÞðcedÞ − ∇ðcRdÞðaebÞÞ∇e;

ðA1Þ

which can be proved using the Ricci and Bianchi identities.

2. Identities of Schouten-Nijenhuis brackets

We list here some identities which were used to obtain
(2.22) and (2.26).

½il;A · jk�aSN ¼ Ab½il; jk�abSN þ ð£ilAbÞjkab;
½A2

ab
jkab; il�SN ¼ A2

ab½jk; il�abSN − 2ð£ilAaÞjkabAb;

2½A · ik; A · jk�aSN þ 1

2
ð½ik;A2

bc
jkbc�aSN − ði ↔ jÞÞ ¼ 3

2
A2
bc½ik; jk�abcSN þ 4Ab

ikcðaFcd
jkbÞd;

½A · ik;jk�abSN − ði ↔ jÞ ¼ 3

2
Ac½ik; jk�abcSN þ 2ikcðaFcd

jkbÞd;

½A · ik; A2
bc

jkbc�SN − ði ↔ jÞ ¼ 1

2
A3
abc½ik; jk�abcSN þ 2A2

ab
ikcðaFcd

jkbÞd: ðA2Þ

Here, the notation ðA · kÞa ¼ Abkba was employed.
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3. Kerr-NUT-(A)dS metric functions

We summarize some important identities containing
functions AðiÞ

μ , Uμ which emerge in the definition of the
off-shell Kerr-NUT-(A)dS metric (3.1).
Functions AðiÞ

μ , Uμ, defined by (3.2), satisfy relations

X
μ

AðiÞ
μ
ð−x2μÞn−1−j

Uμ
¼ δij;

X
i

AðiÞ
μ
ð−x2νÞn−1−i

Uν
¼ δμν: ðA3Þ

Derivatives of AðiÞ
μ , Uμ can be written as

AðiÞ
μ;ν ¼ ð1 − δμνÞ

2xν
x2ν − x2μ

ðAðiÞ
μ − AðiÞ

ν Þ;

Uμ;ν ¼ δμν
X

ρ
ρ≠μ

2xμ
x2μ − x2ρ

Uμ þ ð1 − δμνÞ
2xν

x2ν − x2μ
Uμ: ðA4Þ

Combining (A3) and (A4) we obtain
X
i

ðn − 1 − iÞAðiÞ
μ
ð−x2νÞn−1−i

Uν

¼ δμν
X

ρ
ρ≠μ

x2μ
x2μ − x2ρ

þ ð1 − δμνÞ
x2ν

x2ν − x2μ
;

X
i

AðiÞ
μ;α

ð−x2νÞn−1−i
Uν

¼ ð1 − δμαÞðδμν − δανÞ
2xα

x2α − x2μ
: ðA5Þ

Besides these relations, we list here a useful identity

1

Uν

X
μ

μ≠ν

1

x2μ − x2ν
¼

X
μ

μ≠ν

1

Uμ

1

x2ν − x2μ
: ðA6Þ

Finally, let us define the function

U ≡Y
μ;ν
μ<ν

ðx2μ − x2νÞ: ðA7Þ

It appears naturally as a square root of the determinant of the
metric (3.1) in coordinates xμ, ψk. It satisfies the relation�

U
Uμ

�
;μ
¼ 0: ðA8Þ
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