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Gravitational and Electromagnetic Fields near a de Sitter–Like Infinity
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We present a characterization of general gravitational and electromagnetic fields near de Sitter–like
conformal infinity which supplements the standard peeling behavior. This is based on an explicit
evaluation of the dependence of the radiative component of the fields on the null direction from which
infinity is approached. It is shown that the directional pattern of radiation has a universal character that
is determined by the algebraic (Petrov) type of the spacetime. Specifically, the radiation field vanishes
along directions opposite to principal null directions.
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trary given Cauchy surface by a finite but sufficiently allows us to define a timelike unit vector n normal to I ,
A direct observation of gravitational waves will be
properly understood only when it can be compared with
reliable predictions supplied by numerical relativity. To
make such predictions is difficult since, among other
things, no rigorous statements are available which relate
the properties of sufficiently general strong sources to the
radiation fields produced. Only a few explicit radiative
solutions of Einstein’s equations are known which can be
used as test beds for numerical codes (see, e.g., [1,2]), in
particular, spacetimes representing ‘‘uniformly acceler-
ated particles or black holes.’’ These have also been the
main inspiration for our present analysis of the general
asymptotic properties of radiation in spacetimes with a
positive cosmological constant �. The motivation for
considering de Sitter–like universes arises not only by
their role in inflationary theories but also by the fact that
many nonvacuum cosmological models with � > 0 (as
suggested by recent observations) approach the de Sitter
universe asymptotically in time (‘‘cosmic no-hair con-
jecture’’) and hence have a de Sitter–like infinity.

We have recently constructed the test fields of uni-
formly accelerated charges in de Sitter spacetime (the
Born solutions generalized for � > 0) and investigated
how their radiative properties depend on the way in which
infinity is approached [3]. Somewhat surprisingly, we
have found analogous results [4] in the case of the exact
solution of the Einstein-Maxwell equations with � > 0,
namely, the ‘‘charged C-metric’’ describing a pair of
charged accelerated black holes in a de Sitter universe.

In the following, we shall demonstrate that the direc-
tional pattern of radiation near an infinity of de Sitter
type has a universal character that is determined by the
algebraic (Petrov) type of the spacetime. In spacetimes
which are asymptotically de Sitter, there are two disjoint
past and future (conformal) infinities I� and I�, both
spacelike [5,6]. In such spacetimes both cosmological
horizons and event horizons for geodesic observers occur
and, consequently, advanced effects have to be present if
the fields are smooth [7]. Curiously enough, with � > 0
the global existence has been established of asymptoti-
cally simple vacuum solutions which differ on an arbi-
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small amount from de Sitter data [8], while an analogous
result for data close to Minkowski (� � 0) is still under
investigation [2,8]. Thus, many vacuum asymptotically
simple spacetimes with de Sitter–like I� do exist.
Assuming their existence, Penrose proved already in
1965 [5,6] that both the gravitational and the electro-
magnetic fields satisfy the peeling-off property with re-
spect to null geodesics reaching any point of I�. This
means that along a null geodesic parametrized by an
affine parameter �, the part of any spin-s zero rest-
mass field proportional to ���k�1�, k � 0; 1; . . . ; 2s, has,
in general, 2s� k coincident principal null directions. In
particular, the part of the field that falls off as ��1 is a
radiation (‘‘null’’) field. The peeling-off property is easier
to prove with � > 0 than in asymptotically Minkowskian
spacetimes when I� is a null hypersurface [5]. With a
spacelike I�, however, one can approach any point on I�

from infinitely many different null directions and, con-
sequently, the radiation field becomes mixed up with
other components of the field when the null geodesic is
changed. This fact of the ‘‘origin dependence’’ of the
radiation field in the case of a spacelike I� has been
repeatedly emphasized by Penrose [5,6]. Exactly this
directional radiation pattern, i.e., the dependence of
fields (with respect to appropriate tetrad) on the direction
along which the null geodesic reaches a point on a space-
like I�, is analyzed in the present work.

Following general formalism [5,6], a spacetime M
with physical metric g can be embedded into a larger
conformal manifold Mf with conformal metric ~gg related
to g by ~gg � !2g. Here, the conformal factor !, negative
in M, vanishes on the boundary of M in Mf called con-
formal infinity I . It is spacelike if the gradient d! on I
has timelike character. This may be either future infin-
ity I� or past infinity I�. Near I� we decompose ~gg into
a spatial 3-metric I ~gg tangent to I� and a part orthogo-
nal to I�:

g � !�2�� ~NN2d!2 � I ~gg�: (1)

The conformal lapse function ~NN can be chosen to be
constant on I�, e.g., equal to ‘ �

���������
3=�

p
. The form (1)

�
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n � � !�1 ~NNg��d�!: (2)

Next, we denote the vectors of an orthonormal tetrad as
t, q, r, s, where t is a unit timelike vector and the
remaining three are unit spacelike vectors. With this
tetrad we associate a null tetrad k, l, m, �mm, such that
k�l � �1, m� �mm � 1,

k � �t� q�=
���
2

p
; l � �t� q�=

���
2

p
;

m � �r� i s�=
���
2

p
; �mm � �r� i s�=

���
2

p
:

(3)

Various specific tetrads introduced below will be distin-
guished by an additional label in subscript.

As usual, we parametrize the Weyl tensor C����
(representing the gravitational field) by five complex
coefficients

	0 � C����k�m�k�m�; 	1 � C����k�l�k�m�;

	2 � �C����k�m�l� �mm�; 	3 � C����l�k�l� �mm�;

	4 � C����l� �mm�l� �mm�; (4)

and the electromagnetic field F�� by three coefficients

�0 � F��k�m�; �2 � F�� �mm�l�;

�1 �
1

2
F���k�l� �m� �mm��:

(5)

These simply transform under special Lorentz trans-
formations — null rotations with k or l fixed, boosts in
k-l plane, and spatial rotations in m- �mm plane. For in-
stance, under a null rotation with l fixed, parametrized
by K 2 C:

l � lo; k � ko � �KKmo � K �mmo � K �KK lo;

m � mo � K lo; �mm � �mmo � �KK lo;
(6)

	0 � K4	o
4 � 4K3	o

3 � 6K2	o
2 � 4K	o

1 �	o
0;

�0 � K2�o
2 � 2K�o

1 ��o
0:

(7)

Similarly, null rotations with k fixed can be parametrized
by L 2 C. For boosts in k-l plane, cf. Eqs. (12) and (13).
For details and notation, see, e.g., Refs. [4,9].

Our goal is to investigate the field components in an
appropriate interpretation tetrad parallelly transported
along all null geodesics z��� which terminate at I� at a
point P�. A geodesic reaches I� at an infinite value of the
affine parameter �. The conformal factor ! and lapse ~NN
can be expanded along the geodesic in powers of 1=�:

! � !	�
�1 � 
 
 
 ; ~NN � ~NN� � . . . : (8)

The value ~NN� � ~NN jP�
is the same for all geodesics

ending at point P�. We require that the approach of geo-
desics to I� is ‘‘comparable,’’ independent of their
direction, so we assume also !	 to be constant. This is
equivalent to fixing the energy Eo � �p�n (p � Dz

d� being
4-momentum) at a given small value of !, i.e., at a given
proximity from the conformal infinity [4].
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To define an interpretation null tetrad ki, li, mi, �mmi, we
have to specify it in a comparable way for all geodesics
along different directions. The geodesics reach the same
point P� and we prescribe its form there. We require the
null vector ki to be proportional to the tangent vector of
the geodesic,

k i �
1���
2

p
~NN�

Dz
d�

; (9)

the factor is again chosen independent of the direction.
The null vector li is fixed by ki�li � �1 and by the
requirement that the normal vector n belongs to the
ki-li plane. The vectors mi, �mmi (or, ri, si) cannot be
specified canonically—they will be chosen by Eqs. (12)
and (16).

Now, the projection of ki on the normal n is

�ki 
 n � �1=
���
2

p
���1; (10)

so that, as � ! 1, the interpretation tetrad is ‘‘infinitely
boosted’’ with respect to an observer with 4-velocity n.
To see this explicitly, we introduce an auxiliary tetrad tr,
qr, rr, sr adapted to the conformal infinity, tr � n, with qr

oriented along the spatial direction of the geodesic,

qr / k?
i � �ki�n�n� ki; (11)

and we choose the remaining spatial vectors rr, sr to
coincide with those of the interpretation tetrad. Using
Eqs. (8) and (9) and the definition of li, we get

ki � Bi kr � ��1�n� qr�=
���
2

p
; mi � mr;

li � B�1
i lr � ��n� qr�=

���
2

p
; �mmi � �mmr;

(12)

Bi � 1=� being the boost parameter. Under such a boost
the field components (4) and (5) transform as [4,9]

	i
j � B2�j

i 	r
j; �i

j � B1�j
i �r

j: (13)

Together with behavior (22) of the field components in a
tetrad adapted to I� we obtain the peeling-off property.

We shall now derive the directional dependence of
radiation near a point P� at I�. It is necessary to pa-
rametrize the direction of the null geodesic reaching P�.
This can be done with respect to a suitable reference
tetrad to, qo, ro, so, with the time vector to adapted to
the conformal infinity, to � n, and spatial directions
chosen arbitrarily. It is convenient to choose them in
accordance with the spacetime geometry. Privileged
choices will be discussed later (cf. Fig. 1).

The unit spatial direction qr of a general null geodesic
near I� can be expressed in terms of spherical angles �,
�, with respect to the reference tetrad,

qr � cos� qo � sin� cos� ro � sin� sin� so: (14)

It is useful to introduce the stereographic representation
of the angles �, �

R � tan��=2� exp��i��: (15)
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Then the null rotation (6) with K � R transforms ko into
k with its spatial direction k? / qr specified by �, �.

Now, the interpretation tetrad is related by boost (12) to
the tetrad tr, qr, rr, sr, which is a spatial rotation of the
reference tetrad. If we choose

rr � � sin� cos�
�
qo � tan

�
2
�cos� ro � sin� so�

�
�ro;

sr � � sin� cos�
�
qo � tan

�
2
�cos� ro � sin� so�

�
�so;

(16)

the spatial rotation is a composition of the null rotations
with l fixed, k fixed, and the boost, given by parameters
K � R, L � �R=�1� jRj2�, B � �1� jRj2��1. This de-
composition into elementary Lorentz transformations
enables us to calculate the field components in the inter-
pretation tetrad. We start with 	o

j , or �o
j in the reference

tetrad and we characterize these in terms of algebraically
privileged principal null directions (PNDs).

Principal null directions of the gravitational (or elec-
tromagnetic) field are null directions k such that 	0 � 0
(or �0 � 0) in a null tetrad k, l, m, �mm (a choice of l, m, �mm
is irrelevant). In the tetrad related to the reference tetrad
by null rotation (6), such a condition for 	0 takes the
form of a quartic (or quadratic for �0) equation for K, cf.
Eqs. (7). The roots K � Rn, n � 1; 2; 3; 4 (or K � RE

n , n �
1; 2) of this equation thus parametrize PNDs kn (or kE

n ).
As follows from the note after Eq. (15), the angles �n, �n
of these PNDs are related to Rn exactly by Eq. (15).

In a generic situation we have 	o
4 � 0 (or �o

2 � 0), and
we can express the remaining components of the Weyl (or
electromagnetic) tensor in terms of roots Rn (or RE

n )

	o
3 ��1

4	
o
4�R1�R2�R3�R4�;

	o
2 �

1
6	

o
4�R1R2�R1R3�R1R4�R2R3�R2R4�R3R4�;

	o
1 ��1

4	
o
4�R1R2R3�R1R2R4�R1R3R4�R2R3R4�;

	o
0 �	o

4R1R2R3R4; (17)

�o
1 � �1

2�
o
2�R

E
1 � RE

2 �; �o
0 � �o

2R
E
1R

E
2 : (18)

Transforming these to tetrad kr, lr, mr, �mmr, we obtain

	r
4 �	o

4 �1� jRj2��2

�

�
1�

R1

Ra

��
1�

R2

Ra

��
1�

R3

Ra

��
1�

R4

Ra

�
; (19)

�r
2 � �o

2�1� jRj2��1

�
1�

RE
1

Ra

��
1�

RE
2

Ra

�
: (20)

Here, the complex number Ra,

Ra � � �RR�1 � � cot��=2� exp��i��; (21)

characterizes a spatial direction opposite to the direction
given by R, i.e., the antipodal direction with �a � �� �
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and �a � �� �. Finally, we express the leading term of
the field components in the interpretation tetrad. The
freedom in the choice of the vectors mi, �mmi changes just
a phase of the field components, so only their modulus has
a physical meaning. It is also known [5,6] that as a
consequence of field equations, field components in a
reference tetrad near I� behave as

	o
j � 	o

j	�
�3; �o

j � �o
j	�

�2: (22)

Combining Eqs. (13), (20), and (19), we thus obtain

j	i
4j � j	o

4	j�
�1cos4��=2�

�

�������1�R1

Ra

�������
�������1�R2

Ra

�������
�������1�

R3

Ra

�������
�������1�R4

Ra

�������; (23)

j�i
2j � j�o

2	j�
�1cos4��=2�

�������1� RE
1

Ra

�������
�������1� RE

2

Ra

�������: (24)

These expressions characterize the asymptotic behav-
ior of fields near de Sitter–like infinity. In a general
spacetime there are four spatial directions along which
the radiative component of the gravitational field 	i

4
vanishes, namely, directions Ra � Rn , n � 1; 2; 3; 4 (or
two such directions for electromagnetic field �i

2). In fact,
their spatial parts �k?

n are exactly opposite to the pro-
jections of the principal null directions k?

n onto I�.
In algebraically special spacetimes, some PNDs co-

incide and Eq. (23) simplifies. Moreover, it is always
possible to choose the ‘‘canonical’’ reference tetrad:
(i) the vector qo oriented along the spatial projection of
the degenerate (multiple) PND, say k?

4 (i.e., ko / k4);
(ii) the qo-ro plane oriented so that it contains the spatial
projection of one of the remaining PNDs (for type N
spacetimes this choice is arbitrary). Using such a refer-
ence tetrad, the degenerate PND k?

4 is given by �4 � 0,
i.e., R4 � 0 [cf. Eq. (15)], whereas one of the remaining
PNDs, say k?

1 , has �1 � 0, i.e., R1 � tan�12 is real.
Thus, for Petrov type N spacetimes (with quadruple

PND) R1 � R2 � R3 � R4 � 0, so the asymptotic behav-
ior of gravitational field (23) becomes

j	i
4j � j	o

4	j�
�1cos4

�
2
: (25)

The corresponding directional pattern of radiation is
illustrated in Fig. 1(N). It is axisymmetric, with a maxi-
mum value at � � 0 along the spatial projection of the
quadruple PND onto I�. Along the opposite direction,
� � �, the field vanishes.

In the Petrov type III spacetimes, R1 � tan�12 , R2 �
R3 � R4 � 0, so (23) implies

j	i
4j � j	o

4	j�
�1cos4

�
2

�������1� tan
�1
2

tan
�
2
ei�

�������: (26)

The directional pattern of radiation is shown in Fig. 1(III).
The field vanishes along � � � and along � � �� �1,
� � � which are spatial directions opposite to the PNDs.
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FIG. 1. Specific directional patterns of radiation for space-
times of Petrov types N, III, D, II, and I. Directions in the
diagrams represent all spatial directions tangent to I�. For
each type, the radiative component j	i

4j along a null geodesic is
depicted in the corresponding spatial direction k? parame-
trized by spherical angles �;�. [Degenerate] principal null
directions (PNDs) are indicated by [multiple] bold arrows.
Thick lines represent spatial directions (opposite to PNDs)
along which the radiation vanishes.
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The type D spacetimes admit two double degenerate
PNDs, R1 � R2 � tan�12 and R3 � R4 � 0. The gravita-
tional field near I� thus takes the form

j	i
4j � j	o

4	j�
�1cos4

�
2

�������1� tan
�1
2

tan
�
2
ei�

�������2
; (27)

with two planes of symmetry, see Fig. 1(D). This direc-
tional dependence agrees with the radiation pattern for
the C metric with � > 0 derived recently [4].

For Petrov type II spacetimes only two PNDs coincide
so that R1 � tan�12 , R2 � tan�22 exp��i�2�, R3 � R4 � 0.
The directional pattern of radiation is in Fig. 1(II).
Finally, in the case of algebraically general spacetimes
one needs five real parameters to characterize the direc-
tional dependence Fig. 1(I) of the gravitational field.

An analogous discussion can be presented for the elec-
tromagnetic field. The square of expression (24) is, in fact,
the Poynting vector with respect to the interpretation
tetrad, jSij �

1
4� j�

i
2j
2. If the two PNDs coincide (RE

1 �
RE
2 � 0) the directional dependence of the Poynting vec-
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tor at I� is the same as in Eq. (25) [Fig. 1(N)]; if they
differ (RE

1 � tan�12 , RE
2 � 0), the angular dependence of

jSij is given by Eq. (27) [Fig. 1(D)]. The latter has already
been obtained for the test field of uniformly accelerated
charges in de Sitter spacetime [3].

To summarize: it is well known that for null I� the null
direction li, which is complementary to the tangent vector
ki of the null geodesic z��� reaching I�, is tangent to I�

and does not depend on the choice of z���. This is not the
case when I� is spacelike. The radiation field (��1 term)
is thus ‘‘less invariant’’ [6]. We have shown that the
dependence of this field on the choice of z��� has a
universal character that is determined by the algebraic
(Petrov) type of the fields. In particular, we have proved
that the radiation vanishes along directions opposite to
PNDs. In a generic direction the radiative component of
the fields generated by any source is nonvanishing. Thus,
unlike in asymptotically flat spacetimes, the absence of
��1 component cannot be used to distinguish nonradia-
tive sources: for a de Sitter–like infinity the radiative
component reflects not only properties of the sources
but also their ‘‘kinematic’’ relation to an observer at
infinity. Intuitively, near spacelike I� our observer is,
in general, moving ‘‘nonradially’’ from sources and
thus measures infinitely boosted fields. Some important
questions, such as how energy is radiated away in asymp-
totically de Sitter spacetimes, still remain open. Since
vacuum energy seems to be dominant in our Universe,
these appear to be of considerable interest.
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[1] J. Bičák, in Einstein’s Field Equations and Their Physi-
cal Implications, edited by B. G. Schmidt (Springer,
Berlin, 2000), Vol. 540, pp. 1–126.
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