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We study a limit of the Kerr–(A)dS spacetime in a general dimension where an arbitrary number of its
rotational parameters is set equal. The resulting metric after the limit formally splits into two parts—the first
part has the form of the Kerr–NUT–(A)dS metric analogous to the metric of the entire spacetime, but only
for the directions not subject to the limit, and the second part can be interpreted as the Kähler metrics.
However, this separation is not integrable, thus it does not lead to a product of independent manifolds. We
also reconstruct the original number of explicit and hidden symmetries associated with Killing vectors and
Killing tensors. Therefore, the resulting spacetime represents a special subcase of the generalized Kerr–
NUT–(A)dS metric that retains the full Killing tower of symmetries. In D ¼ 6, we present evidence of an
enhanced symmetry structure after the limit. Namely, we find additional Killing vectors and show that one
of the Killing tensors becomes reducible as it can be decomposed into Killing vectors.
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I. INTRODUCTION

Four-dimensional black holes have been widely studied
for more than a hundred years. Nowadays, they are used as
astrophysically relevant sources which led to several
breakthrough observations in recent years. These include
the first detection of gravitational waves from a binary
black hole merger [1], the first image of the supermassive
black hole candidate in the center of the galaxy M87, made
by the Event Horizon Telescope [2,3], or the explanation of
the star motion near the black hole in the center of our
galaxy [4,5]. The standard model of the black hole used in
such astrophysical situations is the Kerr solution of the
Einstein equations in four-dimensional general relativity.
From the mathematical point of view, Kerr black holes

[6] are included in a large family of solutions known as the
Plebański–Demiański metric [7]. This metric represents
spacetimes of algebraic type D that solve the vacuum
Einstein equations with the cosmological constant, and it is
characterized by seven arbitrary parameters, which can be
interpreted as the cosmological constant, mass, NUT
parameter, rotation, acceleration, electric and magnetic
charge. It contains many well-known spacetimes as special
cases—apart from the Kerr metric, which describes an
axially symmetric rotating black hole, it also includes for
example the Taub–NUT (Newman–Unti–Tamburino) sol-
ution [8,9] with one NUT parameter as well as accelerating
black holes represented by the C-metric [10].

Unlike the Kerr spacetime, the Taub–NUT metric does
not have such a clear physical interpretation—the presence
of a NUT parameter in a four-dimensional spacetime leads
to pathologies such as the existence of closed timelike
curves [11]. However, some of these pathologies can be
regarded as an unphysical feature of the idealized inner
solution, which disappears when a realistic matter source
for the outer solution is introduced.
In this work, we study generalization of these black holes

to higher dimensions. The motivation for studying higher-
dimensional metrics in general is their connection with
string theory, the AdS=CFT correspondence and brane-
world models. Moreover, the perspective of a general
dimension may deepen the understanding of studied
solutions. Last but not least, they are interesting from
the mathematical point of view. An extensive review of
higher-dimensional black hole solutions can be found
in [12].
One of the interesting higher-dimensional solutions,

which generalizes the black hole solutions known in four
dimensions, is called the Kerr–NUT–(A)dS metric [13]. It is
characterized by the cosmological constant, mass, rotational
and NUT parameters, however, it does not include accel-
eration and electric/magnetic charge. Therefore, a generali-
zation of the Plebański–Demiański metric to higher
dimensions is yet to be discovered. The Kerr–NUT–(A)
dS metric can describe various geometries of both the
Euclidean and the Lorentzian signature, such as maximally
symmetric spaces, so-called Euclidean instantons, and black
holes. It also includes well-known higher-dimensional
solutions as special cases, for example the Myers–Perry
black hole [14] (generalization of the Kerr black hole), the
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Kerr–(A)dS metric [15,16] (generally rotating black hole in
an asymptotically (anti)-de Sitter spacetime) and the higher-
dimensional Taub–NUT–(A)dS metric [17,18].
Higher-dimensional rotating black holes display many

similar properties to their four-dimensional counterparts.
This is caused by the fact that these spacetimes admit a
special geometrical object, which we refer to as the
principal tensor [19–22]. It is defined as a nondegenerate
closed conformal Killing–Yano tensor.
The very existence of the principal tensor significantly

restricts the geometry—the most general geometry con-
sistent with the existence of this tensor is the off-shell Kerr–
NUT–(A)dS geometry. Here, the attribute “off-shell” refers
to a general form of the metric that does not require the
vacuum Einstein equations. The principal tensor generates
a rich symmetry structure called the Killing tower [23,24],
which includes Killing vectors and Killing tensors asso-
ciated with explicit and hidden symmetries of the
spacetime.
Moreover, it uniquely determines canonical coordinates

in which the Hamilton–Jacobi [25] and the Klein–Gordon
equations [26–28] as well as the Dirac [29–31] and the
Maxwell equations [32–35] are fully separable, and the
geodesic motion is completely integrable [23,36,37].
Separability has been demonstrated also for higher-form
fields [38]. As one can see, the principal tensor indeed plays
a very important role in higher-dimensional black hole
physics. For an extensive review of the role of the principal
tensor and other properties of the Kerr–NUT–(A)dS geom-
etry, see [39].
Apart from the Kerr–NUT–(A)dS spacetime and its

properties, several limit cases of the general metric were
also studied, such as the near-horizon limits [40–43].
Furthermore, the limit where some of the black hole’s
rotations are switched off was investigated [44]. Such a
limit leads to warped spaces deformed and twisted by the
NUT parameters, which thus do not maintain their unphys-
ical properties when present in a space with the Euclidean
signature. Another limit case where particular roots of the
metric functions degenerate was studied [45], which results
in geometries such as the Taub–NUT–(A)dS metric and the
extreme near-horizon geometry.
These papers have thus demonstrated that not only can

performing various limits of the general metric shed light
on the role of various metric parameters, but it can also lead
to new interesting geometries. Moreover, the resulting
spacetimes are expected to possess an enhanced symmetry
structure after the limit, which is manifested in the presence
of additional Killing vectors and also in the reducibility of
Killing tensors that can be decomposed into Killing
vectors. Reducibility properties of Killing tensors were
also studied in four dimensions for near-horizon geom-
etries [46,47].
However, performing a limiting procedure is not in

general a trivial task since certain regions of the spacetime

can shrink or expand during the limit and become degen-
erate. Therefore, it is usually necessary to accompany the
limiting procedure by a suitable rescaling of coordinates
and parameters.
This work is focused on a particular limit case of the

general Kerr–NUT–(A)dS metric, namely, the equal-spin
limit. It is the limit where an arbitrary number of rotational
parameters of the spacetime coincides.
The paper is organized as follows. In Sec. II, which is an

overview of already known results, we introduce the Kerr–
NUT–(A)dS spacetime and summarize its properties. The
next two sections are dedicated to a general equal-spin
limit. Namely, in Sec. III we introduce the parametrization
of the limit and apply it to the metric, while Section IV
discusses the limit form of the principal tensor, Killing
vectors and Killing tensors. Section V presents explicit
examples of the general results obtained in Secs. III and IV
—it focuses on black holes with all the rotational param-
eters set equal. Additional technical results and detailed
calculations are provided in the appendixes. Appendix A
summarizes definitions and useful identities concerning
auxiliary functions that appear in the metric before the
limit. Appendix B provides the limit form of these auxiliary
functions.

II. KERR–NUT–(A)DS GEOMETRY

A. Canonical form of the metric

The off-shell Kerr–NUT–(A)dS metric in D ¼ 2N
dimensions,1 which is consistent with the existence of
the principal tensor, can be written in the form [39]

g ¼
X
μ

�
Uμ

Xμ
dx2μ þ

Xμ

Uμ

�X
ν

Jμða2νÞ
λaνUν

dϕν

�
2
�
; ð2:1Þ

with Greek indices2 going over the range

μ; ν;… ¼ 1;…; N: ð2:2Þ

The metric functions Xμ should be arbitrary functions of
a single coordinate xμ, Xμ ¼ XμðxμÞ. The metric functions
Uμ and Jμða2νÞ are polynomials in all coordinates xν

Uμ ¼
Y
ν≠μ
ν

ðx2ν − x2μÞ; Jμða2νÞ ¼
Y
κ≠μ
κ

ðx2κ − a2νÞ; ð2:3Þ

1For simplicity, we restrict ourselves to even dimensions. The
generalization to odd dimensions is possible—a corresponding
term must be added to the metric and other related quantities.
Otherwise, the analysis remains the same for both cases.

2The Einstein summation convention is not used for these
indices. Also, we do not indicate their ranges explicitly in sums or
products, unless they differ from the default above.
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and the functions Uμ of the metric parameters aμ are
defined similarly to Uμ, only with xμ replaced by aμ.
When the Λ-vacuum Einstein equations are imposed, we

obtain the on-shell Kerr–NUT–(A)dS geometry. The metric
functions Xμ must be polynomials in the form

Xμ ¼ λJ ðx2μÞ − 2bμxμ; ð2:4Þ

where J ðx2μÞ reads

J ðx2μÞ ¼
Y
ν

ða2ν − x2μÞ: ð2:5Þ

The complete list of metric functions as well as important
relations between them can be found in Appendix A.
It is useful to introduce the following orthogonal frames

of 1-forms

eμ ¼
�
Uμ

Xμ

�1
2

ϵμ ¼
�
Uμ

Xμ

�1
2

dxμ;

êμ ¼
�
Xμ

Uμ

�1
2

ϵ̂μ ¼
�
Xμ

Uμ

�1
2
X
ν

Jμða2νÞ
λaνUν

dϕν; ð2:6Þ

where feμ; êμg is normalized and fϵμ; ϵ̂μg is not normal-
ized. Similarly, dual orthogonal frames of vectors read

eμ ¼
�
Xμ

Uμ

�1
2

ϵμ ¼
�
Xμ

Uμ

�1
2 ∂
∂xμ

;

êμ ¼
�
Uμ

Xμ

�1
2

ϵ̂μ ¼
�
Uμ

Xμ

�1
2
X
ν

λaνJ νðx2μÞ
Uμ

∂
∂ϕν

: ð2:7Þ

Using these frames, the metric can be written simply as

g ¼
X
μ

ðeμeμ þ êμêμÞ ¼
X
μ

�
Uμ

Xμ
ϵμϵμ þ Xμ

Uμ
ϵ̂μϵ̂μ

�
: ð2:8Þ

The coordinates we used are divided into two sets, xμ and
ϕμ. Since the metric functions are independent of ϕμ, they
are the Killing coordinates. Their corresponding Killing
vectors have fixed points and thus define the axes of
rotational symmetry [48]. In the black hole case (i.e., for the
Lorentzian signature), they are also related to the temporal
coordinate. The coordinates xμ represent radius and lat-
itudinal angles.
Alternatively, the metric can be expressed using another

set of angular coordinates ψk, k ¼ 0;…; N − 1, instead of
ϕμ. The coordinates ψk are suitable for constructing the
Killing tower and studying explicit and hidden symmetries.
However, ϕμ are better suited for the physical interpretation
of the metric. An explicit definition of ψk coordinates and
the corresponding form of the metric can be found, e.g.,
in [39].

The on-shell metric is described by the parameters aμ, bμ
and λ, where λ is related to the cosmological constant Λ as

Λ ¼ ð2N − 1ÞðN − 1Þλ: ð2:9Þ

In general, the parameters aμ are related to rotations and the
parameters bμ encode mass and NUT charges. However,
when the NUT charges are nonvanishing, the interpretation
of parameters is not so straightforward [39,48].

B. Black hole

The general metric (2.1) can have both the Euclidean and
the Lorentzian signature, depending on our choice of the
coordinate ranges and values of the parameters. Detailed
discussion of geometries with the Euclidean signature, such
as maximally symmetric spaces and Euclidean instantons,
can be found in [39].
The Lorentzian signature can be obtained by Wick-

rotating the following coordinates and parameters

xN ¼ ir; ϕN ¼ λaNt; bN ¼ iM; ð2:10Þ

where t, r, and M acquire real values. Moreover, we use a
one-parametric gauge freedom in rescaling the parameters
and set

a2N ¼ −
1

λ
: ð2:11Þ

We also assume that aμ̄ are ordered as

0 < a1 < … < aN̄−1 < aN̄; ð2:12Þ

where barred indices go over the range

μ̄; ν̄;… ¼ 1;…; N̄; ð2:13Þ

N̄ ¼ N − 1: ð2:14Þ

The coordinate xμ̄ acquires values between the roots of the
metric functions Xμ̄, see [39] for details.
In case of vanishing NUT charges and nonzero mass, i.e.,

bμ̄ ¼ 0, the coordinate ranges reduce to

aμ̄−1 < xμ̄ < aμ̄; ð2:15Þ

with the exception of −a1 < x1 < a1. In this case, we can
introduce N̄ þ 1 coordinates μ0, μν̄ instead of N̄ coordi-
nates xκ̄ using the Jacobi transformation in the form3

3Barred metric functions are defined in the same way as their
unbarred counterparts, only with modified sets of coordinates and
parameters (i.e., without xN and aN).
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μ2ν̄ ¼
J̄ða2ν̄Þ
−a2ν̄Ū ν̄

; μ20 ¼
J̄ð0Þ
J̄ ð0Þ ¼

ĀðN̄Þ

ĀðN̄Þ ; ð2:16Þ

which satisfy the constraint

XN̄
ν̄¼0

μ2ν̄ ¼ 1: ð2:17Þ

The set ft; r; μ0; μν̄;ϕν̄g is also known as the Myers–Perry
coordinates. The Kerr–(A)dS metric in these coordinates is
then [15,16]

g ¼ −ð1 − λR2Þdt2

þ 2Mr
Σ

�
dtþ

X
ν̄

aν̄μ2ν̄
1þ λa2ν̄

ðdϕν̄ − λaν̄dtÞ
�
2

þ Σ
Δr

dr2 þ r2dμ20 þ
X
ν̄

r2 þ a2ν̄
1þ λa2ν̄

ðdμ2ν̄ þ μ2ν̄dϕ
2
ν̄Þ

þ λ

1 − λR2

�
r2μ0dμ0 þ

X
ν̄

r2 þ a2ν̄
1þ λa2ν̄

μν̄dμν̄

�
2

; ð2:18Þ

where

1 − λR2 ¼ ð1 − λr2Þ
�
μ20 þ

X
ν̄

μ2ν̄
1þ λa2ν̄

�
;

Δr ¼ ð1 − λr2Þ
Y
ν̄

ðr2 þ a2ν̄Þ − 2Mr;

Σ ¼
�
μ20 þ

X
ν̄

r2μ2ν̄
r2 þ a2ν̄

�Y
μ̄

ðr2 þ a2μ̄Þ: ð2:19Þ

Finally, for zero NUT charges bμ̄ ¼ 0, the parameters aμ̄
can be directly identified with the rotational parameters of
the black hole.

C. Explicit and hidden symmetries

The Kerr–NUT–(A)dS spacetime possesses symmetries
of two kinds—explicit symmetries, which are represented
by Killing vector fields, and hidden symmetries, which in
our case will be described by Killing tensors. There exists
an object behind the symmetry structure—the principal
tensor. It is a crucial object that does not only uniquely
determine the canonical form of the metric [13], but it also
generates the entire tower of Killing vectors and Killing
tensors.
The principal tensor is defined as a closed conformal

Killing–Yano 2-form that is also nondegenerate (it
has functionally independent nonconstant eigenvalues).
In terms of the coordinates introduced above, it can be
written as

h ¼
X
μ

xμeμ ∧ êμ ð2:20Þ

using the orthonormal frame feμ; êμg (2.6).
The Killing tower of explicit and hidden symmetries can

be constructed from the principal tensor either directly
[23,24,49] or using generating functions [39]. In this work,
we will use the method of generating functions.
This method introduces auxiliary β-dependent Killing

tensors and Killing vectors such that regular Killing tensors
and Killing vectors form coefficients in the β-expansion of
these generating functions.
Let us first define a β-dependent conformal Killing

tensor as

qðβÞ ¼ gþ β2Q; ð2:21Þ

where β is a real parameter and Qab ¼ hachbc is the first
conformal Killing tensor. We also define a scalar function

AðβÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det qðβÞ
det g

s
¼

Y
ν

ð1þ β2x2νÞ: ð2:22Þ

Using these definitions, we can introduce generating
functions for Killing tensors and Killing vectors, respec-
tively, in the form

kðβÞ ¼ AðβÞq−1ðβÞ; lðβÞ ¼ kðβÞ · ξ: ð2:23Þ

Here, ξ is a special Killing vector given by the divergence
of h,

ξ ¼ 1

2N − 1
∇ · h: ð2:24Þ

The β-expansion of these functions can be written as

kðβÞ ¼
XN
k¼0

β2kkðkÞ; lðβÞ ¼
XN
k¼0

β2klðkÞ; ð2:25Þ

thus generating Killing tensors kðkÞ and Killing vectors lðkÞ.
Similarly, the function AðβÞ generates the polynomials AðkÞ

AðβÞ ¼
XN
k¼0

β2kAðkÞ: ð2:26Þ

For a fixed parameter β, kðβÞ is a linear combination of
Killing tensors, therefore, kðβÞ itself is a Killing tensor.
Likewise, lðβÞ is a Killing vector.
Apart from lðkÞ, we also define alternative Killing vectors

sðμÞ, which are, up to normalization, the coordinate vectors,
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sðμÞ ¼ λaμ
∂

∂ϕμ
¼

X
ν

Jνða2μÞ
Uμ

ϵ̂ν: ð2:27Þ

Since the unnormalized orthogonal frame of vectors
fϵμ; ϵ̂μg (2.7) is suitable for performing the limit, let us
provide explicit forms of Killing vectors and Killing
tensors using this frame. For Killing vectors lðkÞ we have4

lðkÞ ¼
X
μ

AðkÞ
μ sðμÞ ¼

X
μ

AðkÞ
μ ϵ̂μ: ð2:28Þ

The Killing vector ξ reduces to

ξ ¼ lð0Þ ¼
X
μ

ϵ̂μ ¼
X
μ

sðμÞ: ð2:29Þ

The corresponding generating function reads

lðβÞ ¼
X
μ

AμðβÞsðμÞ ¼
X
μ

AμðβÞϵ̂μ; ð2:30Þ

where the functions AμðβÞ generate the polynomials AðkÞ
μ

and can be expressed in several ways

AμðβÞ ¼
X
k

β2kAðkÞ
μ ¼

Y
ν≠μ
ν

ð1þ β2x2νÞ ¼
AðβÞ

1þ β2x2μ
; ð2:31Þ

with AðβÞ given by (2.22). Analogous expressions can be
written for AμðβÞ and AðβÞ.
Motivated by the structure of Killing vectors, we also

introduce a new set of Killing tensors rðμÞ,

rðμÞ ¼
X
ν

Jνða2μÞ
Uμ

πν; ð2:32Þ

where πμ denote “frame” 2-tensors appearing explicitly in
the metric, cf. (2.8),

πμ ¼
Xμ

Uμ
ϵμϵμ þ

Uμ

Xμ
ϵ̂μϵ̂μ: ð2:33Þ

Tensors rðμÞ form a base of Killing tensors alternative to kðkÞ
introduced above. Their equivalence can be observed from
the relations analogous to (2.28)

kðkÞ ¼
X
μ

AðkÞ
μ rðμÞ ¼

X
μ

AðkÞ
μ πμ: ð2:34Þ

We see that kðkÞ are linear combinations with constant
coefficients of tensors rðμÞ.
The generating function for Killing tensors kðkÞ adopts

the form

kðβÞ ¼
X
μ

AμðβÞrðμÞ ¼
X
μ

AμðβÞπμ: ð2:35Þ

III. EQUAL-SPIN LIMIT

In this section, we introduce an appropriate parametri-
zation of the limit, which includes modifying the index
notation used throughout Sec. II, and apply the limiting
procedure to the general metric. We also study the limit
case of a black hole using the Myers–Perry coordinate
system. We will restrict our analysis to the case of
vanishing NUT parameters and nonzero mass, i.e.,
bμ̄ ¼ 0, since it is the most relevant case from the physical
point of view.
Let us emphasize that any limit of spacetime always

strongly depends on the choice of the limiting procedure
and used parametrization; see the classical work of Geroch
[50] and an illustration in, e.g., [51]. One has to always
carefully choose a limit interesting from the physical point
of view. Different choices of the limiting procedure might
focus on different aspects and thus would lead to different
spacetimes after the limit. For example, one can zoom in on
the regions near the black hole horizon by including a
suitable rescaling during the limit, which would result in a
near-horizon limit [40–43,45], or rescale asymptotic
regions, which could reveal the asymptotic structure of
spacetime. Our limiting procedure preserves (and possibly
enhances) the symmetry structure of the spacetime.
Moreover, all the outer regions of the black hole remain
nondegenerate after the limit.

A. Preliminaries

In order to perform the limit, it will be convenient to
modify the indexing of parameters and coordinates to
reflect the structure that will emerge after the limit.
Namely, assuming that the rotational parameters aμ are
ordered, we group them into Ñ “equal-spin” blocks so that
within each block all the rotations approach the same value.
This means that instead of using a single Greek index μ (or
ν; κ;…), it will be more natural to use two Greek indices—
one from the beginning of the alphabet α (β; γ;…)5 to label
the block of equal rotations and the second from the latter

4Latin indices, unless explicitly indicated otherwise, go over
the range k; l;… ¼ 0;…; N − 1, and we do not use the Einstein
summation convention for them.

5Strictly speaking, we should be using tilded indices α̃
(β̃; γ̃;…) to label the blocks of equal rotations in order to clearly
distinguish between indices and quantities before and after the
limit. However, for the sake of simplicity and better readability,
we will use tildes only over the names of the relevant quantities
after the limit, e.g., x̃α, ãα.
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parts of the alphabet ρ (σ; τ;…) to distinguish between the
rotations inside the block.
The first rotation in a block is labeled as aα;0. It will

remain unchanged after the limit and all the other rotations
in the block, denoted by aα;ρ, will approach aα;0 as shown in
Fig. 1. The indices go over the ranges

α; β;… ¼ 1;…; Ñ; ρ; σ;… ¼ 1;…; αN: ð3:1Þ

Ñ is the number of blocks, and therefore the number of
distinct rotational parameters remaining in the spacetime
after the limit, while αN is the number of parameters in the
block α subject to the limit, and thus the number of
additional rotations approaching the value aα;0. These
numbers satisfy

Ñ þ
X
α

αN ¼ N: ð3:2Þ

In the Lorentzian case we assume

ÑN ¼ 0: ð3:3Þ

This means that the last block, which is related to the Wick-
rotated radial coordinate, contains only a single parameter
aÑ;0 not subject to the limit. This will allow us to obtain the
Lorentzian metric using the Wick rotation in the same way
as in (2.10).
All the other quantities such as coordinates and metric

functions will be indexed in the same way.
The ranges of the coordinates fxα;0; xα;ρg are

aα−1;α−1N < xα;0 < aα;0; aα;ρ−1 < xα;ρ < aα;ρ; ð3:4Þ

with the only exception being x1;0 ∈ ð−a1;0; a1;0Þ.
When performing the limit aα;ρ → aα;0, the rotational

parameters aα;ρ and the ranges of the coordinates xα;ρ
degenerate. Therefore, we will rescale them using the
following parametrization

aα;0 ¼ ãα; xα;0 ¼ x̃α; ϕα;0 ¼ ϕ̃α;

aα;ρ ¼ ãα þ αaρε; xα;ρ ¼ ãα þ αxρε; ϕα;ρ ¼ αϕρ;

ð3:5Þ

where ε is a small limiting parameter, ε ≪ 1. We have
denoted the quantities that do not change in the limit using
tildes and we will refer to the corresponding directions as
primary coordinate directions. We have also introduced
new rescaled parameters αaρ and coordinates αxρ, which
remain well-defined after the limit, and we will refer to the
corresponding directions as secondary coordinate direc-
tions. Within one block, αxρ are ordered as

0 < αx1 < αa1 < αx2 < αa2 < … < αxαN < αaαN: ð3:6Þ

As was mentioned earlier, the last block can be Wick-
rotated toobtain theLorentzian signature, cf. (2.10) and (2.11),

x̃Ñ ¼ ir; ϕ̃Ñ ¼ λãÑ t; b̃Ñ ¼ iM; ð3:7Þ

and

ã2
Ñ
¼ −

1

λ
: ð3:8Þ

B. Limiting procedure

Our goal is to perform the limit of the metric. For that we
need to introduce two types of metric functions corre-
sponding to the two sets of directions: tilded functions
include only coordinates and parameters in the primary
directions, and functions with an upper left index are
constructed using only variables in the secondary direc-
tions. They are defined in a similar manner to the metric
functions before the limit, only the sets of coordinates and
parameters are modified, for example6

FIG. 1. New indexing and grouping of the rotational parameters faα;0; aα;ρg into blocks that have equal spin once the limit aα;ρ → aα;0
has been performed. The coordinates fxα;0; xα;ρg remain restricted by the rotational parameters as in (3.4).

6We introduced a notation for sums (and products) of
quantities in the secondary directions using an upper left index

α
X
ρ

≡XαN
ρ¼1

:
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J̃ðã2αÞ¼
Y
β

ðx̃2β− ã2αÞ; αJðαaρÞ¼ α
Y
σ

ðαxσ−αaρÞ: ð3:9Þ

An important difference is that the functions in the
secondary directions, i.e., those including the rescaled
variables αxρ and αaρ, are not defined using squares, but
only first powers.
Since we set bμ̄ ¼ 0, the on-shell metric functions after

the limit are defined as

X̃ᾱ ¼ λJ̃ ðx̃2ᾱÞ;
X̃Ñ ¼ λJ̃ ðx̃2

Ñ
Þ − 2b̃Ñ x̃Ñ

Y
ᾱ

ðã2ᾱ − x̃2
Ñ
Þ−ᾱN;

ᾱXρ ¼ 2ᾱxρᾱJ ðᾱxρÞ; ð3:10Þ

and ÑXρ does not exist in the Lorentzian case since there is
no ρ in the last block. Barred indices are used in the same
way as before, namely, to skip the Lorentzian sector, i.e.,
they go over the ranges

ᾱ; β̄;… ¼ 1;…; ˜̄N; ð3:11Þ

˜̄N ¼ Ñ − 1: ð3:12Þ

Now we can expand the unnormalized orthogonal frame
of 1-forms (2.6) in the limiting parameter ε

ϵα;0 ≈ ϵ̃α; ϵ̂α;0 ≈ ˆ̃ϵα;

ϵα;ρ ≈ ε αϵρ; ϵ̂α;ρ ≈
1

ε

J̃ðã2αÞ
2λã2αŨα

αϵ̂ρ: ð3:13Þ

Here, ≈ denotes equality in the leading order in ε. The 1-
forms defined using the rescaled quantities on the right-
hand sides of the equations read

ϵ̃α ¼ dx̃α; ˆ̃ϵα ¼
X
β

J̃αðã2βÞ
λãβŨβ

Φ̃β;

αϵρ ¼ dαxρ; αϵ̂ρ ¼
αJρð0Þ
αJ ð0Þ dϕ̃α −

α
X
σ

αJρðαaσÞ
αaσαUσ

dαϕσ:

ð3:14Þ

We have written ˆ̃ϵα so that they have a similar form to ϵ̂μ

before the limit in (2.6), only instead of simple gradients
dϕμ we had to introduce 1-forms Φ̃α given by

Φ̃α ¼
αJð0Þ
αJ ð0Þdϕ̃α −

α
X
ρ

αJðαaρÞ
αaραUρ

dαϕρ: ð3:15Þ

In Sec. IV, we will show that they are Kähler potentials.
The dual unnormalized orthogonal frame of vectors (2.7)

becomes

ϵα;0 ≈ ϵ̃α; ϵ̂α;0 ≈ ˆ̃ϵα;

ϵα;ρ ≈
1

ε
αϵρ; ϵ̂α;ρ ≈ ε

2λã2αŨα

J̃ðã2αÞ
αϵ̂ρ; ð3:16Þ

where the frame vectors defined in terms of the rescaled
quantities after the limit are

ϵ̃α ¼
∂
∂x̃α

; ˆ̃ϵα ¼
X
β

J̃ βðx̃2αÞ
Ũα

Φ̃β;

αϵρ ¼
∂

∂αxρ
;

αϵ̂ρ ¼
αJ ðαxρÞ

αUρ

∂
∂ϕ̃α

− α
X
σ

αxραJ σðαxρÞ
αUρ

∂
∂αϕσ

: ð3:17Þ

Here, the vectors Φ̃α read

Φ̃α ¼ λãα

�
∂

∂ϕ̃α

þ α
X
ρ

∂
∂αϕρ

�
: ð3:18Þ

It turns out that they are Killing vectors, as will be shown in
Sec. IV. Notice that ˆ̃ϵα resemble ϵ̂μ in (2.7).
The orthogonal frame after the limit separates into two

sets: the primary frame directions fϵ̃α; ˆ̃ϵαg, and the
secondary frame directions fαϵρ; αϵ̂ρg.7 This separation is
valid only in the sense of tangent spaces since these
directions do not correspond directly to the primary and
the secondary coordinate directions—the hatted 1-forms ˆ̃ϵα

and αϵ̂ρ contain angular coordinates in both primary and
secondary coordinate directions. Moreover, primary and
secondary frame directions are not integrable distributions
of subspaces in the tangent spaces.
The splitting is respected by the duality relations

between the frame of vectors and the frame of 1-forms

ϵ̃α · ϵ̃β ¼ δβα; ˆ̃ϵα · ˆ̃ϵ
β ¼ δβα;

αϵρ · βϵσ ¼ δαβδ
σ
ρ; αϵ̂ρ · βϵ̂σ ¼ δαβδ

σ
ρ; ð3:19Þ

with all the other products being zero. The frames of the
primary directions fϵ̃α; ˆ̃ϵαg and in the individual blocks of
the secondary directions fαϵρ; αϵ̂ρg become independent
orthogonal frames.

7The index notation in the secondary frame directions is as
follows. The left index (indicating which block a direction
belongs to) is always placed at the top, whereas the position
of the right index (distinguishing between the directions inside
the block) reveals in a standard manner whether the concerned
object is a form or a vector.
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The metric after the limit becomes

g ≈ g̃ −
X
α

J̃ðã2αÞ
2λã2αŨα

αg; ð3:20Þ

where

g̃ ¼
X
α

�
Ũα

X̃α

ϵ̃αϵ̃α þ X̃α

Ũα

ˆ̃ϵα ˆ̃ϵα
�
; ð3:21Þ

ᾱg ¼ ᾱ
X
ρ

�ᾱUρ
ᾱXρ

ᾱϵρᾱϵρ þ
ᾱXρ
ᾱUρ

ᾱϵ̂ρᾱϵ̂ρ
�
; Ñg ¼ 0: ð3:22Þ

The inverse metric in its limit form can be written as

g−1 ≈ g̃−1 −
X
α

2λã2αŨα

J̃ðã2αÞ
αg−1; ð3:23Þ

with

g̃−1 ¼
X
α

�
X̃α

Ũα

ϵ̃αϵ̃α þ
Ũα

X̃α

ˆ̃ϵα ˆ̃ϵα

�
; ð3:24Þ

ᾱg−1¼ ᾱ
X
ρ

�ᾱXρ
ᾱUρ

ᾱϵρᾱϵρþ
ᾱUρ
ᾱXρ

ᾱϵ̂ρᾱϵ̂ρ

�
; Ñg−1¼0: ð3:25Þ

Note, that tensors (3.24) and (3.25) are individually
inverse to the metrics (3.21) and (3.22) on the respective
subspaces spanned on the primary and the secondary frame
directions, as can be seen using the duality relations (3.19).
Combined together, it gives that g−1 is indeed the inverse
of g.
More details of the limiting procedure applied to

functions that appear in the metric are provided in
Appendix B.

C. Relation to generalized Kerr–NUT–(A)dS
spacetimes

It turns out that the metric (3.20) is a special case of a
more general metric described by Houri et al. in [52]. In
this paper, the authors study the generalized Kerr–NUT–
(A)dS metric, which possesses the principal tensor h with
both nonconstant and constant eigenvalues, thus the tensor
is not necessarily nondegenerate.
In our case, the principal tensor before the limit has

nonconstant and functionally independent eigenvalues xμ
[22]. However, after employing the limiting procedure,
some of these eigenvalues become constant. Namely, all the
eigenvalues xα;ρ from the secondary blocks degenerate into
the respective constant values ãα after the limit, while x̃α in
the primary directions remain nonconstant. Therefore, the
geometry obtained by applying the equal-spin limiting

procedure is indeed a subcase of the results published in
[52]. This also confirms the results of Oota and
Yasui [53].
The number of nonconstant and distinct constant non-

zero eigenvalues is the same in our case and it corresponds
to Ñ in our notation. Our metrics αg in the secondary blocks
differ from the tensors that the authors of [52] call Kähler
metrics only by a constant factor. Therefore, we will refer to
αg as Kähler metrics as well. The Kähler potentials
identified in [52] correspond to the 1-forms Φ̃α defined
in (3.15).
Furthermore, the metric g̃ defined in (3.21) has the form

of the Kerr–NUT–(A)dS metric analogous to the metric
of the entire spacetime (2.8) but for the primary directions
only. Thus we shall refer to it as the Kerr–NUT–(A)dS part.
However, we should emphasize that αg represent the

Kähler metrics only formally as there seems to be no
decomposition of the original Kerr–NUT–(A)dS manifold
into a direct product of the Kerr–NUT–(A)dS part and the
Kähler manifolds. As was already mentioned, the primary
and the secondary directions form only subspaces of
tangent spaces. Metrics αg act on these secondary subspaces
of the tangent space, but these subspaces are not integrable
to form independent Kähler manifolds.

D. Black hole

When applying the limiting procedure to the Jacobi
transformation that introduces the Myers–Perry coordi-
nates, it turns out that we can define analogous trans-
formations for the primary and the secondary directions
separately. Indeed, the limit form of (2.16) reads

μ2ᾱ;0 ≈ μ̃2ᾱ
ᾱμ20; μ2ᾱ;ρ ≈ μ̃2ᾱ

ᾱμ2ρ; μ20 ≈ μ̃20; ð3:26Þ

where we have denoted8

μ̃2ᾱ ¼
˜̄Jðã2ᾱÞ
−ã2ᾱ ˜̄U ᾱ

; μ̃20 ¼
˜̄Jð0Þ
˜̄J ð0Þ

¼
˜̄Að ˜̄NÞ

˜̄A
ð ˜̄NÞ ;

ᾱμ2ρ ¼
ᾱJðαaρÞ
−ᾱaρᾱUρ

; ᾱμ20 ¼
ᾱJð0Þ
ᾱJ ð0Þ ¼

ᾱAðᾱNÞ
ᾱAðᾱNÞ : ð3:27Þ

The advantage of defining the two sets of Myers–
Perry coordinates in this way is that a constraint similar
to (2.17) holds for the primary and all secondary sets
independently

X˜̄N

ᾱ¼0

μ̃2ᾱ ¼ 1;
XᾱN
ρ¼0

ᾱμ2ρ ¼ 1: ð3:28Þ

The metric after the limit in these coordinates reads

8Functions decorated with both a bar and a tilde are defined
analogously to barred functions in Sec. II, i.e., without x̃Ñ and ãÑ .
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g ≈ −ð1 − λR̃2Þdt2 þ 2Mr

Σ̃

Y
β̄

ðr2 þ ã2
β̄
Þ−β̄N

�
dtþ

X
ᾱ

ãᾱμ̃2ᾱ
1þ λã2ᾱ

ðΦ̃ᾱ − λãᾱdtÞ
�
2

þ Σ̃
Δ̃r

dr2 þ r2dμ̃20 þ
X
ᾱ

r2 þ ã2ᾱ
1þ λã2ᾱ

ðdμ̃2ᾱ þ μ̃2ᾱ
ᾱgEuclÞ þ

λ

1 − λR̃2

�
r2μ̃0dμ̃0 þ

X
ᾱ

r2 þ ã2ᾱ
1þ λã2ᾱ

μ̃ᾱdμ̃ᾱ

�
2

; ð3:29Þ

where ᾱgEucl denote (2 ᾱN þ 2)-dimensional Euclidean
metrics in the multipolar coordinates

ᾱgEucl ¼ dᾱμ20 þ ᾱμ20dϕ̃
2
ᾱ þ ᾱ

X
ρ

ðdᾱμ2ρ þ ᾱμ2ρdᾱϕ2
ρÞ; ð3:30Þ

and

1 − λR̃2 ¼ ð1 − λr2Þ
�
μ̃20 þ

X
ᾱ

μ̃2ᾱ
1þ λã2ᾱ

�
;

Δ̃r ¼ ð1 − λr2Þ
Y
ᾱ

ðr2 þ ã2ᾱÞ − 2Mr
Y
ᾱ

ðr2 þ ã2ᾱÞ−ᾱN;

Σ̃ ¼
�
μ̃20 þ

X
ᾱ

r2μ̃2ᾱ
r2 þ ã2ᾱ

�Y
β̄

ðr2 þ ã2
β̄
Þ: ð3:31Þ

Notice that these expressions are similar to (2.19) before
the limit—except for the second term of Δ̃r, which is
multiplied by an additional factor emerging from applying
the limit on quantities in the secondary directions. The
1-forms Φ̃ᾱ in these coordinates read

Φ̃ᾱ ¼ ᾱμ20dϕ̃ᾱ þ ᾱ
X
ρ

ᾱμ2ρdᾱϕρ: ð3:32Þ

As one can see, the secondary blocks become spherically
symmetric after the limit. In particular, they can be viewed
as (2 ᾱN þ 2)-dimensional spheres given by the constraints
(3.28), embedded in (2 ᾱN þ 2)-dimensional flat spaces,
described by the metrics ᾱgEucl (3.30). Moreover, in the full
spacetime metric (3.29), each sphere is coupled solely to
the coordinate μ̃ᾱ in the corresponding primary direction.
The full metric after the limit thus has a similar form to the
metric (2.18) before the limit, only 2-forms dϕ2

ν̄ have been
replaced with the spheres ᾱgEucl. The only other occurrence
of the secondary directions is in the 1-forms Φ̃ᾱ, which play
the role of Kähler potentials as is discussed in the next
section.
Notice that the metric in the Myers–Perry coordinates no

longer clearly separates into the Kerr–NUT–(A)dS part g̃
and the Kähler metrics αg, but they are rather combined
together.

IV. RECONSTRUCTING ORIGINAL
SYMMETRIES

This section focuses on explicit and hidden symmetries
of the resulting spacetime after the limit aα;ρ → aα;0 has
been performed. We reconstruct the original number of
Killing vectors and Killing tensors, thus showing that the
symmetry group has not been reduced during the limiting
procedure. We expect the symmetry group to be enhanced,
however, this will be shown explicitly only in the case of
six dimensions, which is discussed in Sec. V.

A. Principal tensor

Let us first discuss the limit form of the principal tensor.
Applying the limiting procedure as before, the principal
tensor (2.20) becomes

h ≈
X
α

�
x̃αϵ̃α ∧ ˆ̃ϵα þ J̃ðã2αÞ

2λãαŨα

ωα

�
; ð4:1Þ

where ωα are defined as

ωᾱ ¼ ᾱ
X
ρ

ᾱϵρ ∧ ᾱϵ̂ρ; ωÑ ¼ 0: ð4:2Þ

Similarly to the metric, we have obtained the principal
tensor in the form that represents a special case of the
results published in [52]. Our tensors ωα differ from the
tensors that the authors of [52] call the Kähler forms
corresponding to the Kähler metrics only by a constant
factor. Therefore, ωα formally represent the Kähler forms.
According to its general definition, a Kähler form is

closed. It can be shown that dωα ¼ 0, thus in our case this
requirement is indeed satisfied. Moreover, there exists a
Kähler potential, which is in our case represented by Φ̃α

defined earlier in (3.15). Namely, the following equality
holds

ωα ¼ dΦ̃α: ð4:3Þ

B. Killing vectors

A straightforward way to obtain the limit of Killing
vectors is to focus on the Killing vectors associated with the
coordinates ϕμ. The limit of their rescaled version sðμÞ, in
the new indexing scheme, is
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sðα;0Þ ≈ s̃ðαÞ; sðα;ρÞ ≈ αsðρÞ; ð4:4Þ

with s̃ðαÞ and αsðρÞ defined similarly to (2.27),

s̃ðαÞ ¼ λãα
∂

∂ϕ̃α

; αsðρÞ ¼ λãα
∂

∂αϕρ
: ð4:5Þ

We have thus obtained Ñ Killing vectors s̃ðαÞ in the primary
directions and

P
α
αN Killing vectors αsðρÞ in the secondary

directions, which gives in total N explicit symmetries—the
same number as before the limit.
The Killing vectors Φ̃α introduced in (3.18) can now be

rewritten as

Φ̃α ¼ s̃ðαÞ þ α
X
ρ

αsðρÞ: ð4:6Þ

Inspired by the first equality in (2.28), we can also
introduce Killing vectors l̃ðrÞ and αlðpÞ as linear combina-
tions of the coordinate Killing vectors s̃ðαÞ and αsðρÞ in the
Kerr–NUT–(A)dS part g̃ and the Kähler parts αg of the
metric, respectively

l̃ðrÞ ¼
X
α

ÃðrÞ
α s̃ðαÞ;

αlðpÞ ¼ α
X
ρ

αAðpÞ
ρ

αsðρÞ ¼ α
X
ρ

αAðpÞ
ρ

αϵ̂ρ: ð4:7Þ

Here, the indices r and p go over the ranges

r ¼ 0;…; Ñ − 1; ð4:8Þ

p ¼ 0;…; αN − 1; ð4:9Þ

and the functions ÃðrÞ
α , αAðpÞ

ρ and αAðpÞ
ρ are as in (B34).

Similarly to (2.29), we also introduce the special Killing
vectors ξ̃ and αξ

ξ̃¼ l̃ð0Þ ¼
X
α

s̃ðαÞ;

αξ¼ αlð0Þ ¼ α
X
ρ

αsðρÞ ¼ α
X
ρ

αϵ̂ρ: ð4:10Þ

Notice, that we have not listed relations between l̃ðrÞ and ˆ̃ϵα
similar to the second equality in (2.28). Indeed, such relations
do not exist. It turns out that the Killing vectors l̃ðrÞ and s̃ðαÞ
need to be “improved” in order to fulfill such relations.
To show this, let us approach the limit from a different

direction. We perform the limit of the generating function
for Killing vectors (2.30). Using an expression analogous
to (2.31) for AμðβÞ and (4.6), we obtain

lðβÞ ≈
Y
γ

ð1þ β2ã2γÞγNL̃ðβÞ; ð4:11Þ

with

L̃ðβÞ ¼
X
α

ÃαðβÞΦ̃α: ð4:12Þ

Realizing that the multiplicative prefactor
Q

γð1þ β2ã2γÞγN
in (4.11) is constant on the manifold, we can understand
L̃ðβÞ also as a generating function for Killing vectors.
Namely, it will be the generating function for new Killing
vectors L̃ðrÞ,

L̃ðβÞ ¼
X
r

β2rL̃ðrÞ: ð4:13Þ

Comparing (4.13) with (4.12) and using the relation (3.17)
between Φ̃α and ˆ̃ϵα, we find L̃ðrÞ to be fully analogous to
(2.28)

L̃ðrÞ ¼
X
α

ÃðrÞ
α Φ̃α ¼

X
α

ÃðrÞ
α ˆ̃ϵα: ð4:14Þ

The special Killing vector Ξ̃ associated with L̃ðrÞ reads

Ξ̃ ¼ L̃ð0Þ ¼
X
α

Φ̃α ¼
X
α

ˆ̃ϵα: ð4:15Þ

The generating function L̃ðβÞ thus provides us with the
Killing vectors L̃ðrÞ or Φ̃α, which “improve” the Killing

vectors l̃ðrÞ and s̃ðαÞ in such a way that (4.14) holds. Of
course, any of these sets of Killing vectors can be used
since they carry the same information. Indeed, the
“improved” Killing vectors are related to the previously
defined Killing vectors as

L̃ðrÞ ¼ l̃ðrÞ þ
X
α

ÃðrÞ
α

αξ; ð4:16Þ

Φ̃α ¼ s̃ðαÞ þ αξ ð4:17Þ

and

Ξ̃ ¼ ξ̃ þ
X
α

αξ: ð4:18Þ

C. Killing tensors

To calculate the limit of Killing tensors, we shall proceed
in a similar manner to Killing vectors and apply the limiting
procedure to the Killing tensors rðμÞ, cf. (2.32).
As a preliminary, we consider the limit of πμ defined in

(2.33)

πα;0 ≈ π̃α; πα;ρ ≈ −
2λã2αŨα

J̃ðã2αÞ
απρ: ð4:19Þ

Here, the tensors π̃α and απρ are
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π̃α ¼
X̃α

Ũα

ϵ̃αϵ̃α þ
Ũα

X̃α

ˆ̃ϵα ˆ̃ϵα; απρ ¼
αXρ
αUρ

αϵραϵρ þ
αUρ
αXρ

αϵ̂ραϵ̂ρ:

ð4:20Þ

We also define auxiliary tensors k̃ðrÞ and r̃ðαÞ using relations
analogous to (2.34),

k̃ðrÞ ¼
X
α

ÃðrÞ
α r̃ðαÞ ¼

X
α

ÃðrÞ
α π̃α; ð4:21Þ

with the corollary

k̃ð0Þ ¼ g̃−1: ð4:22Þ
It should be emphasized that the tensors k̃ðrÞ and r̃ðαÞ are
not, in general, Killing tensors.
The leading term in the expansion of the Killing tensors

rðμÞ now becomes

εrðα;0Þ ≈ −α
X
ρ

λãα
αaρ

αrðρÞ; εrðα;ρÞ ≈
λãα
αaρ

αrðρÞ; ð4:23Þ

where αrðρÞ,

αrðρÞ ¼ α
X
σ

αJσðαaρÞ
αUρ

απσ; ð4:24Þ

are independent Killing tensors after the limit associated
with the secondary directions. Again, in analogy with
(2.34) we also introduce Killing tensors αkðpÞ as

αkðpÞ ¼ α
X
ρ

αAðpÞ
ρ

αrðρÞ ¼ α
X
ρ

αAðpÞ
ρ

απρ: ð4:25Þ

In this case, both αkðpÞ and αrðρÞ are Killing tensors: αrðρÞ
have been obtained as a limit of Killing tensors and αkðpÞ are
just linear combinations of αrðρÞ with constant coefficients.
The Killing tensors αkðpÞ and αrðρÞ are directly related to

the Kähler parts of the metric αg. For p ¼ 0 we even have

αkð0Þ ¼ αg−1; ð4:26Þ

thus the Kähler metrics are Killing tensors as well.
Inspecting the first expansion in (4.23), we see that the

limiting procedure for rðμÞ extracts only the Killing tensors
αrðρÞ in the secondary directions. It does not provide any
additional information about the primary directions.
Therefore, we need a different approach to obtain
Killing tensors related to the primary directions.
Similarly to Killing vectors, let us apply the limiting

procedure to the generating function kðβÞ for Killing tensors
(2.35). Using (2.31) and the limit form of πμ (4.19), we obtain

kðβÞ ≈
Y
γ

ð1þ β2ã2γÞγNK̃ðβÞ: ð4:27Þ

Since kðβÞ and K̃ðβÞ differ only by a constant factor, K̃ðβÞ
also generatesKilling tensors.Weuse this generating function
to generate Killing tensors associated with the primary
directions after the limit.
Using (4.26), K̃ðβÞ can be written in the form

K̃ðβÞ ¼
X
r

β2rK̃ðrÞ − β2Ñ
X
α

2λã2αŨα

1þ β2ã2α
αg−1; ð4:28Þ

where we also separated the first Ñ powers of β2 from the
remaining ones. Because of the higher powers of β2 in the
second sum, K̃ðβÞ is no longer a direct analogue of its
before-the-limit counterpart kðβÞ in (2.25). Nevertheless,
extra Killing tensors corresponding to these higher powers
of β2 are rather trivial—they are just linear combinations of
the Killing tensors αg−1 with constant coefficients. The
more interesting part of K̃ðβÞ is given by the first Ñ powers
of β2 contained in the first sum. The coefficients define new
Killing tensors K̃ðrÞ, which are given by

K̃ðrÞ ¼ k̃ðrÞ −
X
α

B̃ðrÞðã2αÞ
2λã2αŨα

J̃ðã2αÞ
αg−1; ð4:29Þ

with functions B̃ðrÞ defined as

B̃ðrÞðã2Þ ¼
Xr

n¼0

ÃðnÞð−ã2Þr−n: ð4:30Þ

Since these are nontrivial functions on spacetime, the linear
combination of the Killing tensors αg−1 in (4.29) does not
have constant coefficients and, therefore, k̃ðrÞ cannot be
expected to be Killing tensors.
For r ¼ 0 we get

K̃ð0Þ ≈ g−1: ð4:31Þ
Finally, we can introduce another set of Killing tensors

R̃ðαÞ, again using a formula analogous to (2.34)

K̃ðrÞ ¼
X
α

ÃðrÞ
α R̃ðαÞ: ð4:32Þ

With the help of an expression for ÃðrÞ
α analogous to (A8),

(4.29), and (4.21) as well as some algebra, it can be shown
that R̃ðαÞ read

R̃ðαÞ ¼ r̃ðαÞ þ
X
β≠α
β

2λã2β
ã2α − ã2β

Ũβ

Ũα

J̃ðã2αÞ − J̃ðã2βÞ
J̃ðã2βÞ

βg−1

− 2λã2α
X
β

ðx̃2β − ã2αÞ−1 αg−1: ð4:33Þ

To summarize, we have obtained Ñ Killing tensors K̃ðrÞ
in the primary directions and

P
α
αN Killing tensors αkðpÞ in
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the secondary directions, thus reconstructing the original
number of N hidden symmetries. Alternatively, we can use
equivalent sets of Killing tensors R̃ðαÞ in the primary
directions and αrðρÞ in the secondary directions.

V. EQUALLY SPINNING BLACK HOLES

This section includes two explicit examples of the
general results obtained in Secs. III and IV that are
interesting from the physical point of view. Namely, we
consider metrics with the Lorentzian signature describing
higher-dimensional black holes, and we set all their rota-
tional parameters equal. We present examples of black
holes in D ¼ 2N and in six dimensions.

A. D= 2N

Setting all the rotational parameters equal in the
Lorentzian case means that there are only two equal-spin
blocks α ∈ f1; Ñg, with the latter being reserved for the
Wick rotation. Therefore, only the secondary directions
within the first block are subject to the limiting procedure,
and their number is 1N ¼ N − 2. The limit in this case is
characterized by a1;ρ → a1;0, where the index labeling the
secondary directions acquires the values

ρ ¼ 1;…; N − 2; ð5:1Þ

unless indicated otherwise. The parametrization (3.5) thus
adopts the form

a1;0 ¼ ã1; x1;0 ¼ x̃1; ϕ1;0 ¼ ϕ̃1;

a1;ρ ¼ ã1 þ 1aρε; x1;ρ ¼ ã1 þ 1xρε; ϕ1;ρ ¼ 1ϕρ;

aÑ;0 ¼ ãÑ ; xÑ;0 ¼ x̃Ñ ; ϕÑ;0 ¼ ϕ̃Ñ :

ð5:2Þ

We shall proceed from the generally spinning metric
after the limit and use its form (3.29) in the Myers–Perry
coordinates ft; r; μ̃0; μ̃1; ϕ̃1; 1μ0; 1μρ; 1ϕρg. Since the equally
spinning black hole retains only a single rotational param-
eter after the limit, let us write

ã1 ≡ ã: ð5:3Þ

Moreover, the second limiting block is related just to the
Lorentzian sector and it is renamed in the Wick rotation
(3.7) and by imposing the gauge condition (3.8). Thus only
a single primary direction and the corresponding block of
secondary directions remain. Therefore, we shall further
simplify the notation by dropping the index “1” labeling the
only limiting block

ϕ̃1 ≡ ϕ̃; 1ϕρ ≡ ϕρ; ð5:4Þ

1μ0 ≡ μ0; 1μρ ≡ μρ: ð5:5Þ

As in the general case, the coordinates fμ̃0; μ̃1g in the
primary directions and fμ0; μρg in the secondary directions
are not independent—they are constrained by the conditions

μ̃20 þ μ̃21 ¼ 1;
XN−2

ρ¼0

μ2ρ ¼ 1: ð5:6Þ

The metric of an equally-spinning black hole then becomes

g ≈ −ð1 − λR̃2Þdt2

þ 2Mr

Σ̃
ðr2 þ ã2Þ2−N

�
dtþ ãμ̃21

1þ λã2
ðΦ̃ − λãdtÞ

�
2

þ Σ̃
Δ̃r

dr2 þ r2dμ̃20 þ
r2 þ ã2

1þ λã2
ðdμ̃21 þ μ̃21gEuclÞ

þ λ

1 − λR̃2

�
r2μ̃0dμ̃0 þ

r2 þ ã2

1þ λã2
μ̃1dμ̃1

�
2

; ð5:7Þ

where

Φ̃≡ Φ̃1 ¼ μ20dϕ̃þ
X
ρ

μ2ρdϕρ; ð5:8Þ

and gEucl denotes a (2N − 2)-dimensional Euclidean metric
in the multipolar coordinates

gEucl ¼ dμ20 þ μ20dϕ̃
2 þ

X
ρ

ðdμ2ρ þ μ2ρdϕ2
ρÞ: ð5:9Þ

The metric functions adopt the form

1 − λR̃2 ¼ ð1 − λr2Þ
�
μ̃20 þ

μ̃21
1þ λã2

�
;

Δ̃r ¼ ð1 − λr2Þðr2 þ ã2Þ − 2Mrðr2 þ ã2Þ2−N;
Σ̃ ¼ r2 þ ã2μ̃20: ð5:10Þ

We see that the secondary directions enter the full metric
only through the terms gEucl and Φ̃.
Remembering that the coordinates are restricted by the

constraint (5.6), we conclude that the secondary block
essentially obtains the geometry of a (2N − 3)-dimensional
sphere. Indeed, it can be viewed as the sphere given by the
constraint (5.6) embedded in a (2N − 2)-dimensional flat
space described by the metric (5.9). Similarly to the general
case, this sphere is coupled only to the primary coordinate μ̃1.
Besides this metric piece, the secondary directions enter

the full metric also in time-related terms through the Kähler
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potential Φ̃. It is related to the common rotation of the
secondary directions.

B. Myers–Perry black hole in D= 6

In this section, we simplify the situation even more and
study the equal-spin limit of a rotating black hole in
vacuum—also called a Myers–Perry black hole—in six
dimensions. This was also discussed by Ortaggio [54].
Such a simplification proves useful as we are able to find
additional Killing vectors that emerge after the limit, thus
providing evidence of an enhanced symmetry structure of
the resulting spacetime. We expect the symmetry group to
become enlarged also in the general limit case.
We focus on a vacuum case, i.e., we set λ ¼ 0. Moreover,

there are only two equal-spin blocks α ∈ f1; Ñg, and since
in six dimensions a black hole described by the Lorentzian
metric has only two rotational parameters, the first block
has 1N ¼ 1 parameter subject to the limit. Therefore, the
limiting procedure in this case is characterized by
a1;1 → a1;0. Since this is a special case of the limit
discussed in the previous subsection, we shall use the
parametrization (5.2) with the conventions (5.3) and (5.4)

a1;0 ≡ ã; x1;0 ≡ x̃; ϕ1;0 ≡ ϕ̃;

a1;1 ≡ ãþ aε; x1;1 ≡ ãþ xε; ϕ1;1 ≡ ϕ;

aÑ;0 ≡ ãÑ ; xÑ;0 ≡ x̃Ñ ; ϕÑ;0 ≡ ϕ̃Ñ ; ð5:11Þ

where we have also dropped the index ρ ¼ 1. Moreover, x̃Ñ
and ϕ̃Ñ are Wick-rotated as in (3.7), where we must
perform the limit λ → 0 assuming the gauge condition
(3.8) for ãÑ.

1. Metric

Employing these parametrizations, the metric (3.20)
becomes

g≈−dt2þ2Mr
Σ

�
dt−

x̃2− ã2

ã

�
x
a
dϕ̃−

x−a
a

dϕ

��
2

þ Σ
Δr

dr2−
r2þ x̃2

x̃2− ã2
dx̃2

þðr2þ ã2Þðx̃2− ã2Þ
ã2

�
dx2

4xðx−aÞ−
x
a
dϕ̃2þx−a

a
dϕ2

�
;

ð5:12Þ

where

Δr ≈ ðr2 þ ã2ÞΔ̃r ¼ ðr2 þ ã2Þ2 − 2Mr;

Σ ≈ ðr2 þ ã2ÞΣ̃ ¼ ðr2 þ ã2Þðr2 þ x̃2Þ; ð5:13Þ

and Δ̃r with Σ̃ are as in (3.31), which confirms the results of
[54]. This is the metric expressed in the generalized Boyer–

Lindquist coordinates ft; r; x̃; ϕ̃; x;ϕg, which are suitable
for performing the limiting procedure. However, consid-
ering the physical interpretation of the resulting spacetime,
another set of coordinates proves more useful.

2. Spherical-like coordinates

Instead of fx̃; xg we introduce new angular coordinates
fϑ; χg, which are better suited for analyzing physical
properties of the resulting black hole spacetime. Namely,
let us define

x̃ ¼ ã cosϑ; x ¼ a cos2χ: ð5:14Þ
Moreover, let us rename the angular coordinates fϕ̃;ϕg as
follows

ϕ̃≡ φ1; ϕ≡ φ2: ð5:15Þ
The metric (5.12) then becomes

g ≈ −dt2 þ 2Mr
Σ

½dtþ ãsin2ϑðcos2χdφ1 þ sin2χdφ2Þ�2

þ Σ
Δr

dr2 þ ðr2 þ ã2cos2ϑÞdϑ2

þ ðr2 þ ã2Þsin2ϑdS3; ð5:16Þ

where dS3 denotes the metric of a 3-sphere, which can be
expressed as9

dS3 ¼ dχ2 þ cos2χdφ2
1 þ sin2χdφ2

2: ð5:17Þ

The metric functions are

Δr ≈ ðr2 þ ã2Þ2 − 2Mr;

Σ ≈ ðr2 þ ã2Þðr2 þ ã2cos2ϑÞ: ð5:18Þ
Notice that the metric (5.16) no longer contains the
parameter a from the secondary block. This parameter
controls how fast a1;1 approaches a1;0. In case the limit is
applied to a single rotational parameter, however, such a
scale is irrelevant.
The inverse metric can be written as

g−1≈−
�
∂
∂t

�
2

−
2Mr
Σ

ðr2þ ã2Þ2
Δr

�
∂
∂t
−

ã
r2þ ã2

�
∂

∂φ1

þ ∂
∂φ2

��
2

þΔr

Σ

�
∂
∂r

�
2

þ 1

r2þ ã2cos2ϑ

�
∂
∂ϑ

�
2

þ 1

ðr2þ ã2Þsin2ϑdS
−1
3 ; ð5:19Þ

with the inverse metric of a 3-sphere given simply by

9The coordinates in which the metric of a 3-sphere has this
particular form are called the Hopf coordinates.
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dS−1
3 ¼

�
∂
∂χ

�
2

þ 1

cos2χ

�
∂

∂φ1

�
2

þ 1

sin2χ

�
∂

∂φ2

�
2

: ð5:20Þ

3. Killing vectors

Before the limit, the Myers–Perry black hole in six
dimensions has three explicit symmetries associated with
the following Killing vectors

ξ ¼ ∂
∂t

;

sþ ¼ 1

2

�
∂

∂φ1

þ ∂
∂φ2

�
¼ 1

2λ

�
sð1Þ
a1

þ sð2Þ
a2

�
;

s− ¼ 1

2

�
∂

∂φ1

−
∂

∂φ2

�
¼ 1

2λ

�
sð1Þ
a1

−
sð2Þ
a2

�
; ð5:21Þ

where ξ is the special Killing vector (2.24). Note that sþ and
s− are simply linear combinations of the vectors sð1Þ and sð2Þ
defined in (2.27).10 However, they form nice commutation
relations with new Killing vectors, which we will iden-
tify next.
The most important result of this section is that the

metric after the limit has additional Killing vectors.
Namely, we found two new vectors

u ¼ 1

2

�
cosðφ2 − φ1Þ

∂
∂χ

− sinðφ2 − φ1Þ
�
tan χ

∂
∂φ1

þ cot χ
∂

∂φ2

��
;

v ¼ 1

2

�
sinðφ2 − φ1Þ

∂
∂χ

þ cosðφ2 − φ1Þ
�
tan χ

∂
∂φ1

þ cot χ
∂

∂φ2

��
: ð5:22Þ

These vectors are independent of the original Killing
vectors (5.21) and they Lie-preserve the full spacetime
metric (5.16). Furthermore, it can be shown that they are
Killing vectors of a 3-sphere represented by the met-
ric (5.17).
Let us now discuss how the symmetry group changes

after applying the limiting procedure. Before the limit, the
spacetime symmetries form a R ×Uð1Þ ×Uð1Þ group as
there exist three commuting Killing vectors ξ, sþ and s−.
However, the algebraic structure emerging after the limit
indicates that the symmetry of the resulting spacetime is
indeed further enhanced. In fact, the vectors s−, u and v
generate the algebra of an SOð3Þ group and the vectors ξ
and sþ commute with all the other vectors as can be seen
from their Lie brackets11

½s−; u� ¼ v; ½u; v� ¼ s−; ½v; s−� ¼ u;

½sþ; s−� ¼ 0; ½sþ; u� ¼ 0; ½sþ; v� ¼ 0: ð5:23Þ

Therefore, the symmetry group of the spacetime decouples
and is enhanced from the original R ×Uð1Þ ×Uð1Þ to R ×
Uð1Þ × SOð3Þ after the limit.

4. Killing tensors

Another proof of an enhanced symmetry structure after
performing the equal-spin limit can be found when study-
ing the limit form of Killing tensors. In six dimensions, the
Myers–Perry black hole after the limit has three Killing
tensors defined in (4.29) and (4.25). In the spherical-like
coordinates, they obtain the form12

K̃ð0Þ ≈ g−1;

K̃ð1Þ ¼ −
�
ã
∂
∂t

�
2

þ ã
∂
∂t

∨
�

∂
∂φ1

þ ∂
∂φ2

�
−
2Mr
Σ

½ðr2 þ ã2Þã cosϑ�2
Δr

�
∂
∂t

−
ã

r2 þ ã2

�
∂

∂φ1

þ ∂
∂φ2

��
2

þ Δr

Σ

�
ã cosϑ

∂
∂r

�
2

−
1

r2 þ ã2cos2ϑ

�
r
∂
∂ϑ

�
2

−
r2 þ ã2sin2ϑ
ðr2 þ ã2Þsin2ϑdS

−1
3 ;

1kð0Þ ¼ 1g−1 ¼ 1

2

��
∂
∂χ

�
2

þ
�
tan χ

∂
∂φ1

− cot χ
∂

∂φ2

�
2
�
; ð5:24Þ

10Let us note that the factor 1=λ in the expressions for s� in terms of sð1;2Þ does not present a problem in the limit λ → 0 since it is
compensated by λ in the definition (2.27).

11Commutation relations with ξ are trivial since all the other Killing vectors are time-independent.
12Here, α∨β ¼ αβþ βα is a normalized symmetric tensor product analogous to the antisymmetric wedge operation.
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where 1g−1 is the Kähler part of the full spacetime metric g.
It turns out that 1kð0Þ decouples into a sum of direct products
of Killing vectors in the following manner

1kð0Þ ¼ 2ðuuþ vvþ s−s− − sþsþÞ; ð5:25Þ

thus the Killing tensor 1kð0Þ becomes reducible. Therefore,
the corresponding hidden symmetry splits into a combi-
nation of explicit symmetries characterized by the Killing
vectors sþ, s−, u, and v.

VI. SUMMARY

This work is devoted to a limit of the Kerr–NUT–(A)dS
spacetime, in which an arbitrary number of its rotational
parameters coincides. The importance of the Kerr–NUT–
(A)dS spacetime lies in the fact that it is the most general
solution to the vacuum Einstein equations in higher
dimensions with the cosmological constant that also
possesses the principal tensor. Therefore, it has a rich
symmetry structure demonstrated by the existence of the
Killing tower of Killing vectors and Killing tensors. The
limiting spacetime inherits this symmetry structure. The
symmetry is even enhanced since some of the hidden
symmetries represented by Killing tensors factorize, which
leads to a higher number of explicit symmetries represented
by Killing vectors.
Section III describes the equal-spin limit of the Kerr–(A)

dS metric. Although the limiting procedure is not trivial
since some of the parameters and the coordinate ranges
become degenerate, we managed to find a suitable para-
metrization of the limit, in which the metric remains
regular. We defined primary and secondary coordinate
directions, which refer to the coordinates (and the param-
eters) that do not change after the limit and to those subject
to the limit, respectively. We then applied the limiting
procedure to the orthogonal frame fϵμ; ϵ̂μg and found out
that after the limit this orthogonal frame separates into two
independent sets fϵ̃α; ˆ̃ϵαg and fαϵρ; αϵ̂ρg, which we referred
to as primary and secondary frame directions, respectively.
This structure corresponds to the expected form of the

generalized Kerr–NUT–(A)dS spacetimes [52], where
spacetimes with the principal tensor that has constant
eigenvalues have been discussed. In [52], the most general
metric allowing such a principal tensor has been identified.
It was shown that certain parts of the metric have formal
properties of the Kähler metrics, which we confirmed in our
limit. We thus kept the terminology of [52].
However, the orthogonal separation of the metric is only

valid on the level of tangent spaces and is not integrable.
Thus the resulting geometry cannot be understood as a
product of independent manifolds and one cannot talk
about true Kähler submanifolds. The resulting geometry is
a certain kind of multiwarped product.

Applying the limit we discovered that the metric g splits
into two parts—the primary Kerr–NUT–(A)dS part g̃ and
the secondary Kähler metrics αg. The Kerr–NUT–(A)dS
part has the form analogous to the Kerr–NUT–(A)dS metric
of the entire spacetime but only in the primary directions,
while the Kähler metrics describe special parts of the
geometry that emerged in the limiting procedure.
However, both pieces are interlaced together because of
the fine inner structure of the primary and secondary
orthogonal frames. Thus, we repeat once more, that the
secondary metrics αg can be called Kähler metrics only
formally since they do not live on independent
submanifolds.
As a particular case we studied the limit of a black hole

geometry with the explicit Lorentzian signature. In this
case, the interlacing of the primary Kerr–NUT–(A)dS block
and the secondary Kähler blocks can be demonstrated in an
explicit form. It turns out that after the limit the secondary
blocks simplify to spatial spheres, and each sphere is
coupled to the coordinate in the corresponding primary
direction. Additionally, the secondary blocks are coupled to
the primary metric in the rotational term linear in dt
through the Kähler potentials.
In Sec. IV, we discussed the equal-spin limit of the

Killing tower. We were able to obtain the same number of
Killing vectors and Killing tensors as before the limit, thus
having reconstructed the original explicit and hidden
symmetries.
Therefore, the metric we obtained represents a particu-

larly interesting subcase of general spacetimes discussed in
[52]. We showed that it retains the full tower of explicit and
hidden symmetries, thus inheriting the complete integra-
bility of the geodesic particle motion from the original
geometry—unlike the generalized Kerr–NUT–(A)dS met-
rics, which do not necessarily admit the full Killing tower
and they possess much less symmetries.
In general, we expect that the limiting metric has even

enhanced symmetry structure, i.e., that it possesses more
explicit symmetries, making some of the hidden sym-
metries reducible.
In Sec. V, we presented two examples of the general

results. We studied the metric of a black hole with all its
rotational parameters set equal in a general (even) dimen-
sion and, in particular, in six dimensions. In the six-
dimensional case, we found an enhanced symmetry struc-
ture after the limit. Namely, we discovered two additional
Killing vectors that emerge after performing the limiting
procedure. These new vectors are independent of the
original Killing vectors and they Lie-preserve the full
spacetime metric. Moreover, combined with the original
Killing vectors they generate the algebra of an SOð3Þ
group. Therefore, the symmetry group of the spacetime is
enhanced from the original R ×Uð1Þ × Uð1Þ to R ×
Uð1Þ × SOð3Þ after the limit. It also turns out that one
of the Killing tensors becomes reducible as it decouples

HIGHER-DIMENSIONAL BLACK HOLES WITH MULTIPLE … PHYS. REV. D 105, 044041 (2022)

044041-15



into a sum of products of Killing vectors, therefore, the
associated hidden symmetry splits into a combination of
explicit symmetries.
Let us conclude with several open problems concerning

the equal-spin limit of the Kerr–NUT–(A)dS spacetime.
We expect the symmetry group to become enlarged in

the general limit case. Namely, we expect that after the limit
the symmetries of spherically symmetric spatial parts
emerge on the level of the full spacetime metric. This
should be possible to prove using a higher-dimensional
generalization of the spherical-like coordinates (5.14).
While the task is rather simple when the secondary block
contains a single coordinate, with more coordinates the
complexity of the expressions grows considerably.
In our work, we mostly assumed vanishing NUT charges

for simplicity. Some of the results could be generalized to
the case of nonvanishing NUT charges, but it would require
much more careful fine-tuning of the metric parameters and
the coordinate ranges and one would need to investigate the
relation of the resulting symmetry structure with the NUT-
related singular structure of the axes.
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APPENDIX A: METRIC FUNCTIONS

In Sec. II, we have introduced several auxiliary functions
related to symmetric polynomials that are then often used in
the metric and other quantities before the limit, and with
some modifications also after the limit (see Appendix B).
These functions are polynomials either in the coordinates
xμ (denoted by J, A, U) or in the parameters aμ (denoted by
J , A, U). They are defined as13

Jða2Þ ¼
Y
ν

ðx2ν − a2Þ ¼
XN
k¼0

AðkÞð−a2ÞN−k;

J ðx2Þ ¼
Y
ν

ða2ν − x2Þ ¼
XN
k¼0

AðkÞð−x2ÞN−k: ðA1Þ

Considering these definitions, it follows that

AðkÞ ¼
X

ν1<…<νk
ν1 ;…;νk

x2ν1…x2νk ; AðkÞ ¼
X

ν1<…<νk
ν1 ;…;νk

a2ν1…a2νk : ðA2Þ

Similarly, we define functions with the μth variable
omitted as

Jμða2Þ ¼
Y
ν≠μ
ν

ðx2ν − a2Þ ¼
X
k

AðkÞ
μ ð−a2ÞN−1−k;

J μðx2Þ ¼
Y
ν≠μ
ν

ða2ν − x2Þ ¼
X
k

AðkÞ
μ ð−x2ÞN−1−k; ðA3Þ

where

AðkÞ
μ ¼

X
νi≠μ

ν1<…<νk

ν1 ;…;νk

x2ν1…x2νk ; AðkÞ
μ ¼

X
νi≠μ

ν1<…<νk

ν1 ;…;νk

a2ν1…a2νk : ðA4Þ

We set

Að0Þ ¼ Að0Þ
μ ¼ 1; Að0Þ ¼ Að0Þ

μ ¼ 1 ðA5Þ

and we also assume that the functions AðkÞ
μ vanish if the

index k “overflows,” e.g., AðNÞ
μ ¼ 0; the same applies to the

functions AðkÞ
μ . Finally, we define

Uμ ¼ Jμðx2μÞ ¼
Y
ν≠μ
ν

ðx2ν − x2μÞ;

Uμ ¼ J μða2μÞ ¼
Y
ν≠μ
ν

ða2ν − a2μÞ: ðA6Þ

These functions satisfy

Jðx2μÞ ¼ 0; J ða2μÞ ¼ 0;

Jμðx2νÞ ¼ 0; J μða2νÞ ¼ 0; if μ ≠ ν: ðA7Þ

If AðkÞ
μ is understood as an N × N matrix, it is possible to

write down its inverse

X
k

AðkÞ
μ

ð−x2νÞN−1−k

Uν
¼ δμν; ðA8Þ

X
μ

AðkÞ
μ

ð−x2μÞN−1−l

Uμ
¼ δkl: ðA9Þ

They are also related to the polynomials AðkÞ as

X
μ

AðkÞ
μ

x2μUμ
¼ AðkÞ

AðNÞ : ðA10Þ

13Let us recall that indices in sums and products go over the
“default” ranges unless indicated otherwise explicitly, i.e.,

X
μ

¼
XN
μ¼1

;
X
k

¼
XN−1

k¼0

:
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The functions AðkÞ and AðkÞ
μ satisfy analogous identities

with xμ and Uμ replaced by aμ and Uμ, respectively.
Finally, the following orthogonality relations are satis-

fied

X
κ

Jμða2κÞ
Uκ

J κðx2νÞ
Uν

¼ δμν; ðA11Þ

X
κ

Jμða2κÞJνða2κÞ
Jða2κÞUκ

¼ −
Uμ

J ðx2μÞ
δμν; ðA12Þ

X
κ

Jκða2μÞJκða2νÞ
J ðx2κÞ
Uκ

¼ −Jða2μÞUμδμν: ðA13Þ

APPENDIX B: EQUAL-SPIN LIMIT OF METRIC
FUNCTIONS

When employing the limiting procedure introduced in
Sec. III, first we rewrite the metric functions using the
double indexing described in Sec. III A, and then apply the
parametrization (3.5). The functions J and U along with
their counterparts J and U can be written as14

J ðx2α;0Þ ¼
Y
γ

ða2γ;0 − x2α;0Þ ·
Y
γ

γ
Y
τ

ða2γ;τ − x2α;0Þ; ðB1Þ

J ðx2α;ρÞ ¼
Y
γ

ða2γ;0 − x2α;ρÞ ·
Y
γ

γ
Y
τ

ða2γ;τ − x2α;ρÞ; ðB2Þ

Jα;0ða2β;0Þ ¼
Y
γ≠α
γ

ðx2γ;0 − a2β;0Þ ·
Y
γ

γ
Y
τ

ðx2γ;τ − a2β;0Þ; ðB3Þ

Jα;0ða2β;σÞ ¼
Y
γ≠α
γ

ðx2γ;0 − a2β;σÞ ·
Y
γ

γ
Y
τ

ðx2γ;τ − a2β;σÞ; ðB4Þ

Jα;ρða2β;0Þ ¼
Y
γ

ðx2γ;0 − a2β;0Þ ·
Y
γ≠α
γ

γ
Y
τ

ðx2γ;τ − a2β;0Þ · α
Y
τ≠ρ

τ

ðx2α;τ − a2β;0Þ; ðB5Þ

Jα;ρða2β;σÞ ¼
Y
γ

ðx2γ;0 − a2β;σÞ ·
Y
γ≠α
γ

γ
Y
τ

ðx2γ;τ − a2β;σÞ · α
Y
τ≠ρ

τ

ðx2α;τ − a2β;σÞ; ðB6Þ

J β;0ðx2α;0Þ ¼
Y
γ≠β
γ

ða2γ;0 − x2α;0Þ ·
Y
γ

γ
Y
τ

ða2γ;τ − x2α;0Þ; ðB7Þ

J β;σðx2α;0Þ ¼
Y
γ

ða2γ;0 − x2α;0Þ ·
Y
γ≠β
γ

γ
Y
τ

ða2γ;τ − x2α;0Þ · β
Y
τ≠σ

τ

ða2β;τ − x2α;0Þ; ðB8Þ

J β;0ðx2α;ρÞ ¼
Y
γ≠β
γ

ða2γ;0 − x2α;ρÞ ·
Y
γ

γ
Y
τ

ða2γ;τ − x2α;ρÞ; ðB9Þ

J β;σðx2α;ρÞ ¼
Y
γ

ða2γ;0 − x2α;ρÞ ·
Y
γ≠β
γ

γ
Y
τ

ða2γ;τ − x2α;ρÞ · β
Y
τ≠σ

τ

ða2β;τ − x2α;ρÞ; ðB10Þ

14Let us remind the reader that indices introduced in Section III A go over the “default” ranges unless indicated otherwise explicitly in
the sum or product, i.e.,

Y
α

¼
ỸN
α¼1

; α
Y
ρ

¼
YαN
ρ¼1

:
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Uα;0 ¼
Y
γ≠α
γ

ðx2γ;0 − x2α;0Þ ·
Y
γ

γ
Y
τ

ðx2γ;τ − x2α;0Þ; ðB11Þ

Uα;ρ¼
Y
γ

ðx2γ;0−x2α;ρÞ ·
Y
γ≠α
γ

γ
Y
τ

ðx2γ;τ−x2α;ρÞ ·α
Y
τ≠ρ

τ

ðx2α;τ−x2α;ρÞ; ðB12Þ

Uα;0 ¼
Y
γ≠α
γ

ða2γ;0 − a2α;0Þ ·
Y
γ

γ
Y
τ

ða2γ;τ − a2α;0Þ; ðB13Þ

Uα;ρ¼
Y
γ

ða2γ;0−a2α;ρÞ ·
Y
γ≠α
γ

γ
Y
τ

ða2γ;τ−a2α;ρÞ ·α
Y
τ≠ρ

τ

ða2α;τ−a2α;ρÞ: ðB14Þ

After the limit, these functions become

J ðx2α;0Þ ≈ J̃ ðx̃2αÞ
Y
γ

ðã2γ − x̃2αÞγN; ðB15Þ

J ðx2α;ρÞ ≈ −Ũα
αxραJ ðαxρÞð2ãαεÞαNþ1

Y
γ≠α
γ

ðã2γ − ã2αÞγN; ðB16Þ

Jα;0ða2β;0Þ ≈ J̃αðã2βÞβJð0Þð2ãβεÞ
βN
Y
γ≠β
γ

ðã2γ − ã2βÞ
γN; ðB17Þ

Jα;0ða2β;σÞ ≈ J̃αðã2βÞβJðβaσÞð2ãβεÞ
βN
Y
γ≠β
γ

ðã2γ − ã2βÞ
γN; ðB18Þ

Jα;ρða2β;0Þ ≈
J̃ðã2βÞ
ã2α − ã2β

βJð0Þð2ãβεÞβN
Y
γ≠β
γ

ðã2γ − ã2βÞ
γN; α ≠ β; ðB19Þ

Jα;ρða2β;σÞ ≈
J̃ðã2βÞ
ã2α − ã2β

βJðβaσÞð2ãβεÞβN
Y
γ≠β
γ

ðã2γ − ã2βÞ
γN; α ≠ β; ðB20Þ

Jα;ρða2α;0Þ ≈ J̃ðã2αÞαJρð0Þð2ãαεÞαN−1
Y
γ≠α
γ

ðã2γ − ã2αÞγN; ðB21Þ

Jα;ρða2α;σÞ ≈ J̃ðã2αÞαJρðαaσÞð2ãαεÞαN−1
Y
γ≠α
γ

ðã2γ − ã2αÞγN; ðB22Þ

J β;0ðx2α;0Þ ≈ J̃ βðx̃2αÞ
Y
γ

ðã2γ − x̃2αÞγN; ðB23Þ

J β;σðx2α;0Þ ≈ J̃ βðx̃2αÞ
Y
γ

ðã2γ − x̃2αÞγN; ðB24Þ

J β;0ðx2α;ρÞ ≈
Ũα

ã2α − ã2β
αxραJ ðαxρÞð2ãαεÞαNþ1

Y
γ≠α
γ

ðã2γ − ã2αÞγN; α ≠ β; ðB25Þ
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J β;σðx2α;ρÞ ≈
Ũα

ã2α − ã2β
αxραJ ðαxρÞð2ãαεÞαNþ1

Y
γ≠α
γ

ðã2γ − ã2αÞγN; α ≠ β; ðB26Þ

J α;0ðx2α;ρÞ ≈ Ũα
αJ ðαxρÞð2ãαεÞαN

Y
γ≠α
γ

ðã2γ − ã2αÞγN; ðB27Þ

J α;σðx2α;ρÞ ≈ −Ũα
αxραJ σðαxρÞð2ãαεÞαN

Y
γ≠α
γ

ðã2γ − ã2αÞγN; ðB28Þ

Uα;0 ≈ Ũα

Y
γ

ðã2γ − x̃2αÞγN; ðB29Þ

Uα;ρ ≈ J̃ðã2αÞαUρð2ãαεÞαN−1
Y
γ≠α
γ

ðã2γ − ã2αÞγN; ðB30Þ

Uα;0 ≈ Ũα
αJ ð0Þð2ãαεÞαN

Y
γ≠α
γ

ðã2γ − ã2αÞγN; ðB31Þ

Uα;ρ ≈ −Ũα
αaρα Uρð2ãαεÞαN

Y
γ≠α
γ

ðã2γ − ã2αÞγN: ðB32Þ

The functions after the limit, such as J̃, Ã, Ũ and αJ, αA, αU
are defined similarly to the functions before the limit in
Appendix A, only the sets of coordinates and parameters
they include are restricted to x̃α, ãα and αxρ, αaρ, respec-
tively. Moreover, the latter are defined using first powers of
variables instead of their squares. For example, the defi-
nitions (A3) and (A4) are modified as

J̃αðã2Þ ¼
Y
β≠α
β

ðx̃2β − ã2Þ ¼
X
r

ÃðrÞ
α ð−ã2ÞÑ−1−r;

αJρðαaÞ ¼ α
Y
σ≠ρ

σ

ðαxσ − αaÞ ¼
X
p

αAðpÞ
ρ ð−αaÞαN−1−p;

J̃ αðx̃2Þ ¼
Y
β≠α
β

ðã2β − x̃2Þ ¼
X
r

ÃðrÞ
α ð−x̃2ÞÑ−1−r;

αJ ρðαxÞ ¼ α
Y
σ≠ρ

σ

ðαaσ − αxÞ ¼
X
p

αAðpÞ
ρ ð−αxÞαN−1−p; ðB33Þ

where

ÃðrÞ
α ¼

X
βi≠α

β1<…<βr

β1 ;…;βr

x̃2β1…x̃2βr ;
αAðpÞ

ρ ¼
X
σi≠ρ

σ1<…<σp
σ1 ;…;σp

αxσ1…
αxσp ;

ÃðrÞ
α ¼

X
βi≠α

β1<…<βr

β1 ;…;βr

ã2β1…ã2βr ;
αAðpÞ

ρ ¼
X
σi≠ρ

σ1<…<σp
σ1 ;…;σp

αaσ1…
αaσp ; ðB34Þ

and the Latin indices go over the ranges

r ¼ 0;…; Ñ − 1; p ¼ 0;…; αN − 1: ðB35Þ

The other definitions are modified accordingly. These
functions also satisfy analogous identities and orthogon-
ality relations to (A8)–(A13). Furthermore, we define
αJðαaÞ ¼ 1 and αJ ðαxÞ ¼ 1 if αN ¼ 0. In particular, in
the Lorentzian case we have

ÑJðαaÞ ¼ 1; ÑJ ðαxÞ ¼ 1: ðB36Þ
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