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Hidden symmetries and integrability
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This is a short pedagogical introduction to the subject of Killing-Stäckel and Killing–Yano tensors and their
role in the integrability of various types of equations that are of physical interest in curved space-time, the
main application being higher dimensional rotating black holes with cosmological constant.
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1 Introduction

Much of recent years’ research in theoretical physics has been devoted to understanding the link between
quantum and gravitational physics. Different themes occur in this line of work, to mention some: string
theory and the AdS/CFT correspondence, supergravity and supersymmetric theories, black holes and the
study of their microscopic degrees of freedom and their stability.

In this brief report we are going to sketch the role of Killing–Stäckel and Killing–Yano (KY) tensors
in the study of (quantum) physics in curved space-time, and provide some useful references. On one hand
these objects have a direct relationship with the idea of symmetry of motion in a curved spacetime: the
seminal work [1] of Carter in 1968 showed that geodesic trajectories in the Kerr geometry possess an
unexpected constant of motion that is not related to isometries. It is related to a symmetry of dynamics that
acts upon the full phase space but has no direct action on configuration space alone: a so called ’hidden
symmetry’. Hidden symmetries are in correspondence with Killing–Stäckel tensors.

On the other hand, Floyd [2] and Penrose [3] showed that the Kerr Killing–Stäckel tensor admits a
tensorial square root, a KY tensor, and Carter and McLenaghan [4] showed it can be used to build a
differential operator that commutes with the Dirac operator in this metric, thus proving how special tensors
can be used to study quantum mechanical problems for fields of non-zero spin. There is also an interesting
connection with supersymmetric theories, as an appropriate semi-classical limit of the Dirac equation is
the theory of the point particle with N = 1 worldline supersymmetry. In this theory rank two KY tensors
are associated to generators of additional supersymmetries [5].

In recent years interest in higher dimensions coming from string theory, braneworld models, study of
black holes’ hair, motivated the study of hidden symmetries in dimension greater than four. The Kerr-
NUT-(A)dS black hole spacetime [6] which is a generalization of the Kerr metric to higher dimensions,

∗ Corresponding author E-mail: mc355@cantab.net, marco@iceb.ufop.br
∗∗ E-mail: Pavel.Krtous@utf.mff.cuni.cz
∗∗∗ E-mail: dkubiznak@perimeterinstitute.ca

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



948 M. Cariglia et al.: Hidden symmetries and integrability

has horizon with spherical topology and is parametrised by spin, NUT charges and a cosmological con-
stant. Therefore it lends itself to an analysis first as a black hole in its own merit, then in terms of a possible
Kerr/CFT correspondence [7], and also in terms of the AdS/CFT duality. It is remarkable that such geom-
etry possesses many of the important properties of the original Kerr metric: it has a KY tensor [8] and the
Hamilton–Jacobi, Klein–Gordon and Dirac equations are separable [9, 10]. It is also possible to construct
conserved quantities in this metric for the theory of the spinning particle that generalize the original one
found by Carter to the case of non-zero spin [11].

The study of KY tensors can be generalized by looking for these special tensors in different types of
metrics, see for example [12] for a connection between KY tensors and G-structures, or by generalizing
the KY equation to metrics with fluxes, see [13–16] for applications.

Thus it is manifest how KY tensors link diverse topics such as black hole physics, special geometry,
integrability, supersymmetry and supergravity, CFT type dualities; see also recent extended review [17].

2 Phase space and hidden symmetries

Let a manifold M be a configuration space of dimension n, its co-tangent bundle T ∗(M) be the phase
space with coordinates ya = {xμ, pν}, and ω = ωabdy

a ∧ dyb = dxμ ∧ dpμ be the natural symplectic
form, with inverse components ωab. Given a scalar Hamiltonian functionH : T ∗(M) �→ R, the equations
of motion are written as

dya

dτ
= ωab∂bH := Xa

H . (1)

The vectorXH is the symplectic gradient of the functionH . Symplectic gradients are in one-to-one corre-
spondence with (local) canonical transformations, which are (local) continuous transformations of T ∗(M)
generated by a vector field X such that the symplectic form is left invariant, LXω = 0. So in particular the
form of Hamilton’s equations is invariant and volume in phase space is invariant.

Now consider a Killing vector Kμ: the phase-space quantity CK = Kμpμ is conserved as it can be
checked that ĊK = {CK , H} = 0 due to the Killing equation. Its corresponding symplectic gradient is

XCK = Kμ ∂

∂xμ
− ∂Kλ

∂xμ
pλ

∂

∂pμ
. (2)

The pushforward of XCK under the canonical projection π : T ∗(M) → M is given by π∗(XCK ) =
Kμ ∂

∂xµ = K . The geometrical interpretation is that the integral curves of XCK in phase space have a
projection on configuration space, and this is given by the integral curves of K which are the isometries.

Next, a Killing–Stäckel tensor is totally symmetric tensor Kμ1...μp = K(μ1...μp) such that
∇(λKμ1...μp) = 0, which implies that CK = Kμ1...μppμ1 . . . pμp is conserved. The symplectic gradi-
ent of CK is

XCK = pKμ1...μp−1νpμ1 . . . pμp−1

∂

∂xν
− ∂Kμ1...μp

∂xν
pμ1 . . . pμp

∂

∂pν
. (3)

It still generates a symmetry of phase space but this time the push forward to configuration space vanishes:
π∗(XCK ) = 0. So there is no visible action of the flux of XCK in configuration space. It is said that K
generates a hidden symmetry of the dynamics. New non-trivial Killing–Stäckel tensors of order ≥ 3 have
recently been built in [18, 19].

3 Killing–Yano tensors

The Killing equation can be generalized alternatively using a totally symmetric tensor fμ1...μp = f[μ1...μp].
The differential equation satisfied by f is

∇λfμ1...μp + ∇μ1fλ...μp = 0 . (4)
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When p = 1 this reduces to the Killing equation. Such a tensor is called a Killing–Yano tensor, and it was
first introduced by Yano [20] from a purely mathematical point of view. The tensor

Kμν = fμλ1...λp−1fν
λ1...λp−1 , (5)

can be seen to be Killing–Stäckel, using Eq. (4). In order to be able to generate a conserved quantity using
f we cannot contract f with factors of the momenta pμ, we need appropriate antisymmetric variables: this
can be done in the theory of the spinning particle and for the Dirac equation. For the latter it is possible to
show that a KY tensor always allows to construct an operator that commutes with the Dirac operator, with
no quantum anomaly [21]. KY tensors can also be used to construct conserved gravitational charges [22].

There exists a natural way to generalize the KY equation to an equation that is invariant under Hodge
duality. A tensor satisfying this latter equation is called a conformal Killing–Yano tensor, and its square is
a conformal Killing–Stäckel tensor. Since a KY tensor has zero divergence, then its Hodge dual is a closed
form, called closed conformal Killing–Yano tensor. Such tensors satisfy a very useful property: they form
an algebra under the wedge product. In particular, closed conformal Killing–Yano tensors of rank 2 that
are non-degenerate are called Principal conformal Killing–Yano (PCKY) tensors. They are crucial for the
integrability of various systems in four and higher dimensional black hole spacetimes.

4 Kerr-NUT-(A)dS black holes

While a classification of Lorentzian metrics with a PCKY tensor is not available, the analogue problem
in Riemannian signature has been solved [23, 24]. The most general canonical metric admitting a PCKY
tensor in n = 2N + ε dimensions, ε = 0, 1, is given by

ds2 =
N∑

μ=1

[
dx 2

μ

Qμ
+Qμ

(N−1∑

j=0

A(j)
μ dψj

)2
]

+ εS
( N∑

j=0

A(j)dψj

)2

. (6)

Here, coordinatesxμ (μ = 1, . . . , N) stand for the (Wick rotated) radial coordinate and longitudinal angles,
and Killing coordinatesψk (k = 0, . . . , N−1+ε)denote time and azimuthal angles associated with Killing
vectors ξ(k) = ∂ψk

. We have further defined the functions

Qμ =
Xμ

Uμ
, Uμ =

∏

ν �=μ
(x2
ν − x2

μ) , S =
−c
A(N)

, (7)

A(k)
μ =

∑

ν1,...,νk

ν1<···<νk, νi �=μ

x2
ν1 · · · x2

νk
, A(j) =

∑

ν1,...,νk
ν1<···<νk

x2
ν1 · · · x2

νk
. (8)

The quantities Xμ are functions of a single variable xμ, and c is an arbitrary constant. The vacuum (with a
cosmological constant) black hole geometry is recovered by setting

Xμ =
N∑

k=ε

ck x
2k
μ − 2bμ x1−ε

μ +
εc

x2
μ

. (9)

This choice of Xμ describes the most general known Kerr-NUT-(A)dS spacetimes in all dimensions [6].
The constant cN is proportional to the cosmological constant and the remaining constants are related to
angular momenta, mass and NUT parameters.

The PCKY tensor reads [8]

h = db , b =
1
2

N−1∑

j=0

A(j+1)dψj . (10)

2j-forms h(j), which are the j-th wedge power of the PCKY tensor h, h(j) = h∧· · ·∧h, form the tower of
associated closed conformal Killing–Yano tensors, and can be ‘squared’ to rank 2 Killing–Stäckel tensors.
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5 Results on integrability for the canonical spacetimes

The canonical metric has a tower ofN+εKilling vectors ξ(k) andN rank 2 Killing–Stäckel tensorsK(i)ab.
It can be shown that these satisfy the geometric compatibility conditions to form a separability structure
as discussed in [25, 26], and as a consequence both the Hamilton–Jacobi and Klein–Gordon equations are
separable. Separability for both equations was obtained with a direct calculation in [9], then in the case
of Hamilton–Jacobi it was associated to the separability structure in [27], and last for the Klein–Gordon
equation it was shown to be associated to a set of commuting differential operators of first and second order
associated to, respectively, Killing vectors and Killing tensors, that are simultaneously diagonalizable [28]:

L(k) = −iξ(k)a∇a , K(i) = −∇a

[
K(i)ab∇b

]
. (11)

The Nambu-Goto equations for a stationary string were integrated in [29].
When looking at the Dirac equation, a theory of necessary and sufficient conditions for separation of

variables is not available. Separation of variables was obtained by explicit calculation in [10]. In [30] it was
shown that the canonical metric admits a set of n mutually commuting operators defined on the Clifford
bundle, one being the Dirac operator D. The other ones divide into N + ε operators constructed from the
Killing vectors ξ(k) and N − 1 operators constructed form 2j-forms h(j), according to

Kk = ξ(k)a∇a +
1
4
γa1a2∇[a1ξ

(k))a2] , (12)

Mj =
1

(2j)!

[
γab1...b2j (h(j))b1...b2j∇a − 2j(n−2j)

2(n−2j+1)
γb1...b2j−1(δh(j))b1...b2j−1

]
. (13)

These operators admit a common eigenfunction which displays separation of variables [31], and coincides
with that found in [10].

Recently in [11] conserved quantities of order two in the momenta have been constructed for the theory
of the spinning particle: these generalize the Killing–Stäckel charges of Sect. 2 to the case of non-zero
spin.
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