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I. INTRODUCTION

Since its discovery in 1968 [1], the Lax pair formulation
has played an invaluable role in studying the integrability
of various systems. Although first formulated for systems
with infinite degrees of freedom, the formalism can also
be used for, and provides an elegant description of, special
finite-dimensional systems with symmetries. Examples
of such (completely integrable) systems admitting a Lax
pair formulation include the Kepler problem, the Euler,
Lagrange, and Kowalevski tops, the Neumann model, and
the Toda lattice; we refer the reader to the monograph [2]
and to references therein. In what follows we concentrate
on finite-dimensional systems. Namely, we shall discuss a
geometrization of the Lax pair matrices for motion in
curved spacetime.

A standard dynamical system is described on a phase
space P equipped with the symplectic two-form � and
with the corresponding Poisson brackets f ; g. The dynamics
is encoded in a Hamiltonian H through the evolution
equation for an arbitrary scalar observable F,

_F ¼ fF;Hg: (1.1)

The Lax pair method consists of finding two phase-space
valued matrices L andM, such that the equations of motion
imply the Lax pair equation

_L ¼ ½L;M�: (1.2)

The stronger formulation requires that Eq. (1.2) implies the
equations of motion, in which case the Lax pair formula-
tion can be used as a starting point of the description of the
dynamical system.
However, even without this latter stronger condition, the

Lax pair matrices satisfying Eq. (1.2) play an important
role in the study of integrability since they allow a simple
construction of constants of motion. Indeed, the solution of
Eq. (1.2) is of the form LðtÞ ¼ GðtÞLð0ÞG�1ðtÞ, where
the evolution matrix GðtÞ is determined by the equation
_G ¼ �MG. Therefore, if IðLÞ is a function of L and is
invariant under conjugation L ! GLG�1, then IðLðtÞÞ is a
constant of motion. All such invariants can be generated
from the traces of various matrix powers of L:

trðLjÞ: (1.3)

The particular Lax pair may not yield all the constants of
motion. However, in such a case it is often possible to
upgrade the initial Lax pair so that the upgraded one
already yields all the conserved observables of the dynami-
cal system. Since the dimensionality of the Lax matrices is
not fixed and the Lax pair equation is linear, two Lax pairs
can be easily combined by their direct sum. Another useful
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method of producing a parametric class of Lax pairs is to
introduce so-called spectral parameters; see, e.g., [2].

Unfortunately, in general there is no constructive proce-
dure to find a Lax pair for the given problem or even to
determine whether the Lax pair (in its stronger formula-
tion) exists. Moreover, the solution is in no sense unique
and even the dimensionality of the matrices may vary.
However, when the Lax pair exists, it can be a very power-
ful tool for dealing with the conserved quantities.

In this paper, we focus on the construction of the Lax
pair for motion on a curved manifold. In this case the phase
space P is given as a cotangent bundle of a configuration
space M. There are thus two important features of such a
theory which single it out among generic dynamical sys-
tems: (i) it has a preferred splitting of 2�D phase coor-
dinates into two sets—D spacetime coordinates xa and D
momenta pa; (ii) the configuration space has an additional
structure on it—the metric gab.

The prominent example of such dynamical systems is the
motion of particles and light in curved spacetime, which
plays an important role in general relativity and its general-
izations. We will concentrate mainly on this system.
However, the dynamical systems with the cotangent bundle
structure also include all nonrelativistic systems which start
with the Lagrangian description on the configuration space.
The metric on the configuration space in such cases
emerges from the kinetic part of the Hamiltonian.

Our aim is to show that for these dynamical systems it is
possible to formulate a covariant analogue of the Lax
equation. This covariant formulation allows us to employ
the description of explicit and hidden symmetries of curved
manifolds encoded in structures as Killing vectors, Killing
tensors, or Killing-Yano tensors. In particular, for the
motion of particles in a curved spacetime we establish a
relationship between conserved quantities connected with
the Lax pair, and integrals of motion connected with hid-
den symmetries generated by Killing-Yano tensors.

To achieve this program, in Sec. II we analyze geomet-
rical structures on the phase space with a cotangent bundle
structure, especially those induced from a configuration-
space-covariant derivative. We define a covariant deriva-
tive acting on phase-space fields with configuration-space
tensor indices.

With this geometrical background, in Sec. III we
formulate the covariant Lax equation,

r
dt

La
b ¼ 0; (1.4)

for a phase-space-dependent tensor field La
bðx; pÞ and

call this object a Lax tensor. Here, r
dt is the time derivative

(the derivative along the Hamiltonian flow) defined in
terms of the covariant derivative mentioned above.

By construction, any scalar invariant built covariantly
from the Lax tensor (or from a set of Lax tensors) is
preserved along phase-space trajectories and thus defines

a constant of motion. Moreover, all scalar invariants
encoded in one Lax tensor La

b can be generated from the

traces of powers of La
b,

trðLjÞ ¼ La
bL

b
c . . .L

d
a|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

total of j tensors

; (1.5)

which is an obvious geometric analogue of Eq. (1.3).
There is a direct translation of the covariant Lax equa-

tion (1.4) into the standard Lax pair equation (1.2).
Namely, the components of the Lax tensor La

b form the

Lax matrix L, while the other matrixM is given through the
(Christoffel) connection symbols as follows:

L ¼ ½La
b�; M ¼

�
@H

@pn

�a
nb

�
: (1.6)

An analogous geometric construction using Clifford ma-
trices will also be introduced. Similar ideas in special cases
have already been studied in Refs. [3–7].
The paper is organized as follows. In the next section we

review the phase-space formalism for the phase space built
as a cotangent bundle of a configuration manifold. In par-
ticular, we define the covariant phase-space derivative. This
is further elaborated in the Appendix. In Sec. III we reca-
pitulate the Lax pair formalism and derive its geometric
covariant counterpart encoded in Eq. (1.4). Section IV illu-
minates the previous discussion by studying two ‘‘trivial’’
examples of Lax tensors for geodesic motion in generic
spacetimes. Section V is devoted to highly nontrivial ex-
amples of Lax tensors for geodesic motion in special space-
times admitting a hidden symmetry of Killing-Yano tensors.
The motion of a charged particle in weakly charged Kerr-
NUT spacetimes is discussed in Sec. VI. We conclude in
Sec. VII.

II. COVARIANT DERIVATIVE ALONG
A PHASE-SPACE TRAJECTORY

A. Phase space

Particle motion in a curved spacetime1 M can be
described in the language of Hamiltonian mechanics. The
phase space P is the cotangent bundle T�M equipped with
the standard symplectic structure � and Poisson brackets.
A phase-space point can be written as ½x; p� with position
x 2 M and momentum p 2 T�

xM. Any spacetime coordi-
nates xa together with the corresponding components pa of
the momentum p form the canonical coordinates xa, pb in
which the symplectic structure and Poisson brackets read

1As was mentioned in the Introduction, although we apply our
discussion mainly to the relativistic context, the formalism
introduced here does not depend on the signature of the metric
and it can also be used in the case of standard nonrelativistic
mechanics with a curved configuration space. We use small
Latin letters for spacetime (configuration space) tensor indices
and we drop indices when it does not cause confusion.
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� ¼ dxa ^ dpa; (2.1)

fF;Gg ¼ @F

@xa
@G

@pa

� @F

@pa

@G

@xa
: (2.2)

Given a Hamiltonian H, the time derivative of any
observable F is

_F ¼ fF;Hg; (2.3)

which can also be interpreted as the derivative along the
Hamiltonian flow XH ¼ ��1 � dH,

_F ¼ XH � dF: (2.4)

More details on the conventions used for the symplectic
structure and its inverse can be found in the Appendix.

B. Covariant phase-space derivative

The derivative (2.4) along XH is defined only for scalar
phase-space observables. It is fruitful to generalize it to
more general observables, namely to fields on the phase
space with spacetime indices. Such fields appear naturally
as a combination of spacetime tensors contracted with
momenta, e.g.,

Aa...
b...ðx; pÞ ¼ aa...b...ðxÞ þ ba...kb... ðxÞpk þ ca...klb... ðxÞpkpl þ � � �

(2.5)

One can also consider fields of more complicated analytic

form, e.g., Aaðx; pÞ ¼ ðgklðxÞpkplÞ�1
2pa.

To define a derivative of tensor fields one needs an
additional structure. For spacetime fields such a structure
is a covariant derivative. Assuming the covariant deriva-
tive2 r on the spacetime we lift this derivative to act on
phase-space fields with spacetime indices. We call the
resulting operation a covariant phase-space derivative.

This derivative is defined along a general phase-space
direction X 2 TP. The direction can be represented using
a configuration direction u 2 TM and a momentum direc-
tion f 2 T�M. The definition of this splitting requires the
covariant derivative r. Namely, if X is tangent to a phase-
space trajectory ½xðtÞ; pðtÞ�, its configuration part u is
tangent to the configuration trajectory xðtÞ and the momen-
tum part f is the covariant derivative of pðtÞ along xðtÞ.
That is, we have

fa ¼ r
dt

pa ¼ _pa � un�k
napk: (2.6)

See Eq. (A22) and Fig. 1 in the Appendix for further
discussion.

The covariant derivative rX along the direction
X ¼ ½u; f� acting on phase-space fields with spacetime
indices is defined by the following rules:
(i) For a field depending only on the spacetime position,

Aa...
b...ðx; pÞ ¼ �a...

b...ðxÞ, the derivative reduces to the

standard covariant derivative along u:

rXA
a...
b... ¼ unrn�

a...
b...:

(ii) For the momentum field pa, the derivative gives the
momentum part of X:

rXpa ¼ fa:

(iii) The derivativerX satisfies all standard rules for the
derivative (i.e., linearity, the Leibniz product rule,
and the chain rule).

These rules reflect the splitting of the phase-space di-
rection into configuration and momentum parts. This can

also be encoded using the partial derivatives3 r
@x and @

@p

introduced in the Appendix:

rXA
a...
b... ¼ un

rn

@x
Aa...
b... þ fn

@

@pn

Aa...
b...: (2.7)

For a phase-space trajectory with tangent field X we natu-
rally write

r
dt

Aa...
b... � rXA

a...
b...; (2.8)

and call r
dt the covariant derivative along the phase-space

trajectory or just the covariant time derivative. The con-
figuration and momentum parts of the Hamiltonian flow
XH are

ua ¼ @H

@pa

; fa ¼ �raH

@x
; (2.9)

cf. Eq. (A7), which gives

r
dt

Aa...
b... ¼

@H

@pn

rn

@x
Aa...
b... �

rnH

@x

@

@pn

Aa...
b...: (2.10)

This is a natural generalization of Eq. (2.3) to the case of
tensor-valued observables.
The introduced phase-space covariant derivative can be

expressed in coordinates,

rXA
a...
b... ¼ _Aa...

b... þ un�a
nkA

k...
b... þ . . .� un�k

nbA
a...
k... � � � � ;

(2.11)

where _Aa...
b... is the derivative of the components of A along

the X direction,

_Aa...
b... ¼ un

@Aa...
b...

@xn
þ _pn

@Aa...
b...

@pn

: (2.12)

Note that the coordinate time derivative _pa and the cova-
riant derivative fa are related by Eq. (2.6).

2This can be an arbitrary covariant derivative, and is not
necessarily the metric one. For simplicity, in the body of the
paper we assume vanishing torsion. Expressions with torsion can
be found in the Appendix. In the case of geodesic motion we
choose the metric covariant derivative.

3In short, the partial derivative @
@p is the derivative in

a momentum direction with x fixed and r
@x is the derivative in

a configuration direction with p parallel-transported. For more
details, see Eqs. (A1) and (A2).
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For more details on the derivatives rX,
r
@x ,

@
@p and the

corresponding coordinate expressions we refer the reader
to the Appendix.

C. Derivative of Clifford fields

The spacetime metric derivative can also be lifted to a
derivative acting on phase-space fields with Dirac spinor
indices. Namely, we are interested in Clifford objects, i.e.,
operators acting on Dirac spinors. These are generated by
the abstract gamma matrices �a, obeying4

�a�b þ �b�a ¼ 2gab1: (2.13)

Thanks to this rule, any Clifford object ! can be
represented by an inhomogeneous antisymmetric form
! ¼ P

r
r!,

! ¼ X
r

1

r!
r!a1...ar�

a1...ar : (2.14)

Here,r! are homogeneous rank-r antisymmetric forms and

�a1...ar ¼ � ½a1 � � ��ar�: (2.15)

The covariant derivative on the Dirac bundle is induced
from the spacetime metric derivative by the condition5

rn�
a ¼ 0: (2.16)

Clearly, we can lift this derivative to act on the Clifford-
valued fields on the phase space in a similar way as we
did for spacetime-tensor-fields. Namely, for �ðx; pÞ ¼
�a1...arðx; pÞ�a1...arðxÞ we simply get

rX� ¼ ðrX�a1...arÞ�a1...ar : (2.17)

To write down this covariant derivative in components,
in addition to coordinates xa, one has to introduce an
orthonormal frame en̂ 2 TM and the spinor frame E� in
such a way that the components6 �â of the gamma matrices
are constants. The covariant derivative of the Dirac spinor
� expressed in the spinor frame then reads

ra� ¼ �;a þ �a�; (2.18)

with the connection coefficients�a uniquely determined in

terms of the Ricci coefficients �̂m̂
an̂ ¼ ðrae

k
n̂Þem̂k by the

standard relation

�a ¼ 1

4
�̂m̂
an̂�m̂

n̂: (2.19)

With these definitions the covariant derivative of the
Clifford field �ðx; pÞ on the phase space is

rX� ¼ _�þ ½un�n;��; (2.20)

where _� is just an ordinary derivative along X of compo-
nents ��

�.

III. COVARIANT LAX EQUATION

A. Lax pair

The Lax pair provides a useful tool for generating con-
served quantities. The phase-space-valued matrices L and
M form the Lax pair if they satisfy the Lax pair equation [1]

_L ¼ ½L;M�: (3.1)

Here, the dot is understood as the ordinary time derivative
of each component of the matrix L. It follows that any
scalar invariant formed from the matrix L is a conserved
quantity [cf. Eq. (1.3)].
It is customary to require that the Lax pair satisfies

additional properties, especially that (i) Eq. (3.1) is equiva-
lent to the equations of motion, and that (ii) the invariants
of L generate the maximal number of conserved quantities
of the system. However, we will study Lax pairs without
requiring these additional conditions. This is justified by
realizing that the Lax pair equation (3.1) is linear in both L
and M. One can thus obtain a ‘‘more sophisticated’’ Lax
pair as a direct sum of smaller matrices, each of which
satisfy Eq. (3.1), and impose additional conditions only at
the end, on the resulting pair.

B. Lax tensor

We shall now formulate an alternative covariant descrip-
tion of the Lax equation and clarify its relation to the
standard Lax pair formulation. Using the above definition
of the covariant phase-space derivative, we define the Lax
tensor to be a covariantly conserved tensor field La

bðx; pÞ,
obeying the covariant Lax tensor equation

r
dt

La
b ¼ 0: (3.2)

Obviously, any scalar covariantly constructed7 from the
Lax tensor or a set of Lax tensors is a constant of motion.

4In expressions with Clifford objects and Dirac spinors the
Clifford multiplication is assumed. In components, it reduces to
the standard matrix multiplication.

5To define the covariant derivative on Dirac spinors uniquely, the
condition (2.16) must be supplemented by some further conditions
reflecting the irreducibility and reality properties of �a. Thanks to
Eq. (2.16) and rule (2.13), only the covariant derivative which
annihilates the metric can be lifted to the Dirac bundle. In this
context we always assume vanishing torsion, so the derivative on
the tangent bundle must be the metric derivative.

6Components with respect to the frame en̂ will be denoted with
hatted indices. We will mostly skip the spinor indices (capital
Greek letters), i.e., instead of �â�

� we write just �â. The matrix
multiplication between Clifford objects and spinors is assumed.

7The covariant derivative employed in the Lax equation (3.2)
can be arbitrary. By covariant construction then we mean any
operation which commutes with this derivative. Typical cova-
riant operations are traces, contracted multiplication, or the
determinant. If a tensor covariantly constant with respect to
the chosen derivative is available, it can be used to construct
the conserved scalar. Therefore, we typically choose the metric
covariant derivative since then the metric ‘‘is available’’.
However, one could use a different derivative; for example, if
the Hamiltonian is H ¼ 1

2papbk
ab with the ‘‘inverse mass’’

tensor kab different from the metric gab.
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In particular, this is true for invariants constructed as traces
[see Eq. (1.5)] of various powers of La

b. Similarly to the

Lax pair, the Lax tensor hence generates constants of
motion.

Moreover, each Lax tensor defines a Lax pair. Indeed, in
components, while using Eqs. (2.9) and (3.2) implies

_La
b ¼ La

ku
n�k

nb � un�a
nkL

k
b: (3.3)

The form of this equation is already very close to that of
Eq. (3.1). However, the matrices forming the Lax pair must
be defined as functions on the phase space. Therefore we
have to eliminate the velocity u using the first of the
Hamilton equations (2.9). Thus the corresponding Lax
pair matrices are

L ¼ ½La
b�; M ¼

�
@H

@pn

�a
nb

�
: (3.4)

Hence, Eq. (3.2) can be understood as a ‘‘covariant gen-
eralization’’ of the Lax pair equation (3.1); its coordinate
form gives the Lax pair in the ordinary sense.

For motion in curved space governed by a given
Hamiltonian, the covariant Lax tensor satisfying Eq. (3.2)
and the ordinary Lax pair matrices (3.4) carry the same
information. The Lax pair matrices are, however,
coordinate-dependent. Under a change of coordinates the
matrix L transforms just by a trivial conjugation. However,
the matrixM changes in a more complicated manner since
the connection coefficients are involved.

C. Clifford Lax tensor

Any covariantly conserved8 antisymmetric form �ab...

induces the Clifford field � ¼ �ab...�
ab... satisfying

r
dt

� ¼ 0: (3.5)

We call � a Clifford Lax tensor. In components, using
Eqs. (2.18) and (3.5) implies

_� ¼ ½�; un�n�: (3.6)

In a way similar to the previous subsection, we find that the
matrices

L ¼ ½�� ¼ ½�â b̂...�
â b̂...�; M ¼

�
@H

@pn

�n

�
; (3.7)

form a Lax pair satisfying Eq. (3.1).
In the next two sections we shall give a number of

examples of (Clifford) Lax tensors for geodesic motion
in curved spacetime. Whereas the following section con-
centrates on ‘‘trivial’’ examples in generic spacetimes
(no enhanced symmetry is assumed), in Sec. V we discuss

Lax tensors in special spacetimes admitting hidden
symmetries. The motion of a charged particle in weakly
charged Kerr-NUT spacetimes is discussed in Sec. VI.

IV. LAX TENSORS AND GEODESIC MOTION:
TWO TRIVIAL EXAMPLES

A. Geodesic motion

Geodesic motion with respect to the spacetime metric
gab is governed by the Hamiltonian

H ¼ 1

2m
pag

abpb: (4.1)

The equations of motion (2.3) for canonical coordinates xa,
pa are

_xa ¼ m�1ganpn; _pa ¼ � 1

2m

@gkl

@xa
pkpl: (4.2)

These equations are equivalent to the geodesic equation
unrnu

a ¼ 0 with the velocity ua ¼ _xa and r being the
metric covariant derivative. They are also equivalent to the
covariant equations on the phase space:

pa ¼ mganu
n;

r
dt

pa ¼ 0: (4.3)

B. Lax tensor implying geodesic motion: Example I

As a first example, let us study the simple tensor

La
b ¼ ganpnpb: (4.4)

Thanks to Eq. (4.3), it is covariantly conserved and hence
defines a Lax tensor.
In fact, we shall now prove that the existence of this Lax

tensor is equivalent to the geodesic motion and hence it can
be used as a starting point of the dynamics. In order to do
that, we investigate the following problem: assuming that
the covariant Lax equation (3.2) along an unknown
Hamiltonian flow XH is satisfied for Eq. (4.4), does it imply
that the Hamiltonian H must generate geodesic motion?
Substituting Eq. (4.4) into Eq. (3.2), we obtain

r
dt

La
b ¼ fapb þ pafb ¼ 0; (4.5)

which for generic momentum p implies f ¼ 0. However,
for the Hamiltonian flow, f is given by Eq. (2.9), and we
have

f ¼ �rH
@x

¼ 0: (4.6)

The Hamiltonian must thus be constructed only from mo-
menta and covariantly constant spacetime tensors. In a
generic curved spacetime the only covariantly constant
spacetime tensors are constructed from the metric.
Therefore, the Hamiltonian must be of the form

8In the context of Clifford fields we always assume the metric
covariant derivative since the abstract gamma matrices are then
covariantly constant [see Eq. (2.16)], cf. footnote 7.
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H ¼ 1

2
hðp2Þ; p2 ¼ papbg

ab; (4.7)

with h being an arbitrary function. It implies the velocity
ua ¼ h0ðp2Þganpn. Since p2 is conserved, we have repro-
duced the geodesic equations of motion.

Thus the significance of the Lax tensor (4.4) lies in
the fact that it implies geodesic motion. On the other
hand, the only conserved quantities which can be obtained
from this Lax tensor are functions of p2 (which is, of
course, the only conserved quantity for generic geodesic
motion).

Using Eq. (3.4), the Lax tensor (4.4) defines the follow-
ing Lax pair matrices:

La
b ¼ ganpnpb; Ma

b ¼
1

m
pkg

kl�a
lb: (4.8)

We could ask the same question about equations of motion
when starting with the ordinary Lax pair (4.8) satisfying
Eq. (3.1). In this case the situation is slightly different.
Using the explicit formula for the Christoffel coefficients
�a
lb one can show that

½L;M� ab ¼
�
L a

b;
1

2m
p2

�
; (4.9)

where the right-hand side is the Poisson bracket of the
components of the Lax tensor L. Since _La

b ¼ fLa
b;Hg, the

Lax pair equation (3.1) implies the following condition on
the Hamiltonian:�

ganpnpb;H� 1

2m
p2

�
¼ 0: (4.10)

Obviously, the geodesic Hamiltonian H ¼ 1
2mp

2 solves

this condition. However, it is not clear if this is a unique
solution.

C. Lax tensor implying geodesic motion: Example II

Allowing for Clifford-valued fields, it is possible to write
an even simpler Lax tensor for the geodesic motion:9

� ¼ pa�
a: (4.11)

Similarly to Example I, this Lax tensor exists in a generic
spacetime, it generates only conserved quantities which are
functions of p2, and the corresponding covariant Lax equa-
tion is equivalent to the geodesic equations of motion.

Using Eq. (3.7), the corresponding Lax pair matrices are

L ¼ ½�� ¼ ½pâ�
â�;

M ¼
�
1

m
pn�n

�
¼

�
1

4m
pn�̂nk̂ l̂�

k̂ l̂

�
:

(4.12)

Similarly to Example I, it is not clear to us whether these
Lax pair matrices imply geodesic motion. Namely, the

commutator in the Lax equation (3.1) can be simplified
using properties of the gamma matrices

_pâ�
â ¼ 1

m
pmpn̂�̂

n̂
mâ�

â: (4.13)

We can thus eliminate the gamma matrices from both
sides. Substituting the expression for the Ricci coefficients
in terms of the derivatives of the components of en̂, it is
possible to show that

1

m
pmpn̂�̂

n̂
mâ ¼

�
pâ;

1

2m
p2

�
: (4.14)

Together with _pâ ¼ fpâ; Hg it leads to an equation analo-
gous to Eq. (4.10):�

pâ; H � 1

2m
p2

�
¼ 0: (4.15)

Beware however, that the frame component pâ of the
momentum is not the canonical coordinate conjugated
with xa [indeed, pâ ¼ pne

n
âðxÞ], so Eq. (4.15) does not

imply that H � 1
2mp

2 is independent of the coordinates.

Similarly to the previous case, the geodesic Hamiltonian
solves this condition, but it is an open question whether this
solution is unique.

V. LAX TENSORS AND HIDDEN SYMMETRIES

Until now we have investigated rather trivial examples
of Lax tensors, constructed from momenta and metric-
related quantities, and hence trivially conserved along the
geodesic motion. Such objects are present in any generic
spacetime. Now we shall turn to examples of Lax tensors
present in spacetimes with enhanced symmetries, in par-
ticular admitting hidden symmetries of Killing and Killing-
Yano tensors.

A. Lax tensor from a conserved quantity

Let us assume that, provided a given enhanced symme-
try of the spacetime, an additional conserved quantity E
for geodesic motion is known. This, for example, incorpo-
rates the case of E being generated from a Killing vector �,
E ¼ �apa, or E being generated from a Killing tensor k,
E ¼ kab...papb . . . . Of course, L ¼ E is a trivial one-
dimensional Lax tensor, which can be helpful, for example,
if one constructs a larger Lax matrix as a sum of indepen-
dent segments. One can also simply upgrade the Lax
tensors (4.4) or (4.11) as

LE
a
b ¼ Epapb; �E ¼ Epa�

a: (5.1)

The corresponding Lax pair matrices follow from
Eqs. (3.4) or (3.7). If more than one such constants are
known, we may employ the method of spectral parameters
[2] to combine the corresponding Lax tensors.

B. Two kinds of Killing-Yano tensors

The Killing-Yano (KY) tensor ’a1...ar is [8] an antisym-

metric form on the spacetime, the covariant derivative of

9This tensor is in some sense ‘‘Dirac’s square root’’ of the Lax
tensor (4.4); it can be obtained from the WKB approximation of
the Dirac equation.
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which is determined by its antisymmetric part, i.e., by its
exterior derivative d’:

ra’a1...ar ¼ r½a’a1...ar�: (5.2)

On the other hand, the closed conformal Killing-Yano
(CCKY) tensor ha1...ar is an antisymmetric form on the

spacetime, the covariant derivative of which is determined
by its divergence �a2...ar :

raha1a2...ar ¼ rga½a1�a2...ar�;

�a2...ar ¼
1

D� rþ 1
rnh

n
a2...ar :

(5.3)

KYand CCKY tensors are related to each other through the
Hodge duality: the Hodge dual of a KY form is a CCKY
form and vice versa.

Both KY and CCKY tensors encode the so-called
hidden symmetries: they exist only for special metrics
and provide a rather rich structure to the geometry (see,
e.g., Refs. [9–15] and references therein).

C. Covariantly conserved tensors

As one consequence of the above definitions, both KY
and CCKY tensors define a tensorial quantity linear in
momentum which is conserved along trajectories of the
geodesic motion. Namely, for a KY tensor ’ and a CCKY
tensor h the quantities10

� ¼ ’ � p; � ¼ h ^ p; (5.4)

are conserved along geodesics,

r
dt

� ¼ 0;
r
dt

� ¼ 0: (5.5)

The velocity is given by u ¼ 1
mp and the momentum p is

conserved for the geodesic motion. Thus, thanks to
Eq. (5.2), the derivative of � gives 1

mp
kðr½k’a1...ar�1l�Þpl ¼

0. Similarly, Eq. (5.3) implies r
dt h ¼ 1

mp ^ h which van-

ishes when wedged with another p. Of course, both equa-
tions in Eq. (5.5) are equivalent through the Hodge duality:
� ¼ �� for ’ ¼ �h.

It is interesting to observe that the same information
encoded in the forms � and � is also encoded in the forms

� ¼ � ^ p; F ¼ � � p; (5.6)

respectively. Indeed, employing the identity

ð� � pÞ ^ pþ ð� ^ pÞ � p ¼ p2�; (5.7)

which holds for any antisymmetric form �, one can recon-
struct � and � from the quantities above:

� ¼ 1

p2
� � p; � ¼ 1

p2
F ^ p: (5.8)

Since the momentum is conserved for the geodesic motion,
we thus obtain conserved quantities quadratic in momenta,

r
dt

� ¼ 0;
r
dt

F ¼ 0; (5.9)

which, however, carry the same information as those
defined in Eq. (5.4). Note also the Hodge duality
� ¼ �F for ’ ¼ �h.
Finally, using Eq. (5.7) the form F can be rewritten as

F ¼ ðh ^ pÞ � p ¼ p2h� ðh � pÞ ^ p; (5.10)

which in indices reads

Fa1a2...ar ¼ ððh ^ pÞ � pÞa1a2...ar
¼ p2ha1a2...ar � ha1a2...ar�1np

npar

� ð�1Þr�1ha2a3...arnp
npa1 � . . .

� ð�1Þr�1hara1...ar�2np
npar�1

¼ p2hn1n2...nrP
n1

a1P
n2

a2 . . .P
nr
ar ; (5.11)

where we have introduced the projector

Pa
b ¼ �a

b � p�2papb: (5.12)

The form F is thus (up to the prefactor p2) the projection of
the CCKY tensor h onto a subspace orthogonal to the
momentum p.

D. Killing-Yano and Lax tensors

All the conserved tensorial quantities �, �, �, and F
constructed from KY and CCKY tensors can be converted
into Lax tensors using gamma matrices. For example,
taking � and �, the corresponding Clifford objects read11

�’ ¼ �a1...ar�1ðp � ’Þa1...ar�1
; (5.13)

�h ¼ �a1...arþ1ðh ^ pÞa1...arþ1
: (5.14)

They are covariantly conserved [Eq. (3.5)] and the corre-
sponding Lax pair of matrices are given by Eq. (3.7). As
mentioned above, the invariants of �’ span the same

functional space as invariants of �; in other words, the
conserved scalar observables generated from the Lax ten-
sor �’ are the same as those generated directly from �,

and similarly for �h and F.
Among all conserved quantities constructed from KYor

CCKY tensors there are special cases which do not need to
use Clifford objects and gamma matrices. Such a situation

10The dot ‘‘.’’ denotes the contraction, ð’ � pÞa1...ar ¼
’a1...arnp

n. Since we assume automatic rising of indices, it is
essentially the scalar product.

11Similarly to Example II in the previous section, these Lax
tensors can be understood as arising from the WKB approxima-
tion to the Dirac symmetry operators K’ and Mh studied in
Refs. [16,17].
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occurs if the conserved tensor under consideration is of
rank-2. This includes:

(a) The CCKY tensor ha of rank 1, which is in fact a
closed conformal Killing vector:

rahb ¼ �gab; � ¼ 1

D
rnh

n: (5.15)

The tensor � is now of rank 2, and hence directly
generates the Lax tensor

La
b ¼ hapb � pahb: (5.16)

The Lax pair matrices are given by

L ¼ ½La
b�; M ¼

�
1

m
pn�a

nb

�
; (5.17)

cf. Eq. (3.4). The only independent constant of
motion which can be obtained from this Lax tensor
is p2h � P � h ¼ p2h2 � ðp � hÞ2.

(b) The CCKY tensor hab of rank 2 generates the
second-rank conserved quantity Fab given by
Eqs. (5.6) or (5.11). The Lax tensor thus reads

La
b¼Fa

b¼p2hab�papnhnb�hanpnpb: (5.18)

The Lax pair matrices are again given by Eq. (5.17).
In the special case when hab is nondegenerate, its
very existence guarantees complete integrability of
the geodesic motion; see the following subsection.

(c) The KY tensor ’abc of rank 3 generates the Lax
tensor

La
b ¼ ’a

bnp
n: (5.19)

This case has been discussed in Refs. [3–7].
(d) The KY tensor ’ab of rank 2 generates the Lax

tensor

La
b ¼ �a

b ¼ ’anpnpb þ papn’nb: (5.20)

The invariant generated from this Lax tensor
is a function of the observable12 papbk

ab, with
kab ¼ ’an’bn being the Killing tensor of rank 2

associated with the KY tensor ’ab.
(e) Any rank-2 tensor constructed from the momentum

p and quantities � and � (for various KY forms ’
and CCKY forms h) by contractions and wedge
operation. A simple interesting example is a ‘‘partial
square’’ of the quantity �, namely the Lax tensor

La
b ¼ ’akl...mpm’bkl...np

n: (5.21)

The trace of this Lax tensor gives the quadratic con-
served observable papbk

ab, where the second-rank
Killing tensor kab is associated with the KY form ’:

kab ¼ ’akl...’bkl...: (5.22)

Another interesting possibility is to take a ‘‘square’’ of
tensor (5.6),

La
b ¼ Fakl...Fbkl...: (5.23)

Depending on the rank of ’ this will generate a
certain number of conserved quantities.

To summarize, the Lax tensors built from the KY and
CCKY forms can be very fruitful. They can generate plenty
of functionally independent invariants and they are thus
very useful when investigating the conserved quantities.

E. Kerr-NUT-anti–de Sitter spacetime

A highly nontrivial example of the Lax tensor discusssed
above can be found in the spacetime equipped with a
nondegenerate CCKY tensor hab of rank 2. It was proved
in Refs. [18–20] that the existence of such a principal
CCKY tensor determines the form of the metric up to a
set of metric functions of a single argument. These func-
tions can be fixed by the Einstein equation and the resulting
vacuum (with cosmological constant) metric describes a
generally rotating black hole in an arbitrary number of
spacetime dimensions, also called the Kerr-NUT-anti–de
Sitter spacetime [21–23].
In this case, the principal CCKY tensor hab generates the

covariantly conserved Lax tensor F ¼ ðh ^ pÞ � p [cf. also
Eq. (5.18)], which in D ¼ 2nþ " (" ¼ 0, 1) dimensions
generates n independent constants of geodesic motion
[24–27]. It is possible to choose these constants in such a
way that they are quadratic in momentum and hence are
generated by rank-2 Killing tensors kabðjÞ. Namely, it was

shown in Ref. [25] that for any parameter � the following
identity holds:

p2 detðI þ ffiffiffiffi
�

p
p�2FÞ ¼ Xn

j¼0

papbk
ab
ðjÞ�

j: (5.24)

The left-hand side is a scalar expression, constructed just
from the Lax tensor Fa

b and p
2, and hence is conserved for

any �. The coefficients in the � expansion are thus also
conserved and can be read from the right-hand side of
Eq. (5.24). They are quadratic in momentum, with the
kðjÞ being Killing tensors.13

Moreover, the discussed spacetime also admits
nþ " explicit (Killing vector) symmetries which supply
additional nþ " conserved quantities. All these D con-
served quantities are in involution and the system is com-
pletely integrable. The existence of the quadratic
conserved quantities encoded in the Lax tensor is also a

12Here we have used the fact that p2 is also the conserved
quantity, and we have canceled it out from trðL2Þ.

13For j ¼ 0 the Killing tensor reduces to the metric, kabð0Þ ¼ gab.
The nth Killing tensor vanishes in even dimensions, whereas
it is reducible to a square of one of the Killing vectors in odd
dimensions. For j ¼ 0; . . . ; n� 1 the Killing tensors are irre-
ducible, thus giving n quadratic constants of motion.
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starting point for showing that the Hamilton-Jacobi, Klein-
Gordon, and Dirac equations separate in these spacetimes
[16,17,28–30]. (See also Refs. [31,32] for separability of
certain gravitational perturbations.)

VI. MOTION OF A CHARGED PARTICLE

It was shown in Ref. [33] that the motion of a charged
particle in the special test electromagnetic field in the
background of Kerr-NUT spacetimes in all dimensions is
also completely integrable. Here we demonstrate that the
conserved quantities quadratic in momentum can be found
using the Lax tensor method.

The electromagnetic field under investigation is given by
the vector potential A proportional to the primary Killing
vector � of the Kerr-NUT geometry.14 The primary Killing
vector � is a divergence of the principal CCKY tensor hab,
�a ¼ 1

D�1rch
ca [cf. Eq. (5.3)]. We will write qAa ¼ e�a,

where q is the charge of the particle and e is a constant
combining both the charge and the strength of the field.
The motion of the charged particle is thus governed by the
Hamiltonian:

H ¼ 1

2m
ðpa � e�aÞgabðpb � e�bÞ: (6.1)

The relation between the velocity and momentum can be
read from the Hamiltonian flow (2.9):

ua ¼ 1

m
ðpa � e�aÞ: (6.2)

The covariant derivative of the momenta is

r
dt

pa ¼ e

m
ðra�nÞðpn � e�nÞ: (6.3)

Substituting Eq. (6.2) and using the Killing vector

condition ra�n ¼ �rn�a, one gets
r
dt pa ¼ �eunrn�a ¼

�e r
dt �a, i.e.,

r
dt

ðpþ e�Þ ¼ 0: (6.4)

Now we can prove that the quantity

� ¼ h ^ ðpþ e�Þ (6.5)

is covariantly conserved. Indeed, using Eqs. (6.4), (5.3),
and (6.2), we get

r
dt

� ¼ ðu ^ �Þ ^ ðpþ e�Þ ¼ 0: (6.6)

It follows that

F ¼ � � ðpþ e�Þ (6.7)

is also covariantly conserved. Being the tensor of rank 2,
this is the covariant Lax tensor for our system. It is

constructed in a similar way as the Lax tensor from the
previous subsection, only with the substitution p ! pþ
e�. The scalars generated from F can thus be read again
from Eq. (5.24). The quadratic constants of motion are

~K ðjÞ ¼ ðpa þ e�aÞðpb þ e�bÞkabj : (6.8)

These differ from the constants KðjÞ introduced in

Ref. [33], but only by terms LðjÞ linear in momentum,

which are also conserved:

KðjÞ ¼ ðpa � e�aÞðpb � e�bÞkabj ¼ ~KðjÞ � 4eLðjÞ;

LðjÞ ¼ pal
a
ðjÞ ¼ pak

an
ðjÞ�n: (6.9)

The conservation of LðjÞ follows from the fact that laðjÞ ¼
kanðjÞ�n are Killing vectors [25]. It was demonstrated in

Ref. [33] that the conserved quantities KðjÞ and LðjÞ are
all in involution.

VII. SUMMARY

The Lax pair formalism provides an elegant and effective
description of special dynamical systems with enhanced
symmetries. In particular, the existence of the Lax pair,
defined by Eq. (1.2), enables one to generate constants of
motion by simple algebraic operations, e.g., Eq. (1.3).
In this paper we have provided an alternative, covariant

formulation of the Lax formalism. This is based on the
covariant (Clifford) Lax tensor, where the Lax equation is
formulated as a covariant conservation of this tensor,
Eqs. (3.2) and (3.5). In both instances the existence of the
Lax tensor enables one to generate constants of motion,
which are determined as invariants constructed from the
object, e.g., Eq. (1.5). We have further demonstrated that
the ordinary Lax pair matrices follow from the covariant Lax
formalism, the relation being given by Eqs. (3.4) and (3.7).
To illustrate the derived formulas, we have concentrated

on the problem of particle motion in curved spacetime. In
this case we were able to provide a number of examples of
(Clifford) Lax tensors. In particular, we have concentrated
on manifolds with enhanced symmetry, admitting hidden
symmetries of Killing-Yano tensors, in which case the ex-
amples of Lax tensors are highly nontrivial. One of the Lax
tensors discussed was proven to be responsible for the
complete integrability of geodesic motion in rotating black
hole spacetimes in all dimensions just a few years ago. We
have demonstrated for the first time that the conserved
quantities for motion of a charged particle in the aligned
test electromagnetic field on the same (vacuum) black hole
background can also be generated using the Lax tensor (6.7).
It remains an interesting open question whether any of

the Lax tensors discussed here will find further physical
applications in the future. Another interesting question is
whether some examples of the geometric Lax tensors can
be found for other integrable (supersymmetric) systems,
e.g., Ref. [34].

14The condition of vanishing electric current for such an
electromagnetic field requires the cosmological constant to be
set equal to zero, cf. Ref. [33].
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APPENDIX: DERIVATIVES ON THE PHASE SPACE
WITH COTANGENT BUNDLE STRUCTURE

In this Appendix we discuss the structure of the cotan-
gent bundle phase space15 P ¼ T�M in more detail. We
show that the covariant derivative on the configuration
space M induces a covariant splitting of the phase-space
quantities into quantities related to the configuration space.
It naturally replaces standard coordinate expressions in a
coordinate-independent way.

1. Derivatives along position and momentum directions

First, we introduce covariant partial derivatives of a scalar
observable along the position andmomentum directions. The
derivative in the momentum direction fa (i.e., changes along
a curve pa ! pa þ "fa, x fixed) is simple, since the space
of momenta at fixed x is linear. We define

fa
@F

@pa

¼ d

d"
Fðx; pþ "fÞj"¼0: (A1)

Thanks to ultralocality in fa we can tear off fa to obtain the
derivative operator @

@pa
(with one contravariant configuration-

space index) acting on the scalar phase-space observables.

Such a derivative operator also defines a mixed tensor @A

@pa
2

TP � TM. It is actually the tensor identifying the tangent
space of the cotangent fibre TðT�

xMÞwith the cotangent fibre
T�
xM itself.
The derivative along a position direction with momen-

tum fixed is more involved. Moving from one position to
another one changes the cotangent fibre and it has to be
clarified what ‘‘fixed momentum’’ means. A natural solu-
tion is given in terms of a spacetime-covariant derivative16

r. The covariant derivative defines ‘‘fixed momentum’’ to
be the parallel-transported momentum. Let x" be a space-
time curve in the ua direction and �p" be the parallel-
transported momentum along this curve. Then we can write

ua
raF

@x
¼ d

d"
Fðx"; �p"Þj"¼0: (A2)

Again, it defines the phase-space derivative ra

@x with one

covariant configuration-space index and the mixed tensor
rA

a

@x 2 TP � T�M. The last quantity is the tensor which

makes a horizontal lift of the configuration-space vector

ua to the horizontal phase-space vector ua rA
a

@x (see Fig. 1).

The action of these derivatives on an observable of the
form Aðx; pÞ ¼ �ab...ðxÞpapb . . . is

rnA

@x
¼ rn�

ab...ðxÞpapb . . . ; (A3)

@A

@pn

¼ �nb...ðxÞpb � � � þ �an...ðxÞpa � � � þ � � � : (A4)

FIG. 1. Splitting of the phase-space direction X. In this figure
we illustrate the splitting of the phase-space direction X into its
position and momentum parts. Let ½x"; p"� be a curve starting at
½x; p� to which X is tangent. Its corresponding position and
momentum parts are x" and p". The dashed curve �p" is the
parallel transport of the initial momentum p along x". The short-
dashed curve p̂" laying in the cotangent fibre T

�
xM is obtained as

the parallel transport of p" along x" back to the point x. Various
vectors defined in the text are tangent vectors to these curves.
The phase-space vector X is tangent to ½x"; p"�, its position
direction u is tangent to x", and the momentum part f is the
derivative of p̂", which is understood to be a cotangent vector. In
other words, f is the covariant derivative of p" along x", i.e.,
along the direction u. The formula (A14) splits X into u � r

@x ,

which is tangent to �p", and into f � @
@p , which is tangent to p̂".

15We use capital Latin indices for the phase-space tensors, and
in this Appendix we write these indices explicitly. The material
presented here partially follows and partially generalizes the
Appendix of Ref. [26].
16It can be an arbitrary covariant derivative. Of course, in most
cases it is useful to chose the metric derivative.
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The action on a general observable can be written explicitly
using linearity, the Leibnitz product rule, and the chain rule.

The mixed tensors rA
a

@x and @A

@pa
are a covariant general-

ization of the phase-space coordinate vectors17 @A

@xa and
@A

@pa

associated with the canonical coordinates ðxa; paÞ.
Therefore, one can expect that natural symplectic quanti-
ties can be written using these covariant tensors. Namely,
the inverse symplectic structure ��1AB (such that
�AN�

�1BN ¼ �B
A), the Poisson brackets, and the

Hamiltonian flow XA
H ¼ ��1ANdNH are

��1AB ¼ rA
n

@x

@B

@pn

� @A

@pn

rB
n

@x
þ pnT

n
kl

@A

@pk

@B

@pl

; (A5)

fF;Gg ¼ rnF

@x

@G

@pn

� @F

@pn

rnG

@x
þ pnT

n
kl

@F

@pk

@G

@pl

; (A6)

XA
H ¼ @H

@pn

rA
n

@x
�rnH

@x

@A

@pn

� pn

@H

@pk

Tn
kl

@A

@pl

: (A7)

Here, Tn
kl is the torsion of r. For vanishing torsion (T ¼ 0)

the expressions resemble the standard coordinate formulas.

2. Dual quantities and splitting of the
phase-space direction

We can also construct dual quantities Dn
Ax and rApn

which correspond to coordinate forms dAx
a and dApa. We

require the duality conditions

rN
a

@x
Db

Nx ¼ �b
a;

@N

@pa

rNpb ¼ �a
b; (A8)

rN
a

@x
rNpb ¼ 0;

@N

@pa

Db
Nx ¼ 0: (A9)

The completeness relation reads

Dn
Ax

rB
n

@x
þrApn

@B

@pn

¼ �B
A: (A10a)

The symplectic structure�AB and the symplectic potential
	A ¼ �pndAx

n have a familiar form (except for the
anomalous torsion term):

�AB ¼ Dn
AxrBpn �rApnD

n
Bx� pnT

n
klD

k
AxD

l
Bx; (A10b)

	A ¼ �pnD
n
Ax: (A11)

These dual mixed tensors also define the splitting of a
phase-space vector XA into the configuration-space quan-
tities ua and fa discussed in Sec. II near Eq. (2.5). Such
splitting is based on the observation that the covariant
derivative splits the tangent fibre T½x;p�P into horizontal

and vertical subspaces.18 The configuration direction ua is
the projection of XA onto the spacetime (thus encoding the
horizontal part) and the momentum direction fa is the
vertical part of XA. These two parts can be written using
Dx and rp (see Fig. 1).
Indeed, the tensor Dx is just the differential of the

projection map x: ½x; p� ! x from the phase space to the
configuration space. Given a phase-space vector XA, its
shadow on the configuration space is thus

ua ¼ XADa
Ax: (A12)

On other hand, the quantity rp is the projector of a phase-
space vector XA on its vertical part fa:

fa ¼ XArApa: (A13)

The completeness relation (A9) together with
Eqs. (A12) and (A13) gives

XA ¼ un
rA

n

@x
þ fn

@A

@pn

; (A14)

(cf. Fig. 1) and the derivative of the scalar observable
Fðx; pÞ along the phase-space direction XA is thus

XAdAF ¼ un
rnF

@x
þ fn

@F

@pn

: (A15)

3. The covariant derivative induced on the phase space

The covariant derivative of the phase-space fields with
configuration-space indices introduced in Sec. II can be
understood as a generalization of the formula (A15) to
tensor fields. The derivative @

@pn
acting in the momentum

directions has the same definition [Eq. (A1)]. The defini-

tion of the derivative ra

@x in the configuration direction

changes by employing just the covariant derivative19 in
the definition (A2):

un
rnA

a...
b...

@x
¼ r

d"
Aa...
b...ðx"; �p"Þj"¼0: (A16)

The action of the derivatives ra

@x and @
@pn

on the tensor

field Aa...
b...ðx; pÞ ¼ �a...kl...

b... pkpl . . . is analogous to rules (A3)
and (A4), just with additional indices involved.

17The notation here is a partially mistreats the difference between
the covariant nature of the mixed tensors and the coordinate-
dependent nature of the coordinate tensors. For example, both
indices in rA

a

@x are tensor indices and could be understood as abstract
indices, independent of the chosen coordinates. Similarly for the
phase-space index A in the coordinate vector @A

@xn . However, the
index n here is not a tensor index; it just labels which coordinate
tensor we are choosing. To make this distinction clear, one should
distinguish the abstract and coordinate indices as, e.g., in Ref. [35].
We decided not to do so and to let the reader distinguish tensorial
and coordinate indices based on the context. In general, in ex-
pressions not involving explicitly chosen coordinates all indices
are tensorial. If the coordinates are involved, the combinations xa

and pa usually indicate the coordinate indices.

18The horizontal subspace of T½x;p�P gives the directions of
parallel-transported momenta, and the vertical subspace is tan-
gent to the fibre T�

xM.
19Since Aa...

b...ðx"; p"Þ is just "-dependent, it can be understood as
a tensor field along the configuration curve x", and just the
standard covariant derivative in the configuration space is in-
volved on the right-hand side of the definition (A16).
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The covariant derivative along a general phase-space
direction XA [split as in Eq. (A14)] acting on a field
Aa...
b...ðx; pÞ is then given [by the generalization of

Eq. (A15)] as

r
d"

Aa...
b... � rXA

a...
b... ¼ un

rn

@x
Aa...
b... þ fn

@

@pn

Aa...
b...: (A17)

This was already mentioned in Eq. (2.7). In particular, the
derivatives of the pure configurations field Aa...

b...ðxÞ and of

the momentum field pa are given by rules (i) and (ii) in
Sec. II.

Since the dependence on XA is ultralocal, it is possible to
also define the covariant differential rNA

a...
b..., namely

rNA
a...
b... ¼ Dn

Nx
rn

@x
Aa...
b... þrNpn

@

@pn

Aa...
b...: (A18)

4. Relation to canonical coordinates

In the definitions above we have not used any specific
choice of the coordinates. However, the introduced formal-
ism can be easily accommodated to such a choice. If we
choose configuration-space coordinates xa, one can define
the ‘‘coordinate derivative’’ @ by the conditions

@dxb ¼ 0; @
@

@xb
¼ 0: (A19)

This is a torsion-free covariant derivative (of course,
depending on the choice of coordinates). The difference
tensor between r and @ is given by the connection coef-
ficients �n

ab.

We can use the coordinate derivative @ instead ofr in all
expressions above. It leads to standard coordinate expres-
sions: the Eq. (A10) reduces to Eq. (2.1), the expression
(A6) to Eq. (2.2), etc. In the coordinate case we also use the

more common notation @
@xa instead of @a

@x . The induced

coordinate derivative on the phase space along a phase-
space direction XA is denoted just by a dot:

_Aa...
b... ¼

@

@"
Aa...
b... ¼ @XA

a...
b...: (A20)

The splitting of the phase-space direction XA depends on
the choice of the covariant derivative. For the coordinate
derivative this splitting gives

ua ¼ �ADa
Ax; _pa ¼ �A@Apa: (A21)

Clearly, _pa are just derivatives of the components of p
along XA, which justifies the dot notation.
Let ½x"; p"� be a phase-space curve with tangent vector

X. Then, fa ¼ XArApa can be understood as the standard
configuration-space covariant derivative of p" along the
spacetime curve x" (cf. Fig. 1). Similarly, _pa ¼ XA@Apa is
the coordinate derivative of p" along x". We can thus use
the ordinary relation between covariant and coordinate
derivatives to obtain

fa ¼ _pa � uk�l
kapl (A22)

[cf. Eq. (2.6)]. Here, the velocity uk is tangent to the
curve x".
Tearing off the phase-space vector XA, we obtain

rApn ¼ @Apn �Dk
Ax�

l
knpl: (A23)

The duality relations (A8) imply

rA
n

@x
¼ @A

@xn
þ pk�

k
nl

@A

@pl

: (A24)

The action on a scalar observable reads

rnF

@x
¼ @F

@xn
þ pk�

k
nl

@F

@pl

: (A25)

The generalization to the action on tensor fields adds only
standard terms for each tensor index:

rn

@x
Aa...
b... ¼

@Aa...
b...

@xn
þ pk�

k
nl

@Aa...
b...

@pl

þ �a
nkA

k...
b...

þ � � � � �k
nbA

a...
k... � � � � : (A26)

If we substitute Eqs. (A22) and (A26) into Eq. (A17), we
obtain the coordinate expression for the covariant deriva-
tive on the phase space:

r
@"

Aa...
b... ¼ _Aa...

b... þ un�a
nkA

k...
b... þ � � � � un�k

nbA
a...
k... � � � �

(A27)

Here, the coordinate derivative _Aa...
b... splits as

_Aa...
b... ¼ un

@Aa...
b...

@xn
þ _pn

@Aa...
b...

@pn

: (A28)
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