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aAbstra
t: A

ording to Ryu and Takayanagi, the entanglement entropy in 
onformal�eld theory (CFT) is related through the AdS/CFT 
orresponden
e to the area of a minimalsurfa
e in the bulk. We study this holographi
 geometri
al method of 
al
ulating theentanglement entropy in the va
uum 
ase of a CFT whi
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ally dual to emptyanti-de Sitter (AdS) spa
etime. Namely, we investigate the minimal surfa
es spanned onboundaries of spheri
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etime. We 
onsider a generi
 position of two spheri
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1 Introdu
tion1.1 Bla
k hole entropy and entanglement entropyThe 
onne
tion between di�erent areas of physi
s is of most importan
e in fundamentalphysi
s. One of the most remarkable a
hievements of general relativity is the dis
overythat an entropy is an inherent property of the bla
k hole horizons. In fa
t, the famousBekenstein-Hawking formula [1{6℄ SBH = kB
3~ A4G (1.1)is appli
able to any Killing horizon and provides the relation of the entropy of the grav-itational system and the area of the horizon A. This remarkable formula 
onne
ts ther-modynami
s, gravity and relativisti
 quantum �eld theory. This relation is valid not onlyin four dimensions but in higher dimensions too. In higher dimensions the gravitational
onstant G is the D-dimensional one and A is the volume of (D�2)-dimensional surfa
e ofthe horizon.An entanglement entropy is known to have a very similar dependen
e on the area of asurfa
e separating two subsystems of a quantum me
hani
al system [7{9℄. This resemblan
eof the entanglement entropy with the horizon entropy has deep roots and is related to theproblem of statisti
al-me
hani
al explanation of bla
k hole entropy [8℄. Let us 
onsiderquantum �elds des
ribed by a wave fun
tion in a stationary bla
k hole spa
etime. Thebla
k hole horizon is the surfa
e whi
h separates the interior of the bla
k hole from itsexterior. Then one 
an show [10℄ that the 
orresponding entanglement entropy redu
es tothe Bekenstein-Hawking entropy. For that one has to take into a

ount that quantum �eldson a 
urved ba
kground lead to the renormalization of the e�e
tive gravitational 
onstantand, at the same time, these quantum �elds also 
ontribute to the entanglement entropyof the horizon. It's amazing that the renormalized entropy per unit area of a horizon isgoverned by the same formulas as the quantum 
orre
tions to the gravitational 
oupling[11℄. As the result (1.1) remains valid after taking a

ount of quantum 
orre
tions, onejust has to substitute G with Gren.The interpretation of the Bekenstein-Hawking formula (1.1) as an entanglement en-tropy be
omes even more 
onvin
ing in the framework of indu
ed or emergent gravitymodels [12{16℄. In these models the Einstein{Hilbert a
tion is the leading term to the low-energy e�e
tive gravitational a
tion, where the gravitational 
oupling and a 
osmologi
al
onstant, are 
ompletely generated by quantum 
u
tuations of matter �elds living on a
urved ba
kground spa
etime. The gravitational 
onstant G entering the (1.1) is then theindu
ed Newton 
onstant Gind.In the 
ase of stati
 bla
k holes the event horizon 
oin
ides with the Killing horizonand is the minimal area surfa
e de�ned on the Einstein-Rosen bridge. In the paper [10℄it was proposed that the the minimal area surfa
e on the t = 
onst sli
e of the spa
etimemay play an important role in de�ning the entanglement entropy of bla
k holes in a moregeneral setup of the problem. Note that the minimal area surfa
e is a more general notionthan just a horizon of a stati
 bla
k hole. The tra
e of the extrinsi
 
urvature vanishes both{ 2 {



for the minimal area surfa
e and the horizon, but in the 
ase of the horizon all 
omponentsof the extrinsi
 
urvature vanish.1.2 Entanglement entropy and minimal surfa
esRe
ently holographi
 
omputation of the entanglement entropy in 
onformal �eld theo-ries (CFT) got a lot of attention and developments, espe
ially in the frameworks of theAdS/CFT 
orresponden
e. Ryu and Takayanagi [17{19℄ proposed that in a stati
 
on�g-uration the entanglement entropy of a subsystem lo
alized in a domain 
 is given by theelegant formula1 S
 = A�
4G : (1.2)Given a stati
 time sli
e (the (D�1)-dimensional bulk spa
e), the (D�2)-dimensional do-main 
 belongs to in�nite boundary I of the bulk and A�
 in Eq. (1.2) is the area of a(D�2)-dimensional minimal surfa
e �
 in the bulk spanned on the boundary �
 of thesubsystem (i.e., ��
 = �
). One may 
onsider the bulk surfa
e �
 to be homologous tothe boundary region 
 [20, 21℄.In the 
ase of the Einstein gravity in the bulk and stati
 ba
kgrounds this 
onje
turewas re
ently proved [22℄. In a more general 
ase, when the gravitational a
tion 
ontainshigher 
urvature 
orre
tions, a formula similar to the Wald entropy was proposed [23℄.The holographi
 derivation of the Eq. (1.2) for the entanglement entropy was proposedin [20℄ using the repli
a tri
k. This approa
h works well in appli
ation to the von Neumannentropy. A more general notion of the Renyi entanglement entropy appears naturally inthe repli
a method. But the derivation of the relation of the Renyi entanglement entropywith the area of a minimal surfa
e needs di�erent approa
h [24, 25℄.There is another interesting question: Is there formula similar to Eq. (1.2), when thedomain 
 
onsists of a set of disjoint domains? In this 
ase the minimal surfa
es in thebulk may not be unique. The existen
e of a set of di�erent solutions for minimal surfa
eswith the same boundaries ��
 = �
 may lead to a new physi
s in the 
ontext of AdS/CFT
orresponden
e. A natural generalization is to 
onsider the set of surfa
es with the absoluteminimum of their total area taken as a measure of the entanglement of dis
onne
ted regions.This 
hoi
e satis�es the strong sub-additivity property [26℄, that any physi
ally a

eptableentropy fun
tion has to satisfy.Re
ently there have been dis
ussions of di�erent generalizations of the Eq. (1.2) inappli
ation to the entanglement entropy for dis
onne
ted regions [27, 28℄ that still respe
tthe strong sub-additivity 
ondition. A 
losely related notion of `di�erential entropy' hasbeen proposed in [29℄ in appli
ation to a set of 
losed 
urves in the bulk of AdS3. It des
ribesun
ertainty about the quantum state of two-dimensional CFT left by the 
olle
tion of lo
al,�nite-time observables. In [30℄ the notion of `di�erential entropy' has been extended tohigher dimensions.Nontrivial physi
s appears already in the 
ase of only two disjoint domains. Entangle-ment entropy for a quantum subsystem lo
alized in two domains 
an be used as a probe of1From now on we use kB = 
 = ~ = 1 system of units.{ 3 {




on�nement [31, 32℄. In general, minimal surfa
es in the bulk are not uniquely de�ned bythe 
ondition ��
 = �
 at the AdS in�nity, if �
 is the boundary of the disjoint regions.In addition to the solution des
ribing two dis
onne
ted minimal surfa
es in the bulk, there
an be a tubelike minimal area surfa
e, 
onne
ting the boundaries of both domains. Theexisten
e of su
h solutions depends on the distan
e between the domains an on their size.There is a maximum distan
e between 
omponents beyond whi
h the tubelike minimalsurfa
e 
ease to exist [31, 33℄.1.3 Plan of the workIn this paper we study minimal surfa
es in the pure AdS spa
etime. We found exa
tsolutions for all types of minimal surfa
es spanned on one or two spheri
al boundaries at
onformal in�nity. The relative positions and the sizes of these spheri
al boundaries are
onsidered to be arbitrary. We show that even in the pure AdS ba
kground there is a 
riti
albehavior of the entanglement entropy that was demonstrated [31℄ for the asymptoti
allyAdS spa
etimes with a bla
k hole in the bulk. Some of these results have been alreadyannoun
ed in a short overview [34℄, here we present detail derivation and more thoroughdis
ussion.In the following se
tion we 
onsider minimal surfa
es in a warped spa
e with an ad-ditional symmetry. The next se
tion is the overview of various fa
ts from the hyperboli
geometry whi
h appears as a geometry of the time sli
e of the AdS spa
etime. The se
-tion 4 
ontains the main results: we �nd the minimal surfa
es spanned on the boundariesof two spheri
al domains at in�nity. Three qualitatively di�erent 
ases of mutual positionsof the spheri
al domains are 
onsidered: (i) two disjoint domains, (ii) overlapping domains,and (iii) tou
hing domains. In the �rst 
ase we �nd that for 
lose spheri
al domains thereexists a tube-like minimal surfa
e joining the boundaries of these domains. In the se
tion 5we dis
uss embeddings of the minimal surfa
es into AdS spa
etime. We show that the em-bedding of the tube-like minimal surfa
e using the Killing ve
tor asso
iated with observerswith the a

eleration larger than the 
osmologi
al one 
an model \tearing" of the minimalsurfa
e into two pie
es when the the domains are moved far away from ea
h other. Thepaper is 
on
luded by the summary.2 Minimal surfa
es in warped spa
es2.1 Warped spa
eIn mathemati
s a problem of �nding a minimal surfa
e with a given boundary is knownas Plateau's problem. In general, the variational prin
iple leads to the lo
al 
ondition ofvanishing tra
e of extrinsi
 
urvature k = 0 : (2.1)However, it is diÆ
ult to �nd an expli
it solution for general boundary 
onditions inan arbitrary 
urved spa
e. Therefore, we will dis
uss only highly symmetri
 spa
es and{ 4 {



surfa
es aligned to their symmetry. Namely, we start with the warped spa
e with themetri
 g = pij(xk)dxidxj +R2(xk) q��(y�)dy�dx� (2.2)Here, the D-dimensional spa
e is 
overed by 
oordinates fxi; y�g, with i = 1; 2 and � =1; : : : ; D�2. We speak about 2-dimensional x-plane with the metri
 p and (D�2)-dimensional`symmetry' y-spa
e with the inner metri
 q. Mixing between x-plane and y-spa
e is en-
oded only in the `radial' fun
tion R(xk).In 3 dimensions, there is only one y-
oordinate and it is aligned to a Killing symmetryof the spa
etime; for example, y1 = ' and q = d'2 for the rotational symmetry, see Fig. 1.In the warped spa
e we 
an look for a minimal surfa
e � aligned to its symmetry. Bythe alignment of � to the symmetry we mean that a surfa
e � is given by a pro�le 
urvew(�) in the x-plane, with 
oordinates y� being unrestri
ted.In the 3-dimensional example above, the rotation-symmetri
 surfa
e is given by therotation of the pro�le 
urve w(�) around the axis, 
f. Fig. 1a.Substituting the ansatz (2.2) into a de�nition of the extrinsi
 
urvature of the surfa
e,a straightforward derivation gives an expression in terms of quantities living on the x-plane:k = �� _wjOj(s�2 _wi) + �iRD�2�ni : (2.3)Here _w is a ve
tor tangent to the pro�le 
urve w(�), s2 = _wi _wjpij , and n is a unit normalof the pro�le 
urve in the x-plane (ni _wi = 0, ninjpij = 1). The 
ovariant derivative O (asmaller nabla) is the metri
 derivative asso
iated with the 2-dimensional metri
 p, livingjust in the 2-dimensional x-plane.The task of �nding a minimal surfa
e thus leads to the se
ond order equation k = 0for the 
urve w(�) in the 2-dimensional x-plane.

(a) (b)Figure 1. Warped spa
e. Warped spa
e is a generalization of idea that rotationally symmetri
spa
e 
an be obtained by a rotation of a x-plane around the axis. The orbits of the rotation form so
alled y-spa
e, 
f. (a). Alternatively, the y-dire
tions 
an have a 
hara
ter of a translation (b). Of
ourse, in higher dimensions one 
an have more general situations. The surfa
es aligned to the warpsymmetry are given by a pro�le fun
tion w(�) in the x-plane propagated freely in y-dire
tions.
{ 5 {



2.2 Additional symmetryNow we restri
t the geometry even more. We assume an additional Killing symmetry inthe x-plane and a diagonal form of the metri
 p,p = h2(1)(x2)(dx1)2 + h2(2)(x2)(dx2)2 ; R = R(x2) : (2.4)x1 is thus the Killing 
oordinate.We may �x the parametrization of the pro�le 
urve, namely we use x2 
oordinate asthe parameter w2(�) = � : (2.5)We are thus looking just for the 
oordinate w1(�).Substituting these assumptions into (2.3), the 
ondition for a minimal surfa
e (2.1)be
omes �w1 + ( _w1)3h2(1)h2(2) (RD�2h(1))_RD�2h(1) + _w1 (RD�2h2(1)h�1(2))_RD�2h2(1)h�1(2) = 0 : (2.6)Here, h(j)(�) and R(�) depend only on the parameter � (the 
oordinate w2), and the dotdenotes the derivative with respe
t of �.Thanks to the additional Killing symmetry this equation does not 
ontain w1, just itsderivatives. It is thus the �rst order di�erential equation for _w1 whi
h, a
tually, 
an beintegrated: _w1 = h(2)h(1) 
qRD�2h2(1) � 
2 : (2.7)Here, 
 is an integration 
onstant.Integrating this expression on
e more, we get the pro�le 
urve w(�) for the minimalsurfa
e. Before doing it in expli
it examples, we derive a general expression for the area ofthe minimal surfa
e.The metri
 h indu
ed on the aligned surfa
e � ish = s2d�d�+R2q��dy�dy� : (2.8)The 
orresponding volume element h1=2 ish1=2 = sRD�2d� q1=2 ; (2.9)where q1=2 is the volume element on y-spa
e given by the metri
 q. Taking into a

ount(2.7), the area of the surfa
e � be
omesA = Z h1=2 = AZ sRD�2d� = AZ h(1)h(2)R2(D�2)qR2(D�2)h2(1) � 
2 d� : (2.10)Here, A = R q1=2 is the volume of the y-spa
e (for example, A = 2� in the 3-dimensionalexample dis
ussed above), and the integral in (2.10) must be taken in appropriate limits.{ 6 {



3 Loba
hevsky spa
e { spatial se
tion of the anti-de Sitter spa
etime3.1 Stati
 Killing ve
tors in AdSOur aim is to study minimal surfa
es in stati
 regions of the 4-dimensional AdS spa
etime.AdS is maximally symmetri
 spa
e with a 
onstant 
urvature whi
h de�nes a length s
ale `.Sin
e we are interested in global view of the AdS spa
etime, we spe
ify the metri
 in global
osmologi
al 
oordinates �; r; #; ':gAdS = `2 �� 
h2r d�2 + dr2 + sh2r (d#2 + sin2#d'2)� : (3.1)It is useful to visualize the AdS spa
etime as a tube R �B3. The verti
al dire
tionR 
orresponds to time and the horizontal ball B3 represents a spatial se
tion with itshyperboli
 geometry 
ompa
ti�ed to unit ball [35℄. More details on its geometry andvarious 
oordinates 
an be found Appendix B.At this moment it is suÆ
ient to mention that AdS possesses three qualitatively di�er-ent Killing ve
tors whi
h have a stati
 region. Orbits of su
h Killing ve
tors are worldlinesof uniformly a

elerated observers.Let us denote the Killing ve
tor with the orbit a

eleration smaller than 1=` the stati
Killing ve
tor of type I. It is globally smooth ve
tor �eld whi
h is timelike in the wholeAdS (see Fig. 2a). The standard prototype of su
h Killing ve
tor is the time 
oordinateve
tor �� in the 
osmologi
al 
oordinates introdu
ed above.The Killing ve
tor with the orbit a

eleration larger than 1=` will be 
alled the stati
Killing ve
tor of type II. It is not globally smooth, it has a bifur
ation 
hara
ter and itresembles (in the bifur
ation area) the boost Killing ve
tor of the Minkowski spa
etime(
f. Fig. 2b). In the aligned stati
 
oordinates (B.5), it is given by �T .Finally, the Killing ve
tor with the orbit a

eleration exa
tly 1=` will be 
alled thePoin
ar�e Killing ve
tor sin
e the asso
iated 
oordinate system is formed by the well-knownPoin
ar�e 
oordinates (B.7). In these 
oordinates it is given by ��t. Its orbits are shown inFig. 2
.In all these three 
ases spatial se
tions orthogonal to the Killing ve
tors (namely� = 
onst, T = 
onst or �t = 
onst) have the geometry of a maximally symmetri
 3-dimen-sional spa
e of a 
onstant negative 
urvature, i.e., of the Loba
hevsky spa
e (also, thehyperboli
 spa
e). Now, we will give a short des
ription of its geometry; for further detailssee Appendix A.3.2 Loba
hevsky spa
e and its symmetriesThe geometry of the hyperboli
 spa
e 
an be given by the metri
 in spheri
al 
oordinates:1̀2 gLob = dr2 + sh2r �d#2 + sin2#d'2� : (3.2)r is the radial distan
e from the origin. We 
an introdu
e also a res
aled 
oordinate � givenby sh r = tan�. Using this 
oordinate the metri
 takes a form 
onformal to the metri
 onhemisphere, 
f. (A.3). { 7 {
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(a) (b) (
)Figure 2. Killing ve
tors in AdS. AdS spa
etime 
an be visualized as a tube R �B3 withtime in verti
al dire
tion. Spatial dire
tions are appropriately 
ompa
ti�ed and the surfa
e R � S3of the tube 
orresponds to in�nity I of AdS. 2-dimensional diagrams here represent just se
tions# = 0, ' = 0; �. The diagrams show orbits of three qualitatively di�erent Killing ve
tors whi
h areat least somewhere timelike. Surfa
es � orthogonal to the orbits of the Killing ve
tors, representingone instant of stati
 times, are also shown. (a) Stati
 Killing ve
tor of type I. It is a globallysmooth Killing ve
tor. Its orbits have a uniform a

eleration smaller than 1=`. (b) Stati
 Killingve
tor of type II. It has a bifur
ation stru
ture repeating in temporal dire
tion. The spa
etime isdivided into various domains separated by Killing horizons H. The Killing ve
tor is timelike onlyin regions R and L, it is spa
elike in the domains P and F. The orbits of this ve
tor have a uniforma

eleration bigger than 1=`. (
) Poin
ar�e stati
 Killing ve
tor. It is timelike everywhere ex
eptthe horizons where it is null. The a

eleration of the orbits is exa
tly 1=`. The horizons H dividespa
etime into separate pat
hes 
overed by Poin
ar�e 
oordinates.The symmetry group of the 3-dimensional Loba
hevsky spa
e is SO(3,1). All isometries
an be generated by three rotations and three translations. Orbits of the rotations are
ir
les around the axis of rotation, the orbits of the translations are exo
y
les { 
urvesequidistant from the axis of the translation.The translation and the rotation with a 
ommon axis 
ommute. Therefore, it is pos-sible to �nd 
oordinates adjusted to both these symmetries, whi
h we naturally 
all the
ylindri
al 
oordinates. The metri
 in the 
ylindri
al 
oordinates reads:1̀2 gLob = d�2 + 
h2�d�2 + sh2�d'2 : (3.3)� is a distan
e from the axis, � is a 
oordinate running in the dire
tion of the translation, and' in the dire
tion of the rotation. We will use also an axial 
oordinate P = sh � 2 (0;1)measured by the 
ir
umferen
e of a 
ir
le around the axis, the metri
 is then given by1̀2 gLob = 11 + P 2 dP 2 + (1 + P 2)d�2 + P 2 d'2 : (3.4)
{ 8 {



Yet another axial 
oordinate Z = 
h � 2 (1;1) leads to the metri
1̀2 gLob = 1Z2 � 1 dZ2 + Z2 d�2 + (Z2 � 1)d'2 : (3.5)For relation between the spheri
al and 
ylindri
al 
oordinates see Appendix A, eqs. (A.4),(A.6), (A.7).Beside translations and rotations, there exists also a spe
ial isometry type: the horo-
y
li
 symmetry.2 Its orbits are horo
y
les with a 
ommon 
enter at in�nity (vaguely said,the horo
y
les are 
ir
les with the 
enter moved just to in�nity; all orbits have exa
tlyone 
ommon improper point at in�nity 
oin
iding with their 
ommon 
enter). All horo-
y
li
 symmetries with the same 
enter at in�nity 
ommute with ea
h other. One 
an thus�nd 
oordinates adjusted to two horo
y
li
 symmetries: Poin
ar�e 
oordinates �x; �y; �z, 
f.eq. (A.8), (A.10). The metri
 in terms of these 
oordinates readsgLob = `2�z2 �d�x2 + d�y2 + d�z2� : (3.6)�z labels various horospheres, 
oordinates �x and �y de�ne two 
ommuting horo
y
li
 sym-metries.All three types of isometries 
an be used to understand Loba
hevsky spa
e as thewarped geometry. Moreover, the 
omplementary 
ommuting symmetry 
an be understoodas the additional symmetry in a sense of (2.4) and it allows us to use the results (2.7) and(2.10) derived above.3.3 Various representations of Loba
hevsky spa
eBefore we pro
eed in looking for minimal surfa
es, we des
ribe how we will visualize hy-perboli
 spa
e.Hyperboli
 spa
e is spheri
ally symmetri
. It is demonstrated expli
itly in termsof spheri
al 
oordinates r; #; '. The spheri
al symmetry suggests that we 
an (non-isometri
ally) map whole Loba
hevsky spa
e into a unit ball in Eu
lidean spa
e by justidentifying #; ' with the standard Eu
lidean spheri
al angles and 
hoosing a suitable 
om-pa
tifying fun
tion for the radial 
oordinate. We will use so 
alled Poin
ar�e spheri
al modelwhi
h is given by the 
ompa
tifying fun
tion th r2 , see Fig. 3a. The surfa
e of the unit ball
orresponds to in�nity of the hyperboli
 spa
e.Another natural representation emphasizes the 
ylindri
al symmetry. We 
an mapwhole Loba
hevsky spa
e into interior of the 
ylinder identifying 
oordinates �; ' with thestandard Eu
lidean 
ylindri
al 
oordinates and employing suitable 
ompa
tifying fun
tionof the 
oordinate �, namely th �2 , in the dire
tion from the axis, 
f. Fig. 3b. The surfa
e ofthe 
ylinder again 
orresponds to in�nity of the hyperboli
 spa
e.Finally, the fa
t that the metri
 in Poin
ar�e 
oordinates (3.6) has a 
onformally 
atform suggests another representation, so 
alled Poin
ar�e half-spa
e model. Identifying�x; �y; �z with the standard Cartesian 
oordinates, it maps the Loba
hevsky spa
e onto half2Although this symmetry is not either a rotation or a translation, its generator 
an be obtained as alinear 
ombination of generators of a rotation and a translation.{ 9 {



(a) (b) (
)Figure 3. Visualization of Loba
hevsky spa
e. Loba
hevsky spa
e 
an be represented inEu
lidean spa
e in various ways, emphasizing di�erent symmetries of the hyperboli
 geometry.Diagram (a) shows so 
alled Poin
ar�e spheri
al model in whi
h the spheri
al symmetry is em-phasized. Whole Loba
hevsky spa
e is 
ompa
ti�ed into a unit ball with its spheri
al boundary
orresponding to in�nity of the hyperboli
 spa
e. Geodesi
 are represented as ar
s orthogonal toin�nity and hyperboli
 planes as spheri
al surfa
es orthogonal to in�nity. Planes rea
h in�nity in
ir
ular boundaries. Diagram (b) emphasizes 
ylindri
al symmetry of the hyperboli
 geometry.Whole Loba
hevsky spa
e is squeezed into 
ylinder. The in�nity 
orresponds to the surfa
e ofthe 
ylinder and two improper points in both dire
tions along the axis. The lines parallel to theaxis represent exo
yl
les { 
urves equidistant from the axis. Hyperboli
 planes orthogonal to theaxis (and exo
y
les) are represented by 
at dis
s. They rea
h in�nity in boundaries representedby a 
ir
le around the 
ylinder. Diagram (
) is half-spa
e Poin
ar�e model in whi
h Loba
hevskyspa
e is mapped onto the half �z > 0 of Eu
lidean spa
e. The plane �z = 0 (together with one moreimproper point) depi
ts in�nity of Loba
hevsky spa
e. Shifts parallel to this plane (in Eu
lideansense) represent horo
y
li
 symmetries of the hyperboli
 geometry. Geodesi
s are semi
ir
les andhyperboli
 planes hemispheres, both orthogonal to in�nity. Hyperboli
 planes rea
h in�nity againin 
ir
ular boundaries.�z > 0 of the Eu
lidean spa
e, see Fig. 3
. In�nity of the hyperboli
 spa
e 
orresponds tothe plane z = 0.4 Minimal surfa
es in Loba
hevsky spa
e4.1 Spheri
al/
ir
ular boundary at in�nityThe entanglement entropy 
an be de�ned for an arbitrary domain at in�nity of the hyper-boli
 spa
e. However, we 
on
entrate on spe
ial domains restri
ted just by simple spheri
alboundaries. (For 2-dimensional in�nity of the D = 3 bulk spa
e these would be 
ir
ularboundaries). By the spheri
al/
ir
ular boundary we mean a surfa
e at in�nity, whi
h isobtained by proje
ting a hyperboli
 plane in the bulk into in�nity.The in�nity of the hyperboli
 spa
e has a stru
ture of the sphere with a 
onformalgeometry indu
ed by the bulk geometry. For D = 3, the 
onformal geometry of two-dimensional sphere is equivalent to the 
omplex stru
ture of the Riemann sphere. The{ 10 {



holomorphi
 M�obius transformations preserve the notion of the 
ir
le, as 
an be also seenfrom their 
orresponden
e to isometries of the bulk.The representation of the spheri
al/
ir
ular boundaries using hyperplanes in the bulkallows us to de�ne the distan
e between two disjoint spheri
al/
ir
ular boundaries: it isthe distan
e of the 
orresponding hyperplanes. Indeed, for not-
rossing boundaries thehyperplanes are so 
alled ultraparallel and there exists a 
ommon perpendi
ular line alongwhi
h we measure the distan
e of both planes.For two spheri
al/
ir
ular boundaries whi
h interse
t themselves, we 
an analogouslyde�ne the angle between them as the angle of 
orresponding interse
ting hyperplanes.The last possibility is that the spheri
al/
ir
ular boundaries tou
h themselves in onepoint. The 
orresponding hyperplanes are then asymptoti
 to ea
h other. In this 
aseone 
annot asso
iate with these two hyperplanes any measure whi
h would estimate theirrelation. The reason is simple: all pairs of asymptoti
 hyperplanes are isometri
 to ea
hother. It means that any two tou
hing spheri
al/
ir
ular boundaries are equivalent andthere is no s
ale whi
h 
ould distinguish them.The de�nition of spheri
al/
ir
ular boundary gives immediately also a solution of theminimal surfa
e problem. The trivial minimal surfa
e spanned on one spheri
al/
ir
ularboundary is just the hyperplane whi
h de�nes the boundary.Of 
ourse, we will be mainly interested in more 
ompli
ated surfa
es. Namely, insurfa
es spanned on two spheri
al/
ir
ular boundaries. However, the trivial planar solutionwill be important for renormalization of the area of the minimal surfa
e. The area of thehyperplanes regularized in various ways will be given below. It 
an be shown that in all
ases it is proportional to regularized size of the boundary [34℄.4.2 Surfa
es with rotational symmetryAs we mentioned in Se
. 4, the 3-dimensional Loba
hevsky spa
e 
an be viewed as awarped spa
e in various ways. We start with the 
hoi
e in whi
h the symmetry y-spa
e hasthe rotational '-symmetry and the additional symmetry of the x-plane is the translation�-symmetry. For that, it is natural to employ the 
ylindri
al 
oordinates with parametriza-tion (3.4).To �nd a minimal surfa
e, we substitutex1 = � ; x2 = P ; y1 = 'h(1) = `p1 + P 2 ; h(2) = `p1 + P 2 ; R = ` P (4.1)into equation (2.6) for the pro�le 
urve. One obtains� 0(P ) = � P0p1 + P 20(1 + P 2)pP 4 + P 2 � P 40 � P 20 ; (4.2)where we 
onveniently rede�ned the integration 
onstant. This equation 
an be integrated{ 11 {



(a) (b) (
)Figure 4. Rotation-symmetri
 minimal surfa
e spanned on two boundaries. The surfa
eis depi
ted using (a) spheri
al, (b) 
ylindri
 and (
) half-spa
e visualization of Loba
hevsky spa
e(
f. Fig. 3). The 
ylindri
 visualization 
orresponds 
losely to the 2-dimensional diagram in Fig. 5.in terms of ellipti
 integrals (
f. 3.157.5 of [36℄):�(P ) = �0 � P0p1 + P 20p1 + 2P 20� h(1 + P 20 )F�ar

os P0P ;r 1+P 201+2P 20 �� P 20 ��ar

os P0P ; 11+P 20 ;r 1+P 201+2P 20 �i : (4.3)The pro�le 
urve is thus parametrized by �0 and P0. P takes values in (P0;1). Twopossible signs 
orrespond to two symmetri
 parts of the same 
urve with a turning point atP = P0, � = �0. Embedding of the 
orresponding rotation-symmetri
 minimal surfa
e intothe 3-dimensional Loba
hevsky spa
e is shown in Fig. 4. The graph of the pro�le 
urveitself is depi
ted in Fig. 5.We see that the pro�le 
urve rea
hes in�nity for two values of �. It thus des
ribes theminimal surfa
e spanned on two 
ir
ular boundaries. Boundaries of the surfa
e 
orrespondto the hyperplanes given by � = �0 � �1, where�1 = P0p1 + P 20p1 + 2P 20 h(1 + P 20 )K�r 1+P 201+2P 20 �� P 20 �� 11+P 20 ;r 1+P 201+2P 20 �i : (4.4)The graph of the dependen
e of �1 on P0 in Fig. 6 shows that there exists a maximalvalue of �1. It means that there exists a maximal distan
e of the 
ir
ular boundariesfor whi
h these 
an be joined by a minimal surfa
e. Numeri
ally, this 
riti
al distan
e issmax = 2`�1 � 1:00229 `, it is a
hieved for Pmax � 0:516334.The graph in Fig. 6 also reveals that for a given distan
e of two 
ir
ular boundariessmaller than smax there exist two minimal surfa
es spanned between them. One (that withlarger value of P0) is shallow, remaining further from the axis, and other (with smaller P0)is rea
hing 
loser to the axis, see Fig. 7. It indi
ates that the 
orresponding system at theAdS in�nity 
an exist in two di�erent non-trivial phases, both of them distin
t from thetrivial phase given by two hyperplanes. { 12 {
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Figure 5. Pro�le 
urve for rotation-symmetri
 minimal surfa
e. The 
urve is drawn inthe x-plane 
overed by 
oordinates �; P . It is given by solution (4.3). The 
orresponding minimalsurfa
e is shown in Fig. 4.Now we 
an pro
eed to evaluate the area of the minimal surfa
e. Substituting (4.1)into (2.10) (and taking into a

ount both halves of the surfa
e given by (4.3)) we �nd thatarea up to radius P is given byA(P ) = 4�`2 Z PP0 P 2pP 4 + P 2 � P 40 � P 20 dP = 4�`2P 20p1 + 2P 20 ��ar

os P0P ; 1;r 1+P 201+2P 20 � (4.5)(
f. 3.153.4 of [36℄ with 111.06 of [37℄).The area of the whole minimal surfa
e AjP=1 is diverging: the surfa
e is rea
hingup to in�nity. However, we 
an renormalize it by subtra
ting the area of the trivial solu-tion spanned of the same boundaries, i.e., subtra
ting the area of two hyperplanes. The

2 4 6Rmax
R00

0.2

0.4

0.6

Ζmax

Ζ¥

Figure 6. Distan
e of the 
ir
ular boundaries joined by the minimal surfa
e The mini-mal surfa
e given by (4.3) rea
hes in�nity in two 
ir
ular boundaries whi
h has distan
e s = 2`�1.Diagram shows the dependen
e of �1 on the parameter P0. For �1 < �max, one has two values ofP0, i.e., two possible minimal surfa
es joining su
h boundaries (see Fig. 7). For �1 > �max, thereis no minimal surfa
es joining the boundaries.
{ 13 {



Figure 7. Two minimal surfa
es spanned on the same boundaries. Two 
ir
ular bound-aries with the mutual distan
e smaller than the distan
e smax 
an be joined by two minimal surfa
es.One remains far from the axis, other rea
hes 
loser to the axis.regularized area of one hyperplane (i.e., evaluated up to radius P ) isAhp(P ) = 2�`2Z P0 P dPp1 + P 2 = 2�`2(p1 + P 2 � 1) : (4.6)The expansion for large P shows that the renormalized area of the surfa
e (4.3) is �nite:Aren = (A�2Ahp)jP!1 = 4�`2h1+ P 20p1+2P 20 K�r 1+P 201+2P 20 ��q1+2P 20 E�r 1+P 201+2P 20 �i : (4.7)The renormalized area as a fun
tion of the parameter P0 and of the distan
e s be-tween the boundaries is shown in Fig. 8. The �rst diagram shows that for P0 < P
r therenormalized area is positive. In other words, the area of the minimal surfa
e is largerthan the area of two hyperplanes spanned on the same boundaries. For small values of P0,the nontrivial phase has thus larger entanglement entropy than than the trivial one. These
ond diagram reveals that for the distan
e of the boundaries s 2 (s
r; smax) there existtwo nontrivial phases with entanglement entropy larger than the the trivial phase. Fors > smax there exists only the trivial phase. A numeri
al estimate gives P
r � 0:95264 ands
r � 0:876895 `.Finally, for 
lose boundaries, s < smax, we 
an 
ompute the di�eren
e �A betweenareas of two possible minimal surfa
es. This di�eren
e is �nite and independent of arenormalization of the areas. The graph of �A is shown in Fig. 8
.4.3 Surfa
es with translation symmetryLoba
hevsky spa
e 
an be also viewed as a warped spa
e with the symmetri
 y-spa
egiven by the translation �-symmetry. The additional symmetry of the x-plane is then therotational '-symmetry. Again, it is useful to work in 
ylindri
al 
oordinates, however, anintegration is simpler in 
oordinates (3.5).{ 14 {
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(a) (b) (
)Figure 8. Regularized area of the minimal surfa
e spanned on two disjoint 
ir
ularboundaries. (a) The regularized area Aren as a fun
tion of the parameter P0 of the minimal sur-fa
e. (b) The regularized area as a fun
tion of the distan
e s = 2`�1 between the 
ir
ular bound-aries. (
) Di�eren
e �A between areas of two minimal surfa
es spanned on the same boundaries.Substituting x1 = ' ; x2 = Z ; y1 = � ;h(1) = `pZ2 � 1 ; h(2) = `pZ2 � 1 ; R = `Z (4.8)into equation (2.6) for the pro�le 
urve we get'0(Z) = � Z0pZ20 � 1(Z2 � 1)pZ4 � Z2 � Z40 + Z20 : (4.9)Integrating (
f. 3.157.5 of [36℄), we obtain'(Z) = '0 � Z0pZ2 � 1p2Z20 � 1� hZ20 ��ar

os Z0Z ; 11�Z20 ;r Z20�12Z20�1�� (Z20 � 1)F�ar

os Z0Z ;r Z20�12Z20�1�i : (4.10)Similarly to the previous 
ase, two signs 
orrespond to two halves of the pro�le 
urvewith a turning point at Z = Z0, ' = '0. The graphs of the 
orresponding minimal surfa
eembedded into 3-dimensional Loba
hevsky spa
e are shown in Fig. 9. The pro�le 
urve inx-plane is depi
ted in Fig. 10. Three dimensional graphs demonstrate that the minimalsurfa
e is a
tually spanned on two 
rossing 
ir
ular boundaries at in�nity; more pre
isely,spanned on two ar
s whi
h interse
t in two points.Values of the angular 
oordinate in whi
h the pro�le 
urve (4.10) rea
hes in�nity are' = '0 � '1 with'1 = Z0pZ20 � 1p2Z20 � 1hZ20 �� 11�Z20 ;r P 20�12Z20�1�� (Z20 � 1)K�r Z20�12Z20�1�i : (4.11)
{ 15 {



(a) (b) (
)Figure 9. Translation-symmetri
 minimal surfa
e spanned on two 
rossing bound-aries. The surfa
e is shown using (a) spheri
al, (b) 
ylindri
 and (
) half-spa
e visualization ofthe Loba
hevsky spa
e (
f. Fig. 3). The 
ylindri
 visualization is related to the 
oordinates in whi
hthe surfa
e (4.10) has been found. The se
tion � = 
onst 
orresponds to Fig. 10. The spheri
alvisualization (a) demonstrates that the `straight' boundaries from diagram (b) a
tually 
orrespondto two ar
s of the 
rossing 
ir
ular boundaries at in�nity.
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Figure 10. Pro�le 
urve for translation-symmetri
 minimal surfa
e. The 
urve is drawnin the x-plane 
overed by 
oordinates ';Z. It is given by solution (4.10). The 
orrespondingminimal surfa
e is shown in Fig. 9.The 
rossing 
ir
ular boundaries thus form the angle � = 2'1. The dependen
e of thisangle on parameter Z0 is shown in Fig. 11. It is monotonous fun
tion running � = 0 forZ0 =1 to � = � for Z0 = 1. The last value 
orresponds to a hyperplane spanned on twosemi-
ir
les forming the straight angle.As we have already observed, the surfa
e in Fig. 9 is not spanned on whole 
ir
ularboundaries, but just on two ar
s belonging to these boundaries. The 
omplete minimalsurfa
e spanned on entire two 
rossing 
ir
les should 
onsist of two sheets spanned on theopposite pairs of ar
s joining the interse
tion points. Ea
h of these sheets is given by{ 16 {
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Figure 11. The angle of two 
rossing 
ir
ular boundaries joined by the minimal surfa
e.The minimal surfa
e given by (4.10) rea
hes in�nity in two ar
s of the 
rossing 
ir
ular boundarieswhi
h have angle � = 2'1. Diagram shows the dependen
e of � on the parameter Z0 of the solution.The relation is one-to-one.surfa
e (4.10) found above, see Fig. 12.The one-to-one relation (4.11) between � on Z0 suggests that for a given angle of the
rossing 
ir
ular boundaries there exists only one non-trivial minimal surfa
e. However, it istrivial realization that the se
ond non-trivial surfa
e for angle � is the surfa
e 
orrespondingto the angle � � �. This se
ond minimal surfa
e also 
onsist of two opposite sheets whi
hjoin the 
omplementary pairs of the boundary ar
s.The area of the minimal surfa
e (
omposed of two sheets) is given by substituting (4.8)into (2.10). It gives the regularized area evaluated up to radius Z in the following form:A(Z) = 4A`2 Z ZZ0 Z2pZ4 � Z2 � Z40 + Z20 dZ = 4A`2Z20p2Z20 � 1 ��ar

os Z0Z ; 1;r Z20�12Z20�1� :(4.12)Here, the volume of the symmetry y-spa
e is given by A = R d� and it is divergent. Clearly,the surfa
e with a translation symmetry has an in�nite length in the symmetri
 dire
tionand the area su�ers the `infrared' divergen
e. Therefore, we 
al
ulate only density a = AA`of the area per unit volume of y-spa
e. This density a(Z) is still diverging for a large Zand it must be renormalized by subtra
ting the area of the trivial solution, i.e., the area oftwo hyperplanes. The regularized (
omputed up to radius Z) density of su
h an area isahp(Z) = Ahp(Z)A` = 2`Z Z0 Z dZpZ2 � 1 = 2`pZ2 � 1 : (4.13)Finally, the renormalized area density isaren = (a� 2ahp)jZ!1 = 4`h Z20p2Z20�1 K�r Z20�12Z20�1��q2Z20�1E�r Z20�12Z20�1�i : (4.14)The renormalized area density as a fun
tion of the parameter Z0 and as a fun
tion of theangle � is drawn in Fig. 13 { 17 {



Figure 12. The minimal surfa
es spanned on two 
rossing 
ir
ular boundaries Theminimal surfa
e spanned on two 
rossing 
ir
les (i.e., on four boundary ar
s) 
onsists of two sheets.They join the opposite pairs of the boundary ar
s. Ea
h of the sheets is given by (4.10) withappropriately 
hosen parameters '0 and Z0.For a given boundary, there exist two minimal surfa
es whi
h 
onsist of two non-interse
ting sheets.Sheets of the se
ond minimal surfa
e join the 
omplementary opposite pairs of the boundary ar
s.One 
ould 
onsider also the third minimal surfa
e formed by two interse
ting hyperplanes spannedon the 
ir
ular boundaries. This trivial solution is used to renormalize the area of the non-trivialminimal surfa
es.We 
an also evaluate the di�eren
e of the area densities of two minimal surfa
esspanned on the same 
rossing 
ir
ular boundaries, �a(�) = aren(�)� aren(� � �). Thedi�eren
e is �nite and independent of the renormalization of the area densities.On other side, it 
an be interesting to look at the total area density atot(�) = aren(�)+aren(���) of these two minimal surfa
es. It 
orresponds to the renormalized entanglemententropy of the whole spa
e divided into four blo
ks by two 
rossing 
ir
les. Both quantities�a and atot are shown in Fig. 13.These diagrams show that, in 
ontrast to the 
ase of two disjoint 
ir
ular boundaries,the area density (and 
orresponding entanglement entropy) of the minimal surfa
e spannedon two 
rossing 
ir
les is always smaller than the area density of the trivial solution.One 
ould also study inequalities between areas of minimal surfa
es and 
orrespond-ing entanglement entropies (su
h as strong subadditivity properties [26, 33℄) spanned onboundaries of various 
ompositions of di�erent domains at in�nity. Let us 
onsider do-mains bounded by two semi
ir
les joining two �xed poles. Su
h a domain is 
hara
terizedby the angle � between the semi
ir
les. A 
omposition of two su
h domains with a 
ommonsemi
ir
le forms again a domain of the same type.33A similar dis
ussion 
an be done also in the previous 
ase of domains bounded by two disjoint 
ir
les.However, the dis
ussion is more involved sin
e the 
omposition law for the distan
es between 
ir
ularboundaries is not so simple: If 
13 = 
12 [ 
23, where 
ij is a domain between two 
ir
ular boundaries �iand �j , the distan
es sij = s(�i;�j) between these boundaries are not, in general, in an additive relation.{ 18 {
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(a) (b) (
) (d)Figure 13. Regularized area of the minimal surfa
e spanned on two 
rossing 
ir
les.(a) Regularized area density aren as a fun
tion of the parameter Z0. (b) Regularized area density asa fun
tion of the angle � between the 
ir
ular boundaries. Two bran
hes 
orresponds to two possibleminimal surfa
es spanned on the same boundaries, 
f. Fig. 12. They are given by 
omplementaryangles � and � � �. (
) Di�eren
e of the area densities �a of two minimal surfa
es spanned onthe same boundaries. (d) Sum atot of the regularized area densities of two minimal surfa
es.The subadditivity property [17, 26℄ translated to language of areas is satis�ed in theleading diverging order a(�1 + �2) � a(�1) + a(�1) : (4.15)Indeed, the right hand side has more diverging boundary 
ontributions. It is not a surprisesin
e the subadditivity is a straightforward 
onsequen
e of the minimality of the area[17℄. A more subtle situation is the strong subadditivity, where the leading diverging
ontributions to the area 
an
el ea
h other and one 
an 
ompare renormalized values. Thestrong subaddivity thus readsaren(�1 + �2 + �3) + aren(�2) � aren(�1 + �2) + aren(�2 + �3) ; (4.16)where the renormalized area density aren is given by one half of expression (4.12) with theparameter Z0 expressed in terms of angle � = 2'1 using (4.11). For � > � one naturallyunderstands aren(�) = aren(2� � �). Evaluating (4.16) for angles �1+�2+�3 < 2� we haveexpli
itly 
he
ked that the strong inequality is satis�ed. It is 
onsistent with the generalstatement of [26℄. { 19 {



(a) (b) (
)Figure 14. Horo
y
li
-symmetri
 minimal surfa
e spanned on two tou
hing bound-aries. The surfa
e is shown using (a) spheri
al, (b) 
ylindri
 and (
) half-spa
e visualization ofLoba
hevsky spa
e (
f. Fig. 3). The half-spa
e visualization is related to the 
oordinates in whi
hthe surfa
e (4.18) has been found. The se
tion �y = 
onst 
orresponds to Fig. 15. The spheri
alvisualization (a) demonstrates that the `straight' boundaries from diagram (
) are a
tually two 
ir-
ular boundaries tou
hing at one point. All minimal surfa
es with this type of boundary 
onditionsare isomorphi
.4.4 Surfa
es with horo
y
li
 symmetryThe last qualitatively di�erent 
ase 
orresponds to the horo
y
li
 symmetry. The y-spa
e
an be identi�ed with �y dire
tion in Poin
ar�e 
oordinates (3.6). The additional symmetryof the x-plane then 
orresponds to the horo
y
li
 shift in �x dire
tion:x1 = �x ; x2 = �z ; y1 = �y ;h(1) = �̀z ; h(2) = �̀z ; R = �̀z : (4.17)The equation of the pro�le 
urve (2.6) 
an be again integrated (
f. 3.153.3 of [36℄)�x(�z) = �x0�Z �z0�z d�zq �z40�z4 � 1 = �x0� �z0hp2E�ar

os �z�z0 ; 1p2�� 1p2F�ar

os �z�z0 ; 1p2�i : (4.18)A 
orresponding horo
y
li
-symmetri
 minimal surfa
e embedded into the Loba
hevskyspa
e is shown in Fig. 14, the pro�le 
urve is depi
ted in Fig. 15.The surfa
e is parametrized by the parameter �z0 whi
h is the maximal value of the
oordinate �z whi
h the surfa
e rea
hes. It is also the turning point joining two halves ofthe surfa
e given by two signs in (4.18). We 
all line �z = �z0 the top line of the surfa
e,
f. Fig. 14
. It is a horo
y
le in the sense of the hyperboli
 geometry, 
f. Fig. 14a.The additivity s13 = s12 + s23 holds only if the 
ir
ular boundaries �i are 
on
entri
.In the 
ase of domains between two ar
s is the situation simpler, the angles between ar
s satisfy theadditivity law. { 20 {
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Figure 15. Pro�le 
urve for horo
y
li
-symmetri
 minimal surfa
e. The 
urve is drawnin the x-plane 
overed by 
oordinates �z; �x. It is given by solution (4.18). The 
orresponding minimalsurfa
e is shown in Fig. 14.The limiting value of 
oordinate �x at in�nity �z = 0 is�x1 = �x0 �X0 �z0 ; with X0 = �(34 )2p2� � 0:59907 : (4.19)The minimal surfa
e thus rea
hes in�nity at two straight lines in Poin
ar�e 
oordinates,
f. Fig. 14
. However, the spheri
al representation in Fig. 14a shows that these boundariesare a
tually two 
ir
ular boundaries tou
hing at one point (the improper point of planarin�nity in the half-spa
e representation of Fig. 14
).From the equation (4.18) of the pro�le 
urve, we 
an observe that the 
ombination �x�z0depends only on �z�z0 . This do
uments that all solutions of this type (i.e., with an arbitraryvalue of �z0) are isometri
. Indeed, the translation � ! � + �0 along the Killing ve
tor ��in Poin
ar�e 
oordinates a
ts�z ! exp �0 �z ; �x! exp �0 �x ; �y ! exp �0 �y ; (4.20)i.e., as a 
onstant res
aling of Poin
ar�e 
oordinates. The solutions (4.18) for various �z0are related exa
tly by this translation. Parameter �z0 only labels the position of the min-imal surfa
e in the spa
e, not its shape. It is, of 
ourse, a 
onsequen
e of the fa
t thatall 
on�gurations of two tou
hing 
ir
ular boundaries are equivalent, as we observed inse
tion 4.1.The regularized area fun
tion (2.10) of the minimal surfa
e in this 
ase isA(�z) = 2A`2 Z �z0�z �z20�z2p�z40 � �z4d�z= 2A`2�z0 "s �z20�z2 � �z2�z20 �p2E�ar

os �z�z0 ; 1p2�+ 1p2 F�ar

os �z�z0 ; 1p2�# : (4.21)
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The regularized area of the part of the hyperplane �x = 
onst 
al
ulated up to 
ut-o� �z isAhp(�z) = A`2�z : (4.22)Subtra
ting two hyperplanes from the minimal surfa
e thus gives the renormalized areaAren = (A� 2Ahp)j�z!0 = �2AX0�z0 `2 ; (4.23)with the 
onstant X0 given in (4.19).However, we have to solve the infrared divergen
e hidden in the y-spa
e volumeA = R d�y. One has to be 
areful how to treat this in�nity sin
e the 
hoi
e of the �y 
oordi-nate was rather arbitrary. Indeed, an arbitrary res
aled 
oordinate �y 
ould have been usedsin
e a 
onstant res
aling 
orrespond to the isometry (4.20).One natural way how to 
ut-o� the �y dire
tion is to 
al
ulate the surfa
e area per unit�y-length, where this `unit length' is de�ned by a pres
ription formulated only in terms ofthe surfa
e itself, by a pres
ription whi
h does not employ any additional stru
ture. Forexample, we 
an measure �y-length Y0 at the top line of the surfa
e (i.e., at �z = �z0). Clearly,Y0 = R �̀z0d�y = `A�z0 . The 
orresponding area density then readsaren = ArenY0 = �2X0` : (4.24)It is independent of the parameter �z0, as 
ould had been expe
ted from the dis
ussionabove: �z0 de�nes only a position of the surfa
e, not its shape, and no additional stru
turehas been introdu
ed whi
h 
ould distinguish among minimal surfa
es with di�erent �z0.Other possibility how to deal with the divergen
e in the �y dire
tion is to 
ompa
tifythis dire
tion. We 
an assume S1 
ompa
ti�
ation along the 
oordinate �y given by a �xedrange ��y. Then A = ��y and the regularized area of the 
ompa
ti�ed minimal surfa
e isA
omp = �2��yX0�z0 `2 = �4��y��xX20 `2 : (4.25)The dependen
e on �z0 re
e
ts that the minimal surfa
es with various positions �z0 aresqueezed into the 
ompa
ti�ed spa
e in a di�erent way. Sin
e this spa
e is not globalLoba
hevsky spa
e anymore, the minimal surfa
es with various �z0 are not globally isomor-phi
. In the last equality we expressed �z0 using the 
oordinate distan
e ��x = 2X0�z0 of theboundaries of the minimal surfa
e, 
f. (4.19).In both these 
ases the regularized area is negative, i.e., the area of the minimal surfa
espanned on two tou
hing 
ir
ular boundaries is smaller than the area of two 
orrespondinghyperplanes.By a 
omposition of two or three domains between tou
hing 
ir
ular boundaries witha 
ommon 
onta
t point we 
an 
he
k the the subadditivity and the strong subadditivityproperties. The subadditivity property is again satis�ed in the diverging order.To 
he
k the strong subadditivity we have to 
onsider three domains 
i, i = 1; 2; 3,lo
ated among the 
ir
ular boundaries separated by the 
oordinate intervals ��xi. These{ 22 {



domains must be regularized in 
ommon way. Therefore we use the 
ompa
ti�
ation of the�y 
oordinate to the interval ��y. The strong subadditivityA
1[
2[
3 +A
2 � A
1[
2 +A
2[
3 ; (4.26)thus, using (4.25), translates into� 1��x1 +��x2 +��x3 � 1��x2 � � 1��x1 +��x2 � 1��x2 +��x3 ; (4.27)whi
h is (for positive ��xi) trivially satis�ed.44.5 General position of two 
ir
ular boundariesIn the pre
eding subse
tions we have found the minimal surfa
es for three qualitativelydi�erent positions of the 
ir
ular boundaries. It 
ould seem that we studied only 
ir
ularboundaries whi
h are spe
ially positioned with respe
t to the 
hosen system of 
oordi-nates. For example, two disjoint 
ir
les are 
on
entri
 in Fig. 4. However, it would be awrong impression. A
tually, we have found the minimal surfa
e for a 
ompletely arbitrary
on�guration of two 
ir
ular boundaries at in�nity.Indeed, any two 
ir
les at in�nity 
an be moved by an isometry to the position forwhi
h we have already found the solution. Or, in opposite way, we 
an always 
onstru
ta 
oordinate systems whi
h is adjusted to a boundary 
on�guration. Using isometries we
an than transform the solution to an arbitrary other frame.For two disjoint 
ir
les spanned on two hyperplanes we 
an always �nd a unique lineperpendi
ular to both hyperplanes and use this line as � = 0 axis of our 
ylindri
al 
oor-dinate system. The 
ir
ular boundaries be
ome 
on
entri
 in this frame.Similarly, for two 
rossing 
ir
les we use the interse
tion line of the 
orrespondinghyperplanes as the axis of the 
ylindri
al system. For two tou
hing 
ir
les we 
an use anyline going through the 
onta
t point of both 
ir
les as a suitable axis.Two examples of the minimal surfa
es spanned on two generi
ally positioned disjoint
ir
les at in�nity are shown in Fig. 16.4.6 Higher dimensionsSimilar analysis 
an be done for arbitrary higher dimensionD. Unfortunately, the integralsfor the pro�le 
urve and surfa
e area (2.6) and (2.10) be
ome more 
ompli
ated and 
annotbe integrated easily in terms of spe
ial fun
tions. However, the numeri
al integrationsshow that the results from the spatial dimension D = 3 remain qualitatively the same ina higher dimension. For example, Fig. 17 shows the graphs of the regularized area versusthe distan
e of boundaries (an analogue of Fig. 8b) in the spatial dimensions D = 4 andD = 5.4One 
ould 
onsider also a 
omposition of domains between tou
hing 
ir
ular boundaries with di�erent
onta
t points. However, the 
omposed domain would be between two disjoint 
ir
les. Both areas (4.7) and(4.21) would enter the subadditivity inequalities. In su
h a 
ase, the regularization pro
edure would haveto be dis
ussed 
arefully: all infrared in�nities have to be regularized in a 
onsistent way. We leave su
h adis
ussion elsewhere. { 23 {



(a) (b) (
)Figure 16. Minimal surfa
es spanned on two generally lo
ated disjoint 
ir
les at in�n-ity. The minimal surfa
e depi
ted in Fig. 4 
an be shifted using isometries so it rea
hes any twodisjoint 
ir
ular boundaries at in�nity. Ea
h line shows one example of su
h a 
on�guration of twoboundaries and visualizations of the 
orresponding minimal surfa
e in (a) spheri
al, (b) 
ylindri
aland (
) half-spa
e model of Loba
hevsky spa
e.
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D = 4 D = 5Figure 17. Regularized area for minimal surfa
e spanned on two disjoint 
ir
ularboundaries in higher dimensions The dependen
e of the regularized area on the distan
e ofthe 
ir
ular boundaries is qualitatively the same as in the dimension D = 3, 
f. Fig. 8.
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5 Minimal surfa
es in the anti-de Sitter spa
etime5.1 Two 
ir
ular boundaries in one stati
 regionTill now we have dis
ussed minimal surfa
es lo
alized in the spatial se
tion of the AdSspa
e. Their area 
orrespond to the entanglement entropy for the holographi
ally asso
i-ated system at in�nity.However, as we dis
ussed at the beginning of Se
. 4, the spatial se
tion with hyperboli
geometry 
an be understood as a time sli
e for three di�erent stati
 Killing ve
tors in theAdS spa
etime. A di�erent 
hoi
e of the Killing ve
tor should somehow in
uen
e the 
hoi
eof the state of the system at in�nity. Surprisingly, this 
hoi
e does not enter the 
al
ulationof the minimal surfa
e and of the entanglement entropy in any way.In terms of the metri
, three qualitatively di�erent stati
 Killing ve
tors di�er by thelapse (red-shift) fa
tor in front of the 
orresponding time element in the metri
. Thisfa
tor, however, does not enter the 
hara
terization of the spatial geometry.Nevertheless, it 
ould be instru
tive to visualize the whole history of the minimalsurfa
e, even although it is not given by an evolution equation. In the 
ase when thewhole boundary of the minimal surfa
e lies at in�nity of one stati
 region, the pro
edureis straightforward: the minimal surfa
e is just prolonged along the Killing time 
oordinate

(a) (b) (
)Figure 18. World-sheets of the minimal surfa
e spanned on two disjoint 
ir
les. Threediagrams represent three possible extension of the minimal surfa
e into the temporal dire
tion usingthree stati
 Killing ve
tors. In all three 
ases both 
ir
ular boundaries are lo
ated in the same stati
region. The horizons of the Killing ve
tors and one sli
e of a 
onstant stati
 time are indi
ated. Therotation-symmetri
 dire
tion ' i suppressed in these diagrams, the tube-like minimal surfa
e thussplits into two dis
onne
ted pie
es. For the same reason, the world-sheet of ea
h 
ir
ular boundaryis represented just by two worldlines. (a) For the stati
 Killing ve
tor of type I there is only onestati
 region and the minimal surfa
e remains eternally in AdS universe. (b) The Killing ve
torof type II possesses Killing horizons whi
h divide the spa
etime into stati
 and non-stati
 regions.Here, both 
ir
ular boundaries are lo
ated in one stati
 region and the minimal surfa
e remains inthis stati
 region. (
) Horizons of the Poin
ar�e Killing ve
tor divides AdS spa
etime into a sequen
eof stati
 regions. Again, both 
ir
ular boundaries are lo
ated in one stati
 region.
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and it spans 3-dimensional world-sheet in one stati
 region of the AdS universe. Of 
ourse,by a di�erent 
hoi
e of the Killing ve
tor one gets di�erent sheets.The world-sheets of the minimal surfa
e spanned on two disjoint 
ir
les whi
h both liein the same stati
 region, using stati
 Killing ve
tors of type I, II, and Poin
ar�e one, aredepi
ted in Fig. 18.5.2 Two 
ir
ular boundaries in opposite stati
 regionsHowever, for the stati
 Killing ve
tor of type II we 
an also en
ounter a more interestingsituation. In this 
ase Loba
hevsky spa
e 
orresponds to a time sli
e T = 
onst in twoseparate stati
 regions. The Killing ve
tor of type II has a bifur
ations stru
ture and itsKilling horizons divide the AdS spa
etime into separate domains, 
f. Fig. 19. There arepairs of stati
 regions R and L whi
h are positioned a
ausally to ea
h other, but for whi
htheir time sli
es 
an be joined into one global Loba
hevsky spa
e.We 
an thus 
onsider 
ir
ular boundaries lo
alized symmetri
ally in these oppositestati
 regions R and L. In su
h a 
ase the world-sheet of the minimal surfa
e spanned onthese two 
ir
les rea
hes the horizons of the stati
 regions and it must be 
ontinued into

Figure 19. Hypersurfa
es T = 
onst of the stati
 Killing ve
tor of type II. The stati
Killing ve
tor of type II has a bifur
ation stru
ture. Its Killing horizons divide AdS spa
etime intoa sequen
e of pairs of stati
 regions R, L and non-stati
 regions P and F where the Killing ve
toris spa
elike. The horizons H are null surfa
es. Ea
h of them 
orresponds to a plane of light 
yingthrough AdS universe, starting and ending in improper bifur
ation points at in�nity I. Horizonsinterse
t in bifur
ation lines h. The Killing ve
tor of type II 
an play a role of a time translation (instati
 regions) or of a spatial translation (in non-stati
 regions) or of a boost (near the bifur
ationlines). Time sli
es T = 
onst both in stati
 and non-stati
 regions are indi
ated. Time sli
es intwo opposite stati
 regions 
an be joined to form one global Loba
hevsky spa
e T . Time sli
es innon-stati
 regions 
an be all joined to form 3-dimensional AdS spa
etime T 0.
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Figure 20. Minimal surfa
e in sli
e T 0. Minimal surfa
e � lo
ated in time-like sli
e T 0 (joinedsli
es T = 
onst in non-stati
 regions P and F, 
f. Fig. 19) whi
h has 3-dimensional AdS geometry.The minimal surfa
e � is 
omposed by two symmetri
 pie
es from the regions P and F. It is given bythe pro�le fun
tion (5.1) with parameter P0 whi
h 
hara
terize the maximum radius of the surfa
e.The surfa
e is non-smooth at two vertexes � on the axis. The surfa
e approa
hes a null 
hara
ternear these verti
es. The spatial interse
tion h of the Killing horizons H is shown (
f. Fig. 19).Another representation of the surfa
e � (with added T -dire
tion and suppressed '-dire
tion) isdepi
ted in Fig. 21.non-stati
 regions F and P above and under the Killing horizons. The equation (2.6) forthe pro�le 
urve of the minimal surfa
e 
an be solved even in these non-stati
 regions sin
eit does not depend on the 
hara
ter of the Killing ve
tor and signature of the metri
. Thesolution is �(P ) = P0p1+P 20p1+2P 20 ��ar

os PP0 ; P 201+P 20 ;r P 201+2P 20 � : (5.1)The solution is 
losely related to that in stati
 regions (4.3), it is a di�erent bran
h of theanalyti
 
ontinuation of (4.3).The resulting surfa
e lo
ated in the non-stati
 regions F and P 
an be viewed if re-stri
ted into sli
e T = 
onst. Su
h a sli
e is a
tually the 3-dimensional AdS spa
etime,
f. Fig. 19. Embedding of the minimal surfa
e into this sli
e is shown in Fig. 20. It has asurprising feature that it is not smooth at the vertexes lo
ated on the axis.The world-sheet of the minimal surfa
e 
ould be understood as a 
olle
tion of traje
to-ries whi
h start from the bottom vertex with the speed of light, slow down, and eventuallyare spheri
ally 
ollapsing at the top vertex, again with the speed of light. When one addthe Killing ve
tor dire
tion, the full surfa
e in the the future non-stati
 region F has a{ 27 {



Figure 21. World-sheet � of the minimal surfa
e spanned on two oppositely a

elerated
ir
les. Diagrams show two views of the same world-sheet. The Killing horizons H of the stati
Killing ve
tor of type II are in
luded in the right diagram. The whole world-sheet is obtained byjoining pie
es lo
ated in the stati
 regions L, R (where they are given by the pro�le fun
tion (4.3))and pie
es in the non-stati
 regions P and F (where they are given by the pro�le fun
tion (5.1)). Itrea
hes in�nity I in two 
ir
ular boundaries lo
ated in the opposite stati
 regions L and R. In thesediagrams, ea
h boundary is represented by a pair of worldlines. The world-sheet � is singular attwo spatial lines �. The future singular line 
an be interpreted as a `history' of the rapture of theminimal surfa
e, see dis
ussion in the text.stru
ture of 
ollapsing 
ylinder whi
h degenerate along a spatial line (the vertex prolongedfor all values of spatial 
oordinate T ).However the part of the surfa
es in the region F also rea
hes the Killing horizons (forT ! �1). Here it has to be joined with the surfa
e in stati
 regions R and L. Similarlythe surfa
e lo
ated in the past stati
 region P joins the surfa
e in the stati
 regions frombelow. The 
omplete minimal surfa
e is depi
ted in Fig. 21. Here, the rotation-symmetri
dire
tion ' is suppressed. We see that the surfa
e is indeed singular along two spatial linesin the P and F regions. These singular lines rea
h in�nity of AdS spa
etime at points wherethe Killing ve
tor is bifur
ating.One 
ould try to interpret the world-sheet of the minimal surfa
e as a dynami
alpro
ess (although we repeat that the surfa
e is not governed by an evolutionary equation,but by the stati
 equation at one time sli
e). First, we 
onsider hyperplanes in the bulkwhi
h 
orrespond to the 
ir
ular boundaries at in�nity. Sin
e they are stati
 in the senseof the Killing ve
tor �T , these hyperplanes move with the a

eleration larger then 1=`.They are 
oming from in�nity towards ea
h other, de
elerating from the speed of light tothe zero velo
ity and a

elerating ba
k to in�nity asymptoti
ally approa
hing the speed oflight. The points at in�nity from whi
h the hyperplanes start and where they end are those{ 28 {



in�nite bifur
ation points of the Killing ve
tor �T . In this sense we 
an speak about twoa

elerating 
ir
ular boundaries at in�nity. Clearly, the world-sheets of these boundariesare not smooth at the in�nite bifur
ation points.We 
an now look at the world-sheet of the minimal surfa
e spanned between thesea

elerated 
ir
les in terms of the global 
osmologi
al time � . Its time sli
es 
orrespond tohorizontal planes in Fig. 21. Starting in the middle of the surfa
e (at the 
losest approa
hof the 
ir
les) the minimal surfa
e has exa
tly the shape depi
ted in Fig. 4. After that the
ir
ular boundaries are a

elerating away from ea
h other and the minimal surfa
e starts todeform. When the time-sli
e � = 
onst rea
hes the top singular line of the world-sheet, theminimal surfa
e tears into two pie
es. At later times, these two pie
es are still atta
hed tothe 
ir
ular boundaries at in�nity and they 
y from ea
h other. On the other side they areterminated by the singular vertexes whi
h des
ribe the pla
e where the minimal surfa
e wastorn. These vertexes 
ies from ea
h other with a superluminal speed (along the spa
elikesingular lines �). This view 
orresponds to the earlier observation that the minimal surfa
e
an join two disjoint 
ir
les at in�nity only if they are 
loser than the 
riti
al distan
e s
r.For the 
ir
les a

elerating from ea
h other the minimal surfa
e thus 
annot exist whenthey get too far.However, one should be 
autious with su
h an interpretation sin
e we are mixing herethe stati
 pi
ture with respe
t to one Killing ve
tor with the des
ription in terms of timeof another Killing ve
tor. Also, we should remember that the world-sheet of the minimalsurfa
e is not a world-sheet of a 
ausally evolving matter.6 SummaryWe found out exa
t solutions for all types of minimal surfa
es spanned on one or twospheri
al boundaries at 
onformal in�nity. The relative positions and the sizes of thesespheri
al boundaries are 
onsidered to be arbitrary. The Ryu-Takayanagi holographi

onje
ture (1.2) enables us to relate the areas of minimal surfa
es in the bulk of AdS withthe entanglement entropy of any two generally positioned spheri
al domains at in�nity.There are three qualitatively di�erent 
ases of mutual positions of the spheri
al domains:(i) two disjoint domains, (ii) overlapping domains, and (iii) tou
hing domains. In the �rst
ase there exist tube-like minimal surfa
es joining the boundaries of these domains. In thisinteresting 
ase we showed that for boundaries 
loser than smax there are three possibleminimal surfa
es, whi
h 
orresponds to three possibilities (phases) for the holographi
entanglement entropy in CFT. The transition between these phases o

urs at the 
riti
aldistan
e s = s
r, when the area of the tube-like surfa
e starts to ex
eed the area of the trivialsolution of two hyperplanes. Thus even in the pure pure AdS ba
kground there is a 
riti
albehavior of the entanglement entropy that was demonstrated [31℄ for the asymptoti
allyAdS spa
etimes with a bla
k hole in the bulk.If the entanglement entropy for disjoint subsystems is given by the area of the absoluteminimal surfa
e5 then the renormalized area (4.7) is dire
tly related to the mutual infor-mation I(
1;
2) = S
1 + S
2 � S
1[
2 whi
h quanti�es 
orrelations between the disjoint5See [27℄ for alternative proposals. { 29 {



subsystems. Indeed, sin
e the entanglement entropy S
 of a single spheri
al domain 
 isgiven by the area Ahp of the trivial hyperplane boundary �
, the renormalized area Aren ofthe tube joining the boundaries of two su
h domains gives dire
tly the mutual informationI(
1;
2), provided that the tube does give the minimal area, i.e., for s < s
r.Although the entanglement entropy 
hanges 
ontinuously with the distan
e betweenthe boundaries at s = s
r, the 
orresponding minimal surfa
e 
hanges dis
ontinuously. Tosee the transition from the trivial phase to the tube-like phase, one would have to start withtwo very 
lose hyperplanes. At a point, where they almost tou
h, a very deep tube-likesurfa
e 
an appear. Thought the topology of the surfa
e 
hanges it does not 
hange thetotal area of the surfa
es. While we in
rease the distan
e between the boundaries, the tubegrows wider. It follows the upper bran
h of the 
urve in Fig. 8b and Fig. 17 up to themaximal possible distan
e smax of the boundaries. This bran
h 
orresponds to the lo
allyminimal surfa
e, but it's not an absolute minimum be
ause there is another solution fora tube-like minimal surfa
e with the same boundaries but lesser area. When one rea
hesthe smax and starts to de
rease the distan
e between the boundaries the tube grows evenwider (following the lower bran
h in Fig. 8b and Fig. 17). After de
reasing the distan
eunder s
r one obtains the physi
al tube-like phase.In addition to the 
ase of two spheri
al domains one 
an investigate even more 
ompli-
ated situations, for example, a set of spheri
al domains 
i, ea
h of them being a subdomainof all the subsequent ones: 
i � 
j for i < j. They may not be all simultaneously 
on-
entri
. The 
ir
ular boundaries of these domains 
orrespond to ultraparallel hyperplanesin the bulk. For su
h a 
on�guration we know the minimal surfa
es for any pair of theboundaries. Employing (1.2) we �nd that the renormalized entropy depends only on thedistan
e between the boundaries, 
f. (4.4), (4.5). We 
an thus test properties of the entropyfor domains obtained by a 
ombination of several subdomains. Namely, one 
an 
he
k thestrong subadditivity inequalities to �nd that they are satis�ed, as expe
ted from general
onsiderations [33℄. Similarly, one 
an study systems of strips between several semi
ir
lesjoined at the same poles.To summarize, the obtained exa
t analyti
al solutions for minimal surfa
es in AdSprovide us with a 
lassi
al geometri
 tool of probing quantum properties of CFT.The holographi
 entanglement entropy 
an be applied to testing phase transitions inQFT, similar to the 
on�nement/de
on�nement phase transition at a �nite temperature[31, 32℄. It 
an useful in generalizations of 
-theorems in higher dimensions [38, 39℄. One
an use the properties of the entanglement entropy the other way around and even to`derive' gravitational dynami
s from entanglement [40, 41℄.A
knowledgmentsP. K. was supported by Grant GA�CR 14-37086G and appre
iates the hospitality of theTheoreti
al Physi
s Institute of the University of Alberta. A. Z. thanks the Natural S
ien
esand Engineering Resear
h Coun
il of Canada and the Killam Trust for the �nan
ial supportand appre
iates the hospitality and support of the Institute of Theoreti
al Physi
s of theCharles University in Prague. { 30 {



A Coordinates in Loba
hevsky spa
eThe geometry of the hyperboli
 spa
e in spheri
al 
oordinates is given by the metri
 (3.2),i.e., 1̀2 gLob = dr2 + sh2r �d#2 + sin2#d'2� : (A.1)Here, r is the radial distan
e from the origin. It 
an be rede�nedsh r = tan� (A.2)to obtain the metri
 
onformally related to the homogeneous metri
 on the hemisphere,1̀2 gLob = 1
os2��d�2 + sin2� �d#2 + sin2#d'2�� : (A.3)The boundary � = �2 of the hemisphere 
orresponds to the 
onformal in�nity of the hyper-boli
 spa
e.The spheri
al 
oordinates �; #; ' on the hemisphere 
an be repla
ed by other spheri
al
oordinates ��; �#; ' around a new pole on the equator of the hemisphere,
os� = sin �� 
os �# ; 
os �� = � sin�# ;tan# = � tan �# sin �# ; tan �# = tan� sin# : (A.4)The Loba
hevsky metri
 be
omes:1̀2 gLob = 1sin2 �� 
os2 �#�d��2 + sin2 �� �d�#2 + sin2 �#d'2�� : (A.5)These 
oordinates are related to the 
ylindri
 
oordinates by a rede�nition of the 
oordi-nate ��, tanh � = � 
os �� : (A.6)This new 
oordinate � is the Killing 
oordinate 
orresponding to the translation in thehyperboli
 spa
e along the axis �# = 0. One 
an introdu
e several variants of the axial
oordinate whi
h are related astan �# = sh� = P =pZ2 � 1 ;
os�1 �# = 
h � =p1 + P 2 = Z : (A.7)The metri
 takes forms (3.3), (3.4), and (3.5), respe
tively.Introdu
ing yet another \radial" 
oordinate �r in the metri
 (A.5),�r = tan ��2 = exp � ; (A.8)one obtains a 
onformally 
at form of the Loba
hevsky metri
1̀2 gLob = 1�r2 
os2 �#�d�r2 + �r2 �d�#2 + sin2 �#d'2�� : (A.9)
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Introdu
ing the \Cartesian" 
oordinates �x; �y; �z�x = �r sin �# 
os' ; �z = �r sin �# sin' ; �z = �r 
os �# : (A.10)for the 
onformally related 
at metri
, one obtains the Poin
ar�e 
oordinates on the hyper-boli
 spa
e with the metri
 (3.6).Finally, if we introdu
e the 
oordinate �� measuring the distan
e along the �z-dire
tion,�z = exp �� ; (A.11)the metri
 reads 1̀2 gLob = d��2 + e�2���d�x2 + d�y2� : (A.12)The 
oordinates ', �, and �x, �y are Killing 
oordinates 
orresponding to rotational,translational and horo
y
li
 symmetries, respe
tively.B Coordinates in anti-de Sitter spa
etimeThe anti-de Sitter spa
etime is des
ribed in global 
osmologi
al 
oordinates �; r; #; ' bythe metri
 (3.1), gAdS = `2 �� 
h2r d�2 + dr2 + sh2r (d#2 + sin2#d'2)� : (B.1)The Killing ve
tor �� represents the global translation symmetry in temporal dire
tion.Orbits of this ve
tors represent uniformly a

elerated stati
 observers with the a

elerationsmaller than the 
osmologi
al a

eleration 1=`, 
f. Fig. 2a.One 
an introdu
e another 
oordinates T;R; �#; '|the stati
 
oordinates of type II|asso
iated with the uniformly a

elerated stati
 observers with a

eleration larger than1=`. In these 
oordinates the AdS metri
 readsgAdS = `2R2 
os2 �# ���1� R2`2 �dT 2 + �1� R2`2 ��1dR2 +R2�d�#2 + sin2 �#d'2�� : (B.2)The Killing ve
tor �T is timelike in domains R2 < `2. It has a bifur
ation 
hara
ter andits orbits are visualized in Fig. 2b. The spatial se
tion T = 
onst, R2 < `2 possesses thespatial metri
 gLob = `2
os2 �# � 1R2�1� R2`2 �dR2 + d�#2 + sin2 �#d'2� ; (B.3)whi
h des
ribes the geometry of the hyperboli
 spa
e. It 
an related to the Loba
hevskymetri
 (A.5) by R = sin �� = 
h�1 � : (B.4)Relations between the global 
osmologi
al 
oordinates �; r; #; ' and the stati
 
oordi-nates of type II T;R; �#; ' 
an be split into two steps. First, at the spatial se
tion � = 
onstone introdu
es the 
onformally spheri
al 
oordinates �; #; ' and the rotated 
oordinates{ 32 {



��; �#; ' by the relations (A.2) and (A.4). In the se
ond step, one mixes �{�� se
tor intro-du
ing the 
oordinate T and R,R̀ = sin ��sin � ; T̀ = 12 log����
os � � 
os ��
os � + 
os �� ���� : (B.5)Another well-known 
oordinates on the AdS spa
etime are the Poin
ar�e 
oordinatesin whi
h the metri
 takes the 
onformally 
at formgAdS = `2�z2��d�t2 + d�x2 + d�y2 + d�z2� : (B.6)If we introdu
e the spheri
al Poin
ar�e 
oordinates �t; �r; �#; ' by relations (A.10), one 
anrelate the Poin
ar�e 
oordinates to the 
oordinates �; ��; �#; ' as�t = ` 
os �
os � + 
os �� ; tan � = 2`�t`2 � �t2 + �r2 ;�r = ` sin ��
os � + 
os �� ; tan �� = 2`�r`2 + �t2 � �r2 : (B.7)The Killing ve
tor ��t represents stati
 observers with the uniform a

eleration 1=`. Itsorbits are shown in Fig. 2
.
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