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We study charged particle motion in weakly charged higher dimensional black holes. To describe the

electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric

as a background geometry. It is shown that for a special configuration of the electromagnetic field, the

equations of motion of charged particles are completely integrable. The vector potential of such a field is

proportional to one of the Killing vectors (called a primary Killing vector) from the ‘‘Killing tower’’ of

symmetry generating objects which exists in the background geometry. A free constant in the definition of

the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black

hole. The full set of independent conserved quantities in involution is found.We demonstrate that Hamilton-

Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.

DOI: 10.1103/PhysRevD.83.024016 PACS numbers: 04.50.�h, 04.20.Jb, 04.50.Gh, 04.70.Bw

I. INTRODUCTION

In this paper we describe an interesting class of space-
times where the equations of motion of charged particles
allow a complete separation of variables. Namely, we study
weakly charged rotating higher dimensional black holes.
We assume that a background geometry is a solution of the
(vacuum) Einstein equations and include the electromag-
netism as a test field which does not affect the geometry. It
is well known that in the four-dimensional case this ap-
proach can be useful. The reason is that for known charged
elementary particles the ratio of the charge to mass is very
large. As a result, a test electromagnetic field, which does
not change the black hole geometry, can dramatically
change the motion of charged particles (see e.g. [1,2] and
references therein). Another application of the test electro-
magnetic field approximation is the study of the gyromag-
netic ratio of higher dimensional rotating black holes [3].

We study charged particle motion in a spacetime with a
test electromagnetic field. The conserved quantities for
particle motion under the influence of extremal fields
have been recently studied in [4]. We focus on the case
when the background geometry describes a rotating higher
dimensional black hole [5], and its generalization with
‘‘NUT’’ parameters and/or with a nontrivial cosmological
constant [6,7]. The Kerr-NUT-(anti-)de Sitter metrics in
higher dimensions have been extensively studied recently.
In particular, it was demonstrated that they have a number
of ‘‘miraculous’’ properties which make them similar to
their four-dimensional ‘‘cousin.’’ It was found that the most
general solution of the Einstein equations with the cosmo-

logical constant, describing higher dimensional rotating
black holes with NUT parameters—Kerr-NUT-(A)dS met-
ric—possesses a nondegenerate closed two-form of the
conformal Killing-Yano tensor (principal Killing-Yano ten-
sor) [8,9]. It was shown that this object generates a ‘‘tower’’
of conserved quantities [10–13] which makes the geodesic
equations completely integrable in these spacetimes
[11,12,14]. Later it was shown that the Hamilton-Jacobi
and Klein-Gordon equations are separable [15]. Analogous
results on separability for other field equations in this
background have been obtained in [16–21]. For a general
review, see [9]. The presence of a principal Killing-Yano
tensor imposes restrictions on the form of the metric.
Namely, the metric of the spacetime can be written in the
form where the only freedom is a set of functions of one
variables. This result was proved in [14,22,23].
In this paper we demonstrate that weak charges of the

higher dimensional black hole solution do not change their
remarkable property: The equations of a charged particle
motion remain completely integrable. In the four-
dimensional case this result is not surprising: The motion
of charged particles in the Kerr-Newman spacetime has the
same property [24], and our result can thus be obtained by
linearization. In five dimensions our results might be re-
lated to the complete integrability of the particle motion
equations in black hole solutions of the Chern-Simons
version of Maxwell-Einstein equations [25,26]. In higher
dimensions the obtained results are much less trivial.
The paper is organized as follows. Section II contains

some preliminary material. Required information concern-
ing spacetimes with a nondegenerate principal Killing-
Yano tensor is collected in Sec. III. The adopted ansatz
for a test electromagnetic field in this geometry is des-
cribed in Sec. IV. In Sec. V, we prove that the motion of a
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charged particle in the electromagnetic field, generated by
the primary Killing vector, is completely integrable. In
Secs. VI and VII, we prove the separability of the
Hamilton-Jacobi equations and of all symmetry operators
of the Klein-Gordon operator. For simplicity, we give the
proofs in the even-dimensional case, but they are valid in
any number of dimensions. The changes required in the
odd-dimensional case are discussed in Sec. VIII. The results
of the paper are briefly summarized in the last section.

II. PRELIMINARIES

Consider a particle with a mass � and a charge q, which
is moving in the electromagnetic field F ¼ dA. Its equa-
tion of motion is

�
D2xa

d�2
¼ qFa

b

Dxb

d�
: (1)

Here, D=d� is the covariant derivative with respect to the
proper time �. It is useful to introduce the affine parameter
� ¼ �=�. Denoting by the dot a covariant derivative with
respect to the parameter �, the equation of motion can be
rewritten as

€xa ¼ qFa
b _x

b: (2)

It is well known that the symmetries of the background
geometry guarantee the existence of conserved quantities
even for motion under the influence of the electromagnetic
field, provided that the electromagnetic field satisfies some
consistency conditions. Let us recall that a Killing vector �
and a rank two Killing tensor k satisfy the equations

rða�bÞ ¼ 0; kab ¼ kðabÞ; rðakbcÞ ¼ 0: (3)

If the spacetime possesses a Killing vector �, the compo-
nent of the canonical momentum along the Killing vector,
i.e., the quantity

p� ¼ �aðgab _xb þ qAaÞ; (4)

is conserved if the vector potential A is Lie-conserved
along �,

L�A ¼ ½�;A� ¼ 0: (5)

The component of the velocity along �,

u� ¼ �a _x
a; (6)

is conserved if

�nFan ¼ 0: (7)

This second condition can be generalized to quantities
quadratic in velocities if the background geometry has a
rank two Killing tensor k.1 Namely, the quantity

_xakab _x
b (8)

is conserved if2

kða
nFbÞn ¼ 0: (9)

Since the metric g is the Killing tensor trivially satisfying
this condition, we get obvious conservation of the norm of
the velocity _xagab _x

b.
It will be useful to work also with Hamiltonian formal-

ism. The equation of motion (2) follows from the
Lagrangian

L ¼ 1
2gab _x

a _xb þ qAa _x
a: (10)

To write a Hamiltonian, one defines the momentum

pa ¼ @L

@ _xa
¼ gab _x

b þ qAa; (11)

and the corresponding Hamiltonian reads

H ¼ 1
2g

abðpa � qAaÞðpb � qAbÞ: (12)

Since it does not depend on �, the Hamiltonian is the
integral of motion. For our choice of the affine parameter
�, one finds that its value is given by

H ¼ �1
2�

2: (13)

The conservation law (13) with the Hamiltonian (12)
implies the following Hamilton-Jacobi equation for the
classical action S ¼ � 1

2��
2 þ SðxaÞ:

��2 ¼ gabð@aS� qAaÞð@bS� qAbÞ: (14)

From the same Hamiltonian, one obtains the equation for a
charged massive field ’ by substituting pa ! �ira. The
corresponding Klein-Gordon equation is

½½ra � iqAa�gab½rb � iqAb� ��2�’ ¼ 0: (15)

Consider now a Ricci-flat spacetime, Ric ¼ 0. In
the Lorentz gauge rnA

n ¼ 0, the Maxwell equation
rnF

an ¼ 0 reads rnrnAa ¼ 0. The Killing vector �
obeys the same equation rnrn�a ¼ 0. This means that
the Killing vector field can be used as a potential of a
special test electromagnetic field A,

A ¼ Q�: (16)

Here, Q is a normalization constant parametrizing the
strength of the field.
Let us assume that the background spacetime is even

more special, namely, that it allows the separability of
uncharged Hamilton-Jacobi and Klein-Gordon equations.
It is natural to ask what happens with these equations when
one considers the system with the test Killing electromag-
netic field (16).

1The analogy of condition (5) for a quadratic quantity general-
izing (4) is not so straightforward. It involves Schouten-
Nijenhuis brackets ½k;A�SN, as could be expected, but also
some additional nontrivial conditions on k, A, and their first
derivatives, cf. [4].

2A related condition in terms of a Killing-Yano tensor gen-
erating k can be found in [27].
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If the separation takes place with respect to the Killing
coordinate corresponding to the Killing vector �,

�a@aS ¼ �; �a@a’ ¼ �’; (17)

with � being the separation constant, the charged
Hamilton-Jacobi (14) and Klein-Gordon equations (15)
take the form

gab@aS@bSþM2 ¼ 0; (18)

½gabrarb �M2�’ ¼ 0: (19)

Here, the function M2 is given by

M2 ¼ �2 � 2e�þ e2�2; (20)

with e ¼ qQ.
These equations clearly resemble the uncharged case.

Thus in the presence of the test Killing electromagnetic
field the Hamilton-Jacobi and Klein-Gordon equations
preserve their form with only the constant �2 replaced
by the function M2. Evidently, the constant shift �2e�
does not affect the complete separability property of the
initial equations. A nontrivial obstacle to the separability
can create the term �2. We shall describe now a physically
interesting case when the complete separability is not
broken by the external Killing electromagnetic field.

III. HIGHER DIMENSIONAL
BLACK HOLE GEOMETRY

Rotating black hole solutions in higher dimensions be-
long to a broader class of spacetimes studied in [6,7,22,23].
In even dimensions D ¼ 2n, the geometry of such space-
times is described by the metric

g ¼ Xn

�¼1

�
U�

X�

dx2� þ X�

U�

�Xn�1

j¼0

AðjÞ
� dc j

�
2
�
: (21)

Here x�, � ¼ 1; . . . ; n, correspond to radial and ‘‘azimu-

thal’’ directions and c k, k ¼ 0; . . . ; n� 1 to temporal and
longitudinal directions, namely, c 0 ¼ t. The radial coor-
dinate and some other quantities are rescaled by the imagi-
nary unit i in order to bring the metric into a more
symmetric form, cf. e.g. [6]; however, the metric is real.
The signature of the metric depends on the signs of the
metric functions. We use Latin indices from the beginning
of the alphabet to label the whole coordinate set: fxag ¼
fx�; c kg.

The functions U� and AðkÞ
� are defined as follows:

AðkÞ
� ¼ Xn

�1 ;...;�k¼1
�1<...<�k;�i��

x2�1
���x2�k

; U�¼Yn

�¼1
���

ðx2��x2�Þ: (22)

These functions satisfy the important relations [15]

Xn

�¼1

AðiÞ
�
ð�x2�Þn�1�j

U�

¼ �i
j;

Xn�1

j¼0

AðjÞ
�
ð�x2�Þn�1�j

U�

¼ ��
�;

(23)

for i; j ¼ 0; . . . ; n� 1 and �; � ¼ 1; . . . ; n.
The quantities X�, � ¼ 1; . . . ; n, are functions of a

single variable; that is, each X� depends only on the

variable x�, X� ¼ X�ðx�Þ. However, if these functions

are not specified, the metric (21) does not satisfy the
vacuum Einstein equations and we speak about the so-
called ‘‘off-shell’’ geometry. The vacuum (with a cosmo-
logical constant) black hole geometry is recovered [6,7] by
setting

X� ¼ b�x� þ Xn

k¼0

ckx
2k
� : (24)

The constants ck and b� are then related to angular mo-

menta, mass, NUT parameters, and the cosmological
constant (which is proportional to cn).
We can write the metric (21) in the diagonal form

g ¼ Xn

�¼1

�
U�

X�

���� þ X�

U�

��̂��̂
�
; (25)

introducing the non-normalized one-forms f��; ��̂g,

�� ¼ dx�; ��̂ ¼ Xn�1

j¼0

AðjÞ
� dc j: (26)

In this frame, the Ricci tensor for the off-shell geometry
is diagonal,

Ric ¼ Xn

�¼1

r�

�
U�

X�

���� þ X�

U�

��̂��̂
�
; (27)

where

r� ¼ � 1

2x�

�Xn

�¼1

x2�ðx�1
� X�Þ;�
U�

�

;�
: (28)

For the Einstein spacetime, polynomials (24) lead to a
constant value r� ¼ �ð2n� 1Þcn ¼ �=ðn� 1Þ.
The off-shell geometry (21) is endowed with a lot of

symmetries. The symmetry set, forming a ‘‘Killing tower,’’
is generated by a single object called a principal conformal
Killing-Yano tensor [9,10]. This is a nondegenerate closed
conformal Killing-Yano two-form h,

h ¼ Xn

k¼1

x��� ^ ��̂: (29)

The explicit symmetries are encoded by the Killing vectors
lðkÞ, k ¼ 0; . . . ; n� 1,
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lðkÞ ¼ @c k
: (30)

The geometry also possesses hidden symmetries encoded
by the second rank Killing tensors kðjÞ, j ¼ 0; . . . ; n� 1,

which in their covariant form read

kðjÞ ¼
Xn

�¼1

AðjÞ
�

�
U�

X�

���� þ X�

U�

��̂��̂
�
: (31)

In particular, for j ¼ 0, the Killing tensor reduces to the
metric kð0Þab ¼ gab.

The Killing vector �,

�a ¼ 1

D� 1
rnh

na; (32)

is called the primary Killing vector, since it turns out that it
is the first in the tower of the Killing vectors defined above,
� ¼ lð0Þ ¼ @c 0

. All Killing vectors can actually be ob-

tained from the primary Killing vector using, for our
purposes, the important relations

laðkÞ ¼ kanðkÞ�n: (33)

IV. TEST ELECTROMAGNETIC FIELD

In higher dimensions, a generalization of the above-
described geometry to the case of arbitrary rotating
charged black holes is not known. However, we can at
least investigate the weakly charged black hole, i.e., the
neutral black hole spacetime with a test electromagnetic
field satisfying the Maxwell equations in such a back-
ground. Such an approximation is plausible since even
the electromagnetic field that is small enough not to influ-
ence the background geometry can cause significant
changes in the particle motion thanks to a large charge-
to-mass ratio q=� for typical particles.

Test electromagnetic fields on the background (21) have
been studied, e.g., in [28]. However, in this paper we
concentrate on the special Killing electromagnetic field;
i.e., we assume the electromagnetic field with the vector
potential (16) given by a Killing vector �. In general, the
electric current generating such a field is Ja ¼ 2QRicab�

b.

For Ricci-flat spacetimes the Killing electromagnetic field
is thus source-free, and for the Einstein spaces the electric
current is aligned along the generating Killing vector.

In the following we will investigate the electromagnetic
field generated by the primary Killing vector � on the black
hole background (21). Since we are interested in the mo-
tion of the particle with charge q, we use the following
parametrization:

qA ¼ e�: (34)

The constant e=q parametrizes the field strength and it is
proportional to the test charge of the black hole.

The results derived in the following sections do not
depend on the nature of the source J of the primary

Killing electromagnetic field. They hold for a general
off-shell geometry (21). In such a general case, the corre-
sponding electric current is

qJ ¼ 2e
Xn

�¼1

r���̂: (35)

It represents the source distributed, in general, in the whole
spacetime, which is not very reasonable. Therefore, physi-
cally the most interesting case is when the vacuum Einstein
equations Ric ¼ 0 are satisfied, so that J ¼ 0.
In this case, the electromagnetic field (34) belongs to the

class of electromagnetic fields studied in [28]. Namely,
the potential (34) is gauge equivalent to the choice e� ¼
e=q b� of the constants e� parametrizing the field in [28],

with b� from (24). In four dimensions, it can also be

obtained from the electromagnetic field of the Kerr-
Newman solution by linearization.

V. PHASE SPACE DESCRIPTION
OF THE PARTICLE MOTION

The motion of the particle in the spacetime M with the
metric (21) can be described in phase space represented as
the cotangent bundle T�M. The basic variable is the one-
form of canonical momenta p, components pa of which are
canonically conjugate to xa, a ¼ 1; . . . ; D.
The motion in the absence of the electromagnetic field

was studied in [11,12], and it was shown that the Killing
vectors (30) and tensors (31) generate functionally inde-
pendent and mutually Poisson-commuting observables
which are linear and quadratic in momentum p, namely,

0LðkÞ ¼ laðkÞpa;
0KðjÞ ¼ kabðjÞpapb: (36)

The commutation relations of the observables (36) are
equivalent to nontrivial geometrical relations among the
Killing vectors and tensors3:

lnðkÞrnl
a
ðlÞ � lnðlÞrnl

a
ðkÞ ¼ 0; (37)

lnðkÞrnk
ab
ðjÞ ¼ kanðjÞrnl

b
ðkÞ þ kbnðjÞrnl

a
ðkÞ; (38)

knðaðiÞ rnk
bcÞ
ðjÞ � knðaðjÞ rnk

bcÞ
ðiÞ ¼ 0: (39)

The geodesic motion of an uncharged particle is gener-
ated by the Hamiltonian 0H which is essentially one of
these observables,

0H ¼ 1
2
0Kð0Þ ¼ 1

2pag
abpb: (40)

All the observables 0LðkÞ and 0KðjÞ are thus conserved

quantities (i.e., integrals of motion) for the geodesic mo-
tion. They are independent and in involution. As a result,

3These relations correspond to vanishing Schouten-Nijenhuis
brackets among all tensors lðkÞ and kðjÞ.
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according to the Liouville theorem the geodesic motion is
completely integrable.

However, in this paper we want to investigate the motion
of a charged particle modified by the electromagnetic field
(34). Such a motion is described by the Hamiltonian (12),
i.e.,

eH ¼ 1
2ðpa � e�aÞgabðpb � e�bÞ: (41)

We demonstrate now that the corresponding equations of
motion are also completely integrable. However, in this
case the integrals of motion must be modified. Namely, we
define new observables,

eLðkÞ ¼ laðkÞpa;
eKðjÞ ¼kabðjÞðpa�e�aÞðpb�e�bÞ: (42)

We show that these observables are in involution,

feLðlÞ;
eLðkÞg ¼ 0; feLðlÞ;

eKðjÞg ¼ 0;

feKðiÞ;
eKðjÞg ¼ 0: (43)

And since eH ¼ 1
2
eKð0Þ, they form a complete set of con-

served quantities for motion of the particle under the
influence of the electromagnetic field.

The modified observables (42) can be related to the
observables (36) as

eLðkÞ ¼ 0LðkÞ � LðkÞ;
eKðjÞ ¼ 0KðjÞ � 2eLðjÞ þ e2kabðjÞ�a�b: (44)

After plugging these expressions into Eqs. (43) and using
the fact that the quantities (36) commute with each other, it
remains to prove that fLðkÞ; kabðjÞ�a�bg ¼ 0 and f0KðiÞ;
kabðjÞ�a�bg þ fkabðiÞ�a�b;

0KðjÞg ¼ 0. Evaluating the Poisson

brackets4 we can translate these equalities to the language
of tensors on the spacetime,

lnðkÞrnðkabðjÞ�a�bÞ ¼ 0;

kcnðiÞrnðkabðjÞ�a�bÞ � kcnðjÞrnðkabðiÞ�a�bÞ ¼ 0:
(45)

The first equality can be easily proved realizing that,
thanks to (33), kabðjÞ�a�b ¼ gabl

a
ðjÞ�

b and all the quantities

lðjÞ, �, and g are Lie-conserved along lðkÞ.
In the second equality one has to perform the covariant

derivatives on the tensor products in their argument and use
the identity

kcnðiÞrnk
ab
ðjÞ � kcnðjÞrnk

ab
ðiÞ ¼ �ðkanðiÞrnk

bc
ðjÞ þ kbnðiÞrnk

ac
ðjÞÞ

þ ðkanðjÞrnk
bc
ðiÞ þ kbnðjÞrnk

ac
ðiÞ Þ; (46)

which follows from Eq. (39). Substituting ðrnk
ac
ðjÞÞ�a ¼

rnl
c
ðjÞ � ðrn�aÞkacðjÞ [cf. (33)], we finally get

2kcaðiÞ ðra�bÞkbnðjÞ�n þ 2kcaðjÞðra�bÞkbnðiÞ�n

� ðterms with i and j exchangedÞ ¼ 0: (47)

At the end, we used the definition (3) of the Killing vector.
We thus conclude that the observables (42) are in in-

volution, and therefore they also commute with the
Hamiltonian. They are functionally independent, which
follows from the independence of variables (36), which
was proven in [10,11]. Therefore, the Hamiltonian de-
scribes completely integrable motion with linear and qua-
dratic integrals of motion.

VI. HAMILTON-JACOBI EQUATIONS

Alternatively, instead of the phase space descriptions we
can use Hamilton-Jacobi theory to describe the particle
motion. Namely, for each conserved quantity we can write
down the Hamilton-Jacobi equation for the Hamilton-
Jacobi function (classical action) S. It is obtained by sub-
stituting dS for the momentum p in the definitions of the
conserved quantities:

laðkÞ@aS ¼ �k; (48)

kabðjÞð@aS� e�aÞð@bS� e�bÞ ¼ �j: (49)

Here, �k and �j are constants of motion.

Now we show that all these equations can be simulta-
neously solved by the separability ansatz for S,

S ¼ Xn

�¼1

S�ðx�Þ þ
Xn�1

k¼0

�kc k; (50)

where the functions S�ðx�Þ are functions of a single

variable x�.

For e ¼ 0 such a separability of the Hamilton-Jacobi
equations was proved in [15,17]. Adding the electromag-
netic field, generated by the primary Killing vector, does
not change the first set of equations (48). It is trivially
solved by the ansatz (50). The equations quadratic in dS
can be written as [cf. Eq. (44)]

kabðjÞ@aS@bS� 2e�a@aSþ e2kabðjÞ�a�b ¼ �j: (51)

Plugging in the separability ansatz (50) and using the
relation

kabðjÞ�a�b ¼
Xn

�¼1

AðjÞ
�

U�

X�; (52)

one obtains

4In covariant formalism we have fA; Bg ¼ rnA@
nB�

@nArnB, where rn is the covariant derivative ‘‘ignoring’’ the
momentum dependence of the phase space observables A, B
(taking a parallelly transported p as a constant) and @n is a
derivative with respect to the momentum p, cf., for example, the
Appendix of [12].
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Xn

�¼1

AðjÞ
�

U�

X�

�
S02� þ X�2

�

�Xn�1

k¼0

�kð�x2�Þn�1�k

�
2 þ e2

�

¼ �j þ 2e�j; (53)

where the prime denotes the derivative of S� with respect

to its single argument. We multiply both sides of Eq. (53)
by ð�x2�Þn�1�j and sum over j. Since Eq. (23) tells us that

the matrix ð�x2�Þn�1�j is inverse to AðjÞ
� =U�, we obtain

X�ðS02� þ X�2
�

~�2
� þ e2Þ ¼ ~�� þ 2e ~��: (54)

Here we introduced the polynomial functions ~�� and ~��

of one variable x� with coefficients given by �k and �j,

respectively:

~�� ¼ Xn�1

k¼0

�kð�x2�Þn�1�k;

~�� ¼ Xn�1

k¼0

�kð�x2�Þn�1�k: (55)

Equation (54) gives an ordinary differential equation for
each S�,

ðS0�Þ2 ¼
~��

X�

�
� ~��

X�

� e

�
2
: (56)

Hence, the functions S� satisfying these equations gener-

ate, through (50), the solution of all Hamilton-Jacobi
equations.

VII. SEPARABILITYAND SYMMETRY
OPERATORS OF THE KLEIN-GORDON

EQUATION

A field analogue of the spinless particle motion is a
scalar field governed by the Klein-Gordon equation. In
the presence of the electromagnetic field it must be modi-
fied into (15). For the electromagnetic field (34) we thus
get

½½ra � ie�a�gab½rb � ie�b� ��2�’ ¼ 0: (57)

The Klein-Gordon operator has been obtained from the
Hamiltonian by the substitution p ! �ir. In a similar
manner we introduce a set of operators generated by the
observables (42),

eLðkÞ ¼ �ilaðkÞra;

eKðjÞ ¼ �½ra � ie�a�kabðjÞ½rb � ie�b�; (58)

which turn out to be commuting with each other.

½eLðkÞ;
eLðkÞ� ¼ 0; ½eLðkÞ;

eKðjÞ� ¼ 0;

½eKðiÞ;
eKðjÞ� ¼ 0: (59)

Since the charged Klein-Gordon operator in (57) is simply
related to eKð0Þ, it also means that these operators are

symmetry operators of this Klein-Gordon operator.
In the absence of the electromagnetic field the commu-

tation relations (59) were proved in [17]. The electromag-
netic field modifies only the operators eKðjÞ, and we can

write

eLðkÞ ¼ 0LðkÞ � LðkÞ;
eKðjÞ ¼ 0KðjÞ � 2eLðjÞ þ e2kabðjÞ�a�b: (60)

Here we used (33) and the fact that the Killing vectors have
vanishing divergence, ral

a
ðjÞ ¼ 0.

We can write operators (58) as a linear combination of

operators ~LðkÞ and
e ~KðjÞ:

LðkÞ ¼
Xn

�¼1

AðkÞ
�

U�

~Lð�Þ; eKðjÞ ¼
Xn

�¼1

AðjÞ
�

U�

e ~Kð�Þ; (61)

with

~Lð�Þ ¼
Xn�1

j¼0

ð�x2�Þn�1�jLðjÞ;

e ~Kð�Þ ¼
Xn�1

j¼0

ð�x2�Þn�1�jeKðjÞ: (62)

It was shown in [17] that the operators 0 ~KðjÞ have the form

0 ~Kð�Þ ¼
�
~XðjÞ þ 1

X�

~L2
ðjÞ
�
; (63)

with

~Xð�Þ ¼ � @

@x�

�
X�

@

@x�

�
: (64)

The relations (52) and (60) allow us to rewrite the modified

operators e ~KðjÞ in a similar way,

e ~Kð�Þ ¼
�
~Xð�Þ þ 1

X�

½ ~Lð�Þ � eX��2
�
: (65)

None of the above operators depend on the Killing

coordinates c k. Operators with a label �, e ~Kð�Þ, ~Lð�Þ,
and ~Xð�Þ, besides @=@c k depend only on the correspond-

ing coordinate x� and the derivative @=@x�. They do not

contain x� or @=@x� for � � �. As a result, the operators
commute among themselves,

½ ~Lð�Þ; ~Lð�Þ� ¼ 0; ½ ~Lð�Þ;
e ~Kð�Þ� ¼ 0;

½e ~Kð�Þ;
e ~Kð�Þ� ¼ 0; (66)

for � � �. Using (62) and the fact that the coefficients in
front of the operators depend just on x�, a simple argument

shows that (66) implies the commutation (59), cf. [17].
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Having the set of commuting operators, we can look for
common eigenfunctions.

LðkÞ’ ¼ �k’;
eKðjÞ’ ¼ �j’ (67)

with eigenvalues �k and �j. These eigenfunctions can be

found using the separability ansatz [15]

’ ¼ Yn

�¼1

R�ðx�Þ
Yn�1

k¼0

expði�kc kÞ; (68)

where the functions R�ðx�Þ depend on a single variable x�.
Indeed, substituting (68) into (67), the equations for LðkÞ
are trivially satisfied and the equations for eKðjÞ give

Xn

�¼1

AðjÞ
�

U�

�
1

R�

~Xð�ÞR� þ 1

X�

ð ~�� � eX�Þ2
�
¼ �j: (69)

Here ~�� (and ~�� below) are again given by (55).

Summing these equations with the coefficients
ð�x2�Þn�1�j leads to an equivalent set of conditions:

ðX�R
0
�Þ0 þ

�
~�� � 1

X�

ð ~�� � eX�Þ2
�
R� ¼ 0: (70)

These are ordinary differential equations in the variable x�
for the functions R� which guarantee that (68) solves the

eigenvalue problem (67).
In particular, for eKð0Þ we obtain the separability of the

Klein-Gordon equation, which was, in the absence of the
electromagnetic field, shown in [15].

It is straightforward to check that the semiclassical
(geometrical-optic) approximation of the eigenvalue con-
ditions (67) leads to the Hamilton-Jacobi equations (48)
and (49), where we have to identify

’ ¼ expðiSÞ; i:e:; R� ¼ expðiS�Þ: (71)

VIII. ODD SPACETIME DIMENSIONS

Until now, we considered even-dimensional spacetimes.
However, the obtained results are valid in any number of
dimensions. This can be easily shown by performing simi-
lar calculations. Only some of the equations have to be
slightly changed. Here we present a short overview of the
required changes.

In the spacetime dimension D ¼ 2nþ 1, there exists an
additional angular coordinate c n, and the metric (21)
contains an additional term [6,7,22,23],

g ¼ Xn

�¼1

�
U�

X�

dx2� þ X�

U�

�Xn�1

j¼0

AðjÞ
� dc j

�
2
�

þ c

AðnÞ

�Xn

k¼0

AðkÞdc k

�
2
: (72)

Here, AðkÞ is defined as

AðkÞ ¼ Xn

�1 ;...;�k¼1
�1<...<�k

x2�1
� � � x2�k

; (73)

and c is an auxiliary constant which can be modified by a
coordinate transformation.
The geometry has an additional Killing vector lðnÞ [given

again by (30)] but the same second rankKilling tensors. The
additional symmetry generates an additional conserved
quantity LðnÞ linear in momentum. It clearly Poisson-

commutes with all the other conserved observables.
Similarly, we have an additional symmetry operator LðnÞ
commuting with other symmetry operators.
The separability ansatz for the Hamilton-Jacobi equa-

tions (50) and for the eigenvalue problem of the symmetry
operators (68) changes just by including the term �nc n.
The ordinary differential equations for S� and R�, how-

ever, acquire additional nontrivial terms which can be
partially hidden in the redefinition of the polynomials
~�� and ~��. Namely, S� and R� have to satisfy

ðS0�Þ2 ¼
~��

X�

�
� ~��

X�

� e

�
2
;

ðX�R
0
�Þ0 þ

X�

x�
R0
� þ

�
~�� � 1

X�

ð ~�� � eX�Þ2
�
R� ¼ 0;

(74)

with

~�� ¼ Xn

k¼0

�kð�x2�Þn�1�k;

~�� ¼ Xn

k¼0

�kð�x2�Þn�1�k; (75)

where we set �n ¼ c�1�2
n (cf. [15,17]).

IX. SUMMARY

To summarize, we proved that the dynamical equations
for a charged particle in a weakly charged Kerr-NUT-(A)
dS spacetime are completely integrable. We also demon-
strated that the Hamilton-Jacobi and Klein-Gordon equa-
tions are completely separable in such a space. The proof
essentially used the remarkable properties of the geometry,
namely, the existence of the principal conformal Killing-
Yano tensor, which generates the ‘‘Killing tower’’ of
symmetries. It should be emphasized that the developed
formalism works only for the test electromagnetic field
generated by the primary Killing vector. The test fields
connected with other Killing vectors do not possess these
nice properties.
Let us make some general remarks that are connected

with our results. Complete integrability of dynamical equa-
tions is quite rare. Liouville integrability implies that a
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solution can be written by applying a finite number of steps
which include algebraic operations and integration. In such
a case the phase space is regularly foliated by trajectories.
The geodesic motion in the Kerr-NUT-(A)dS spacetimes is
a new, physically interesting example of completely inte-
grable systems. In this paper we demonstrated that these
nice properties remain valid if one includes a special type
of test electromagnetic field generated by a primary Killing
vector. This generalization allows one to study the motion
of charged particles in weakly charged higher dimensional
black holes. The results might also be interesting for
‘‘physical’’ applications, for example, for the study of the
Hawking radiation of charged rotating black holes in
higher dimensions. They might also give some hints for

the search of more general, possibly self-consistent solu-
tions of electrovacuum Einstein equations and their super-
symmetric generalizations.
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