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Radiation from accelerated black holes in an anti-de Sitter universe
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We study gravitational and electromagnetic radiation generated by uniformly accelerated charged black
holes in anti—de Sitter spacetime. This is described byCimetric exact solution of the Einstein-Maxwell
equations with a negative cosmological constanVe explicitly find and interpret the pattern of radiation that
characterizes the dependence of the fields on a null direction from whidfirthedike) conformal infinity is
approached. This directional pattern exhibits specific properties which are more complicated if compared with
recent analogous results obtained for asymptotic behavior of fields near a de Sitter—like infinity. In particular,
for large acceleration the anti—de Sitter—like infinity is divided by Killing horizons into several distinct
domains with a different structure of principal null directions, in which the patterns of radiation differ.
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[. INTRODUCTION is that such a tetrad iessentially determineduniquely by
the conformal geometrlyl4]. Moreover, an advantage of the
In the context of exact solutions of Einstein’s field equa-Penrose method is that it can be naturally applied also to
tions, gravitational radiation has been studied for decades. lasymptotically simple spacetimes whigitlude the cosmo-
particular, various techniques have been developed to rigotegical constant[12—-14. This is quite remarkable since
ously characterize asymptotic properties of the gravitationathere is no analogue of the news function in the presence of
field, i.e., the geometry of spacetime at “large distance”A [16,17].
from bounded sources. However, specific new features appear in the case of
In the fundamental workl1] gravitational waves emitted asymptotically de Sitter X>0) or anti—de Sitter £<0)
by axisymmetric systems were analyzed by considering aspacetimes, for which the conformal infini is, respec-
expansion of metric functions in inverse powers of an approtively, spacelike or timelik¢12—14,18. First of all, the con-
priate “radial” coordinater parametrizing outgoing null geo- cept of radiation for a massless field is “less invariant” in
desics. In particular, the news function was defined that charcases whert is not null. Namely, it emerges as necessarily
acterizes radiation, and which is related to a decreasindirection dependent since the choice of the above-mentioned
(Bondi) mass of the source. Generalizations and refinementull tetrad, and thus the radiative compon#ty of the field,
of this method, with a deeper understanding of its relation tdurns out to badifferentfor different null geodesics reaching
the Petrov typeqsuch as the peeling-off behavior of the the same point orf. This is related to the fact that with
Weyl tensoy were subsequently achieved[i—6], see, e.g., nonvanishingA even fields ofnonacceleratedsources are
[7-10] for reviews. Nevertheless, in these works the analysisadiative along agenericdirection, as it has been shown for
of radiative fields remained confined &symptotically flat test charge§19] or for Reissner-Nordstra black holeq20]
spacetimes thus ruling out, for instance, the presence of ia a de Sitter universe, and it will be shown here for a nega-
nonvanishing cosmological constaat In addition, it was tive A (Sec. V Q. In addition, the character of infinity plays
based on the use of privileged coordinate systems. a crucial role in the formulation of the initial value problem.
It was Penrosd11-13, see[14] for a comprehensive A spacelikeZ implies the insufficiency of purely retarded
overview, who introduced aovariantapproach to the defi- massless fields so that, for example, in de Sitter space purely
nition of radiation for massless fields, which is based on theetarded solutions of the Maxwell equations are impossible
conformal treatment of infinitya comparison of the Bondi- for generic charge distributio21]. On the other hand, it is
Sachs and Penrose approaches was recently presentedwall known that a timelikeZ prevents the existence of a
[15]). This enables one to apply methods of local differentialCauchy surface, and one is necessarily led to a kind of
geometry “at infinity,” and thus to define in a rigorous geo- “mixed initial value boundary problem,” see, e.§22-24.
metric way such basic concepts as the Bondi mass, thEor all the above reasons, the definition of radiation is much
peeling-off property, and the Bondi-Metzner-Sachs group ofess obvious wher # 0.
asymptotic symmetries. In particular, gravitational radiation Any explicit exact example of a source which generates
propagating along a given null geodesic is described by thgravitational waves in afanti-)de Sitter universe is thus of
V¥, component of the Weyl tensor projected on a parallellyparamount importance since this may provide us with insight
transported complex null tetrad at infinity. The crucial pointinto the character of radiation in spacetimes which are not
asymptotically flat. Exact solutions with boost-rotation sym-
metry [25—27, which represent radiative spacetimes with
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nishing value of the cosmological constant, and it will thusterms of gravitational and electromagnetic fields in such a
be considered in the present paper. tetrad then provides us with a specific directional pattern of
The C-metric [28—-31 is a classic solution of the radiation. Convenient parametrizations of null directions ap-
Einsteir(-Maxwell) equations which has been physically in- proachingZ are introduced in Sec. IV, and the results are
terpreted and analyzed in fundamental papg®s-39 and in ~ subsequently described and analyzed in Sec. V. This is done
many other works, see, e.d25,27,36—38 for references for both the cases of a single black hole and a pair of black
and summary of the results. A generalization of the standartioles accelerating in an anti—de Sitter unive(esed for van-
C-metric to admit a nonvanishing value af has also been ishing acceleration The paper also contains two appendixes.
known for a long time[39], cf. [40,41 (also, related solu- In Appendix A the behavior of radiation along special null
tions have been obtained by considering extremal limits oflirections is studied. In particular, for geodesics along prin-
the C-metric with an arbitraryA [42]). These spacetimes cipal null directions the results are obtained in closed explicit
have found successful application to the problem of cosmoform without performing asymptotic expansions of the
logical pair creation of black holeg43—-44. However, a physical quantities neaf. Appendix B summarizes the Lor-
deeper understanding of their physical and global propertiegntz transformations of the null-tetrad components of the
including the character of radiation, has been missing untigravitational and electromagnetic fields.
recently. The interpretation of th€-metric solutions with
A>0, in particular the meaning of parameters in the metridl. THE C-METRIC WITH A NEGATIVE COSMOLOGICAL
and the relation to the “background” de Sitter universe, was CONSTANT
clarified in [47] by introducing an appropriate coordinate o ,
system adapted to uniformly accelerated observers. The '€ C-metric with a cosmological constar <0, con-
causal structure was further studied [8] for various t@ined in the family of solution§39], can be written as
choices of the physical parameters. Very recep®], we 1
have carefully analyzed the-metric with A>0 and, among 0= 5
other results, we have demonstrated that gravitational and A%(x+y)
electromagnetic fields of this exact solution exhibit asymp-
totically a specific directional pattern of radiation at. In-
terestingly, this directional dependence of fields on null di-

1 1
_ 2, 24 2 2
Fdt?+ = dy?+ = dx*+ Gdg )
2.0

whereF and G are, respectively, polynomials gfandx,

rections from which the conformal infinity is approached is —A
the same as for the test fields of uniformly accelerated F=3a2 —1+y*—2mAy’+e*A%y*,
charges in a de Sitter univerg&9].
In the present work we wish to investigate an analogous G=1-—x2—2mAx— e2A2x4. (2.2)

asymptotic behavior of fields of tHe-metric with A <0, i.e.,
the directional dependence at conformal infiriityf radia-  These functions are mutually related by

tion generated by uniformly acceleratéuossibly charged

black holes in an anti—de Sitter universe. Some fundamental -A

differences from the case$=0 appear sinc€ now has a F=-Q)+ 352, G=Q(=x), 2.3
timelike character. In fact, the whole structure of the

“anti—de Sitter C-metric” is much more complex and new where Q(w)=1—w?+2mAw’—e?A?w*. The metric(2.1)
peculiar phenomena thus occur. As observed48] and s a solution of the Einstein-Maxwell equations with a non-
thoroughly studied in the recent wofR8], for a small value  null electromagnetic field given by

of acceleration A<\ —A/3, the metric describes single

uniformly accelerated black hole in an anti-de Sitter uni- F=edyldt, (2.4
verse[50] whereas forA>\/— A/3 this representa pair of
accelerated black holes. The “limiting case” given by
A=+/—A/3, previously investigated if61,52, plays a spe-
cial important role in the context of the Randall-Sundrum

or related expressions which can be obtained by a constant
duality rotation. There exist two double-degenerate principal
null directions(PNDs

model since it describes a black hole bound to a two-brane in Kix@—Fd,, kyxd+Fé,, (2.5
four dimensions. However, this case is not investigated in the
present work. so that the spacetime is of the Petrov typelt admits two

Our paper is organized as follows. First, in Sec. Il weKilling vectorsd,, d,, and oneconformal Killing tensorQ
present theC-metric solution with a negative cosmological (cf. Refs.[14,53,59),
constant, in particular the Robinson-Trautman coordinates
which will be used in the subsequent analysis. Basic proper- , 1 .1 )
ties of the solution are also summarized, including a descrip- Q= Afx+y)* Fdt®— Edy + gdx +Gde? ).
tion of the global structure. Sections IlI-V contain the core (2.6)
of our analysis. First we define a suitable interpretation tetrad
parallelly transported along null geodesics approaching as- The metric(2.1) can describe different spacetimes, de-
ymptotically a given point on conformal infinitf from all  pending on the choice of parameters and of ranges of coor-
possible spacetime directions. The magnitude of the leadindinates. We are interested in the physically most relevant
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case when the metric describes one black hole or pairs of
black holes uniformly accelerated in anti—de Sitter universe.

In this case the constantd, m, e and C, such that

¢ e (—mC,wC), characterize acceleration, mass, charge o

the black holes, and conicity of thesymmetry axis, respec-
tively. They have to satisfin=0, e<m?, A, C>0, and they
have to be such that the functi@has four real roots in the
charged casee{m+0) or three real roots in the uncharged
case €=0m#0). The coordinate, y have to satisfy
y>—x andx €[ X¢,Xp], Wherex;<0<x, are two roots ofG,
namely those closest to zefeee[20,38,44,50 for details
and discussion of other cases, cf. also Figsl) &And 3 be-
low]. From these conditions we obtain<@G=<1, and
m-+2e?Ax>0. The spacetimég2.1) reduces to the anti—de
Sitter universe fom=0, e=0.

The coordinatex and ¢ are longitudinal and latitudinal
angular coordinatess; denotes the axis op symmetry ex-
tending from the “forward” pole of the black holén the
direction of accelerationto infinity, whereasx,, denotes the
axis from the opposite “backward” pole. For nonvanishing

acceleration the axis cannot be regular everywhere—at least

PHYSICAL REVIEW D68, 124004 (2003

f dx Au- (4D 2.1
tI'he functions(2.9), (2.10 represent a particular case, corre-
sponding to theC-metric, of the standard general expression
for the Robinson-Trautman spacetim&d]. As opposed to
the metric form(2.1), the Robinson-Trautman coordinates
allow an explicit limitA=0. The coordinates are not defined
globally but it is possible to cover the whole universe by
many coordinate patches of the same type. Therefore, it is
sufficient to study the spacetime only in just one Robinson-
Trautman coordinate map; such a patch is indicated by a
shaded domain in Figs. 4—6. We additionally assume there
that the coordinata is increasing from the past to the future.
The global causal structure of tiiemetric with A <0 has
recently been analyzed [88]. In particular, the character of
infinity, singularities, and possible horizons has been de-
scribed in detail.
Infinity Z of the spacetime is given by

one part of it has to have a nontrivial conicity, depending on

the choice of the paramet€&:. This corresponds to the pres-
ence of cosmic stringfor strutg which are responsible for

the acceleration of the black holes, see the references above

for more details.
The spacetime metri@.1) can be put into various forms.

In this paper we concentrate on investigation of radiatiorvanishes. The conform#linphysical metricg= g,
near infinity, for which the Robinson-Trautman form seems

to be a convenient one. Introducing real coordinatesand
complex coordinateg, ¢ by

Ar=(x+y) 1,
dy
Adu= F+dt’

1 d d__dy dx q
5( (tdd)=F— g+,

i _
—(d¢{—do)=de, 2.
‘/2( {—dg)=de¢ 2.7
we put theC-metric (2.1) into the form[55]
r? _
gzadmdg—dumdr—Hduz. (2.9
The metric functions are
P 2=G, H=A%?%F+G), (2.9

or explicitly

2 e?
r2=2r(InP) ,+AInP-— F(m+2e2Ax)+ =z

(2.10

with A=2P2a{fg, wherex is expressed using the relation

3

H

r=c, or equivalentlyx+y=0, (2.12
where the conformal factor
1
Q=F=A(x+y) (2.13
1 _
§= P7d§Dd§+ duddQ —HQ2du?, (2.19

is regular at infinity, given by()=0. Moreover, it follows
from Eg.(2.10 that atZ the metric function reads

(2.15

i.e., it is independent of the parametars e, and A. The
vectorne=—(HQ2%d,+ d,) is orthogonal to each hypersur-
face () =const. In particular, it is outgoing and normal to
infinity Z at any of its point, with the nornB(np,np)
=HQO?=—A/3>0. The universe is thus weakly asymptoti-
cally anti—de Sittef16], at least locally, with the conformal
infinity Z having a timelike charactefin general, it is not
asymptotically anti—de Sitter according to the definition
based on the “reflective boundary conditiof6,17,23,56
the (2+1)-metric induced orf by G is not conformally flat
since the associated Bach tensor is nonvanighifigrough-
out the paper, however, it will be more convenient to employ
the spacelike outward vector=np/H orthogonal toZ,

n=\Ha,— %ﬁ«?u, (2.16

which has a unit nornm-n=g(n,n)=1 with respect to the
physicalmetric.

At r =0 the metric has unbounded curvature which corre-
sponds to a physical singularity hidden behind the black hole
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horizon. Similarly to theC-metric with vanishing\ [32—37]

or the C-metric with A>0 [20,47,48, the zeros of the func-
tion F correspond toKilling horizons associated withd, .
Interestingly, unlike in theA=0 case, the anti—de Sitter
C-metric describes either a single uniformly accelerated
black hole(for A<+/—A/3), or a pair of uniformly acceler-
ated black holeswhenA>/ —A/3).

A. A single accelerated black hole

x=const. Y
Indeed, as described (88,50, when the acceleration pa- (a) (b)

rameterA is small namelyA<.—A/3, andm= 0, the met-

ric (2.1), (2.2) describes aingleuniformly accelerated black

hole. The condition of small acceleration guarantees that the

function F has only two zeroy,,y; in the charged case, or

only one zeroy, for the uncharged black hole. These zeros

yl Noo

define outer and, if applicablejnner horizons of the black I N
hole. The relevant ranges of coordinaxeyg representing the
spacetime outside the black hole are depicted in Fid). 1

In [38] the causal structure of this spacetime was repre- Yo Ho
sented by the Penrose-Carter conformal diagram of a two- o

dimensionalt-y section(i.e., the section of constant angular (c) (d)
coordinatesx, ¢). This section is, in fact, spanned by the
PNDsk; andk,, cf. Eq.(2.5. A part of such a conformal
diagram representing an exterior of the black hole is depicted
in Fig. 1(c). The conformal infinityZ is indicated here by a

double line. The outer horizorK,, given byy=y,, sepa- . . ) ; .
rate region Il outside the black hole from an interior of the D_|agrams(a_) and (b) depict a three-d|men5|onal_ sectigr= gonst,
diagram(c) is a conformal diagram of they section, and diagram

black hole, denoted as I[b7]. A more detailed structure of ) .
the interior of the black hole depends on whether the hole iéd) shows relevant ranges of coordinatesnd y. The diagrams
ocus on region Il between the outer black hole horizaf

charged or not, and its causal structure is analogous to th@=yo) and timelike infinity Z, y= —x. Therefore, only a small
Schwarzsthld_ or Relssn_er-No_rdS”rld)Iack ho_les_. _Because_: part of an interior of the black hole near the horizag is shown
we are mainly m_teres_ted in region Il near the infinity, we will (region 11l). In diagram(a) the horizon, is represented by two
not discuss the interior of the hole here. . conical surfaces which intersect on a bifurcation surface of the Kill-
It seems to be more instructive to combine thyesections  ing vectorg, (a continuation of cones inside the black hole to an-
for different values ofx into a unifying three-dimensional other asymptotic domain is not showiThe outer deformed bound-
picture in which just the coordinate is suppressed, as it is ary of domain Il corresponds to infinity. A particular sectionS
done in Fig. 1a). Despite the fact that this is not a complete given by x=const is shown, and the axes=x, and x=x; are
and rigorous conformal diagram, it helps to visualize andndicated. It is assumed in diagrai@ that the string causing accel-
understand the global causal structure of the spacetime. Theation of the black hole is located on the “forward” axis- x; and
outer horizonH, of the black hole is here indicated by two the corresponding conical singularity is represented by nonsmooth
joined conical surfaces, and the conformal timelike infidfity behavior aiSs (the edge ak=x;). Diagram(b) is a deformation of
is depicted as a deformed outer boundary. It has a “simplediagram(a) in which both the top and the bottom of the diagram are
topology R X S? if we include “nonsmooth” points on theg ~ Squeezed to single points, and the longitudindirection is embed-
axis where the string is located. For a vanishing acceleratiod€d smoothly at both axes. The black hole horizénhas thus a
the timelike infinity would be rotationally symmetric around droplike shape, symmetrical around the vertical axis. Diagiaris
the vertical axis, and smooth everywhere. Its deformation fof® Penrose-Carter conformal diagram of they section
A+0 indicates that the coordinates are adapted to the acce]- (*#=Ccons). Both principal null directions lie in this section.
erated sourcéfor an analogous discussion in the>0 case he precise shape of |nf|n|ty(douple line dependslon the value of
see[20]) and that there is a strin@ conical singularityon coordinatex, cf. Eq.(2.12 _[and_ this depende_nce is the reason for
. . the deformed shape df in diagram (a)]. Lines t=const, and
the ¢ axis. Particular surfaceS of a constank, correspond-

ina to th di . | f | di | y=const (coinciding with r=const inS) are drawn with labels
ing to the two-dimensional conformal diagrarfcil are also oriented in the direction of an increasing coordinate. A small part of

indicated. The sectiofis with x=x; corresponds to the axis he interior of the black hole is indicated by the dark area at the left
from the “forward” pole of the black hole, the value=X, 10 of the diagram. Finally, diagrartd) depicts thex-y section for rel-
the axis from the opposite “backward” pole. In Figlal the  eyant ranges of coordinatéshaded argaThe infinity is again rep-
conicity paramete€ is chosen in such a way that the string resented by the double line, and the horizegis shown. The thick

is located only on the axis=x;, and the conical singularity line x=const corresponds to tite/ section of diagrangc); similarly

is indicated by nonsmooth embedding of thg=const sur-  the thick linet=const in diagranic) corresponds to the-y section
face into the three-dimensional diagram, i.e., by a nonsmoothiom diagram(d).

FIG. 1. Spacetime outside a single accelerated black hole mov-
ing in an anti—de Sitter universe with acceleratidr<\— A/3.
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gluing of x= const sections at;. Notice that sincé->0 for
y<Y,o, region Il near infinityZ is everywherestatic, and
there are no Killing horizons which extend upZdcf. also
Egs. (5.6), (5.7)]. We can thus interpret the spacetime as a
universe havingglobal anti—de Sitter—like infinity(except
the nonsmoothness at the stiingth the black hole moving
“inside” it (in contrast to the case discussed below, where
pairs of black holes “enter” and “exit” the spacetime
“through” the infinity).

The diagram (b) is a deformed version of the diagram
1(a): gluing of the angular coordinate is now done
smoothly even on the axis where the string is located, and
the top and the bottom of the diagram are “squeezed” to
single points. The horizof, thus has a shape of two joined
drops,” and Sectlonsx=const are deformed accordingly. celerated black holes moving in an anti—de Sitter universe with
H(_are yve can see that coordinatey, X, ¢ used to con_str_ugt accelerationA>+/— A/3. Diagrams represent a three-dimensional
this dla_gram a_re adapted_to the source, ”Qt to th_e '_nf'n'ty_section ¢=const. They depict a domain near one pair of black
the horizonH, is symmetric around the vertical axis in con- pjes. However, they should continue periodically in the vertical
trast to infinity 7 which is deformed in the direction of ac- jrection, featuring thus an infinite chain of pairs of black holes
celeration. Diagram (b) is not so crucial in the present case entering and later exiting the spacetime through timelike infifity
of a single black hole but an analogous representation of thenly regions of spacetimeutsidethe outer black hole horizori,
black hole horizon will be used in the case of two accelerate@re drawn. Interiors of black holes and continuations of the space-
holes which we are going to discuss now. time into other asymptotically anti—de Sitter univer¢ésough the
Einstein-Rosen bridge or through charged black hale hidden
under the horizon{, and not studied in the paper. The outer black
hole horizonsH,, are represented by droplike gray shapes analogous
) ! to that of Fig. 1b), the timelike infinityZ is depicted as a deformed
m# 0. For such large values of acceleration the me®i),  cylindrical boundary of the diagrams. Diagra@ shows the Kill-
(2.2) describes an infinite number gfairs of accelerated ing horizons outside the black holesceleration horizon#t, sepa-
black holes in anti—de Sitter universe. In Flg 2, representingating two black holes, andosmological horizong+, separating
a part of the sectiorp=const, one pair of black holes is different pairs of black hole@nly one pair of holes is drawn in the

X
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>
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FIG. 2. Schematic diagrams of a part of spacetime outside ac-

B. A pair of accelerated black holes

A more complicated situation occurs whén+—A/3,

indicated by the(outep horizonsH, which have droplike
shapes analogous to the horizon in diagrain).1The main

diagram. These horizons divide spacetime into several regions:
static domains O and Il, nonstatic domairisdnd I, and domains

difference from the previous case is that both black holednside the holes hidden undgf,. Diagram(b) indicates embedding

“simultaneously enter” the universe at infinity, approach

of t-y sections for different constant values of the coordingte

each other with an opposite deceleration until they stop, anghich are spanned by principal null directions. Three qualitatively

start to move apart, again up to the infinify The same

different sectionsS,, Sg, andS¢ are shown. Exact conformal dia-

situation repeats infinitely many times both in the past and irJrams corresponding to these sections can be found in Figs. 4—6.

the future—the diagrams in Fig. 2 should be infinitely long,
composed of parts isomorphic to the part shown there. In th
following we study only one such part of the whole universe.

Relevant ranges of coordinatesandy are drawn in Fig. 3.

Diagram(c) shows hypersurfacas= const which are generated by
gull geodesics along the principal null directiokg that are dis-
cussed in Appendix A.

Clearly, both the global causal structure of the spacetime Figure Zb) shows the foliation of the spacetime by thg
and the algebraic structure are now more complex. The mesurfacex= const, the surfaces spanned by the PNDs. These

ric function F has two more zerog, andy., which corre-
spond to the two additional Killing horizonsutsideof the

black holes. We shall refer to these acelerationhorizons
‘H,, and cosmologicalhorizons .. [58]. In contrast to the

are of three different types, name$s, Sg, andSc. Clas-
sification of these types is seen from tkey diagram in
Fig. 3, where thet-y sections are represented by vertical
lines. These different types ¢fy sections are distinguished

black hole horizons, spatial sections of these horizons arby the number of horizons which they intersect.
noncompact. The horizons are represented by inclined planes For xe(—Y.,X,] the section denoted as, passes

in Fig. 2@ or as corresponding horizontal lines in Fig. 3.

throughall regions O, |, ll(and regions inside black holes

They separate static and nonstatic regions of the spacetin@nd intersects all horizorid, H,, H,. Such a section cor-
outside of the black holes: the domains O and Il are statictesponds to the conformal diagram drawn in Fig. 4. ke

whereas the domains”land I” are nonstatic. Regions I

tersectionof such a section with the conformal infinity

enclose the black holes, the regions O are “as far as possible timelike We denote asZ, a part of the infinity with
away” from the black holes. Two black holes of a given pair xe (—y¢,Xp], i.€., the part which can be reached by the sec-

are separated by the acceleration horizéfys and they are

tions S,, cf. also Fig. 10.

thus causally disconnected. Different pairs of black holes are The situation is different for sectiog of a constant

separated by the cosmological horizdrs.

xe (—Ya,— Yo Which goes only through regions I, (and
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FIG. 3. A gualitativex-y diagram in the case of large accelera- '4{4\\\‘ & Sa
tion A>\/— A/3 [cf. Fig. 1(d) for small acceleratioh The relevant .\\h g‘ ‘\‘\ x=const.
domain of coordinates andy is indicated by the shaded area. It is \ SR >

given by the coordinatex between the axeg; and x,, and the ) . ) )
coordinatey between the infinityZ, y=—x, and the outer black FIG. 4. Conformal diagram of they sectionS, intersecting
hole horizonH,, y=y, (the interior of black holesy>y,, is not ~ Poth the horizonst,, 7 outside black holesright), and its em-
studied herg The infinity is represented by a double line, the ho- Pedding into three-dimensional diagram- const (left). Each of
rizons by horizontal lines. They sections of constant are repre- ~ Sections of constant (and ¢) with x e (—yc,X] intersects all ho-
sented by vertical lines. Three such typical sectigs Sz andS; ~ 1zons and extends through the whole spacetime. Both three-
are shown. They are distinguished by the number of horizons whicqimensional and two-dimensional diagrams should continue peri-
they intersect. These sections correspond to the conformal diagrarfélically in the vertical direction. In the two-dimensional conformal
in Figs. 4—6A.., B.., C.. are points at the infinity which belong to diagram the infinityZ is depicted by double lines. Sectidh inter-

these three sections, respectively. They can be found also in FigSECts the infinity in a timelike surface belonging to domi# cf.
4-6. Fig. 10. Cosmological horizor¥., acceleration horizons(,, and

outer black hole horizong{, are represented by diagonal lines.
regions inside black holgsand does not intersect the hori- Domains between the horizons are labeled asQJI| and Il cf.
zon H.. This section corresponds to the conformal diagranFig. 2(a). Interiors of black holes are indicated only partially, by the
presented in Fig. 5. The intersection of such a section withlark area behind the horizdt,. Lines of coordinates andy are
infinity is spacelike and consists of two disjoint parts, one in shown with labels oriented in direction of an increasing coordinate.
the future and another in the past of the section. A part of thén area covered by one Robinson-Trautman coordinate (cug-
infinity which can be reached in this way will be labeled asdinatesu, r) is indicated by the shaded background. Without the
7,+ andZ,-, respectively, cf. Fig. 10. loss of a typical behavior, the special sectioax, has been chosen

Finally, for x e [X;, —Y,) the sectionS. of constantx ex- for this diagram; other sections wittr —y. look qualitatively the
tends only to the region Iland regions inside the black same, only with embedding not lying in the plane of symmetry of

hole), and it does not intersect the horizoHg and?,. The e three-dimensional diagram.

conformal diagram of this type is given in Fig. 6. Secti§9  -gnstantu reduces to a horizoft, for u= —, and to a
intersectsthe infinity in atimelike surface, and a part of the grizon H, andH, for u=c. A connected domain covered
infinity which can be reached by these sections will be deyy finite values of coordinata is indicated in Figs. 4—6 by
noted byZ,, cf. also Fig. 10. _ the shaded background. Remaining parts of spacetime have
The above described three types of conformal diagramg, pe covered by different patches of Robinson-Trautman
depicted in Figs. 4—6 have been drawn recentli38] (to-  coordinates defined analogously. The domain indicated in
gether with special limiting cases=—y. and X=—Ya  figures by a shaded background, covered by a single
which we do not discuss hereTheir qualitative dependence Ropinson-Trautman map, thus reaches up to all types of in-
on the value of coordinatehas been already noted there but finity except to the parf,-, which is, however, related to the
not discussed in more details. Putting all these conform%artzﬁ by a simple time reversion. Therefore, we do not

diagrams together to the single three-dimensional picturgyose any substantial information using only this Robinson-
shown in Fig. 2b) elucidates the character of this depen-T,5utman coordinate map.

dence. Moreover, it clarifies how the timelike infinifycan
form a spacelikeboundary of a conformal diagram as for
sectionSg, Fig. 5—this spacelike boundary is the intersec-
tion of the two timelike hypersurfacesand Sg .

In Fig. 2(c) the surfacesi=const are shown. These null Now we are prepared to discuss radiative properties of the
surfaces are formed by null geodesigs = const tangent to  C-metric fields near the timelike infinitf. As we have al-
PND (see Appendix A and they indicate how the spacetime ready mentioned in Sec. |, followind 4], by radiative field
is covered by Robinson-Trautman coordinates. A surface ofve understand a field with the dominant component having

Ill. GRAVITATIONAL AND ELECTROMAGNETIC FIELDS
NEAR Z
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FIG. 5. Conformal diagram of they sectionSg intersecting
only the horizonsH, outside black holes, and its embedding into any horizons outside black holes, and its embedding into the three-

three-dimensional diagram=const. Such a section of constant

(and @) with xe (—y,, —Y,) intersects all horizons except the cos-

mological ones. In contrast to sectioi of Fig. 4, sectionSg does

PHYSICAL REVIEW D68, 124004 (2003
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FIG. 6. Conformal diagram of thiey sectionSc not intersecting

dimensional diagranp = const. Such a section of constar(and ¢)
with xe[X¢,—Y,) does not intersect cosmological and acceleration
horizons. In contrast to sectiaf,, of Fig. 4, sectionSc does not

not extend through the whole spacetime, but it can be found near afixtend through the whole spacetime, but it can be found near any
pairs of black holes. The section still extends between both holes dflack hole. Unlike sectiog from Fig. 5, it even does not extend

a given pair. SectiorSg intersects the infinity in twaspacelike
surfaces, one forming a future boundarySfbelonging to domain
7,+, the other forming a past boundary belonging to donTain cf.

between holes of a given pair of black holes. Sect¥gnintersects
the infinity in a timelike surface which belongs to domdjpof the
conformal infinity, cf. Fig. 10. Notation for infinity, horizons, etc.,

Fig. 10. Notation for infinity, horizons, etc., is the same as in Fig. 4.and the meaning of the shaded area are the same as in Fig. 4.
The shaded area again indicates Robinson-Trautman coordinate

patch.

the 1/ fall-off, calculated in a tetrad parallelly transported

along a null geodesiz(#), » being the affine parameter. In
the following we derive the characteristirectional pattern

of radiation, i.e., the dependence of the radiative component

of the fields on thalirectionalong which agivenpoint at the
infinity is approached.

We start with a generalull geodesics (z7) approaching a
fixed pointN,, at infinity Z as »— +o (or p— —=). We
observe that coordinates y, andu, ¢, as well as metric
functionsF, G, andP, are finite at the poin,, , whereas the
affine parameter; and the Robinson-Trautman coordinate
go to infinity as the geodesic approactiescf. Sec. II. We
denote the limiting values ofi of the coordinates and the
metric functions by a subscript2.”

To obtain a more detailed description hdly, is reached,
we have to find the tangent vector of the geodesic,

Dz . ) ) )
——=td+yd,+ X+ ¢d,.

a7 (3.1

As mentioned i 32], an explicit form of the tangent vector

can be obtained using specific geometrical properties of the

C-metric (2.1). The presence of two Killing vectoid, 4,,
and of one conformal Killing tensa® (cf. Sec. 1) implies
that there exist three constants of moti@= —d;- gZ,
J=4, 32, and Q=2Q(g%,§2), respectively, for any null
geodesic. Namely, we have

Ft

E= Ge
= Ay

T Ry

Ft?—F 12+ G %%+ G{?

Q= A% (X 1Y) 3.2
In addition,Dz/d# has a null norm
—Ft?+F Y2+ G %%+ Gp?=0. (3.3

The above four equations imply
t=EAX(x+y)2F %, y=¢,A%x+y)2JEZ-QF,
x= e, A%(x+Yy)?>QG—J?,

(3.9

wheree,, €,=*1 are the signs of andX, respectively.
The components of the tangent vect&rz/d» in the
Robinson-Trautman coordinaté®.7) are thus given by

P =— &AVQG—J?— e, AVE’—QF,

1
(|= ——— 2__
U= 7= (¢, JE>~QF +E),

p=JIA(x+y)?G Y,

1 B )
§=ﬁ(ey\/E2—QFF 1L EF?

—6,/QG—J°G 1-iJG™Y). (3.5
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We immediately observe that there exists a family of 3 3 A 2¢cC
simple null geodesics=AE, {=0=, corresponding to the d+r=ex V1i-3 57 (3.12
special choice of the constanls-0=Q, €,= —sgnE. These ”
lie in the planesx, ¢=const, cf. Eq.(3.4), and they are wheree= =+ 1. For any giverc there are thus two real values
considered in Appendix A. of d, according to the sign of. In fact, the above parameter
Now, we notice that remains finite at infinityZ, e identifies whether the geodesic is future or past oriented. To
see this explicitly, let us consider the future-oriented timelike
f~—eAVQG.— I~ e AVE*~QF..=y. (3.6  vector @, near infinity [d,-d,= —H~(A/3)r2<0]. The
projection of tangent vectof3.8) onto 4, is, using Eg.

This means that and » are asymptotically proportional, (3.12
=~y (3.7 Dz 1+Ad) [, Aace
—_— ~ — fy _ = — e'y —_ — —.
We can thus easily obtain thesymptotic behavioof the dp 3 3 P2
above tangent vector by expanding expressi@r® in pow- (3.13

ers of 1k (assumingy+# 0 because the geodesic approache

infinity). We get[59] The geodesic is thus future or past oriented wien-0 or

€y<0, respectively. Of course, it is physically natural to

Dz 1 restrict ourselves to future-orientegeodesics only. Without
an= — (1?9, —cd,—cd;—da,), (3.8) loss of generality we thus assume the identification
noyn
. sgny=ce. (3.19
with the constantge e C andd e R related to the conserved
quantitiesk, J, Q by Consequently, geodesics wigr + 1 areoutgoing(reaching
7 for n— + ) whereas those wite= — 1 areingoing (start-
1 _ _ ing atZ for np— — ).
— =2 1 1
c=- ﬁ(fy E*-QF.F."+EF, In order to find the radiative behavior of fields n&awe
have to set up an interpretation tetrad transported parallelly
—6,/QG,.— 3G 1-iJG. Y, along a general asymptotic null geodesic, and project the

Weyl tensor and the tensor of electromagnetic field onto this
1 tetrad. In fact, in the following we will employ several or-
d=— W(Ey\/EZ—QFoﬂL E). (3.9  thonormal and null tetrads which will be distinguished by
YA e specific labels in subscript. We denote the vectors of a ge-
These constants are not independent. In fact, they satisfy tHieric orthonormal tetrad @sq, r, s, wheret is a unit time-
normalization condition3.3) which in Robinson-Trautman ke vector and the remaining three are spacelike. With this
coordinates asymptotically readsecall Egs. (2.9 and normalized tetrad we associate a null tetkad, m, m,

(2.19] . L
k=— = —(t—
(t+0a), fz(t a),

A
2P 2CG+ 2d+ 5 d°=0. (3.10 V2
1 . _ 1 .
The expansior{3.8) of the tangent vector corresponds to m=—(r—is), m=—(r+is), (3.195
the asymptotic form of null geodesie$») nearZ given by V2 V2
Eq.(3.7) and such that
C d _ =
{=lot—+, u=u,+—+. (311 k-I=-1, m-m=1, (3.16
Yn Yn

all other scalar products being zero.

The constantg.., u. specify thepositionat Z which par- The Weyl tensor is parametrized by five standard complex
ticular geodesiq3.11) is approachingor from which it is  coefficients¥,,, n=0,1,2,3,4, defined as its specific compo-
receding, whereasc, d represent thdspacetimg direction  nents with respect to the above null tetrad, see @Bd).
along whichN,, is reached. The constantfixes the affine  Similarly, the tensor of electromagnetic field is parametrized
parameteryn. From Eq.(3.7) we see that ify>0 thenr is by ®,,, n=0,1,2, see EqB2). The well-known transforma-
growing and geodesics are approaching the infinity fortion properties of coefficient¥, and ®, under null rota-
n— +o—we will denote these as outgoing. On the othertions, boost, and spatial rotation of the tetrad are summarized
hand, wheny<0 then the geodesics approgfl{r—=) as in Appendix B.
n— —o, i.e., the coordinate is decreasing with a growing To define a suitablenterpretation tetradk;, I;, m;, m; we
7. The corresponding geodesics are ingoing: they “start” onneed to specify either its initial condition inside the space-
7 and recede from this into finite regions of the spacetime. time, or its final condition at timelike infinity, in a compa-

Solving the normalization conditio(8.10 we obtain rable way for all geodesics approaching infinity along differ-
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ent directions. We consider geodesics which reach the sankobinson-Trautman null tetra@.18. We first apply Eq.
pointN,, atZ, and thus we prescribe the final condition there.(B6), then Eq.(B3), and finally Eq.(B9) of Appendix B with
We naturally require that the null vecthy is proportional to  the parametergs0]
the tangent vector(3.8) of the asymptotic null geodesic

-1
(3.1, I UL
K 1+ 3 d by
e Dz
i~ dn (3.17 A cr
e
We wish tocomparethe radiation for all such null geodesics
approaching the given point & and it is thus necessary to A
consider a unique and universal normalization of the affine B=¢| 1+ €d>, ®=0. (3.20

parameteryn, and of the vectok;. A natural and also the
most convenient choice is keep the parametey fixed—  1hq reqyiting null tetrad, using relatig®. 10, then takes the
see an analogous discussiori20] near Eqs(5.6) and(5.9). following asymptotic form ag)— ew:

In fact, this is equivalent to fixing the compongnin of the '
4-momentunp=Dz/d» at some large value of i.e., at the

given proximity of the conformal infinity. ki~ €——(r?d,—cd,~cd;—da,),
Following a general framework introduced 4], the L
null vector l; of the interpretation tetrad now can be fixed Al 6
asymptotically by normalizatio3.16) and the requirement li~e— r20r+co’i§+a72+(d+ - o”u},
that onZ the vectorn normal to the infinity belongs tk;-; 6| A
plane Obviously, the direction of, at a pointN., on Z thus i
uniquely depends on the choice of the particular null geode- M~ E ﬁ Eﬂ e —d) J— ia
sic (3.11) approaching infinity, i.e., on the specific vecigr ' yn|6 C ¢ £opziup
Remaining vectors m;, m; cannot be prescribed
canonically—there is a freedom in choice of their phase fac- P, [ A A cd c
tor (a rotation in the transverse;-m; plang. Therefore, we m;=~ v 1+ Ed) 9+ 6 ¢ % Eau (3.2
have to find such physical quantities which are invariant un- - ”
der this freedom. Obviously, tireoduli| W | and|® | of the The above vectok; is indeed obviously tangent to a gen-
fields atZ are independent of the specific choice of the vec-gra| asymptotic null geodesi¢8.11), and satisfies the con-
torsm;, m;. dition (3.17). Moreover, the normah to Z, cf. Eq. (2.16),

To derive the field components in the above-defined interpe|ongs to the plane spanned by the two null veckerand
pretation tetrad we start with the simple Robinson-Trautman. | as required,

null tetrad kgr, g, Mgy, Mgr (See, e.g.[31]) naturally

adapted to the Robinson-Trautman coordin2e8) € ( A 6 1
n~— \/——ynk-—\/———l->. (3.22
ker=0;, lgr=—3Had +4d,, V2 6 | A ym?

p - p Notice that the projection df; onn is
Mer= 97, Mpr= 0, (3.18
€ 3
o Ki-n~—~\/——. (3.23
Note that the vectokgr is oriented along the double degen- Yn A

erate principal null directiork,, cf. Eq.(5.4). In this tetrad
the only nontrivial component® X" and®X", which repre-
sent the gravitational and electromagnetic fields, are

For outgoing geodesics € +1,7— +) we indeed obtain
k;-n>0, whereas for ingoing oneg€ — 1,7— —x) there is

ki-n<O.
e?\ 1 Therefore, the tetrad3.21) is exactly the interpretation
U= —| m+2e?Ax— —)—3, tetrad suitable for analysis of the behavior of fields close to
rr infinity Z. As seen above, the Lorentz transformations from
)5 the tetrad(3.18 to (3.21) are given by two subsequent null
WRT_ _ i ﬂ\IfRT \IIRT:3A r YR rotations and the boost with the paramete@<0. Starting
8 va P ’ 4 pZ ’ with the component§3.19 in the Robinson-Trautman frame
we thus obtain, using EqéB7), (B4), (B10) and(B8), (B5),
e Ar (B11), the asymptotic form of the leading terms of gravita-
P=— T PF'= —szCDTT. (3.19 tional and electromagnetic fields
2 — 2
The interpretation tetrad;, I;, m;, m; can be obtained by P~ — w A(1+ éd) _ £ ,
performing two subsequent null rotations and a boost of this N ynPs 6 3vV2
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A AT
A<1+—d)——

where x,, is the coordinate of the pointl,, related to the
coordinates,., u., by Eq.(2.11). The other terms decrease
faster in accordance with the well-knovpeeling behaviar
which is a consequence of the boost contained in(E§2
that is infinite onZ, cf. [14]. Notice also that the square of

> gives the modulus of the Poynting vectorm{§|
~|®4|?, defined in the interpretation tetrd8.21). Interest- 6 R
ingly, the dependence d¥},| and|®5|? on the direction c=—1\/ _KP“’W'
along which the poini\.. at infinity Z is approached igx- IR
actly the same

The null directionk; can be obtainedup to normaliza-
, (3.24  tion) from the above reference vecthy by a null rotation
(B6), and thus it can be parametrized by a complex param-
eterR as[61]

€e
V2ynP.,

kick,+ Rm,+Rm,+RR,. (4.4)

Comparing this expression with E.21) we can relatdR to
the parameters andd,

. . . 6 |R|2
Expressiong3.24) are (formally) identical to Eqs(6.16 _
d n —21_|R| . (4.5

of [20] in which radiation in theC-metric spacetime with
A>0 was investigated. Interestingly enough, one can also ) o )
directly setA=0. The directional dependence given by theNow we may rewrite the directional patte(8.24) in terms
parameters and d vanishes in this limitsincel; becomes of the parameteR. First, recall that there is no canonical
independent ok;) and formulag3.24) can be compared with Way how to choose .the phasg of the transverse null vectors
the results obtained in classic wof82] (see alsd33]) for ~ Mi, M;. Therefore, invariant information independent of a
accelerated black holes in asymptotically flat spacetime. ~ choice of the interpretation tetrad is contained only in the
Nevertheless, the physical and geometrical meanings dhoduliof fields components. Substituting relatio@sS) into
Egs. (3.29 is very different now since new interesting and expression$3.24) we obtain
specific features occur for the<<0 case. The following sec-
tions will be devoted to deeper description and analysis of
the above result.

3A%(m+2e?Ax..) |1-R;R|?1-R,R|?
ynPZ (1-|R®»*

AR

IV, PARAMETRIZATIONS OF THE NULL DIRECTION | A |1-RRII1-R,R]
AT T ||~ = 2

Vaynp. SR 9
For a physical understanding of expressig824), as

well as for explicit demonstration of fundamental differencesyhere

between radiation generated by accelerated black holes in

spacetimes withh >0 andA <0, we introduce more conve-

nient parameterizations of the directi&n along which the R1=0, Rp;=

infinity Z—now timelike—is approached. To parametrize

this radiation direction we first choose a suitabdéerence We have introduced here not or but also a “super-

tetra_ld to; Go: Fos So ON T which is orthonormal, adapted to fluous” parameteiR,;=0. This is motivated by a general re-
the infinity, sult [62] concerning an asymptotic structure of the fields
Qo="N, (4.1) when A<O0. In fact, the real parametei®;, R, have an
important physical meaning—they represent double-
and witht, future oriented. Otherwise the tetrad can be cho-degeneratgorincipal null directions(PNDs k; andk, [cf.
sen arbitrarily. A natural choice is to consider a tetrad closelyEQ. (2.5)] at the infinity Z. Indeed, the specific complex pa-

related to the Robinson-Trautman teti@d18, namely, rameterR representing a PND with respect to the reference
tetrad has to satisfy quartic equatithy=0 (see, e.g.[31]),

H 2 i.e., using Eq(B7),
Ko= Vg kero lo= Vglar: Mo=Mer, (4.2

RYWI+4AR3W+6R?*WS+4RVI+W5=0. (4.9

s}
- 4.7

so that[cf. Eq. (3.19]

d,= \/ﬁ ty, This, in view of Eqs(4.2), (B10), and(3.19, asymptotically
reduces exactly to
1
%= (ot %) (R—Ry)4R—R,)?=0. 4.9
1t Therefore, the first double-degenerate PNXP is indeed
3= — = (rot+isy). (4.3  given byR=R;, whereas the second orle,, is given by
v2 P R=R,.
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Instead of using the complex paramekefor identifica-
tion of the null directiork; we can introduce two real param-

eters with an obvious geometrical meaning. First, we per-

form a normalized projection of the null vect&r onto Z,
defining thus the unit timelike vectay tangent to the infin-
ity:

_ki—(ki-n)n
" Jkin|

(4.10

Then t,, represents the radiation direction alofigcorre-
sponding to the null vectdk;,><t,+ en. We can characterize
tp (and thusk;) with respect to the reference tetrad as

tp,=coshys ty+sinhy(cose ry+sing s,).

(4.1

The parametersy, ¢ are pseudo-sphericalcoordinates,
e[0,2) corresponding to Aoost and¢ €[ 0,27) being an

angle Their geometric meaning is visualized in Fig. 7. How-

ever, these parameters do not specify the null direckion
uniquely—there always existme ingoingandone outgoing
null direction with the same parametegsand ¢, which are
distinguished bye.

Substituting Eq(4.4) into Eq. (4.10 and comparing with
Eq. (4.11) we can expresg and ¢ in terms ofR as

2|R|

tanh¢= mz, b= —argR. (412

Observing that the sign of the expression [R|?xk;-n de-
termines whethek; is ingoing or outgoing, i.e.,

e=sgr(1—|R|?), (4.13

we can write down the inverse relations,

tanhgexq—iqs) for k; outgoing (e=+1),

cothgexp(—i(r/;) for k; ingoing (e=—1),
(4.19

and also the relations to the parameteendd,

[ A 2c ) AN
—€\ "% P—w—5|nh¢/fexp(|¢), € 1+§d =coshi.

(4.195
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FIG. 7. Parametrizations of a null direction at timelike infinity
Z. All null directions at a pointN.,e Z can be characterized by a
future oriented null vectork. According to their orientation
e=sgnk-n) with respect tdZ, these can be divided intoutgoing
andingoing families—see, e.g., vectok$®® andk{™ in the figure.
(Special null directionsangentto Z will not be discussed heneThe
null direction is parametrized by a boogt and an anglep, or
alternatively by spherical angle® ¢. These parametrizations are
defined with respect to the reference tettadq,, ro, - In the top
diagram the vectors,, q,, Iy (Wherer =cos¢r,+sings,) are
depicted, the remaining spatial directigp is suppressed. In the
bottom left diagram the timelike directio is suppressed and all
spatial directions are drawn. Finally, in the bottom right diagram the
spatial directiorg,=n normal toZ is omitted. The parameters ¢
specify the normalized orthogonal projectign[Eqg. (4.10] of the
null vector k onto Z by Eq. (4.11. All possible t, form a two-
dimensional hyperboloit drawn in the bottom right diagram. This
hyperboloid can be radially projected onto a two-dimensional disk
tangent to the vertex of the hyperboloid giventgy The disk can
be parametrized by radial coordinate- tanhy, and anglep. Alter-
natively, the null direction can be characterized by the normalized
spatial projection g, [Eq. (4.17)] of the null vectork into the
3-space orthogonal ty . The projectiong, can be parametrized by
spherical angle®, ¢ with respect to the reference tetrad, see Eq.
(4.18. All spatial projectionsy, form a two-dimensional sphei®
shown in the bottom left. This sphere can be orthogonally projected
onto Z, where it again forms a two-dimensional disk parametrized
by p=sin6, and ¢, cf. Eq. (4.19.
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f
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k outgoing (e=+1) k ingoing (e=—1) k outgoing (e=+1) k ingoing (e=—1)
k1 outgoing (e1=11), 1 =0 k1 outgoing (e1=+11), 11=0
(a) Ro>1 . B (b) Ra<1 . D
k> ingoing (e2=-—1), 1270, ¢2=0 k> outgoing (e2=+1), 9270, ¢p2=0

FIG. 8. Possible directional patterns of radiati@nl6) [or, equivalently (4.6), (4.21)] which express the magnitude of the leading terms
of gravitational or electromagnetic fields as a function of a direction from which the Noiwat infinity Z is approached. The corresponding
outgoing = + 1, small white spgtor ingoing (e= — 1, black spotnull geodesic with a tangent vectorare parametrized by=tanhy and
¢, cf. Fig. 7. The pattern&®) apply to pointsN,. in which the double degenerate PND (white spoj is oriented outwards from the universe
whereak, (black spot inside it. The patternéo) apply to points in which both the PNDs are outgoing. The pattermould also apply for
points where both PNDs are ingoing, only with exchanged words “ingoing” and “outgoing.” The radiation completely vanishes along
directions which are exactly mirrored of the PNDs, with resped.to

Substituting from Eq(4.15 into Eq. (3.24 we obtain such thatk;<t,+q,, is naturally characterized bgpherical
angleso and ¢ with respect to the spatial vectogs, r,, S
o AL (m+ 2€?AX.,) of the reference tetrad, namely,
[Wal~—7 Y

g,=C0S# g,tsSinf(cose rot+sing s,). (4.18

X|R5 1(1+ e coshy) — e sinhyy exp(i ¢) |2,
Obviously, this is more convenient for a unified description

. A |el of both outgoing €= +1) and ingoing €= —1) null geo-
| D%~ /ﬂ — desics. The former are parametrizedéyy| 0,7/2), the latter
yn by 6e (w/2,7]. Comparing with the previous parametriza-
><|R2‘1(1+ € coshy) — e sinhyp exp(i ). tions of the null directiork; we obtain
(4.16 2|R|

sin 0=tanh¢= WE[),
The dependence of the fields on the paramefesasd ¢ is

shown in Fig. 8. )
There exists yet another natural possibility how to char- cosf= e sechy— 1_|R|2

acterize the null direction at the infinity. Instead of decom- 1+|R[*

posing the propagation vect&r into the component normal

to Z and the transverse timelike vectyy tangent toZ, we . 2|R|

may alternatively consider its normalizegatial projection tan6=esinhy= 1- R (4.19

g, Where by the spatial projection we mean a projection to a
suitable three-dimensional space, say that orthogona), to The parametep is used in Figs. 7, 8, and 11. The inverse

(see Fig. 7. This spatial propagation vector relation
ki+ (Ki-to)to 0 .
Q= (4.17 R=tanz exp(—i¢), (4.20
|k|'to| 2
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and analogous expression E4.14), show thatR is actually  or along ingoing €= —1) geodesics given by
astereographigarametrization of,, andLorentzian stereo-
graphic parametrization ofy, .

tanhﬁzR =¢,=0, or
Expressing the field&4.16) using # and ¢ we get 2 1 Fme

Al (m+2etAx.) . o Um
|\If4|%TW6’—|R2 (1+cos#)—sinfexpi ¢)|?, tanh7=R2, ¢m=0. (5.3
A le| Clearly, only one of the condition&.2), (5.3) involving R,
|Dh|~ \/ 5 IR, (14 cosh) —sind expi ¢)|. can be satisfied for a given value B. Therefore, further
24 yn|cosd| description of the radiation pattern necessarily depends on

(42D the specific algebraic structure of the spacetime at a given
&oint N, at Z, in particular on theorientation of PNDs.

We have thus presented the directional radiation pattern The PNDs have explicit form, cf. Eqé4.4), (4.7),

the anti—de Sitter infinity using three suitable parametriza-
tions of the null direction along which the infinity is ap-

proached, namely Eq$4.6), (4.16), and(4.21). The pattern kloci(to—i— o) = Ko* kg,
is depicted in Fig. 8. Now we can proceed with its physical V2
interpretation.
. 1 1-R3 2R, .
V. ANALYSIS OF THE RADIATION PATTERN 25 bt 1T RS BF 17 RS ol 4

First, we observe that the radiation “blows up” for direc-

. ! : Using the relation(4.14) they can be parametrized as
tions with|R|=1, i.e., y—, 8=u/2, p=1. These are null n9 lor(4.14) they P 'z

directionstangentto the infinity Z, and thus they do not =0,

represent a direction of any outgoing or ingoing geodesic

approaching the infinity from the “interior” of the space- s R, for Ry,<1

time. The reason for this divergent behavior of the radiation tanh7= 1R, for Ru=1" ¢,=0. (5.5
2 2=

is purely kinematic: by imposing the “comparable” final
conditions for the interpretation tetrddf. the discussion
after Eq. (3.17] we have fixed the projection of the
4-momentunpek; onto the normah. Clearly, this condition
leads to an “infinite” rescaling ok; if k; is tangent tdZ, i.e.,
orthogonal ton. Such rescaling results in the above diver-
gence of| | and|®}|.

This divergence gdiR|=1 actually splits the radiation pat-
tern into two components—the radiation patterndatgoing
geodesics|R|<1, and to the pattern fangoing geodesics,
|R|>1, cf. Eq.(4.13. These two different patterns corre-

spond to Eq.(4.16 with e=+1 ande=—1, respectively. 5 es of the parameters describing the spacetime. Before we
They are depicted in Fig. 8 as separate diagrams. continue with a discussion of the different possibilities, let us

_ From Egs.(4.6) it can |mmeid|ately b? observed that ra- note that the three possible regions Bfwith the distinct
diation completely vanishe$W,|=0=|®;|, along specific  srycture of PNDexactly coincidewith regions of different

By inspecting Egs(5.4) we observe that the first PNR,;
always points along the normakq,, i.e., outside the uni-
verse However, for the second PNR, there are distinct
possibilities according to whetheéR,=1. At points onZ
whereR,<1 the vectork, is outgoing(e,= +1), i.e., ori-
entedoutsidethe universe. In the regions whelRe>1 it is
ingoing (e,= —1), orientedinside the universe. At special
points whereR,=1 the PNDk,x (t,+r,) has no component
alongn; it is tangent toZ.
Which of these three alternatives can occur depends on

null directions withR=R, satisfying characters of the Killing vector field, . Recalling(2.12), the
1 1 value of the metric functiorr at a given pointN,, on Z is
R.=— or R,=—. (5.1) Fm=.F|y:_Xm. Considering Egs(2.3), (2.9), and (4.7) we
R1 R> obtain
In fact, the direction given by R},, n=1,2 is themirrored R%—l )
reflectionof the PNDk, with respect taZ: using Eqs(4.13, FW=?=(R2—1)GW, (5.6

(4.14) we find that both R,, andR,, correspond to the same

=y (@nd $=0) but with the opposite=. The radiation  \hich demonstrates the relation between the structure of
thus vanishes along mirrored reflections of the PNBS]. PNDs and the character of the spacetime near infinity. If

In terms of pseudo-spherical parametgrsp we find, cf. R <1 thenF.. <0 and the Killing vectom, nearZ is space-
also Egs.(4.16, that the radiation vanishes along outgoing jike. If, instead,R,>1 thenF..>0 andé, is a timelike Kill-

(e=+1) null geodesics such that ing vector field—the region nedf is thusstatic The above
two domains of infinity are separated by tKéling horizon
cothﬁ —R,, ¢y=0 (5.2 consisting of points for whiclR,= 1, where the Killing vec-
2 ' meo= ' tor is null. Note that the Killing horizons may indeed extend
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<

FIG. 9. WhenA<.\—A/3, the C-metric represents a single,
uniformly accelerated black hole. The region near infiditis ev-
erywhere static. The first PNR, is oriented outside the universe,
whereas the second okeg points inside it.

(for sufficiently large acceleratiorio the conformal infinity, FIG. 10. For large values @t> \— A/3 theC-metric represents
which is a specific property of anti—de Sitt€rmetric. pairs of accelerated black holes. The conformal infidiisthown on

the left is divided by horizong{, andH, into several distinct do-
mains: Zo and Z,, are static, whereag,+ and Z,- are nonstatic.
Moreover, in the regiong, (corresponding to sectior$,) andZ;,
We now discuss the case when the acceleration paramet@orresponding taSc) the PNDk; is oriented outwards, whereas
A is small, A< [—A/3. As explained in Sec. IlA, the the PNDKk, is oriented inwards. I+ (sectionsSg) bothk; andk,
C-metric then describes a single uniformly accelerated blackReint outside the universe, ifj- both the PNDs point inside it.
hole in an anti—de Sitter universe. Its global structure for a
constanty is visualized in Fig. 1. There amo Killing hori-  R_~1 denoted ag, andZ; , k. is oriented inside it; see Eq.
zons extending t@ (which would correspond t6..=0, i.€., (5 4) These domains of the infinity can be reached through
Rp=1) since using Eq(4.7), (2.10, and 0<G=1 there is the sectionsS, and S, cf. Figs. 4, 6. On the other hand, in
1 the domain wher®,< 1, denoted ag,+ (accessible through
R,>P,=—==>1, (5.7  Se. Fig. 9, both PNDs are oriented outside the spacetime.
JG., In each of these regions the radiation patt@i6 is thus
different. In particular, it admits a different number of direc-
for all xe[x¢,X,]. Accordingly, the region near infinitf is  tions along which the radiation vanishes. Recalling that the
everywhere staticWe thus find that the first PN, is al-  radiation vanishes along mirrored reflections of PNDs, we
ways orientecbutside whereas the second oke is always see that in the static regiori, and Z, there is just one
orientedinsidethe universe, see E¢5.4) and Fig. 9. outgoing (e=+1) direction along which the radiation
The corresponding radiation pattern is shown in Fig).8 Vvanishes, as in the previous case of a single black hole. This
There existsjust one direction along which theoutgoing is the mirrored reflection ofk,, Ryn=1/R; [¢m= 2,
radiation €=+1,|R|<1) vanishes, namely the direction ¢m=¢>=0, cf. Eq. (5.2)]. The corresponding directional
Rn,=1/R,. It is the mirrored reflection of the ingoing PND pattern is again given by the left part of Figag However,
k, [see the left part of Fig. @]. In terms of pseudo- in the nonstatic regiorf;+ there is nooutgoing direction
spherical parameters the direction is described by(E®), along which the radiation vanishes because mirrored reflec-
i.e., ym= 1, and ¢,,= $,=0, wherey,—the boost param- tions of both PNDs are ingoing. In other words, the condition
eter characterizingt,—is given by Eq.(5.5). The radiation ~(5.2) cannot be satisfied becauRg<1. The radiation pattern
pattern foringoing radiation = —1,|R|>1) is visualized for outgoing directions for this case is shown in the left part
in the right part of Fig. 8). Again, there exists just one Of Fig. 8(b).

A. A single accelerated black hole

direction of vanishing radiation given b,,= 1/R; = [i.e., Of course, the number of null directions with vanishing
Ym= =0, cf. EQ.(5.3)], which is also the mirrored reflec- radiation in the pattern fomgoing geodesics ¢=—1) is
tion of a PND, this time of the outgoink, . complementary. In the domaifg, andZ;, with R,>1 there

is again just one zero, now given by the mirrored reflection
of k; (Rpy=, ¢n=11=0); see the right part of Fig.(8).
On the other hand, in the domaliy+ there are exactly two

A more interesting but also more complicated situationzeros for ingoing radiation given by mirrored reflections
occurs whenA>—A/3. In this case thec-metric repre- of both PNDs[R,=, #,=0, andR,=1/Ry, ¢m= >,
sents pairs of uniformly accelerated black holes in an anti—de,,= 0, cf. Eq.(5.3)] as shown in the right part of Fig(18.
Sitter universe, as indicated in Figs. 2—6; see Sec. I B. There In addition, there is also another domain wiy<1,
are (outep black-hole horizonsH,, acceleration horizons namely the domairf,-; see Fig. 10. Here both PNDs are
H,, and cosmological horizor¥,; see Fig. 2a). At Z, the  oriented inside the spacetime. However, the regionfl the
horizonsH, andH. can be identified byR,=1. They sepa- spacetime and its infinit{Z,- are not coveredby the same
rate various static and nonstatic regionsZpfand simulta- map of Robinson-Trautman coordinates as that used above.
neously the domains of infinity with different structure of the We have to introduce another “time-reversed” map to cover
PNDs, as shown in Fig. 10. The vector is always oriented the white domain in Fig. 5. Still, the directions of vanishing
outside the universe. In the static domains Dfwhere radiation are given bynirrored directionsof the PNDs at the

B. A pair of accelerated black holes
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2/ 2

infinity, similarly to the cases discussed above. The mirrored
directions of the PNDs are both outgoing so that the radia-
tion pattern for outgoing geodesics contaims zeros|cf.
the right part of Fig. &)], whereas the pattern for ingoing
geodesics does not have any zero directions, cf. the left part
of Fig. 8(b).

To summarize, the directional patterns of outgoing radia-
tion [EQs. (4.16) with e=+1, or Egs.(4.6) with |R|<1] in
the domainsZy, 7+, Z,-, andZ, of the conformal infinity
are given by the lefta), left (b), right (b), and left(a) parts of
Fig. 8, respectively. For ingoing radiatidiqgs. (4.16) with
e€=—1, or Egs.(4.6) with |R|>1] these are given by the
right (a), right (b), left (b), and right(a) parts of Fig. 8,
respectively.

i, |25 vy

@5

s 5

C. Vanishing acceleration

Finally, we briefly describe the character of radiation
when theacceleration vanishesn which case the spacetime
describes a single nonaccelerating black hole in an anti—de

Sitter universe(“Reissner-Nordstrm—anti—de Sitter solu- k outgoing (e=+1) k ingoing (e=—1)
tion”). It is thus spherically symmetric with surfacésy k1 outgoing (€1=+1), $1=0
=const being the orbits of the rotational group, and radial ko ingoing (e2=—1), 12=0

directions being contained in sectiors ¢=const. From
A=0 it follows R,=, cf. Eq.(4.7), and the above general ~ FIG. 11. The directional patterns of outgoing/ingoing radiation
expressions simplify. In particular foA=0 not only &€ the same and axially symmetric_wheﬁ 0. In such a case th_e
KrrocK1 o (1WV2) (to+ o), but alsolgrekyo (1A2) (to—qo) is PNDs k; and k, are mutual mirror images unda_er re_flectlt_)n with
a PND, see Eq(5.4); this is consistent with relation.19 respect toZ. Therefore, thgrg is exgctly one direction glyen by
in which only the component&i’?T andCD?T remain nonva- 1//=0 along which t_he radiation vanishes, both for outgoing and
.. . . ingoing null geodesics.

nishing. At the infinityZ the PNDs are mutually mirrored
reflections k, oriented outside the universe akglinside it,
parametrized bys; =0=i,; see Eqs(5.4), (4.12. Both the VI. SUMMARY
PNDs point in radial directions of the spherical symmetry.
Moreover, sinceR,> 1, it follows from relation(5.6) that the
region nearZ is always static, without the Killing horizon
extending there.

For vanishing acceleration the expressiddsl6 and
(4.21) reduce to

It was observed already in the 1960s by Penrose
[12,13,18 that radiation is defined “less invariantly” in
spacetimes with a non-null. Recently we have analyzed the
C-metric solution withA>0 [20] and found an explicit di-
rectional pattern of radiation. This fully characterizes the ra-
diation from uniformly accelerated black holes near the de

A m |A| m Sitter—like conformal infinityZ", which has a spacelike
| W)~ — —sint? y=— —tar? 6, character. Here we have completed the picture by investigat-
4 yn 4 yn ing the radiative properties of thé-metric with a negative
cosmological constant. This exact solution of the Einstein-
||~ /|£| usinhdxz /m |i||tan6| (5.8 Maxwell equations withA<0 represents a spacetime in
2 24 yq 24 yy B which the radiation is generated either by (possibly
chargedl single black hole or pairs of black holes uniformly

The corresponding directional pattern of radiation, shown iraccelerated in an anti—de Sitter universe.
Fig. 11, is axially symmetric and independentepfi.e., it is We have analyzed the asymptotic behavior of the gravita-
the same both for ingoing and outgoing null geodesics. Intional and electromagnetic fields near the conformal infinity
terestingly, even for a nonaccelerated black hole there is thug, which has a timelike character. The leading components of
radiation onZ alongany nonradialnull direction, i.e., except the fields have been expressed in a suitable parallelly trans-
for =0, e==*=1, which corresponds to both PNDs. This ported interpretation tetrad. These components are inversely
may seem quite surprising since the region near infinity igproportional to the affine parameter of the corresponding null
static It is a completely new specific feature: f&r>0 a  geodesic. In addition, an explicit formu(d.16) [or, equiva-
generic,nonradial observer neaf " would also detect radia- lently, Egs.(4.6) and (4.21)] which describes the directional
tion generated by nonaccelerated black hg@3, but the pattern of radiation has been derived: it expresses the depen-
region near infinity is nonstatic. In asymptotically flat space-dence of the field magnitudes on spacetime directions from
times (A =0) there is no radiation of" from black holes which a given pointN,, at infinity Z is approached. This
with A=0 [32], which, remarkably, also follows from ex- specific directional characteristic supplements the peeling
pression(3.24). property, completing thus the asymptotic behavior of gravi-
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tational and electromagnetic fields near infinifywith a A 3A2

timelike character. Vy=——5"
We have demonstrated that the situation is much more

complicated in the anti—de Sitter case than in the case

A>0. The new specific feature is that timelike conformal P

infinity Z is, in general, divided by Killing horizons into 3" AP

several static and nonstatic regions with a different structure

of (double degenerat@rincipal null directions. In these dis-

tinct domains of infinity the directional patterns of radiation q’iz: _

differ. For example, there are different numbers of geometri-

cally privileged directions(namely one, two, or nonen

which the radiation vanishes completely. These exactly corand

respond to mirrored directions of principal null direction,

m+ 2e2Ax— -

e2) 1

2
) e
m+2e“AX— T)r_z’

2
m+ 2e2Ax— e—>i Pl=yl=0 (A3)
r r3! 1 0 1

with respect toZ. Accordingly, there exists an asymmetry  eA 1 . e A
between outgoing and ingoing radiation patterns in all the CDIZZ_F’ '1=—§r7, ®y=0. (A4)
domains. V2P

As in the A >0 casd64], it seems plausible that a general
structure of the radiation pattern at conformal infinity de-Clearly, the leading terms in therléxpansion give the pre-
pends only on the PNDs there, i.e., it is given by the algevious general asymptotical result3.24 with c=0=d. In
braic (Petroy type of the spacetime. This hypothesis will be the case of anti—de Sitter spacetinma=0,e=0) the field

proven elsewhergg2]. components obviously identically vanish. In the general case
the fields have a radiative character1/r) except for a van-
ACKNOWLEDGMENTS ishing accelerationA and/or for P=«. The interesting

. “static” limiting case A=0 has been already discussed in
The work was supported in part by the grants GA202/  Sec. V C. The casB=x corresponds to observers located at
02/0735 and GAUK 166/2003 of the Czech Republic andthe privileged position wher&=0, i.e., on the axex=x,
Charles University in Prague. The stay of M.O. at the Insti-and x=x; where the strings/struts are localized. This is
tute of Theoretical Physics in Prague was enabled by finananalogous to the situation whef>0 [20], and an electro-
cial support from Fondazione Angelo Della Ric¢Rirenze.  magnetic field of accelerated test charges in flat spacetime:
this is also not radiative along the axis of symmetry, which is
APPENDIX A: RADIATION ALONG SOME PARTICULAR the direction of acceleration.
NULL GEODESICS Let us also recallsee[20]) that the affine parametar
) o _ coincides both with the luminosity and the parallax distance
Here we concentrate on a geometrically privileged familyfor the congruence of the above null geodesics. The radiative
of special geodesics which asymptotically take the formy fa|l-off of the fields is naturally measurableven locally
(3.1) with c¢=0. It follows from Eq.(3.12 that this corre- by observers moving radially to infinity, using both the lu-
sponds either to outgoing null geodesics with O or ingo-  minosity and the parallax methods for determining the dis-

ing ones withd= —6/A. tance.
In fact, the geodesics=0=d areexact null geodesics Concerning the other special family of ingoing null geo-
desics,c=0,d=—6/A, e=—1, it can be observed that the
U=u,=const, ={,=const, (A1) transformation given by Eq3.20 becomes singular and Eq.

. _ _ _ . . (3.21) is not thus justified. However, from Eg&.9), (3.17),
in the whole spacetime, with being their affine parameter. and(3.18, with the condition(3.22 for fixing |;, it follows
They approach infinit along the(double degenerat@rin-  that in this case

cipal null directionkgr= @, , which is characterized by the

parametery;=0, see Eq.(4.19 (or by 6=0). It can be 6 6 1
shown that the Robinson-Trautman tetf&dL8 is parallelly ki~— —— ( r2e+ — 0u) ~—— ——5lgr,
transported along these geodesics, Y A A y'n

Ker- VKgrr=0, Kgr VIgr=0, Kgr-Vmgr=0, (A2 A A

RT" VKR RT" VIRT RT RT (A2) i“—grzﬂrm—gfﬂzkm: (A5)
and it is also invariant under a shift along the Killing vector
9, i.e, Lakgr=0, Lylrr=0, L5 Mrr=0, respecting thus a which—somewhat surprisingly—fully agrees with expres-
symmetry of the spacetime. Consequently, we carsions(3.21) for the special case=0, d=—6/A. Thus the
naturally set the interpretation tetradk;(l;,m;,m;) interpretation tetrad along these geodesics is equivalent to
= (Kgr,lrr,Mgr,Mgr) in the whole spacetime, not only as- the tetrad3.21) along the PND given bg=0, d=0 [which
ymptotically nearZ, as in Eq.(3.21) for c=0, d=0. As itself agrees with the Robinson-Trautman tet(ad.8] after
follows from Eqgs.(3.19), all components of gravitational and interchangind;« |; andm;«< —m;, accompanied by a boost
electromagnetic fields are explicitly given by (B9) with B=—6/(Ar?). Components of the gravitational
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and electromagnetic fields can thus easily be obtained from Do=>PY,
Eqg. (A3),(A4). In particular, it follows that¥),~0~W},

Wh~n % Wi~n~* Wi~y % and dL=0, i~y 2 ;= LD+ DY,
dy~n 3. Obviously, the radiative parts of the fields vanish
along these special ingoing geodesics, which agrees with the ¢’2:f2@8+ 2f<1>f+¢2. (B5)

expressiony,,=0 in Eq. (5.3, cf. Eq. (4.15. Indeed, this

direction is just the reflection of the PN, . Under a null rotation witH fixed. K e C

k=Kko+ Kmg+ Kmy+ KK,
APPENDIX B: TRANSFORMATIONS
OF THE COMPONENTS W, AND &, I=1,,

The Weyl tensor can be parametrized by five standard
complex coefficients defined as components with respect to a
null tetrad(see, e.g.[31]):

m=my+Kl,, (B6)

Vo= KW+ 4K3W 5+ 6K?W o+ 4K W+,
‘I’o: C B 5k“mﬂk7m6
afy ’
Ve et W, =K3W 0+ 3K2W 3+ 3KW S+ W9,
1: a ) m 1
o W,=K2W o+ 2KW S+ W9,
\I’ZZ - Caﬂ},gkamﬁl’yrﬁﬁ,

Vi=KWi+W¥3,
‘I’3=Ca'3y5|akﬁ|ym‘s,
\II4:\I"O1, (B?)
‘P4=Ca'3y5|an_1ﬁ|7rﬁ5. (Bl)
— 2H 0 [0} [0}
Similarly, the tensor of electromagnetic field is parametrized Po=KD5+2K D7+ Dy,
as 0 +o
O, =KD+ D7,
(I)OZ Faﬁk“mﬁ,
O,=PJ. (B8)

®,=3F, 5(kYP—m*mP), . . L
1= 2 F g ) Under a boost in thé&-l plane and a spatial rotation in the

®,= Faﬁrﬁalﬂ. (B2) m-m plane given by

. , k=Bk,, 1=B71,,

These transform in a well-known way under the following

particular Lorentz transformations. For a null rotation wkth

fixed, L e C, m=expi®)m,., (B9)
B, ® e R, the component¥,, and®,, transform as
k=Kko,
B B Vo=BZexp2i®)¥3,
|=ly+Lmy+Lmy+Lmg+LLkg,
¥, =Bexpi®)¥?,
m=my+ LK,, (B3)
V,=V7,
— [0}
Y=o, W,=B Lexp —id)We,
U, =LWS+ W9, V,=B 2exp —2id) ¥y, (B10)

__ 1 2\y0 1 1,0 o
W,=L2W0+ 2L WO+ W9, o= B expli®) b,
Vo= L3S+ 3L2W o+ 3L WS+ Wy, d,=d?,

U, = LW+ 4L3W 0+ 6L2W 0+ AL+ WS,  (B4) ®,=B texp —id)d. (B11)
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