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Radiation from accelerated black holes in a de Sitter universe
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Radiative properties of gravitational and electromagnetic fields generated by uniformly accelerated charged
black holes in asymptotically de Sitter spacetime are studied by analyzing-thetric exact solution of the
Einstein-Maxwell equations with a positive cosmological constantts global structure and physical prop-
erties are thoroughly discussed. We explicitly find and describe the specific pattern of radiation which exhibits
the dependence of the fields on a null direction along which(ghacelik¢ conformal infinity is approached.

This directional characteristic of radiation supplements the peeling behavior of the fields near infinity. The
interpretation of the solution is achieved by means of various coordinate systems, and suitable tetrads. The
relation to the Robinson-Trautman framework is also presented.
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I. INTRODUCTION geodesics. The rate of approach to zero of the Weyl and
electromagnetic tensor is generally given by the “peeling
There has been great effort in general relativity devoted toff” theorem of Sach$3,7,8]. In analogy to this well-known
investigation of gravitational radiation in asymptotically flat behavior it is natural to expect that those components of the
spacetimes. Some of the now classical works, which datéelds in parallelly transported tetrad which are proportional
back to the 1960s, set up rigorous frameworks within whichto 1/ characterize gravitational and electromagnetic radia-
a general asymptotic character of radiative fields near infinityion also in more general cases of spacetimes not asymptoti-
could be elucidatefil—11]. Also, particular examples of ex- cally flat. We shall adopt such a definition of radiation below.
plicit exact radiative spacetimes have been found and ana- In the presence of a positive cosmological constant
lyzed, e.g., Refs[12—-15, for a review of these important however, the conformal infinitf * has aspacelikecharac-
contributions to the theory of radiation see, for exampleter, and for principal reasons the rigorous concept of gravi-
Refs.[16-20. tational and electromagnetic radiation is much less clear. As
One of the fundamental approaches to investigate the ra?enrose noted in the 196[% 10] already, following his geo-
diative properties of a gravitational field at large distancesnetrical formalization of the idea of asymptotical flatness
from a bounded source is based on introducing a suitablbased of the conformal techniq{@ 11], radiation is defined
Bondi-Sachs coordinate system adapted to outgoing null hy4ess invariantly” whenZ is spacelike than when it has a null
persurfaces, and expanding the metric functions in negativeharacter.
powers of the luminosity distancgl—-4]. In the case of One of the difficulties related to the spacelike character of
asymptotically flat spacetimes this framework enables one tthe infinity is that initial data orZ ~ (or final data onZ ™)
define the Bondi masgotal mass of the system as measuredfor, e.g., electromagnetic field with sources cannot be pre-
at future null infinityZ *), and characterize the time evolu- scribed freely because the Gauss constraint has to be satisfied
tion including radiation in terms of the news functions. Us-at Z~ (or Z*). This results in the insufficiency of purely
ing these concepts it is possible to formulate a balance beetarded solutions in case of a spacelike—advanced ef-
tween the amount of energy radiated by gravitational wavegects must also be presented. This phenomenon has been
and the decrease of the Bondi mass of an isolated systerdemonstrated explicitly recent[21] by analyzing test elec-
Unfortunately, this standard explicit approach is not directlytromagnetic fields of uniformly accelerated charges in de Sit-
applicable to spacetimes whose conformal infiffity has a  ter background.
spacelike character as is the case of an asymptotically We will concentrate on another crucial difference in be-
de Sitter universe which we wish to study here. havior of radiative fields near null versus spacelike infinity.
Alternatively, in accordance with the Newman-Penroseln the case of asymptotically flat spacetimes, any pMintat
formalism[5,6], information about the character of radiation null infinity Z* can be approached essentially only along
in asymptotically flat spacetimes can be extracted from thene null direction. However, if future infinityZ " has a
tetrad components of fields measured along a family of nulbpacelike character, one can approach the phintfrom
geodesics approachirg™. The gravitational field is radia- infinitely many differennull directions. It is not a priori clear
tive if the dominant components of the Weyl tendy;, s how the radiation components of the fields depend on a di-
(or of the Maxwell tensofF,; in the electromagnetic case rection along whichN . is approached. In this paper such
fall off as 1/, wheren is an affine parameter along the null dependence will be thoroughly investigated.
In fact, radiative properties of a test electromagnetic field
of two uniformly accelerated pointlike charges in the de Sit-
*Electronic address: Pavel.Krtous@mff.cuni.cz ter background has recently been studi2®,23. Within this
"Electronic address: Jiri.Podolsky@mff.cuni.cz context, the above mentioned directional dependence has
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been explicitly found. In particular, it has been demonstrategresent theC-metric solution with a positive cosmological
that there are always exactly two special directions—thoseonstant in various coordinates which will be necessary for
opposite to the direction from the sources—along which théhe subsequent analysis. The global structure of the space-
radiation vanishes. For all other directions the radiation igime is described in detail in Sec. Ill. Next, in Sec. IV we
nonvanishing and it is described by an explicit formulaintroduce and discuss various privileged orthonormal and
which completely characterizes its angular dependence.  null tetrads near the de Sitter—like infinify" together with

In the present paper, these results will be considerabl§h€ir mutual relations, and we give corresponding compo-
generalized to both gravitational and electromagnetic field'ents of the gravitational and electromagne@emetric
which are not just test fields in the de Sitter backgroundfields. Section V contains the core of our analysis. We care-
Interestingly, it will be demonstrated that the gravitationalfully define interpretation tetrad parallelly transported along
and electromagnetic fields of ti@metric with A >0, which @l null geodesics approaching asymptotically a given point
is anexactsolution representing a pair of uniformly acceler- On spacelikeZ * from different spatial directions. The mag-
ated possibly charged black holes in the de Sitter—like uninitude of the leading terms of gravitational and electromag-
verse, exhibits exactly theameasymptotic radiative behav- netic fields in such a tetrad then provides us with a specific
ior as the test fieldf22,23. We are thus able to supplement d|rect|one}l pattern of radiation which is des_cnbed and ana-
the information about the peeling behavior of the fields neafyzed. This result is subsequently rederived in Sec. VI using
7+ with an additional general property of radiation, namely,the Robinson-Trautman framework which also reveals some
with the specificdirectional pattern of the radiatiomt con- ~ Other aspects of the radiative properties. Particular behavior
formal infinity. of radiation along the algebraically special null directions is

The C-metric with A =0 is a well-known solution of the Studied in Sec. VII. For these privileged geodesics the results

Einstein (-Maxwell) equations which, together with the fa- are obtained explicitly without performing asymptotic ex-
mous Bonnor-Swaminarayan solutiofis5], belongs to a Pansions of the physmal quantities ndaf. _In this case we
large class of asymptotically flat spacetimes with boost and@lSO study a specific dependence of the field components on
rotational symmetry24] representing accelerated sources. [t& choice of initial conditions on horizons. .
was discovered already in 1917 by Levi-Civifas] and ~ The paper contains four appendixes. Appendix A summa-
Weyl [26], and named by Ehlers and Kunidt3]. Physical  fizes known and also several_ new coordma‘;e_s for _the
interpretation and understanding of the global structure of-metric with A>0. The properties of the specific metric
the C-metric as a spacetime with radiation generated by dunctions are described in Appendix B. In Appendix C useful
pair of accelerated black holes came with the fundamentdglations between the various coordinate one-form and vector
papers by Kinnersley and Walkg27] and Bonnof28]. Con- fr_ames are p_resented, together with the_: relations_between the
sequently, a great number of works analyzed various aspecgfferent privileged null tetrads. Appendix D contains general
and properties of this solution, including its generalization'—ore_mzl transformations of the n_ull—_tetrad components of the
which admits a rotation of the black holes. Referencegravitational and electromagnetic fields.
and summary of the results can be found e.g., in Refs.
[24,29-31. Another possible generalization of the standard Il. THE C-METRIC WITH A COSMOLOGICAL
C-metric exists, namely, that to a nonvanishing value of the CONSTANT IN SUITABLE COORDINATES
cosmological constank [32], cf. [33,34. However, in this L . . .
case a complete understanding of global properties, mainly a1 "€ 9eneralization of th€-metric which admits a nonva-
character of radiation, is still missing despite a successfufliShing cosmological constari >0, representing a pair of
application of this solution to the problem of cosmological Uniformly accelerated black holes in a *de Sitter back-
production of black hole§35], and its recent analysis and 9round,” has the form
interpretation 36 —-3§. 1 1 1

There exists a strong motivation to investigate the — _Edi2e Zdv2a Zdx2 2
C-metric solution withA > 0. As will be demonstrated below, 9= A2x+y) P+ pdy™r g+ Gdet,
it may serve as an interesting exact model of gravitational (2.)
and electromagnetic radiation of bounded sources in the

asymptotically de Sitter universgn contrast toA=0, in where

which case the system is not permanently bouhd&tie 1

character of radiation, in particular the above mentioned de- F=— —>——1+y2—2mAy*+e?A%y*,
pendence of the asymptotic fields on directions, along which ajA

points on the de Sitter—like infinitf * are approached, can (2.2
explicitly be found and studied. These results may provide an G=1—-x?>—2mAx—e?A%x*,

important clue to formulation of a general theory of radiation

in spacetimes which are not asymptotically flat. In additionsee Eqs(Al), (A2). Herete R, ¢ e (—7C,wC), m, e, A, C

to this purely theoretical motivation, understanding the beare constants, and ranges of the coordinateg[or, more

havior of accelerated black holes in the universe with a posiprecisely, of the related coordinat&s defined below by Eq.

tive value of the cosmological constant can also be interest2.7)] will be discussed in detail in the next section. For

ing from perspective of contemporary cosmology. convenience, we have parameterized the cosmological con-
The paper is organized as follows. First, in Sec. Il westantA by the “de Sitter radius” as
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The metric (2.1) is a solution of the Einstein-Maxwell
equations with the electromagnetic field given lisee
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2m e
G=1— £*+sinha — &—sinl? a — &,
aj an

The coordinates, 7, o, ¢ adapted to the Killing vectors
d., d, and the conformal infinityZ (w=0) are defined by

[39,40)
w=—wvcosha+ ¢sinhe,
F=edy[dt. (2.9 (2.11)
sinha cosha
The constantsn, e, A, and C parametrizemass, charge, do= A duv+ G dé,

acceleration and conicity of the black holes, although their
relation to physical quantities is not, in general, direct. Forsee Eqgs(A21), (A22), and the metridA23),
example, the total charg® on a timelike hypersurface

t=const localized inside a surfage=const, defined using ai 5
the Gauss law, is given b® = 3(&,— £,)Ce, where the con- 9= 2 —Fdr+
stants&;, &, are introduced at the beginning of the next
section. ObviouslyQ depends not only on the charge param-where
etere. Similarly, physical conicity is proportional to the pa-
rameterC, but it also depends on other parameters, see Eq. (2.13
(3.4) below. The concept of mas®utside the context of ) ) ) )
asymptotically flat spacetimpsind of physical acceleration ~ Finally, we will also use theC-metric expressed in the
of black holes is even more complicated. We will return toRobinson-Trautman coordinatés, u, r which has the form
this point at the end of the next section. For satisfactory(A29) (see[41] for a definition of the symmetric producd
interpretation of the parametens e, andA in the limit of

1 FG
E,dw2+ ?da'z-l—gdqo2 , (212

E= Fcostf a+Gsinlf a.

r2

their small values see, e.g., RE36].

— | _ 2
In the following we will always assume 9= pz df0dZ— dulidr —Hdu*, (214
m>0, e?<m?, A>0, (2.5  with
andF, as a polynomial iry, to have only distinct real roots. 1 r2
Also, instead of the acceleration constantve will conve- p2=Y H= a_jz\g- (2.19

niently use the dimensionlesgceleration parametew de-

fined as It follows immediately from Eqgs(2.9) and (2.11) that
sinha=a,A, cosha=1+a3A2 (2.6) a,
r=——. (2.16
w

We will also use other suitable coordinates which are in-
troduced and discussed in more detail in Appendix A. Her

Sor explicit definitions of the coordinates, ¢ and

we list only the basic definitions and the correspondingfurther details see Eq4A25), (A28), and related text in
forms of metric. Appendix A , ’

The rescaled coordinates v, ¢, ¢ are defined

Ill. THE GLOBAL STRUCTURE

r=tcotha, o¢=¢,
(2.7 _ _ .
v=ytanha, §&=-—X, In this section we shall describe the global structure of the
_ _ _ C-metric with A>0. In particular, we shall analyze the char-
cf. Eq. (A5), in which the metric takes the foriih6), acter of infinity, singularities, and possible horizotiSee

1 1 recent work{ 38] for similar discussions that also cover cases

_2 _ 20 42t —de2s 2 o not studled_ h_eree.From the form(2.8)_of the metric we ob- _
g=r Fdr F dv ng Gde” |, @8 serve that it is necessary to investigate zeros of the metric

functionsF andg given by Eq.(2.10. We will only discuss
the particular case when the functidh hasn distinct real
roots, wheren is the degree of polynomial dependencefof
2.9 on v (n=4 for e#0). Let us denote these roots gs v,,
v, andv, in a descending ordgthe meaning of the sub-
scripts will be explained belowIn the casee=0, the value
and of v; is not defined, etc. Analogously, we denote the roots of
om o2 Gaséy, &, &, and§, in an ascending order. Similarly to
— F=1— 12+ cosha — v®—cosfa— v*, (2.10  discussion of theS-metric with vanishingA [27,29,30, the
ap ajy zeros of the functiotf correspond tdorizons and the zeros

where

B 1 B a
= A(x+y) wvcosha—&sinha
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of G to axesof ¢ symmetry. Following these works and Ref. admits two double principal null directions. These directions
[36] for A>0 in particular, the qualitative diagrams of the lie exactly in the section-v depicted in Fig. 2.

¢-vslice (i.e., 7, ¢=const) are drawn in Fig. 1. In this dia- In this paper we are mainly interested in a behavior of
gram we use relations fields near the infinity. Therefore, we will concentrate mostly
on the region I. This region has similar properties for all

Upcotha<§; <0< &<y cothe, (3.)  possible values of the parametense, and a. Its more pre-

hich byi f Fio. 9in A dix B. Diff t col cise diagrams are drawn in Fig. 3. Observers in one of the
which are obvious 1rom Fig. = In Appendix b. DITierent col- regions | (near the future infinityZ *) will consider them-
umns and rows in the diagrams in Fig. 1 correspond to dif-

. X ) . selves to live in an asymptotically de Sitter—like universe
ferent signs of the functiong andF. The metric has a physi- . - .
cal signature(—+ ++) for £,<¢£<&, and £;<£<£,. We containing” two causally disconnected black holé®r m

will be interested only in the first region #0). I_-Iere by_two black holeg we u_nderstand_ those black

Infinity Z of the spacetime corresbonds to=co or holes_(l.e., regions I_II and Iy immediately “visible” from_

equivalently to ' the given asymptotical region |, although the geodesically

quiv y complete spacetime can, of course, contain an infinite num-
(3.2 ber of black holes. As we have said, the conformal infifdity

is given by the condition3.2), «=0. Thanks to a timelike

(double line in Fig. 1L We will restrict to the region character ofdw at =0 [see Eq.(2.12] the infinity has
v>¢tanha (i.e.r>0) which describes both interior and ex- indeed a spacelike character as for de Sitter univesee
terior of accelerated black holes in de Sitter—like spacetimé&efs.[8,9,42 for a general discussion of conformal infinity
(the shaded areas in Fig).The metric has an unbounded In Fig. 1 the infinity corresponds to the diagonal line, in Fig.
curvature for =0 which corresponds to a physical singular- 2, however, it obtains a richer structure. It comprises of two
ity inside the black holes, a zigzag line on the boundary ofarts—future infinityZ * and thepast infinityZ ~—both pos-
the diagrams in Fig. 1, in particular of the column Sibly consisting of several disjoint partdepending on the
E1<E<E,. global topology in different asymptotically de Sitter do-

For a further discussion of the global structure we employmains |. Because the conformal diagrams in Fig. 2 are slices
the double null coordinatds, 7, ¢, ¢ defined by Eqs(A38),  With a fixed coordinate, and the conditiort3.2) depends on
(A33), (A34) in which the metric iS(A39), ¢, the conformal infinityZ would have a different position in

diagrams with different values af. We shall return to this
) 28°F 1 ., ) fact at the end of this section. Note, that for values of the
g=r mdﬁmd’lwf 5d§ +Gde”|. (33 coordinate v smaller than & tanha, the hypersurface
v=const reacheq. Clearly, the coordinatey is not well
Using these coordinates we can draw the conformal diagraradapted to the region near the conformal infirfityNear the
of the spacetime sectiony, i.e., foré, ¢ =const—see Fig. 2. infinity it is more convenient to use the coordinatesr, o,
The domains -1V in this figure correspond to the regionse defined by Eqs(2.11) [see Eqs(A21), (A22); see also Fig.
-V in Fig. 1. 3].

The region | describes the domain of spacetime above the The coordinateris a coordinate along the “boost” Killing
cosmological horizons given by= v, which has a similar vector@d,, and in region | it can be understood simply as a
structure as an analogous domain in the de Sitter spacetimganslational spatial coordinate. The coordinafgsp play
The region Il corresponds to a static spacetime domain beoles of longitudinal and latitudinal coordinates of a suitably
tween the cosmological horizon and theuten horizon of  defined hypersurface at an “instant of time.” For example, in
the black hole. If the black hole is charges 0), region Ill  region | the spacelike hypersurfaee=const has topology
corresponds to a spacetime domain between the outer hof-x S? (if it does not cross infinityZ) with the coordinater
zon v=1v, and the inner horizon=v;, and region IV to a along theR direction, and¢, ¢ on the spheré&?. To justify
domain below the inner horizon of the black hésmilar to  the “longitudinal” character of the coordinaté we intro-
the analogous domains of the Reissner-Nordstrspace- duce, instead of, an angular coordinaté by the relation
time). The domain IV contains a timelike singularity at sin9=\/G [cf. Eq. (A10)]. This is a longitudinal angle mea-
v=o (r=0). In the uncharged case£0, m#0) there is sured by a circumference of the circle [see the metric
only region Il which corresponds to a domain below the(2.8)]. Alternatively, we can introduce the ang® defined
single black hole horizom=v,. In this case the singularity by Eq. (A12), measured by the length of a “meridian.” At
at v=o has a spacelike character, similarly as for theinfinity Z or, in general, on any hypersurfaae=const, the
Schwarzschild black hole. If bote=0, m=0, we obtain de coordinate linesr=const coincide with the lines of constant
Sitter spacetime expressed in accelerated coordinates. In thfsThe coordinater thus also parameterizes the longitudinal
case there is no black hole horizon, and regioftHé domain  direction near the infinity, similarly to the coordinage

w=0, ie. wv=¢tanha,

below the cosmological horizon,) is “cut off” by nonsin- In Sec. Il we mentioned that the coordinatealong the
gular polesy=o. We will return to this particular case at the second Killing vector d, takes values in the interval
end of this section. (= 7C,wC). HereC>0 is the parameter which allows us to

Before we proceed to discuss further properties in detaithange the conicity on the axis of thesymmetry, i.e., it
let us note thatas will be explicitly demonstrated in the next allows us to choose a deficfor excess angle around the
section the C-metric is the Petrov typ® spacetime, i.e., it axis arbitrarily. Such a change of the range of the coordinate
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FIG. 2. The conformal diagrams of thewv section &, ¢
=const). Similarly to Fig. 1, the three diagrams correspond to the

FIG. 1. A qualitative diagram of theé-v section (¢ cases of(a) charged accelerated black holék) uncharged black
= constant) of the studied spacetime. The three cases correspondtoles, and(c) de Sitter universégin accelerated coordinadesThe
(&) charged accelerated black holes in asymptotically de Sitter unieonformal infinitiesZ are indicated by double lines, the singularities
verse €#0, m#0), (b) uncharged black holeg&0, m#0), and  are drawn by “zigzag” lines, and horizons by thin lines. The hori-
(c) de Sitter universeg=0, m=0). Horizontal lines indicate the zonsv=1,, v,, v; correspond to the valu&s=m= orv=nm, m,
horizons, vertical lines are axes a@f symmetry. The diagonal neZ. Thus, the integerém, n), indicated in the figure, label differ-
double linev= ¢ tanha corresponds to infinityZ. Singularities are  ent blocksli e (m#,(m+ 1)), 7 € (n7,(n+ 1)) of the conformal
depicted by “zigzag” lines. The boundary of each diagram corre-diagrams. There are four types of these blocks, labeled by -1V,
sponds toé, v=*%. Mutual intersections of different lines are which correspond to the regions I-IV in Fig. 1. The sections
governed by relation.1). Different columns and rows correspond 7= const(drawn in Fig. 1 are indicated by thick lines. Similar lines
to different signs of the function§ and 7, respectively, and thus to could, of course, be drawn also in other blocks. Only a part of the
different signatures of the metric, which are indicated on the sidesomplete conformal diagram is shown in the casasand (b),
of the diagrams. The metri@.8) describes, in general, four distinct however, the rest of the diagram would have a similar structure as
spacetimes—the domains in columés<&é<é, and £3<E<é,, the part shown. The complete diagram depends on a freedom in the
separated in addition by infinitithe diagonal ling In this paper we  choice of a global topology of the spacetime given by identifica-
discuss only the physically most reasonable spacetime with the caions of different blocks of the conformal diagram. In the cé&se
ordinatest, vin the rangest; <¢<¢, andv> & tanha (the shaded  the diagram does not contain any black hole—it is “closed on its
area$. Sectionsé=const which correspond to the conformal dia- sides” by poles of a spacelike secti®i of de Sitter universésee
grams in Fig. 2 are indicated by thick lines. the discussion at the end of Sec) Il
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7 = constant & = constant

Ve

—+¢

FIG. 3. Theé-v (left) and the conformalright) diagrams near infinitg. Only one asymptotically de Sitter—like region of the spacetime
(domains | and Il of Figs. 1 and)ds shown. Ranges of various coordinates introduced in the paper are indi{caiutation of the
coordinate labels suggests a direction in which the coordinates incr@&sethick line in the conformal diagram corresponds to ¢he
diagram and vice versa. In thev diagram the lines of constaat and o are also drawn. The coordinates o are not unambiguous in the
full domain I, however, they are invertible ne@y in the domainf<0. On the boundarg=0 (shown in diagrarmthe coordinates, o
change their timelike/spacelike characf®otice the difference between the null coordinatév”; diagonal straight linesg and the “radial”
coordinatev (“upsilon”; curved lines in the v conformal diagran].

¢ is allowed for any axially symmetric spacetime. The rangewe obtaink,<1, i.e., a stretched cosmic string at the axis
is usually chosen in such a way that the axis of gheym-  £=¢&,. In both these cases, as well as in the general cases of
metry is regular. However, for thé-metric such a choice is cosmic strings on both parts of the axis, the system of black
not globally possible. In this case the axis consists of twcholes with strings) between them is not in an equilibrium.
parts¢é= ¢, and &= &,—one of them joins the “north” poles The strings) acts on both black holes and cause what we
of the black holes, the other one joins the “south” poles. Theusually call an “accelerated motion” of black holes. How-
physicalconicity (defined as a limiting ratio of “circumfer- ever, the precise interpretation of acceleration is not so
ence” and 27X “radius” of a small circle around the axis straightforward.
calculated at the axeg and ¢, is The problem here is that we consider a fully self-
gravitating system, not just a motion of test particles on a

1 1 fixed background. The motion of black holes is actually re-
Kl:ECg |§:§1’ K== §Cg |§:’§2’ (3.4 alized through a nonstatic, nonspherical deformation of ge-
ometry of the spacetime in a direction of motion, i.e., along
respectively, see, e.g., RE86]. In general, the values ¢f’ | the axis of symmetry. Moving black holes together with

at &, andé¢, are not the same, see Hg.5) below. Therefore the cosmic strings) curve the spacetime in such a way that,
we can sek =1 (zero deficit of angle, i.e., a regular axlsy  strictly speaking, it is not justified to use the teancelera-
a suitable choice of the paramet@ronly atonepart of the  tionin arigorous sense. This has several reasons. First, black
axis. holes are nonlocal objects and one can hardly expect a
This fact has a clear physical interpretation. The axis withuniquely defined acceleration for such extended objects. Sec-
nonregular conicity corresponds to a cosmic string whichondly, thanks to the equivalence principle we cannot distin-
causes the “accelerated motion” of the black holes. The cosguish between acceleration of the black holes with respect to
mic string[43] is a one-dimensional object, sort of a “rod” the universe, and acceleration due to the gravitational field of
or a “spring,” which is characterized by its mass density €ach hole. Finally, one has to expect a gravitational dragging
equal to its linear tension. These parameters are proportion@f local inertial frames by moving black holes, i.e., it is not
to the deficit angle, namely, a string with a deficit angleobvious how to define an acceleration of black holes with
(k<1) has a positive mass density and it is stretched, &spect to these frames. A plausible definition could be given
string with an excess angl&® 1) has negative mass density if some privileged cosmological coordinate system playing a
and is squeezed. In Appendix B, E(7), we prove for role of “nonmoving” background is available. Unfortunately,
m#0, A#0 that we are not aware of such a system applicable in a general
case. In the next paragraph we shall demonstrate this ap-
Ko< Kjp. (3.5 proach just for a simple case of empty de Sitter spacetime.
Summarizing, it is not straightforward to define the accelera-
Using this fact, we may conclude that by eliminating a non-tion of black holes in the general case. One usually identifies
trivial conicity at the axisé=¢&, (so thatx,=1) we obtain the acceleration only in an appropriate limiting regime. The
k1>1, i.e., a squeezed cosmic string at the a&xisé,. Al- usage of the ternaccelerationfor the parameteA in the
ternatively, if we set the physical conicity; =1 at é= ¢, C-metric (see Refs[28-3(Q for the caseA=0, and, e.g.,
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Ref.[36] for the case\ #0) has been justified exactly in this
way.

Of course, the situation extremely simplifies in the case of
vanishing mass and chargm€ 0, e=0). In this case there
are no black holes, and the spacetime reduces to de Sitter
universe. However, if we still keep+0, a trace of(now
vanishedl “accelerated” sources remains in the met(it:8)
through the parameter. By a simple transformatiofA12),

a
T=a,r, RZTA, cos®@=—¢, d=¢, (3.6

we obtain the metri€A17) of the de Sitter space iacceler-
ated coordinates T, R®, ® introduced in Ref[36] and
discussed in Ref23]. These coordinates are an analogue of
the Rindler coordinates in Minkowski space generalized to
the case of the de Sitter universe. They are adapted to accel-
erated observers: the origif&=0 represent two uniformly
accelerated observers which are decelerating from antipodal
poles of the spherical space section of the de Sitter universe
towards each other until the moment of minimal contraction
of the universe, and then accelerate away back to the antipo-
dal poles(see Fig. 4. In the standard de Sitter static coordi-
natesT s, Rys, ®4s, PysOf the metric(A19), related to Eqg. FIG. 4. Conformal diagrams of de Sitter univer&® in the
(3.6) by Eqg. (A20), these observers are characterized bystandard cosmological coordinat@s?0), and(b) based on the ac-
Rys=R,, ©4s=0. Thus, they are static observers staying atcelerated coordinate8.6) [cf. Eq. (A12)]. In contrast to Fig. &),
constant distanc®,=a, tanha [see Eq.(A18)] from the the diagram(b) depicts two sections of consta&it namely,é=¢&;
polesRys=0 of de Sitter space, measured in their instanta{® =0) at the right half of the diagram, ang=¢, (0 =) at the
neous rest framedor, equivalently, in the de Sitter static left half. We can see that the position of infinitgouble ling is
frame. They are uniformly accelerated with accelerationdifferent for these two values of. For intermediate values of
A=a, ' sinha toward these poles—in fact, this acceleration!™finity 7 would ~attain an intermediate ~position  at
exactly compensates the acceleration due to cosmologicH~ 2 /¢ cotha, according to Eq(3.2). The infinity has a simple
contraction and subsequent expansion of de Sitter universe'aP€ in diagrana), where it is indicated by the horizontal lines
We can consider the above accelerated observers as “remdS - In both diagrams the left and right boundaries are
nants” of accelerated black holes of the f@metric uni-  'cntfied—they correspond to one of the two poles of the appro-
verse. Of course, in the oversimplified case of de Sitter spacp”ate coordinategthe other pole is located in the center of the

h u . | h dli d &agran). A horizontal line thus corresponds to the main circle of a
these “sources” Just move along the worldlines and we are patial S* section of de Sitter universe. Bold lines corresponds to

able to measure their acc;eleratiqn explicitly. It is.thus nqtur he origins of the accelerated coordinat&s=0) which have been
to draw the conformal diagraiifig. 4@)] of de Sitter uni-  ¢mpioved in the paper as “remnants” of the sources. In diagi@m
verse, based on the standard global cosmological coordiney move with respect to the cosmological frame. Diagthiris
nates, in which the remnants of sources are obviously desgapted to their accelerated motion and therefore the sources are
picted as moving “objects.” On other hand, we can draw anjocated at origins. Dashed line corresponds to vaRiex, i.e.,
alternative conformal diagram based on the accelerated c@=0, where the accelerated coordinates are not well defined. Rela-
ordinates[Fig. 4(b)], in which the remnants of the sources tive position of the hypersurfad@=c and of infinity Rgs= can
are located at the “fixed” poles of the space sections of thebe visualized with help of a conformally related Minkowski space
universe. The diagram in Fig(d is adapted to global cos- (lower half indicated by the shaded domdnthe upper half indi-
mological structure of the universe and explicitly visualizescated by dotted line In this space the infinity corresponds to hy-
the motion of the sources, whereas the diagram in Kly.i¢  persurfacet=0, the coordinate singularitR=c corresponds to
adapted to sources and thus “hides” their motion. t'=0, wheret and t’ are Minkowski time coordinates in inertial
This intuition can be carried on to the general case withframes moving with relative velocity tani—see Appendix A for a
nontrivial sources. The coordinatesy, & ¢ [or alternatively ~ related discussion.
the accelerated coordinates defined in the general case by Eq.
(A12)] are adapted to sources and thus the conformal dia-
grams in Fig. 2 “hide” the motion of the black holes. There-  Using the insight obtained from the de Sitter case, we also
fore, it would be very useful to find an analogue of the co-observe that the “changing of shape” of infinity in the
ordinates of Fig. @) for the general casm+0, e#0, to be  conformal diagrams for different values of the coordingte
able to explicitly identify the accelerated motion of the blackas discussed above, is actually erdenceof nonvanishing
holes. However, as was already mentioned, we are not awaseceleration of the sources. In the case of pure de Sitter space
of such coordinates. we have obtained this “changing of position” @when we
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have used the coordinates adapted to the accelerated obsemader null rotation around null vectoksor |, under a boost
ers. We expect that the analogous “changing of shape” of thén thek-I plane, and a spatial rotation in them plane[44].
infinity in a general case also indicates accelerated motion ofhese transformation are summarized in Appendix D. The

the sources. tensor of electromagnetic field,; has six independent real
components which can be parametrized, similarly to the
IV. PRIVILEGED ORTHONORMAL AND NULL TETRADS Weyl tensor, as
NEAR %
. . . . . = amB
We wish to investigate properties of null geodesics and Po=Fap k'm”,

the character of fields near infiniy(domain | in Figs. 1, 2
Therefore, we will assum&< 0, G>0, and£<0. Before we .
discuss the geodesics and behavior of the fields we first in- 1= 5Faup (k“1P—m*m?), (4.6)
troduce some privileged tetrads which will be used for physi-
cal interpretation. In the following, we will denote a normal- .
ized vector tangent to the coordinat®, i.e., the unit vector D,=F,z M*IP.
proportional to the coordinate vectdy,, by e,.

We will employ several types of orthonormal and null The transformation properties of coefficienbs, under the
tetrads which will be distinguished by specific labels in sub-nyl| rotations, special boost, and spatial rotation can also be
script. We denote the vectors of an orthonormal tetrad afound in Appendix D.

n, g, r, s. Heren is a unit timelike vector and the remaining  Now, we first introduce aralgebraically special tetrad
three are spacelike. With this normalized tetrad we associaig,, q, r,, s; which is associated with thprincipal null

a null tetrad of null vectors, I, m, m, such that directionsof the C-metric spacetime. We define
1 1
k=—(n+q), 1=—(n-q), V-7 Vg
V2 V2 Ns=—€,=—— a,, rs=e§=70§,

4.0 @7

1( is), m: 1(+')
m=-—(r—is), m=-—(r+is).
V2 V2

Using the associated tetrad of null one-forms\, u, p dual

to the null tetradk, I, m, m, the metric can be written as and the corresponding null tetrad, I, m., i, by Egs.

g=— kON+ pOp, (4.2  (4.1. Itis straightforward to check that these null directions
ks, Is can be expressed as
which implies

== .m= sint 1 sintt 1
k-1 1, m-m=1, (43) kszm\/T—}_&vi ISZM\/?%' (48)
all other scalar products being zero. From this it follows that
Ko=—0apl”,  Nog=—0,pKP, where the global null coordinatd@s ¥, parametrized by a
. (4.4  constants, are introduced in EqA38). It turns out that the
Ma:gaﬁmﬁl Ma:gaﬁmﬂ' Weyl tensor has the simplest form in this tetrad. It can be
. expressed as
The Weyl tensolC 4,5 has ten independent real compo- P
nents which can be parametrized by five standard complex
coefficients defined as its components with respect to th%:i(f”—l—g”)rz
above null tetradsee, e.g., Ref§42,44): 12
Y,=C k*mPk”m?®, 1
0 Zapys X }_—gddeg dvOdé— FG drOdedrOde
\Pl:Caﬁyb‘ kalﬂk’ym5'
g F
Vo=~ Cupys kemA17m®, (4.5 + 7__dv|:|dgo dvdde— Eerdg dr0dé¢
‘I’gzcaﬁ.y&lakﬁlymﬁ,
+2d70dvd7r0dv—2dé0de dé0de | . 4.9

’\1}4: Ca,B‘yﬁ Iamﬁl yma.

The coefficientsV, transform in a simple way under special Transforming this into the null tetrag, Ag, us, pswe find
Lorentz transformations of the null tetrigl, m, m, namely, that the only nonvanishing component¥s, namely,
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PSS = i(ﬁ/+g//)r—2
212

m e° _
—— — (vcosha+ & sinha)
as ay

ap
- 3

I P
m—2e“Aé& F 3

(4.10
PS= WS =WS=WS=0,

This exhibits explicitly thatks, |5 are the double principal
null directions[44], which lie in therv plane.

Similarly, the electromagnetic field tens@.4) in coordi-
natesr, v, & ¢ reads

F=edvOdr. (4.11

Using relationg4.1), (4.7), we find that the only nonvanish-

ing coefficient of electromagnetic field B3,

e

q’iz_?, (I)(S)Z(DSZO (412)

The special null tetrad defined above is appropriate foqzq. (4.15. The vectorsd,

PHYSICAL REVIEW D68, 024005 (2003

FIG. 5. A spacetime diagrarty direction is suppressedhat
depicts relations between the reference tetmgd q,, r,, S (Or
Ko, Iy, Mg, My), the algebraically special tetrad, qs, rs, S (Or
ks, ls, mg, my, and the Robinson-Trautman tetragr, Igr, Mgy,
mgr. The reference tetrad is naturally adapted to the infinityi$
normal toZ™) and the Killing vectors ¢, and s, are tangent to
them), while the algebraically special tetrad is adapted to both
double principal null directionks andlg. These two are related by
a boost in then,—r, plane, with the boost parametgg given by
and g are identical, similarlys,=s;.

discussion of algebraic properties of the fields. Howevergogonal projection? , IX of the principal null directions onto

near future infinityZ * we will also have to use a different

tetradn,, q,, o, S and the related null tetrakl,, |,, m,,
m,. These will serve aseference tetradswith respect to

which we will parametrize a general asymptotic direction.

These tetrads are adapted to the Killing vectdys d, and
to de Sitter—like infinityZ . Namely, the timelike vecton,
is asymptotically orthogonal té ", andq,, r,, S, are tan-
gent toZ*. We define

(4.13
eq,:

10
rVGg ¥

the corresponding null tetrdd,, 1,, m,, m, is given by Egs.
(4.7).

Relations between the tetrads, g, rs, S andn,, g,
o, S immediately follow from the definition$4.7), (4.13
and from relations of coordinate®.11) [cf. Egs. (C2b),
(C20],

F g

Nng= gcosha ny+ jcﬂsmha los
g . F

re= 755|nha ny+ Ecosha o

ds= o,

1
:—e:——0’ =
Go=—e=-——=0d.

(4.19

SEES

w=const hyperplanéshaded define the angl#, [Eq. (4.18] that,
similarly to B, characterizes the relation between the reference and
the special tetrads. The vectiog; of the Robinson-Trautman tetrad
points into the principal null directiokg with the coefficient of
proportionality approaching zero b, cf. Eq. (4.28. The other

null directionlgr belongs to then,-k plane and it becomes “infi-
nitely long”on Z*.

A geometrical meaning of these transformations is seen in
Fig. 5. Both tetrads are related by a simple boost innhe,
plane with a boost parametgx, given by

[ G
tan hﬂsz _—}_tanha.

This boost is described by relations similar to EB.10),
with the vectorsg andr interchanged.

We obtain even a better visualization if we perform a
projection of the principal null directionkg, | to a three-
dimensional hyperplane orthogonal to the timelike veotor
We thus obtain “spatial” direction&y , I3,

(4.15

ks =Kkst (Ks-No)n,,  etc.,

(4.19

of the null vectorsg, |5 which lie in theq,-r, plane, sym-
metrically with respect to the vector, (see Fig. 5. If we
denote by#, the angle between, and ks, we can write
kg osin 6, r o+ cosbs g,, and taking into account the normal-
ization (4.3) we obtain
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: i = e
= m(n,ﬁ sinfg ry,+cosbs d,), dy=- o2 ECOSha,
(4.17) c (4.23
e |
. PI=Do= —sinha.
ls&= ———— (Ny+sinfs r,—cosbs dy), 0272 N —¢
S ‘/200565( o S (o] S QO

As we have already mentioned, the tetrad q,, o, S
see also Eq(C3). Comparing this with relationg4.14 and  serves as the reference tetrad with respect to which we char-
using Eq.(4.1), we find that the anglé, is given in terms of  acterize an arbitrarilyotated tetradn,, q,, r,, s.. The tetrad
the metric functions?, G, £ as n,, o, I, S is obtained from the reference tetrad by a spa-
tial rotation given by angle®, ¢,

. g F -t
sin = 7__tanha, Ccosfs= Ecosha , n="n,,

(4.18
;= C0SHAQq,+ Sin O cOS¢r ,+ Sin 6 sin ¢s,,
i.e., tanhBs=sin 6;. (4.24)
We will be interested mainly in the tetrads at the confor- 1 = —sin6q,+ cosé cos¢r ,+ cosd sin ¢s,,
mal infinity Z*, i.e., for «=0, where v=¢tanha and
E=—1, see EQqs(3.2), (A24). From the definitiong4.15), S = —sin¢r,+coses,.
(4.18 and using Eqgs(A10), (A1l) we find that the boost
parameterBs and the angleds (which both characterize di- Let us note that the angleg ¢, understood as standard
rections “from the sources’may on theZ * have values in  spherical coordinates spanned on the aggsr,, S, de-
the ranges scribe exactly the spatial directidg = (1//2)q, of the null
vectork,, where thespatial directionmeans projection or-
Bse[0.a], sinbse[0,tanha]. (4.19  thogonal to the vecton,. The relation between null tetrads
following from Eq. (4.24 can be found in Eq(C5). This
The zero values occur on the axis @fsymmetry(points  transformation is obtained as a consecutive composition of
“between” the moving black holest=¢,,&5), the maximal  null rotation with fixedk [Eq. (D3)], null rotation with fixed
values occur on the “equator”—the circle of maximal cir- | [Eq. (D6)], and of special boost and spatial rotatid@»9)
cumference £=0,v=0). with parameters
Transformation formulagC3) allow us to find compo-
nents of the Weyl tensor and tensor of electromagnetic field

0 .
in the reference null tetrakl,, I,, m,, My, namely, L=—tansexp—i¢),

6 0
‘I’Z—‘I’ 3(3cos % 0,-1), Kzsinicoszexp(—id)), (4.25
O__ A0 __ 3 S o —2 B= —26 b=
\Ifl—\lfs——z\lfzsmescos 0s, (4.20 =Ccos °5, =¢.

3 Finally, we also introduce thRobinson-Trautman tetrad
Vo= 2=§\If§sin2 6scos 2 0, Krr Ity Mrr, Mgy (see, e.g., Ref44]) naturally connected
with the Robinson-Trautman coordinatgs?, u, r [see Egs.

2.9 and(A25), (A28
OI=PI=—tandd;, dJ=cos loD;, (4.2) 29 (A25), (A28)]

Krr=0;,
or, more explicitly[using Eqs.(4.10), (4.12, and(4.18)] r
1 rae
.F"‘*' g// __ = _
5= gg7 3(2Fcoslf a—Gsint? a), ler=—5Ha+9, E{‘“a“’
(4.206
P 1
wa+g// ' _ _
‘P§=W§=W V= FG cosha sinha, (4.22 Mrr= "7 0= \/Er 9
/+ " o Pa 1 a
0__A[p0— ; M= —0;,=—
Vo=w= Wgsmh2 a, R O g

024005-10



RADIATION FROM ACCELERATED BLACK HOLES INA . ..

Here we have written down equivalent expressions using

both metric functiondd, P commonly used in the Robinson-
Trautman framework, and the metric functio@is £ of the
C-metric [see EQgs.(2.14), (2.19]. The vectorkgy of this
tetrad is oriented along the principal null directibgn, and it

will be demonstrated in Sec. VII that this tetrad is parallelly

transported along the geodesics tangent to principal null d
rections.

The tetrad(4.26) is simply related to the particularly ro-
tated tetradk,, I,, m,, m, [Eq. (C5)] with 6=6,, $=0, 6,
given by Eq.(4.18):

Krr=exp(Brr)Kr,  |rr=exp(—Bro)l;,
(4.27

Mpr=My,  Mgr= My,

PHYSICAL REVIEW D68, 024005 (2003

V. GRAVITATIONAL AND ELECTROMAGNETIC
FIELDS NEAR Z™*

Now we are prepared to discuss radiative properties of the
C-metric fields near the de Sitter—like infinify*. As we
have already explained in Sec. |, by thediative fieldwe

ignderstand a field with a dominant component having the

1/x fall-off, calculated in a tetrad parallelly transported along
a null geodesiz(#n). We will in particular concentrate on
investigation of a directional dependence of the gravitational
and electromagnetic radiation.

To study the dependence of the fields on the directions
along which the spacelike infinitf © is approached, it is
crucial to find a parallelly transported tetrad along all null
geodesics. However, it is difficult to find a general geodesic
and the corresponding tetrad in an explicit form, except for
the case of very special geodesics along the privileged prin-

i.e., the Robinson-Trautman tetrad can be obtained from theipal null directions, which will be discussed in Sec. VII.

reference tetrad,, l,, my,, M, by the spatial rotatiofiC5)
with 6= 6, ¢=0, followed by the boostD9) with param-

\ H '

V2w

B=expBrr=— f (4.28

Fortunately, it is not, in fact, necessary to find an explicit
form of the geodesics and tetrads because we are interested
only in the dominant terms of the fields closeZd . It is
fully sufficient to study only theiasymptotic forms

Near infinityZ *, null geodesicg(#) can be expanded in
the inverse powers of the affine parameger . In particu-
lar, in coordinates, w, o, ¢ introduced in Eq(2.11), the null
geodesicg(n) can be expanded as

We also give the relation between the Robinson-Trautman

and the algebraically special tetrad. Because the vektgrs

andkg are proportional, the Robinson-Trautman tetrad is ob-

tained from the special tetrad by the null rotati@s) fol-
lowed by the boostD9) with the parameters

. g
—sinfs=— ?tanha,

v2ay

rV— Fcosha

The explicit relation of both tetrads can be found in Eqgs
(C3) and(C4).

Using the transformationéD4), (D11) and (D5), (D12)
with these parametets B, we find that the only nonvanish-

L
(4.29

B=expBrrC0SHs=

ing components of the gravitational and electromagneti

fields in the Robinson-Trautman tetrad are

2

e\ 1
VET=p5=— m—2e’A¢—— |,
(4.30
RT 3 Ar S RT A2r2 s
3 :—‘72?\1’ y \IT4 :3—P2—‘I’2,
PT=d3=— oy, BFT=—v2 e @3 4.3
1~ F1 2r21 2 - P 19 ( . :D

with w3 and @3 also given by Eqs(4.10 and (4.12, see
Ref. [44].

A
w(??)mw*7+“‘,

ap
G

(5.9

ay
0(77)*0++U*7+"‘,

ap
e(M=~@it@e—=+,
n
‘where the affine parametey has the dimension of length.
There is no absolute term in the expansion of the coordinate
because w=0 at Z*. The constant parameters
7., 0., ¢, [and the corresponding values andé¢, given
be Eg.(2.11)] label thepoint N, atZ* which is approached
by the geodesie(#). The parameters, , o, , ¢, charac-
terize thedirectionalong which this poiniN. is approached.
The remaining coefficiento, can be determined from the
normalization of the tangent vector which must be null. The
tangent vector has the form

Dz

dn

ap
?(w* 0,+ 7.0, +0,0,+¢,9,).

(5.2

The asymptotic form of the metri@.12 along the null geo-
desic is

2
n
0~ —7 (—dw’~ F.dr’~ F.G.do?+G.d¢?), (5.3

*
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whereF, andg, are the functions¥ andg evaluated at the portional to the(parallelly transportedtangent vector of the
point N at infinity Z*, and we used. =—1. Therefore, geodesic. This ensures thiat is finite in finite regions of
the condition that the tangent vector is a null vector impliesspacetimésee[47]). However, we still have a freedom in the
5 ) 5 5 normalization ofk; which can be multiplied by an arbitrary
wy,=—Fi1 —F G0, TG, 05 (5.4 finite factor, constant along the geodesic. Similarly to the
choice of the “universal” affine parameter for different geo-
desics, we have to choose the parallelly transported tetrads in
1 some suitable “comparable” way for various geodesics ap-
r(n)~yn+---, where y=——, (5.5  proaching the same poift, at infinity from different direc-
Wy tions. Not having an explicit form of the geodesiexcept
for those special ones discussed in Sec.) Mife have to

which follows from Eq.(2.16. gliminate the dependence on initial conditions by fixing final
We wish t [ hing the gi
e wish to compare geodesics approaching the Ve onditions for the tetrad at infinit . Namely, we will

point N, along different directions. We thus need to ensure . N . e
“the same” universal choice of the affine parametgior all ~ '®4ulre that the normal|_zat|qn of the vectky is ;pecmeq .
geodesics. It is natural to require that the endiy equiva- mde_pendently of the direction of .t_he geodesics. This is
lently, the frequenclyof the ray represented by the null geo- achieved, for example, by the condition

Notice thatw, <0 sincew<0, and

desic
k;-dr=1. (5.9
Dz
Eo=—P-No= TGy, Mo (50 Thanks to Eq/(5.5 we thus have
(see[45)), is the samdndependently of the direction of the 1Dz
geodesic, i.e., that the component of the tangent vector to the ki:; dy’ (5.9

normal directionn, is fixed. From Eqgs.(5.6), (5.2), and

(4.13 it immediately follows that Concerning vectorsn;, m; of the parallelly transported

a2 a3 interpretation tetrad, there is a priori no “canonical” pre-
E~—=y—. (5.7  scription how to choose these in a universal way for different
K r geodesics. The only constraint is the correct normalization

; .. (4.3). Therefore, we have to find such physical quantities
with respect to any asymptotic which are invariant under this freedom. It will be shown
below [see Eq.(5.18 and discussion therejrihat themag-
nitude of the leading ternof the fields atZ™* is, in fact,
independent of the specific choice of the vectoks m;.

However, there is a natural possibility to fix the null vec-
tor |; of the tetrad by the condition that the timelike unit

The value of the energi,
observer characterized by the four-veloaitythus obviously
approaches zero ag—. This behavior is caused by the de
Sitter—like character of *. Therefore, we have to compare
the values oE, at the same “proximity” toZ ", i.e., at some
fixed large bufinite value of the coordinate (see[46]). We
conclude from Eq.(5.7) that fixing the energy at a given
prescribed value ?]E is7)equivalent9[o fixing thgyvalue gf the VeCtorns, orthogonal to infinity ™, lies in thek;-I; plane. In
constant parameterindependently of a direction of the geo- this case the parallelly transported tetrad can be obtained by
desic. Let us note that this approach is fully equivalent to""_bOOSt in thek;-|; plane from_ the rotated tetrad, I, m,
fixing a finite value ofconformal energyi.e., of the energy Mr [S€€ Eqs(4.24) or (C5] with properly chosen angles
defined with respect to a vector normal T normalized ¢. Clearly, the_ vectok, h_as to point exactly in the direction
using a conformal metrig= w?g. of _the_ geodesic or, e_quw_alently, the spatial vealpha_s to
Next, it is necessary to find anterpretation tetrack;, I, ~ Point in the spatial direction of the geodesitere again by

m;, m; which is parallelly transported along the geodesicSPatia! vectorswe mean those orthogonal m,=n;, i.e.,
2(7). However, using only an asymptotic expansion of thetangent taZ ). Using Egs(5.9), (5.2), and(4.13 we obtain
tetrad at infinityZ *, we cannot determine unique initial con- 1

ditions which define this tetrad somewhere in a finite region a1

of the spacetime. But without specifying these initial condi- ki vn Mo 7;(7* 0:t 0495t ¢, 0p) | (510
tions, the parallelly transported tetradZat is given only up

to an arbitrary(finite) Lorentz transformation. It thus seems The unit vectorq, in the spatial direction of the geodesic is
that we are losing all information because of this nonuniquethys

ness. However, it is not so. It will be demonstrated that the

crucial information about the behavior of the fields at infinity 1

Z* is hidden in an “infinite” Lorentz transformation corre- q~— —(7,0,+0,0,+¢,0d,)

sponding to the parallel transport from a finite region of the 7

spacetime up to infinity. It will thus be sufficient to find only ®,

. - . Tx Oy
the leading term of this transformation. =— \/—}'+w—q0+ —f+g+w—ro+ G, ° S -
To be more specific, we naturally choose the vektaof * * *
the parallelly transported interpretation null tetrad to be pro- (5.11)
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The leading term of the expansion of the parallelly trans-The field thus clearly exhibits theeeling behaviar The
ported tetrad near the infinity then can be written as leading term of the gravitational field representing radiation
near infinityZ * is W},~ 1/%. Explicitly, this term asymptoti-

v2a, cally takes the form

A
k~—K.=—(n.+ , m=~m,,
I ,),7] r 77]( [0} ql’) 1 r
16a4 co< 6,
Yn Yn N
li~——I=5—(Ny—q,), m=m,. . . - . 2
Via, 28, X (Sin#+sinfscos¢p—i sinH5cosh sing) <.
. . (5.1
Here, we have made a particular choice of the vectars
m;. In generalm; could differ fromm, by a phase factofa  Here we should note thisee Eq(4.10]
rotation in them;-m; plane which, as we mentioned, cannot
be fixed in a canonical way. Our choiog~m, is “natural” 1 1
for the approach presented here. However, in the next section 1—2(55"+ G")~—(m—2e?A¢.) % (5.17

we will encounter another “suitable” choice of the vector
m;. . .
Now we have to identify the anglek ¢. Let us recall that The phase of the componeitt, depends on the choice of
these angles are just spherical coordinates of the spatial di?® vectorm; [see Eq.(4.5)]. Because the vectam; was

rectiong,ck> with respect to the reference framg, r,, 5,. ~ chosen arbitrarily, only the moduly¥| can have a physi-

Comparing Egs(5.11) and(4.24 we find that the parameters Cal meaning. Using the peeling behavi{ér15 we can even

., o, , ¢, , characterizing the asymptotic spatial directioniustify that the magnitudeW;| does not depend on any

of the geodesig¢5.1), fix the anglesd, ¢ as change of the null vectorls, m;, m; at infinity. Indeed, we
may perform an arbitrarfinite Lorentz transformation which
1 leaves the vectdk; fixed. Such a transformation can be gen-
T, = cosé, erated by a combination of the discussed spatial rotation in
W—Fs the m;-m; plane(D9) which change only a phase #f,, and

of a null rotation(D3). Under this transformation, the com-

1 ponent\Ifi4 transforms according to E4D4) as
o, =— ————=SiNn6 oS¢, (5.13
J=-F.G Lo
NI Wi =+ AL+ 6L2W L+ 4L+ AL (518
o 1 siné@sin . Since L is finite and_ the components‘I'in_~ 7>,
NG n=0, 1, 2, 3 are of the higher order in/ithan ¥}~ » 1,

they do not change the leading term of the field, &,
In the following we will use these anglés ¢ to parametrize remains invariant(Let us note that the same is obviously not
the direction along which a null geodesic approaches thérue for leading terms of other components of the Weyl ten-
pointN, onZ ™. sor)
Now we are ready to calculate the leading terms of the The invariant physical quantit}y{fi4| is thus
components?, of the Weyl tensor in the parallelly trans-

ported tetrad given above. First we find the compondrs 3 (m—2e?A¢,) 1

in th_e rotated tetradk,, I, m, m,. _These can easily be | I4|%Zr Yaﬁ co2 0, ;

obtained from Eq.(4.22 using relations(D4), (D7), and

(D11) with the parameter&t.25). Notice that all these com- X[ (sin @+ sin 65cos¢) 2+ sir? fscos G sir? ¢ ],
ponents are of the same ordersnnamely,~ 77*3 [cf. also (5.19

Eq. (5.17) below]. To obtain the component¥,, in the par-

allelly _transported tetrad_ we perform an additional bOOS'i/\/here the anglé@, identifying the principal null directions at
(5.12 in the k-1, plane with the boost parameter given by infinity is, thanks to Eqs(4.18), (2.6), (2.13 and&, = —1

iven b
_ V2a, (5.14 g Y
" | o=/ G, 2’ o 1ig.aia?
. . . . . Sinos= 1+G.a A% cos 6s GragA”
Using relations(D11) we immediately observe that it res- (5.20

calesW¥, by different powers ofy, namely,

L Note that the termra—2e?A¢.) in Eq. (5.19 is positive,
i _ which follows (although not immediately, see Appendiy B
W 7" n=0,12,3.4. 19 from the conditiong2.5).
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%), A n—6, A

| / P
@
FIG. 6. The magnitude of the leading terms of gravitational and
electromagnetic fields, given by Eq$.19 and(5.23), as a func-
tion of a direction from which the pointN, at infinity is

approached—thalirectional pattern of radiation The directions

from the originN, of the diagram correspond to spatial directions

in spacelike conformal infinityZ *. The magnitude of the fields

measured along a null geodesic with a tangent vdcisrdrawn in

the spatial direction-k* from which the geodesic arrivese., the

geodesic points into the spatial directikh). The anglesy, ¢ pa-

rametrizing the spatial directiok are measured from the axig,

and around the axig, starting from ther,-q, plane, respectively.

The special geodesics in principal null directidqsandlg, i.e., the

null geodesics coming from the “left” black hole and the “right”

black hole(pointing “from the sources}, are denoted b)zgl) and T

zg) . They approach the poiMl . at infinity along the spatial direc-

tions kg andl:. On the other handz{”? andZz{ are “antipodal”

null geodesics approaching the infinity along the spatial directions FIG. 7. The particular sectionso, o-¢, and ¢ of the direc-

—kg, —I%, opposite to that of{’ and z\"), respectively. The tional pattern of radiation shown in Fig. 6. Theentedanglesé of

leading radiative term of the fields completely vanishes along thesehe spatial directions of the geodesics from souraes 4 and 8

antipodal geodesics. =w—06s, ¢=0) and of the antipodal geodesic¥=6s and
0=m— 05, ¢=) are indicated.

©

Analogously, we obtain the componers, of the elec-
tromagnetic field in the parallelly transported null tetrad intetrad. Moreover, the square of modulus now has a clear
the form physical meaning—it is exactly the leading term of the mag-
nitude of the Poynting vectds in the parallelly transported

i 1 frame defined with respect to the timelike vector Thus
| — y
(Dn 773—n: n 0,1.21 (5-2]) we obtain
which also exhibits the peeling behavior. The leading term of i 12 e? 1
the radiative componer), is asymptotically 4| S|~|Py|*~ 8 y2aZ co 0, 72
" 1 e 1 X[ (sin @+ sin 65c0s¢h)?+ sir? H5cos 0 sir? ¢].
27 2y2 ya, cosbs (5.23
X (sin#+sinfscos¢—i sinfscosb sing). The direction of the Poynting vectd® is asymptotically

(5.22  given by the vectog . Interestingly, the dependence|df|

_ and|®}|? on the direction along which a poiht, at infinity

Similarly to the ¥, component, only the modulus of this Z* is approachedi.e., the dependence on angkand ¢) is
expression is independent of a choice of the interpretatioexactly the samenamely,
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A
a

FIG. 8. The directional pattern of radiation from Fig. 6 for different values of the angular paramet@&@ecause the directional
dependencé5.24) of the gravitational and electromagnetic radiation depends only on this single paraingteen by Eq.(4.18), both
changes of a positioN , at infinity Z* and changes of the physical parameter, A, and A manifest only through a change of the angle
. The diagrams with different values 6f can thus be interpreted either as the directional patterns at different points of ififfnitgr as
the directional characteristics at “the same” pofniith fixed values of the metric functiong andg), but in spacetimes with, for example,
different acceleration of the black holes.

A(6,p)=(sin g+ sin f;cos¢p)>+sir? ;cos 0 sir? ¢. ¢=0) is A=4 sir? 6. The value along the directiay, (cor-
(5.24  responding tod=0) is A=sir? 6, and alongs, (6= /2,
. , b=ml2) is A=1.
The angular dependen¢g.24) for a fixed value offs which Finally, it is interesting to observe that for a vanishing

characterize thelirectional pattern of radiationat a given  gcceleration of the black holes, i.e., far=0 which implies
point of Z* is shown in Figs. 6 and 7, and for variodigin 6s=0, we obtain
Fig. 8.

Let us now discuss the main resuls.19 and (5.23. 3 m 1
These expressions can be understood as a more detailed | 4|*ZW7—75W\2 0,
characterization of radiative fields near the spacelike confor- A (5.29
mal infinity, supplementing thus the peeling behav®rb), 1 e 1 )
(5.29). It follows from Egs.(5.19, (5.22 that the dominant |q)i2|% =~ Zsine
components of both fields decay asymptotically néar, 2v2 Y@ 7
corresponding ta =%, as (yn) '=r"!. The electromag-
netic field is proportional to the charge parametevhereas The angular dependencé=sir 6 is now independent of
the gravitational field is proportional to the mass parametef© that the directional pattern is axially symmettsee the
m modified, interestingly, by the term 2e?A¢, which is a  diagram on the very left of Fig.)8 Moreover, the gravita-
combination of electric charge and acceleration parameter§onal and electromagnetic fields decay as &ven in this
and the constang. denoting a specific point at infinitg *. case ofnonacceleratedblack holes if the fields are measured

Both the gravitational fieldW),| and the electromagnetic @ong a nonradial null geodesi®¢0,m). A generic ob-
Poynting vector 4 |3|~|¢i2|2 are proportional toagz server thus detects radiation. This effect is intuitively caused

—IA [but they also depend implicitly on through the pa- by observer’'s asymptotic _motion relative to the “static”
rameter 6., see Eq.(5.20]. The radiation atZ* thus in- black holes. Only for special observers moving along null
creases with a growing value of the cosmological constant 9e0desics radially from the black holeg<0,m) the radia-

The angular dependence of the magnitude of radiatioﬂiion vanishesl as r(])ne WOL:Id ((ajxpectdfor static” $ources|.
A(6, ¢) is presented in Figs. 6 and 8. Their grid is given by Interestingly, the angular dependendés, ¢) is exactly

the coordinate lineg=const andg$=const, respectively. It the'sa.me as that obtained in RE22] fqr test glectromag—
is straightforward to investigate the behavior of the function"€tc field of two accelerated charges in de Sitter spiaee
A(6, ¢) for a fixed 6. The minimal value isA(6,m) [48)).

=(sing—sin#)?, and the maximum isA(6,0)=(siné

+sin 95)2_ The global maximumA= (1+sin 9)2 occurs for VI. THE RADIATION IN THE ROBINSON-TRAUTMAN
6=m/2, $=0. The greatest magnitude of radiation thus ar- FRAMEWORK

rives at infinity from the direction of,. On the other hand, In this part we rederive the above results using the frame-
the minimal valueA=0 is obtained forf=6s, ¢=m and  \ork naturally adapted to the Robinson-Trautman coordinate
0=m—0s, ¢=m. These are exactly tk|1e spatial directions system(2.14). This will not only provide us with an indepen-
~Iy, —kg of antipodal null geodesics{? andzy’, along  dent way of deriving the characteristic directional pattern of
which the radiation completely vanishes. The value.of radiation generated by accelerated charged black holes in the
along the geodesic” andz{" coming from the black holes asymptotically de Sitter universe, but opens a possibility to
in the directionsk; (0=6s,4=0) and Iy (0=m— 0, investigate even more general exact radiative solutions from
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the large and important Robinson-Trautman family. represent two possible differentientationswith which the
We start again with investigation @fsymptotic null geo- null geodesics may approadh’ in the given spatial direc-
desicsapproaching infinityZ ", i.e., those for which — oo, tion. In particular, for the special choice=0 we obtain
Assuming a natural expansion of these geodesics in powets=0 andd= —2a/2\. The first corresponds exactly to the
of 1/r (rather than in the affine parametemXs was done in  privileged principal null direction alongks “from the

the previous section source”(i.e., the null geodesiz(s') along the spatial direction
c k:), the second to an opposite orientation of this direction
(=it =+, “away from the source’(the “antipodal” null geodesic’
r along —ky), see Fig. 6.
d In order to find the behavior of radiation ne@&r” we
u~u, + - oo, (6.1 again have to set up the interpretation tetrad transported par-

allelly along a general asymptotic null geodesic, and project
the Weyl tensor and the tensor of electromagnetic field onto
this tetrad. We start with the Robinson-Trautman null tetrad
(4.26), naturally adapted to the Robinson-Trautman coordi-
nate systen2.14). We have seen in Sec. |V that the vector
kgt is oriented along one of the principal null direction,

r(17)—>oc as n—*,

wherel, , u,, ¢, d are constants, the derivatives with re-
spect to the affine parameterare

. i namelyk, and(as we will see in Sec. V]lthe tetrad4.26
{~= r—2C+"' ; is parallelly transported along the algebraically special geo-
6.2 desics. In this standard tetrad the only nontrivial components

) P P2 VR and®F", which represent the gravitational and electro-
{~—=(ct+)+ 5(2c+--). magnetic field, are given by Eqé4.30 and (4.31). Let us
r r .
now perform two subsequent null rotations and a boost of
The expressions foil, (I are obtained from Eq(6.2 by  this Robinson-Trautman null tetrdd.26. We first apply Eq.
replacingc with d. Similarly, we may expand the metric (P6), then(D3), and finally (D9) with the parameters
functions and other quantities. Using E¢&.1) and(6.2) and

the Christoffel symbol$A32), the geodesic equations in the K=— ¢ ,
highest order read (1+ : a,(zd) Pr
1 i P2 t P2
—= —=N— 2_ - N— cr
c-=0, d: = SR e Nr : (6.3 L= 75 6.7
A
where

B=1+%a,%d, ®=0.
N=2P,?%cc+2d+a, %d?, (6.4)
The resulting null tetrad, using relatid6.5), then takes the
P being the asymptotic value &f at the pointN, atinfin-  following asymptotic form as —o:
ity. However, a normalization of the tangent vector farl

geodesics requires c c d
|(i~ 0r—r—zﬂ§—r—2${—r—20u y
N=0. (6.5
2 = 2
Consequently, the asymptotic form of the null geodesics ap- - r c c d+2aj}
proachingZ * is d 2a2 Ot 20t 20t — 7 ),
(6.9
r~vyn §~§++E U%UJr"'9 ~P cd 1) 1 ! | ar ¢ 0
| A " Ml 2aZe | P 2 AT )y
o (6.6
Dz P c P c pe d P 1 o
T ——d——4d,|, = -2 _
dp Y\ O 2% 2% 2% mi~—| |1+ 52, ‘94+Fic‘7? 5704

where the constant can be identified with that introduced in
Eg. (5.9, ¢4, u, specify thepoint N. on Z* towards
which the particular geodesic is approaching, andl are
parameters representing thirection along which N, is T
reached. In fact, this direction is basically parameterized juJ
by the complex constamt since, using relation&.5), (6.4),

Obviously, the above vectok; is tangent to a general
asymptotic null geodesid$.6). Moreover, the tetrad is cho-
sen in such a way that the timelike unit vector orthogonal to

. . —75— 1 r a
d is then given agdl=—a%(1+ \/1—2aA2P+ZcE). qu a Ny=——=(—Ha,+d,)~ — &, + —Aﬂu, (6.9
particularc, there are thus only two real values @fwhich Vv—H aa r
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introduced in Eq(4.13), belongs to the plane spanned by the

two null vectorsk; andl;. Indeed,

‘/ZraA |,> (6.10

1 r
No~ — K+ —
V2 (\éaA

Note that this choice corresponds to a boost @) which
becomes unbounded as-x.

As discussed in the previous section, in ordecdonpare
the radiation for all null geodesics approaching the give
point at de Sitter—like infinityZ *, it is necessary to intro-

duce a unique and universal normalization of the affine pa

rametery and of the vectok;. We concluded that a natural

and also the most convenient choice is to keep the paramet

v fixed [see discussion near E¢6.6)] and to require Eq.
(5.9. These conditions are obviously satisfied by E8),
cf. Eq. (6.6). Therefore, the tetrab.8) is exactly the inter-

pretation tetrad suitable for analysis of behavior of fields on

I*.

Now we perform a projection of the above null tetrad onto

the spacelike infinityZ *. These projectionk! , I, m/ [cf.
Eq. (4.16] are
1 1 Co 2
k; %—r—z[cﬂg-i-cﬁﬁ-(d'f'a,\)au]:
2 (6.11
L r L L m-=m;
Iiw_ﬁ i Mp=Emg, o mp=m;.

The radiation approachir® along the null vectok; propa-
gates in the spatial directiok >q,. Imposing the normal-
ization conditionq,-q,=1, the unit vector of the radiation
direction thus takes the form

1 _
q,~—a—Ar[ca§+ca;+(d+ai)au]. (6.12

Of course, this vector is identical to the vectprintroduced
previously in Eq.(4.24). Using Egs.(C2f)—(C2h), (4.13),
and(4.18 we obtain

1
d;,= — —(—sin6g,+ CcoshH.r,+is,),
I4 \/ZP( Yo s'o S

d,=——H(cosog,+sinby,), (6.13

a9,= (NgtcoshHgy+Sinby,).

1
v—H
Substituting this into Eq6.12), using€, = — 1, and compar-
ing with the expressiofd.24), we obtain the following rela-

tion between the Robinson-Trautman parametersand the
anglesé, ¢

c+c

—————=5in#5c0SH— C0ShH;Sin 6 COSe,
v2a,P.

PHYSICAL REVIEW D68, 024005 (2003

. c—¢C
I ———
v2a, P,

(6.19

—sinédsing,

1+ a/‘\zd: €0Sfsc0sH+ Sin f5Sin 6 cosg.

Of course, this parametrization identically satisfies the nor-
malization condition(6.5). Moreover, it can now be demon-
strated that the above null tetr&6.8) is in fact identical to
the parallelly transported tetra8.12), except for the trans-

Nerse vectom;, which was previously defined as,~m,,

m, given by Eq.(C5) [cf. Egs.(4.24), (4.1)]. Such a vector is
related to the vectom; adapted to the Robinson-Trautman
framework (6.8) by the spatial rotation (D9),

ﬁ'lri=exp(—i¢i)mr, where the rotation anglé; is given by

(cosfs+cosh)sin g
1+ cosfscosh+sinfhssin b cose’

sing;,=

sin éssin 6+ (1+ cosfscosh)cosg
SPi= 1+ cosfscosf+sinfhssin b cosg ’

(6.195

. Os 0+ _Os 0
exp(|¢)cos§cos§ SII’I§SII’1§

expi ¢) =

COS5 COS5
2

. bs 0
5 +exp(i¢) sinzsinzs

22

Finally, we calculate the leading components of the gravi-
tational and electromagnetic fields in the interpretation frame
(6.8) asymptotically close to infinityZ ©. As we have said,
the Lorentz transformation from the tetrdd.26) to the
tetrad(6.9) is given by two subsequent null rotations and the
boost with the parameters given by H.7). Starting with
the component$4.30 in the standard Robinson-Trautman
frame, using Eqs(D7), (D4), (D11) and (D8), (D5), (D12),
we obtain after somewhat lengthy calculation

. 3A%(m-2e%A 1 1 \?
po A (1 1
rP+ VjaAA 2aA
(6.16
i eA 1 1 =+ 1 q
~ - C+o—d]|.
V2rP, v2aiA  2aj

Substituting from Eq(6.14) for the parameters andd, and
using Eqgs(5.20 and(2.15 we get

3 (m—2e?A¢.,)

Y~ e
4 4 ajrcod b,

X (sin B+ sin 6 cos¢+i coséssin b sing)?,

(6.17

1 e

2v/2 a,r cosby

X (Sin @4+ sin @ cos¢ +1 coshsind sing).
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We should have recovered the previous resi@t$6) and  in the wholespacetime, not only asymptotically ne&f, as
(5.22. Comparing them we find that the expressions differ inin Eg. (6.8) for c=0, d=0. As follows from Eqs(4.30 and
the angular part. However, this is a consequence of the dift4.31), all components of gravitational and electromagnetic
ference of interpretation tetrads used in the previous and ifields are explicitly
this sections. The results are, in fact, identical after perform-
ing a spatial rotationND9) with the angular parametep;
given by Eq.(6.195. This changes the phase of the compo-
nents according to EqgD11), (D12), and we obtainV),
=exp(d¢) V), PL=expls)P,, where the left hand side .3 e? 1
is given by Eq(6.17), and the right-hand side by Eq$.16), Vy= E( m—2e°A¢— T)A\/Er_’ (7.5
(5.22. Both results are thus equivalent.

The tetrads(5.12 and (6.8) have been introduced in a &2\ 1
way natural to each specific approach. The fact that they xpizz_(m_ZeZAg_ _)_g, \Iﬂl:\lfiozo'
differ in definitions of the vectom; documents what we rjr
have already discussed above: there is no canonical way how
to choose the interpretation tetrad. It also means that th@"

. e? 1
vy=-3 m—2e2A§—T Ang,

d

phaseof the results5.16), (5.22, or (6.17) is not physical. eA\/E 1 o1

Invariant information, independent of a choice of the inter- Pl = o dl=——  d.=0 (7.6
. . . . 2 ’ 1 29 0 . .

pretation tetrad, is contained in theodulusof the tetrad v2 T 2r

components of the fields. Obviously, the magnitudes of the _ _ _ _
field component$6.17) are the same as the resus19 and  Clearly, the leading terms in therléxpansion give the pre-

(5.23 derived previously. vious general asymptotical resu(& 19 and(5.23 with 6, ¢
specified by Eq(7.2), andr=y#. In the case of de Sitter
VII. RADIATION ALONG THE ALGEBRAICALLY spacetime 1i=0,e=0) the field components identically
SPECIAL NULL DIRECTIONS vanish, in the general case the fields have a radiative charac-

ter (~1/r) except for a vanishing acceleratidnand/or for
In the final section we concentrate on a famlly of Specialg+:0_ The “static” caseA=0 has been a|ready discussed
geodesic approaching infinityZ * along principal null  after Eq.(5.25. The caseG. =0 corresponds to observers
direction ks, and investigate the fields with respect to thelocated at the privileged position—on the axgs &, and
corresponding interpretation tetrad. Using EG832) it is  ¢=¢,. This is analogous to the well-known situation of an

straightforward to observe that the coordinate lines electromagnetic field of accelerated test charges in flat space-
time which is also not radiative along the axis of symmetry.
u=u,=const, ¢=¢,=const (7.9 Let us note that in this case the affine parameteoin-

cides, in fact, both with th&uminosity distancend thepar-

allax distance for the congurence of the above null
geodesics—as for any Robinson-Trautman spacetime de-
scribed by the metri€2.14). Indeed, the luminosity distance

r, is related to the affine parameteby the relation 3]

(i.e., alsoé=const, ¢=const) are null geodesics,is their
affine parameter, and the tangent vectokjg=d,. [For
simplicity, in this section we use the affine paramaten
general affine parametey can be introduced by a trivial
rescalingr =y, cf. Eq.(5.5).] The geodesicg!’(r) ema-
nate “radially” from the “left” black hole up to the infinity dr, 1
(similarly we could investigate analogous geodes'zé@, ar ErLV'kRT- (7.7
alonglg from the “right” black hole). As we have seen in
Sec. IV[cf. Eq. (4.27) and the subsequent discussiothe  Thanks to Eqs(A32) one obtains (1/% - kgr= 1/, and thus
tangent vectokgr is oriented along the principal null direc- =y This means that the radiativer fall-off of the fields
tion ks. These geodesics thus approach the infinity from thgs naturally measurabléeven locally by observers moving
specific spatial direction characterized by the angles radially to infinity, using both the parallax and the luminosity
P $=0 7.2 methods for determining the distance.

s ' In the previous sections, when we studied the radiation
along general geodesics, we have been able to fix the inter-
Moreover, in such a case we can identify explicitly the pretation tetrad only asymptotically, by specifying appropri-

parallelly transported interpretation tetrad—it can easily bete final conditions at infinitysee Eqs(5.8), (5.12 and the

shown using Eqs(A32) that the Robinson-Trautman tetrad d!scussion nearty For the spe(_:ial fam_ily of geoo!esi()%.l)
(4.26 is parallelly transported alon;ﬁ)(r) ie discussed here we can specify the interpretation tetrad by
' T setting the initial conditions anywhere in ttimite region

Ker: VKrr=0, KgrVigr=0, Kgr-VMgr=0. (7.3 inside the spacetime. Because any point at infifityis only
reached by one algebraically special geodegi?: from the

or by the parameters=0, d=0 [see Eq(6.14)].

We can thus set the interpretation tetrad “left” black hole, this does not allow us to study thdirec-
o o tional pattern of radiation with respect to the interpretation
(ki li,m;,my) = (Kgr, Izt MgT, MgT) (7.4 tetrad fixed by these explicit initial conditions. However, we
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can study the standambsitional pattern of radiation along plained in Appendix A, the metri€A39) is regular with re-
these special geodesics—the dependence of radiation on tepect of these coordinates on the horizeny, if we set
position of asymptotic poinl , in the infinity.

The initial conditions for interpretation tetrad inside a fi- 0= bh, (7.9
nite region of the spacetime can be chosen in many different L .
ways, e.g., using some natural tetrad on a spacelike hypeY\Zhereah IS given by Eq.(A36). In the follpwmg we assume
surface(“initial instant of time,” cf. [49]), on a “surface of such a choice. We also introduce the signipt
sources,” on a special null hypersurface, etc. Obviously, geo- +1=sgnd;, (7.10
metrically privileged locations where we can specify such
initial conditions arehorizons in particular the cosmological then
horizonv= v, or the outer horizom= v, of the “left” black
hole. The former ong(its “future” half) forms a (pasj) costi
boundary of the domain in which any observer has to reach
the future infinityZ * (the :jomain I containing " iNFig. 2. kqor the cosmological horizon sp=1, whereas for the
The latter one forms t“he surface” of black hole and can thus ;iar horizon sgf,= — 1. With these definitions the metric
be unders_tood as a “surface of sourcéﬁ‘ie_bou_ndary _be- coefficientgz; evaluated on the horizon= v, reads
tween regions Il and I)l Although we have in mind mainly
these two cases, the following discussion can be applied to
any horizonv=v,,. The special geodesics cross such horizon O
at null hypersurfac@ = nar, the global null coordinates, v
being defined in Eq(A38), and the integen fixed by the _
horizon under consideratiofin particularn=0 andn=—1  whered, is defined in Eq(A42), and
in Fig. 2.

First, we observe that the choi¢@.4) is the most natural
one. The Robinson-Trautman tetrads in the whole
spacetime—and thus the corresponding initial conditions on ) )
any horizonv= u,—are actually invariant under a shift along Here and in the following we repeatedly use relatidd1).
the Killing vector @,. Indeed, expressing the Robinson- Now, we fix the vectorsk; l;; at the bifurcation two-
Trautman tetrad in terms of the coordinate vectorssurfice“:mm v=nm of the horizon in a “symmetric
d,,9,.d,,d, [using Eqs.(4.26, and (C2f)-(C2h] we find ~ Way.,” namely,

vy = COSD

U=mm

ey =F 1 (7.12

v=nm

)
rﬁg(licosﬁ)*l, (7.12

G- S

v=op T

an
V=¥ y, cosha— & sinha’

(7.13

Mh=r|

that the coefficients are independentrpi.e., the Lie deriva- = =
tives vanish, S P L Y
"’ soor - Th o 1 g T |6l
z:ﬂfkRT::O! l:ﬂJRT::OI Z:ng1RT::O. (7.&9 (7.14)

Using the fact that the only nonvanishing Christoffel coeffi-

The definition of the interpretation tetrdd.4) thus respects cientI'; is
the symmetry of spacetime.

There is also another possibility to fix the interpretation
tetradk;, ,l;; ,m;, ,m;, on the horizonwv=1v,,. We choose the
null vector k;;<kgr tangent to the geodesic, and the null
vectorl;, tangent to the horizon. Now we have to specify thewe find that the vectok, defined by
length of one of these vectors, length of the other one is then _
fixed by the normalizatiort4.3). It will be achieved by re- 1 Sh
quiring that the vectol;, is parallelly transported along the li Tl
null geodesic generator of the horizémote, however, that
this condition cannot be satisfied for the vedtp)). Finally, s parallelly transported along the geodesic null generators of
we should fix the remaining vectors;, ,m;, . However, we  the horizon% = const, £é=const, ¢=const, with the initial
will be interested only in the magnitude of the leading termscondition (7.14). Obviously, |;, is tangent to the generator,

of the field componentgas in the previous sectionand  and|;, - Vl;/|.-,,=0. Taking into account the normalization
therefore a specific choice of the vectors;,,m; , is Genm o _ _
irrelevant—see the discussion before E5.18. The inter- (4.3) and the metric coefficien7.12 we find the normaliza-

pretation tetrad defined in this way is a natural choice fortion of the null vectork;,

*+1

U
tanz| (7.15

U
I~ =+
ruu|v:Uh = >

(1=cost)dy, (7.16

l/:l)h -

v, V6l

observers localized on the horizon—its definition remains =
“the same” (is parallelly transportedalong the generators of K _ V2 On Py
. i"lv=vy, — T | v (717}
the horizon. oy V6
To follow explicitly the procedure described above, we
use the global null coordinat&s v. The definition of these The null vectorsk;: ,l;; do not coincide on the horizon

coordinates depends on a choice of paraméteAs ex-  with the Robinson-Trautman null vectoks, |; given by
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Eq. (7.4). Expressing the tetra@d.26 in theT, T coordinates asymptotically de Sitter universe. By introducing new con-

[cf. Egs.(C4), (4.8)] we find venient coordinates and suitable interpretation tetrads near
the conformal light infinityZ ™ we were able to analyze the
2a, %, u\ ! asymptotic behavior of gravitational and electromagnetic
ki|3:vn = m COtE) 9;, (7.18 fields. The peeling off property has been demonstrated, the

leading components of the fields in the parallelly transported
i.e., the vectors;, andk; are proportional. The vectols  tetrad are inversely proportion_al to the affine parameter of
and|; do not even point into the same null direction. We the corresponding null geodesic. _ o

could explicitly relate the interpretation tetrad !N addition, as a main result of our investigation, an ex-
kil ,m;,m; to the tetrad(7.4) by a combination of a Plicit formula which describes the directional pattern of ra-
boost in thek-l plane (D9) followed by a transformation Q|at|on ha; begn derived: it expresses the dependence of the
(D3) leavingk fixed. Of course, this relation obtained on the fi€lds on directions along which a given poMt. at confor-
horizon is propagated by a parallel transport up to inﬁnityma| mﬁ_nlty Z7 is approached. Thls specific directional cha_r-
I*. The parameteB of the boost transformation simply acteristic supplements the peeling property, thus completing
follows from relationk;, = Bk; between the vectois, andk; the asymptotic behavior of gravitational and electromagnetic

[see Eqs(7.17), (7.18], fields near infinityZ * with a spacelike character.
It was already observed in the 1960s by Peni@séQ]
I, cosha ( ﬁ) -t that radiation is defined “less invariantly” wheh™ is space-
= ——| tan— (7.19 like than in the case when it is nullasymptotically flat
a A\/2| PAES spacetimes in particularOur results can thus be understood

as an investigation of this “nonuniqueness.” In fact, the peel-
As we discussed in Sec. Mee Eq(5.18] the magnitude of ing off property supplemented by the directional pattern of
the leading term of the fields is independent of the transforradiation (5.19, (5.23 characterizfully the radiation near
mation withk fixed, so we do not need to identify the secondthe de Sitter—like infinityZ *.
transformation(D3) explicitly. The specific pattern of radiation has been obtained here
Using the transformation properti€B11) and (D12) of by analyzing the exact model of uniformly accelerated black
the fields we finally derive the magnitude of the leading termholes in de Sitter universe. It is in agreement with the analo-
of the fields with respect to the interpretation tetradgous recent result for the test electromagnetic field generated
kil ,m;, ,m;, specified on the horizon=v;,. We obtain by accelerated charges in the de Sitter backgrd@2¢23.
We are convinced that the directional pattern of radiation
Wi |~B~2W)|, |®|2~B 2|®L2, (7.20  derived has a “universal” validity and applies &l radiative
fields of a given Petrov algebraic type near the spacelike
cosha u, conformal infinity Z*. The proof of this statement will be
a, 5—h) presented elsewhef&1].

B~2=2|6,/6n(vh— £, tanha)? exy{ -
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exd —V(A/3)+AZ u, /5,]. This expresses the dependence

of the magnitude of gravitational and electro-magnetic radia- APPENDIX A: VARIOUS COORDINATES

tion on position of the asymptotic poiht, at de Sitter—like FOR THE C-METRIC WITH A

infinity Z*. Notice that the exponential “damping” of radia- . . ) L )
tion depends not only on the cosmological constanibut The C-metric with possibly nonvanishing cosmological

also on the acceleratio of the black holes. Interestingly, ConstantA =3/a3 can be written as
the factor/(A/3)+A? is exactly the Hawking temperature 1 1
—Fdt?+ Edy2+ 6dx2+ Gde?

27T recently discussed, e.g., in RE5RO]. =—
™ Yy g é ] g A2(X+y)2
Al
VIll. SUMMARY (AD)
) ) with
In the present paper we have thoroughly investigated the
C-metric with a positive cosmological constaft>0. This B 1 5 5 o 4
exact solution of the Einstein-Maxwell equations represents F=- aA? A2_1+y —2mAy*+eA%yt,
a radiative spacetime in which the radiation is generated by a (A2)
pair of (charged black holes uniformly accelerated in G=1-x2—2mAxX—e?A%x*.
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The functionsF and G are polynomials of the coordinatgs F=Ftanita, G=G, (A9)
andx, respectively, and are mutually related by
but they are usually understood as functions of different ar-

1 .
_ B — A guments, namelyi (y), G(x) and F(v), G(£). In this sense
F QW) aAzA » G=Q(=x), (A3) we will also use a notation for differentiation of these func-
_ tions F'=dF/dy and 7 =dF/dv or G'=dG/dx and G’
whereQ(w) denotes the polynomial =dF/dé. The metric functiong takes the values
Q(w)=1—w?+2mAw?—e?A%w*. (Ad) Ge[0,1], (A10)

The constants, m, e, and C [such thatpe (—7C,7C)]  G—0 for ¢=¢,,¢, (axes of ¢ symmetry, and G=1 for
parametrize acceleration, mass, charge of the black holeg,zo (on “equator,” i.e., ae circle of maximum circumfer-

and conicity of thep-symmetry axis, respectively. _ence. At infinity Z the metric function” takes the values
The metric(Al), (A2) is an ordinary form of th&-metric
in the case when the cosmological constantanishes, i.e., —Fe[cosh?a,1], (A11)

whenF=—Q(y). This has been extensively used for inves-
tigation of uniformly acceleratedpair) of black holes in  with F=—cosh?a on the axes ofe symmetry, and
asymptotically ~ flat  spacetime, see, e.g., Refs.F=—1 on the equatorgv=0).

[13,27,28,30,31L However, forA #0 the form of the gener- The above coordinates v, &, ¢ are closely related to the
alization is not so obvious and unique. For example, in Refaccelerated coordinates, R, ®, ® introduced and discussed
[35] the term with the cosmological constant was included inin Refs.[36,52. If we define

the metric functionG rather than inF. Also, the parametri-

zation of the metri¢Al) is not unique. A simple rescaling of a, 1

the coordinates can be performed which removes the accel- T=ay7, R=-7, dO= ng’ =9, (Al12)
eration parameteh from the conformal factor. These related g
metric forms, which allow an explicit limiA— 0, were in-

troduced, e.g., in Ref§32,36,44, the metric(A6) takes the form

Throughout this paper we use the particularly rescaled r2 1

coordinatesr, v, £, ¢ given by 9= &2 —HdT?+ ﬁdR2+ R2(d®2+ gdtbz)},

r=tcotha, ¢=o, (A13)
(A5)
v=ytanha, &=-Xx, where
2 2
where the dimensionless acceleration parameté intro- 1 R 2_m e
duced in Eq.(2.6). In these convenient coordinates the H=2 =1 a5 cosha R +COSHaR2' (A14)

C-metric (A1), (A2) takes the form
These coordinates have an obvious physical interpretation in
two particular cases—in the case of a vanishing acceleration
of the black holesA=0), and for empty de Sitter spacetime
(m=0, e=0). In both these cases the metric functi@me-
with the functionr given by duces to a simple forrg=1— &2, so the definition(A12) of

the angle® gives

1 1
g=r?| — Fdr?+ i_dvz+§d§2+gd<p2 . (Ae)

1 ax
r= = - A7
A(x+y) wvcosha—§sinha (A1) cos®@=—¢, sin@=1-¢2, (A15)
and For vanishing acceleratioA=0, i.e., by settinga=0, we
om o2 obtainR=r, and the metri¢A13) reduces to the well-known
— F=1— 12+ cosha — v®—cosi a — v*, metric for the Reissner-Nordstroblack hole in Minkowski
ap ax or de Sitter universg36,53,
(A8)
2 H 2m 3 H e2 4 1
G=1-¢ +smhaa§ —sinl? az & Ol go=—HAT?+ ﬁdRer R%(dO?+sir* ©dd?),
A

(Al6)
These coordinates have the following rangese R,
oe(—7C,wC), £e(&1,€), and ve(étanha,®), with  with the metric function(A14) simplified by coste=1.

¢1,&, being the two smallest roots g—see discussion in In the case of empty de Sitter spaa@=0, e=0), but

Sec. lll. with generally nonvanishing acceleration, the metric function
The metric functions, G and F, G as functions on the F also simplifies taF=1?—1. The de Sitter metric in accel-

spacetime manifold are related by erated coordinates thus takes the fdigh Ref.[36])
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1-a,°R? R2 , example, by the coordinate=a,/R; the hypersurface
O4s= — > ( — ( 1- —2—) daT t"=0 of Minkowski spacg as indicated in Fig. 4. For more
(1+a,"RRcos0) ax details see Ref23].

2\ -1 _ It is particularly useful to introduce also new coordinates
+ 1= a_2> dR?+R*(d0*+ sir? ®dq)2)>, 7, o, o, ¢ for the C-metric naturally adapted both to the
A Killings vectorsd,, d, and to infinityZ. In terms of the new
(A17) coordinate
where we introduced the constant aa

w=—vcosha+§sinha=—7, (A21)
R,=a, tanha. (A18)
infinity Z is given by a simple conditiom= 0. The coordi-
An explicit relation to the standard de Sitter static coordi-nate o is introduced by requiring an orthogonality of the

natesTys, Rys, @4s, Pys, in Which coordinates. Indeed, if we defirneby the differential form
RSS Rﬁs -1 do= sinhad JrCosha q
O4s= — ( 1- a_z) dT5st ( 1- a_2> dRs T G &
A A (A22)
+R3(dO 3+ sir? @ 4 dd o) (A19) o=0 for ¢&v=0,
is [which, thanks to Eq(A8), is integrablé the C-metric takes
the form
R @ = Rcos® +R, T a2 1 G
dsC0Sas™ 1 3 PR Rcos® 95 9= ZAZ( — Fd7+ Sdo?+  do?+ Gde? |, (A23)
(A20)
Rsin®1-a)°R? where
RdssinG)dS: A ° CI)dS: (I)

1+a,°R,Rcos® '’
Ao &= Fcosht a+Gsint? a

The origin R=0 clearly corresponds to worldlines of two 2m

static observerR;s=R,, ®4s=0 which move with a uni-  =—1—w|vcosha+&sinha— a—(v2 cosit a
form acceleratiorA. Further details concerning the interpre- A

tation of the accelerated coordinates in de Sitter space were e?

discussed at the end of Sec. (fee also Refl23)). +vé cosha sinha+ &2 sintf a) + — (v° costf o

) . ; . . . a
It is also instructive to elucidate a geometrical relation A

between these two coordinate systeis7) and(A19). It is
well known that the de Sitter spacetime is conformally re-  +v°& costf a sinha+ vé? cosha sini? a+ £ sint? a) |.
lated to Minkowski spacésee Refs[8,11], or recently Ref.

[21]). Specifically, the'shadedl domainP of de Sitter space- (A24)
time depicted in Fig. 4 corresponds to the0 region of

Minkowski spacetime in standard spherical coordinates  Obviously, onZ, wherew =0, we obtainf= —1. Thanks to

9, ¢, the metrics being related by,s=(a, /t)%guinc. The  relation 7<0 in region | of Fig. 3, we observe from metric
de Sitter static coordinateBys, Rys, @45, Pgscan be ob-  (A23) that near infinityZ *, the coordinate» plays the role
tained from the spherical coordinates of Minkowski space byf a time if £<0. It can be shown that fof<0 the coordi-

a “spherical Rindler” transformation, i.e.Rys=a,t/t,  nhate transformatiofA21), (A22) from v, £10 w, o is invert-
Tas/a,=(1/2) Iog|(t2—r2)/aﬁ|, Oys=1, Pys=¢. On the ible. We will use the coordinater only in this region. The
other hand, the accelerated coordinafe® @, ® are also hypersurfac&=0 is always located above the cosmological
obtained from conformally related Minkowski space by thehorizon and it touches the horizon on the agest, , &,, see
same construction, however, starting from a different spherithe left part of Fig. 3.

cal coordinates’, t', ', ¢’ which are defined in the iner- The C-metric can also be put into the prinson-Trautman
tial frame boosted along th&=0 direction with the boost form (see Ref[54]). Introducing the coordinatesandu,

given exactly by the acceleration parameiefi.e., with the

relative velocity tanhw). Using this insight we can easily Ar=(x+y) %,

visualize the relation between the hypersurf&gg= (the (A25)
conformal infinityZ of de Sitter universe; the=0 hypersur- Adu= d—y+dt

face of conformally related Minkowski spacand the hyper- F '

surfaceR=< (the coordinate singularity of accelerated co-
ordinates in de Sitter space, which is easily removable, fowe obtain from Eq(Al) the metric
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1
g= rz(adx2+ Gd(pz) —duldr — Ar2dudx— A%r?Fdu?,
(A26)

where the functiorA?r?F, expressed in the coordinatesr
usingy=(Ar) " 1—x, reads

2
r 1
Ar2F=— ——A%r2G+ArG' — > G"
ay 2
(A27)

1 A 7le 1 A *ZGH”
+5 (A ~ 54 (A1) :

PHYSICAL REVIEW D68, 024005 (2003

; rPH+r?P, = 1

1
Fﬁ___T, Fu{ 2H§, F[”ZEHJ.

Finally, for a discussion of the global structure of the

spacetime it is necessary, following the general approach

[55,56, to introduce global double null coordinafésv, &,

¢. For this, we supplement the above defined null coordinate

u with the complementary null coordinate (see[57]). In
terms of the coordinates v these arg¢cf. Eq. (A25), (A5)]

aj
ot — (v, —17), (A33

a,
ha cosha (Ux T Th U= cos

COS

This is the generalization of the Kinnersley-Walker coordi-where the tortoise coordinatg is defined by the differential

nateg27] to A # 0. Introducing the complex coordinatés;
[or real coordinates, ¢, related byl = (1V2)(—ie)] in-
stead of the coordinates ¢,

! (dZ+dZ)=dy=Ad dx
—_— = = u——,
o=y G

(A28)
i _
—(d{—d¢)=dog,
‘/i( {—d{)=d¢
(notice thatyy= 7 tanha+ o secha), we put theC-metric into

the Robinson-Trautman form

2

r _
g= Ezdgmdg—olumolr—Hduz (A29)

(or, alternatively, witrd¢Od¢ replaced bydy?+ de?), where
the metric functions are

P 2=G=g,
(A30)

;
H=A"*F+G)= 7 &.
ap

Using Egs.(A27), (A30), and (A28), which for P=G 2

imply AG'=-2(InP), and G"=-2AInP with
A=2P?3,d;, we recover that
r2 2 2
H=———2r(InP) ,+AInP— F(m—2e2A§)+ —
A
(A31)

relation

1
dv, = ?d v (A34)

Taking into account the polynomial structut@8) of the
function F,

F= 7011 (v—1p), (A35)

where y,=const andv, (h=i,0,c,m are the values of the
coordinatev at the horizongthe roots ofF), we obtain

v =2 dnloglu—w|, 0=(F],-,) 7" (A36)

In these coordinates the-metric with A >0 takes the form

Fcosh a

—Zz—dUde+ d§2+gd(p (A37)

g=r

Now, we can define the global null coordinatesu, &, ¢
parametrized by a constant coefficiahtcovering, for suit-
able values o, the horizons smoothly,

U u cosha U m
tani =exy{m), sgr(tani =(—1)",
(A38)
v v cosha b N
tan2 p( EENIE sgr(tan =(—D"

The C-metric in these coordinates then takes the form

This is the standard general expression for the metric func-

tion of the Robinson-Trautman solutidA4]. Let us finally
note that the Christoffel coefficients for the met{#&29) are

1 P 2P P?H
(2 e p 2L pr 14
Frg_ rl Fu{_ P ] Fgg_ P ] FU 2r2 ]
u r u r 1
F“;—E, Fuu__EH,r' F :—HH +2Hu,

(A32)

=r? —262]-‘ duidos + = d 2+¢d A39
9=\ sint sing g £+ Gde? (A39)
The horizonsv=1v;, v,, v, how correspond to the valu&s
=ma or v=na, with m,ne 7 (see Fig. 2
Notice, that it follows from Eqs(A38), (A36) that

=I1 Jv—u %"
K

~|sgnéd

tanz tan;

5 tan; (A40)
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Evaluating this expression on the particular horizon v,
and comparing with Eq(A35) we find that with the choice
6= 6, the expression

~ ~\ —sgné
u v

—]:( tan—tan—
2 2

=yol [ |vn— 1yt /o= —
k=h | 8l S

v= 'Uh

(A41)

is finite and nonvanishing. Here we introduced the constant

=11 |vn— vy %/ (A42)
k#h
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[T S(w)
sag, | age sghogy e,
coil}\a Um mil;auc coz}:‘avu aAo v
0 —w
T it a ey A |
LS P = T Tzeroso I
TG
’
G'le=¢,
A
&2 —£
f 1 Ay g/ |£=£2
(a) (b) |-

Using this fact it is possible to guarantee a regularity of the FIG. 9. (a) A qualitative shape of the metric functiodSandG

metric coefficients?F/(sintising) in Eq. (A39) (including
smoothness and that it is finite and nonzeand smoothness
of the coordinates and v near the horizony, by the choice
5= &y, of the coefficients in Egs.(A38), assuming thali, 7

(in the casam#0, e#0) which are polynomials i and &, respec-
tively. It follows from the representatiofB1) that both functions”
andg are, up to the specific rescaling and the constant term, given
by the same polynomi&@(w), the graph of which is presented here.

forms a smooth coordinate map in the neighborhood of thid he zeros ofF andg are thus given by intersections of the graph of

horizon. However, such an appropriate factbcannot be

Swith the horizontal lines-aj ? costf « and—a), % sinl? a, respec-

chosen for all horizons simultaneously—a different smoottively- Relations(3.1) between the zeros of andg follows imme-

mapt, v parametrized by different coefficiengshas to be

used near the different horizons to demonstrate the smoot

ness of the metric in the whole spacetitsee, e.g., Refs.
[55,56 for a general discussion

APPENDIX B: PROPERTIES OF THE METRIC
FUNCTIONS FAND G

First, let us note that andg can be represented in terms
of polynomial S(w)

costf a cosha costf a
- 2 f: v+ 2 y
(B1)
sinhzag_ sinha sink? «
L0 T ay ay
where
S(w)=—w?(1—2mw+e?w?). (B2)

A typical graph of the polynomiaB(w) is drawn in Fig. 9.
By inspecting the graph we obtain, e.g., relatig8sl) be-
tween the roots of the metric functiodSandg.

diately from this fact(b) A graphical representation of the triangu-

[Ler estimate(B6) for the areas4,, A, under the graph of'.

calculation leads to an inequalilg|§9)>0. The condition
that G has four real roots requireg|1<0. This confirms
that the graph of; has always a qualitative shape shown on
Fig. 9. The extremes of are located between its zeros, so
that £, <0< §,< £ Expressing the vanishing linear coef-
ficient in G in terms of the roots we obtairé(+ &,) £36,=
—&1€,(&3+ &), the right-hand side is clearly positive, as
well asé;€,, SO we obtain

—&:1<é.

From the conditiong2.5) it also follows thaté™™< ¢®) and
thus we have

(B3)

£<0<g<eM<g®, (B4)
This means thatG’ is convex on the relevant interval
(&€1,&,), itis positive on the interval§;,0) and negative on
(0,¢5). The positivity of G” on the interval €;,¢,) also
implies m—2e?A&, >0, which is the relation used in the

discussion following the resu(6.19. Clearly,fgig'dgzo,

We may also prove some interesting properties, including ¢  the areas

Eq. (3.5, of the metric functionG in the case of charged
accelerated black holegSimilar properties—in particular

the inequality(B7)—can be also proved for uncharged accel-

erated black holes, i.e., f@=0, m#0, A#0.] In the case
e#0, A#0, the metric functiong is a polynomial of the

0 &
Aﬁf g'dé, A2=—f Gg'dé¢ (B5)
131 0

are the same. Thanks to the convexitygof we can estimate

fourth order in¢ and its zeros have been denoted in the 4, and.4, by simpler triangular aredsee Fig. )], and we

ascending order a&;, &5, &5, &,. The extremes of (zeros
of ') are é{V=0, ¢M=(3m+ JOm>—8€?)/(4A€?). The
zero of §"=12(Am—2e?A%¢) is ¢®)=m/(2A€?), andG”

>0 for £< ¢G4, Using the condition$2.5), a straightforward

obtain

1 1
- §§2g’|§:§2<«42=«41<— §§1g'|§:§1- (B6)
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Using Eq.(B3) this implies

G e=6,< G |¢=¢,- (B7)
Considering Eq(3.4) we obtain the important relatiof8.5) which is necessary for the discussion of conicity in Sec. Ill.

APPENDIX C: RELATIONS BETWEEN THE COORDINATE FRAMES

In this appendix we summarize for convenience the relations between different coordinate one-form and vector frames. For
coordinate one-form framesl¢,dv,d¢,d¢), (d7,dw,do,d¢), and @{,dZ,dr,du) we obtain

£ 1 1 g
dr=d - S — C1
e Fcosha aAdu Fcosha r2 zdr— Ftanhady, (13
F FG sinff o 1 1
- __ 7 G - - Cib
dv=— < coshadw+ —sinhado I ostn aAolu “osa 2dr+gtanhad¢// (Clb
g FG . 1
dé= —sinhadw+ — coshado =—gsinha—du+ gdy, (Clo
E E ay
a
dw=— coshadv+ sinhadé = ngr, (Cld
sinha cosha £ 1 tanha aA &
_ 4 __c =gy 2nhe c1
do 7 dv g dé ]__tanhaaAdu 7 "+ Foosha ——dy, (Cle
1 1 1 1 1 g
~ du= = S Z C1
a du= e d7t o dv “osng 47 gdo+ Ftanhado, (C16)
1 cosha sinha 1
—dr=———dvt+ ——d¢ = —dw, (Clg
aj [0} w [0}
tanha 1 1
- Zde—i = —j Clh
\/Ed( tanhad 7+ 7 dv+gd§ ide =tanhad7+ COShadU ide, (C1h
where
dy= = (dg+ D), do= - (d—dD), di=—— (dy—ide), d—d7 (C1i)
=— , dp=—(d{—d¢), d{=—(d¢—ide), d{=d¢. i
V2 Y V2 ¢
Coordinate vector framesy(,d,,d;,4d,), (9,,9,,.9,.,d,), and @,,d;,d,,d,) are related by
9.= 9, C2
= coshe @dy+tanhad,, (C29
sinha r? tanha
- - = C2b
d,= —coshad,,+ = Foosha P~ — cosha— 0 0y, (C2b
cosh r2 1
d;=sinhad,,+ Taag =sinha 6’ + gaw, (C20
F G 1 r2
d,=— 7 coshad,+ Zsinhad —gandnt a 9, (C20d
Fg FG g 1
="Zgj = == I Cc2
d,=— sinhad,+ —coshad, Ztanhaa,d,+ ————d,, (C2¢
£ sink? £
_ B < c2
100= Foosta ¥ Y coshe O 9 Sinhad; == .~ —tanhad,, (C2f)
w? w? w? tanha
= — - 29 _ 2 C2
0= Fosha O Cosha Feosha 0t @ 0™ —F 0700, (€29
V28,=— gtanhaa +Gtanhad,+ Gd.+id, =— gtanhou? + La +id (C2h
& F T viETET e F ™' Fcosha 7 ¢
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where
o= (a+a) 9 i (-3, B (3,+1d.), 9=D (C2i)
= ’ = - 1 = I 1 = b !

It is also useful to express the relations between different null tetrads introduced in the paper. The special null tetrad
[defined by Eq(4.7), using Eq.(4.1)] the reference null tetrajdee Eq(4.13], and the Robinson-Trautman tetretl26) are
related by

1 0s O
k= Etane cot *K +tan I +my+m, | =exp — Brr)SECOKRT,
1 O
l= Etane tan k + cot | o My+my| =sin6J exp( — Brr)tan OKgr+ exp Brr) cot Od gr+ M+ Mgrl,
(C3
1 0
mg= Etan 04 kot 1,+cot— > Mo + tan =Mgr+ exp — Bry)tan OKgt,
_ 1 Os
= Etana ko+Il+tans > Mo + cot Mgr+exp — Brptan 0Ky,
O O
Kgr= = exp(,BRT)sm A cot k +tan I +my+m,| =exp Brr)COSOKs,
1 . O 0 _ . _
lgr= > exp(— Brr)Sin b tan; Ko+ cotE l[o—My— My | =expl — Bry)tan b4 Sin O kst cschds— mg—my),
(C4
1. Os Os )
Mgr= 5 SN — K+ 1,+cot— mo—tan m,| =mg—sin 6k,
2 2 2
_ 1 Os Os__\ _
Mgr= Esm 0y —Kotlo— tan; my+ cot; m, | =Mg—Sin 6K
The factorBg is defined in Eq(4.28. The rotated null tetraficf. Eq. (4.24)] is related to the reference tetrad as
1. 0 0 ) -
k.= 3 sinég cotz Ko+ tani lo+explid)my+exp —ig)m,|,
1 0 6
Izzsma tan Ko +cot —explip)my—exp(—id)my|,
(CH
1. 0 . 0 o
m,= > sinf| — Ko+ 1o+ cotz explip)my— tanz exp —i¢)my|,
_ 1 o . 0 A
m,= 7 sin 0| —kot+l,— tanz exp(ip)mgy+ cotE exp—i¢)mgy].
Here, the angle&; is defined by Eq(4.18.
|
APPENDIX D: TRANSFORMATIONS OF THE Po=— me\ﬁz — C)\;TK)\Z C%FMTZ CM;)\;’
COMPONENTS ¥, AND @, (D1)
The component¥, of the Weyl tensolsee[58]) Wo==Cunn=~Cruin
\POZCKMKIL ' ‘P4:C)\l7)\;’ 2 Re‘PZZCK)\K)\:C,u;,u;'
\1,1: - CKM;L;T: - C,U,;TK,U,: CK)\K,u: CK,lLK)\ ' 21m ‘PZZ [ CK)\M;L I C,uMK)\ '
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and the component®,, of tensor of electromagnetic field W o=K"W o+ AK3W 3+ 6K2W 5+ 4K W+ W],

Co=F,,, 2Red;=F,, W, =KW+ 3K2W 3+ 3KWI+ W,

(D2)

®,=Fu, 2Imd,=iF,,, W,=K2W o+ 2KW S+ W, (D7)
transform in the well-known way under special Lorentz Vy=KW¥i+ W3,
transformations, see, e.g., Rpt4].

For a null rotation withk fixed, V,=V9,
k=k, and for electromagnetic field we have

Do=K2D5+2KD+ DY,

I=lg+Lmy+Lm,+LLk,,
(D3) D, =KD+ DY, (DY)
m=my+LKk,,
. — D,=D9.
m=m,+LKk,, 22

A boost in then-q=k-I plane and a spatial rotation in the

L being a complex number which parametrize the rotation, _c— m-m plane is given by

the components of the Weyl tensor transform as

k=Bk,, |=B71,,

V,="g,
0 0 B B (D9)
- m=expiP)m,, m=exp —id)m,
W, =LWi+T?, . .
or, introducingB = expg,
W,=L2Wo+ 2L WS+ 3, (D4) n=coshBn,+sinhBq,,
W,y=L3W3+3L2Wo+3LWS+ W3, g=sinhBn,+ coshBd,,
© - (D10)
P J— J— N — +
W, =L*WE+4LWI+ 6L WS+ 4L WS+ W], r=cosdr,+sinds,,
L = —sin®r,+cosds,,
and the components of tensor of electromagnetic field trans- 5= 7 SINDroTCoSPS
form according to B, B being real numbers which parametrize the bodst,
parametrizing an angle of the rotation. The compondnis
Do=D, now transform
— Vo=BZexp2id)¥],
O, =L+ D3, (D5) 0= B exp2i®)
— — V¥, =Bexpi®)¥y,
D,=L°DJ+ 2L D+ 3.
V,=W3, (D11)
Under a null rotation witH fixed,
V=B lexp —i®)¥3,
k=ky+Kmgy+Kmy+KKl,,
° ° ° ° V,=B Zexp —2id)¥?,
=1y
' and®,, transform as
(D6) !
m=my+Kil,,
dy=Bexpid)dy,
m=my+Kl,,
o e O, =P9, (D12)

K being a complex number which parameterize the rotation, . ) o
the components of the Weyl tensor transform as ©,=B" “exp(—iP)D;.
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