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Radiation from accelerated black holes in a de Sitter universe

Pavel Krtousˇ* and Jiřı́ Podolský†

Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holesˇovičkách 2,
180 00 Prague 8, Czech Republic
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Radiative properties of gravitational and electromagnetic fields generated by uniformly accelerated charged
black holes in asymptotically de Sitter spacetime are studied by analyzing theC-metric exact solution of the
Einstein-Maxwell equations with a positive cosmological constantL. Its global structure and physical prop-
erties are thoroughly discussed. We explicitly find and describe the specific pattern of radiation which exhibits
the dependence of the fields on a null direction along which the~spacelike! conformal infinity is approached.
This directional characteristic of radiation supplements the peeling behavior of the fields near infinity. The
interpretation of the solution is achieved by means of various coordinate systems, and suitable tetrads. The
relation to the Robinson-Trautman framework is also presented.
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I. INTRODUCTION

There has been great effort in general relativity devoted
investigation of gravitational radiation in asymptotically fl
spacetimes. Some of the now classical works, which d
back to the 1960s, set up rigorous frameworks within wh
a general asymptotic character of radiative fields near infi
could be elucidated@1–11#. Also, particular examples of ex
plicit exact radiative spacetimes have been found and a
lyzed, e.g., Refs.@12–15#, for a review of these importan
contributions to the theory of radiation see, for examp
Refs.@16–20#.

One of the fundamental approaches to investigate the
diative properties of a gravitational field at large distanc
from a bounded source is based on introducing a suita
Bondi-Sachs coordinate system adapted to outgoing null
persurfaces, and expanding the metric functions in nega
powers of the luminosity distance@1–4#. In the case of
asymptotically flat spacetimes this framework enables on
define the Bondi mass~total mass of the system as measur
at future null infinityI 1), and characterize the time evolu
tion including radiation in terms of the news functions. U
ing these concepts it is possible to formulate a balance
tween the amount of energy radiated by gravitational wa
and the decrease of the Bondi mass of an isolated sys
Unfortunately, this standard explicit approach is not direc
applicable to spacetimes whose conformal infinityI 1 has a
spacelike character as is the case of an asymptotic
de Sitter universe which we wish to study here.

Alternatively, in accordance with the Newman-Penro
formalism@5,6#, information about the character of radiatio
in asymptotically flat spacetimes can be extracted from
tetrad components of fields measured along a family of n
geodesics approachingI 1. The gravitational field is radia
tive if the dominant components of the Weyl tensorCabgd
~or of the Maxwell tensorFab in the electromagnetic case!
fall off as 1/h, whereh is an affine parameter along the nu
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geodesics. The rate of approach to zero of the Weyl
electromagnetic tensor is generally given by the ‘‘peeli
off’’ theorem of Sachs@3,7,8#. In analogy to this well-known
behavior it is natural to expect that those components of
fields in parallelly transported tetrad which are proportion
to 1/h characterize gravitational and electromagnetic rad
tion also in more general cases of spacetimes not asymp
cally flat. We shall adopt such a definition of radiation belo

In the presence of a positive cosmological constantL,
however, the conformal infinityI 1 has aspacelikecharac-
ter, and for principal reasons the rigorous concept of gra
tational and electromagnetic radiation is much less clear.
Penrose noted in the 1960s@9,10# already, following his geo-
metrical formalization of the idea of asymptotical flatne
based of the conformal technique@8,11#, radiation is defined
‘‘less invariantly’’ whenI is spacelike than when it has a nu
character.

One of the difficulties related to the spacelike characte
the infinity is that initial data onI 2 ~or final data onI 1)
for, e.g., electromagnetic field with sources cannot be p
scribed freely because the Gauss constraint has to be sat
at I 2 ~or I 1). This results in the insufficiency of purel
retarded solutions in case of a spacelikeI 2—advanced ef-
fects must also be presented. This phenomenon has
demonstrated explicitly recently@21# by analyzing test elec-
tromagnetic fields of uniformly accelerated charges in de
ter background.

We will concentrate on another crucial difference in b
havior of radiative fields near null versus spacelike infini
In the case of asymptotically flat spacetimes, any pointN1 at
null infinity I 1 can be approached essentially only alo
one null direction. However, if future infinityI 1 has a
spacelike character, one can approach the pointN1 from
infinitely many differentnull directions. It is not a priori clear
how the radiation components of the fields depend on a
rection along whichN1 is approached. In this paper suc
dependence will be thoroughly investigated.

In fact, radiative properties of a test electromagnetic fi
of two uniformly accelerated pointlike charges in the de S
ter background has recently been studied@22,23#. Within this
context, the above mentioned directional dependence
©2003 The American Physical Society05-1
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been explicitly found. In particular, it has been demonstra
that there are always exactly two special directions—th
opposite to the direction from the sources—along which
radiation vanishes. For all other directions the radiation
nonvanishing and it is described by an explicit formu
which completely characterizes its angular dependence.

In the present paper, these results will be considera
generalized to both gravitational and electromagnetic fi
which are not just test fields in the de Sitter backgrou
Interestingly, it will be demonstrated that the gravitation
and electromagnetic fields of theC-metric withL.0, which
is anexactsolution representing a pair of uniformly accele
ated possibly charged black holes in the de Sitter–like u
verse, exhibits exactly thesameasymptotic radiative behav
ior as the test fields@22,23#. We are thus able to suppleme
the information about the peeling behavior of the fields n
I 1 with an additional general property of radiation, name
with the specificdirectional pattern of the radiationat con-
formal infinity.

The C-metric with L50 is a well-known solution of the
Einstein ~-Maxwell! equations which, together with the fa
mous Bonnor-Swaminarayan solutions@15#, belongs to a
large class of asymptotically flat spacetimes with boost
rotational symmetry@24# representing accelerated sources
was discovered already in 1917 by Levi-Civita@25# and
Weyl @26#, and named by Ehlers and Kundt@13#. Physical
interpretation and understanding of the global structure
the C-metric as a spacetime with radiation generated b
pair of accelerated black holes came with the fundame
papers by Kinnersley and Walker@27# and Bonnor@28#. Con-
sequently, a great number of works analyzed various asp
and properties of this solution, including its generalizati
which admits a rotation of the black holes. Referenc
and summary of the results can be found e.g., in R
@24,29–31#. Another possible generalization of the standa
C-metric exists, namely, that to a nonvanishing value of
cosmological constantL @32#, cf. @33,34#. However, in this
case a complete understanding of global properties, main
character of radiation, is still missing despite a succes
application of this solution to the problem of cosmologic
production of black holes@35#, and its recent analysis an
interpretation@36–38#.

There exists a strong motivation to investigate t
C-metric solution withL.0. As will be demonstrated below
it may serve as an interesting exact model of gravitatio
and electromagnetic radiation of bounded sources in
asymptotically de Sitter universe~in contrast toL50, in
which case the system is not permanently bounded!. The
character of radiation, in particular the above mentioned
pendence of the asymptotic fields on directions, along wh
points on the de Sitter–like infinityI 1 are approached, ca
explicitly be found and studied. These results may provide
important clue to formulation of a general theory of radiati
in spacetimes which are not asymptotically flat. In additi
to this purely theoretical motivation, understanding the
havior of accelerated black holes in the universe with a p
tive value of the cosmological constant can also be inter
ing from perspective of contemporary cosmology.

The paper is organized as follows. First, in Sec. II w
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present theC-metric solution with a positive cosmologica
constant in various coordinates which will be necessary
the subsequent analysis. The global structure of the sp
time is described in detail in Sec. III. Next, in Sec. IV w
introduce and discuss various privileged orthonormal a
null tetrads near the de Sitter–like infinityI 1 together with
their mutual relations, and we give corresponding com
nents of the gravitational and electromagneticC-metric
fields. Section V contains the core of our analysis. We ca
fully define interpretation tetrad parallelly transported alo
all null geodesics approaching asymptotically a given po
on spacelikeI 1 from different spatial directions. The mag
nitude of the leading terms of gravitational and electrom
netic fields in such a tetrad then provides us with a spec
directional pattern of radiation which is described and a
lyzed. This result is subsequently rederived in Sec. VI us
the Robinson-Trautman framework which also reveals so
other aspects of the radiative properties. Particular beha
of radiation along the algebraically special null directions
studied in Sec. VII. For these privileged geodesics the res
are obtained explicitly without performing asymptotic e
pansions of the physical quantities nearI 1. In this case we
also study a specific dependence of the field component
a choice of initial conditions on horizons.

The paper contains four appendixes. Appendix A summ
rizes known and also several new coordinates for
C-metric with L.0. The properties of the specific metr
functions are described in Appendix B. In Appendix C use
relations between the various coordinate one-form and ve
frames are presented, together with the relations between
different privileged null tetrads. Appendix D contains gene
Lorentz transformations of the null-tetrad components of
gravitational and electromagnetic fields.

II. THE C-METRIC WITH A COSMOLOGICAL
CONSTANT IN SUITABLE COORDINATES

The generalization of theC-metric which admits a nonva
nishing cosmological constantL.0, representing a pair o
uniformly accelerated black holes in a ‘‘de Sitter bac
ground,’’ has the form

g5
1

A2~x1y!2 S 2Fdt21
1

F
dy21

1

G
dx21Gdw2D ,

~2.1!

where

F52
1

aL
2 A2211y222mAy31e2A2y4,

~2.2!
G512x222mAx32e2A2x4,

see Eqs.~A1!, ~A2!. HeretPR, wP(2pC,pC), m, e, A, C
are constants, and ranges of the coordinatesx, y @or, more
precisely, of the related coordinatesj, y defined below by Eq.
~2.7!# will be discussed in detail in the next section. F
convenience, we have parameterized the cosmological
stantL by the ‘‘de Sitter radius’’ as
5-2
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aL5A3

L
. ~2.3!

The metric ~2.1! is a solution of the Einstein-Maxwel
equations with the electromagnetic field given by~see
@39,40#!

F5edy∧dt. ~2.4!

The constantsm, e, A, and C parametrizemass, charge,
acceleration, andconicity of the black holes, although the
relation to physical quantities is not, in general, direct. F
example, the total chargeQ on a timelike hypersurface
t5const localized inside a surfacey5const, defined using
the Gauss law, is given byQ5 1

2 (j22j1)Ce, where the con-
stantsj1 , j2 are introduced at the beginning of the ne
section. Obviously,Q depends not only on the charge para
etere. Similarly, physical conicity is proportional to the pa
rameterC, but it also depends on other parameters, see
~3.4! below. The concept of mass~outside the context o
asymptotically flat spacetimes! and of physical acceleratio
of black holes is even more complicated. We will return
this point at the end of the next section. For satisfact
interpretation of the parametersm, e, and A in the limit of
their small values see, e.g., Ref.@36#.

In the following we will always assume

m.0, e2,m2, A.0, ~2.5!

andF, as a polynomial iny, to have only distinct real roots
Also, instead of the acceleration constantA we will conve-
niently use the dimensionlessacceleration parametera de-
fined as

sinha5aLA, cosha5A11aL
2 A2. ~2.6!

We will also use other suitable coordinates which are
troduced and discussed in more detail in Appendix A. H
we list only the basic definitions and the correspond
forms of metric.

The rescaled coordinatest, y, j, w are defined

t5t cotha, w5w,
~2.7!

y5y tanha, j52x,

cf. Eq. ~A5!, in which the metric takes the form~A6!,

g5r 2S 2Fdt21
1

F dy21
1

G dj21Gdw2D , ~2.8!

where

r 5
1

A~x1y!
5

aL

y cosha2j sinha
~2.9!

and

2F512y21cosha
2m

aL
y32cosh2 a

e2

aL
2 y4, ~2.10!
02400
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G512j21sinha
2m

aL
j32sinh2 a

e2

aL
2 j4.

The coordinatesv, t, s, w adapted to the Killing vectors
­t , ­w and the conformal infinityI (v50) are defined by

v52y cosha1j sinha,
~2.11!

ds5
sinha

F dy1
cosha

G dj,

see Eqs.~A21!, ~A22!, and the metric~A23!,

g5
aL

2

v2 S 2Fdt21
1

E dv21
FG
E ds21Gdw2D , ~2.12!

where

E5F cosh2 a1G sinh2 a. ~2.13!

Finally, we will also use theC-metric expressed in the
Robinson-Trautman coordinatesz, z̄, u, r which has the form
~A29! ~see@41# for a definition of the symmetric product∨!

g5
r 2

P2 dz∨dz̄2du∨dr 2Hdu2, ~2.14!

with

1

P2 5G, H5
r 2

aL
2 E. ~2.15!

It follows immediately from Eqs.~2.9! and ~2.11! that

r 52
aL

v
. ~2.16!

For explicit definitions of the coordinatesu, z and
further details see Eqs.~A25!, ~A28!, and related text in
Appendix A.

III. THE GLOBAL STRUCTURE

In this section we shall describe the global structure of
C-metric withL.0. In particular, we shall analyze the cha
acter of infinity, singularities, and possible horizons.~See
recent work@38# for similar discussions that also cover cas
not studied here.! From the form~2.8! of the metric we ob-
serve that it is necessary to investigate zeros of the me
functionsF andG given by Eq.~2.10!. We will only discuss
the particular case when the functionF hasn distinct real
roots, wheren is the degree of polynomial dependence ofF
on y (n54 for eÞ0). Let us denote these roots asy i , yo ,
yc , andym in a descending order~the meaning of the sub
scripts will be explained below!. In the casee50, the value
of y i is not defined, etc. Analogously, we denote the roots
G asj1 , j2 , j3 , andj4 in an ascending order. Similarly to
discussion of theC-metric with vanishingL @27,29,30#, the
zeros of the functionF correspond tohorizons, and the zeros
5-3
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of G to axesof w symmetry. Following these works and Re
@36# for L.0 in particular, the qualitative diagrams of th
j-y slice ~i.e., t, w5const) are drawn in Fig. 1. In this dia
gram we use relations

ym cotha,j1,0,j2,yc cotha, ~3.1!

which are obvious from Fig. 9 in Appendix B. Different co
umns and rows in the diagrams in Fig. 1 correspond to
ferent signs of the functionsG andF. The metric has a physi
cal signature~2111! for j1,j,j2 and j3,j,j4 . We
will be interested only in the first region.

Infinity I of the spacetime corresponds tor 5`, or
equivalently to

v50, i.e., y5j tanha, ~3.2!

~double line in Fig. 1!. We will restrict to the region
y.j tanha ~i.e. r .0) which describes both interior and e
terior of accelerated black holes in de Sitter–like spacet
~the shaded areas in Fig. 1!. The metric has an unbounde
curvature forr 50 which corresponds to a physical singula
ity inside the black holes, a zigzag line on the boundary
the diagrams in Fig. 1, in particular of the colum
j1,j,j2 .

For a further discussion of the global structure we emp
the double null coordinatesũ, ṽ, j, w defined by Eqs.~A38!,
~A33!, ~A34! in which the metric is~A39!,

g5r 2S 2d2F
sinũ sinṽ

dũ∨dṽ1
1

G dj21Gdw2D . ~3.3!

Using these coordinates we can draw the conformal diag
of the spacetime sectiont-y, i.e., forj, w5const—see Fig. 2
The domains I–IV in this figure correspond to the regio
I–IV in Fig. 1.

The region I describes the domain of spacetime above
cosmological horizons given byy5yc , which has a similar
structure as an analogous domain in the de Sitter space
The region II corresponds to a static spacetime domain
tween the cosmological horizon and the~outer! horizon of
the black hole. If the black hole is charged (eÞ0), region III
corresponds to a spacetime domain between the outer
zon y5yo and the inner horizony5y i , and region IV to a
domain below the inner horizon of the black hole~similar to
the analogous domains of the Reissner-Nordstro¨m space-
time!. The domain IV contains a timelike singularity a
y5` (r 50). In the uncharged case (e50, mÞ0) there is
only region III which corresponds to a domain below t
single black hole horizony5yo . In this case the singularity
at y5` has a spacelike character, similarly as for t
Schwarzschild black hole. If bothe50, m50, we obtain de
Sitter spacetime expressed in accelerated coordinates. In
case there is no black hole horizon, and region II~the domain
below the cosmological horizonyc) is ‘‘cut off’’ by nonsin-
gular polesy5`. We will return to this particular case at th
end of this section.

Before we proceed to discuss further properties in de
let us note that~as will be explicitly demonstrated in the ne
section! the C-metric is the Petrov typeD spacetime, i.e., it
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admits two double principal null directions. These directio
lie exactly in the sectiont-y depicted in Fig. 2.

In this paper we are mainly interested in a behavior
fields near the infinity. Therefore, we will concentrate mos
on the region I. This region has similar properties for
possible values of the parametersm, e, anda. Its more pre-
cise diagrams are drawn in Fig. 3. Observers in one of
regions I ~near the future infinityI 1) will consider them-
selves to live in an asymptotically de Sitter–like univer
‘‘containing’’ two causally disconnected black holes~for m
Þ0). Here bytwo black holes we understand those bla
holes ~i.e., regions III and IV! immediately ‘‘visible’’ from
the given asymptotical region I, although the geodesica
complete spacetime can, of course, contain an infinite n
ber of black holes. As we have said, the conformal infinityI
is given by the condition~3.2!, v50. Thanks to a timelike
character ofdv at v50 @see Eq.~2.12!# the infinity has
indeed a spacelike character as for de Sitter universe~see
Refs.@8,9,42# for a general discussion of conformal infinity!.
In Fig. 1 the infinity corresponds to the diagonal line, in F
2, however, it obtains a richer structure. It comprises of t
parts—future infinityI 1 and thepast infinityI 2—both pos-
sibly consisting of several disjoint parts~depending on the
global topology! in different asymptotically de Sitter do
mains I. Because the conformal diagrams in Fig. 2 are sl
with a fixed coordinatej, and the condition~3.2! depends on
j, the conformal infinityI would have a different position in
diagrams with different values ofj. We shall return to this
fact at the end of this section. Note, that for values of
coordinate y smaller than j2 tanha, the hypersurface
y5const reachesI. Clearly, the coordinatey is not well
adapted to the region near the conformal infinityI. Near the
infinity it is more convenient to use the coordinatesv, t, s,
w defined by Eqs.~2.11! @see Eqs.~A21!, ~A22!; see also Fig.
3#.

The coordinatet is a coordinate along the ‘‘boost’’ Killing
vector­t , and in region I it can be understood simply as
translational spatial coordinate. The coordinatesj, w play
roles of longitudinal and latitudinal coordinates of a suitab
defined hypersurface at an ‘‘instant of time.’’ For example,
region I the spacelike hypersurfacey5const has topology
R3S2 ~if it does not cross infinityI! with the coordinatet
along theR direction, andj, w on the sphereS2. To justify
the ‘‘longitudinal’’ character of the coordinatej, we intro-
duce, instead ofj, an angular coordinateq by the relation
sinq5AG @cf. Eq. ~A10!#. This is a longitudinal angle mea
sured by a circumference of thew circle @see the metric
~2.8!#. Alternatively, we can introduce the angleQ, defined
by Eq. ~A12!, measured by the length of a ‘‘meridian.’’ A
infinity I or, in general, on any hypersurfacev5const, the
coordinate liness5const coincide with the lines of constan
j. The coordinates thus also parameterizes the longitudin
direction near the infinity, similarly to the coordinatej.

In Sec. II we mentioned that the coordinatew along the
second Killing vector ­w takes values in the interva
(2pC,pC). HereC.0 is the parameter which allows us t
change the conicity on the axis of thew symmetry, i.e., it
allows us to choose a deficit~or excess! angle around the
axis arbitrarily. Such a change of the range of the coordin
5-4
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FIG. 1. A qualitative diagram of thej-y section (t,w
5constant) of the studied spacetime. The three cases correspo
~a! charged accelerated black holes in asymptotically de Sitter
verse (eÞ0, mÞ0), ~b! uncharged black holes (e50, mÞ0), and
~c! de Sitter universe (e50, m50). Horizontal lines indicate the
horizons, vertical lines are axes ofw symmetry. The diagona
double liney5j tanha corresponds to infinityI. Singularities are
depicted by ‘‘zigzag’’ lines. The boundary of each diagram cor
sponds toj, y56`. Mutual intersections of different lines ar
governed by relations~3.1!. Different columns and rows correspon
to different signs of the functionsG andF, respectively, and thus to
different signatures of the metric, which are indicated on the si
of the diagrams. The metric~2.8! describes, in general, four distinc
spacetimes—the domains in columnsj1,j,j2 and j3,j,j4 ,
separated in addition by infinity~the diagonal line!. In this paper we
discuss only the physically most reasonable spacetime with the
ordinatesj, y in the rangesj1,j,j2 andy.j tanha ~the shaded
areas!. Sectionsj5const which correspond to the conformal di
grams in Fig. 2 are indicated by thick lines.
02400
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FIG. 2. The conformal diagrams of thet-y section (j,w
5const). Similarly to Fig. 1, the three diagrams correspond to
cases of~a! charged accelerated black holes,~b! uncharged black
holes, and~c! de Sitter universe~in accelerated coordinates!. The
conformal infinitiesI are indicated by double lines, the singularitie
are drawn by ‘‘zigzag’’ lines, and horizons by thin lines. The ho
zonsy5yc , yo , y i correspond to the valuesũ5mp or ṽ5np, m,
nPZ. Thus, the integers~m, n!, indicated in the figure, label differ-
ent blocksũP„mp,(m11)p…, ṽP„np,(n11)p… of the conformal
diagrams. There are four types of these blocks, labeled by I–
which correspond to the regions I–IV in Fig. 1. The sectio
t5const~drawn in Fig. 1! are indicated by thick lines. Similar line
could, of course, be drawn also in other blocks. Only a part of
complete conformal diagram is shown in the cases~a! and ~b!,
however, the rest of the diagram would have a similar structure
the part shown. The complete diagram depends on a freedom in
choice of a global topology of the spacetime given by identific
tions of different blocks of the conformal diagram. In the case~c!,
the diagram does not contain any black hole—it is ‘‘closed on
sides’’ by poles of a spacelike sectionS3 of de Sitter universe~see
the discussion at the end of Sec. III!.
5-5
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FIG. 3. Thej-y ~left! and the conformal~right! diagrams near infinityI. Only one asymptotically de Sitter–like region of the spaceti
~domains I and II of Figs. 1 and 2! is shown. Ranges of various coordinates introduced in the paper are indicated~orientation of the
coordinate labels suggests a direction in which the coordinates increase!. The thick line in the conformal diagram corresponds to thej-y
diagram and vice versa. In thej-y diagram the lines of constantv ands are also drawn. The coordinatesv, s are not unambiguous in the
full domain I, however, they are invertible nearI, in the domainE,0. On the boundaryE50 ~shown in diagram! the coordinatesv, s
change their timelike/spacelike character.@Notice the difference between the null coordinatev ~‘‘v’’; diagonal straight lines! and the ‘‘radial’’
coordinatey ~‘‘upsilon’’; curved lines! in the t-y conformal diagram.#
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w is allowed for any axially symmetric spacetime. The ran
is usually chosen in such a way that the axis of thew sym-
metry is regular. However, for theC-metric such a choice is
not globally possible. In this case the axis consists of t
partsj5j1 andj5j2—one of them joins the ‘‘north’’ poles
of the black holes, the other one joins the ‘‘south’’ poles. T
physicalconicity ~defined as a limiting ratio of ‘‘circumfer-
ence’’ and 2p3 ‘‘radius’’ of a small circle around the axis!
calculated at the axesj1 andj2 is

k15
1

2
CG8uj5j1

, k252
1

2
CG8uj5j2

, ~3.4!

respectively, see, e.g., Ref.@36#. In general, the values ofuG8u
at j1 andj2 are not the same, see Eq.~3.5! below. Therefore
we can setk51 ~zero deficit of angle, i.e., a regular axis! by
a suitable choice of the parameterC only at onepart of the
axis.

This fact has a clear physical interpretation. The axis w
nonregular conicity corresponds to a cosmic string wh
causes the ‘‘accelerated motion’’ of the black holes. The c
mic string @43# is a one-dimensional object, sort of a ‘‘rod
or a ‘‘spring,’’ which is characterized by its mass dens
equal to its linear tension. These parameters are proporti
to the deficit angle, namely, a string with a deficit ang
(k,1) has a positive mass density and it is stretched
string with an excess angle (k.1) has negative mass densi
and is squeezed. In Appendix B, Eq.~B7!, we prove for
mÞ0, AÞ0 that

k2,k1 . ~3.5!

Using this fact, we may conclude that by eliminating a no
trivial conicity at the axisj5j2 ~so thatk251) we obtain
k1.1, i.e., a squeezed cosmic string at the axisj5j1 . Al-
ternatively, if we set the physical conicityk151 at j5j1 ,
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we obtaink2,1, i.e., a stretched cosmic string at the ax
j5j2 . In both these cases, as well as in the general case
cosmic strings on both parts of the axis, the system of bl
holes with string~s! between them is not in an equilibrium
The string~s! acts on both black holes and cause what
usually call an ‘‘accelerated motion’’ of black holes. How
ever, the precise interpretation of acceleration is not
straightforward.

The problem here is that we consider a fully se
gravitating system, not just a motion of test particles on
fixed background. The motion of black holes is actually
alized through a nonstatic, nonspherical deformation of
ometry of the spacetime in a direction of motion, i.e., alo
the axis ofw symmetry. Moving black holes together wit
the cosmic string~s! curve the spacetime in such a way tha
strictly speaking, it is not justified to use the termaccelera-
tion in a rigorous sense. This has several reasons. First, b
holes are nonlocal objects and one can hardly expec
uniquely defined acceleration for such extended objects. S
ondly, thanks to the equivalence principle we cannot dis
guish between acceleration of the black holes with respec
the universe, and acceleration due to the gravitational fiel
each hole. Finally, one has to expect a gravitational dragg
of local inertial frames by moving black holes, i.e., it is n
obvious how to define an acceleration of black holes w
respect to these frames. A plausible definition could be gi
if some privileged cosmological coordinate system playin
role of ‘‘nonmoving’’ background is available. Unfortunatel
we are not aware of such a system applicable in a gen
case. In the next paragraph we shall demonstrate this
proach just for a simple case of empty de Sitter spaceti
Summarizing, it is not straightforward to define the accele
tion of black holes in the general case. One usually identi
the acceleration only in an appropriate limiting regime. T
usage of the termaccelerationfor the parameterA in the
C-metric ~see Refs.@28–30# for the caseL50, and, e.g.,
5-6
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Ref. @36# for the caseLÞ0) has been justified exactly in thi
way.

Of course, the situation extremely simplifies in the case
vanishing mass and charge (m50, e50). In this case there
are no black holes, and the spacetime reduces to de S
universe. However, if we still keepAÞ0, a trace of~now
vanished! ‘‘accelerated’’ sources remains in the metric~2.8!
through the parametera. By a simple transformation~A12!,

T5aLt, R5
aL

y
, cosQ52j, F5w, ~3.6!

we obtain the metric~A17! of the de Sitter space inacceler-
ated coordinates T, R, Q, F introduced in Ref.@36# and
discussed in Ref.@23#. These coordinates are an analogue
the Rindler coordinates in Minkowski space generalized
the case of the de Sitter universe. They are adapted to a
erated observers: the originsR50 represent two uniformly
accelerated observers which are decelerating from antip
poles of the spherical space section of the de Sitter univ
towards each other until the moment of minimal contract
of the universe, and then accelerate away back to the an
dal poles~see Fig. 4!. In the standard de Sitter static coord
natesTdS, RdS, QdS, FdS of the metric~A19!, related to Eq.
~3.6! by Eq. ~A20!, these observers are characterized
RdS5Ro , QdS50. Thus, they are static observers staying
constant distanceRo5aL tanha @see Eq.~A18!# from the
polesRdS50 of de Sitter space, measured in their instan
neous rest frame~or, equivalently, in the de Sitter stati
frame!. They are uniformly accelerated with accelerati
A5aL

21 sinha toward these poles—in fact, this accelerati
exactly compensates the acceleration due to cosmolog
contraction and subsequent expansion of de Sitter unive

We can consider the above accelerated observers as ‘‘
nants’’ of accelerated black holes of the fullC-metric uni-
verse. Of course, in the oversimplified case of de Sitter sp
these ‘‘sources’’ just move along the worldlines and we
able to measure their acceleration explicitly. It is thus natu
to draw the conformal diagram@Fig. 4~a!# of de Sitter uni-
verse, based on the standard global cosmological coo
nates, in which the remnants of sources are obviously
picted as moving ‘‘objects.’’ On other hand, we can draw
alternative conformal diagram based on the accelerated
ordinates@Fig. 4~b!#, in which the remnants of the source
are located at the ‘‘fixed’’ poles of the space sections of
universe. The diagram in Fig. 4~a! is adapted to global cos
mological structure of the universe and explicitly visualiz
the motion of the sources, whereas the diagram in Fig. 4~b! is
adapted to sources and thus ‘‘hides’’ their motion.

This intuition can be carried on to the general case w
nontrivial sources. The coordinatest, y, j, w @or alternatively
the accelerated coordinates defined in the general case b
~A12!# are adapted to sources and thus the conformal
grams in Fig. 2 ‘‘hide’’ the motion of the black holes. Ther
fore, it would be very useful to find an analogue of the c
ordinates of Fig. 4~a! for the general casemÞ0, eÞ0, to be
able to explicitly identify the accelerated motion of the bla
holes. However, as was already mentioned, we are not aw
of such coordinates.
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Using the insight obtained from the de Sitter case, we a
observe that the ‘‘changing of shape’’ of infinityI in the
conformal diagrams for different values of the coordinatej,
as discussed above, is actually anevidenceof nonvanishing
acceleration of the sources. In the case of pure de Sitter s
we have obtained this ‘‘changing of position’’ ofI when we

FIG. 4. Conformal diagrams of de Sitter universe~a! in the
standard cosmological coordinates~A20!, and~b! based on the ac-
celerated coordinates~3.6! @cf. Eq. ~A12!#. In contrast to Fig. 2~c!,
the diagram~b! depicts two sections of constantj, namely,j5j1

(Q50) at the right half of the diagram, andj5j2 (Q5p) at the
left half. We can see that the position of infinity~double line! is
different for these two values ofj. For intermediate values ofj
infinity I would attain an intermediate position a
R5aL /j cotha, according to Eq.~3.2!. The infinity has a simple
shape in diagram~a!, where it is indicated by the horizontal line
RdS5`. In both diagrams the left and right boundaries a
identified—they correspond to one of the two poles of the app
priate coordinates~the other pole is located in the center of th
diagram!. A horizontal line thus corresponds to the main circle o
spatialS3 section of de Sitter universe. Bold lines corresponds
the origins of the accelerated coordinates (R50) which have been
employed in the paper as ‘‘remnants’’ of the sources. In diagram~a!
they move with respect to the cosmological frame. Diagram~b! is
adapted to their accelerated motion and therefore the source
located at origins. Dashed line corresponds to valueR5`, i.e.,
y50, where the accelerated coordinates are not well defined. R
tive position of the hypersurfaceR5` and of infinity RdS5` can
be visualized with help of a conformally related Minkowski spa
~lower half indicated by the shaded domainP, the upper half indi-
cated by dotted line!. In this space the infinity corresponds to h
persurfacet50, the coordinate singularityR5` corresponds to
t850, wheret and t8 are Minkowski time coordinates in inertia
frames moving with relative velocity tanha—see Appendix A for a
related discussion.
5-7
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have used the coordinates adapted to the accelerated ob
ers. We expect that the analogous ‘‘changing of shape’’ of
infinity in a general case also indicates accelerated motio
the sources.

IV. PRIVILEGED ORTHONORMAL AND NULL TETRADS
NEAR I¿

We wish to investigate properties of null geodesics a
the character of fields near infinityI ~domain I in Figs. 1, 2!.
Therefore, we will assumeF,0, G.0, andE,0. Before we
discuss the geodesics and behavior of the fields we firs
troduce some privileged tetrads which will be used for phy
cal interpretation. In the following, we will denote a norma
ized vector tangent to the coordinatexa, i.e., the unit vector
proportional to the coordinate vector­a , by ea .

We will employ several types of orthonormal and nu
tetrads which will be distinguished by specific labels in su
script. We denote the vectors of an orthonormal tetrad
n, q, r , s. Heren is a unit timelike vector and the remainin
three are spacelike. With this normalized tetrad we assoc
a null tetrad of null vectorsk, l, m, m̄, such that

k5
1

&
~n1q!, l5

1

&
~n2q!,

~4.1!

m5
1

&
~r2 is!, m̄5

1

&
~r1 is!.

Using the associated tetrad of null one-formsk, l, m, m̄ dual
to the null tetradk, l, m, m̄, the metric can be written as

g52k∨l1m∨m̄, ~4.2!

which implies

k• l521, m•m̄51, ~4.3!

all other scalar products being zero. From this it follows th

ka52gablb, la52gabkb,
~4.4!

ma5gabm̄b, m̄a5gabmb.

The Weyl tensorCabgd has ten independent real comp
nents which can be parametrized by five standard com
coefficients defined as its components with respect to
above null tetrad~see, e.g., Refs.@42,44#!:

C05Cabgd kambkgmd,

C15Cabgd kalbkgmd,

C252Cabgd kamblgm̄d, ~4.5!

C35Cabgd lakblgm̄d,

C45Cabgd lam̄blgm̄d.

The coefficientsCn transform in a simple way under speci
Lorentz transformations of the null tetradk, l, m, m̄, namely,
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under null rotation around null vectorsk or l, under a boost
in thek-l plane, and a spatial rotation in them-m̄ plane@44#.
These transformation are summarized in Appendix D. T
tensor of electromagnetic fieldFab has six independent rea
components which can be parametrized, similarly to
Weyl tensor, as

F05Fab kamb,

F15
1

2
Fab ~kalb2mam̄b!, ~4.6!

F25Fab m̄alb.

The transformation properties of coefficientsFn under the
null rotations, special boost, and spatial rotation can also
found in Appendix D.

Now, we first introduce analgebraically special tetrad
ns, qs, r s, ss which is associated with theprincipal null
directionsof the C-metric spacetime. We define

ns52ey52
A2F

r
­y , r s5ej5

AG
r

­j ,

~4.7!

qs52et52
1

rA2F ­t , ss5ew5
1

rAG ­w ,

and the corresponding null tetradks, ls, ms, m̄s by Eqs.
~4.1!. It is straightforward to check that these null directio
ks, ls can be expressed as

ks5
sinṽ

&r udu

1

A2F ­ṽ , ls5
sinũ

&r udu

1

A2F ­ũ , ~4.8!

where the global null coordinatesũ, ṽ, parametrized by a
constantd, are introduced in Eq.~A38!. It turns out that the
Weyl tensor has the simplest form in this tetrad. It can
expressed as

C5
1

12
~F91G9!r 2

3S 1

FG dy∧dj dy∧dj2FG dt∧dwdt∧dw

1
G
F dy∧dw dy∧dw2

F
G dt∧dj dt∧dj

12dt∧dy dt∧dy22dj∧dw dj∧dw D . ~4.9!

Transforming this into the null tetradks, ls, ms, m̄s we find
that the only nonvanishing component isC2

s , namely,
5-8
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C2
s5

1

12
~F91G9!r 22

52S m

aL
2

e2

aL
2 ~y cosha1j sinha! D aL

r 3

52S m22e2Aj2
e2

r D 1

r 3 ,

~4.10!
C0

s5C1
s5C3

s5C4
s50.

This exhibits explicitly thatks, ls are the double principa
null directions@44#, which lie in thet-y plane.

Similarly, the electromagnetic field tensor~2.4! in coordi-
natest, y, j, w reads

F5edy∧dt. ~4.11!

Using relations~4.1!, ~4.7!, we find that the only nonvanish
ing coefficient of electromagnetic field isF1

s ,

F1
s52

e

2r 2 , F0
s5F2

s50. ~4.12!

The special null tetrad defined above is appropriate
discussion of algebraic properties of the fields. Howev
near future infinityI 1 we will also have to use a differen
tetradno , qo , ro , so and the related null tetradko , lo , mo ,
m̄o . These will serve asreference tetradswith respect to
which we will parametrize a general asymptotic directio
These tetrads are adapted to the Killing vectors­t , ­w and
to de Sitter–like infinityI 1. Namely, the timelike vectorno
is asymptotically orthogonal toI 1, andqo , ro , so are tan-
gent toI 1. We define

no5ev5
A2E

r
­v , ro5es5

1

r
A E

FG ­s ,

~4.13!

qo52et52
1

rA2F ­t , so5ew5
1

rAG ­w ,

the corresponding null tetradko , lo , mo , m̄o is given by Eqs.
~4.1!.

Relations between the tetradsns, qs, r s, ss and no , qo ,
ro , so immediately follow from the definitions~4.7!, ~4.13!
and from relations of coordinates~2.11! @cf. Eqs. ~C2b!,
~C2c!#,

ns5AF
E cosha no1A G

2E sinha ro ,

r s5A G
2E sinha no1AF

E cosha ro , ~4.14!

qs5qo , ss5so .
02400
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A geometrical meaning of these transformations is seen
Fig. 5. Both tetrads are related by a simple boost in theno-ro
plane with a boost parameterbs given by

tanhbs5A G
2F tanha. ~4.15!

This boost is described by relations similar to Eq.~D10!,
with the vectorsq and r interchanged.

We obtain even a better visualization if we perform
projection of the principal null directionsks, ls to a three-
dimensional hyperplane orthogonal to the timelike vectorno .
We thus obtain ‘‘spatial’’ directionsks

' , ls
' ,

ks
'5ks1~ks•no!no , etc., ~4.16!

of the null vectorsks, ls which lie in theqo-ro plane, sym-
metrically with respect to the vectorro ~see Fig. 5!. If we
denote byus the angle betweenqo and ks

' , we can write
ks

'}sinus ro1cosus qo , and taking into account the norma
ization ~4.3! we obtain

FIG. 5. A spacetime diagram~w direction is suppressed! that
depicts relations between the reference tetradno , qo , ro , so ~or
ko , lo , mo , m̄o), the algebraically special tetradns, qs, r s, ss ~or
ks, ls, ms, m̄s), and the Robinson-Trautman tetradkRT , lRT , mRT ,
m̄RT . The reference tetrad is naturally adapted to the infinity (no is
normal toI 1) and the Killing vectors (qo and so are tangent to
them!, while the algebraically special tetrad is adapted to b
double principal null directionsks and ls. These two are related by
a boost in theno2ro plane, with the boost parameterbs given by
Eq. ~4.15!. The vectorsqo and qs are identical, similarlyso5ss.
Orthogonal projectionsks

' , ls
' of the principal null directions onto

v5const hyperplane~shaded! define the angleus @Eq. ~4.18!# that,
similarly to bs, characterizes the relation between the reference
the special tetrads. The vectorkRT of the Robinson-Trautman tetra
points into the principal null directionks with the coefficient of
proportionality approaching zero onI 1, cf. Eq. ~4.28!. The other
null direction lRT belongs to theno-ks plane and it becomes ‘‘infi-
nitely long’’ on I 1.
5-9
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ks5
1

& cosus

~no1sinus ro1cosus qo!,

~4.17!

ls5
1

& cosus

~no1sinus ro2cosus qo!,

see also Eq.~C3!. Comparing this with relations~4.14! and
using Eq.~4.1!, we find that the angleus is given in terms of
the metric functionsF, G, E as

sinus5A G
2F tanha, cosus5SAF

E cosha D 21

,

~4.18!

i.e., tanhbs5sinus.
We will be interested mainly in the tetrads at the conf

mal infinity I 1, i.e., for v50, where y5j tanha and
E521, see Eqs.~3.2!, ~A24!. From the definitions~4.15!,
~4.18! and using Eqs.~A10!, ~A11! we find that the boos
parameterbs and the angleus ~which both characterize di
rections ‘‘from the sources’’! may on theI 1 have values in
the ranges

bsP@0,a#, sinusP@0,tanha#. ~4.19!

The zero values occur on the axis ofw symmetry ~points
‘‘between’’ the moving black holes;j5j1 ,j2), the maximal
values occur on the ‘‘equator’’—thew circle of maximal cir-
cumference (j50, v50).

Transformation formulas~C3! allow us to find compo-
nents of the Weyl tensor and tensor of electromagnetic fi
in the reference null tetradko , lo , mo , m̄o , namely,

C2
o5

1

2
C2

s~3 cos22 us21!,

C1
o5C3

o52
3

2
C2

s sinuscos22 us, ~4.20!

C0
o5C4

o5
3

2
C2

s sin2 uscos22 us,

F0
o5F2

o52tanusF1
s , F1

o5cos21 usF1
s , ~4.21!

or, more explicitly@using Eqs.~4.10!, ~4.12!, and~4.18!#

C2
o5

F91G9

8Er 2

1

3
~2F cosh2 a2G sinh2 a!,

C1
o5C3

o5
F91G9

8Er 2 A2FG cosha sinha, ~4.22!

C0
o5C4

o52
F91G9

8Er 2 G sinh2 a,
02400
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F1
o52

e

2r 2AF
E cosha,

~4.23!

F0
o5F2

o5
e

2r 2A G
2E sinha.

As we have already mentioned, the tetradno , qo , ro , so
serves as the reference tetrad with respect to which we c
acterize an arbitrarilyrotated tetradnr , qr , r r , sr . The tetrad
nr , qr , r r , sr is obtained from the reference tetrad by a sp
tial rotation given by anglesu, f,

nr5no ,

qr5cosuqo1sinu cosfro1sinu sinfso ,
~4.24!

r r52sinuqo1cosu cosfro1cosu sinfso ,

sr52sinfro1cosfso .

Let us note that the anglesu, f, understood as standar
spherical coordinates spanned on the axesqo , ro , so , de-
scribe exactly the spatial directionkr

'5(1/&)qr of the null
vector kr , where thespatial directionmeans projection or-
thogonal to the vectorno . The relation between null tetrad
following from Eq. ~4.24! can be found in Eq.~C5!. This
transformation is obtained as a consecutive composition
null rotation with fixedk @Eq. ~D3!#, null rotation with fixed
l @Eq. ~D6!#, and of special boost and spatial rotation~D9!
with parameters

L52tan
u

2
exp~2 if!,

K5sin
u

2
cos

u

2
exp~2 if!, ~4.25!

B5cos22
u

2
, F5f.

Finally, we also introduce theRobinson-Trautman tetrad
kRT, lRT, mRT, m̄RT ~see, e.g., Ref.@44#! naturally connected
with the Robinson-Trautman coordinatesz, z̄, u, r @see Eqs.
~2.9! and ~A25!, ~A28!#

kRT5­r ,

lRT52
1

2
H­r1­u52

r 2E
2aL

2 ­r1­u ,

~4.26!

mRT5
P

r
­z̄5

1

AGr
­z̄ ,

m̄RT5
P

r
­z5

1

AGr
­z .
5-10
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Here we have written down equivalent expressions us
both metric functionsH, P commonly used in the Robinson
Trautman framework, and the metric functionsG, E of the
C-metric @see Eqs.~2.14!, ~2.15!#. The vectorkRT of this
tetrad is oriented along the principal null directionks, and it
will be demonstrated in Sec. VII that this tetrad is paralle
transported along the geodesics tangent to principal nul
rections.

The tetrad~4.26! is simply related to the particularly ro
tated tetradkr , lr , mr , m̄r @Eq. ~C5!# with u5us, f50, us
given by Eq.~4.18!:

kRT5exp~bRT!kr , lRT5exp~2bRT!lr ,
~4.27!

mRT5mr , m̄RT5m̄r ,

i.e., the Robinson-Trautman tetrad can be obtained from
reference tetradko , lo , mo , m̄o by the spatial rotation~C5!
with u5us, f50, followed by the boost~D9! with param-
eter

B5expbRT52
&v

A2E 5A2
2

H
. ~4.28!

We also give the relation between the Robinson-Trautm
and the algebraically special tetrad. Because the vectorskRT
andks are proportional, the Robinson-Trautman tetrad is
tained from the special tetrad by the null rotation~D3! fol-
lowed by the boost~D9! with the parameters

L52sinus52A G
2F tanha,

~4.29!

B5expbRT cosus5
&aL

rA2F cosha
.

The explicit relation of both tetrads can be found in Eq
~C3! and ~C4!.

Using the transformations~D4!, ~D11! and ~D5!, ~D12!
with these parametersL, B, we find that the only nonvanish
ing components of the gravitational and electromagn
fields in the Robinson-Trautman tetrad are

C2
RT5C2

s52S m22e2Aj2
e2

r D 1

r 3 ,

~4.30!

C3
RT52

3

&

Ar

P
C2

s , C4
RT53

A2r 2

P2 C2
s ,

F1
RT5F1

s52
e

2r 2 , F2
RT52&

Ar

P
F1

s , ~4.31!

with C2
s and F1

s also given by Eqs.~4.10! and ~4.12!, see
Ref. @44#.
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V. GRAVITATIONAL AND ELECTROMAGNETIC
FIELDS NEAR I¿

Now we are prepared to discuss radiative properties of
C-metric fields near the de Sitter–like infinityI 1. As we
have already explained in Sec. I, by theradiative fieldwe
understand a field with a dominant component having
1/h fall-off, calculated in a tetrad parallelly transported alo
a null geodesicz(h). We will in particular concentrate on
investigation of a directional dependence of the gravitatio
and electromagnetic radiation.

To study the dependence of the fields on the directi
along which the spacelike infinityI 1 is approached, it is
crucial to find a parallelly transported tetrad along all n
geodesics. However, it is difficult to find a general geode
and the corresponding tetrad in an explicit form, except
the case of very special geodesics along the privileged p
cipal null directions, which will be discussed in Sec. VI
Fortunately, it is not, in fact, necessary to find an expli
form of the geodesics and tetrads because we are intere
only in the dominant terms of the fields close toI 1. It is
fully sufficient to study only theirasymptotic forms.

Near infinityI 1, null geodesicsz(h) can be expanded in
the inverse powers of the affine parameterh→`. In particu-
lar, in coordinatest, v, s, w introduced in Eq.~2.11!, the null
geodesicsz(h) can be expanded as

v~h!'v*
aL

h
1¯ ,

t~h!'t11t*
aL

h
1¯ ,

~5.1!

s~h!'s11s*
aL

h
1¯ ,

w~h!'w11w*
aL

h
1¯ ,

where the affine parameterh has the dimension of length
There is no absolute term in the expansion of the coordin
v because v50 at I 1. The constant parameter
t1 , s1 , w1 @and the corresponding valuesy1 andj1 given
by Eq.~2.11!# label thepoint N1 at I 1 which is approached
by the geodesicz(h). The parameterst* , s* , w* charac-
terize thedirectionalong which this pointN1 is approached.
The remaining coefficientv* can be determined from th
normalization of the tangent vector which must be null. T
tangent vector has the form

Dz

dh
'2

aL

h2 ~v* ­v1t* ­t1s* ­s1w* ­w!. ~5.2!

The asymptotic form of the metric~2.12! along the null geo-
desic is

g'
h2

v
*
2 ~2dv22F1dt22F1G1ds21G1dw2!, ~5.3!
5-11
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whereF1 andG1 are the functionsF andG evaluated at the
point N1 at infinity I 1, and we usedE1521. Therefore,
the condition that the tangent vector is a null vector impl

v
*
2 52F1t

*
2 2F1G1s

*
2 1G1w

*
2 . ~5.4!

Notice thatv* ,0 sincev,0, and

r ~h!'gh1¯ , where g52
1

v*
, ~5.5!

which follows from Eq.~2.16!.
We wish to compare geodesics approaching the gi

point N1 along different directions. We thus need to ensu
‘‘the same’’ universal choice of the affine parameterh for all
geodesics. It is natural to require that the energy~or, equiva-
lently, the frequency! of the ray represented by the null ge
desic

Eo52p•no52aL

Dz

dh
•no ~5.6!

~see@45#!, is the sameindependently of the direction of th
geodesic, i.e., that the component of the tangent vector to
normal directionno is fixed. From Eqs.~5.6!, ~5.2!, and
~4.13! it immediately follows that

Eo'
aL

2

h
5g

aL
2

r
. ~5.7!

The value of the energyEo with respect to any asymptoti
observer characterized by the four-velocityno thus obviously
approaches zero ash→`. This behavior is caused by the d
Sitter–like character ofI 1. Therefore, we have to compar
the values ofEo at the same ‘‘proximity’’ toI 1, i.e., at some
fixed large butfinite value of the coordinater ~see@46#!. We
conclude from Eq.~5.7! that fixing the energy at a give
prescribed value ofr is equivalent to fixing the value of th
constant parameterg independently of a direction of the geo
desic. Let us note that this approach is fully equivalent
fixing a finite value ofconformal energy, i.e., of the energy
defined with respect to a vector normal toI 1 normalized
using a conformal metricg̃5v2g.

Next, it is necessary to find aninterpretation tetradk i , l i ,
mi , m̄i which is parallelly transported along the geode
z(h). However, using only an asymptotic expansion of t
tetrad at infinityI 1, we cannot determine unique initial con
ditions which define this tetrad somewhere in a finite reg
of the spacetime. But without specifying these initial con
tions, the parallelly transported tetrad atI 1 is given only up
to an arbitrary~finite! Lorentz transformation. It thus seem
that we are losing all information because of this nonuniq
ness. However, it is not so. It will be demonstrated that
crucial information about the behavior of the fields at infin
I 1 is hidden in an ‘‘infinite’’ Lorentz transformation corre
sponding to the parallel transport from a finite region of t
spacetime up to infinity. It will thus be sufficient to find on
the leading term of this transformation.

To be more specific, we naturally choose the vectork i of
the parallelly transported interpretation null tetrad to be p
02400
s

n
e

he

o

n
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-
e
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portional to the~parallelly transported! tangent vector of the
geodesic. This ensures thatk i is finite in finite regions of
spacetime~see@47#!. However, we still have a freedom in th
normalization ofk i which can be multiplied by an arbitrar
finite factor, constant along the geodesic. Similarly to t
choice of the ‘‘universal’’ affine parameter for different ge
desics, we have to choose the parallelly transported tetrad
some suitable ‘‘comparable’’ way for various geodesics a
proaching the same pointN1 at infinity from different direc-
tions. Not having an explicit form of the geodesics~except
for those special ones discussed in Sec. VII!, we have to
eliminate the dependence on initial conditions by fixing fin
conditions for the tetrad at infinityI 1. Namely, we will
require that the normalization of the vectork i is specified
independently of the direction of the geodesics. This
achieved, for example, by the condition

k i•dr 51. ~5.8!

Thanks to Eq.~5.5! we thus have

k i5
1

g

Dz

dh
. ~5.9!

Concerning vectorsmi , m̄i of the parallelly transported
interpretation tetrad, there is a priori no ‘‘canonical’’ pre
scription how to choose these in a universal way for differ
geodesics. The only constraint is the correct normalizat
~4.3!. Therefore, we have to find such physical quantit
which are invariant under this freedom. It will be show
below @see Eq.~5.18! and discussion therein# that themag-
nitude of the leading termof the fields atI 1 is, in fact,
independent of the specific choice of the vectorsmi , m̄i .

However, there is a natural possibility to fix the null ve
tor l i of the tetrad by the condition that the timelike un
vectorno , orthogonal to infinityI 1, lies in thek i- l i plane. In
this case the parallelly transported tetrad can be obtaine
a boost in thek i- l i plane from the rotated tetradkr , lr , mr ,
m̄r @see Eqs.~4.24! or ~C5!# with properly chosen anglesu,
f. Clearly, the vectorkr has to point exactly in the direction
of the geodesic or, equivalently, the spatial vectorqr has to
point in the spatial direction of the geodesic~here again by
spatial vectorswe mean those orthogonal tono5nr , i.e.,
tangent toI 1). Using Eqs.~5.9!, ~5.2!, and~4.13! we obtain

k i'
aL

gh S no2
1

h
~t* ­t1s* ­s1w* ­w! D . ~5.10!

The unit vectorqr in the spatial direction of the geodesic
thus

qr'2
1

h
~t* ­t1s* ­s1w* ­w!

52A2F1

t*
v*

qo1A2F1G1

s*
v*

ro1AG1

w*
v*

so .

~5.11!
5-12
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The leading term of the expansion of the parallelly tra
ported tetrad near the infinity then can be written as

k i'
&aL

gh
kr5

aL

gh
~no1qr!, mi'mr ,

~5.12!

l i'
gh

&aL

lr5
gh

2aL
~no2qr!, m̄i'm̄r .

Here, we have made a particular choice of the vectorsmi ,
m̄i . In general,mi could differ frommr by a phase factor~a
rotation in themi-m̄i plane! which, as we mentioned, canno
be fixed in a canonical way. Our choicemi'mr is ‘‘natural’’
for the approach presented here. However, in the next sec
we will encounter another ‘‘suitable’’ choice of the vect
mi .

Now we have to identify the anglesu, f. Let us recall that
these angles are just spherical coordinates of the spatia
rectionqr}k i

' with respect to the reference frameqo , ro , so .
Comparing Eqs.~5.11! and~4.24! we find that the parameter
t* , s* , w* , characterizing the asymptotic spatial directi
of the geodesic~5.1!, fix the anglesu, f as

t* 5
1

gA2F1

cosu,

s* 52
1

gA2F1G1

sinu cosf, ~5.13!

w* 52
1

gAG1

sinu sinf.

In the following we will use these anglesu, f to parametrize
the direction along which a null geodesic approaches
point N1 on I 1.

Now we are ready to calculate the leading terms of
componentsCn

i of the Weyl tensor in the parallelly trans
ported tetrad given above. First we find the componentsCn

r

in the rotated tetradkr , lr , mr , m̄r . These can easily be
obtained from Eq.~4.22! using relations~D4!, ~D7!, and
~D11! with the parameters~4.25!. Notice that all these com
ponents are of the same order inh, namely,;h23 @cf. also
Eq. ~5.17! below#. To obtain the componentsCn

i in the par-
allelly transported tetrad we perform an additional bo
~5.12! in the kr- lr plane with the boost parameter given by

B5
&aL

gh
. ~5.14!

Using relations~D11! we immediately observe that it res
calesCn

i by different powers ofh, namely,

Cn
i ;

1

h52n , n50,1,2,3,4. ~5.15!
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The field thus clearly exhibits thepeeling behavior. The
leading term of the gravitational field representing radiat
near infinityI 1 is C4

i ;1/h. Explicitly, this term asymptoti-
cally takes the form

C4
i '

1

16aL
2 cos2 us

~F91G9!

3~sinu1sinuscosf2 i sinuscosu sinf!2.

~5.16!

Here we should note that@see Eq.~4.10!#

1

12
~F91G9!'2~m22e2Aj1!

1

gh
. ~5.17!

The phase of the componentC4
i depends on the choice o

the vectorm̄i @see Eq.~4.5!#. Because the vectorm̄i was
chosen arbitrarily, only the modulusuC4

i u can have a physi-
cal meaning. Using the peeling behavior~5.15! we can even
justify that the magnitudeuC4

i u does not depend on an
change of the null vectorsl i , mi , m̄i at infinity. Indeed, we
may perform an arbitraryfinite Lorentz transformation which
leaves the vectork i fixed. Such a transformation can be ge
erated by a combination of the discussed spatial rotation
themi-m̄i plane~D9! which change only a phase ofC4

i , and
of a null rotation~D3!. Under this transformation, the com
ponentC4

i transforms according to Eq.~D4! as

C4
i85C4

i 14L̄C3
i 16L̄2C2

i 14L̄3C1
i 1L̄4C0

i . ~5.18!

Since L is finite and the componentsCn
i ;hn25,

n50, 1, 2, 3 are of the higher order in 1/h thanC4
i ;h21,

they do not change the leading term of the field, i.e.,C4
i

remains invariant.~Let us note that the same is obviously n
true for leading terms of other components of the Weyl te
sor.!

The invariant physical quantityuC4
i u is thus

uC4
i u'

3

4

~m22e2Aj1!

gaL
2 cos2 us

1

h

3@~sinu1sinuscosf!21sin2 uscos2 u sin2 f#,

~5.19!

where the angleus identifying the principal null directions a
infinity is, thanks to Eqs.~4.18!, ~2.6!, ~2.13! andE1521,
given by

sinus5A G1aL
2 A2

11G1aL
2 A2,

1

cos2 us
511G1aL

2 A2.

~5.20!

Note that the term (m22e2Aj1) in Eq. ~5.19! is positive,
which follows ~although not immediately, see Appendix B!
from the conditions~2.5!.
5-13
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Analogously, we obtain the componentsFn
i of the elec-

tromagnetic field in the parallelly transported null tetrad
the form

Fn
i ;

1

h32n , n50,1,2, ~5.21!

which also exhibits the peeling behavior. The leading term
the radiative componentF2

i is asymptotically

F2
i '

1

2&

e

gaL cosus

1

h

3~sinu1sinuscosf2 i sinuscosu sinf!.

~5.22!

Similarly to the C4
i component, only the modulus of thi

expression is independent of a choice of the interpreta

FIG. 6. The magnitude of the leading terms of gravitational a
electromagnetic fields, given by Eqs.~5.19! and ~5.23!, as a func-
tion of a direction from which the pointN1 at infinity is
approached—thedirectional pattern of radiation. The directions
from the originN1 of the diagram correspond to spatial directio
in spacelike conformal infinityI 1. The magnitude of the fields
measured along a null geodesic with a tangent vectork is drawn in
the spatial direction2k' from which the geodesic arrives~i.e., the
geodesic points into the spatial directionk'). The anglesu, f pa-
rametrizing the spatial directionk' are measured from the axisqo

and around the axisqo starting from thero-qo plane, respectively.
The special geodesics in principal null directionsks and ls, i.e., the
null geodesics coming from the ‘‘left’’ black hole and the ‘‘right
black hole~pointing ‘‘from the sources’’!, are denoted byzs

(1) and
zs

(r ) . They approach the pointN1 at infinity along the spatial direc
tions ks

' and ls
' . On the other hand,za

(r ) and za
( l ) are ‘‘antipodal’’

null geodesics approaching the infinity along the spatial directi
2ks

' , 2 ls
' , opposite to that ofzs

( l ) and zs
(r ) , respectively. The

leading radiative term of the fields completely vanishes along th
antipodal geodesics.
02400
f

n

tetrad. Moreover, the square of modulus now has a c
physical meaning—it is exactly the leading term of the ma
nitude of the Poynting vectorSi in the parallelly transported
frame defined with respect to the timelike vectorni . Thus,
we obtain

4puSiu'uF2
i u2'

1

8

e2

g2aL
2 cos2 us

1

h2

3@~sinu1sinuscosf!21sin2 uscos2 u sin2 f#.

~5.23!

The direction of the Poynting vectorSi is asymptotically
given by the vectorqi . Interestingly, the dependence ofuC4

i u
anduF2

i u2 on the direction along which a pointN1 at infinity
I 1 is approached~i.e., the dependence on anglesu andf! is
exactly the same, namely,

d

s

se

FIG. 7. The particular sectionst-s, s-w, andt-w of the direc-
tional pattern of radiation shown in Fig. 6. Theorientedanglesu of
the spatial directions of the geodesics from sources (u5us and u
5p2us, f50) and of the antipodal geodesics (u5us and
u5p2us, f5p) are indicated.
5-14
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FIG. 8. The directional pattern of radiation from Fig. 6 for different values of the angular parameterus. Because the directiona
dependence~5.24! of the gravitational and electromagnetic radiation depends only on this single parameterus given by Eq.~4.18!, both
changes of a positionN1 at infinity I 1 and changes of the physical parametersm, e, A, andL manifest only through a change of the ang
us. The diagrams with different values ofus can thus be interpreted either as the directional patterns at different points of infinityI 1, or as
the directional characteristics at ‘‘the same’’ point~with fixed values of the metric functionsF andG!, but in spacetimes with, for example
different acceleration of the black holes.
ta
fo

te

te

c

t
tio
by

ion

ar
,

ns

g

d

ed
’’
ull

e-
ate
-
of
the
to

rom
A~u,f!5~sinu1sinuscosf!21sin2 uscos2 u sin2 f.
~5.24!

The angular dependence~5.24! for a fixed value ofus which
characterize thedirectional pattern of radiationat a given
point of I 1 is shown in Figs. 6 and 7, and for variousus in
Fig. 8.

Let us now discuss the main results~5.19! and ~5.23!.
These expressions can be understood as a more de
characterization of radiative fields near the spacelike con
mal infinity, supplementing thus the peeling behavior~5.15!,
~5.21!. It follows from Eqs.~5.19!, ~5.22! that the dominant
components of both fields decay asymptotically nearI 1,
corresponding tor 5`, as (gh)215r 21. The electromag-
netic field is proportional to the charge parametere whereas
the gravitational field is proportional to the mass parame
m modified, interestingly, by the term22e2Aj1 which is a
combination of electric charge and acceleration parame
and the constantj1 denoting a specific point at infinityI 1.
Both the gravitational fielduC4

i u and the electromagneti
Poynting vector 4p uSiu'uF2

i u2 are proportional toaL
22

5 1
3 L @but they also depend implicitly onL through the pa-

rameterus, see Eq.~5.20!#. The radiation atI 1 thus in-
creases with a growing value of the cosmological constanL.

The angular dependence of the magnitude of radia
A~u, f! is presented in Figs. 6 and 8. Their grid is given
the coordinate linesu5const andf5const, respectively. It
is straightforward to investigate the behavior of the funct
A~u, f! for a fixed u. The minimal value isA(u,p)
5(sinu2sinus)

2, and the maximum isA(u,0)5(sinu
1sinus)

2. The global maximumA5(11sinu)2 occurs for
u5p/2, f50. The greatest magnitude of radiation thus
rives at infinity from the direction ofro . On the other hand
the minimal valueA50 is obtained foru5us, f5p and
u5p2us, f5p. These are exactly the spatial directio
2 ls

' , 2ks
' of antipodal null geodesics za

( l ) and za
(r ) , along

which the radiation completely vanishes. The value ofA
along the geodesicszs

( l ) andzs
(r ) coming from the black holes

in the directions ks
' (u5us,f50) and ls

' (u5p2us,
02400
iled
r-

r
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f50) isA54 sin2 us. The value along the directionqo ~cor-
responding tou50) is A5sin2 us, and alongso (u5p/2,
f5p/2) is A51.

Finally, it is interesting to observe that for a vanishin
acceleration of the black holes, i.e., forA50 which implies
us50, we obtain

uC4
i u'

3

4

m

gaL
2

1

h
sin2 u,

~5.25!

uF2
i u'

1

2&

e

gaL

1

h
sinu.

The angular dependenceA5sin2 u is now independent off
so that the directional pattern is axially symmetric~see the
diagram on the very left of Fig. 8!. Moreover, the gravita-
tional and electromagnetic fields decay as 1/h even in this
case ofnonacceleratedblack holes if the fields are measure
along a nonradial null geodesic (uÞ0,p). A generic ob-
server thus detects radiation. This effect is intuitively caus
by observer’s asymptotic motion relative to the ‘‘static
black holes. Only for special observers moving along n
geodesics radially from the black holes (u50,p) the radia-
tion vanishes as one would expect for ‘‘static’’ sources.

Interestingly, the angular dependenceA~u, f! is exactly
the same as that obtained in Ref.@22# for test electromag-
netic field of two accelerated charges in de Sitter space~see
@48#!.

VI. THE RADIATION IN THE ROBINSON-TRAUTMAN
FRAMEWORK

In this part we rederive the above results using the fram
work naturally adapted to the Robinson-Trautman coordin
system~2.14!. This will not only provide us with an indepen
dent way of deriving the characteristic directional pattern
radiation generated by accelerated charged black holes in
asymptotically de Sitter universe, but opens a possibility
investigate even more general exact radiative solutions f
5-15
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P. KRTOUŠAND J. PODOLSKÝ PHYSICAL REVIEW D 68, 024005 ~2003!
the large and important Robinson-Trautman family.
We start again with investigation ofasymptotic null geo-

desicsapproaching infinityI 1, i.e., those for whichr→`.
Assuming a natural expansion of these geodesics in pow
of 1/r ~rather than in the affine parameter 1/h as was done in
the previous section!,

z'z11
c

r
1¯ ,

u'u1 1
d

r
1¯ , ~6.1!

r ~h!→` as h→`,

wherez1 , u1 , c, d are constants, the derivatives with r
spect to the affine parameterh are

ż'2
ṙ

r 2 c1¯ ,

~6.2!

z̈' 2
r̈

r 2 ~c1¯ !1
ṙ 2

r 3 ~2c1¯ !.

The expressions foru̇, ü are obtained from Eq.~6.2! by
replacing c with d. Similarly, we may expand the metri
functions and other quantities. Using Eqs.~6.1! and~6.2! and
the Christoffel symbols~A32!, the geodesic equations in th
highest order read

c
r̈

r
50, d

r̈

r
5N ṙ 2

r 2 , aL
2 r̈

r
52N ṙ 2

r 2 , ~6.3!

where

N52P1
22cc̄12d1aL

22d2, ~6.4!

P1 being the asymptotic value ofP at the pointN1 at infin-
ity. However, a normalization of the tangent vector fornull
geodesics requires

N50. ~6.5!

Consequently, the asymptotic form of the null geodesics
proachingI 1 is

r'gh, z'z11
c

r
, u'u11

d

r
,

~6.6!
Dz

dh
5gS ­r2

c

r 2 ­z2
c̄

r 2 ­z̄2
d

r 2 ­uD ,

where the constantg can be identified with that introduced i
Eq. ~5.5!, z1 , u1 specify thepoint N1 on I 1 towards
which the particular geodesic is approaching, andc, d are
parameters representing thedirection along which N1 is
reached. In fact, this direction is basically parameterized
by the complex constantc since, using relations~6.5!, ~6.4!,
d is then given asd52aL

2 (16A122aL
22P1

22cc̄). For a
particularc, there are thus only two real values ofd which
02400
rs

p-

st

represent two possible differentorientationswith which the
null geodesics may approachI 1 in the given spatial direc-
tion. In particular, for the special choicec50 we obtain
d50 and d522aL

2 . The first corresponds exactly to th
privileged principal null direction alongks ‘‘from the
source’’~i.e., the null geodesiczs

( l ) along the spatial direction
ks

'), the second to an opposite orientation of this direct
‘‘away from the source’’~the ‘‘antipodal’’ null geodesicza

(r )

along2ks
'), see Fig. 6.

In order to find the behavior of radiation nearI 1 we
again have to set up the interpretation tetrad transported
allelly along a general asymptotic null geodesic, and proj
the Weyl tensor and the tensor of electromagnetic field o
this tetrad. We start with the Robinson-Trautman null tetr
~4.26!, naturally adapted to the Robinson-Trautman coor
nate system~2.14!. We have seen in Sec. IV that the vect
kRT is oriented along one of the principal null directio
namely,ks, and~as we will see in Sec. VII! the tetrad~4.26!
is parallelly transported along the algebraically special g
desics. In this standard tetrad the only nontrivial compone
Cn

RT andFn
RT, which represent the gravitational and electr

magnetic field, are given by Eqs.~4.30! and ~4.31!. Let us
now perform two subsequent null rotations and a boost
this Robinson-Trautman null tetrad~4.26!. We first apply Eq.
~D6!, then~D3!, and finally~D9! with the parameters

K52
c

~ 11 1
2 aL

22d!Pr
,

L5
cr

2aL
2 P

, ~6.7!

B511 1
2 aL

22d, F50.

The resulting null tetrad, using relation~6.5!, then takes the
following asymptotic form asr→`:

k i'S ­r2
c

r 2 ­z2
c̄

r 2 ­z̄2
d

r 2 ­uD ,

l i'
r 2

2aL
2 S ­r1

c

r 2 ­z1
c̄

r 2 ­z̄1
d12aL

2

r 2 ­uD ,

~6.8!

mi'
P

r S cd

2aL
2 c̄

­z1S 11
1

2
aL

22dD­z̄2
c

P2 ­uD ,

m̄i'
P

r S S 11
1

2
aL

22dD­z1
c̄d

2aL
2 c

­z̄2
c̄

P2 ­uD .

Obviously, the above vectork i is tangent to a genera
asymptotic null geodesics~6.6!. Moreover, the tetrad is cho
sen in such a way that the timelike unit vector orthogona
I 1

no5
1

A2H
~2H­r1­u!'

r

aL
­r1

aL

r
­u , ~6.9!
5-16
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introduced in Eq.~4.13!, belongs to the plane spanned by t
two null vectorsk i and l i . Indeed,

no'
1

&
S r

&aL

k i1
&aL

r
l iD . ~6.10!

Note that this choice corresponds to a boost Eq.~D9! which
becomes unbounded asr→`.

As discussed in the previous section, in order tocompare
the radiation for all null geodesics approaching the giv
point at de Sitter–like infinityI 1, it is necessary to intro-
duce a unique and universal normalization of the affine
rameterh and of the vectork i . We concluded that a natura
and also the most convenient choice is to keep the param
g fixed @see discussion near Eq.~5.6!# and to require Eq.
~5.9!. These conditions are obviously satisfied by Eq.~6.8!,
cf. Eq. ~6.6!. Therefore, the tetrad~6.8! is exactly the inter-
pretation tetrad suitable for analysis of behavior of fields
I 1.

Now we perform a projection of the above null tetrad on
the spacelike infinityI 1. These projectionsk i

' , l i
' , mi

' @cf.
Eq. ~4.16!# are

k i
''2

1

r 2 @c­z1 c̄­z̄1~d1aL
2 !­u#,

~6.11!

l i
''2

r 2

2aL
2 k i

' , mi
'5mi , m̄i

'5m̄i .

The radiation approachingI 1 along the null vectork i propa-
gates in the spatial directionk i

'}qr . Imposing the normal-
ization conditionqr•qr51, the unit vector of the radiation
direction thus takes the form

qr'2
1

aLr
@c­z1 c̄­z̄1~d1aL

2 !­u#. ~6.12!

Of course, this vector is identical to the vectorqr introduced
previously in Eq.~4.24!. Using Eqs.~C2f!–~C2h!, ~4.13!,
and ~4.18! we obtain

­z5
1

&

r

P
~2sinusqo1cosus ro1 iso!,

­u52A2H~cosusqo1sinusro!, ~6.13!

­r5
1

A2H
~no1cosusqo1sinusro!.

Substituting this into Eq.~6.12!, usingE1521, and compar-
ing with the expression~4.24!, we obtain the following rela-
tion between the Robinson-Trautman parametersc, dand the
anglesu, f

c1 c̄

&aLP1

5sinuscosu2cosussinu cosf,
02400
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i
c2 c̄

&aLP1

52sinu sinf, ~6.14!

11aL
22d5cosuscosu1sinussinu cosf.

Of course, this parametrization identically satisfies the n
malization condition~6.5!. Moreover, it can now be demon
strated that the above null tetrad~6.8! is in fact identical to
the parallelly transported tetrad~5.12!, except for the trans-
verse vectormi , which was previously defined asmi'mr ,
mr given by Eq.~C5! @cf. Eqs.~4.24!, ~4.1!#. Such a vector is
related to the vectormi adapted to the Robinson-Trautma
framework ~6.8! by the spatial rotation ~D9!,
mi5exp(2ifi)mr , where the rotation anglef i is given by

sinf i5
~cosus1cosu!sinf

11cosuscosu1sinussinu cosf
,

cosf i5
sinussinu1~11cosuscosu!cosf

11cosuscosu1sinussinu cosf
,

~6.15!

exp~ if i!5

exp~ if!cos
us

2
cos

u

2
1sin

us

2
sin

u

2

cos
us

2
cos

u

2
1exp~ if! sin

us

2
sin

u

2

.

Finally, we calculate the leading components of the gra
tational and electromagnetic fields in the interpretation fra
~6.8! asymptotically close to infinityI 1. As we have said,
the Lorentz transformation from the tetrad~4.26! to the
tetrad~6.8! is given by two subsequent null rotations and t
boost with the parameters given by Eq.~6.7!. Starting with
the components~4.30! in the standard Robinson-Trautma
frame, using Eqs.~D7!, ~D4!, ~D11! and ~D8!, ~D5!, ~D12!,
we obtain after somewhat lengthy calculation

C4
i '2

3A2~m22e2Aj1!

rP1
2 S 12

1

&aL
2 A

c̄1
1

2aL
2 dD 2

,

~6.16!

F2
i '

eA

&rP1
S 12

1

&aL
2 A

c̄1
1

2aL
2 dD .

Substituting from Eq.~6.14! for the parametersc andd, and
using Eqs.~5.20! and ~2.15! we get

C4
i '2

3

4

~m22e2Aj1!

aL
2 r cos2 us

3~sinus1sinu cosf1 i cosussinu sinf!2, ~6.17!

F2
i '

1

2&

e

aLr cosus

3~sinus1sinu cosf1 i cosussinu sinf!.
5-17
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We should have recovered the previous results~5.16! and
~5.22!. Comparing them we find that the expressions differ
the angular part. However, this is a consequence of the
ference of interpretation tetrads used in the previous an
this sections. The results are, in fact, identical after perfo
ing a spatial rotation~D9! with the angular parameterf i
given by Eq.~6.15!. This changes the phase of the comp
nents according to Eqs.~D11!, ~D12!, and we obtainC4

i

5exp(2ifi)C4
i , F2

i 5exp(ifi)F2
i , where the left hand side

is given by Eq.~6.17!, and the right-hand side by Eqs.~5.16!,
~5.22!. Both results are thus equivalent.

The tetrads~5.12! and ~6.8! have been introduced in
way natural to each specific approach. The fact that t
differ in definitions of the vectormi documents what we
have already discussed above: there is no canonical way
to choose the interpretation tetrad. It also means that
phaseof the results~5.16!, ~5.22!, or ~6.17! is not physical.
Invariant information, independent of a choice of the int
pretation tetrad, is contained in themodulusof the tetrad
components of the fields. Obviously, the magnitudes of
field components~6.17! are the same as the results~5.19! and
~5.23! derived previously.

VII. RADIATION ALONG THE ALGEBRAICALLY
SPECIAL NULL DIRECTIONS

In the final section we concentrate on a family of spec
geodesicszs

( l ) approaching infinityI 1 along principal null
direction ks, and investigate the fields with respect to t
corresponding interpretation tetrad. Using Eqs.~A32! it is
straightforward to observe that the coordinate lines

u5u15const, z5z15const ~7.1!

~i.e., alsoj5const,w5const) are null geodesics,r is their
affine parameter, and the tangent vector iskRT5­r . @For
simplicity, in this section we use the affine parameterr, a
general affine parameterh can be introduced by a trivia
rescalingr 5gh, cf. Eq. ~5.5!.# The geodesicszs

( l )(r ) ema-
nate ‘‘radially’’ from the ‘‘left’’ black hole up to the infinity
~similarly we could investigate analogous geodesicszs

(r )

along ls from the ‘‘right’’ black hole!. As we have seen in
Sec. IV @cf. Eq. ~4.27! and the subsequent discussion#, the
tangent vectorkRT is oriented along the principal null direc
tion ks. These geodesics thus approach the infinity from
specific spatial direction characterized by the angles

u5us, f50 ~7.2!

or by the parametersc50, d50 @see Eq.~6.14!#.
Moreover, in such a case we can identify explicitly t

parallelly transported interpretation tetrad—it can easily
shown using Eqs.~A32! that the Robinson-Trautman tetra
~4.26! is parallelly transported alongzs

( l )(r ), i.e.,

kRT•¹kRT50, kRT•¹ lRT50, kRT•¹mRT50. ~7.3!

We can thus set the interpretation tetrad

~k i ,l i ,mi ,m̄i![~kRT,lRT,mRT,m̄RT! ~7.4!
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if-
in
-

-

y

ow
e

-

e

l

e

e

in the wholespacetime, not only asymptotically nearI 1, as
in Eq. ~6.8! for c50, d50. As follows from Eqs.~4.30! and
~4.31!, all components of gravitational and electromagne
fields are explicitly

C4
i 523S m22e2Aj2

e2

r DA2G 1

r
,

C3
i 5

3

&
S m22e2Aj2

e2

r DAAG 1

r 2 , ~7.5!

C2
i 52S m22e2Aj2

e2

r D 1

r 3 , C1
i 5C0

i 50,

and

F2
i 5

eAAG
&

1

r
, F1

i 52
e

2

1

r 2 , F0
i 50. ~7.6!

Clearly, the leading terms in the 1/r expansion give the pre
vious general asymptotical results~5.19! and~5.23! with u, f
specified by Eq.~7.2!, and r 5gh. In the case of de Sitte
spacetime (m50, e50) the field components identicall
vanish, in the general case the fields have a radiative cha
ter (;1/r ) except for a vanishing accelerationA and/or for
G150. The ‘‘static’’ caseA50 has been already discusse
after Eq. ~5.25!. The caseG150 corresponds to observer
located at the privileged position—on the axesj5j1 and
j5j2 . This is analogous to the well-known situation of a
electromagnetic field of accelerated test charges in flat sp
time which is also not radiative along the axis of symmet

Let us note that in this case the affine parameterr coin-
cides, in fact, both with theluminosity distanceand thepar-
allax distance for the congurence of the above nu
geodesics—as for any Robinson-Trautman spacetime
scribed by the metric~2.14!. Indeed, the luminosity distanc
r L is related to the affine parameterr by the relation@3#

drL

dr
5

1

2
r L¹•kRT. ~7.7!

Thanks to Eqs.~A32! one obtains (1/2)¹•kRT51/r , and thus
r L5r . This means that the radiative 1/r fall-off of the fields
is naturally measurable~even locally! by observers moving
radially to infinity, using both the parallax and the luminosi
methods for determining the distance.

In the previous sections, when we studied the radiat
along general geodesics, we have been able to fix the in
pretation tetrad only asymptotically, by specifying approp
ate final conditions at infinity@see Eqs.~5.8!, ~5.12! and the
discussion nearby#. For the special family of geodesics~7.1!
discussed here we can specify the interpretation tetrad
setting the initial conditions anywhere in thefinite region
inside the spacetime. Because any point at infinityI 1 is only
reached by one algebraically special geodesiczs

(1) from the
‘‘left’’ black hole, this does not allow us to study thedirec-
tional pattern of radiation with respect to the interpretati
tetrad fixed by these explicit initial conditions. However, w
5-18
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can study the standardpositional pattern of radiation along
these special geodesics—the dependence of radiation o
position of asymptotic pointN1 in the infinity.

The initial conditions for interpretation tetrad inside a
nite region of the spacetime can be chosen in many diffe
ways, e.g., using some natural tetrad on a spacelike hy
surface~‘‘initial instant of time,’’ cf. @49#!, on a ‘‘surface of
sources,’’ on a special null hypersurface, etc. Obviously, g
metrically privileged locations where we can specify su
initial conditions arehorizons, in particular the cosmologica
horizony5yc , or the outer horizony5yo of the ‘‘left’’ black
hole. The former one~its ‘‘future’’ half ! forms a ~past!
boundary of the domain in which any observer has to re
the future infinityI 1 ~the domain I containingI 1 in Fig. 2!.
The latter one forms the ‘‘surface’’ of black hole and can th
be understood as a ‘‘surface of sources’’~the boundary be-
tween regions II and III!. Although we have in mind mainly
these two cases, the following discussion can be applie
any horizony5yh . The special geodesics cross such horiz
at null hypersurfaceṽ5np, the global null coordinatesũ, ṽ
being defined in Eq.~A38!, and the integern fixed by the
horizon under consideration~in particularn50 andn521
in Fig. 2!.

First, we observe that the choice~7.4! is the most natura
one. The Robinson-Trautman tetrads in the wh
spacetime—and thus the corresponding initial conditions
any horizony5yh—are actually invariant under a shift alon
the Killing vector ­t . Indeed, expressing the Robinso
Trautman tetrad in terms of the coordinate vect
­t ,­v ,­s ,­w @using Eqs.~4.26!, and ~C2f!-~C2h!# we find
that the coefficients are independent oft, i.e., the Lie deriva-
tives vanish,

L­t
kRT50, L­t

lRT50, L­t
mRT50. ~7.8!

The definition of the interpretation tetrad~7.4! thus respects
the symmetry of spacetime.

There is also another possibility to fix the interpretati
tetradk i8 ,l i8 ,mi8 ,m̄i8 on the horizony5yh . We choose the
null vector k i8}kRT tangent to the geodesic, and the n
vectorl i8 tangent to the horizon. Now we have to specify t
length of one of these vectors, length of the other one is t
fixed by the normalization~4.3!. It will be achieved by re-
quiring that the vectorl i8 is parallelly transported along th
null geodesic generator of the horizon~note, however, tha
this condition cannot be satisfied for the vectork i8). Finally,
we should fix the remaining vectorsmi8 ,m̄i8 . However, we
will be interested only in the magnitude of the leading ter
of the field components~as in the previous sections! and
therefore a specific choice of the vectorsmi8 ,m̄i8 , is
irrelevant—see the discussion before Eq.~5.18!. The inter-
pretation tetrad defined in this way is a natural choice
observers localized on the horizon—its definition rema
‘‘the same’’~is parallelly transported! along the generators o
the horizon.

To follow explicitly the procedure described above, w
use the global null coordinatesũ, ṽ. The definition of these
coordinates depends on a choice of parameterd. As ex-
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plained in Appendix A, the metric~A39! is regular with re-
spect of these coordinates on the horizony5yh if we set

d5dh , ~7.9!

wheredh is given by Eq.~A36!. In the following we assume
such a choice. We also introduce the sign ofdh :

615sgndh , ~7.10!

then

cosũU y5yh
ũ5mp

5cosṽU v5vh
ṽ5np

561. ~7.11!

For the cosmological horizon sgndc51, whereas for the
outer horizon sgndo521. With these definitions the metri
coefficientgũṽ evaluated on the horizony5yh reads

gũṽU y5yh
ṽ5np

52r h
2 udhu

d̃h

~16cosũ!21, ~7.12!

whered̃h is defined in Eq.~A42!, and

r h5r uy5yh
5

aL

yh cosha2j sinha
. ~7.13!

Here and in the following we repeatedly use relation~A41!.
Now, we fix the vectorsk i8 ,l i8 at the bifurcation two-

surface ũ5mp, ṽ5np of the horizon in a ‘‘symmetric
way,’’ namely,

l i8U y5yh
ṽ5np
ũ5mp

5
&

r h
A d̃h

udhu
­ũ , k i8U y5yh

ũ5mp

ṽ5np

5
&

r h
A d̃h

udhu
­ṽ .

~7.14!

Using the fact that the only nonvanishing Christoffel coef
cient G ũũ

a is

G ũũ
ũ uy5yh

56S tan
ũ

2D 61

, ~7.15!

we find that the vectorl i8 defined by

l i8U y5yh
ṽ5np

5
1

&r h

A d̃h

udhu ~16cosũ!­ũ , ~7.16!

is parallelly transported along the geodesic null generator
the horizon ṽ5const, j5const, w5const, with the initial
condition ~7.14!. Obviously, l i8 is tangent to the generato
and l i8•¹ l i8u

ṽ5np

y5yh 50. Taking into account the normalizatio

~4.3! and the metric coefficient~7.12! we find the normaliza-
tion of the null vectork i8 ,

k i8U y5yh
ṽ5np

5
&

r h
A d̃h

udhu
­ṽ . ~7.17!

The null vectorsk i8 ,l i8 do not coincide on the horizon
with the Robinson-Trautman null vectorsk i , l i given by
5-19
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Eq. ~7.4!. Expressing the tetrad~4.26! in the ũ, ṽ coordinates
@cf. Eqs.~C4!, ~4.8!# we find

k iu
ṽ5np

y5yh 5
2aLd̃h

r h
2 cosha S cot

ũ

2D 61

­ṽ , ~7.18!

i.e., the vectorsk i8 and k i are proportional. The vectorsl i8
and l i do not even point into the same null direction. W
could explicitly relate the interpretation tetra
k i8 ,l i8 ,mi8 ,m̄i8 to the tetrad~7.4! by a combination of a
boost in thek-l plane ~D9! followed by a transformation
~D3! leavingk fixed. Of course, this relation obtained on th
horizon is propagated by a parallel transport up to infin
I 1. The parameterB of the boost transformation simpl
follows from relationk i85Bk i between the vectorsk i8 andk i
@see Eqs.~7.17!, ~7.18!#,

B5
r h cosha

aL
A2udhud̃h

S tan
ũ

2
D 61

. ~7.19!

As we discussed in Sec. V@see Eq.~5.18!# the magnitude of
the leading term of the fields is independent of the trans
mation withk fixed, so we do not need to identify the seco
transformation~D3! explicitly.

Using the transformation properties~D11! and ~D12! of
the fields we finally derive the magnitude of the leading te
of the fields with respect to the interpretation tetr
k i8 ,l i8 ,mi8 ,m̄i8 specified on the horizony5yh . We obtain

uC4
i8u'B22uC4

i u, uF2
i8u2'B22uF2

i u2, ~7.20!

B2252udhud̃h~yh2j1 tanha!2 expS 2
cosha

aL

u1

dh
D ,

wherej1 andu1 denote the coordinates of the pointN1 on
I 1, and we have used relations~7.13! and ~A38!.

As expected, such a different choice of the interpretat
tetrad does not change the radiative character of the fi
~the 1/r fall-off !, it only modifies the field components by
finite factor. Nevertheless, such modification can
substantial—we have obtained an additional factor which
exponential in the Robinson-Trautman coordinateu, namely,
exp@2A(L/3)1A2 u1 /dh#. This expresses the dependen
of the magnitude of gravitational and electro-magnetic rad
tion on position of the asymptotic pointN1 at de Sitter–like
infinity I 1. Notice that the exponential ‘‘damping’’ of radia
tion depends not only on the cosmological constantL but
also on the accelerationA of the black holes. Interestingly
the factorA(L/3)1A2 is exactly the Hawking temperatur
2pT recently discussed, e.g., in Ref.@50#.

VIII. SUMMARY

In the present paper we have thoroughly investigated
C-metric with a positive cosmological constantL.0. This
exact solution of the Einstein-Maxwell equations represe
a radiative spacetime in which the radiation is generated b
pair of ~charged! black holes uniformly accelerated i
02400
r-

n
ds

e
is

-

e

ts
a

asymptotically de Sitter universe. By introducing new co
venient coordinates and suitable interpretation tetrads n
the conformal light infinityI 1 we were able to analyze th
asymptotic behavior of gravitational and electromagne
fields. The peeling off property has been demonstrated,
leading components of the fields in the parallelly transpor
tetrad are inversely proportional to the affine parameter
the corresponding null geodesic.

In addition, as a main result of our investigation, an e
plicit formula which describes the directional pattern of r
diation has been derived: it expresses the dependence o
fields on directions along which a given pointN1 at confor-
mal infinity I 1 is approached. This specific directional cha
acteristic supplements the peeling property, thus comple
the asymptotic behavior of gravitational and electromagn
fields near infinityI 1 with a spacelike character.

It was already observed in the 1960s by Penrose@9,10#
that radiation is defined ‘‘less invariantly’’ whenI 1 is space-
like than in the case when it is null~asymptotically flat
spacetimes in particular!. Our results can thus be understoo
as an investigation of this ‘‘nonuniqueness.’’ In fact, the pe
ing off property supplemented by the directional pattern
radiation ~5.19!, ~5.23! characterizefully the radiation near
the de Sitter–like infinityI 1.

The specific pattern of radiation has been obtained h
by analyzing the exact model of uniformly accelerated bla
holes in de Sitter universe. It is in agreement with the ana
gous recent result for the test electromagnetic field gener
by accelerated charges in the de Sitter background@22,23#.
We are convinced that the directional pattern of radiat
derived has a ‘‘universal’’ validity and applies toall radiative
fields of a given Petrov algebraic type near the space
conformal infinity I 1. The proof of this statement will be
presented elsewhere@51#.
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APPENDIX A: VARIOUS COORDINATES
FOR THE C-METRIC WITH L

The C-metric with possibly nonvanishing cosmologic
constantL53/aL

2 can be written as

g5
1

A2~x1y!2 S 2Fdt21
1

F
dy21

1

G
dx21Gdw2D

~A1!

with

F52
1

aL
2 A2211y222mAy31e2A2y4,

~A2!
G512x222mAx32e2A2x4.
5-20
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The functionsF andG are polynomials of the coordinatesy
andx, respectively, and are mutually related by

F52Q~y!2
1

aL
2 A2 , G5Q~2x!, ~A3!

whereQ(w) denotes the polynomial

Q~w!512w212mAw32e2A2w4. ~A4!

The constantsA, m, e, and C @such thatwP(2pC,pC)]
parametrize acceleration, mass, charge of the black ho
and conicity of thew-symmetry axis, respectively.

The metric~A1!, ~A2! is an ordinary form of theC-metric
in the case when the cosmological constantL vanishes, i.e.,
whenF52Q(y). This has been extensively used for inve
tigation of uniformly accelerated~pair! of black holes in
asymptotically flat spacetime, see, e.g., Re
@13,27,28,30,31#. However, forLÞ0 the form of the gener-
alization is not so obvious and unique. For example, in R
@35# the term with the cosmological constant was included
the metric functionG rather than inF. Also, the parametri-
zation of the metric~A1! is not unique. A simple rescaling o
the coordinates can be performed which removes the ac
eration parameterA from the conformal factor. These relate
metric forms, which allow an explicit limitA→0, were in-
troduced, e.g., in Refs.@32,36,44#.

Throughout this paper we use the particularly resca
coordinatest, y, j, w given by

t5t cotha, w5w,
~A5!

y5y tanha, j52x,

where the dimensionless acceleration parametera is intro-
duced in Eq. ~2.6!. In these convenient coordinates th
C-metric ~A1!, ~A2! takes the form

g5r 2S 2Fdt21
1

F dy21
1

G dj21Gdw2D , ~A6!

with the functionr given by

r 5
1

A~x1y!
5

aL

y cosha2j sinha
~A7!

and

2F512y21cosha
2m

aL
y32cosh2 a

e2

aL
2 y4,

~A8!

G512j21sinha
2m

aL
j32sinh2 a

e2

aL
2 j4.

These coordinates have the following ranges:tPR,
wP(2pC,pC), jP(j1 ,j2), and yP(j tanha,`), with
j1 ,j2 being the two smallest roots ofG—see discussion in
Sec. III.

The metric functionsF, G and F, G as functions on the
spacetime manifold are related by
02400
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n

el-

d

F5F tanh2 a, G5G, ~A9!

but they are usually understood as functions of different
guments, namely,F(y), G(x) andF(y), G(j). In this sense
we will also use a notation for differentiation of these fun
tions F85dF/dy and F85dF/dy or G85dG/dx and G8
5dF/dj. The metric functionG takes the values

GP@0,1#, ~A10!

G50 for j5j1 ,j2 ~axes of w symmetry!, and G51 for
j50 ~on ‘‘equator,’’ i.e., aw circle of maximum circumfer-
ence!. At infinity I the metric functionF takes the values

2FP@cosh22 a,1#, ~A11!

with F52cosh22 a on the axes ofw symmetry, and
F521 on the equator (j,y50).

The above coordinatest, y, j, w are closely related to the
accelerated coordinates T, R, Q, F introduced and discusse
in Refs.@36,52#. If we define

T5aLt, R5
aL

y
, dQ5

1

AG dj, F5w, ~A12!

the metric~A6! takes the form

g5
r 2

R2 F2HdT21
1

H dR21R2~dQ21GdF2!G ,
~A13!

where

H5
1

y2 F512
R2

aL
2 2cosha

2m

R
1cosh2 a

e2

R2 . ~A14!

These coordinates have an obvious physical interpretatio
two particular cases—in the case of a vanishing accelera
of the black holes (A50), and for empty de Sitter spacetim
(m50, e50). In both these cases the metric functionG re-
duces to a simple formG512j2, so the definition~A12! of
the angleQ gives

cosQ52j, sinQ5A12j2. ~A15!

For vanishing accelerationA50, i.e., by settinga50, we
obtainR5r , and the metric~A13! reduces to the well-known
metric for the Reissner-Nordstro¨m black hole in Minkowski
or de Sitter universe@36,53#,

gua5052HdT21
1

H dR21R2~dQ21sin2 QdF2!,

~A16!

with the metric function~A14! simplified by cosha51.
In the case of empty de Sitter space (m50, e50), but

with generally nonvanishing acceleration, the metric funct
F also simplifies toF5y221. The de Sitter metric in accel
erated coordinates thus takes the form~cf. Ref. @36#!
5-21
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gdS5
12aL

22Ro
2

~11aL
22RoR cosQ!2 S 2S 12

R2

aL
2 DdT2

1S 12
R2

aL
2 D 21

dR21R2~dQ21sin2 QdF2! D ,

~A17!

where we introduced the constant

Ro5aL tanha. ~A18!

An explicit relation to the standard de Sitter static coor
natesTdS, RdS, QdS, FdS, in which

gdS52S 12
RdS

2

aL
2 D dTdS

2 1S 12
RdS

2

aL
2 D 21

dRdS
2

1RdS
2 ~dQdS

2 1sin2 QdSdFdS
2 ! ~A19!

is

RdScosQdS5
R cosQ1Ro

11aL
22RoR cosQ

, TdS5T,

~A20!

RdSsinQdS5
R sinQA12aL

22Ro
2

11aL
22RoR cosQ

, FdS5F.

The origin R50 clearly corresponds to worldlines of tw
static observersRdS5Ro , QdS50 which move with a uni-
form accelerationA. Further details concerning the interpr
tation of the accelerated coordinates in de Sitter space w
discussed at the end of Sec. III~see also Ref.@23#!.

It is also instructive to elucidate a geometrical relati
between these two coordinate systems~A17! and~A19!. It is
well known that the de Sitter spacetime is conformally
lated to Minkowski space~see Refs.@8,11#, or recently Ref.
@21#!. Specifically, the~shaded! domainP of de Sitter space-
time depicted in Fig. 4 corresponds to thet,0 region of
Minkowski spacetime in standard spherical coordinatest, r,
q, w, the metrics being related bygdS5(aL /t)2gMink . The
de Sitter static coordinatesTdS, RdS, QdS, FdS can be ob-
tained from the spherical coordinates of Minkowski space
a ‘‘spherical Rindler’’ transformation, i.e.,RdS5aLr/t,
TdS/aL5(1/2) logu(t22r2)/aL

2 u, QdS5q, FdS5w. On the
other hand, the accelerated coordinatesT, R, Q, F are also
obtained from conformally related Minkowski space by t
same construction, however, starting from a different sph
cal coordinatest8, r8, q8, w8 which are defined in the iner
tial frame boosted along theq50 direction with the boost
given exactly by the acceleration parametera ~i.e., with the
relative velocity tanha). Using this insight we can easil
visualize the relation between the hypersurfaceRdS5` ~the
conformal infinityI of de Sitter universe; thet50 hypersur-
face of conformally related Minkowski space! and the hyper-
surfaceR5` ~the coordinate singularity of accelerated c
ordinates in de Sitter space, which is easily removable,
02400
-

re

-

y

i-

r

example, by the coordinatey5aL /R; the hypersurface
t850 of Minkowski space!, as indicated in Fig. 4. For more
details see Ref.@23#.

It is particularly useful to introduce also new coordinat
t, v, s, w for the C-metric naturally adapted both to th
Killings vectors­t , ­w and to infinityI. In terms of the new
coordinate

v52y cosha1j sinha52
aL

r
, ~A21!

infinity I is given by a simple conditionv50. The coordi-
nate s is introduced by requiring an orthogonality of th
coordinates. Indeed, if we defines by the differential form

ds5
sinha

F dy1
cosha

G dj,

~A22!
s50 for j,v50,

@which, thanks to Eq.~A8!, is integrable# the C-metric takes
the form

g5
aL

2

v2 S 2Fdt21
1

E dv21
FG
E ds21Gdw2D , ~A23!

where

E5F cosh2 a1G sinh2 a

5212vFy cosha1j sinha2
2m

aL
~y2 cosh2 a

1yj cosha sinha1j2 sinh2 a!1
e2

aL
2 ~y3 cosh3 a

1y2j cosh2 a sinha1yj2 cosha sinh2 a1j3 sinh3 a!G .
~A24!

Obviously, onI, wherev50, we obtainE521. Thanks to
relationF,0 in region I of Fig. 3, we observe from metri
~A23! that near infinityI 1, the coordinatev plays the role
of a time if E,0. It can be shown that forE,0 the coordi-
nate transformation~A21!, ~A22! from y, j to v, s is invert-
ible. We will use the coordinates only in this region. The
hypersurfaceE50 is always located above the cosmologic
horizon and it touches the horizon on the axesj5j1 , j2 , see
the left part of Fig. 3.

TheC-metric can also be put into the Robinson-Trautm
form ~see Ref.@54#!. Introducing the coordinatesr andu,

Ar5~x1y!21,
~A25!

Adu5
dy

F
1dt,

we obtain from Eq.~A1! the metric
5-22
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g5r 2S 1

G
dx21Gdw2D2du∨dr 2Ar2du∨dx2A2r 2Fdu2,

~A26!

where the functionA2r 2F, expressed in the coordinatesx, r
usingy5(Ar)212x, reads

A2r 2F52
r 2

aL
2 2A2r 2G1ArG82

1

2
G9

1
1

6
~Ar !21G-2

1

24
~Ar !22G-8. ~A27!

This is the generalization of the Kinnersley-Walker coor
nates@27# to LÞ0. Introducing the complex coordinatesz, z̄
@or real coordinatesc, w, related byz5(1/&)(c2 iw)] in-
stead of the coordinatesx, w,

1

&
~dz1dz̄ !5dc5Adu2

dx

G
,

~A28!
i

&
~dz2dz̄ !5dw,

~notice thatc5t tanha1s secha), we put theC-metric into
the Robinson-Trautman form

g5
r 2

P2 dz∨dz̄2du∨dr 2Hdu2 ~A29!

~or, alternatively, withdz∨dz̄ replaced bydc21dw2), where
the metric functions are

P225G5G,
~A30!

H5A2r 2~F1G!5
r 2

aL
2 E.

Using Eqs.~A27!, ~A30!, and ~A28!, which for P5G21/2

imply AG8522(ln P),u and G9522D ln P with
D52P2]z]z̄ , we recover that

H52
r 2

aL
2 22r ~ ln P! ,u1D ln P2

2

r
~m22e2Aj!1

e2

r 2 .

~A31!

This is the standard general expression for the metric fu
tion of the Robinson-Trautman solution@44#. Let us finally
note that the Christoffel coefficients for the metric~A29! are

G r z
z 5

1

r
, Guz

z 52
P,u

P
, Gzz

z 52
2P,z

P
, Guu

z 5
P2H ,z̄

2r 2 ,

G
zz̄

u
5

r

P2 , Guu
u 52

1

2
H ,r , Guu

r 5
1

2
HH ,r1

1

2
H ,u ,

~A32!
02400
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G
zz̄

r
52

rPH1r 2P,u

P3 , Guz
r 5

1

2
H ,z , Gur

r 5
1

2
H ,r .

Finally, for a discussion of the global structure of th
spacetime it is necessary, following the general appro
@55,56#, to introduce global double null coordinatesũ, ṽ, j,
w. For this, we supplement the above defined null coordin
u with the complementary null coordinatev ~see@57#!. In
terms of the coordinatest, y these are@cf. Eq. ~A25!, ~A5!#

u5
aL

cosha
~y* 1t!, v5

aL

cosha
~y* 2t!, ~A33!

where the tortoise coordinatey* is defined by the differentia
relation

dy* 5
1

F dy. ~A34!

Taking into account the polynomial structure~A8! of the
function F,

F5go)
h

~y2yh!, ~A35!

wherego5const andyh (h5 i,o,c,m! are the values of the
coordinatey at the horizons~the roots ofF!, we obtain

y* 5(
h

dh loguy2yhu, dh5~F8uy5yh
!21. ~A36!

In these coordinates theC-metric with L.0 takes the form

g5r 2S F cosh2 a

2aL
2 du∨dv1

1

G dj21Gdw2D . ~A37!

Now, we can define the global null coordinatesũ, ṽ, j, w
parametrized by a constant coefficientd, covering, for suit-
able values ofd, the horizons smoothly,

Utan
ũ

2U5expS u cosha

2uduaL
D , sgnS tan

ũ

2D5~21!m,

~A38!

Utan
ṽ
2U5expS v cosha

2uduaL
D , sgnS tan

ṽ
2D5~21!n.

The C-metric in these coordinates then takes the form

g5r 2S 2d2F
sinũ sinṽ

dũ∨dṽ1
1

G dj21Gdw2D . ~A39!

The horizonsy5y i , yo , yc now correspond to the valuesũ
5mp or ṽ5np, with m,nPZ ~see Fig. 2!.

Notice, that it follows from Eqs.~A38!, ~A36! that

Utan
ũ

2
tan

ṽ
2U

sgnd

5)
k

uy2ykudk /d. ~A40!
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Evaluating this expression on the particular horizony5yh
and comparing with Eq.~A35! we find that with the choice
d5dh the expression

2FS tan
ũ

2
tan

ṽ

2
D 2sgndU

y5yh

5go)
kÞh

uyh2yku12dk /dh5
1

udhud̃h

~A41!

is finite and nonvanishing. Here we introduced the const

d̃h5)
kÞh

uyh2ykudk /dh. ~A42!

Using this fact it is possible to guarantee a regularity of
metric coefficientd2F/(sinũsinṽ) in Eq. ~A39! ~including
smoothness and that it is finite and nonzero! and smoothness
of the coordinatesr andy near the horizonyh by the choice
d5dh of the coefficientd in Eqs.~A38!, assuming thatũ, ṽ
forms a smooth coordinate map in the neighborhood of
horizon. However, such an appropriate factord cannot be
chosen for all horizons simultaneously—a different smo
map ũ, ṽ parametrized by different coefficientsd has to be
used near the different horizons to demonstrate the smo
ness of the metric in the whole spacetime~see, e.g., Refs
@55,56# for a general discussion!.

APPENDIX B: PROPERTIES OF THE METRIC
FUNCTIONS F AND G

First, let us note thatF andG can be represented in term
of polynomialS(w)

2
cosh2 a

aL
2 F5SS cosha

aL
y D1

cosh2 a

aL
2 ,

~B1!
sinh2 a

aL
2 G5SS sinha

aL
j D1

sinh2 a

aL
2 ,

where

S~w!52w2~122mw1e2w2!. ~B2!

A typical graph of the polynomialS(w) is drawn in Fig. 9.
By inspecting the graph we obtain, e.g., relations~3.1! be-
tween the roots of the metric functionsF andG.

We may also prove some interesting properties, includ
Eq. ~3.5!, of the metric functionG in the case of charged
accelerated black holes.@Similar properties—in particula
the inequality~B7!—can be also proved for uncharged acc
erated black holes, i.e., fore50, mÞ0, AÞ0.] In the case
eÞ0, AÞ0, the metric functionG is a polynomial of the
fourth order in j and its zeros have been denoted in t
ascending order asj1 , j2 , j3 , j4 . The extremes ofG ~zeros
of G8) are j0

(1)50, j6
(1)5(3m6A9m228e2)/(4Ae2). The

zero of G-512(Am22e2A2j) is j (3)5m/(2Ae2), andG-
.0 for j,j (3). Using the conditions~2.5!, a straightforward
02400
t

e

is

h

th-

g
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calculation leads to an inequalityGuj
1
(1).0. The condition

that G has four real roots requiresGuj
2
(1),0. This confirms

that the graph ofG has always a qualitative shape shown
Fig. 9. The extremes ofG are located between its zeros, s
that j1,0,j2,j2

(1) . Expressing the vanishing linear coe
ficient in G in terms of the roots we obtain (j11j2)j3j45
2j1j2(j31j4), the right-hand side is clearly positive, a
well asj3j4 , so we obtain

2j1,j2 . ~B3!

From the conditions~2.5! it also follows thatj2
(1),j (3) and

thus we have

j1,0,j2,j2
~1!,j~3!. ~B4!

This means thatG8 is convex on the relevant interva
(j1 ,j2), it is positive on the interval (j1,0) and negative on
(0,j2). The positivity of G- on the interval (j1 ,j2) also
implies m22e2Aj1.0, which is the relation used in th
discussion following the result~5.19!. Clearly, *j1

j2G8dj50,

i.e., the areas

A15E
j1

0

G8dj, A252E
0

j2G8dj ~B5!

are the same. Thanks to the convexity ofG8, we can estimate
A1 andA2 by simpler triangular areas@see Fig. 9~b!#, and we
obtain

2
1

2
j2G8uj5j2

,A25A1,2
1

2
j1G8uj5j1

. ~B6!

FIG. 9. ~a! A qualitative shape of the metric functionsF andG
~in the casemÞ0, eÞ0) which are polynomials iny andj, respec-
tively. It follows from the representation~B1! that both functionsF
andG are, up to the specific rescaling and the constant term, g
by the same polynomialS(w), the graph of which is presented her
The zeros ofF andG are thus given by intersections of the graph
Swith the horizontal lines2aL

22 cosh2 a and2aL
22 sinh2 a, respec-

tively. Relations~3.1! between the zeros ofF andG follows imme-
diately from this fact.~b! A graphical representation of the triangu
lar estimate~B6! for the areasA1 , A2 under the graph ofG8.
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Using Eq.~B3! this implies

2G8uj5j2
,G8uj5j1

. ~B7!

Considering Eq.~3.4! we obtain the important relation~3.5! which is necessary for the discussion of conicity in Sec. III.

APPENDIX C: RELATIONS BETWEEN THE COORDINATE FRAMES

In this appendix we summarize for convenience the relations between different coordinate one-form and vector fra
coordinate one-form frames (dt,dy,dj,dw), (dt,dv,ds,dw), and (dz,dz̄,dr ,du) we obtain

dt5dt 5
E

F cosha

1

aL
du1

1

F cosha

aL

r2 dr 2
G
F tanhadc, ~C1a!

dy52
F
E coshadv1

FG
E sinhads 52G sinh2 a

cosha

1

aL
du2

1

cosha

aL

r2 dr 1G tanhadc, ~C1b!

dj5
G
E sinhadv1

FG
E coshads 52G sinha

1

aL
du1Gdc, ~C1c!

dv52coshady1sinhadj 5
aL

r 2 dr , ~C1d!

ds5
sinha

F dy1
cosha

G dj 52
E
F tanha

1

aL
du2

tanha

F
aL

r 2 dr 1
E

F cosha
dc, ~C1e!

1

aL
du5

1

cosha
dt1

1

F cosha
dy 5

1

cosha
dt2

1

E dv1
G
E tanhads, ~C1f!

1

aL
dr 52

cosha

v2 dy1
sinha

v2 dj 5
1

v2 dv, ~C1g!

A2dz5tanhadt1
tanha

F dy1
1

G dj2 idw 5tanhadt1
1

cosha
ds2 idw, ~C1h!

where

dc5
1

&
~dz1dz̄ !, dw5

i

&
~dz2dz̄ !, dz5

1

&
~dc2 idw!, dz̄5dz. ~C1i!

Coordinate vector frames (­t ,­y ,­j ,­w), (­t ,­v ,­s ,­w), and (­z ,­z̄ ,­r ,­u) are related by

­t5­t 5
1

cosha
aL­u1tanha­c , ~C2a!

­y52cosha­v1
sinha

F ­s 5
1

F cosha
aL­u2cosha

r2

aL
­r1

tanha

F ­c , ~C2b!

­j5sinha­v1
cosha

G ­s 5sinha
r2

aL
­r1

1

G ­c , ~C2c!

­v52
F
E cosha­y1

G
E sinha­j 52

1

E aL­u1
r 2

aL
­r , ~C2d!

­s5
FG
E sinha­y1

FG
E cosha­j 5

G
E tanhaaL­u1

1

cosha
­c , ~C2e!

aL­u5
E

F cosha
­t2G sinh2 a

cosha
­y2G sinha­j 5

E
F cosha

­t2
E
F tanha­s , ~C2f!

aL­r5
v2

F cosha
­t2

v2

cosha
­y 5

v2

F cosha
­t1v2­v2

tanha

F v2­s , ~C2g!

A2­z52
G
F tanha­t1G tanha­y1G­j1 i ­w 52

G
F tanha­t1

E
F cosha

­s1 i ­w , ~C2h!
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where

­c5
1

&
~­z1­z̄ !, ­w52

i

&
~­z2­z̄ !, ­z5

1

&
~­c1 i ­w!, ­z̄5­z. ~C2i!

It is also useful to express the relations between different null tetrads introduced in the paper. The special nu
@defined by Eq.~4.7!, using Eq.~4.1!# the reference null tetrad@see Eq.~4.13!#, and the Robinson-Trautman tetrad~4.26! are
related by

ks5
1

2
tanusS cot

us

2
ko1tan

us

2
lo1mo1m̄oD5exp~2bRT!secuskRT,

ls5
1

2
tanusS tan

us

2
ko1cot

us

2
lo1mo1m̄oD5sinus@exp~2bRT!tanuskRT1exp~bRT!cotuslRT1mRT1m̄RT#,

~C3!

ms5
1

2
tanusS ko1 lo1cot

us

2
mo1tan

us

2
m̄oD5mRT1exp~2bRT!tanuskRT,

m̄s5
1

2
tanusS ko1 lo1tan

us

2
mo1cot

us

2
m̄oD5m̄RT1exp~2bRT!tanuskRT,

kRT5
1

2
exp~bRT!sinusS cot

us

2
ko1tan

us

2
lo1mo1m̄oD5exp~bRT!cosusks,

lRT5
1

2
exp~2bRT!sinusS tan

us

2
ko1cot

us

2
lo2mo2m̄oD5exp~2bRT!tanus~sinusks1cscusls2ms2m̄s!,

~C4!

mRT5
1

2
sinusS 2ko1 lo1cot

us

2
mo2tan

us

2
m̄oD5ms2sinusks,

m̄RT5
1

2
sinusS 2ko1 lo2tan

us

2
mo1cot

us

2
m̄oD5m̄s2sinusks.

The factorbRT is defined in Eq.~4.28!. The rotated null tetrad@cf. Eq. ~4.24!# is related to the reference tetrad as

kr5
1

2
sinuS cot

u

2
ko1tan

u

2
lo1exp~ if!mo1exp~2 if!m̄oD ,

lr5
1

2
sinuS tan

u

2
ko1cot

u

2
lo2exp~ if!mo2exp~2 if!m̄oD ,

~C5!

mr5
1

2
sinuS 2ko1 lo1cot

u

2
exp~ if!mo2tan

u

2
exp~2 if!m̄oD ,

m̄r5
1

2
sinuS 2ko1 lo2tan

u

2
exp~ if!mo1cot

u

2
exp~2 if!m̄oD .

Here, the angleus is defined by Eq.~4.18!.
APPENDIX D: TRANSFORMATIONS OF THE
COMPONENTS Cn AND Fn

The componentsCn of the Weyl tensor~see@58#!

C05Ckmkm , C45Clm̄lm̄ ,

C152Ckmmm̄52Cmm̄km5Cklkm5Ckmkl ,
02400
C352Ckllm̄52Clm̄kl5Clm̄mm̄5Cmm̄lm̄ ,
~D1!

C252Ckmlm̄52Clm̄km ,

2 ReC25Cklkl5Cmm̄mm̄ ,

2 ImC25 iCklmm̄5 iCmm̄kl ,
5-26
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and the componentsFn of tensor of electromagnetic field

F05Fkm , 2 ReF15Fkl ,
~D2!

F25Fm̄l , 2 ImF15 iFmm̄ ,

transform in the well-known way under special Loren
transformations, see, e.g., Ref.@44#.

For a null rotation withk fixed,

k5ko ,

l5 lo1L̄mo1Lm̄o1LL̄ko ,
~D3!

m5mo1Lko ,

m̄5m̄o1L̄ko ,

L being a complex number which parametrize the rotati
the components of the Weyl tensor transform as

C05C0
o ,

C15L̄C0
o1C1

o ,

C25L̄2C0
o12L̄C1

o1C2
o , ~D4!

C35L̄3C0
o13L̄2C1

o13L̄C2
o1C3

o ,

C45L̄4C0
o14L̄3C1

o16L̄2C2
o14L̄C3

o1C4
o ,

and the components of tensor of electromagnetic field tra
form according to

F05F0
o ,

F15L̄F0
o1F1

o , ~D5!

F25L̄2F0
o12L̄F1

o1F2
o .

Under a null rotation withl fixed,

k5ko1K̄mo1Km̄o1KK̄ lo ,

l5 lo ,
~D6!

m5mo1K lo ,

m̄5m̄o1K̄ lo ,

K being a complex number which parameterize the rotat
the components of the Weyl tensor transform as
02400
,

s-

n,

C05K4C4
o14K3C3

o16K2C2
o14KC1

o1C0
o ,

C15K3C4
o13K2C3

o13KC2
o1C1

o ,

C25K2C4
o12KC3

o1C2
o , ~D7!

C35KC4
o1C3

o ,

C45C4
o ,

and for electromagnetic field we have

F05K2F2
o12KF1

o1F0
o ,

F15KF2
o1F1

o , ~D8!

F25F2
o .

A boost in then-q[k- l plane and a spatial rotation in th
r -s[m-m̄ plane is given by

k5Bko , l5B21lo ,

~D9!
m5exp~ iF!mo , m̄5exp~2 iF!m̄o

or, introducingB5expb,

n5coshbno1sinhbqo ,

q5sinhbno1coshbqo ,
~D10!

r5cosFro1sinFso ,

s52sinFro1cosFso ,

B, b being real numbers which parametrize the boost,F
parametrizing an angle of the rotation. The componentsCn
now transform

C05B2 exp~2iF!C0
o ,

C15B exp~ iF!C1
o ,

C25C2
o , ~D11!

C35B21 exp~2 iF!C3
o ,

C45B22 exp~22iF!C4
o ,

andFn transform as

F05B exp~ iF!F0
o ,

F15F1
o , ~D12!

F25B21 exp~2 iF!F2
o .
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