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In the present paper we discuss properties of a model of a ring wormhole, recently proposed by Gibbons
and Volkov [Phys. Rev. D 96, 024053 (2017); J. Cosmol. Astropart. Phys. 05 (2017) 039; Phys. Lett. B
760, 324 (2016)]. Such a wormhole connects two flat spacetimes which are glued through disks of the
radius a bounded by the string with negative angle deficit −2π. The presence of the string’s matter violating
the null-energy condition makes the wormhole static and traversable. We study gravitational field of static
sources in such a spacetime in the weak-field approximation. In particular, we discuss how a field of an
oblate thin massive shell surrounding one of the wormhole’s mouths is modified by its presence. We also
obtain a solution of a similar problem when both mouths of the wormhole are located in the same space.
This approximate solution is found for the case when the distance L between these mouths is much larger
than the radius a of the ring. We demonstrate that the corresponding locally static gravitational field in such
a multiply connected space is nonpotential. As a result of this, the proper time gap for the clock’s
synchronization linearly grows with time and closed timelike curves are formed. This process inevitably
transforms such a traversable ring wormhole into a time machine. We estimate the timescale of this process.
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I. INTRODUCTION

Even in the absence of matter, the space topology in
general relativity can be very nontrivial. A well-known
example is the famous Einstein-Rosen bridge connecting
two asymptotically flat spaces. Examples of solutions of
the initial value problem describing wormholes in a three-
dimensional space were constructed by Misner [1] and Brill
and Lindquist [2]. Wormholes and their properties were
described in detail by Wheeler in his famous book on
geometrodynamics [3]. A generic property of vacuum
wormhole solutions of the Einstein equations is that as a
result of their time evolution they shrink and form a
singularity so fast that one cannot use them to “travel in
space.” Gannon [4] proved that any asymptotically flat
spacetime with a nonsimply connected Cauchy surface has
singular time evolution if it satisfies the weak energy
condition (see also [5–7]).

A special class of wormholes, called traversable,
attracted in the past a lot of attention. Their characteristic
property is that a region with nontrivial topology is located
inside a compact spatial domain and the particles and light
can penetrate through a topological handle and return to the
exterior region without meeting a singularity [8–11]. As it
was demonstrated by Thorne and collaborators [9,12] a
relative motion of the traversable wormhole’s mouths can
generate closed timelike curves, so that such a wormhole
becomes a “time machine.” A similar effect of time-
machine creation from a traversable wormhole can be
achieved when the wormhole’s mouths are not moving, but
one of them is surrounded by some mass distribution [13].
In the presence of closed timelike curves a problem of self-
consistency of the standard physics becomes highly non-
trivial [12,14–16]. For example, infinite amplification of
zero-point vacuum fluctuation during the creation of the
time machine may result in (formally) infinite growth of the
value of the renormalized vacuum stress-energy tensor, that
indicates that its backreaction would become important
[17,18]. Hawking formulated this problem as a chronology
protection conjecture [19]. For general discussion of worm-
holes and a time-machine problem see, e.g., Refs. [20–22].
The simplest model of a traversable wormhole connect-

ing two asymptotically flat spaces has a spherically
symmetric geometry [9–11]. For such a wormhole there
exists a two-sphere of the minimal area in the wormhole
throat and the null-energy condition should be violated in
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its vicinity (see, e.g., [10]). Recently, an interesting model
of a traversable wormhole was proposed by Gibbons and
Volkov [23–25]. In this model two flat spacetimes are
connected through a disk such that its boundary is a circular
ring where there exists a conical curvature singularity with
the angle deficit −2π. This model of a traversable worm-
hole is a particular implementation of a loop-based worm-
hole discussed by Visser [20]. One can identify this ring
with a cosmic string with the corresponding negative
energy distribution. Namely, the presence of this matter
violates the null-energy condition and makes possible the
existence of a static traversable wormhole. The geometry of
the spacetime everywhere outside the ring (including the
disk where two flat spacetime geometries are glued) is flat.
The radius of the ring a can be arbitrary large and a particle
propagating through the disk from one flat space to the
other meets neither negative energy density regions nor a
strong gravitational field. We refer to this type of geo-
metries as the ring wormhole. A main purpose of this paper
is to demonstrate how such a ring wormhole can be
transformed into a time machine.
For this goal we discuss a gravitational field created by

static sources in the presence of a ring wormhole. We
consider two cases: (i) The ring wormhole connects two
different flat spaces and (ii) such a wormhole connects two
spatially separated regions of the same spacetime. In the
latter case such a space is multiply connected. We assume
that the gravitational field is weak and use the linearized
gravity equations. We also assume that the source of the
gravitational field is an oblate massive thin shell spheroid
surrounding a mouth of the ring wormhole confocal to the
string ring. An exact solution for the gravitational field of
such a shell for the ring wormhole connecting two flat
spaces is obtained.
For the second problem (the wormhole in a single space)

an approximate solution is found for the case when
the distance L between the mouths is much larger than
the ring’s size a. We demonstrate that in the second case the
locally static gravitational field is nonpotential and as a
result of this closed timelike curves are created some time
after the massive source surrounding one of the mouths is
“switched on.” We also estimate the corresponding time
required for this as a function of mass of the shell, its size
and the distance between the mouths.
The paper is organized as follows. In the next section we

remind the reader properties of ring wormholes. In Sec. III
we explain the meaning of an approximation of a weak
gravitational field in application to wormhole spacetime.
Gravitational field in the presence of a ring wormhole
connecting two flat spaces is discussed in Sec. IV. A similar
problem for a string wormhole connecting two separated
regions of a single space is considered in Sec. V. Closed
timelike paths formation, i.e., appearance of a time
machine, in the space of a wormhole with a nonpotential
locally static gravitational field is discussed in Sec. VI.

n particular, it contains estimation of the time required for
closed timelike curve formation. In Sec. VII we discuss
the obtained results and their possible consequences.
Two appendixes collect information concerning the static
gravitational field in the weak-field approximation and
general properties of locally static nonpotential gravita-
tional fields.
In this paper we use sign conventions adopted

in Ref. [26].

II. GEOMETRY OF A RING WORMHOLE

A. A ring wormhole connecting two asymptotically
flat spaces

Let us discuss first a spatial configuration of the worm-
hole spacetimes. We begin with a case of a ring wormhole
connecting two flat spaces. Such a wormhole can be
obtained as follows. Consider two copies of a three-
dimensional flat space. Denote by Xi ¼ ðX�; Y�; Z�Þ
standard Cartesian coordinates in these spaces. Let D�
be disks in R� of radius a in the planes Z� ¼ 0 with the
center at the origin of these spaces (see Fig. 1).
To join the spaces R− and Rþ with a wormhole, we

identify surfaces of the disks D− and Dþ. This identifica-
tion is done as follows. We denote by D>

� and D<
� the

“right” and “left” faces of the disks. Namely, if the diskD�
is reached by a point with the positive value of Z�, we say
that it belongs to D>

�. In the opposite case when a point
approaches the disk with Z� < 0 we say that it belongs to
D<

�. One identifies D
<þ with D>

− and D>þ with D<
− , without

any rotation around the z axis.
This means that a free particle 1 moving in space Rþ,

which meets the disk D<þ, enters space R− at D>
− with

identical coordinates X− ¼ Xþ, Y− ¼ Yþ, Z− ¼ Zþ ¼ 0
and continues its motion with increasing Z− coordinate.
Similarly if a particle 2 enters D>þ, it appears at D<

− part of
the disk D− as illustrated in Fig. 1.
In what follows we denote R̃ the space obtained by

unifying two spaces Rþ and R− with identification
described above. We call the disks D− and Dþ in R−
and Rþ, respectively, the wormhole mouths and their
identification D the wormhole throat.

FIG. 1. A ring wormhole connecting two flat spaces Rþ
and R−.
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The radius a of the disk has the dimension of length. It is
convenient to use it as a natural scale and write the metric in
a flat space in the form

dL2 ¼ δijdXidXj ¼ a2dl2; ð2:1Þ

dl2 ¼ δijdxidxj ¼ dx2 þ dy2 þ dz2: ð2:2Þ

In what follows we shall use the dimensionless metric dl2

and dimensionless coordinates xj ¼ Xj=a. We denote by
ðz; ρ;φÞ dimensionless cylindrical coordinates

ρ2 ¼ x2 þ y2; x ¼ ρ cosφ; y ¼ ρ sinφ; ð2:3Þ

with the metric taking the form

dl2 ¼ dρ2 þ dz2 þ ρ2dφ2: ð2:4Þ

The ring equations are

ρ ¼ 1; z ¼ 0: ð2:5Þ

It will be very useful to introduce also the oblate
spheroidal coordinates ðχ; ϑ;φÞ related to the cylindrical
coordinates as follows:

z ¼ sinh χ cosϑ; ρ ¼ cosh χ sin ϑ: ð2:6Þ

A two-dimensional surface χ ¼ const is an oblate spheroid,
confocal with the ring, with cosh χ being its larger semiaxis
and sinh χ being the smaller one. A surface ϑ ¼ const is a
hyperboloid confocal also with the ring. Let us note that the
relations (2.6) can be written in the following complex
form:

zþ iρ ¼ sinhðχ þ iϑÞ: ð2:7Þ

The flat metric in the oblate spheroidal coordinates is

dl2 ¼ ðsinh2 χ þ cos2 ϑÞðdχ2 þ dϑ2Þ þ cosh2 χ sin2 ϑdφ2:

ð2:8Þ

For a single flat space R, the oblate spheroidal coor-
dinates have a twofold degeneracy: ðχ; ϑ;φÞ and ð−χ; π −
ϑ;φÞ correspond to the same point. For this reason, it would
be sufficient to consider the ranges of the oblate spheroidal
coordinates χ ∈ ð0;∞Þ, ϑ ∈ ð0; πÞ and φ ∈ ð0; 2πÞ.
In the wormhole space R̃, we introduce separate copies

of flat ðx�; y�; z�Þ and cylindrical ðz�; ρ�;φ�Þ coordinates
in spaces R− and Rþ. However, we take advantage of the
degeneracy of the oblate spheroidal coordinates and define
just single coordinates ðχ; ϑ;φÞ covering the whole
wormhole space, where χ ∈ ð−∞;∞Þ, simply assuming
that χ > 0 in Rþ and χ < 0 in R−.

Figure 2 shows space R̃ in ðχ; ϑÞ coordinates. To specify
a point, one needs to add an azimuthal angle φ. The
coordinates ðχ; ϑ;φÞ cover the complete space and they are
continuous at the disks representing the mouths of the ring
wormhole. The left figure corresponds to R− domain where
χ < 0, while the right one corresponds to Rþ where χ > 0.
Let us note that it is possible to generalize the described

ring wormhole space to the case when there exist not only
one but several disks in space Rþ, each “connected”with its
own version of flat space. We do not consider such
multiwormhole configurations in the present paper.

B. A ring wormhole in a single space

It is easy to use a simple procedure to construct a space
that contains both mouths of a single wormhole. One just
places two disks representing the wormhole’s mouths into
one flat space. Obviously, there is an ambiguity in the
choice of positions and orientations of the disks. We
consider the simplest case when the disks are orthogonal
to a common axis and separated by a distance L.
If we introduce global dimensionless flat and cylindrical

coordinates ðx; y; zÞ and ðz; ρ;φÞ, the centers of two disks
D� of radius 1 are located along the z axis at z ¼ �l=2,
and the disks are orthogonal to the z axis. Here, we denoted
by l ¼ L=a the dimensionless version of the disks’
distance.
To form the wormhole, we identify the disks D− and Dþ

in a similar manner as we described above: Each of the
disks has two faces which we denoted by D>

� and D<
�. One

identifies D<
− with D>þ and D>

− with D<þ, without any
rotation around the z axis. This identification is illustrated
in Fig. 3.
We call the resulting space Rwh. The two-face disks D−

and Dþ are called left and right mouths of the wormhole.
Identified, they form the throat of the wormhole. Strictly
speaking, the standard coordinates ðx; y; zÞ and ðρ;φ; zÞ,

FIG. 2. Ring wormhole in space R̃with two asymptotic regions
R− and Rþ. Each of the domains R� is covered by cylindrical
coordinates ρ�;φ�; z�. Directions related to angular coordinate
φ� are not shown. They can be obtained by rotations around
axes ρ� ¼ 0. The whole space R̃ is covered by one copy of the
oblate spheroidal coordinates χ ∈ ð−∞;∞Þ, ϑ ∈ ð0; πÞ and
φ≡ φ� ∈ ð−π; πÞ. Dashed lines corresponds to χ ¼ const, dot-
ted lines to ϑ ¼ const. Double lines indicate the disks which are
identified as indicated by arrows. They represent the mouths of
the wormhole.
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when understood as coordinate maps on Rwh, are well
defined only outside the throat.
Clearly, the wormhole spacetime Rwh has a different

topology than the original empty flat space. Its first
homology group is nontrivial, since we have noncontrac-
tible loops spanned through the wormhole.
In Rwh, we introduce two sets of oblate spheroidal

coordinates. One of them, ðχþ; ϑþ;φþÞ, is centered on
the ring at z ¼ þl=2, and the other one, ðχ−; ϑ−;φ−Þ, is
centered on the ring at z ¼ −l=2.
For χ� > 0, we restrict the coordinates ðχþ; ϑþ;φþÞ to

the domain where z > −δ̃ and similarly, we restrict the
coordinates ðχ−; ϑ−;φ−Þ to the domain where z < δ̃ and δ̃ is
assumed to be a small parameter.
We assume that these coordinates are valid not only for

positive values of χ� but are extended to some negative
value −δ < χ�, where δ is small. This provide us with a
“leakage” of these coordinates through wormhole mouths.
Namely, coordinates ðχþ; ϑþ;φþÞ cover not only the space
outside disks Dþ but also some domain −δ < χþ in the
vicinity of the disk D−. Similarly, the coordinates
ðχ−; ϑ−;φ−Þ cover the exterior of the diskD− and a domain
−δ < χ− in the vicinity of Dþ.
We denote the corresponding domains of definitions of

coordinates ðχ�; ϑ�;φ�Þ as V�, respectively; see Fig. 4.
These two domains intersect in a narrow strip V̄ where
−δ̃ < z < δ̃ and in a spheroidal neighborhood V̂ of the
throat, given by −δ < χ� < δ; see Fig. 4. We assume δ and
δ̃ to be sufficiently small so that V̄ and V̂ do not overlap.
We denote the part of Vþ with χþ > 0 as V̄þ and the

“leaked” part of Vþ, i.e., the part with −δ < χþ ≤ 0, as V̂þ.
We define V̄− and V̂− analogously. The domains are
related:

V− ¼ V̄− ∪ V̂−; Vþ ¼ V̄þ ∪ V̂þ;

V̄ ¼ V̄− ∩ V̄þ; V̂ ¼ V̂þ ∪ V̂−: ð2:9Þ

In domains V̄þ and V̄−, the oblate spheroidal coordinates
are related to the global cylindrical coordinates as

z ¼ �l
2
þ sinh χ� cos ϑ�;

ρ ¼ cosh χ� sin ϑ�;

χ� > 0; ϑ� ∈ ð0; πÞ: ð2:10Þ
These formulas also establish relations between coordi-
nates ðχþ; ϑþÞ and ðχ−; ϑ−Þ in V̄:

cosh χþ sinϑþ ¼ cosh χ− sin ϑ−;

−l=2þ sinh χ− cosϑ− ¼ l=2þ sinh χþ cos ϑþ: ð2:11Þ

In the leaked domains V̂− and V̂þ, the oblate coordinates
ðχþ; ϑþÞ and ðχ−; ϑ−Þ are related to the global cylindrical
coordinates ðρ; zÞ as

FIG. 3. Ring wormhole space Rwh with one asymptotic region.
We have global cylindrical coordinates ρ;φ; z and two copies of
the oblate spheroidal coordinates χ�;ϑ�;φ�. The coordinate
φ≡ φ� is not shown. The disks D� representing the wormhole’s
mouths are indicated by double lines located at z ¼ �l=2. The
dashed (χ� ¼ const) and dash-dotted (ϑ� ¼ const) lines corre-
spond to the domains V̄� described in the text and Fig. 4. The
coordinates in V̄� are related to the opposite coordinates in the
leaked domains V̂∓ by χþ ¼ −χ− and ϑþ ¼ π − ϑ−. Compare
also Fig. 5. In the further discussion we put a massive shell at a
constant value of χ− ¼ χo.

FIG. 4. Domains V− (top) and Vþ (middle) are covering
together the whole space. They are composed by the “primary”
parts V̄� and leaked parts V̂�. The bottom diagram shows two
intersections V̄ and V̂ of these two domains. Horizontal direction
corresponds to the z axis, vertical to the ρ direction. The mouths
D� of the wormholeW are represented by the thick vertical lines.
The distance between mouths is l.
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z ¼∓ l
2
þ sinh χ� cosϑ�;

ρ ¼ cosh χ� sinϑ�;

χ� < 0; ϑ� ∈ ð0; πÞ: ð2:12Þ

As a consequence, we have in V̂

χþ ¼ −χ−; ϑþ ¼ π − ϑ−: ð2:13Þ

The relation of coordinates φ� is trivial. We can
consistently set φ ¼ φ− ¼ φþ on all overlaps of the
domains of definition.

C. Static wormhole spacetimes

Let us note that after fixing three-dimensional spatial
geometry R, we have to fix also full spacetime geometryM.
In this paper we will assume that the time direction is added
to the given space in a trivial way, namely, that the resulting
spacetime will be locally static with time slices locally
equivalent to the chosen spatial geometry.
The simplest example is a globally static spacetimeM ¼

R ×R, with a global dimensionless coordinate t indepen-
dent of the spatial geometry, and with spacetime metric

ds2 ¼ −dt2 þ dl2: ð2:14Þ

We can generalize this case in several ways. First, we can
admit a redshift factor

ds2 ¼ −e2Udt2 þ dl2; ð2:15Þ

where U is a globally well-defined spatial function.
When the spatial manifold is topologically nontrivial, as

the space Rwh discussed above, we can have more elaborate
generalizations. First, we can identify the mouths of the
wormhole at different times.
Namely, suppose we introduce time t synchronized

with clocks at infinity, defined everywhere except at the

wormhole throat. It complements the global flat coordi-
nates ðx; y; zÞ or cylindrical coordinates ðρ; z;φÞ.
Now, we do not identify the disks D� at the same values

of time t, but we identify D− at t ¼ to with Dþ at
t ¼ to þ Δt, with Δt being a constant. We require that
the spacetime geometry is still described by the metric

ds2 ¼ −dt2 þ dl2: ð2:16Þ

It is straightforward to see that the metric is continuous
through the wormhole, since the constant shift Δt dis-
appears in the differential dt.
Consider a particle which enters the disk D− at time

t ¼ to. It appears from the disk Dþ at time t ¼ to þ Δt. We
thus say that there exists a time gap Δt associated with the
wormhole. Since the proper time at both sides of the
identified disks must be the same (the geometry is
continuous through the wormhole), the time gap must
remain the same. This means that if a second particle is sent
through D− shortly after the first one at time t ¼ to þ δt, it
will appear at Dþ at time t ¼ to þ δtþ Δt.
However, if we put some matter around one of the

mouths of the wormhole, then its gravitational field affects
a proper time of static observers and the static spacetime
metric needs further modification. In general, the time shift
of coordinate t will not remain constant. Our spacetime
becomes only locally static as we will describe in the
following sections.

D. Nature of the ring

Before going further let us make a following remark.
Gibbons and Volkov [23–25] demonstrated that in fact
there exists a δ-like singularity of the curvature at the
location of the ring. The corresponding distribution of
matter violates the null-energy condition which makes
possible the very existence of a static traversable wormhole.
This distribution of matter can be identified with an
infinitely thin cosmic string (strut) with a negative angle
deficit −2π. In order to exclude the δ-like singularity at the
ring one can smear the distribution of the matter of the
corresponding cosmic string. This makes the spacetime
smooth, but the equation of state of the corresponding
matter is not very realistic. If λ is the radius of the smeared
string, we assume that the parameter d ¼ λ=a is small. This
always can be achieved since the radius of the ring a can be
arbitrary large. In what follows we always assume that, if
necessary, the corresponding smearing is done.

III. WEAK GRAVITATIONAL FIELD

A. Gravitational potential

In the weak-field approximation, a solution of the
Einstein equation for a static matter distribution can be
written in the form

FIG. 5. Coordinate maps ðχ−; ϑ−Þ in the domain V− (top half)
and ðχþ; ϑþÞ in Vþ (bottom half).
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ds2 ¼ −e2Udt2 þ e−2Udl2; ð3:1Þ

where the gravitational potential U obeys the Poisson
equation

△U ¼ 4πμ: ð3:2Þ

Here μ is the mass density defined with respect to the flat
metric dl2. The metric (3.1) is a perturbation of the flat
background spacetime

ds2o ¼ −dt2 þ dl2: ð3:3Þ

For details and further discussion of static metrics in the
weak-field approximation see Appendix A.
We denote ξμ a timelike Killing vector and uμ a

normalized four-velocity of static observers moving along
this Killing vector:

uα ¼ e−Uξα: ð3:4Þ

Obviously,

uα ¼ −eUt;α: ð3:5Þ

The four-acceleration of these static observers,

wμ ¼ uμ;νuν; ð3:6Þ

satisfies the relation w½α;β� ¼ 0 and hence, at least locally,
one has

wα ¼ U;α: ð3:7Þ

We call wα the acceleration field and −U;α the gravita-
tional field strength. Since wα is orthogonal to the time
direction uα, it can be restricted to its spatial components.
The field strength is a fictitious force that one assumes in
the noninertial static frame to explain a tendency of free
observers to move with respect to the frame. Nonmoving
static observers have to “compensate” this force by a real
force equal to wj per unit mass. Of course, in the full
spacetime description, the static observers move along
nongeodesic trajectories with four-acceleration wα caused
by the real force.
In static spacetimes we can effectively “ignore” the time

coordinate. The weak-field equation (3.2) can be under-
stood as the equation on spatial section t ¼ const, or, better,
on a factorized three-dimensional space, points of which
are orbits of the Killing vector ξα. We will see in a moment
that the latter approach is more general.

B. Locally static spacetimes

The above description of the static spacetime, as well as
of the weak field, was local. Let us make some remarks

about global aspects. We start with a general static
spacetime without any approximation.
First, we observe that metric (3.1) is invariant under a

scaling transformation

U ¼ Û þ ΔU; t ¼ e−ΔUt̂; dl2 ¼ e2ΔU bdl2; ð3:8Þ

parametrized by a constant1 ΔU. This rescaling tells us that
two potentials on the background spacetime which differ
only by a constant are in some sense equivalent.
This opens a very important possibility for globally

nontrivial spacetimes. Consider spacetime with a nontrivial
first homology group, i.e., spacetime containing noncon-
tractible loops. From the duality between homology and de
Rham cohomology we know that in such a spacetime
closed 1-forms do not have to be exact2:

σ½μ;ν� ¼ 0⇏σμ ¼ α;μ: ð3:9Þ

In particular, we can have spacetime with global static
observers given by globally well-defined four-velocity uα.
It gives a globally well-defined four-acceleration wα.
Although it is closed,

w½μ;ν� ¼ 0; ð3:10Þ

it may be nonpotential. Such wα corresponds to a nontrivial
element of the first cohomology group.
Of course, locally, on a topologically trivial domain V,

we can always find a potential U such that (3.7) holds. But
in a general case such a potential does not have a global
smooth extension to the whole spacetime.
If we have two such potentials U and Û on domains V

and V̂, respectively, on their intersection V ∩ V̂ the
potentials may differ only by a constant:

wα ¼ U;α ¼ Û;α ⇒ ΔU ¼ U − Û ¼ const: ð3:11Þ

We can cover the whole manifold by simply connected
domains with associated with them potentials. Next, we
may shift the potentials by a constant on some of these
domains to fit potentials in the neighborhood domains.
However, in topologically nontrivial spacetime it may not
be possible to do it consistently everywhere. It may happen
that we find two domains V and V̂ with potentials which are
already continuously extended along some path in the
manifold. However, these potentials do not fit; they differ
on the intersections of these domains by a constant ΔU.

1Please, notice the difference between the character for
Laplace operator, △U, and the letter Delta in the constant ΔU.

2Here, one should understand tensor indices as abstract
indices, not coordinate ones. On a simple local coordinate
map, any closed form is exact. But we speak here about tensor
fields defined on the whole spacetime.
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A maximal extension of the potential U can be specified
by choosing a point po of vanishing potential (typically in
an asymptotical region) and paths γp from this point to each
point p in the spacetime. The potential is given by

U ¼
Z
γp

wαdxα: ð3:12Þ

For a continuous change of the path γp the potential U
changes smoothly. However, in a topologically nontrivial
space some paths heading to two close points in the
intersection V ∩ V̂ cannot be smoothly deformed to each
other. Then, such a potential may not be continuous.
Impossibility to extend the potential to a single-valued

global smooth function implies that also Killing vector ξα,
given by (3.4), cannot be defined globally. It can be
continuously extended to domains V and V̂, similarly to
potential U. But on the intersection V ∩ V̂, it will differ by
rescaling

ξα ¼ eΔUξ̂α: ð3:13Þ

The same applies to the time coordinate t related to the
four-velocity by (3.5). On the intersection of domains V
and V̂ we find

t ¼ e−ΔUt̂: ð3:14Þ

Spacetime with such a structure is called locally
static [13], in contrast to the globally static spacetimes.
In globally static spacetimes all quantities ds2, dl2, uα, wα,
ξα, U, and t are defined globally. In locally static space-
times, ξα, U, dl2, and t have only local meaning. See
Appendix B for more details.

C. Locally static weak gravitational field

Our goal now is to build a locally static spacetime
describing the gravitational field in the presence of a ring
wormhole in the weak-field approximation.
We start with a globally static spacetime, in fact, with a

flat spacetime which differs from the Minkowski spacetime
just by a wormhole identification described in Sec. II. On
this background we find a gravitational potential U which
satisfies locally Poisson equation (3.2) with some physi-
cally reasonable sources. But we are interested in situations
when the potential cannot be extended globally.
In such a case, the globally well-defined quantities are

acceleration field wα, four-velocity uα, and, of course, the
full perturbed metric ds2.
The weak-field equation (3.2) can be rewritten using

globally defined quantity wj. The potential relation (3.7) is
superseded by (3.10). We get

∇½iwj� ¼ 0; ð3:15Þ

∇iwi ¼ 4πμ: ð3:16Þ

These equation can be understood as the gravitostatic
equations on the three-dimensional factorized space men-
tioned above.
Taking into account (3.1), we conclude that inertial time

t and flat metric dl2, as well as the implicitly defined
Cartesian coordinates xi, depend on the choice of the
potential. Their perturbed versions are not thus defined
globally.
Similarly to the discussion above, if we find domains V

and V̂ on which the potentials differ by a constant ΔU,
expression (3.1) for the metric on these domains defines
ðt; xjÞ and ðt̂; ĵÞ which will be related by

U ¼ Û þ ΔU;

t ¼ e−ΔUt̂; xj ¼ eΔUx̂j;

dl2 ¼ e2ΔU bdl2: ð3:17Þ

Identification of the resulting spacetime with the original
background with metric ds2o thus cannot be done globally in
the coordinates ðt; xjÞ.
However, the inertial coordinates are very simple and

offer a straightforward local identification of the perturbed
spacetime with the background. We want to take advantage
of them. Therefore, we modify our perturbation procedure
slightly.
Namely, we do not require that our perturbed metric ds2

is a global perturbation of one unperturbed background
ds2o. To justify the validity of the weak-field equations, it is
enough that the resulting spacetime is a perturbation of a
background on local domains. The domains must cover the
whole resulting spacetime. But the background can be
assumed for each domain separately.
In this approach we can easily identify background

spacetimes with the resulting perturbed spacetime using
locally defined inertial coordinates. However, we have to
face a problem of the inequality of these coordinates on
overlaps of the domains.
In the specific cases of the wormhole spacetimes, we will

be able to extend the potential and related quantities to
the full spacetime, except the wormhole throat, using the
procedure (3.12). However, similarly to the potential, the
extended inertial coordinates will not be continuous
through the wormhole and we will have to discuss how
they are related. We will demonstrate this procedure
in Sec. V.
Nonexistence of a global static time coordinate t is also

a reason why we cannot use a global spatial section
t ¼ const. However, we can still introduce the three-
dimensional factorized space of orbits of the Killing vector
ξα and solve the weak-field equations (3.15) and (3.16)
on it.
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Finally, let us note that rescaling (3.17) can be used also
for identification of locally inertial coordinates near an
arbitrary point p. By a suitable choice of ΔU one can
always put ÛðpÞ ¼ 0. For this gauge the coordinate t̂ at p
coincides with the proper time at this point and locally
Cartesian coordinates x̂j near p coincide with proper
lengths along the axes.

D. Gravity field flux

Let S be a closed two-dimensional surface embedded in
the spatial section t ¼ const. We define a gravity field flux
over this surface as

ΠS ¼
1

4π

I
S
wanad2S: ð3:18Þ

Here na is an outward-pointing unit normal to S and d2S is
a two-dimensional surface area element on S.
Let S1 and S2 be two homological closed surfaces and V

is a three-dimensional volume restricted by them:

∂V ¼ S2 − S1: ð3:19Þ

Then the Gauss theorem applied to volume V and the weak-
field equation (3.16) implies that

ΠS2 − ΠS1 ¼
1

4π

Z
∇iwid3V ¼

Z
μd3V: ð3:20Þ

It has important consequences.
(i) If there is no matter in the space between S1 and S2,

the fluxes through these surfaces coincide.
Applying (3.20) on a boundary ∂V of a compact volume V,
we have to
(ii) consider adiabatic change of the distribution of

mass. It does not change the flux through a two-
dimensional surface S ¼ ∂V enclosing a three-
dimensional volume V until the matter crosses S.

In the case of space with a nontrivial topology or with
several asymptotic regions, one can formulate a more
general proposition.
(iii) The flux through any closed two-dimensional sur-

face S does not change under an adiabatic change of
a mass distribution until the matter crosses the
surface S.

This last proposition has a direct counterpart in a well-
known result of the Maxwell electrodynamics, connecting
the change of the flux over a closed surface with the current
crossing it. The result can be easily proved by using the
Stokes theorem. In the case of a weak gravitational field,
the proposition does not follow just from properties of the
Poisson equation. One would need to specify laws gov-
erning the dynamics. We will not discuss these laws here.
Let us just mention that there exists a well-known analogy

between the weak gravitational field and the Maxwell
equations; see, e.g., [27,28].

IV. GRAVITATIONAL FIELD NEAR
THE WORMHOLE CONNECTING TWO

ASYMPTOTIC DOMAINS

In this and the following sections, we work in a three-
dimensional flat space with a nontrivial identification given
by the wormhole. We will discuss some solutions of the
field equation (3.2), or (3.15) and (3.16), respectively. As
earlier, in Sec. II we use a radius a of the ring to define
dimensional metric and coordinates. We will return to the
spacetime description in Sec. VI.

A. Gravitational field of a massive shell

It is instructive to discuss first a gravitational field of a
thick homogeneous ellipsoidal shell in a simple flat space
which does not contain any wormhole. Let us consider a
shell bounded by two similar ellipsoids filled by the matter
of constant density. It will be sufficient for us to observe
that according to the famous Newton theorem (cf. [29]) the
gravitational force −∇U inside the shell (inside the inner
ellipsoid) vanishes.3 The potential in the cavity is thus
constant U ¼ Uo. Here, we normalize the potential U so
that it decreases at the infinity outside the outer ellipsoid.
The field both outside and in the shell’s interior (between

both ellipsoids) can also be written explicitly [29,30].
However, these expressions are rather complicated.
Instead of this, we will consider below a much simpler
model in which the matter surrounding a throat is taken in
the form of a thin spheroidal mass shell. This will allow us
to obtain simple analytical expressions for the gravita-
tional field.
Using the described field in the shell’s cavity, it is easy to

construct a solution of Eq. (3.2) in the space R̃ where the
ring wormhole connects two flat spaces. We assume that
the disk associated with the ring wormhole in Rþ is inside
the cavity. In this case the corresponding solution inside the
shell and out of it remains the same as in a case without
the ring wormhole, while in the cavity of the shell and
everywhere in space R− the potential U is constant equal
to Uo.
In a special case when all the axes of the ellipsoidal shell

are equal, it takes the form of the sphere. For such a case,
this conclusion remains valid even if the gravitational field
of the shell is not week. Namely, one can use a massive thin
shell approach by Israel [31] to glue the Schwarzschild
metric outside the shell with the inner flat solution.
Imposing the ring wormhole inside the shell does not
change the gravitational field around.

3Let us stress that Newton’s theorem requires the bounding
ellipsoids being similar and, therefore, they are not confocal.
Thus, even when the ellipsoids are oblate spheroids, they cannot
be specified just by two values of spheroidal coordinate χ.
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Let us emphasize that the presence of a ring wormhole
has nontrivial consequences. We can point out two
aspects.

(i) Even in the case of a ring wormhole connecting two
flat spaces, the above described solution of the
Poisson equation (3.2) with the described source
is not unique.

(ii) In the presence of a ring wormhole in a single space,
the statement that the gravitating force vanishes in
the cavity of the shell is not correct.

We will discuss these issues below.

B. Zero modes

The space R̃ with the wormhole connecting two asymp-
totic regions has the first cohomology group trivial and
thus, we do not have to face problems with nonexistence of
a global potential. However, it has two asymptotic regions
and it allows ambiguity in the potential, even for trivial
sources. Let us illustrate this point.
Consider the function4

ZðχÞ ¼ −arccotðsinh χÞ; ð4:1Þ

with arccot s taking values in the interval ð0; πÞ. It has the
following properties (see Fig. 6):

Z0ðχÞ ¼ 1

coshχ
;

Zð−∞Þ ¼ −π; Zð0Þ ¼ −
π

2
; Zðþ∞Þ ¼ 0: ð4:2Þ

Letm∞ and C be two constants; then it is easy to check that

UzmðχÞ ¼ m∞ZðχÞ þ C ð4:3Þ

is a solution of the homogeneous Laplace equation

△Uzm ¼ 0: ð4:4Þ

We call such a solution a zero mode (see Fig. 7). It is
convenient to use the standard ambiguity in the choice of
the potential and to put C ¼ 0; then

Uzmjχ¼þ∞ ¼ 0; Uzmjχ¼−∞ ¼ −m∞π: ð4:5Þ

In the absence of the ring wormhole, one should put
m∞ ¼ 0 as well, in order to avoid a discontinuity in the first
derivative at χ ¼ 0. For nonvanishing m∞, a jump in the
field strength across the disk χ ¼ 0 would correspond to a

mass distribution on the disk, and the potential (4.3) would
not be a solution of source-free (4.4).
In the presence of the ring wormhole connecting spaces

Rþ and R−, the situation is quite different. Even if one
imposes a condition that the potential vanishes at infinity of
Rþ by puttingC ¼ 0, there exists a one-parameter family of
homogeneous solutions parametrized by a constant m∞.
The difference of potentials at the infinities of the spaces
Rþ and R− is

ΔU ¼ Uzmjχ¼þ∞ −Uzmjχ¼−∞ ¼ m∞π: ð4:6Þ

In the presence of a zero-mode potential, there exists a
nonzero force acting on a unit-mass particle equal to

−∇Uzm ¼ −
m∞

cosh χ
∇χ: ð4:7Þ

For positivem∞ this force is directed toward the decreasing
χ. In Rþ this force describes an attraction of the particle by

FIG. 6. Functions ZðχÞ.

FIG. 7. Potential Uzm (top) and field strength wj
zm (bottom) of

the zero mode. The left diagram shows the field in space R−, and
the right one in Rþ. Thick segments on the ρ� axes represent the
mouths of the wormhole. Angular coordinate φ is ignored and can
be recovered by a rotation around the axes ρ� ¼ 0.

4The function Z is related to Legendre function Q0 evaluated
on the imaginary axis with a branch cut chosen such that it is
analytical on the whole imaginary axis.
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the wormhole, while in R− it is repulsive from the
wormhole.
It is easy to calculate a flux ΠD through the wormhole

associated with the zero mode. Consider a closed two-
dimensional surface S surrounding the throat D of the
wormhole, with normal oriented toward Rþ asymptotic.
Since the zero mode has vanishing sources, the flux does
not depends on exact shape and position of the surface; cf.
argument (3.20). The calculation for spheroid χ ¼ const
gives

ΠS ¼ m∞; ð4:8Þ

where we used

nα ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2χ þ cos2ϑ

p δαχ ;

dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2χ þ cos2ϑ

q
cosh χ sinϑdϑdφ: ð4:9Þ

For surfaceD at χ ¼ 0, representing the identified disks, we
obtain the flux ΠD through the wormhole throat.
A zero-mode field can be created in the following

process. Let us start with empty space with vanishing
potential. Consider a particle of mass m at the infinity Rþ
and move it adiabatically to bring it close to the throat.
The flux ΠD through the surface D at the throat is not
changed in such a process until the mass crosses D. After
crossing D the flux becomes ΠD ¼ m and it remains
such if the mass stays in R−. When the mass m is brought
to infinity in the space R−, one is left with a space without
any matter but with a nonvanishing flux ΠD through
the throat. It will be exactly the zero mode described
above.

C. A field of a massive thin shell
around the wormhole

Let us assume now that there exists a static mass
distribution surrounding the wormhole. In particular, we
consider a thin massive shell which has a form of an oblate
spheroid So in Rþ surrounding the wormhole and confocal
to its ring. In what follows we assume that the this massive
shell is formed by massive particles that are brought
together from Rþ infinity. During this process no zero-
mode field would be created and they should be excluded in
our solution.
In oblate spheroidal coordinates ðχ; ϑ;φÞ the equation of

shell is χ ¼ χo > 0. LetM be the mass of the massive shell
andm ¼ M=a be its dimensionless variant. The mass is not
distributed homogeneously over the shell surface and its
surface density is

σ ¼ m

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 χ þ cos2 ϑ

p
cosh χ

: ð4:10Þ

The distributional volume density is5

μ ¼ σδSo ¼
m

4πðsinh2 χ þ cos2 ϑÞ cosh χ δðχ − χoÞ: ð4:11Þ

Surprisingly, this mass distribution can be obtained [29] as
a thin shell limit of the thick homogeneous spheroidal shell
discussed in Sec. IVA. Nonhomogeneity of the surface
mass density arises from the fact that the thick shell is
formed by two similar oblate spheroids and its thickness
varies with position on the spheroid. We will see that for the
thin shell the potential Ush depends only on the χ
coordinate and hence it is constant on the shell.6

In fact, to obtain a solution of the Poisson equation for
the thin shell we can use solutions ZðχÞ of the Laplace
equation given by (4.1). The field Ush analogous to that of
the thick shell discussed in Sec. IVA is (see Fig. 8)

UshðχÞ ¼
�
mZðχÞ for χ > χo;

Uo ¼ mZðχoÞ for χ < χo:
ð4:12Þ

The potential inside the shell, as well as in R−, is constant.
Outside the shell, it is the same as the zero mode, and it
vanishes at the infinity of Rþ. The jump in the field strength
at the shell corresponds to the surface mass distribu-
tion (4.10).
Of course, we can superpose this solution with the zero-

mode solution

U ¼ Ush þ Uzm: ð4:13Þ

At the infinity of Rþ the potential U again vanishes, while
at the infinity of R− its value is

Ujχ¼−∞ ¼ mZðχoÞ −m∞π: ð4:14Þ

We thus found that a general potential (4.13) of the thin
shell vanishing in the infinity of Rþ contains two constants,
m and m∞. Their meaning can be understood using the

5Here, δS is a covariant δ function localized on a surface S,Z
fδSdV ¼

Z
S
fdS;

and δðχ − χoÞ is its coordinate representation. They are related:

δSdl ¼ δðχ − χoÞdχ;

with the proper length dl orthogonal to S:

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 χ þ cos2 ϑ

q
dχ:

6This solution is similar to the well-known solution for a static
electric potential of a charged conducting oblate spheroid which
is discussed, e.g., in Ref. [30].
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gravity field flux. As we have seen [cf. (3.20)], the flux may
be used to define the mass functionmS ¼ ΠS characterizing
mass inside a surface S. For the equipotential surface
χ ¼ const the same calculation as in (4.8) gives

mSðχÞ ¼ mΘðχ − χoÞ þm∞: ð4:15Þ

It should be emphasized that both in Rþ and R− the normal
to the spheroid χ ¼ const is chosen in the direction of
growing χ.
In the exterior of the shell, the mass function is

mS ¼ mþm∞. Inside the shell (including space R−, where
χ < 0), the mass function is just mS ¼ m∞. It correctly
jumps by the mass of the shell when crossing the shell.
Since mS does not change when we further decrease χ, we
can interpret m∞ as a mass “far behind” the wormhole,
located under arbitrary negative χ, i.e., located in the
infinity of space R−.
However, this mass had to be brought into the infinity of

R− through the wormhole from the infinity of Rþ. Because
by fixing vanishing potential U at the infinity of Rþ, we
have chosen that all matter forming the gravitational field
has to be brought from this infinity. The mass m∞ at the
infinity of R− thus had to be moved from the infinity of Rþ,
and the potential difference (4.6) corresponds to the work
needed for that.
We interpreted the potential assuming that it vanishes at

infinity of Rþ. We selected one of the asymptotics as the
origin of all matter. We thus have broken the symmetry of
the system. Of course, we can also allow the matter to

originate at the infinity of R−. In such a case, we have to
recover the constant C in (4.3).
Then, one can interpret the zero mode as the gravitational

field trapped by the wormhole, which holds memory about
a previous activity how the matter has been moved through
the wormhole.

D. Wormhole in a homogeneous gravitational field

Let us consider a homogeneous gravitational field in a
flat space. Its potential is

U ¼ woz: ð4:16Þ

The acceleration field has constant value wo and is directed
along the z axis:

wi ¼ ∇iU ¼ wo∇iz: ð4:17Þ

Let us assume now that a ring wormhole leading to
another space is immersed in this gravitational field. For
simplicity, we assume the wormhole is in the origin z ¼ 0,
with its mouth orthogonal to the z axis. To find how such a
wormhole modifies the field, one needs to solve the
Laplace equation in R̃ space which has an asymptotic
(4.16) at Rþ infinity. The corresponding solution is

Uhom ¼ −woZþðχÞ cosϑ: ð4:18Þ

Here, we introduce functions7 Z�ðχÞ (see Fig. 9)

Z�ðχÞ ¼∓ 1

2
sinh χ −

1

π
ð1þ sinh χ arctan sinh χÞ: ð4:19Þ

We require arctan s ∈ ð− π
2
; π
2
Þ. Clearly

ZþðχÞ ¼ Z−ð−χÞ ¼ − sinh χ þ Z−ðχÞ: ð4:20Þ

Function ZþðχÞ asymptotically behaves as

Zþjχ→−∞ ¼ 0; Zþjχ→þ∞ ≈ − sinh χ; ð4:21Þ

and function Z−ðχÞ as

Z−jχ→−∞ ≈ sinh χ; Z−jχ→þ∞ ¼ 0; ð4:22Þ

and

Z�0ð0Þ ¼∓ 1

2
: ð4:23Þ

FIG. 8. Potential Ush (top) and field strength wj
sh (bottom) of a

thin massive spheroidal shell located around the wormhole in Rþ.
The left diagram shows the field in space R−, and the right one in
Rþ. Thick segments on the ρ� axes represent mouths of the
wormhole. The shell (depicted by the thick ellipse) is confocal
with the wormhole mouth. Angular coordinate φ is ignored and
can be recovered by a rotation around the axes ρ� ¼ 0.

7Functions Z� are related to Legendre function Q1 evaluated
on the imaginary axis, with properly chosen asymptotic, and with
a branch cut chosen such that it is analytical on the whole
imaginary axis.
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To check the validity of the boundary condition of the
field Uhom at z → ∞ in Rþ, we use relation (4.20)

Uhom ¼ wo sinh χ cosϑ − woZ−ðχÞ cosϑ: ð4:24Þ

In Rþ, where z ¼ sinh χ cosϑ, the first term correctly
reproduces the asymptotic behavior (4.16), since the
second term falls down at χ → þ∞.
One can interpret this result as follows. The ring worm-

hole changes the homogeneous gravitational field (4.16),
which was originally introduced only in Rþ. When we
consider it in the full wormhole space R̃, we call it truncated
field Ut. In the presence of the wormhole, it will be
modified by an induced field Ui. The contribution of the
induced field in the region Rþ is described by term
−woZ−ðχÞ cosϑ, while in the region R− it is given by
field (4.18) penetrating through the wormhole, i.e., by
−woZþðχÞ cos ϑ. Together,

Uhom ¼ Ut þ Ui; ð4:25Þ

where the truncated and the induced fields are, respectively,

Ut ¼ woΘðχÞ sinh χ cos ϑ; ð4:26Þ

Ui ¼ −woZ−ðjχjÞ cosϑ; ð4:27Þ

ΘðχÞ being the Heaviside step function.
These fields have a natural physical interpretation. The

truncated potential Ut vanishes in R− and describes the
homogeneous field in Rþ. It is continuous everywhere,
including the wormhole mouth χ ¼ 0, but it is not smooth
here. Its field strength is discontinuous at χ ¼ 0. In fact,
it is discontinuous at both faces D< and D> of the ring
wormhole. The jump of the normal component of the field
strength is þwo and −wo at D< and D>, respectively, since
the normal is pointing in a negative z direction atD< and in
a positive z direction at D>. Hence, Ut does not satisfy the
homogeneous Laplace equation at the wormhole. The jump
corresponds to a massive thin shell at the wormhole mouth
χ ¼ 0 with a surface density ∓ wo

4π.
The potential induced by the wormhole, Ui, is also

continuous everywhere and not smooth at the wormhole.
Using properties of functionZþ one can find that it satisfies
the Laplace equation everywhere except the wormhole
throat χ ¼ 0. The jump of the normal component of the
field strength at χ ¼ 0 is in this case −wo and þwo at D<

and D>, respectively. So, it also corresponds to a massive
shell at the throat of the wormhole with a surface density
� wo

4π. Potential Ui has dipole character both in R− and Rþ.
Clearly, if one adds both potentials Ut and Ui, then the

sum (4.24) is a solution of the source-free Laplace equation
everywhere, including the wormhole throat χ ¼ 0.
Let us note that the potential Uhom defined by (4.18) is

finite and its value is proportional to wo (see Fig. 10).

Hence, for small wo the field strength outside the ring is
uniformly small. However, the corresponding field strength
diverges at the ring. This divergency is a consequence of
the assumption that the corresponding cosmic string
located at the ring is infinitely thin. As it was discussed
in Sec. II, the smearing of the distribution of the matter of
the string makes the background spacetime of the worm-
hole regular. One can expect that the gradient of the
potential Ũ on such a smooth background would be regular
in the vicinity of smeared string as well. The adopted weak-
field approximation remains valid until a narrow “tube”
surrounds the smeared string. The behavior of the gravi-
tational field inside such a tube depends on details of the
string’s matter distribution.

FIG. 9. Functions Z−ðχÞ and ZþðχÞ.

FIG. 10. Potential Uhom (top) and field strength wj
hom (bottom)

of an asymptotically homogeneous field in Rþ. The left diagram
shows the induced field in space R−, and the right one the
modified homogeneous field in Rþ. Thick segments on the ρ�
axes represent mouths of the wormhole. Angular coordinate φ is
ignored and can be recovered by a rotation around the axes
ρ� ¼ 0.
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V. GRAVITATIONAL FIELD NEAR
THE WORMHOLE IN SPACETIME WITH

ONE ASYMPTOTIC

In this section, we will study a wormhole connecting two
places in one asymptotically Minkowski spacetime, and we
will discuss a gravitational perturbation of such a space.
We described the background wormhole spacetime Rwh
in Sec. II.
Now we consider the gravitational potentials U of the

massive thin shell located around the wormhole mouth D−.
In oblate spheroidal coordinates ðχ−; ϑ−;φ−Þ constructed
around the mouth D−, the shell is given by χ− ¼ χo > 0. It
is highly nontrivial to find the full, consistent solution of
the Poisson equation in the wormhole spacetime Rwh.
Namely, one needs to obtain a solution of the Laplace
equation with specially chosen boundary conditions.
Besides natural conditions of decreasing of the gravita-
tional potential U at the infinity and jump conditions for it
on the surface of the shell one needs to impose additionally
a condition of the regularity and absence of matter at the
disks which are identified in such a space. The latter
condition means that the field’s strength ∇U should be
continuous on the disks. This problem belongs to a class of
so-called mixed boundary value problems. A general
discussion of such problems and references to the papers
where they have been studied can be found in Ref. [32].
We will solve this problem only approximately, for the

wormhole mouths sufficiently distant, l ≫ 1.8

A. Large-distance approximation—Zeroth order

Let us start with the zeroth-order approximation. We
return to the first-order corrections below. In the zeroth
order, we assume that the field of the shell near the second
mouth Dþ is negligible, and we can thus ignore any
interaction with the wormhole. The potential is thus given
by field (4.12) positioned around D−, which is achieved by
employing ðχ−; ϑ−;φ−Þ coordinates:

U ¼
�
mZðχ−Þ for χ− > χo;

Uo ¼ mZðχoÞ for 0 < χ− < χo:
ð5:1Þ

However, even in the zeroth approximation, we have to
extend the potential through the wormhole. We perform
that separately in the domain V− around D− and in Vþ
aroundDþ (see Fig. 11). We thus obtain two potentials,U−
and Uþ, each of which satisfies the Laplace equation. On

the intersection V̄, both potentials agree. In the zeroth-order
approximation, the potential U− is constant inside the shell
around the mouth D−, and it thus leaks as constant Uo

“behind” the wormhole, into the domain V̂−. On the other
hand, the potential Uþ is negligible around Dþ in the
zeroth order, and thus nothing leaks behind the wormhole
into the domain V̂þ. See Fig. 12.
Clearly, the potentials differ around the mouths as

Uþ ¼ U− þ ΔU; ð5:2Þ

and in this order of approximation we obtain

ΔU ¼ −Uo ¼ −mZðχoÞ in V̂: ð5:3Þ

It indicates that the global potential is not well defined and
we deal with a locally static spacetime. The globally well-
defined quantity is the geometry.

FIG. 11. Coordinate domains around the wormhole in the
presence of a gravitational field of a thin massive shell near
the left wormhole mouth. Domains V− (top) and Vþ (middle) are
covering together the whole space. The division into main part
V̄� and leaked part V̂� is indicated. The bottom diagram shows
two intersections V̄ and V̂ of these two domains. The wormhole
mouths D� are represented by the thick vertical lines. The real
size of both mouths is the same. However, since the gravitational
field of the shell affects the geometry, the global Cartesian
coordinates used for mapping to the diagram do not represent the
geometry properly. The coordinate size of both mouths is thus
different, as can be observed in the diagram. The distance
between mouths should be large—diagrams do not reflect this
feature accurately.

8We must distinguish two approximate schemes employed
here. First, we use the perturbative expansion of the gravitational
interaction, where we consider only the first-order approximation
in which the gravity description reduces to the Newtonian
potential satisfying the Poisson equation. Second, for the par-
ticular wormhole spacetime, we look for the gravitational
potential of the massive shell using the expansion for large
mouths’ distance l. Here, we discuss the later expansion.
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The perturbed metrics in the domains V− and Vþ are

ds2� ¼ −e2U�dt2� þ e−2U�dl2�: ð5:4Þ

We want that these two metrics describe one globally well-
defined geometry. Therefore, they have to coincide as
tensors on both intersections V̄ and V̂. Their identification
will be simple on the intersection V̄, since the potentialsU−
and Uþ coincide here. We can express the both metrics just
in global cylindrical coordinates ðρ; z;φÞ on V̄; cf. (2.3).
However, the potentials differ on other intersection V̂.

Therefore, we have to adjust the coordinate identification in
this domain to match both metrics. By identifying the
proper time of the static observers, we get

eU−dt− ¼ eUþdtþ: ð5:5Þ

Identifying spatial distance, we find

e−U−dl− ¼ e−Uþdlþ: ð5:6Þ

Here, the background proper lengths dl− and dlþ should be
expressed using (2.8) in appropriate spheroidal coordinates
ðχ−; ϑ−;φ−Þ and ðχþ; ϑþ;φþÞ, respectively. Relation (5.6)
then gives the identification of coordinates ðχ�; ϑ�;φ�Þ in
the domain V̂, which guarantees the matching geometry.
The resulting relation is, however, rather complicated.
The identification of coordinates is simpler if expressed

in cylindrical coordinates. For that, however, we have to
introduce gravitationally modified cylindrical coordinates
leaked behind the wormhole. Let us consider first coor-
dinates ðχ−; ϑ−;φ−Þ around the wormhole mouthD−. In the
domain V̄− (above the mouth), they are related to the
original global cylindrical coordinates ðρ; z;φÞ as (2.10).
However, behind the mouth, in the domain V̂−, they are

related by analogous relations (2.12) to new leaked
cylindrical coordinates ðρ−; z−;φ−Þ. Of course, the flat
background metric dl2− is given on both sides of the
wormhole throat by (2.3):

dl2−jV̄−
¼ dρ2 þ dz2 þ ρ2dφ2;

dl2−jV̂−
¼ dρ2− þ dz2− þ ρ2−dφ2

−: ð5:7Þ

Similarly, dl2þ is related by (2.10) to ðρ; z;φÞ in V̄þ and by
(2.12) to new leaked coordinates ðρþ; zþ;φþÞ in domain
V̂þ, and

dl2þjV̄þ ¼ dρ2 þ dz2 þ ρ2dφ2;

dl2þjV̂þ ¼ dρ2þ þ dz2þ þ ρ2þdφ2
−: ð5:8Þ

Comparing (5.7) and (5.8) using relation (5.6), we find

e−U−dρ− ¼ e−Uþdρ; e−U−dz− ¼ e−Uþdz ð5:9Þ

in domain V̂− and

e−U−dρ ¼ e−Uþdρþ; e−U−dz ¼ e−Uþdzþ ð5:10Þ

in V̂þ.
Assuming that the mouths of the wormhole are identified

at times t− ¼ to− and tþ ¼ toþ, the differential relation
(5.5) gives

ðtþ − toþÞ ¼ e−ΔUðt− − to−Þ; ð5:11Þ

valid in V̂.
For spatial coordinates, we get that in domain V̂þ the

leaked cylindrical coordinates ðρþ; zþ;φþÞ are related to
the global cylindrical coordinates ðρ; z;φÞ as

ρþ ¼ eΔUρ; zþ þ l
2
¼ eΔU

�
zþ l

2

�
: ð5:12Þ

Similarly, in domain V̂−, the leaked cylindrical coordinates
ðρ−; z−;φ−Þ are related to the global cylindrical coordinates
ðρ; z;φÞ as

ρ ¼ eΔUρ−; z −
l
2
¼ eΔU

�
z− −

l
2

�
: ð5:13Þ

See Fig. 13.
We can reformulate these relations in the rule, how the

global cylindrical coordinates defined on both side of the
wormhole throat should be identified through the throat.
We observe that tþ ¼ t in V̄þ and t− ¼ t in V̄−. Relation
(5.11) thus gives the identification of time coordinate t ¼
to− þ Δt� in V̄− with t ¼ toþ þ e−ΔUΔt� in V̄þ for anyΔt�.
Similarly, we observe that the coordinates ðρ;φÞ

FIG. 12. Diagram shows the zeroth-order approximation of
potentials U� drawn along the axis z. The potentials U− and Uþ
are continuous on the domains V− and Vþ, respectively. They
coincide on the intersection domain V̄ but differ by a constantΔU
on the intersection domain V̂. The falloff of the potential is
exaggerated to compensate a small distance between mouths. The
top part of the diagram indicates the domains V− and Vþ and the
position of the wormhole and of the massive shell.
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approaching the mouth D− from V̄− are matched by leaked
coordinates ðρ−;φ−Þ approaching Dþ from V̂−. The result
for the time coordinate and relations (5.13) thus give the
identification

½t;ρ; z;φ�jV̄−
¼
�
to− þΔt�;ρ�;−

l
2
� 0;φ�

�
½t;ρ; z;φ�jV̄þ ¼

�
toþ þ e−ΔUΔt�; eΔϕρ�;

l
2
∓ 0;φ�

�
ð5:14Þ

for any Δt�, ρ� and φ�. The term �0 distinguishes the faces
of the mouths.
It means that the identification of points through the

wormhole throat changes under the gravitational perturba-
tion. It causes a complication with the size of the wormhole.
To keep the proper size of the wormhole mouths a the same
from both sides, one has to choose a different coordinate
radius for each mouth, a−, and aþ, such that

a ¼ e−U−a− ¼ e−Uþaþ; i:e:; aþ ¼ eΔUa−: ð5:15Þ

Notice that the change in the coordinate size of the
wormhole mouths is of the first order in the gravity
perturbations and it produces only next-order perturbations
to the gravitational potential. Thus, we can continue to
use the potential calculated on the original wormhole
background.
Let us summarize. We have perturbed the background

with metric (3.3) and found the perturbed metrics (5.4).
Since the potentials U− and Uþ cannot be extended to a
global function on the background spacetime, the pertur-
bation has to be performed separately on domains V̄− and
V̄þ. In these domains we can use global cylindrical
coordinates ðt; ρ; z;φÞ to identify the background space-
time with the perturbed spacetimes.
The perturbed metrics ds2− and ds2þ can be easily

extended to domain V− and Vþ through the wormhole
throat, using, for example, spheroidal coordinates

ðt−; χ−; z−;φ−Þ and ðtþ; χþ; zþ;φþÞ, respectively. These
metrics match trivially on the intersection V̄, as can be seen
in global coordinates ðt; ρ; z;φÞ, since the potentials are
equal here.
However, since the potentials differ on the other inter-

section V̂, the metrics cannot be matched without a proper
identifications of the coordinates. Because the potentials
U− and Uþ differ only by a constant [cf. (5.2)], the metrics
ds2− and ds2þ on V̄ differ only by a rescaling of time and
spatial directions. It can be demonstrated using cylindrical
coordinates ðt�; ρ�; z�;φ�Þ introduced behind the worm-
hole. Namely, the global cylindrical coordinates are related
to leaked cylindrical coordinates by a rescaling (5.12)
and (5.13).
However, this shows that we need to perform perturba-

tion of the background in two domains independently, and
only after that can we glue together the global geometry
representing a weak gravitational field. As the result, the
spacetime is not globally static but only locally static
spacetime.

B. Large-distance approximation—First order

Let us now improve our approximation of the shell field
in the wormhole spacetime. We now include an interaction
of the field with the wormhole in the first order of 1

l. We
start with some geometrical preliminaries.
The oblate spheroidal coordinates ðχ−; ϑ−;φ−Þ and

ðχþ; ϑþ;φþÞ introduced around the mouths D− and Dþ
are related by (2.11). We evaluate it at the mouthDþ where
χþ ¼ 0:

sinh χ− cos ϑ− ¼ l; cosh χ− sin ϑ− ¼ sin ϑþ: ð5:16Þ

Solving these equations one finds

sin ϑþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

cos2 ϑ−
þ 1

s
sinϑ− ≥ l sin ϑ−: ð5:17Þ

The value of sinϑþ is restricted by 1; thus, the angle ϑ−
evaluated at Dþ is small, ϑ−jDþ ≪ 1=l. Substituting this
result back to (5.16) we obtain that up to the quantity of
order Oðl−2Þ the value of sinh χ− on the mouth Dþ is
constant and equal to l.
From the discussion of the first-order approximation, we

expect that the potentialU of the shell around the wormhole
mouth D− is not globally defined. As we discussed in
Sec. III, we can define the potential U using integration
(3.12) along a path from infinity not crossing the wormhole
throat. It will not be continuous at the throat of the
wormhole, but it is smooth everywhere else. And although
the potential is not continuous through the wormhole, the
field strength −∇U is globally defined and smooth. We
want to find an approximation of this potential.

FIG. 13. Finite wormhole with distant mouths. The diagram
shows coordinates xj− and xjþ defined on the domainsU− andUþ,
respectively. Since the potential modifies the geometry, the
coordinates continuously extended through the wormhole does
not match the original coordinates.

RING WORMHOLES AND TIME MACHINES PHYS. REV. D 108, 024034 (2023)

024034-15



In the zeroth approximation of the potential we assumed
that the field (5.1) is negligible at the mouth Dþ. Now, we
take into account that it is not negligible here. We denote
this potential as truncated, Usht. Equipotentials of Usht are
surfaces of χ− ¼ const. Therefore, it follows from the
discussion above that the field (5.1) can be treated as
homogeneous near the mouth Dþ in the next order of
approximation.
We can thus use our discussion from Sec. IV D. Here we

learned that the truncated homogeneous field around the
mouth of the wormhole has to be compensated by the field
(4.27) adjusted to the mouth at z ¼ l

2
.

This field is nonvanishing on both sides of the wormhole;
it thus changes the field not only in domain V̄þ “above” the
mouth Dþ, but also in domain V̂þ “below” the mouth.
Above the mouth Dþ we use expression (4.27) employing
spheroidal coordinates ðχþ; ϑþ;φþÞ. Below the mouth, we
transfer the induced field into spheroidal coordinates
ðχ−; ϑ−;φ−Þ, using relations9 (2.11). In these domains,
values of relevant spheroidal coordinate χ� are positive,
and both sets of coordinates can be understood as functions
of the global coordinates ðρ; z;φÞ; cf. (2.10).
We can thus write the induced field Ui outside the

wormhole throat as

Ushi ¼ woðZ−ðχ−Þ cos ϑ− − Z−ðχþÞ cosϑþÞ: ð5:18Þ

The corrected field of the shell thus reads (see Fig. 14)

U ¼ Usht þ Ushi ð5:19Þ

with Usht given by (5.1) and Ushi given by (5.18).
The constant wo in the induced field has to be fixed by

the condition that the field strength should be continuous
through the wormhole. Namely, we require

dU
dz

����
D<

þ

¼ dU
dz

����
D>

−

;

dU
dz

����
D>

þ

¼ dU
dz

����
D<

−

: ð5:20Þ

In our approximation, we assume that the field is
homogeneous and, thus, it is sufficient to check these
conditions just along the z axis. Relation (2.12) gives

z ∓ l=2 ¼ sinh χ� cosϑ�; ð5:21Þ

where, along the axis, values of cosϑ� are just −1 or þ1
depending on the position with respect to the wormhole
mouths. Hence

dχ�
dz

¼ cos ϑ�
cosh χ�

: ð5:22Þ

Using these relations, we can calculate z derivatives of the
potential U at the mouths of the wormhole. Actually, it
turns out that it is the same on both faces D< and D> of the
mouth. Using relations (5.1), (5.18), (4.2) and (4.19) one
finds

dU
dz

����
Dþ

¼ m
l2 þ 1

−
wo

2
ð1þ VlÞ;

dU
dz

����
D−

¼ wo

2
ð1þ VlÞ: ð5:23Þ

Here Vl is coming from the derivative of Z0
−ðlÞ, i.e., from

the contribution of the induced field at distant wormhole
mouth

Vl ¼ 2

π

�
arctanl −

π

2
þ l
l2 þ 1

�
¼ −

4

3πl3
þOðl−5Þ:

ð5:24Þ

Now, it is easy to check that the continuity conditions
(5.20) are satisfied provided

FIG. 14. PotentialU [top] and field strength [bottom] of the thin
massive shell localized around the wormhole mouth D−. The
potential depicted here is smooth outside the wormhole throat,
but it is discontinuous at the throat. The zeroth-order valueUsht of
the potential corresponds to the shell in space without a worm-
hole. The correction given by induced field Ushi makes the field
strength smooth through the wormhole throat.

9We do not employ here the corrections of the coordinate
matching discussed after (5.6) in the previous section [which we
also expressed using cylindrical coordinates in (5.14)] since it
would produce corrections of higher order.
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wo ¼
m

ðl2 þ 1Þð1þ VlÞ
¼ m

l2
þOðl−4Þ: ð5:25Þ

We see that the contribution of the induced field is
rather small.
The potential (5.19) is shown in Fig. 14. As we

emphasized, it is not globally smooth; it has discontinuity
across the wormhole throat.
Similarly as we did in the zeroth-order approximation, it

can be extended as a solution of the homogeneous Laplace
equation through each wormhole mouth, obtaining thus
two potentials U− and Uþ defined in domains V− and Vþ,
respectively. However, in this case we have to adjust the
induced field Ushi to guarantee also the continuity of the
potential. It can be achieved by adding a suitable constant
to the extended field behind the mouth. We obtain

Uþ ¼
(
Usht þ Ushi in V̄þ;

Ushtjz¼l
2
þ Ushi in V̂þ

ð5:26Þ

and

U− ¼
(
Usht þ Ushi in V̄−;

Uo þ Ushi in V̂−:
ð5:27Þ

Here Uo ¼ Ushtjz¼−l
2
¼ mZðχoÞ is the value of the trun-

cated potential inside the shell leaking behind the mouth
D−—the effect which we encountered already in the
zeroth-order approximation..
The constant

Ushtjz¼l
2
¼ −marccotl ¼ −

m
l
þOðl−3Þ ð5:28Þ

leaking through the mouth Dþ into V̂þ appears only in the
first order of approximation. Comparing with (5.25), we
observe that it is actually more significant than the induced
field Ushi itself.
Both potentials U− and Uþ along the z axis are depicted

in Fig. 15.
We can estimate the difference between both potentials.

Analogically to (5.2) we obtain the correction to (5.3):

ΔU ¼ Ushtjz¼l
2
−Uo ¼ −Uo −

m
l
þOðl−2Þ

¼ m

�
arccot sinh χo −

1

l
þOðl−2Þ

�
: ð5:29Þ

Since the jump ΔU plays a role in the identifications of
the geometry through the wormhole (5.14), namely, in the
identification of the time coordinate (5.11), it is worth to
investigate it more from a different point of view.

C. Invariant IC calculation

In a multiply connected space with a nonpotential locally
static gravitational field one can define the following
integral:

IC ¼
I
C
widxi: ð5:30Þ

Here C is a closed contour, and wi is a three-dimensional
covector of the acceleration. This integral is a topological
invariant in the following sense. The integral (5.30) is the
same for any two closed paths, which can be obtained one
from another by a continuous transformation.
Clearly, for a globally potential field wi ¼ U;i, this

integral vanishes. For a locally potential field which is
not potential globally, it estimates the nonpotentiality of the
field wi. If evaluated along a path between different points
which belongs to a domain, where the potentiality holds, it
gives a potential difference. Therefore, we can conclude
that for a closed path it estimates a potential difference
which is an obstacle for a global definition of the potential:

ΔU ¼ IC: ð5:31Þ

Let us calculate the invariant IC for situation discussed in
this section: the wormhole space Rwh with one of its mouths
surrounded by a massive thin shell. We choose a closed C
which passes through the wormhole. Since its value does
not depend on a special choice of such a path we use for C
the contour shown in Fig. 16. It consists of three parts C−,
Cþ and C∞. We choose C− and Cþ to be intervals along

FIG. 15. The diagram shows the first-order approximation of
potentials U� drawn along the axis z. The potentials U− and Uþ
are continuous on the domains V− and Vþ, respectively. The
potentials include the induced field correcting the zeroth-order
contribution on the wormhole throat. Both potentials coincide on
the intersection domain V̄ but differ by a constant ΔU on the
intersection domain V̂. The top part of the diagram indicates the
domains V− and Vþ and the position of the wormhole and of
the massive shell.
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z− axes and C∞ to be a circle R≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
¼ const

connecting the end points of these intervals. In the limit
R → ∞ the contribution of the part C∞ to IC vanishes.
For the other parts of the contour C one has

I− ¼
Z

∞

0

wχ−dχ− ¼ Ujχ−¼∞
D<

−

¼ −Ushtjχ−¼χo
−UshijD<

−
;

Iþ ¼ −
Z

∞

0

wχþdχþ ¼ −Ujχþ¼∞
D>

þ

¼ UshtjD>
þ
þ UshijD>

þ
: ð5:32Þ

The induced potential Ushi (5.18) is a symmetric functions
with respect to reflection χ− ⇄ χþ; ϑ− ⇄ π − ϑþ and,
hence, satisfies the condition

UshijD<
−
¼ UshijD>

þ
; ð5:33Þ

therefore, it cancels in the sum of I− and Iþ. Then we
obtain

IC ¼ −m½ZðχoÞ þ arccotl�: ð5:34Þ

For l ≫ 1 we finally get

IC ¼ m

�
arccot sinh χo −

1

l

�
þOðl−2Þ: ð5:35Þ

One can check that when sinh χo ≪ l the integral IC is
positive. The main contribution comes from the first term.
The work along the closed path passing through the
wormhole does not vanish and the gravitational field is
nonpotential.

VI. TIME-MACHINE FORMATION

Let us show that in the spacetime with a ring wormhole,
where one of its mouths is surrounded by matter, closed
timelike curves are created. Assume that D− mouth of the
wormhole is inside the massive shell while Dþ mouth is
located far away outside the shell (see Fig. 17) where its
gravitational field is small. Because these mouths are

identified through the wormhole the proper times at D−
and Dþ are the same. Hence, the coordinate times t− at D−
and tþ at Dþ are related as (5.11). In this setup
ΔU ¼ IC > 0. It means that for the same proper time
interval the coordinate time at the disk D− which is inside
the massive shell spans more than that atDþ. Let us assume
that clocks at the disks are synchronized at the moment
t ¼ 0. If a particle enters D− at time t1, it appears from Dþ
at slightly different time t2. Denote the time gap
Δt ¼ t2 − t1. Then in such a process the time gap is
negative:

Δt ¼ −½eIC − 1�t2 < 0: ð6:1Þ

Let us consider the following experiment. Suppose a
null ray emitted at some time t0 at the point with
coordinate z ¼ 0 propagates along the z axis to the left,
enters the disk D− at time t1 and after it appears from Dþ
at the time t2 returns to the point of its emission at the
time t3. Let us find how the corresponding time t3 (as
measured by an observer at infinity) depends on t0. For the
metric (3.1) the equation of the null ray moving along the
z axis is

FIG. 17. Red dashed lines mark the connection of events via
wormhole. Before the massive shell was turned on aroundD− the
events are globally synchronized. After an adiabatic formation of
a massive shell the pace of time at D− slows down as seen by an
observer at infinity and the mouths of the wormhole become
desynchronized from his or her point of view. The pace of clocks
at the mouths is symbolically presented by oscillating lines.
When the time difference accedes l=c the chronology horizon
forms. After that the time machine appears.

FIG. 16. Contour C.
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dz
dt

¼ −e2UðzÞ; ð6:2Þ

where UðzÞ is a value of the potential U on the z axis. A
minus sign in the right-hand side of this equation indicates
that at both stages (motion toD− and motion fromDþ) the
ray moves in the direction opposite to the direction of the z
axis. Using (6.2) one finds that the time of the arrival of
the ray to D− is

t1 ¼ t0 þ
Z

0

−l=2
e−2Udz: ð6:3Þ

Similarly, time t3 of arrival to the original point z ¼ 0 after
the ray appears from D− at time t2 is

t3 ¼ t2 þ
Z

l=2

0

e−2Udz: ð6:4Þ

Using Eqs. (6.1), (6.3), and (6.4) one finds

t3 − t0 ¼ −½eIC − 1�t2 þ B;

B ¼
Z

l=2

−l=2
e−2Udz > 0: ð6:5Þ

For a chosen direction of null ray motion IC > 0. Hence,
t3 − t0 is a decreasing function of the time t2 at Dþ which
for large l is close to the time of an observer at infinity.
This equation shows that t3 becomes lesser than t0 when

t2 ≥ T; T ¼ B
eIC − 1

: ð6:6Þ

Because B > 0 and IC > 0 this means that for sufficiently
late time t2 the null ray arrives at the initial point z ¼ 0
earlier than it was emitted and a closed time curve is
formed.
In the weak-field approximation adopted in this paper IC

is small and B ≈ l. Then formation of the time machine
happens after time

T ≈
l
IC

: ð6:7Þ

Let r ¼ sinh χo be a characteristic size of the massive thin
shell surrounding the D− mouth of the ring wormhole.
Then the characteristic time of the transformation of the
wormhole into the time machine is

T ≈ rl=m: ð6:8Þ

Restoring the dimensions one can write this expression in
the form

T ≈
RLc
GM

: ð6:9Þ

Here T is the characteristic time of closed timelike curves
formation in the initially traversable ring wormhole sur-
rounded by a massive thin shell of radius R and massM. L
is the distance between mouths.
Let us emphasize that the main conclusion concerning

closed timelike curve formation in the wormhole spacetime
is a rather robust property. Such curves arise as a result of
the asymmetry of the mass distribution surrounding its two
mouths.
For more details concerning nonpotential gravitational

field and time-machine formation in such fields see
Refs. [13,20–22].

VII. DISCUSSION

In the present paper we study the gravitational field in a
spacetime with a traversable ring wormhole. We considered
two types of such wormholes: (i) a wormhole connecting
two flat spaces and (ii) a wormhole connecting two distant
domains in the same space. We focused on study solutions
of the gravity equations in the weak-field approximation in
the presence of matter in these spaces. For the wormhole
connecting two flat spaces we demonstrated that there exist
zero-mode solutions describing the gravitational field
trapped by the wormhole. Such a field obeys the homo-
geneous Laplace equation. One can relate them to a proper
choice of the matter distribution located at the infinity
either of Rþ or/and R− spaces. We also obtained a solution
for the gravitational field of the massive thin oblate
spheroidal shell confocal to the disk representing the ring
wormhole. A main important feature of such a solution is
that one cannot impose a condition that the corresponding
gravitational potential U vanishes at both infinities in R�.
There always exists a nonvanishing difference of these
potentials which is proportional to the mass m of the shell
and depending on its size. We also found an exact solution
for the case when a ring wormhole is immersed in the
gravitational field which is homogeneous at Rþ infinity.
Such a solution contains the dipole-type component which
describes the modification of the homogeneous field by the
wormhole.
In Sec. V we study the gravitational field of a massive

thin shell surrounding one of the mouths of the ring
wormhole connecting two distant domains in a single
space. We solved the gravity equation in the approximation
when the distance L between the mouths is much larger that
the ring radius a. A main property of this solution that the
gravitational potential U becomes a multivalued function.
This happens because the space is multiconnected. While
the strength of the gravitational force w⃗ is well defined and
unique, a solution of the equation ∇U ¼ −w⃗ does not
possess this property. One can integrate this equation and
find the function U along any chosen curve connecting two
points. But the value ofU may be different for two different
paths which cannot be transformed one to the other by
means of a continuous transformation. As a result the
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gravitational field is nonpotential. In such a case there
exists a growing time gap for clocks synchronized along
specially chosen noncontractible closed paths. This implies
that a closed timelike curve formation occurs in such a
space. This is a mechanism which transforms an original
traversable wormhole without a time gap into a time
machine.
Let us emphasize that above described properties of the

ring wormholes are similar to well-known properties of the
“standard” wormholes with a spherical topology of their
throat. A main difference is that for the ring wormhole an
observer passing through it moves in a flat (or practically
flat spacetime), while in the case of standard wormholes he
or she should pass a domain filled with the matter violating
the null-energy condition. In this paper we focused on the
classical aspects of the ring wormhole model. It is well
known that for the standard wormholes the quantum effects
are important and may dramatically change their property
in the regime of the time-machine formation. Namely, it
was shown [17,18] that at the moment close to the time
when closed timelike curves are formed, the renormalized
quantum average of the stress-energy tensor of a quantum
field infinitely grows. Hawking formulated a chronology
protection conjecture [19], according to which the back-
reaction of quantum effects should always forbid formation
of closed timelike curves. There exist quite a lot of
papers where different aspects of the role of quantum
effects in wormholes and time machines are discussed (see,
e.g., [33–40]). It would be interesting to study quantum
effects in ring wormholes and time machines. These models
are rather simple from the mathematical point of view and
they may provide one with simple analytical tools to study
such a quantum mechanical problem.
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APPENDIX A: STATIC SPACETIME

1. Metric

Let us consider a static spacetime. It is locally described
by metric

ds2 ¼ gμνdxμdxν ¼ −e2Udt2 þ dq2;

dq2 ¼ qijdxidxj;

∂tU ¼ 0; ∂tqij ¼ 0: ðA1Þ

We denote ξμ ¼ δμt a timelike Killing vector and uμ a four-
velocity of static observers moving along this Killing
vector:

uα ¼ e−Uξα; uμuνgμν ¼ −1: ðA2Þ

Obviously,

uα ¼ −eUt;α: ðA3Þ

The four-acceleration of these static observers,

wμ ¼ uμ;νuν; ðA4Þ

is orthogonal to uα. Using the orthogonality, the Killing
equation ξðμ;νÞ ¼ 0, and staticity uαU;α ¼ 0, one finds that
U is a local potential of wμ:

wα ¼ U;α: ðA5Þ

We call U the gravitational potential, wα the acceleration
field, and −U;α the gravitational field strength. Since wα is
orthogonal to the time direction uα, it can be restricted to
spatial components. The field strength is a fictitious force
that one assumes in the static frame to explain a tendency
of free observers to move with respect to the frame.
Nonmoving static observers have to compensate this force
by a real force equal to wj per unit mass; cf. (3.7). Of
course, in the spacetime description, the static observers
move along nongeodesic trajectories with four-acceleration
wα caused by the real force.

2. Weak static gravitational field

Now we want to study a weak gravitational field on a flat
background. We assume that the resulting spacetime is
static, as described above, and we want to formulate the
field equation in an approximation of a weak field. Since
the metric (A1) is invariant under time reflection t → −t,
the extrinsic curvature of a surface t ¼ const vanishes, and
Gauss-Codazzi equations imply that

Gt
t ¼ −

1

2
R: ðA6Þ

Here,Gμν is Einstein tensor of the spacetime metric ds2 and
R is a scalar curvature of the spatial metric dq2 [see, e.g.,
(B.2.6) in Ref. [22] ].
We choose a stress-energy tensor for a static distribution

of matter in the form

Tμν ¼ εuμuν: ðA7Þ

Here ε is the mass density. In the metric (A1) one has

dm ¼ ε
ffiffiffi
q

p
d3x: ðA8Þ
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Using Einstein equations and relation (A6) one gets

R ¼ 16πε: ðA9Þ

Let us consider a special case when the spatial geometry
is conformally flat with a factor given by e−2U:

dq2 ¼ e−2Udl2; ðA10Þ

dl2 ¼ δijdxidxj being a flat spatial metric. Then one has

R ¼ 2e2U½2△U − ð∇UÞ2�: ðA11Þ

Here, ∇, △ and ð� � �Þ2 are the covariant derivative, the
Laplace operator, and the square with respect to the flat
spatial metric dl2, respectively.
We say that the gravitational field is weak if

j∇U∇Uj ≪ j∇∇Uj: ðA12Þ

In such a case the second term in the square brackets
of (A11) can be omitted and one has R ¼ 4e2U△U.
Equation (A9) implies that in the weak-field approximation
the mass density ε is of the same first order as R.
The second term in the brackets can be neglected in

our approximation, but the prefactor is not negligible.
From (A9) we obtain the equation for potential U

△U ¼ 4πe−2Uε: ðA13Þ

In fact, in the full theory, for a static distribution of the
matter the stress-energy tensor should be slightly modified
by adding a contribution responsible for repulsive forces
keeping the matter at rest. Indeed, for the stress-energy
tensor (A7) one has

Tμν
;ν ¼ εwμ: ðA14Þ

This means that a static distribution of matter is possible
only when some repulsive forces are present that compen-
sate the gravity attraction. This can be achieved by
including the pressure p and writing Tμν in the form

Tμν ¼ ðεþ pÞuμuν þ pgμν: ðA15Þ

For this tensor

Tμν
;ν ¼ ðεþ pÞwμ þ p;μ: ðA16Þ

In the weak-field approximation, both ε andwα are small.
We say that each of this quantities is of the first order in the
weak-field approximation. To satisfy the conservation law
Tμν

;ν ¼ 0, the pressure should be of the second order. Such
pressure does not contribute to the Einstein equations in the
leading first-order approximation.

Let us discuss now the other Einstein equations [besides
(A11)] in the same leading-order approximation. It is easy
to check that all time-spatial components of the Einstein
tensor Gtj vanish identically, and the spatial components
Gij are of the second order in ∇U [see, e.g., (B.2.6) in
Ref. [22] ]. This means that in the leading order of the
weak-field approximation the spatial components of the
Einstein equations are also satisfied.
When working in the flat space, it is natural to use a mass

density in (A8) normalized on the flat volume element
dV ¼ d3x. The relation to ε follows from

dm ¼ μdV: ðA17Þ

Thanks to rescaling (A10) we obtain

μ ¼ e−3Uε: ðA18Þ

Then, Eq. (A13) for the potential takes the form

△U ¼ 4πeUμ: ðA19Þ
Let us note that metric (A1), (A10) and the field

equation (A19) are invariant under the following scaling
transformation:

U ¼ Û þ ΔU;

t ¼ e−ΔUt̂; dl2 ¼ e2ΔUdl̂2;

μ ¼ e−3ΔUμ̂: ðA20Þ

3. Small value of potential U case

Let us emphasize that in the above discussion we assume
that the potential U is slowly changing in space, but we do
not assume that its value is small.
To simplify the presentation we make an additional

assumption that the potential U is uniformly small, that is,
its value satisfies the relation

jUj ≪ 1 ðA21Þ

everywhere in space.
In this approximation Eq. (A19) takes the form

△U ¼ 4πμ: ðA22Þ

In our perturbative approach it is the same as ε in the
leading order:

μ ¼ ε; ðA23Þ

but for U that are not small they differ by the factor
e−3U; cf. (A18).
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APPENDIX B: LOCALLY STATIC SPACETIMES

In this appendix we demonstrate how to describe a
locally static spacetime without introducing initially a static
time coordinate t and a gravitational potential U as we did
in Eq. (A1) in the previous appendix.
Let us consider a spacetimeM with metric g and assume

that it admits two vector fields, a future directed unit vector
u and a vector w which obey the equations

uμuμ ¼ −1;

uμ;ν ¼ −wμuν;

w½μ;ν� ¼ 0: ðB1Þ

We call such a spacetime locally static. The relations (B1)
imply that

wμ ¼ uνuμ;ν; wμuμ ¼ 0: ðB2Þ

Denote by γ integral lines of u

dxμ

dτ
¼ uμ: ðB3Þ

Normalization condition u2 ¼ −1 implies that τ is a proper
time along a worldline γ.
The last of the relations in (B1) implies that the 1-form

wμdxμ is closed. Let p0 be a point inM andΩp0
be a simply

connected region which contains this point. Then there
exists such a function U in Ωp0

that

wμ ¼ U;μ: ðB4Þ

Let p be a point in Ωp0
and Cp0p be a path in Ωp0

connecting points p0 and p. Then

UðpÞ ¼ Uðp0Þ þ
Z
Cp0p

wμdxμ: ðB5Þ

The function U called the gravitational potential is defined
in Ωp0

up to a constant U0 ≡Uðp0Þ. Let us denote

zμ ¼ eϵUuμ; ϵ ¼ �1: ðB6Þ

Using relations (B1) one gets

zμ;ν ¼ eϵUð−uνwμ þ ϵuμwνÞ: ðB7Þ

For ϵ ¼ −1 one has z½μ;ν� ¼ 0, while for ϵ ¼ 1 one has
zðμ;νÞ ¼ 0. We denote

ξμ ¼ eUuμ; ημ ¼ −e−Uuμ: ðB8Þ

Thus one has

ξðμ;νÞ ¼ 0; η½μ;ν� ¼ 0; ξ2 ¼ −e2U: ðB9Þ

The first of these equations shows that ξ is a Killing vector,
while the second equation implies that there exists such a
scalar function t in Ωp0

that

ημ ¼ t;μ: ðB10Þ

It is also easy to check that

ξμ∂μU ¼ 0: ðB11Þ

Consider displacement dxμ along a worldline γ. Then
one has

dt ¼ ημdxμ ¼ −e−Uuμdxμ

¼ −e−Uuμuμdτ ¼ e−Udτ: ðB12Þ

One also has

dxμ

dt
¼ eU

dxμ

dτ
¼ eUuμ ¼ ξμ: ðB13Þ

Hence

ξμ∂μ ¼ ∂t; ðB14Þ

and t is the Killing time parameter. Let us emphasize that
the gravitational potential U in Ωp0

is defined up to a
constant. A shift U → U þ c results in the rescaling both
the Killing vector and Killing time

ξμ → e−cξμ; t → ect: ðB15Þ

The integral lines γ provide a foliation of the region Ωp0
.

Each of the Killing trajectories can be specified by giving
three numbers yi, i ¼ 1, 2, 3, and a point p on a given
trajectory can be specified by giving its Killing time value t.
This defines coordinates xμ ¼ ðt; xiÞ in Ωp0

. In these
coordinates the metric takes the form

ds2 ¼ −e−2Udt2 þ hijdyidyj; ∂tU ¼ ∂thij ¼ 0: ðB16Þ

In what follows we assume that ξ2 does not vanish and
remains negative everywhere in M. This property excludes
a case of black holes. But in the spacetime considered in the
present paper this property is valid.
Following Ref. [41] we denote by S a collection of all

trajectories of ξ inM. There exists a natural map Ψ fromM
to S which is defined as follows: For any point in M there
exists a Killing trajectory passing through it which deter-
mines a point in S (see Fig. 18). Three-dimensional space S
has the induced metric

FROLOV, KRTOUŠ, and ZELNIKOV PHYS. REV. D 108, 024034 (2023)

024034-22



dh2 ¼ hijdyidyj: ðB17Þ

Since Lξw ¼ 0 and ξ · w ¼ 0, the 4-vector of acceler-
ation w has a natural projection w⃗ on S. In ðt; yiÞ
coordinates one has w ¼ ð0; w⃗Þ. Let us consider a path
CS
p0p connecting two points pS0 and pS in S. We define a

3D potential UðpSÞ as follows:

UðpSÞ ¼ U0 þ
Z
CS
p0p

widyi; ðB18Þ

where U0 is a constant which is chosen as a value of the
potential at pS0. The quantity UðpSÞ −U0 can be inter-
preted as a work done by the gravitational field on a particle
of unit mass for its motion along the path CS.
Consider a closed path CS which starts at some point p0

and returns to it again and denote

ICS ¼
I
CS

widyi: ðB19Þ

Since 3D 1-form w is closed, the Stokes’ theorem implies
that ICS depends only on the cohomology class of the path
CS. If S is a simply connected manifold, the invariant ICS

vanishes. If S is not simply connected, there may exist paths
for which ICS ≠ 0. For such a closed path work done by the
gravitational field does not vanish. We call such a field
nonpotential. For this field the potential U is a multivalued
function.
A path CS connecting pS and p0

S in S can be lifted to M
as follows. Consider a Killing trajectory corresponding to
pS and choose a point p on it. If in local coordinates yi the
equation of CS is yi ¼ yiðλÞ, then the equation of the path S
in ðt; yiÞ coordinates in M is xμ ¼ ðtp; yiðλÞÞ, where tp is
the time coordinate of point p. We require that the path C
has a property that its tangent vector is orthogonal to uμ.
For a given initial point p and chosen path CS in S this
property uniquely defines C. It is easy to see that

Z
CS

widyi ¼
Z
C
wμdxμ: ðB20Þ

Let CS be a closed path in multiply connected S passing
through a point pS and C̃ be its lift toM passing through p.
The end point p0 of C̃ lies on the same Killing trajectory as
the initial point p but in a general case it does not coincide
with it. Denote by ΔC a path from p0 to p along their
common Killing trajectory. The path C ¼ C̃þ ΔC is
closed. Since w is orthogonal to a Killing trajectory,R
ΔC wμdxμ ¼ 0, and one has

IC ¼
I
CS

widyi ¼
I
C
wμdxμ: ðB21Þ

The value of this integral does not depend on a choice of the
initial point p on the path, and relation (B21) is valid not
only for a chosen lift of the path CS but for any closed path
C in M such that its projection on S coincides with CS.
Let us consider a closed path CS with a starting point pS

for which IC ¼ 0 and choose two close points p and p̃ on
the Killing trajectory determined by pS (see Fig. 19). They
have the same coordinates yi. Let us denote by dt time
difference between p and p̃ and assume that dt is small. By
construction, dt remains the same for the paths C and C̃
with the initial points p̃ and p, respectively. In particular
this is true for the end points p0 and p̃0 of these curves.
Since IC ¼ 0, the value of the potentialU defined along the
paths by Eq. (B18) at the end point coincides with its value
at the initial point, and one concludes that the initial proper
time interval dτ between p and p̃ is the same as the final
proper time interval dτ0 between p0 and p̃0. We call the
proper time interval Δτp between the initial point p of C
and its final point p0 the proper time gap (see Fig. 18). The
above discussion implies that the proper time gap is
constant for closed paths for which the invariant IC
vanishes.

C

FIG. 18. Projection ofM onto the space of Killing trajectories S.

FIG. 19. Time gaps.
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If a locally static spacetime M is simply connected so
that IC ¼ 0 for any closed path in it, then

(i) the gravitational potential is globally uniquely de-
fined, up to a constant;

(ii) the gravitational field is potential;
(iii) the Killing vector field is globally uniquely defined

after choice of its norm in some point.
In other words, this spacetime is (globally) static.
Let us now repeat the above consideration, but do not

assume that the invariant IC for a chosen closed path
vanishes. Once again the Killing time interval dt for two
close lifts of CS with starting points at p and p̃ remains
constant along the path. Denote by dτ proper time interval
between initial points p and p̃ and by dτ0 proper time
interval between final points p0 and p̃0 (see Fig. 19). Then
using (B12) one gets

dτ ¼ eUðpÞdt; dτ0 ¼ eUðp0Þdt: ðB22Þ

Thus

dτ0 ¼ eUðp0Þ−UðpÞdτ ¼ expðICÞdτ: ðB23Þ

Denote by Δτp the proper time gap for the point p and by
Δτp̃ the proper time gap for p̃. Then one has (see Fig. 19)

dΔτ≡ Δτp̃ − Δτp ¼ dτ0 − dτ ¼ ðexpðICÞ − 1Þdτ: ðB24Þ

Hence, the proper time gap dΔτ linearly grows with time τ
so that

dΔτ
dτ

¼ expðICÞ − 1: ðB25Þ

For more details see Refs. [13,21,22].
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