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I. INTRODUCTION

In our four-dimensional Universe, ‘‘real’’ astrophysical
black holes cannot carry large electric charge. In the presence
of surrounding plasma, flux of the plasma particles with the
opposite charge rapidly reduces the original charge of the
black hole and makes it small. In the absence of monopoles,
a black hole cannot also carry a magnetic charge. However,
in the presence of an accreting disk, a magnetic field can
exist in the black hole vicinity. Moreover, it is plausible
that it plays an important role in a black hole activity.
The electric andmagnetic fieldsE andB carry energy density
u� jEj2 þ jBj2, but, in a realistic situation, its contribu-
tion to the curvature Gu=c4 is much smaller than the char-
acteristic curvature of the spacetime near the horizon
�ðgrav:radiusÞ�2. Thismeans that the distortion of the back-
ground gravitational field is small and can be neglected. We
call such electric and magnetic fields weak. This does not
mean at all that their role in the physical processes in the
black hole vicinity is also negligibly small. The reason is that
for charged particles the relative weakness of the electro-
magnetic field can be compensated by a large value of the
charge-to-mass ratio, which, for example, for electrons is

e=m � 5:2728� 1017 g�1=2 cm3=2 s�1. In other words, the
motion of charged particles inweakly charged and/orweakly

magnetized black holes might be quite different from the
motion of neutral ones. For example, the innermost stable
orbit of a charged particle moving in the equatorial plane of a
weakly magnetized black hole can be very close to the
horizon; see, e.g., Ref. [1]. In consequence, as was shown
recently, weakly magnetized black holes may play a role of
particle accelerators [2,3].
Besides the study of properties of weakly charged black

holes, which might have interesting (astro)physical appli-
cations, there is another motivation for studying this prob-
lem. The Kerr spacetime describing a rotating black hole is
a member of a special class of black hole solutions which is
characterized by the exceptional property that particle and
light trajectories are completely integrable. A related prop-
erty is that the Hamilton-Jacobi, Klein-Gordon, and Dirac
equations allow complete separation of variables. It should
be emphasized that such remarkable properties, such as
complete integrability of dynamical Hamiltonian systems,
are quite a rare event in mathematical physics. The Kerr
spacetime gave a new set of examples of completely
integrable systems. As was demonstrated a long time
ago, there exists a deep geometrical reason for this:
Namely, the Kerr metric possesses a hidden symmetry,
generated by a special object, a Killing-Yano tensor. In
fact, all the vacuum Petrov type D solutions, with the only
exception of the so-called C-metrics,1 possess such an
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1Which are known to admit a conformal generalization of the
Killing-Yano tensor; see, e.g., Ref. [4].
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object. The corresponding family of vacuum four-
dimensional solutions is called Kerr-NUT metrics.
Besides mass M and angular momentum J, these metrics
have an additional parameter N, called a NUT parameter.
In 1963 Newman, Tamburino, and Unti [5] found a gen-
eralization of the Schwarzschild solution which, besides
the mass M, contained another parameter N. This NUT
parameter describes a gravitomagnetic monopole [6,7].
Later, such a generalization was found for the Kerr metric.
The corresponding NUT solution contains an analogue of
the Dirac string for a magnetic monopole, but in the
gravitational case it cannot be excluded and does affect
spacetime (for more details, see Ref. [8]). One does not
expect that such gravitational monopoles are important in
astrophysics, but there exists interest in such objects in
the framework of theoretical and mathematical physics.
In particular, Euclidean versions of such solutions, for
example, Taub-NUT instantons, are of high interest in
quantum gravity. This is one main reason why, studying
the problem of weakly charged black hole solutions, we
expand our work and include higher dimensions as well as
higher-dimensional NUT parameters. In other words, we
are working with weakly charged higher-dimensional
Kerr-NUT spacetimes.

The study of a weakly charged and/or magnetized black
hole is greatly simplified, since the electromagnetic field
can be considered as a test one. The electromagnetic field A
in the Lorentz gauge raA

a ¼ 0 obeys the equation

hAa � RicbaAb ¼ 0: (1.1)

If the spacetime possesses a Killing vector �, it is easy to
show that it satisfies the equation

h�a þ Ricba�b ¼ 0: (1.2)

Hence in a Ricci-flat spacetime, � is a potential for a
special test electromagnetic field. This observation by
Refs. [9,10] is well known and often used. Let us empha-
size that this property is valid in a spacetime with an
arbitrary number of dimensions. A well known example
is the Kerr spacetime with two Killing vectors, �ðtÞ and
�ð’Þ, generating time translation and axial rotation symme-

tries. The corresponding test Maxwell fields describe, re-
spectively, a weak electric field of a test charge inside
the black hole and the axisymmetric stationary magnetic
field near the black hole which is homogeneous at infinity
and directed along the axis of rotation. Evidently, this
construction can be easily generalized to the Myers-Perry
spacetimes in an arbitrary number of dimensions, e.g.,
Refs. [11–14].

In spite of the fact that the relation between special
test fields and the Killing vectors generating them is of a
general nature, the character of the motion of a charged
particle in the presence of such a field is quite different
for different fields. To illustrate this, let us consider again
the case of 4D Kerr spacetime. The geodesic equations for

particles in the Kerr metric are completely integrable
[15]. This property is preserved for the motion of electri-
cally charged particles in a weakly charged black hole.
(In fact, it is valid for the Kerr-Newman spacetime, where
the charge of a black hole is not weak.) The case of
a weakly magnetized Kerr black hole is quite different.
The equations of motion for charged particles moving
in the equatorial plane are still completely integrable,
while the ‘‘fourth’’ (Carter’s) integral of motion is absent
for the generic motion out of the symmetry plane. As a
result, in a general case the motion of a charged particle in
weakly magnetized black holes is chaotic.
It is interesting that this is a generic feature of higher-

dimensional rotating black holes as well. Namely, it was
shown in Ref. [16] that the charged particle equations in
higher-dimensional rotating black holes with a test elec-
tric field proportional to the primary (timelike) Killing
vector field are completely integrable—the properties of
such spacetimes are similar to the properties of a weakly
charged Kerr spacetime. However, complete integrability
is destroyed in the presence of a test electromagnetic field
generated by secondary (rotational) Killing vector fields.
(This is an analogue of weakly magnetized black holes.) It
was shown that the Klein-Gordon and Hamilton-Jacobi
equations for such a system allow complete separation of
variables only for the primary Killing test field [16]. The
latter stems from the existence of the Lax tensor for a
charged particle—discussed recently in Ref. [17].
In this paper, we study the properties of a charged Dirac

equation in higher-dimensional rotating black hole space-
times in the presence of a test electromagnetic field derived
from various Killing vector fields and demonstrate that the
structure outlined above for particles and scalars remains
similar. Namely, for the weakly charged black holes the
Dirac equation preserves its remarkable property and al-
lows a complete separation of variables, whereas we show
that this is not possible for a magnetized black hole.
The paper is organized as follows. In the next section,

we review the charged Dirac equation in curved space and
discuss its first-order symmetry operators. In Sec. III, we
gather the information about weakly charged and magne-
tized rotating black holes in any dimension. In Sec. IV, we
demonstrate the existence of a complete set of first-order
mutually commuting operators for the charged Dirac equa-
tion in a weakly charged black hole spacetime. The explicit
representation of these operators is found in Sec. V.
Separability of the charged Dirac equation in weakly
charged black hole spacetimes is demonstrated in
Sec. VI. We conclude in Sec. VII. Appendix A displays a
derivation of the important identity which is crucial for
showing the mutual commutation of the symmetry opera-
tors in the set. Appendix B offers an alternative proof of
this property employing the explicit representation of these
operators. In many places, the paper closely follows [18],
where similar results were proved for the standard
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(uncharged) Dirac equation in higher-dimensional Kerr-
NUT-AdS spacetimes.

II. CHARGED DIRAC EQUATION IN
CURVED SPACE

A. Dirac bundle

In what follows, we parametrize a dimension of the
spacetime as

n ¼ 2N þ "; (2.1)

with " ¼ 0, 1 corresponding to the even and odd dimen-
sion, respectively. The Dirac bundle DM has fiber dimen-
sion 2N . It is connected with the tangent bundle TM of
the spacetime manifold M through the abstract gamma
matrices �a 2 TM �D1

1M, which satisfy

�a�b þ �b�a ¼ 2gab: (2.2)

They generate an irreducible representation of the abstract
Clifford algebra on the Dirac bundle. All linear combina-
tions of products of the abstract gamma matrices (with
spacetime indices contracted) form the Clifford bundle
ClM, which is thus identified with the space D1

1M of
all linear operators on the Dirac bundle. The Clifford
multiplication (‘‘matrix multiplication’’) is denoted by
juxtaposition of the Clifford objects. The gamma matrices
also provide the Clifford map ��, which is an isomorphism
between the exterior algebra �M and the Clifford bundle
ClM,

! � ��! � X
p

1

p!
ð!pÞa1...ap�a1...ap : (2.3)

Here, ! ¼ P
p!p 2 �M is an inhomogeneous form, !p

its p-form part, !p 2 �pM, and �a1...ap ¼ �½a1 � � ��ap	.
For future use, we also define an operator � as �! ¼P

pp!p. The metric allows one to raise and lower indices

(musical isomorphism): If � is a 1-form and v a vector, we
denote the corresponding vector and 1-form as �] and v[,
respectively. This generalizes to higher-rank tensors.

We denote the standard (uncharged) Dirac operator in
both the exterior bundle and the Dirac bundle as D:

D ¼ eara; D ¼ ��eara ¼ �ara: (2.4)

Here ea 2 TM ��M is a counterpart of �a in the exterior
algebra, and r denotes the spinorial covariant derivative.
We shall also denote by Xa the object dual to e

a and by
k̂
a

contracted wedge product, defined inductively as [19,20]

�
0̂
�¼�^�; �

k̂
�¼ðXa

5�Þ ^
k�1

ðXa 5�Þ; (2.5)

where the ‘‘hook’’ operator 5 corresponds to the inner
derivative. The reader is also referred to the Appendix of
Ref. [21] for more details on the notation.

B. Killing-Yano tensors

A Killing-Yano (KY) tensor f [22] is a p-form on the
spacetime, the covariant derivative of which is completely
determined by its antisymmetric part, i.e., by its exterior
derivative df:

rafa1...ar ¼ r½afa1...ar	 ¼
1

pþ 1
ðdfÞaa1...ap : (2.6)

A closed conformal Killing-Yano (CCKY) tensor h is a
p-form on the spacetime, the covariant derivative of which
is entirely determined by its divergence �:

raha1a2...ar ¼ rga½a1�a2...ar	;

�a2...ar ¼
1

n� rþ 1
rah

a
a2...ar : (2.7)

KYand CCKY tensors are related to each other through the
Hodge duality: The Hodge dual of a KY form is a CCKY
form and vice versa. As we shall see, both these tensors
play a crucial role in the study of symmetry operators of the
Dirac operator.
It is also useful to introduce the notion of a principal

Killing-Yano (PKY) tensor. We define this to be a non-
degenerate (with maximal matrix rank and functionally
independent eigenvalues) rank-2 CCKY tensor [23]. We
shall see in Sec. III that this tensor exists in rotating black
hole spacetimes in all dimensions. It generates a Killing
vector �:

�a ¼ 1

n� 1
rbh

b
a; (2.8)

which we call the primary Killing vector, as well as a
whole set of secondary Killing vectors; see Sec. III.

C. Symmetry operators

We shall now write down the most general first-order
operators commuting with the Uð1Þ charged Dirac opera-
tor. The results follow from the general discussion in
Ref. [20] where the symmetry operators of a Dirac operator
coupled to an arbitrary flux were studied (for special cases,
see also Refs. [24,25]).
LetD be the Dirac operator for a charged particle in the

Uð1Þ potential A:
D ¼ D� iA ¼ eaDa; D ¼ �aDa; (2.9)

where we have introduced the Uð1Þ covariant spinorial
derivative Da ¼ ra � iAa.
We first consider the case when the background metric

admits a Killing vector equivalent to a Killing-Yano
1-form �. Then, the following operator:

K� ¼ Xa
5 �ra þ 1

4
d�� iA

1̂
�þ i’; (2.10)

where ’ is an arbitrary function satisfying the ‘‘anomaly
condition’’
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d’þ ðdAÞ
1̂
� ¼ 0; (2.11)

commutes with the Dirac operator D, (2.9). Given the
potential A, one may try to find such ’ so that the anomaly
vanishes. Two possible choices are obvious (though not
necessary): (i) One chooses ’ ¼ 0, in which case the
operator and the anomaly condition become

K� ¼ Xa
5 �Da þ 1

4
d�; 0 ¼ �

1̂
dA: (2.12)

We shall see that a similar condition is required for
higher-rank Killing-Yano tensors as well. (ii) One chooses
’ ¼ A

1̂
�. In this case the operator (2.10) and the anomaly

(2.11) simplify to

K� ¼ Xa
5 �ra þ 1

4
d�; 0 ¼ L�]A; (2.13)

whereL�] is the Lie derivative along the Killing vector �].
Hence, if A respects the symmetry of �, the operator (2.13)
defines a symmetry operator (i.e., an operator commuting
with D) for the charged Dirac equation. In particular, as
we shall see in Sec. III, this property is satisfied in weakly
charged and magnetized rotating black hole spacetimes for
A associated with any Killing field, as all of them do
mutually commute.

Since any Killing vector is Hodge dual to an (n� 1)-
rank CCKY tensor, we do not have to discuss the case of
CCKY tensors of this rank anymore.

Having dealt with these special cases separately,
we may now formulate the following result: The most
general (different from that discussed above) first-order
operator S which commutes with the Dirac operator D,
½D; S	 ¼ 0, splits into the following Clifford even and
odd parts:

S ¼ Se þ So; (2.14)

where

Se ¼ Lfo � Xa
5 foDa þ �� 1

2�
dfo; (2.15)

So ¼ Mhe � ea ^ heDa � n� �� 1

2ðn� �Þ �he; (2.16)

with fo being an inhomogeneous odd (at least rank 3)
KY form, and he being an inhomogeneous even
[at most rank-(n� 2)] CCKY form, subject to the
condition

ðdAÞ
1̂
fo ¼ 0; ðdAÞ

1̂
he ¼ 0: (2.17)

Note that in odd dimensions the operators L and M are
related by the Hodge duality. However, this is not true in
even dimensions, where these operators are necessarily
independent.

Indeed, in an odd number of spacetime dimensions
the Hodge duality of Killing-Yano tensors translates

into the corresponding relation of symmetry operators
L andM. Namely, let z be the Levi-Civita n-form satisfying
za1...anz

a1...an ¼ n!.2 Then, in odd dimensions, the Hodge

dual of a p-form ! can be written as

�! ¼ ð�1Þ½p2	z!; (2.18)

and for the operators of type L and M it holds that

Lzh ¼ zMh; Mzf ¼ zLf; (2.19)

where f is an odd KY form and h an even CCKY form. In
particular, this is also valid for Killing vectors and dual
CCKY (n� 1)-forms.
The anomaly conditions (2.17) are also related by the

Hodge duality, thanks to the identity

F
1̂
ð��Þ ¼ �ðF

1̂
�Þ; (2.20)

which holds for any 2-form F and an arbitrary form �.

III. WEAKLY CHARGED ROTATING BLACK
HOLE SPACETIMES

In what follows, we shall study the Dirac equation in the
vicinity of the weakly charged and weakly magnetized
rotating black hole spacetimes in all dimensions. Namely,
as a background metric we shall use a ‘‘canonical space-
time,’’ which is the most general spacetime admitting the
PKY tensor [26,27]. When vacuum Einstein equations are
imposed, such a spacetime describes the most general
known rotating Kerr-NUT black hole discovered in
Ref. [28]. The metric can be equipped with a weak elec-
tromagnetic field associated with (N þ ") isometries
present in the spacetime. Among them, the one associated
with the primary Killing vector plays a special role. The
background metric with a vector potential proportional to
this Killing field describes a weakly charged rotating black
hole. We shall see that in this case the charged Dirac
equation separates, and the separability can be character-
ized by the existence of a complete set of mutually com-
muting first-order symmetry operators. On the other hand,
for weakly magnetized black holes, which are described by
a vector potential associated with the secondary Killing
vectors, the first-order operators do not mutually commute
and the Dirac equation cannot be (at least in the canonical
frame) separated. It is very likely that in this case the
integrability is lost and the Dirac equation does not sepa-
rate in any frame.

A. Canonical spacetimes

The most general metric admitting the PKY tensor, also
denoted as a canonical metric, is written in canonical
coordinates as [26,27]

2Note that ��ðzÞ is the ordered product of all n gamma
matrices, and in odd dimensions it is proportional to the unit
matrix. See also formula (5.10).
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g¼ XN
�¼1

�
dx�

2

Q�

þQ�

�XN�1

j¼0

AðjÞ
� dc j

�
2
�
þ"S

�XN
j¼0

AðjÞdc j

�
2
;

(3.1)

where

Q� ¼ X�

U�

; U� ¼ Y
	��

ðx2	 � x2�Þ; S ¼ �c

AðNÞ ;

AðkÞ
� ¼ X

	1 ;...;	k
	1<...<	k;	i��

x2	1
� � � x2	k

; AðkÞ ¼ X
	1 ;...;	k

	1<...<	k

x2	1
� � � x2	k ;

(3.2)

the quantities X� are functions of a single variable x�, and

c is a negative constant. Coordinates x�ð� ¼ 1; . . . ; NÞ
stand for the (Wick rotated) radial coordinate and longitu-
dinal angles. Killing coordinates c kðk¼0; . . . ;N�1þ"Þ
denote time and azimuthal angles associated with Killing
vectors �ðkÞ:

�ðkÞ ¼ @c k
; �ðkÞ � ð@c k

Þ[: (3.3)

At points with x� ¼ x	 with � � 	 the coordinates are

degenerate. We assume a domain where x� � x	 for

� � 	. In such a domain we can always order and rescale
the coordinates in such a way that

x� þ x	 > 0 and x� � x	 > 0 for �< 	: (3.4)

With this convention and assuming Euclidean signature,
we have

U� ¼ ð�1ÞN��jU�j; X� ¼ ð�1ÞN��jX�j: (3.5)

The metric can be written in the diagonal form

g ¼X
�

ðE� � E� þ E�̂ � E�̂Þ þ "E0 � E0; (3.6)

where we have introduced an orthonormal covector frame
Ea ¼ fE�; E�̂; E0g:

E�¼ dx�ffiffiffiffiffiffiffi
Q�

p ; E�̂¼
ffiffiffiffiffiffiffi
Q�

q XN�1

j¼0

AðjÞ
� dc j; E0¼ ffiffiffi

S
p X

j

AðjÞdc j:

(3.7)

The dual vector frame Ea ¼ fE�; E�̂; E0g is

E�¼
ffiffiffiffiffiffiffi
Q�

q
@x�; E�̂¼

ffiffiffiffiffiffiffi
Q�

q X
j

ð�x2�ÞN�1�j

X�

@c j
;

E0¼ 1ffiffiffi
S

p
AðNÞ@c N

: (3.8)

Note that E0 and E0 are defined only in an odd dimension.
The Ricci tensor is also diagonal in this frame and is given
by [29]

Ric ¼ X
�

r�ðE� � E� þ E�̂ � E�̂Þ þ "r0E
0 � E0;

r� ¼ � 1

2x�

�X
	

x2	ðx�1
	 X̂	Þ;	
U	

þ "
X
	

X̂	

U	

�
;�
;

r0 ¼ �X



1

x


�X
�

X̂�

U�

�
;

; X̂� ¼ X� � "c

x2�
: (3.9)

The PKY tensor of the canonical metric reads

h ¼ XN
�¼1

x�E� ^ E�̂: (3.10)

It generates a tower of even rank CCKY forms hðjÞ and
even or odd rank (in even or odd number of spacetime

dimensions) KY tensors fðjÞ:

hðjÞ ¼ 1

j!
h ^ � � � ^ h; (3.11)

fðjÞ ¼ �hðjÞ ¼ ð�1ÞjzhðjÞ; (3.12)

as well as the 2nd-rank Killing tensors (j ¼ 0; . . . ; N � 1)

kðjÞ ¼X
�

AðjÞ
� ðE��E�þE�̂�E�̂Þþ"AðjÞE0�E0: (3.13)

The primaryKilling vector �, (2.8), coincides with�ð0Þ given
by (3.3), � ¼ �ð0Þ ¼ @c 0

, and can be explicitly written as

� ¼ X
�

ffiffiffiffiffiffiffi
Q�

q
E�̂ þ "

ffiffiffi
S

p
E0: (3.14)

It satisfies an important relation

� 1

n� 2jþ 1
�hðjÞ ¼ �[ ^ hðj�1Þ: (3.15)

The secondary Killing vectors can also be generated from
the PKY tensor (e.g., Ref. [23]) and are explicitly given by

�ðkÞ ¼
X
�

ffiffiffiffiffiffiffi
Q�

q
AðkÞ
� E�̂ þ "AðkÞ ffiffiffi

S
p

E0: (3.16)

In odd dimensions we have

�ðNÞ ¼ ð@c N
Þ[ ¼ ffiffiffiffiffiffiffi�c

p � hðNÞ ¼ ffiffiffiffiffiffiffi�c
p

fðNÞ: (3.17)

All the Killing vectors mutually Lie-bracket-commute, as
well as preserve all the Killing-Yano and Killing tensors
constructed from h, e.g.,

L �ðkÞ�ðjÞ ¼ 0; L�ðkÞh
ðjÞ ¼ 0: (3.18)

We concludewith a few identities thatwill be used in Sec. IV.
The following two relations have been proved in [21]:

½hðkÞ; hðlÞ	 ¼ 0; (3.19)

½eða ^ hðkÞ; ebÞ ^ hðlÞ	 ¼ 0: (3.20)

The latter identity implies
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½! ^ hðkÞ; ! ^ hðlÞ	 ¼ 0 (3.21)

for any 1-form!. In Appendix A, we also prove

r½a�b	½e½a ^ hðkÞ; eb	 ^ hðlÞ	þ ¼ 0: (3.22)

In all these identities, ½; 	 and ½; 	þ denote Clifford commu-
tator and anticommutator, respectively. Other properties
of canonical metrics are gathered, for example, in recent
reviews [30,31].

B. Test electromagnetic field

We shall now equip the canonical spacetime with the test
electromagnetic field A given by a linear combination of

background isometries �ðkÞ:

A ¼X
k

qk�
ðkÞ; (3.23)

with constants qk characterizing the field strength. In order
for this field to be a solution of the vacuum Maxwell
equations, we have to impose a condition RicabA

b ¼ 0;
cf. Eqs. (1.1) and (1.2). Taking into account the diagonal
form (3.9) of the Ricci tensor, the explicit form (3.16) of the
Killing vectors, and a functional independency of the

functions AðjÞ
� , we find that spacetime must be a vacuum

Kerr-NUT spacetime [28], Ric ¼ 0, with the metric func-
tions X� in the form3

X� ¼ XN�1

k¼"

ckx
2k
� � 2b�x

1�"
� þ "c

x2�
: (3.24)

It describes a general rotating black hole with spherical
horizon topology. Parameters ck, c and b� are related to

(N þ ") independent angular momenta, a mass parameter,
and NUT charges.

After fixing the metric, let us now study what restrictions
the test electromagnetic field A has to satisfy in order for it
to be compatible with the existence of n first-order opera-
tors commuting with the charged Dirac operator. Applying
the results of Sec. II, in any dimension the candidates for

such operators are generated by (N þ ") Killing forms �ðkÞ

and N CCKY tensors hðjÞ.4 The corresponding operators
K�ðkÞ [cf. (2.13)] and MhðjÞ [cf. (2.16)] commute with D

only if the anomalous conditions (2.13) and (2.17) are
satisfied.
Since all the isometries �ðkÞ of the Kerr-NUT spacetime

mutually commute [first property (3.18)], the anomaly
condition

L �ðkÞA ¼ 0 (3.25)

is satisfied, and the operators (2.13) commute with D for
any A given by (3.23).
However, for the operators (2.16) the situation is more

complicated. Let us start from the second property (3.18)
and reexpress the Lie derivative of h along A as follows:

0¼LA]h¼dðA
1̂
hÞ¼�dA

1̂
hþraA^Xa

5hþrA]h

¼�1

2
dA

1̂
hþA^�[; (3.26)

where we have used the fact that A is a Killing form and h a
PKY tensor. Obviously, only for A proportional to the
primary Killing form �[, the latter term vanishes and
the anomaly condition dA

1̂
h ¼ 0 is satisfied. The same

remains true for higher-rank CCKY tensors hðjÞ. Namely,
the anomaly condition

dA
1̂
hðjÞ ¼ 0 (3.27)

is satisfied only for such A given by (3.23) which is
proportional to the primary Killing form,

A ¼ e�[; (3.28)

i.e., q0 ¼ e and qk ¼ 0 otherwise. Hence, from the
‘‘mathematical point of view’’ the test electromagnetic
field determined from the primary Killing vector is fun-
damentally different from the test electromagnetic field
determined by the secondary Killing fields; only when A ¼
e�[ do all n first-order operators (2.13) and (2.16) com-
mute with the charged Dirac operator D.
Physically, the test electromagnetic field (3.28) given by

the primary Killing vector describes a weakly charged
Kerr-NUT spacetime, whereas the test field associated
with the secondary Killing vectors corresponds to a black
hole immersed in a magnetic field.

C. Charged scalar particle

It is well known that in the canonical spacetime in the
absence of a test electromagnetic field, the Hamilton-
Jacobi equation as well as the Klein-Gordon and Dirac
field equations allow separation of variables [32,33].
The motion of a scalar charged particle in the weakly

charged or magnetized spacetimes has been studied more
recently [16]. It was observed that in the weakly charged
Kerr-NUT spacetime the motion of a charged scalar parti-
cle maintains its complete integrability, while the corre-
sponding charged Hamilton-Jacobi equation separates.
This integrability can be characterized by the existence

3We impose the condition of vanishing electric current to
guarantee a realistic matter content of the spacetime. However,
the commutativity of the symmetry operators and the separabil-
ity of the Dirac equation discussed below are independent of this
requirement. For example, we can relax the vacuum condition
for the metric and consider a nontrivial cosmological constant. In
such a case, the spacetime must be filled with a charged test
fluid, with electric current aligned with the vector potential, i.e.,
with the chosen isometry of the spacetime.

4Odd KY tensors fðjÞ in odd dimensions are dual to even
CCKY tensors hðjÞ. Hence, due to the fact that both the operators
(2.19) and the anomaly condition (2.17) are Hodge dual, without
loss of generality we may focus on operators generated from
CCKY tensors hðjÞ only.
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of a nontrivial Lax tensor discussed in Ref. [17]. The
separability property remains true also for a charged scalar
field in the vicinity of the weakly charged black hole. Such
separability is underlain by the existence of a complete set
of mutually commuting symmetry operators generated

from Killing vectors �ðkÞ and Killing tensors kðjÞ, (3.13):

LðkÞ ¼ �i�a
ðkÞra;

KðjÞ ¼ �½ra � iAa	kðjÞab½rb � iAb	; (3.29)

with A given by (3.28).
On the other hand, it has been observed in Ref. [16] that

similar operators do not commute when, instead of the
primary Killing field �[, A is associated with the secondary
Killing fields, i.e., in the immersed magnetic field. In this
case neither the charged Hamilton-Jacobi nor the charged
scalar field equations separate in canonical coordinates.

The aim of this paper is to demonstrate that a similar
conclusion remains valid for a charged spin 1

2 field. We

already know that in the weakly charged case there exist
n� 1 operators commuting with the charged Dirac opera-
tor D. In the next section, we demonstrate that all these
operators mutually commute and hence together with D
form a complete set of symmetry operators. In Sec. VI, the
explicit separation of the charged Dirac equation in the
chosen representation will be demonstrated.

IV. COMPLETE SET OF DIRAC
SYMMETRY OPERATORS

A. Complete set of operators

The canonical spacetime (3.1) in the absence of a test
electromagnetic field allows a complete separation of var-
iables for the Dirac field equation [33]. It was shown in
Refs. [18,21] that such a separability can be characterized
by the existence of a complete set of mutually commuting
first-order symmetry operators. These operators are deter-
mined by the tower of symmetries built from the PKY
tensor h. Namely, they are given by (N þ ") KY 1-forms

�ðkÞ, (3.3), and N CCKY forms hðjÞ, (3.11). In the exterior
algebra notation they read

Kð0Þ
k ¼Kð0Þ

�ðkÞ ¼Xa
5�ðkÞraþ1

4
d�ðkÞ;

Mð0Þ
j ¼Mð0Þ

hðjÞ ¼ea^hðjÞraþ1

2
ðn�2jÞ�^hðj�1Þ: (4.1)

In the expression for Mð0Þ
j we have employed (3.15) to

simplify the second term. Note also that the operator

Mð0Þ
0 coincides with the uncharged Dirac operator,

Mð0Þ
0 ¼ D.

In the case of weakly charged Kerr-NUT spacetimes
discussed in the previous section, the operators (4.1) can
be upgraded, to give a complete set of mutually commuting
operators of the charged Dirac operator D, (2.9).
Following the results (2.13) and (2.16) from Sec. II,

together with the discussion in Sec. III B, the operators
commuting with the charged Dirac operator are

Kk ¼ K�ðkÞ ¼ Kð0Þ
k ; (4.2)

Mj ¼ MhðjÞ ¼ Mð0Þ
j � ie� ^ hðjÞ; (4.3)

with k ¼ 0; . . . ; N � 1þ " and j ¼ 0; . . . ; N � 1, and
M0 ¼ D, the charged Dirac operator. We shall now show
that, similarly to the uncharged case, the operators (4.2)
and (4.3) mutually commute.

B. Mutual commutativity

It was shown in Ref. [21] that the commutator with
the operator K� is equivalent to a Lie derivative along
a Killing vector �]. The mutual commutativity of (4.2)
thus follows from the Lie commutativity of the Killing
vectors, first property (3.18), while the commutativity of
operators (4.2) with operators (4.3) follows from the sec-
ond property (3.18).
It remains to prove that also all the operators (4.3)

mutually commute. The commutator can be split into the
following six terms:

½Mk;Ml	 ¼ ½Mð0Þ
k ;Mð0Þ

l 	 � 2ie�a½eða ^ hðkÞ; ebÞ ^ hðlÞ	rb

þ 2ieðr½a�b	Þ½e½a ^ hðkÞ; eb	 ^ hðlÞ	þ
� ie

n� 2k

2
½� ^ hðk�1Þ; � ^ hðlÞ	

� ie
n� 2l

2
½� ^ hðkÞ; � ^ hðl�1Þ	

� e2½� ^ hðkÞ; � ^ hðlÞ	; (4.4)

where we have used � ^ rah
ðkÞ ¼ 0; cf. (3.15). Employing

the commutativity of uncharged operators Mð0Þ
k , and the

identities (3.20), (3.21), and (3.22), we find that all the
terms independently vanish and hence the operators (4.3)
commute. [An alternative proof using the explicit repre-
sentation of operators Mj is gathered in Appendix B.]

V. EXPLICIT REPRESENTATION

In this section, we find an explicit representation of the
action of operators (4.2) and (4.3) on the Dirac bundle in
which the charged Dirac equation separates. As customary,
we shall omit the explicit symbol ��, defined by (2.3),
whenever it is clear from context that operators are being
considered instead of forms. So, for example, we write Kj

for ��Kj and Mj for ��Mj.

A. Spinors and � matrices

Following Ref. [18], we represent the fiber of the Dirac
bundle as a tensor product of N two-dimensional spaces S,
DM ¼ SNM. We use greek letters � ¼ 
, & ¼ 
; . . . for
tensor indices in these two-dimensional spaces and write a
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generic two-dimensional spinor as  ¼ þ#þ þ �#� ¼
�#�. Here #þ and #� represent a frame in the two-
dimensional spinor space S and the components of the
spinor are two complex numbers

þ

�

 !

The Dirac spinor c 2 DM is then written as

c ¼ c �1...�N#�1...�N (5.1)

with 2N components c �1...�N and the Dirac bundle frame
#E is given by

#E ¼ #�1...�N ¼ #�1 � � � � � #�N : (5.2)

The gamma matrices are constructed as various tensor
products of Pauli matrices. Let I, �,�, and �̂ be the unit and
Pauli operators on S, respectively. In components, their
action reads

ðIÞ� ¼ �; ð�Þ� ¼ ��;

ð�Þ� ¼ ��; ð�̂Þ� ¼ �i���: (5.3)

In matrix form they are written as

I�& �
1 0

0 1

 !
; ��& �

1 0

0 �1

 !
;

��
& �

0 1

1 0

 !
; �̂�

& �
0 �i

i 0

 !
: (5.4)

For any linear operator � 2 S1
1M we denote by �h�i 2

D1
1M a linear operator on the Dirac bundle

�h�i � I � � � � � I � � � I � � � � � I (5.5)

with� on the�th place in the tensor product. Similarly, for
mutually different indices �1; . . . ; �j we define

�h�1...�ji � �h�1i � � � � � �h�ji: (5.6)

Using these preliminaries, the abstract gamma matrices
with respect to the frame Ea ¼ fE�; E�̂; E0g can be

written as

��¼ �h1...��1i�h�i; ��̂¼ �h1...��1i�̂h�i; �0¼ �h1...Ni;
(5.7)

with �0 defined only in odd dimension. In components, the
action of these matrices on a spinor (5.1) reads

ð��c Þ�1...�N ¼
�Y��1

	¼1

�	

�
c �1...ð���Þ...�N ;

ð��̂c Þ�1...�N ¼ �i��

�Y��1

	¼1

�	

�
c �1...ð���Þ...�N ;

ð�0c Þ�1...�N ¼
�YN
	¼1

�	

�
c �1...�N : (5.8)

Note the relations

��̂ ¼ �i�h�i��; ���̂ ¼ i�h�i (5.9)

and the fact that in odd dimensions we have

��ðzÞ ¼ ��1...�N�̂1...�̂N0 ¼ iN: (5.10)

B. Symmetry operators

Symmetry operators (4.2) corresponding to Killing
vectors are, in general, equivalent to the Lie derivative
lifted from the tangent bundle to the Clifford or Dirac
bundles. Thanks to (3.3) we thus write

Kk ¼ ð

@c k

; (5.11)

where ð
@c k

is a partial derivative along c k, acting just on the

components of the spinor with respect to frame #E, i.e.,

Kk ¼ ð
@c k

 ¼ @E

@c k
#E.

To lift the operators Mj, (4.3), to the Dirac bundle, we

employ (2.3). Using the results in [18], we have the follow-
ing important formula valid for any 1-form �:

��ð� ^ hðjÞÞ ¼ ij
X
�

BðjÞ
� ð���

� þ ��̂�
�̂Þ þ "ijBðjÞ�0�

0:

(5.12)

Here, BðkÞ
� and BðkÞ represent a ‘‘spinorial analogue’’ of

functions AðjÞ
� and AðjÞ, (3.2), and read

BðkÞ
� ¼ X

	1 ;...;	k
	1<���<	k;	i��

�h	1ix	1
� � � �h	kix	k

;

BðkÞ ¼ X
	1 ;...;	k

	1<���<	k

�h	1ix	1
� � � �h	kix	k

: (5.13)

In particular, we have

��ð�[^hðjÞÞ¼�ijþ1

�X
�

ffiffiffiffiffiffiffi
Q�

q
BðjÞ

� �h�i��þ i"
ffiffiffi
S

p
BðjÞ�0

�
:

(5.14)

Next, one has to use the expression for a spinorial
derivative

ra ¼ ða þ 1

4
!abc�

b�c; (5.15)

where ða is a derivative acting only on components of the
spinor and the spin connection coefficients are gathered in
the Appendix of Ref. [18]. The resulting formula for Mj

reads
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Mj ¼ ij
X
�

ffiffiffiffiffiffiffi
Q�

q
BðjÞ

�

�
ð

@x�
þ X0

�

4X�

þ 1

2

X
	

	��

1

x� � �h�	ix	

� i�h�i
X�

X
k

ð�x2�ÞN�1�k ð

@c k

þ "

2x�
� e�h�i

�
��

þ "ijþ1

ffiffiffi
S

p
2

�
Bðj�1Þ �BðjÞ

�
2

ic

ð

@c N

þX
�

1

�h�ix�
þ 2e

��
�0: (5.16)

VI. SEPARABILITY OF THE CHARGED
DIRAC EQUATION

Let us formulate the main result: the commuting
symmetry operators Kk and Mj have common spinorial

eigenfunctions c

Kkc ¼ i�kc ; (6.1)

Mjc ¼ Xjc ; (6.2)

which can be found in the tensorial R-separated form

c ¼ R exp

�
i
X
k

�kc k

�O
	

	: (6.3)

Here f	g is an N-tuple of two-dimensional spinors, where
each spinor 	 depends only on the variable x	, 	 ¼
	ðx	Þ, and R is the (Clifford bundle)-valued prefactor

R ¼Y
�;�
�<�

ðx� þ �h��ix�Þ�1
2: (6.4)

Equations (6.1) and (6.2) are satisfied if and only if the
spinors 	 satisfy the ordinary differential equations (6.20)
below, which generalize the conditions found in
Refs. [18,33] for the case e ¼ 0.

The spinor c given by (6.3) clearly satisfies (6.1). To
show (6.2), we need to calculate Mjc , with Mj given by

(5.16). We have

Mjc ¼ ij exp

�
i
X
k

�kc k

��X
�

ffiffiffiffiffiffiffi
Q�

q
BðjÞ

�

�
ð

@x�
þ X0

�

4X�

þ 1

2

X
	

	��

1

x� � �h�	ix	
þ

~��

X�

�h�i þ "

2x�

�
��

þ "
i
ffiffiffi
S

p
2

�
Bðj�1Þ �BðjÞ

�
2�N

c

þX
�

�h�i
x�

þ 2e

��
�0

�
R
O
	

	; (6.5)

where we have performed the derivative with respect to

angles c k and introduced the functions
~�� of one variable

x� given by

~� � ¼ X
k

�kð�x2�ÞN�1�k � eX�: (6.6)

Let us now concentrate on the derivatives of the prefactor
R. Using the following relations proved in [18]:

R�1��R ¼
ffiffiffiffiffiffiffiffiffiffi
jU�j

q
V�

ð��h�iÞN���h�i; (6.7)

�� ðR

@x�
¼
�
� 1

2

X
	

	��

1

x� � �h�	ix	

�
��R; (6.8)

where

V � ¼ Y
	

	��

ð�h	ix	 � �h�ix�Þ; (6.9)

we can bring the operator R to the front, to get

Mjc ¼ ij exp

�
i
X
k

�kc k

�
R

2
64X

�

ffiffiffiffiffiffiffiffiffiffi
jX�j

q
V�

ð��h�iÞN��

�BðjÞ
�

�
ð

@x�
þ X0

�

4X�

þ
~��

X�

�h�i þ "

2x�

�
�h�i

þ "
i
ffiffiffi
S

p
2

�
Bðj�1Þ �BðjÞ

�
2�N

c

þX
�

�h�i
x�

þ 2e

��
�0

3
75O

	

	; (6.10)

which is to be compared with

X jc ¼ Xj exp

�
i
X
k

�kc k

�
R
O
	

	: (6.11)

Following Ref. [18], we further introduce the following

functions ~X	 of a single variable x	:

~X 	 ¼ X
j

ð�iÞjXjð��h	ix	ÞN�1�j: (6.12)

Note that in odd dimensions the constant XN , defined by
MNc ¼ XNc , is not independent. In fact, using the rela-
tion between operators K and L, the Hodge duality (2.19)
together with (5.10), (6.1), and (6.2), we have

X N ¼ iNþ1ffiffiffiffiffiffiffi�c
p ð�N þ ceÞ: (6.13)

We are now ready to derive the differential equations for
	 so that (6.2) are satisfied. We can cancel the common
exp ðiPk�kc kÞR prefactor in (6.10) and (6.11) (in the
coordinate domain we are using, the operator R is never
zero on any spinor), multiply both equations by ð�iÞj �
ð��h	ix	ÞN�1�j, and sum over j to obtain
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~X	

O
�

� ¼
� ffiffiffiffiffiffiffiffiffi

jX	j
q

ð��h	iÞN�	

�
ð

@x	
þ X0

	

4X	

þ
~�	

X	

�h	i

þ "

2x	

�
�h	i � "

i
ffiffiffi
S

p
2x2	

BðNÞ�0

�O
�

�: (6.14)

Here we have used the ‘‘completeness relations’’

X
�

BðiÞ
�

V�

ð��h�ix�ÞN�1�j ¼ �i
j;

X
j

BðjÞ
�

V 	

ð��h	ix	ÞN�1�j ¼ �	
�; (6.15)

together with the following identities:

XN
j¼0

BðjÞð��h�ix�ÞN�1�j ¼ 0; (6.16)

XN
j¼0

Bðj�1Þð��h�ix�ÞN�1�j ¼ �BðNÞ

x2�
: (6.17)

Using further the formula

�0
ffiffiffi
S

p ¼
ffiffiffiffiffiffiffi�c

p
BðNÞ ; (6.18)

we can rewrite Eq. (6.14) as

� ffiffiffiffiffiffiffiffiffi
jX	j

q
ð��h	iÞN�	

�
ð

@x	
þ X0

	

4X	

þ
~�	

X	

�h	i þ "

2x	

�
�h	i

� "
i
ffiffiffiffiffiffiffi�c

p
2x2	

� ~X	

�O
�

� ¼ 0: (6.19)

We finally note that the operators act only on the 	 spinor,
leaving invariant all the other spinors in the tensor product.
So we are left with the following ordinary differential
equation for each spinor 	:��

d

dx	
þ X0

	

4X	

þ
~�	

X	

�h	i þ "

2x	

�
�h	i

� ð��h	iÞN�	ffiffiffiffiffiffiffiffiffijX	j
p �

"
i
ffiffiffiffiffiffiffi�c

p
2x2	

þ ~X	

��
	 ¼ 0: (6.20)

This final equation is of the same form as for the uncharged
case [18]; the only difference is the appearance of an
extra term proportional to the coupling constant e in (6.6)
and (6.13).

As discussed in Ref. [18], one can, by using the unitary
transformation which makes the � matrices coordinate
dependent

~� a ¼ R�1�aR; (6.21)

achieve the standard separability (without prefactor R) in
the form

c ¼ exp

�
i
X
k

�kc k

�O
	

	; (6.22)

where 	 satisfy Eq. (6.20). The separated solution is an
eigenfunction of operators ~Mj � R�1MjR and Kk, i.e., a

solution of

Kkc ¼ i�kc ; ~Mjc ¼ Xjc : (6.23)

Since from Eq. (4.3) M0 ¼ D, the consequence of
Eqs. (6.1), (6.2), and (6.3) is that the charged Dirac equa-
tion admits a separable spinorial solution. In particular, the
eigenvalue X0 is the mass term.
In conclusion, we have demonstrated complete separa-

tion of variables for a charged Dirac equation in a weakly
charged black hole spacetimes in all dimensions. The
separated equations (6.20) are, for each value of 	, a
coupled system of two first-order equations for two un-
known functions. As such they can be decoupled, yielding
two uncoupled second-order ordinary differential equa-
tions, one for each component of a two-dimensional spinor
	. Let us emphasize that our procedure, leading to the
separated equation (6.20), cannot be applied if instead of
weakly charged black holes we considered weakly magne-
tized black holes. More concretely, we demonstrated in
Sec. III B that for weakly magnetized black holes the
(unique) candidate set of first-order symmetry operators
fMj;Kkg does not commute with the charged Dirac opera-

tor M0 ¼ D as the anomaly conditions (3.27) are not
satisfied for the operatorsMj, j > 0. Consequently, weakly

magnetized black holes do not admit a complete set of
mutually commuting first-order symmetry operators (one
of which is the charged Dirac operator), and the separation
ansatz (6.1), (6.2), and (6.3) breaks down. This is irrespec-
tive of the choice of coordinate system or vielbein.
However, at the moment we cannot exclude a possibility
that a complete set of symmetry operators of the charged
Dirac operator still exists in the weakly magnetized case.
Such a complete set would necessarily have to involve
higher-order symmetry operators. At the moment a general
form of such operators is not known, nor is it well under-
stood what role such operators can play in the separability
of the Dirac equation (see, however, Refs. [34,35]). On the
other hand, it has been demonstrated that already the
particle motion in the weakly magnetized case is in general
chaotic. Therefore it seems plausible that separability of
the charged Dirac equation in weakly magnetized black
holes is unlikely.

VII. SUMMARY

Kerr-NUT-(A)dS rotating black holes in arbitrary di-
mension are distinguished by the remarkable fact that
several equations of physics in such a background can be
solved by a separation of variables. This includes, among
others, the Hamilton-Jacobi, Klein-Gordon, and Dirac
equations. Ultimately, the reason for this is the presence
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of a PKY tensor. It is possible to consider perturbations of
these metrics by turning on an electromagnetic gauge
potential along the directions of the Killing vectors. As
was shown in Ref. [16], among these only the perturbation
that corresponds to a weakly charged black hole is such
that it is compatible with separability of the Hamilton-
Jacobi and Klein-Gordon equations.

In this work we have studied the perturbed metrics from
the point of view of the Dirac equation, analyzing the
presence of symmetry operators of the Dirac equation and
their relation to separability. A discussion of first-order
symmetry operators for the Dirac equation in the presence
of an arbitrary flux can be found in Ref. [20]. In particular, it
is shown there how, in order to build symmetry operators for
the Dirac equation in the presence of Uð1Þ flux, it is neces-
sary to both (i) have Killing-Yano tensors and (ii) satisfy
additional conditions of the absence of anomalies. For all
the perturbed Kerr-NUT metrics, there is a candidate com-
plete set of first-order symmetry operators. However, we
have proved that only for the weakly charged solution there
are no anomalies. For this solution we have shown that all
such operators mutually commute. We have also explicitly
expressed the symmetry operators in a chosen frame,
adapted to the hidden symmetry present in the spacetime,
and demonstrated that in such a frame the Dirac equation
admits a solution by separating variables. These results
generalize those found in Refs. [16,18,21,33].
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APPENDIX A: IMPORTANT IDENTITY

In this Appendix, we prove the identity (3.22). We start
with some auxiliary definitions. Let hðkÞ be the kth
‘‘matrix’’ power of the PKY tensor h,

hðkÞab ¼ haa2h
a2

a3 . . . h
ak

b (A1)

For odd k, it is antisymmetric 2-form. (Note that hðkÞ is
different from hðkÞ.) Since it is both Lie and parallel con-
served along �, we have

d�[

1̂
hð2jþ1Þ ¼ 0: (A2)

We also introduce 1-form with one vector index

!a
ðjÞ ¼ Xa

5 hðjÞ; (A3)

which satisfies

!a
ðjÞ

]
5 hðkÞ ¼ !a

ðjþ1Þ ^ hðk�1Þ: (A4)

In the following. we will need also two standard identi-
ties for the contracted wedge product involving 1-form !,
p-form �, and q-form �:

ð!^�Þ
m̂
�¼ ð�1Þm!^ð�

m̂
�Þþm�

m̂�1
ð!]

5�Þ;
�

m̂
ð!^�Þ ¼ ð�1Þp!^ð�

m̂
�Þþmð!]

5�Þ
m̂�1

�:
(A5)

The identity (3.19) is based on the relation

hðkÞ ^
2mþ1

hðlÞ ¼ 0; (A6)

see the proof in Ref. [21].
Now we can proceed in our proof of (3.22). First, we

show the identity

ðr½a�b	Þ!a
ð2jÞ ^ ðð!b

ð2jÞ
]
5 hðkÞÞ

2̂m
hðlÞÞ ¼ 0: (A7)

Expanding the mixed product with the help of (A5) and
using (A4) and the identity (A6), we obtain

ð!b
ð2jÞ

]
5 hðkÞÞ

2̂m
hðlÞ

¼ !b
ð2jþ1Þ ^ ðhðk�1Þ

2̂m
hðl�1ÞÞ

þ ð2mÞð2m� 1Þð!b
ð2jþ2Þ

]
5 hðk�1ÞÞ ^

2m�2
hðl�1Þ: (A8)

Iterating this relation, we find

ð!b
ð2jÞ

]
5hðkÞÞ

2̂m
hðlÞ

¼Xm
i¼0

ð2mÞ!
ð2m�2iÞ!!

b
ð2jþ2iþ1Þ ^ðhðk�iÞ ^

2m�2i
hðl�iÞÞ: (A9)

Substituting back to (A7), we obtain a sum of terms, each
of which contains the expression5

ðr½a�b	Þ!a
ð2jÞ ^!b

ð2jþ2iþ1Þ ¼ hð2jÞ � ðd�[

1̂
hð2iþ1ÞÞ � hð2jÞ;

(A10)

which vanishes thanks to relation (A2). We thus proved the
relation (A7).
Next, we prove that

ðr½a�b	Þðea ^ hðkÞÞ ^
2mþ1

ðeb ^ hðlÞÞ ¼ 0: (A11)

Employing again the relations (A5) for mixed products, the
identity (A6), the just proven relations (A7), the antisym-
metry of r½a�b	, and relation (A4), we find

ðr½a�b	Þðea ^ hðkÞÞ ^
2mþ1

ðeb ^ hðlÞÞ
¼ ð2mþ 1Þð2mÞðr½a�b	Þð!a

ð2Þ ^ hðkÞÞ ^
2m�1

ð!b
ð2Þ ^ hðlÞÞ:

(A12)

5Here ‘‘�’’ indicates the contraction, i.e., ðhð2jÞ � ð. . .Þ �
hð2jÞÞab ¼ hð2jÞa

cð. . .Þcdhð2jÞdb.
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By defining ea ¼ !a
ð0Þ, this expression suggests the recur-

rence relation between !ð2jÞ and !ð2jþ2Þ, which can be

proved by the same procedure. Iterating it (mþ 1) times,
in the last step the expression annihilates completely.

Finally, the identity (A11) implies the desired relation
(3.22). Indeed, using the standard relations for the Clifford
anticommutator [see, e.g., (A19) of Ref. [21]], we get

ðr½a�b	Þ½e½a ^ hðkÞ; eb	 ^ hðlÞ	þ
¼ X

m

2ð�1Þm
ð2mþ 1Þ! ðr½a�b	Þðea ^ hðkÞÞ ^

2mþ1
ðeb ^ hðlÞÞ ¼ 0:

(A13)

APPENDIX B: DIRECT PROOF OF MUTUAL
COMMUTATIVITY OF OPERATORS Mj

In this section, we prove mutual commutativity of op-
erators Mj, using their explicit representation (5.16); the

presentation closely follows Sec. VI.A in Ref. [18]. Let us
start from the expression for Mj (5.16) and apply the

identity (6.18), together with

X
�

BðjÞ
�

�h�ix�V�

¼ BðjÞ

BðNÞ ; (B1)

B ðj�1Þ ¼ BðjÞX
�

1

�h�ix�
�BðNÞX

�

BðjÞ
�

V�x
2
�

; (B2)

to obtain

Mj¼ ij
X
�

ffiffiffiffiffiffiffi
Q�

q
BðjÞ

�

�
ð

@x�
þ X0

�

4X�

þ1

2

X
	

	��

1

x���h�	ix	

� i�h�i
X�

X
k

ð�x2�ÞN�1�k ð

@c k

þ "

2x�
�e�h�i

�
��

�1

2
"ijþ1

ffiffiffiffiffiffiffi�c
p X

�

BðjÞ
�

V�

�
1

x2�
þ 1

�h�ix�

�
2

ic

ð

@c N

þ2e

��
:

(B3)

In order to prove commutativity of these operators, we
introduce new ‘‘auxiliary’’ operators

~M j � R�1MjR; (B4)

with R given by (6.4). Then, obviously, if

½ ~Mj; ~Mk	 ¼ R�1½Mj;Mk	R ¼ 0; (B5)

the same is true for the operators Mj. We calculate

MjR ¼ ij
X
�

ffiffiffiffiffiffiffi
Q�

q
BðjÞ

� RR�1��R

�
ð

@x�
þ X0

�

4X�

þ "

2x�

þ i�h�i
X�

X
k

ð�x2�ÞN�1�k ð

@c k

þ e�h�i
�

� 1

2
"ijþ1

ffiffiffiffiffiffiffi�c
p X

�

BðjÞ
�

V�

�
1

x2�

þ 1

�h�ix�

�
2

ic

ð

@c N

þ 2e

��
R; (B6)

where we have used (6.8). The R factor in the " term on the
right-hand side can be brought to the front, whereas for the
product R�1��R we use (6.7). So we get

~M j ¼ ij
X
�

BðjÞ
�

V�

~M�; (B7)

where the operators

~M� ¼
ffiffiffiffiffiffiffiffiffiffi
jX�j

q �
ð

@x�
þ 1

4

X0
�

X�

þ "

2x�
� e�h�i

� i�h�i
X�

X
k

ð�x2�ÞN�1�k ð

@c k

�
ð��h�iÞN���h�i

� i

2
"

ffiffiffiffiffiffiffi�c
p �

1

x2�
þ 1

�h�ix�

�
2

ic

ð

@c N

þ 2e

��
(B8)

act only on spinor � and hence ½ ~M�; ~M		 ¼ 0. Using

(6.15) we can invert the relation (B7):

~M� ¼ XN�1

j¼0

ð�iÞjð��h�ix�ÞN�1�j ~Mj: (B9)

Following now the procedure adopted in Ref. [36], and
using that ½ ~M�; ð��h	ix	ÞN�1�j	 ¼ 0, we establish that

XN�1

j;k¼0

ð�iÞjþkð��h�ix�ÞN�1�jð��h	ix	ÞN�1�k½ ~Mj; ~Mk	 ¼ 0;

(B10)

from which Eq. (B5) follows.
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