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A new method for separating variables in the Maxwell equations in four- and higher-dimensional
Kerr–(A)dS spacetimes proposed recently by Lunin is generalized to any off-shell metric that admits a
principal Killing–Yano tensor. The key observation is that Lunin’s ansatz for the vector potential can be
formulated in a covariant form—in terms of the principal tensor. In particular, focusing on the four-
dimensional case we demonstrate separability of Maxwell’s equations in the Kerr–NUT–(A)dS and the
Plebański–Demiański family of spacetimes. The new method of separation of variables is quite different
from the standard approach based on the Newman–Penrose formalism.
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I. INTRODUCTION

A study of electromagnetic fields in the vicinity of
(rotating) black holes in four dimensions yields interesting
astrophysical applications and has been investigated by
many authors, see e.g. [1–8]. See also [9–15] for the studies
in higher dimensions.
In the test field approximation, that is for a small field

amplitude and when the corresponding backreaction on the
metric can be neglected, the electromagnetic field is
described by a solution of linear Maxwell equations in a
given metric. The remarkable fact discovered by Teukolsky
[16,17] is that for a vacuum rotating black hole, described by
the Kerr geometry [18], the Maxwell equations can be
decoupled and the resulting scalar (master) equations admit
complete separation of variables. This result was later
generalized by Torres del Castillo [19] to a general class
of type D electrovacuum spacetimes described by the
Plebański–Demiański metric [20]. Both these results were
derived by employing the Newman–Penrose formalism
[21–23].
The separation of variables in higher-dimensional

Maxwell equations remained an open problem for a long
time. A partial success was achieved in [24] where it was

demonstrated that such equations can be decoupled, using
the higher-dimensional generalization of the Newman–
Penrose formalism [25], provided that the background
spacetime is Kundt, i.e., it admits a null geodesic con-
gruence which is all: shear-free, twist-free, and expansion-
free. Unfortunately, the higher-dimensional rotating black
hole spacetimes do not belong to this class. However, as
shown in [24] the results can be applied to some special
limiting cases, including in particular the near horizon
geometries of extremal black holes (see also [26,27]).
A remarkable progress regarding the separability of the

Maxwell equations in rotating black hole spacetimes has
been recently achieved by Lunin [28]. In his paper, Lunin
proposed a new ansatz for the vector potential (rather than
the field strength as customary in the Newman–Penrose
formalism) and showed that it admits a separation of
variables. The new method works equally in four and
higher dimensions—the separability of Maxwell’s equa-
tions in the four-dimensional Kerr-(A)dS spacetime as well
as for its higher-dimensional generalizations with [29,30]
or without [31] the cosmological constant could be explic-
itly demonstrated [28]. It is important to mention that such
a separability occurs in special canonical coordinates. The
very existence of these coordinates is intrinsically con-
nected with a principal tensor, a special nondegenerate
closed conformal Killing–Yano 2-form [32]. Such a tensor
has been known to imply separability of the Hamilton–
Jacobi, Klein–Gordon, and Dirac equations in higher-
dimensional rotating black hole spacetimes [33–38].
There are some partial results also for other fields
[39,40], however, the link to the Maxwell equations
remained hidden, cf. also [32].
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In the present paper we uncover this connection and
demonstrate that the separability ansatz proposed by Lunin
for the potential of the electromagnetic field can be
presented in a covariant way, in terms of the principal
tensor. Such a method is therefore applicable to any
spacetime admitting the principal tensor. In the present
paper we focus on the case of four-dimensional metrics and
demonstrate the separability of the Maxwell equations in
the Kerr–NUT–(A)dS and the Plebański–Demiański space-
times. The higher-dimensional version of the covariant
approach (based on the principal tensor) will be presented
elsewhere [41].

II. FROM PLEBAŃSKI–DEMIAŃSKI TO
OFF-SHELL CANONICAL METRIC

The Plebański–Demiański solution [20] describes the
most general type D electro-vacuum solution of Einstein–
Maxwell equations with two commuting isometries. The
ansatz takes the following form:

g̃ ¼ Ω2g; F ¼ dA; ð1Þ
where

g ¼ −
Δr

Σ
ðdτ þ y2dψÞ2 þ Δy

Σ
ðdτ − r2dψÞ2

þ Σ
Δr

dr2 þ Σ
Δy

dy2; ð2Þ

A ¼ −
er
Σ
ðdτ þ y2dψÞ − gy

Σ
ðdτ − r2dψÞ: ð3Þ

Here,

Σ ¼ ffiffiffiffiffiffi
−g

p ¼ r2 þ y2; ð4Þ
and the conformal factor Ω reads

Ω−1 ¼ 1 − yr: ð5Þ
This ansatz obeys the Einstein–Maxwell equations with the
electric and magnetic charges e and g and the cosmological
constant Λ provided the metric functions Δy ¼ ΔyðyÞ and
Δr ¼ ΔrðrÞ take the following form:

Δr ¼ kþe2þg2−2mrþ ϵr2−2nr3− ðkþΛ=3Þr4;
Δy ¼ kþ2ny− ϵy2þ2my3− ðkþe2þg2þΛ=3Þy4: ð6Þ
Constants k, m, ϵ, n are free parameters that are related to
mass, rotation, NUT parameter, and acceleration. We refer
to [42] for details and for a discussion and the interpretation
of special cases of the Plebański–Demiański metric.
The conformal metric (2) is of its own interest. It gives

rise to a vacuum solution of the Einstein equations provided
one chooses the following metric functions Δr and Δy:

Δr ¼ ðr2 þ a2Þð1 − Λr2=3Þ − 2Mr;

Δy ¼ ða2 − y2Þð1þ Λy2=3Þ þ 2Ny: ð7Þ

With these identifications, we recover the so-called
Kerr–NUT–(A)dS metric [43], characterized by the mass
M, rotation parameter a, and the NUT parameter N. Λ as
earlier is the cosmological constant.1

In what follows we want to study the electromagnetic
fields in the Plebański–Demiański spacetime g̃. Let us
denote by A the corresponding four-potential of the test
Maxwell field.2 Because of the conformal invariance of
Maxwell’s equations in four dimensions, the solutions Ã
and A for the conformally related metrics g̃ and g are
identical. This suggests that for our calculations we might
be able to use the Kerr–NUT–(A)dS metric g, (2), instead
of the metric g̃, (1). (This is a very attractive idea as, as we
shall see in the next section, the metric g admits a powerful
extra symmetry that no longer exists for g̃.) However, the
two on-shell metrics are not simply conformally related,
they have different metric functions Δr and Δy, cf. (6) and
(7). Nevertheless, as we shall see the separability property
is directly linked to the principal tensor and prevails for any
choice of metric functions Δy ¼ ΔyðyÞ and Δr ¼ ΔrðrÞ in
(2), and thus will also be valid for the special metric
functions (6) in the metric g̃.
In other words, in order to demonstrate the separation of

variables for the Maxwell equations in the Plebański–
Demiański metric, it is enough to show it for the metric g,
(2), with arbitrary metric functions Δy ¼ ΔyðyÞ and
Δr ¼ ΔrðrÞ. We shall call such a Kerr–NUT–(A)dS metric
the off-shell canonical metric.

III. PRINCIPAL TENSOR

The remarkable property of the off-shell canonical
metric is that it admits a powerful symmetry encoded in
the so called principal tensor. The principal tensor h is a
non-degenerate closed conformal Killing–Yano 2-form. It
is given by

h ¼ ydy ∧ ðdτ − r2dψÞ − rdr ∧ ðdτ þ y2dψÞ; ð8Þ
and obeys the equation

∇chab ¼ gcaξb − gcbξa; ξa ¼
1

D − 1
∇bhba: ð9Þ

This tensor generates a number of explicit and hidden
symmetries, and determines many remarkable properties of
the geometry, see [32].3

1Formally, the Kerr–NUT–(A)dS geometry belongs to the
Plebański–Demiański class (1). However, this is only obvious
upon a proper redefinition of both coordinates and parameters,
see [42].

2Strictly speaking one must assume that A and A are two
independent vector fields, otherwise the perturbation expansion
would be inconsistent.

3Let us stress that the original Plebański–Demiański metric (1)
does not admit the principal tensor—one only has a much weaker
conformal Killing–Yano tensor, given by h̃ ¼ Ω3h [44].

FROLOV, KRTOUŠ, and KUBIZŇÁK PHYS. REV. D 97, 101701 (2018)

101701-2



In particular, it is possible to show that ξ is a Killing
vector, ξ ¼ ∂τ. We call it a primary Killing vector. We also
get a Killing–Yano tensor f ¼ �h, and the associated
conformal Killing tensor Q and Killing tensor K, given by

Q ¼ −h · h; K ¼ −f · f : ð10Þ
Here, the dot denotes a contraction of two tensors with
respect to their nearby indices. That is, in components the
previous relations take the following form:

Qab ¼ hachbc; Kab ¼ facfbc: ð11Þ
The vector ζ ¼ K · ξ is a Killing vector, ζ ¼ ∂ψ , and we call
it a secondary Killing vector.
The Killing tensor K and the conformal Killing tensor Q

obey the following properties:

K − Q ¼ ðr2 − y2Þg; K · Q ¼ r2y2g; ð12Þ

∇bKb
a ¼ −

1

2
∇aKb

b; ð13Þ

see Eqs. (5.13) and (4.2) of [32]. Using relations (12), one
can show that

ðgþ μ2KÞ · ðg − μ2QÞ ¼ Ag; ð14Þ
where

A ¼ qrqy; qr ¼ 1þ μ2r2; qy ¼ 1 − μ2y2: ð15Þ
Let us finally introduce the following four vectors:

l� ¼ ∂r �
1

Δr
ðr2∂τ þ ∂ψ Þ; ð16Þ

m� ¼ ∂y �
i
Δy

ð−y2∂τ þ ∂ψÞ: ð17Þ

These vectors are null and have the following normali-
zation:

lþ · l− ¼ 2Σ
Δr

; mþ ·m− ¼ 2Σ
Δy

; ð18Þ

while other scalar products vanish. (The normalization of
the vectors l� is chosen so that they are tangent to null
geodesics in the affine parametrization.) They are the
“eigenvectors” of the principal tensor

h · l� ¼ �rl�; h ·m� ¼ �iym�: ð19Þ
The corresponding eigenvalues r and y are two of the
canonical coordinates of the metric (2). The other two
ðτ;ψÞ are the Killing coordinates generated from h as
described above. In other words, the canonical coordinates
ðτ; r; y;ψÞ are uniquely determined by the principal tensor.
It is in these coordinates the Maxwell equations will
separate.

IV. SEPARABILITY OF MAXWELL EQUATIONS

A. Polarization tensor B

In order to construct a vector potential A we shall use a
special tensor B, which we call a polarization tensor. We
define it by the following relation:

ðgab þ iμhabÞBbc ¼ δca; ð20Þ
where μ is a (real) parameter related to the polarization of
the electromagnetic wave. In the index-free notation the
previous definition reads ðgþ iμhÞ · B ¼ I.
Using (14), and denoting by

k ¼ gþ μ2K; ð21Þ
we find that the polarization tensor B can be written as

B¼ 1

A
k · ðg− iμhÞ¼ 1

A
ðg− iμhþμ2K− iμ3K ·hÞ: ð22Þ

Let us emphasize that this is a quite nontrivial relation. The
tensor B is defined as an inverse of a tensor which contains
h linearly. The relation (22) shows that combination AB can
be written as a third order polynomial in h.

B. Field ansatz

Let us consider the following ansatz for the electromag-
netic field potential A:

A ¼ B · ∇Z; ð23Þ
where Z is a scalar function. We shall be looking for
solutions of the Maxwell equations that admit the separa-
tion of variables in the following sense: the scalar function
Z is a product of four functions, each of which is a function
of only one of the coordinates ðτ;ψ ; r; yÞ

Z ¼ RðrÞYðyÞE; E ¼ eiωτeim̃ψ : ð24Þ
The exponents which enter E are eigenfunctions of the
derivatives along primary ξ ¼ ∂τ and secondary ζ ¼ ∂ψ
Killing vectors4

−i£ξeiωτ ¼ ωeiωτ; −i£ζeim̃ψ ¼ m̃eim̃ψ : ð26Þ

The ansatz (23) for the potential is closely related to the
one proposed by Lunin [28]. In order to make the
corresponding comparison, it is sufficient to write explicitly
the components of the polarization tensor B in the frame

4Let us mention that for the Kerr metric the canonical coor-
dinates ðτ;ψÞ differ from the standard time, t, and angle, ϕ,
coordinates by: τ ¼ t − aϕ and ψ ¼ ϕ=a. One also has y ¼
a cos θ. In these ðt;ϕÞ coordinates the function E takes the form

E ¼ eiωteimϕ; ð25Þ
wherem ¼ a−1m̃ − aω. The coordinateϕ is periodic with a period
2π. As a result the “quantum number” m is “quantized” and takes
integer values.
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ðl�;m�Þ in canonical coordinates r and y ¼ a cos θ. Upon
substituting μ ¼ ðμLaÞ−1 in B, and up to a total constant
normalization, the potential A given by (23) coincides with
the “magnetic mode” (using the terminology of [28]),
where μL is the μ-parameter used in Lunin’s paper. The
other, so called “electric mode” of Lunin’s paper, coincides,
up to a general constant factor, with the expression (23)
provided one changes B → I − B and sets μL ¼ −μ.
However, a shift of B by a constant proportional to I is
nothing but a pure gauge transformation that does not
change the strength of the field F.5

After these general remarks let us return to our main
problem. We shall proceed as follows. We start from the
field ansatz A given by (23), and impose the Lorenz gauge
fixing condition. As a result we obtain a second order
partial differential equation for the generating scalar func-
tion Z. We show that this equation can be solved by the
separation of variables and derive the corresponding
second-order ordinary differential equations (ODEs) for
the mode functions RðrÞ and YðyÞ. Let us emphasize that
this separation of variables is valid off-shell, that is for
arbitrary functions ΔrðrÞ and ΔyðyÞ in (2). Finally, by
substituting the obtained solution Z to the Maxwell field
equations we demonstrate that they are identically satisfied.

C. Lorenz gauge condition

The Lorenz gauge condition reads

∇ · A ¼ 0: ð28Þ
By employing the ansatz (23) for the potential A, it can be
written as

1

A
½∇ · ðk · ∇ZÞ − ν · k · ∇Z þ iμW · ∇Z� ¼ 0: ð29Þ

Here,

ν ¼ d lnA ¼ 2μ2
�
r
qr

dr −
y
qy

dy

�
; ð30Þ

W ¼ ν · k · h − ∇ · ðk · hÞ

¼
�
1 −

2

qr
−

2

qy

�
ðξ − μ2ζÞ; ð31Þ

where ξ and ζ are the primary and secondary Killing
vectors. The last formula follows upon noting that

ν · k ¼ 2μ2

Σ

�
rΔrqy
qr

∂r −
yΔyqr
qy

∂y
�
;

ν · k · h ¼ 2μ2

qrqy
½ðμ4r2y2 þ 1Þζ − ð2μ2r2y2 − r2 þ y2Þξ�;

∇ · ðk · hÞ ¼ 3ξ − μ2ζ: ð32Þ
Using (26), the contribution of the last term in (30) is thus

iμWaZ;a ¼ μσ

�
1 −

2

qr
−

2

qy

�
Z; ð33Þ

where

σ ¼ μ2m̃ − ω: ð34Þ
Let us now turn to the first term. We shall denote by

prime a derivative with respect to r, and by dot a derivative
with respect to y, we also define

R1¼
R0

R
; R2¼

R00

R
; Y1¼

_Y
Y
; Y2 ¼

Ÿ
Y
: ð35Þ

Using these notations, we find

∇aðkabZ;bÞ ¼
A
Σ

�
X 0

qr
þ U0

qy

�
Z; ð36Þ

where

X0 ¼ ΔrR2 þ Δ0
rR1 þ

ðωqr þ σÞ2
μ4Δr

þ Cqr; ð37Þ

U0 ¼ ΔyY2 þ _ΔyY1 −
ðωqy þ σÞ2

μ4Δy
− Cqy: ð38Þ

The last terms in (37) and (38), proportional to an arbitrary
constant C, reflects an ambiguity in the choice of X and U
in the expression (36).
Adding the linear in derivatives term −νaOabZ;b to

∇aðOabZ;bÞ results in the following changes in expressions
for X0 and U0, see (37) and (38)

Δ0
r → Δ0

r −
2μ2r
qr

Δr; _Δy → _Δy þ
2μ2y
qy

Δy: ð39Þ

It is also possible to check that adding the term iμWcZ;c,
(33), to the obtained quantity results in the addition of the
following terms to X 0, U0, respectively:

2 − qr
μqr

σ; −
2 − qy
μqy

σ: ð40Þ

Thus we found that the Lorenz condition (28) for the
ansatz (23) can be written in the following form:

5A natural generalization of the ansatz (20) is a choice of the
polarization tensor in the form

B ¼ aI þ bh
cI þ dh

: ð27Þ

However, the corresponding rational function of h can be written
in the form B ¼ C0I þ C1=ðI þ C2hÞ with a proper choice of
constants Ci. This implies that if one sets C2 ¼ iμ, the corre-
sponding potential differs from (23) by a pure gauge with
coefficient C0 and by a change of the normalization by factor C1.
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∇ · A ¼ Z
Σ

�
X
qr

þ U
qy

�
¼ 0; ð41Þ

where

X ¼ ΔrR2 þ
�
Δ0

r −
2μ2r
qr

Δr

�
R1 þ

ðωqr þ σÞ2
μ4Δr

þ 2 − qr
μqr

σ þ Cqr; ð42Þ

U ¼ ΔyY2 þ
�
_Δy þ

2μ2y
qy

Δy

�
Y1

−
ðωqy þ σÞ2

μ4Δy
−
2 − qy
μqy

σ − Cqy: ð43Þ

Of course, since X ¼ XðrÞ and U ¼ UðyÞ, the above
requirement implies that we have to have X ¼ 0 ¼ U.
These equations can be written in the following explicit
form:
�
Δr

qr
R0
�0

þ
�ðωqr þ σÞ2

μ4Δrqr
þ 2 − qr

μq2r
σ þ C

�
R ¼ 0; ð44Þ

�
Δy

qy
_Y

�
·
−
�ðωqy þ σÞ2

μ4Δyqy
þ 2 − qy

μq2y
σ þ C

�
Y ¼ 0: ð45Þ

Let us notice that the parameter m̃ enters these equations
only together with other parameters in a special combina-
tion, the quantity σ. Hence, the same separated equations
are valid also in the Boyer–Lindquist type coordinates
ðt;ϕÞ provided one sets

σ ¼ μ2aðmþ aωÞ − ω ¼ μ2a2m − ωð1 − μ2a2Þ: ð46Þ

D. Field equations

Let us now turn to the Maxwell field equations:

Fab ¼ 2A½b;a�; Ja ¼ Fab
;b: ð47Þ

In particular, we are interested in the source free fields, for
which the current J vanishes, yielding ð ffiffiffiffiffiffi−gp

FabÞ;b ¼ 0.
Let us first discuss general properties of J for the field

ansatz (23). We split the coordinates into two groups

yν ¼ ðr; yÞ; ψ j ¼ ðτ;ψÞ; ð48Þ

with indices taking mnemonic values ν; κ;… ¼ r, y and
i; j;… ¼ τ, ψ . It is easy to see that for the canonical metric
(2) terms with mixed indices vanish, gνj ¼ gνj ¼ 0. One has

ffiffiffiffiffiffi−gp
Jν ¼ ð ffiffiffiffiffiffi

−g
p

FνκÞ;κ þ
ffiffiffiffiffiffi
−g

p
Fνj

;j: ð49Þ

Denote by ϵνκ a two-dimensional antisymmetric object such
that ϵry ¼ 1 and nj ¼ iðωδτj þ m̃δψj Þ. Then one can rename

components of the electromagnetic field as

F ¼ ffiffiffiffiffiffi
−g

p
Fry; Pν ¼ ffiffiffiffiffiffi

−g
p

Fνjnj: ð50Þ
In terms of these, conditions Jν ¼ 0 take the form

ϵνκF ;κ þ Pν ¼ 0: ð51Þ
Calculations give

F ¼ −
μZ
AΣ

½qrΔryðm̃ − ωy2ÞR1 þ qyΔyrðm̃þ ωr2ÞY1

− μΣΔrΔyR1Y1�; ð52Þ

Pr ¼ −Z
μrΔrðm̃þ ωr2Þ

Σqr
R2 þ � � � ; ð53Þ

Py ¼ þZ
μyΔyðm̃ − ωy2Þ

Σqy
Y2 þ � � � : ð54Þ

Here, the dots denote terms which contain less than two
derivatives. These relations imply that the components Jν of
the field equations do not contain derivatives of the mode
functions R and Y higher than the second ones. Solving the
equationsJr ¼ Jy ¼ 0with respect toR2 andY2 one obtains
expressions which are identical with those that follow from
equations X ¼ U ¼ 0, (42) and (43), provided one imposes

C ¼ 0: ð55Þ
The current Ja obeys the conservation law Ja;a ¼ 0 which
can be written in the form

ð ffiffiffiffiffiffi
−g

p
JνÞ;ν þ

ffiffiffiffiffiffi
−g

p
njJj ¼ 0: ð56Þ

When Jν ¼ 0, one has njJj ¼ 0. The direct calculations
show that each of the components Jj vanishes identically.
The obtained results mean that the Maxwell field

equations for the vector potential ansatz (23) are satisfied
if the separated equations (44) and (45) with C ¼ 0 hold
true. Provided these equations, the Lorenz gauge condition
is also automatically valid for this ansatz.

V. DISCUSSION

In this paper we have demonstrated that for the vector
potential (23), the Maxwell equations on the background of
the off-shell canonical metric (2) can be solved by the
method of separation of variables. The ansatz (23) is a
covariant generalization of the ansatz proposed by Lunin
[28]. As shown in this paper, it can be written in terms of
the principal tensor h. The remarkable property of
the polarization tensor B is that although it is a rational
function of h, the combination AB is a third order
polynomial in h.
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We imposed the Lorenz gauge condition on the
potential A and showed that it is satisfied provided the
functions RðrÞ and YðyÞ which enter the mode function Z
obey homogeneous second order ODEs (44) and (45). These
equations include one arbitrary constant, C. If this constant
vanishes, C ¼ 0, the Maxwell equations are also satisfied.
In particular, the separation equations for the Plebański–

Demiański metric can be obtained by substituting the
expressions (6) for Δr and Δy into (44) and (45). Of
course, the same equations are also valid for the
Kerr–NUT–(A)dS metric, characterized by functions (7).
The results on the separability of Maxwell equations,

established in this paper for the four-dimensional off-shell
canonical metric by direct calculations, can be generalized
to a general higher-dimensional case. The proof of this is
quite involved and uses many remarkable properties of the
principal tensor. This derivation is presented in [41].
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