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We consider the Klein-Gordon equation in generalized higher-dimensional Kerr-NUT-(A)dS spacetime
without imposing any restrictions on the functional parameters characterizing the metric. We establish
commutativity of the second-order operators constructed from the Killing tensors found in [J. High Energy
Phys. 02 (2007) 004] and show that these operators, along with the first-order operators originating from
the Killing vectors, form a complete set of commuting symmetry operators (i.e., integrals of motion) for
the Klein-Gordon equation. Moreover, we demonstrate that the separated solutions of the Klein-Gordon
equation obtained in [J. High Energy Phys. 02 (2007) 005] are joint eigenfunctions for all of these
operators. We also present an explicit form of the zero mode for the Klein-Gordon equation with zero
mass. In the semiclassical approximation we find that the separated solutions of the Hamilton-Jacobi
equation for geodesic motion are also solutions for a set of Hamilton-Jacobi-type equations which
correspond to the quadratic conserved quantities arising from the above Killing tensors.
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I. INTRODUCTION

Investigation of the properties of higher-dimensional
black-hole spacetimes has recently attracted considerable
attention, in particular, in connection with the string theory.
The metrics describing black holes of increasing generality
were found in [1–5]. The most general metric of this kind
known so far corresponds to a higher-dimensional gener-
ally rotating (however neither charged nor accelerated)
black hole with the NUT parameters and arbitrary cosmo-
logical constant. This metric was found by Chen, Lü, and
Pope [6] in the form which generalizes Carter’s four-
dimensional Kerr-NUT-(anti-)de Sitter metric [7,8].

The spacetime with the metric from [6] has a lot of
interesting properties. InD dimensions it possesses explicit
and hidden symmetries encoded in the series of n � �D=2�
rank-two Killing tensors and D� n Killing vectors. The
former ones can be constructed from the so-called princi-
pal Killing-Yano tensor [9], and in fact the spacetime in
question is the only one admitting a rank-two closed con-
formal Killing-Yano tensor with certain further properties
[10]. The symmetries allow one to define a complete set of
D quantities conserved along geodesics. These quantities
are linear and quadratic in canonical momenta. Moreover,
they are functionally independent and in involution [11,12]
and thus their existence guarantees complete integrability
of the geodesic motion.

The existence of such integrals of motion is intimately
related to separability of the Hamilton-Jacobi and Klein-
Gordon equations. In [13] it was shown that the presence of
these integrals yields the so-called separability structure.
The latter guarantees separability of the Hamilton-Jacobi
equation and, for the Einstein spaces, also separability of
the Klein-Gordon equation. Separability of the latter equa-
tion in the spacetime under study was explicitly demon-
strated in [14].

In the present paper we discuss operator counterparts of
the conserved quantities constructed from the Killing
vectors and rank-two Killing tensors. Namely, we convert
the integrals of motion into operators using the rule
p! �i�r and employing the symmetric ordering of
derivatives, and we demonstrate that all these operators
commute. Since one of these operators is, up to an overall
constant factor, the Klein-Gordon operator itself, we thus
obtain symmetry operators for the Klein-Gordon equation
in the sense of [15,16]. Moreover, we show that the sepa-
rated solutions of the Klein-Gordon equation found in [14]
are joint eigenfunctions of all symmetry operators with
eigenvalues corresponding to the separation constants. As
a byproduct, we obtain a zero mode solution (30) for the
Klein-Gordon equation with zero mass.

We further demonstrate that semiclassical approxima-
tions of the eigenvalue equations yield a set of Hamilton-
Jacobi-type equations. The latter can be solved using the
separation of variables in the same fashion as in [14].

It is worth noticing that all these properties actually hold
for a broader class of spacetimes than just the black-hole
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spacetimes of [6]. These properties depend on the algebraic
structure of the metric (1) rather than on the explicit form
of metric functions X�. For this reason in what follows we
do not require our metric to satisfy the vacuum Einstein
equation.

II. PRELIMINARIES

Consider the D-dimensional spacetime with the metric
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Here n � �D=2�, " � D� 2n, and c is an arbitrary con-
stant; x�, � � 1; . . . ; n correspond to radial and latitudinal
directions while  k, k � 0; . . . ; n� "� 1 correspond to
temporal and longitudinal directions. The radial coordinate
and some other related quantities are actually rescaled by
the imaginary unit i in order to bring the metric into a more
symmetric and compact form, cf. e.g. [6]. The signature of
the metric depends on the signs of the metric functions;
for the physically relevant ranges of coordinates it is
�� � . . .��.

We use Latin indices from the beginning of the alphabet
to label the whole coordinate set: fxag � fx�;  kg, where
a � 1; . . . ; D, � � 1; . . . ; n, and k � 0; . . . ; n� "� 1.
The non-normalized one-forms f��; ��̂g that diagonalize
the metric, and the dual vector frame f��; ��̂g have the
form
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The quantities �0̂ and �0̂ are defined only for odd D �
2n� 1. By @x� and @ k we denote the coordinate vectors.

The functions U�, A�k�� , U, and A�k� used below are
defined as follows:
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These functions satisfy the following important relations
(see e.g. [14])
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for i; j � 0; . . . ; n� 1 and �; � � 1; . . . ; n. The determi-
nant of the metric in the coordinates fx�;  kg reads

 g � detgab � �cA�n��"U2: (5)

In the above definitions we did not specify the explicit
form of the functions X�. In what follows we just assume
that X� � X��x��, � � 1; . . . ; n, i.e., each X� is a func-
tion of a single variable x�. In general, the metric (1) then
does not satisfy the vacuum Einstein equations. We would
recover the vacuum black-hole spacetime [6,17] by setting

 X� � b�x
1�"
� � "

c

x2
�
�
Xn
k�"

ckx
2k
� : (6)

The constants c, ck, and b� are then related to the cosmo-
logical constant, angular momenta, mass, and NUT
charges.

The spacetime with the metric (1) possesses explicit
symmetries given by the Killing vectors

 L �k� � @ k ; k � 0; . . . ; n� "� 1; (7)

and hidden symmetries that can be generated using the
principal Killing-Yano tensor [9,18]. Namely, it was shown
in [9] that (1) admits a series of rank-two Killing tensors
K�j�, j � 0; . . . ; n� 1 which are diagonal in the frame (2)
and read

 K �j� �
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In particular, for j � 0 we have K�0� � g�1, where g�1

is the contravariant metric. We use the Killing tensors with
contravariant indices as they are more convenient for the
construction of conserved quantities and symmetry opera-
tors used below.

Let M be our spacetime with the metric (1) and T 	M
be the corresponding cotangent bundle. The latter is natu-
rally endowed with the canonical Poisson bracket. Let p be
the one-form of canonical momenta, so that the compo-
nents pa of p are canonically conjugate to xa, a �
1; . . . ; D. Then the above Killing vectors and tensors gen-
erate conserved quantities for the geodesic motion on
T 	M. The conserved quantities in question are linear
and quadratic in p and read
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 l�k� � L�k� � p; k � 0; . . . ; n� "� 1;

k�j� � p � K�j� � p; j � 0; . . . ; n� 1:
(9)

Here and below � denotes contraction.
It was proved in [12] that these quantities are function-

ally independent and in involution with respect to the
canonical Poisson bracket, and hence the geodesic motion
on T 	M is completely integrable.

Recall that the geodesic motion in this context is gen-
erated by the Hamiltonian H � 1

2 k�0� �
1
2p � g

�1 � p, and
the fact that l�k� and k�j� are conserved quantities (i.e.,
integrals) for the geodesic motion means that the l�k� and
k�j� Poisson commute with H.

III. SYMMETRY OPERATORS AND
SEPARABILITY FOR THE KLEIN-GORDON

EQUATION

It is natural to study the operators obtained from
the above conserved quantities using the heuristic rule
p! �i�r, where r is the usual covariant derivative
with respect to the metric g. Upon fixing the symmetric
operator ordering for the second-order operators we define

 L �k� � �i�L�k� � r; K�j� � ��2r � �K�j� � r�:

(10)

We employ here the convention that the square brackets do
not prevent the action of the derivatives to the right. Here �
is a constant giving a scale to be used in order to obtain a
semiclassical (geometric-optical) approximation in the
next section. Of course, in the quantum context � would
be nothing but the Planck constant @. Writing out the above
operators in the coordinates fx�;  kg we obtain

 L �k� � �i�
@
@ k

; k � 0; . . . ; n� "� 1; (11)

 

K�j� � ��
2
Xn
��1

A�j��
U�

�
@
@x�

�
X�

@
@x�

�
� "

X�
x�

@
@x�

�
1

X�

� Xn�"�1

k�0

��x2
��
n�1�k @

@ k

�
2
�

� "
�2A�j�

cA�n�

�
@
@ n

�
2
; j � 0; . . . ; n� 1: (12)

Here we used the fact that K�j� from (10) can be written as
K�j� � ��

2g�1=2@a�g
1=2Kab

�j�@b�, Eq. (5), and a trivial

identity @
@x�
�A�j�� U=U�� � 0.

In [9] it was shown that the ‘‘quasiclassical limits’’ l�k�
and k�j� of L�k� and K�j� are in involution, i.e., they Poisson
commute. However, the argument of [9] does not directly
imply the commutativity of the corresponding ‘‘quantum’’
operators, i.e., of L�k� and K�j�.

Our goal is to show that the operators L�k� and K�j�

commute for all k � 0; . . . ; n� "� 1 and j � 0; . . . ;
n� 1.

The commutators of L�k� among themselves and of L�k�
with K�j� obviously vanish, i.e.,

 �L�k�;L�l�� � 0; �L�k�;K�j�� � 0 (13)

for all k; l � 0; . . . ; n� "� 1 and j � 0; . . . ; n� 1, and
we only have to prove that

 �K�i�;K�j�� � 0 (14)

for all i; j � 0; . . . ; n� 1.
To this end we first observe that the operators K�j� can

be written as
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The operators (16) enjoy a remarkable property: for any
given� the operator ~K��� involves only @=@x� and x� but
does not involve @=@x� and x� for � � �. Therefore ~K���

commute, i.e., we have

 � ~K���; ~K���� � 0 (17)

for all �; � � 1; . . . ; n.
Using the identities (4) we find that
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k�0

��x2
��
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and hence the commutativity of ~K��� entails that of K�j�.
Indeed, consider (17) for � � � and rewrite it as
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~K���
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Using (18) for ~K��� on the left-hand side of (19) and for
~K��� on the right-hand side of (19) and employing a trivial

identity � ~K���; ��x2
��
n�1�l� � 0 valid for � � � yields
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Again using (18) we see that (20) boils down to
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Xn�1

k;l�0

��x2
��
n�1�k��x2

��
n�1�l�K�k�;K�l�� � 0; (21)

whence by nonsingularity of the matrix Bj� � ��x2
��
n�1�j

we readily obtain (14). It is important to stress that the
above reasoning makes substantial use of the fact that the
matrix Bj� is the Stäckel matrix, i.e., its �th column
depends on x� alone, cf. e.g. [19].

Notice an important corollary of (14): since the Klein-
Gordon equation ��� m2

�2 � � 0 can be written as
K�0�� � �m

2�, Eqs. (13) and (14) with j � 0 imply
that L�k� and K�i� are symmetry operators for the Klein-
Gordon equation, see e.g. [15,16] and references therein
for the general theory of such operators. Let us mention
that for the special case of the Kerr and Kerr-Newman
metrics with D � 4 this was established by Carter [20].

Relations (13) and (14) suggest that we may seek for the
joint eigenfunctions � of the operators L�k� and K�j� with
the respective eigenvalues �k and �j,

 L �k�� � �k�; (22)

 K �j�� � �j�: (23)

We will now show that these eigenfunctions can be
found by the separation of variables, i.e., by assuming
that they have the form (see Eq. (4.2) of [14])

 � �
Yn
��1

R��x��
Yn�"�1

k�0

exp
�
i
�

�k k

�
; (24)

with each function R��x�� depending on a single variable
x� only.

The functions (24) clearly satisfy Eqs. (22). Using (18)
we can combine Eqs. (23) into an equivalent set of equa-
tions
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Substituting (16) into (25) we find that (24) solves all of the
Eqs. (25)—and therefore Eqs. (23) as well—provided the
functions R� satisfy the following ordinary differential
equations:

 �X�R
0
��
0 � "

X�
x�

R0� �
1

�2

�
~�� �

~�2
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�k��x2
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and for odd D � 2n� 1 we set �n � �2
n=c for conve-

nience. Upon setting � � 1 in these equations we recover,
of course, the separated ordinary differential equations
(4.10) from [14].

Thus, we proved that the functions � of the form (24)
with R� satisfying (26) are eigenfunctions of the operators
L�k� and K�j�. In particular, as K�0� � ��

2� (see above),
we recover the result of [14] that � of the form (24)
satisfies the Klein-Gordon equation

 ���
m2

�2 � � 0; (28)

where m2 � ��0.
As a final remark note that if �k � 0, k � 0; . . . ; n�

"� 1, and �j � 0, j � 0; . . . ; n� 1, then the general
solution of (26) is easily found to be

 R��x�� � h� � f�
Z dx�
X��x��x"�

; (29)

where h� and f� are arbitrary constants. Therefore,

 �0 �
Yn
��1

�
h� � f�

Z dx�
X��x��x"�

�
(30)

is a zero mode, i.e., it satisfies

 L �j��0 � 0; K�k��0 � 0 (31)

for all j � 0; . . . ; n� "� 1 and k � 0; . . . ; n� 1.

IV. HAMILTON-JACOBI EQUATION

Upon taking the solution � of the Klein-Gordon equa-
tion in the form

 � � A exp
�
i
�
S
�

(32)

we find that in the semiclassical (or geometric-optical,
depending on the application in question) approximation
the function S satisfies the Hamilton-Jacobi equation

 dS � g�1 � dS�m2 � 0; (33)

where m2 � ��0. Recall that passing to the semiclassical
approximation in our case amounts to plugging the ansatz
(32) into Eq. (28) multiplied by �2 and taking the limit
�! 0.

The same approximation leads to the Hamilton-Jacobi-
type equations for each of the ‘‘wave’’ equations (23),
namely

 dS �K�k� � dS � �k: (34)

In a similar fashion, the quasiclassical limit of Eqs. (22)
yields

 L �k� � dS � �k: (35)
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After the above discussion of the Klein-Gordon equation it
is not surprising that all these conditions are satisfied by the
separated solution found in [14].

Indeed, the additive separation of variables yields [14]
the following ansatz for S:

 S �
Xn
��1

S��x�� �
Xn�"�1

k�0

�k k; (36)

which automatically guarantees that the conditions (35) are
satisfied.

The Hamilton-Jacobi-type equations (34) lead to the
first-order differential equations
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cA�n�
�2
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Taking linear combinations of these equations with the
coefficients given again by the entries of the matrix Bj� �
��x2

��
n�1�j yields an equivalent set of ordinary differen-

tial equations for S�’s,

 �S0��2 �
~��

X�
�

~�2
�

X2
�
; (38)

where ~�� and ~�� are given by (27) and we again set �n �

�2
n=c for odd D � 2n� 1. Equations (38) are precisely

the separated first-order ordinary differential equations
(3.7) of [14].

By direct inspection we also find that Eqs. (38) yield the
semiclassical approximation of the separability conditions
(26) for the Klein-Gordon equation, with the functions R�
related to S� as R� � exp� i� S��.

Finally, upon identifying the momentum vector p � dS
in (34) and (35) we recover the original conserved quanti-
ties (9) in terms of the separation constants:

 l�j� � �j; k�j� � �j: (39)

V. CONCLUSIONS AND DISCUSSION

In the present paper we have established that the quan-
tities L�k� and K�j�, see (10)–(12), form a complete set of
commuting symmetry operators for the Klein-Gordon
equation in the spacetime with the metric (1). The symme-
try operators L�k� are associated with the Killing vectors,
and the operators K�j� with the Killing tensors constructed
from the Killing-Yano tensor [9]. We proved the commu-
tativity of the symmetry operators in question for a general
class of metrics (1) with each X� � X��x�� being an
arbitrary function of a single variable x�, � � 1; . . . ; n;
this class includes higher-dimensional Kerr-NUT-AdS
metrics [6] as special cases. We have further shown that
the separated solutions (24) of the Klein-Gordon equation
found in [14] provide, cf. e.g. [15,19], joint eigenfunctions
of L�k� and K�j�, see (22) and (23). We have also analyzed
the quasiclassical limit of the above results and compared
this limit with the results of [14]. Finally, we found an
explicit form of the zero mode (30) for the zero-mass
Klein-Gordon equation.

In our opinion, it would be interesting to address similar
issues for the Dirac equation in the spacetime with the
metric (1), i.e., to find the symmetry operators whose joint
eigenfunctions are the separated solutions of the Dirac
equation found in [21].
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[12] P. Krtouš, D. Kubizňák, D. N. Page, and M. Vasudevan,

Phys. Rev. D 76, 084034 (2007).
[13] S. Benenti and M. Francaviglia, Gen. Relativ. Gravit. 10,

79 (1979).
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