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Abstract

The main goal of this work is an investigation of relationships between the quantum theory of a
scalar field and the quantum mechanics of a relativistic particle in a general spacetime.

Quantum field theory of a scalar field on a time-bounded domain is formulated using canonical
quantization. Special attention is paid to boundary conditions and their implication for the inter-
pretation of the theory. The relationship between configuration, particle and holomorphic represen-
tations is found. It is shown that all important structures can be reconstructed from knowledge of
Green functions satisfying certain conditions. Transition amplitudes are expressed using such Green
functions, and their structure is discussed.

The field theory is also reformulated using boundary quantum mechanics in which initial and final
conditions play equivalent roles. This formulation is more suitable for the path integral approach
and for the Euclidian version of the theory in which there is no preferred time flow. Also a derivation
of transition amplitudes is much more straightforward in this formalism.

Next the quantum mechanics of a relativistic particle is formulated using the sum-over-histories
approach. The theory is again investigated in a time-bounded domain, and boundary conditions are
discussed. It is shown that the quantum mechanics of a relativistic particle leads to a many-particle
theory and that transition amplitudes have the same structure as in the QFT of a scalar field. This
connection allows one to identify these two theories. The relationship between boundary conditions
needed for QM of a relativistic particle and the particle interpretation of QFT of a scalar field is

investigated.
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Introduction 2

Motivations

One of the main goals of this work is to investigate a relationship between scalar field theory in
curved spacetime and quantization of a relativistic particle using the sum-over-histories approach.
We have the following motivations to do such a study.

Quantum scalar field theory is widely understood as the theory describing a multi-particle system.
Yet, it is a quantization of a completely different system — a quantization of a continuous field on
spacetime. It is true that we can identify some states of such system as particle states — states with
some properties of particles. But is there any other way to make a connection to the particle theory?
Is it possible to quantize a classical relativistic particle, and does it gives predictions equivalent to
predictions of quantum scalar field theory?

There exists a candidate for the direct quantization of a particle theory — quantization using the
sum-over-histories approach. In this approach the transition amplitudes associated with the chosen
criteria are computed by summing over amplitudes of all possible multi-particle histories which meet
the criteria. It is known that some of these amplitudes (e.g. the propagator) lead in special cases
(e.g., in flat spacetime) to quantities which can also be obtained from scalar field theory. The goal
of this work is to investigate this correspondence in more detail. We will find in what exact sense
we can identify these two theories.

Let us note that there are more reasons for studying relativistic particle theory. One of the
attempts to understand the quantization of the gravitational field coupled to matter is to reduce the
full gravitation theory to a system with a finite number of degrees of freedom and try to quantize this
simplified system. These reduced theories are called minisuperspace models. It is well known that
this reduced system is essentially equivalent to a particle theory in a Lorentzian space with (usually)
a complicated potential. A common method for the quantization of minisuperspace models is the
sum-over-histories approach. A connection of such a method to the better known and thoroughly
understood theory — canonical quantized scalar field — could bring a better understanding for of
quantization of minisuperspace models.

Another reason for the investigation of scalar field theory in curved spacetime is an interest in
the knowledge of the exact dependence of the theory on the spacetime domain in which we study the
system. The usual approach is a bit generous on this question — the theory is usually formulated
on the whole spacetime with not always clearly formulated special behavior at infinities. In flat
spacetime such an approach is justifiable because there exists a preferred behavior at infinities, but
in a general curved spacetime we have to be more careful. This problem is usually solved by a choice
of positive-negative frequency splitting for particle modes. The aim of this work is to formulate this
choice in a covariant way and identify exactly the freedom which we have in the choice of boundary
conditions and what is their interpretation.

A similar comment applies to the sum-over-histories approach. The question of boundary con-
ditions is usually completely ignored in the definition of the path integral. We try to formulate the
theory in a more careful way and identify its boundary-condition dependence.

Another reason for the necessity of a better understanding of boundary conditions of a theory
based on the summation of amplitudes is a better understanding of the definition of the decoherence
functional of generalized quantum mechanics. At this moment we lack an exact understanding
of the dependence of the decoherence functional on the spacetime domain on which we study the
system, its composition properties when we join two domains, etc.. One of the main difficulties are
boundary terms in the decoherence functional representing initial and final states, which are not well
understood. We hope that the investigation of the sum-over-histories approach to the quantization
of relativistic particle, as a representative example of a wide class of theories, could clarify this
problem.

Finally, one of the “by-products” of our study will be a reformulation of the theory in a way
which does not distinguish between the past and the future. This has great importance for theories
where we can have a problem with the identification of time — for example in quantum gravity or
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a Euclidian version of the theory.

Plan of the work

The plan of our work is the following. In the first three parts we will investigate mostly scalar field
theory, and in the last part we will study the sum-over-histories approach to the quantization of
a relativistic particle. Besides these main tasks, in the introductory chapters to each part we will
present a general framework for the material to be discussed.

The first part reviews the classical formalism on a general level and its application to scalar field
theory. Special attention is paid to boundary conditions of the equation of motion.

In the second part we will discuss canonical quantization. The general quantization of the phase
space with a cotangent bundle structure will be discussed. Scalar field theory will be quantized using
the notion of a particle interpretation. There will be developed a rich covariant formalism for the
description of quantum scalar field with emphasis on the dependence on boundary conditions. The
main goal will be to compute transition amplitudes between particle states.

In the third part boundary quantum mechanics will be introduced. It is quantum mechanics
based on quantization of the boundary phase space. It describes measurements at the initial and final
time as experiments on independent systems. The relations of initial and final physical quantities
are hidden in a special physical state. The equation for such a state is the dynamical equation of
boundary quantum mechanics.

The last part deals with the quantization of a relativistic particle using the sum-over-histories
approach. First, the general ideas of such an approach will be discussed. Next, the propagator in a
space with boundary will be computed and multi-particle amplitudes will be derived. The discussion
of a possible interaction of particles with devices on the boundary of the domain will be carried out.

Finally, we compare both theories.
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1 Boundary, canonical and covariant phase spaces

The space of histories and the action

In this chapter we will develop a classical formalism for a wide class of physical theories. We will not
need this formalism in the following chapters in full generality, but it helps us to see some structures
we will use for scalar field theory and for a relativistic particle in a more general context. We will also
refer to this chapter in the overview of quantization procedures in chapter 5 and in the introduction
to boundary quantum mechanics in chapter 10. The formalism developed here is mainly inspired
by [1].

A physical theory can be specified by a space of elementary histories H and a dynamical structure
on it. Elementary histories represent a wide class of potentially imaginable evolutions of the system,
not necessarily realized in the nature. Examples of the spaces of histories are all possible trajectories
in the spacetime (the theory of a relativistic particle) or all possible field configuration on the
spacetime (a matter field theory) or all possible connections on a spacetime (a gauge theory), etc..

We restrict ourself to theories which are local on some inner manifold M and we pay an attention
to this dependence. Histories of the local theories can be represented as sections of some fibre bundle
over the inner manifold. We use =, y, ... as tensor indices for objects from tangent spaces T H and
the dot e for contraction in these spaces. It contains, of course, the integration over the inner
manifold.

Almost all known theories can be reformulated in this way. For example elementary histories of
a particle theory can be viewed as mapping from one dimensional inner manifold M (here the space
of a parameter that increases along the particle trajectory) to a target manifold T', i.e. as sections of
the trivial fibre bundle M x T (e.g., spacetime) over M. The realization of field theory is even more
straightforward — the inner manifold M is spacetime, and histories are sections of some bundle over
it.

We assume that we are able to restrict the theory to any domain in the inner manifold M. I.e.,
we are able to speak about space of histories H[(?] on a domain 2. We will see that the domain of
dependence will play an important role in the dynamics.

On the general level we admit any sufficiently bounded domain Q with a smooth boundary 92.
We need to deal with a bounded domain to assure that the action functional is well defined on a
sufficiently wide set of histories. Generally if the domain is compact, the action is defined for all
smooth histories. But we allow also domains which do not have to be compact “in some insignificant
directions”. A typical example is a sandwich domain in a globally hyperbolic spacetime between two
non-intersecting non-compact Cauchy surfaces. This section is unbounded in space, and this fact
will have to be compensated by a restriction of the set of histories to those which fall off sufficiently
fast at spatial infinity. We cannot do the same thing in the time direction because we would exclude
physically interesting histories — specifically the solutions of the classical equations of motion.

The localization of histories on the domain 2 gives us also a localization of elements of the tangent
spaces T H, i.e., we can speak about a space T H[2]. We will call tangent vectors linearized histories.
Tangent spaces at some history h can be represented as vector bundles over the inner manifold or
the domain Q. Therefore we can speak about distributions (T, H)' and (T H[Q])'. Let us note
that by distributions (Ty H[])" we mean distributions in the sense of (T H)" with a support on
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Q. See more in appendix A.
The dynamics of the system is given by a domain-dependent action S[{]

S : H->R . (1.1)
Let us note that we cannot generalize the action to a functional on the whole inner manifold S[M]
— it would be infinite for some physically interesting histories.
The action is local and additive under smooth joining of domains, i.e.
S[Q](hy) = S[Q](h2) for h; =hy on Q and for all Q |
S[9)(h) = S[(u](h) + S[Q:](h)

where = Q; U Q> is a domain and 24 N 25 is a submanifold without boundary which is subset of
both 09, and 99s.

(1.2)

The equation of motion

In general we work with smooth histories and smooth domains with a boundary, unless stated
otherwise. We assume sufficient smoothness of the action, but we skip the discussion of this question.
But we explicitly assume that the action is essentially of first-order. In short this means the
action leads to second-order equations of motion. On a general level this can be formulated by
the condition that the variation of the action (keeping the domain  fixed) can be written in the

following way
dS[Q)(h) = ¥[QS(h) — FOQM) (1.3)

This relation represents a usual “integration by parts” in the variation of the action.

0S represents the variation of the action on the whole inner manifold. It is a form on the space
of histories and we require that d.S(h) contain at most second-order inner space derivatives of the
history h and be smooth in the variational argument. Thanks to this smoothness the multiplication
by x[€?] is well defined. x[{?] is the characteristic function of the domain Q (eq. (A.12)). The
distribution x[€2]dS(h) is not smooth in the variational argument on the whole inner manifold (more
precisely as a distribution (T #)’), but it is a smooth distribution from the space (T H[])".

PB[O] is the momentum on the boundary 99Q. It is localized on the boundary in both its history
dependence and in the variational argument (i.e. as a distribution from T, H'). We require that it
can contain at most the first derivative in the direction normal to the boundary and cannot contain
any normal derivatives in the variational argument. L.e., it can be represented as a distribution on
boundary values of the linearized histories.

The classical equations of motion are given by the condition

5S(h)y=0 (1.4)

and we denote by & the space of their solutions — the space of classical solutions.
The linearized equation of motion selects the linearized histories tangent to S. It has the form

FS(h)edh=0 (1.5)

where dh is a linearized history (tangent vector to H) at a classical history h and the second variation
of the action 6%’,

FS(h)T = &S(h) = DSS(h) (1.6)
is a derivative of the form 4§ using an ultralocal connection . It is easy to check that, thanks to

(1.4), for a classical history the second variation of the action &S (h) does not depend on a choice of
the connection ®. We denote

FS[0] = (x[Q]0) « S, FS[Q] = FS[Q]T . (1.7)
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We assume that the equation of motion has a well-defined boundary problem on the domain 2
— there is a unique solution in & with a given restriction to the boundary. Moreover we assume that
the linearized equation of motion has a well-formulated Dirichlet and Neumann boundary problem,
i.e., there is a unique solution of the linearized equation of motion for a given linearized value on
the boundary or linearized momentum on the boundary. This requires some genericity of the action
— for example we exclude a massless scalar field. More serious is the restriction that we must also
exclude theories with local symmetries — see [1] for some details on this case.

If we work only with the manifold S, we use a4, s,... for tangent tensors and the dot o for the
contraction in these spaces.

Boundary phase space

Next we define the boundary symplectic structure dJ3[0f2] as the external derivative of the JB[0€]
form, which turns out to be the Wronskian of the second variation of the action,

dpeQ] = FS[Q] — 5[] . (1.8)

We say that two histories are canonically equivalent on the boundary if they have the same
restriction on the boundary and the same momentum ‘B. We call the quotient of the space H with
this equivalence the boundary phase space B[OS}]. We use a, s, ... as tensor indices for tensors from
the tangent spaces T B[0f2] and the dot ¢ for contraction in these spaces.

It is straightforward to check that vectors tangent to the orbits of the equivalence are degenerate
directions of the boundary symplectic form dB3[0€], and therefore we can define its action on the
space B[O€]. We will require that the form dJ3[01?] is non-degenerate on the boundary phase space.
Because the external derivative of this form is zero, it is really a symplectic form in the sense of
appendix B, and it gives a symplectic space structure to the space B[0€], thus justifying the name
boundary phase space.

The space S gives us a submanifold of the space B[0f2] which we denote by the same letter.

Lagrangian density

Until now we have developed the formalism on a very general level. For simplicity in the following
we restrict to theories with the action given as an integral of the a Lagrangian density ultralocally
dependent on “values” and “velocities” of the history.

The formalism developed above is more general — it covers for example the case of the Einstein-
Hilbert action for gravity (except for problems with diffeomorphism symmetry) for which the La-
grangian density contains second spacetime derivatives of the metric. But this dependence is degen-
erate, and it is possible to satisfy the conditions above if a proper boundary term is chosen.

We now require that the action have the form

Stolw) = [ £ Dw) (1.9)
Q

where L is the Lagrangian density — a density on the inner manifold M ultralocally dependent
on a value of the history and inner space derivatives! (see Notes near the end of the theses) of the
history.

The variation of the action and an integration by parts gives us the decomposition in (1.3)

55(11):%(11,@11)—(@%)@,%) , (1.10)
m[aﬂ](h):ag—ih(h,Dh)éa[aﬂ] , (1.11)

where 0,[0€] is defined in equation (A.13).
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Space of boundary values

We call the restriction of the history to the boundary the boundary value of the history, and we
denote by V[0Q] the space of all boundary values. (The boundary values do not include any normal
derivatives of the histories.) It can be represented as a fibre bundle with the boundary as the base
manifold. We use x,y, ... as tensor indices for tensors from the tangent spaces T V[0}] and the dot
- for contraction in these spaces. It contains, of course, the integration over the boundary.
We denote by x[0€] the projection from # to V[0f2]. The conditions on the momentum allow
us to represent it as
P [09] = px[0Q] DXx[0Q] (1.12)

with p[0©](h) from the cotangent bundle T, V[09]. Here Dx[09)] is the differential of the map
x[0€?]. In the following we drop the boundary dependence of x and p.
Next we define the classical history h(x) with given boundary value x

§S(h(x)) =0 A x(h(x)) =x (1.13)

and the classical action

SIR)() = SIQ)(EE) (L.14)
The space 8 can be characterized using the condition
p=-dS(x) , (1.15)

which follows from

(1.16)

We use x and p also for induced maps from the boundary phase space B[0f2] to the spaces V[0Q]
and T* V[0Q]. This suggests that we can represent the boundary phase space as a cotangent bundle
T* V[09]. And really the canonical symplectic structure of the cotangent bundle (C.7) does coincide
with B[O

VaPx ADIx = da(pxDix) = daBe - (1.17)

The linearization of eq. (1.15) gives

Al — v;\( _ & 0"
Dih = =% (Vxdy )(9py (1.18)

Causal structure

Until now we have not needed any time flow in the underlying inner manifold M. It could be
spacetime, but the formalism works in a more general situation. We can use it, for example, for
the Euclidian form of the theory. In the following we will assume some additional causal structure
which allows us to define concepts such as canonical and covariant phase spaces.
Let assume that the boundary of the domain can be split into two disjunct parts without bound-
ary
0N =00 U0 = -2 UY; ,

1.19
an = - N BQi =3 ( )
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Here the minus sign suggests an opposite choice of the orientation of the normal direction for one
part of the boundary. Clearly we have in mind two Cauchy hypersurfaces which define a sandwich
domain in a globally hyperbolic spacetime. The decomposition in (1.19) allows us to write

Vo] = V[E¢] x V[&i]
B[BQ] = —B[Ef] (5] B[Ei] , (1.20)
TV[OQ] =TV[E] TV[E]
and we will use shorthands V, V¢, V; and B, B;, B;.
We require that both parts contain a full set of boundary data — there should exist a unique

classical history for given element from B¢ or B;.
Thanks to locality we can decompose the symplectic structure d3[0] as

AP[OQ] = —dP[Td] + APS] . (1.21)

dPB[E¢] and dP[E;] play the role of the symplectic structure on B¢ and B;. We will call these
spaces canonical phase spaces. The minus sign in the relations (1.20) reflects the relation of these
spaces as symplectic spaces.

The canonical phase spaces can be again represented as cotangent bundles T V¢ and T V; through
the maps x¢, pr and x;, p;. Let us note that ps takes in account the opposite orientation of the
normal direction to X¢ and 9y, so

P=-Prdpi - (1.22)

Covariant phase space

Finally we can give a phase space structure also to the space of classical histories S. First we note
that for solutions of linearized equations of motion &;,&, € TS

€10 AP[ON] o & = &1 » (FS[Q] — FS[A) 0 £, =0 . (1.23)
dP[Z¢] and dPB[X;] have the same restriction W on the space S.
f1oWob =6 «dP[S]eso =& o dP[Ti]e & (1.24)

In the same way we check that the same expression for %W holds for any future oriented Cauchy
hypersurface .. It means that we have equipped the space of classical histories & with a symplectic
structure. We will call this space the covariant phase space. We use indices a, s,... for tensor
indices and the dot o for contraction in TS. Clearly the V¢; and T* V¢ ;-valued observables x¢ ;
and pr,; are canonically conjugate on this space, so

A(FAB :vApfx/\D);Xf :VApix/\D);Xi . (1.25)
We can invert the symplectic form @ to get o
M‘l “ny “ny M‘l
W ow=wow =-0s . (1.26)
The tensor tangent to S as a subspace of the boundary phase space B[0f2] has to be expressible as
%" =Dh.g.-Dh (1.27)
with an antisymmetric tensor g. € T? V[9Q]. Using (1.18), (1.26) and (1.25) we get

ge (dfdig — didfg) = 5\; . (1.28)
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This means that .
ge = Gift — 96 , Gif =95 > (1 29)
git + dediS = dy; , ga+dideS =y,

and we get

v (% - %(Vudxﬁ)) Phid (% - (vydvg)a%v) _
O Vu Va 0 O Vu Va 0
(Gore e~ e 0rs) + (Gpa s~ o)+
Vi o V
(e go)+
+ <i ((fodfug)gﬁw(vivdiyg) — dfxdiyg)i (1.30)

apfx apiy
_ 9 ((v- diuS) g2 (Vivdey §) — dixd 5)i +
apix ixdiuo ) gif fvUfy ixUfy 3pfy
Vx x = 0 0 = yx Vx
+ (%gify(vfydfus) Opra  Ops (Veudsy S)gg 6x-)+
9 B . yx Vs
apiu - apiu (delys)gif a—Xf) )

vx Xy I
+ (a—xfgﬁ (ViydiuS)

where we view S as the subspace of the boundary phase space B[0Q] (i.e. “lisa tangent tensor
from T? B[O9)).

Or, if we view & as a subspace of the space of histories H we can understand ™" as a tan-
gent tensor from T2 H which satisfies the linear equation of motion in both indices. We call this
representation the causal Green function G,

G™Y =DZh g D¥h . (1.31)
In the space T H equation (1.26) takes the form
G, dP[X] = —Dc[X] , (1.32)

where D¢[X] is a Cauchy projector of a history on the linearized classical history with the same
value and momentum on the surface ¥. It is, of course, the identity on T S.

Poisson brackets

The Poisson brackets of two observables on a phase space are defined by (B.5). We can compare
now Poisson brackets in the sense of different phase spaces. Clearly any observable on # generates
an observable on 8, and we can define

A Bls=d,AGZ¥Yd,B on § . 1.33
c Y

For observables depending only on the boundary values and momenta — i.e. observables on B[0f2]
we can define Poisson brackets in the sense of the boundary phase space

0A VxB VxA OB
Oxx Ox Ox Oxx

The covariant Poisson brackets for such observables are given by

{A,B}p = d,Adp'*® d;B =

(1.34)

{A,B}s = dy AT " dyB =
B ( 0A VuB VA aA) (8A VuB  VaA aB)

Opru Ox¢ 0x¢ OPfu Opiu 0% 0%x; OPiu
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(oo o 50
0B

0A - _
+ <— ((fodqu)gg“’(Vivdin) - dfxdin) —

apfx apiy
9A - - -\ OB
- ixdiuS iuv vCl S) - dixd S
o ((Vinia S (Voo ) — iy 8) 2 ) 4
Vid o . OB 94 o VaB
+ (Z2 0 (Tryna) (Veudry a5~ )+

apfu B apfu
VA sy _ 0B A VB
+ ( Ox¢ 95" (ViydinS) Ox¢ )

6piu a 6piu

(1.35)

(viudiy g)g%x

Moreover, for observables localized only on X¢ or ¥; we have

{As, Bi}s, = —{Ar, Br}s = {4r, Brls (1.36)

{4, Bi}s, = {4, Bi}s = {4i, Bi}s '

During the quantization of the theory we will be interested in special kind of observables on the

boundary phase space (or in general, on any phase space which has the structure of a cotangent

bundle). We will investigate observables dependent only on the value and observables linear in the
momentum. We define the following observables for a function f and a vector field a on V

Fr=rfx , (1.37)
G, =a*(x)px - (1.38)

The Poisson brackets of these observables are?

{Fqufz}B =0 ,
{Ffa Ga}B = _Fa-df ) (1.39)
{GalaGag}B = G[al,az]

In the sense of the covariant phase space we have
{Fr,Fr.ls =Fapgear, on 8 (1.40)

and
Gy =F,qs on S . (1.41)

Summary

Canonical phase spaces or covariant phase space are commonly used phase spaces of the classical
theory. The dynamical evolution is described as a canonical transformation of B; to B (a Schrodinger
picture of the classical theory) or as an evolution of observables on & (Heisenberg picture on the
classical level).

But if we could only use experimental devices localized on the boundary of the investigated
domain (i.e. in the case of a sandwich domain in a globally hyperbolic spacetime we could perform
experiments only at initial and final moments of time), the space B would be sufficient for the
description of our system. It is enough to investigate observables defined using canonical variables
at the beginning and at the end. The dynamics of the system is hidden in the definition of a special
subspace — the physical phase space & which tell us the relation between the initial value and
momentum and the final value and momentum for a physical solution of the equation of motion. In
other words the space B represents all possible values of canonical observables at the initial and the
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final time without knowledge of equations of motion. The subspace 8 represents values of canonical
observables correlated by dynamical development of the system. An advantage of the B is that we
do not need any causal structure for it. I.e. we can construct it even for the Euclidian theory. And
this advantage will be even more appealing in the quantum case.
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2 Scalar field theory

Introduction

In the first three parts we will mainly investigate the non-interacting scalar field in a general space-
time. By non-interacting we mean a theory without self-interaction, i.e. it can interact with an
external sources or fields (specifically, with the gravitational field). It can also contain an external
potential interaction (spacetime-dependent mass term), which is not counted as a self-interaction.
Indeed, such a nonzero potential is needed in order that the Neumann boundary problem be well
formulated, as was discussed above. We will call a theory without external sources free theory.

In this chapter we will apply the previously developed formalism to the scalar field theory. It
will take a much simpler form because of the linearity of the space of histories. We also review the
3 + 1 splitting of the spacetime and the scalar field theory.

Space of histories and the action

The space of histories P is composed of all possible field configurations which can be represented as
(smooth) real functions on a spacetime manifold M, i.e P = § M. The space P is a linear space, and
this simplifies all considerations. The vector indices can be identified with points in the spacetime
manifold, and the contraction is essentially the integration over the spacetime. In general we do not
have to distinguish between the elements of the space P and its tangent spaces. We have also a
natural linear connection on P. We define a basic field observable

*(¢) = ¢(x) (2.1)

which gives a value of the field at chosen spacetime point. It can be also understood as an identical
P-valued observable on P.

The spacetime is equipped with a fixed gravitational field g (a metric on M), a scalar potential V/
(a function on M) and possibly an external source J (a density on M). We use the indices a, 8, . ..
for tensor indices of the tangent spaces or the dot - for contraction in these spaces. We also use the
dot e for integration over spacetime, i.e for the contraction in the space P.

We are interested mainly in globally hyperbolic Lorentzian manifolds, but to a great extent the
formalism can be applied also to a Euclidian manifold. In the former case, we will study the theory
usually on a sandwich domain Q = (3¢, %;) between two Cauchy hypersurfaces ¢ and ¥;. In the
latter case we will study the theory on a compact domain 2. Let us note that when we speak about
a boundary or its parts we always assume that an orientation of the normal direction is associated
with it. For the boundary of a domain we assume an inside-oriented normal direction. We use the
Lorentzian convention for all quantities in the sense of appendix D.

The dynamics is given by the action

1
SI)(6) = —5 6o Fal0] 00+ T 00 (22)
where the wave operator (or, more precisely, quadratic form)

FalQ] = da o (g P G) e dg+ KAV ) (2.3)
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is a symmetric bi-distribution with support on the domain €2 and

The bi-distributions (fG), d and d are defined in appendix A (equations (A.6), (A.7)).
The first variation of the action is

dS[Q)(9) = —F4[Q] » 6 + J[Q] = X[Q)6S — dFg[00] e & (2.5)
where
08(¢) =-Fegp+J (2.6)
Fodaeg'tgddsrve) , F=F (2.7)
FIO)=xINF , FIO)=FxO) (2:8)
dF4[09) = (—g* 6,[00] g *Fdp) , dF4[00] = dF4[090]" | (2.9)
FaQ] = FIQ] + dFq[0Q] = F[Q] + dF4[09Q] . (2.10)

Eq. (2.5) represents a formal integration by parts in the variation of the action, and d?—'d[aﬂ] 1Y)
is a boundary term representing the momentum. We assume that all fields fall off sufficiently fast at
spatial infinity (if the domain € is not compact) so we can ignore boundary terms there. 45 plays
a role of a variation of the action on the full spacetime M. But it is not a gradient of any finite
functional (in contrast to dS[2]).

The boundary term d?'d[E] can be generalized for any oriented hypersurface . It is sensitive to
the orientation of the hypersurface through the delta-function 64 [X]. In the Lorentzian spacetime,
if the normal direction to ¥ is time-like, we can choose a normal vector 7i normalized to —1 oriented
in the sense of the hypersurface, and we can write

dFq[S] = (g% 61[) % da) | (2.11)
where dz[X], defined in (A.13). It acts in the following way
pedFalSle = [ pq® i%datp . (2.12)
b

Here q2 is the volume element (2.51) of the metric restricted on the submanifold .

Phase spaces

The equation of motion is
0S(¢) =0 . (2.13)

We call the space of solutions a covariant phase space 8y and in the case of the free theory S = Sy.
Its tangent space T S is formed by solutions of the linearized equation of motion

Fetp=0 . (2.14)

The space S is generally nonlinear because of the source term. Thanks to the linearity of the
space of histories we can identify the tangent vectors with the space of histories itself. Clearly, the
solution of the linearized equation of motion (2.14), i.e. vectors from tangent vector spaces T S,
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all lie in the same vector space S in this identification. The dot o will represent contraction in this

space’.

The boundary symplectic form (1.8) reduces to the Klein-Gordon form dF[0Q]

AP = 9F00] © FlQ) - FIQ] = dF4[00] — dF4[00] = 0.15)
= da(—g"'*Pg305[00]) — (—g%0a[09] g *F) dg
From the definition we immediately get
¢ 0 OF[0N ey =0 for ¢, €S . (2.16)

The boundary phase space B[0f2] is defined as the space of classes of field configurations with
the same value and normal derivative on the boundary 0€2. The Klein-Gordon form plays the role
of the symplectic structure on this space.

In the case of the sandwich domain Q = (3¢, Y;) in a globally hyperbolic manifold we can split
the Klein-Gordon form to two pieces localized on the initial and final hypersurfaces

OF[00] = —0F[Se] + OF[] (2.17)

where we assume an oposite orientation of the normal for the final hypersurface ¢ and the boundary
0. As discussed in the previous chapter, F[X¢] and OF[E;] are symplectic structures on the
canonical phase spaces B[X¢] and B[Z;].

In general, we can define a phase space B[X] on any oriented hypersurface ¥. We use the dot
o for the contraction in these spaces. We also define the natural projection 9®[X] from P to B[X]
and the identical basic observable 0®[X] on B[X], similar to ® on P.

The Poisson brackets of two observables are

{A,B}g=dAcG.odB . (2.18)
Applied to the basic variable 0® we get
{9, 8} = 0F[Z] . (2.19)

Moreover the forms OF[¥] generate a symplectic form W on the space S independent of the
choice of the hypersurface. Its action is given by well-known Klein-Gordon product

$10W 0o = ¢1 ¢ OF[S] ¢ o = / (A*dad)s — 1 (A*dada))d® . (2.:20)
b))

computed on any Cauchy hypersurface ¥ with the future oriented normalized normal vector 1.
We can define its inversion — causal Green function —

G.eS® , Gl =-G. ,

s (2.21)
Gc oW = W ° GC = —(SS 5
or, formulated in the space of histories P,
2 T [ ] = [ ] pa = T = —
G.eP” , FelG.=G.¢F=0 , G, =—-G. , (2.22)

G. ¢ OF[S] = OF[E] ¢ G. = —D¢[S]

Here D¢ [X] propagates Cauchy data on a hypersurface ¥ to a solution of the linearized equation of
motion (2.14). It is a projection from P to & using the Cauchy data on X.
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The Poisson bracket of two observables A, B € § S is given by
{A,B}ls =dAoG.odB . (2.23)
Applied to the basic variable ®* we get
{o”, @¥}s =GTY (2.24)
or, if we define a linear observable on 8 labeled by an element ¢ € S
Ly =¢oWod (2.25)

(any linear observable on & can be written in this way thanks to non-degeneracy of the symplectic
form @), the Poisson brackets of such observables are

{L¢1:L¢2}S = ¢1 °oWo ¢2 . (2.26)

Green functions

G, is called the causal Green function. We can introduce also other natural Green functions. For a
smooth source J on the domain Q = (3¢, ;) (i.e. with support in  and smooth up to the boundary)
we define retarded and advanced solutions of the equation of motion

?'_avJ:J ,DE._aVJZO )
F o Buasl) of5t]+ faav() 0o

f°¢ret(l]):<] ) DC[Ei]'¢ret(J):0 >

- 1 - -
¢7Sym(J) = §(¢adv(‘]) + (bret('])) ) (228)
and coresponding Green functions — bi-forms on smooth sources —
éadv(l]) = Gadv oJ , éret(l]) = Gret oJ ; &sym(J) = Gsym oJ y (229)
1

Gsym = §(Gret + Gadv) - (2.30)

Let us note that the solutions given by (2.29) satisfy the relations (2.28) only for the source with
support in the domain (.
If we denote

bo(J) = GooJ | (2.31)

we find

F o (faav(J) + () =T
DolSi] e (Saav(J) + 6c(J)) = —Ge o OF[Zt] o (Gaav (J) + be(J)) =

_ - . (2.32)
=—G,e» a-7:[Ef] o (¢adv(J) + ¢C(J)) -G (f[Q] - f[Q]) o (¢adv(l]) + ¢C(J)) =
:Dc[zf]OGCOJ—Gc'JZO

This means ~ B
¢C(J) = ¢ret(J) - ¢adv(‘]) )
Ge = Gret — Gady (233)
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Space of boundary values

For any hypersurface ¥ we can define a space of boundary values V[X]. A boundary value of the
field can be represented as a function on ¥, i.e V[X] = §%. We denote by V[X] = §% the space
of densities on X. We use the dot « for contraction between an element in V[X] and an element in
V[X] (integration over boundary). We define V[E] and V[X]-valued observables ¢[X] and 7[¥] on
the space of histories called value and momentum as

e=l(®) = ¢ls , 7(T(@) = —qFnagt Pdadls . (2.34)

Here n is the normalized normal form on ¥ with the same orientation as the hypersurface and q%
is the volume element of the restricted metric on the ¥ (see (2.50) and (2.51)). The momentum
observable depends on the orientation of the normal vector. Both observables are linear and can be
generated by V[X] and V[E]-valued forms @[%] and z[¥] on the space P

o[Xl(¢) =¢[X]e¢ , 7[E](¢) =x[E]eo . (2.35)

The momentum observable satisfies

dF %] = ¢[=]- 2[5 (2.36)

and therefore we get
OF[Z] = x[E] - ¢[X] - ¢[X] - x[X] (2.37)
(2.38)

We can pull back the value and momentum observables on the boundary phase space localized
on the hypersurface ¥, and equations (2.37) tells us that they are canonically conjugate in the sense
of the symplectic structure 0F[X].

Now let us investigate the value and momentum on the boundary of the domain Q. As in the
general case discussed in the previous chapter, we restrict ourselves only to the case when either
value or momentum on the whole boundary represents sufficient boundary data. Therefore we can
express the momentum of a solution of the homogenous field equation (2.14) in terms its boundary
value. We define a quadratic form [0€] on V[0Q] as

w[0N] e p =7[0N] [0 e for peS . (2.39)
Using (2.37) and (2.16) we find that y[0Q] is symmetric
v[09)T =~[0Q] . (2.40)
Next we define an “inversion” D[] of the form [0Q)] in S,
D[oQ] : V[oQ] —» S , ©[09] » D[0Q] = dyaa) (2.41)
which creates a solution of the homogenous field equation with given the value on the boundary,
Fep=0 A gdQed=¢ &  ¢$=DN-p . (2.42)

We also define the projectors D,[0Q] and Dy[09] from P to S which map a field to the solution
with the same value or momentum on the boundary 9
D,[09)] = D[9Q)] - ¢[09]

, (2.43)
D4[89] = D[90] - y[00] " + 2[00
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We can also define a generator of the phase space 9]0
9[0Q): P = V[9Q]

2[09] = ~D[9] + (06 = x[00] — 1[99 - 00 (240
It is easy to check that
0[0N] e (0N =0 & ¢pe8& , (2.45)
OF[00] = ¥[0Q] - [0N] — [0N] «Y[0Q] . (2.46)
Finally we define the restriction of a smooth source J to the boundary
I[Q]:P[Q) = V[0Q] , IQ)(J) =—JeD[OQ] . (2.47)

3 + 1 splitting

Let us assume we are working in a globally hyperbolic spacetime. A 3+ 1 splitting of a spacetime [2]
is defined using a time coordinate ¢ and a time flow vector #* € ¥ M consistent with the time
coordinate:

Pdat=1 . (2.48)

“Space at moment t” is a hypersurface ¥; of constant time ¢t. We assume it is a Cauchy hypersur-
face. The time flow vector gives us a diffeomorphism between these hypersurfaces. All “spacetime”
quantities can be expressed using “space” quantities in the standard way:

= Ni*+ N® | Ndot=na , (2.49)
B%gapd® =—-1 , 8%0a=1 , qap=(9]5)as - (2.50)
> =Ndtq® , q° = (Detqag)® , (2.51)

. 1 1 4 .
j=Jqz/g® , j=Nj . (2.52)

Here gop is the space part of the metric gag, the normal vector i and the hypersurface ¥; are future
oriented, and N and N are the lapse and the shift?.

For each hypersurface ¥; we can construct the boundary value space V[X;] and define the value
observable ¢[X;]. For simplicity of the notation we we drop the hypersurface dependence in the rest
of this section. The diffeomorphism between hypersurfaces allows us to define the time derivative

¢ = ({%da ®)|s, = N(#%da®)|s, + N%dap . (2.53)
The action can be written using the Lagrangian
te
SUSlZa) = [ Lot (254

ty
A 11 2 V2o
L(%w)—/([?]\,w @' N%day
A (2.55)
1 -1aB Vo2 1 N7¢] 2 1 .
- §N((das0)(q NN dsp) + Vg ) ]CP + Njp

As we expect the momentum observable defined in the Hamiltonian formalism coincides with the
definition (2.34) above:

=
N (2.56)
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The Hamiltonian is

1 -1 =
H[S,#] = H(p, ) =/N[5W2q% F+TN%dap

PO
1 o o 1 = FE 2.57
+ 3 ([ap)a? = N3N (dpg) + v @ Jat —jp] = 25D
1 . z
Zi(w-q 1-7r+7r-p-<p+<p-p-7r+so-v-s0)—J-so ,
h 5

o q=(~at0)=~q . p=N=d

N N (2.58)

“n 1 - = ~
V= da-(Nq_laﬁ—NNaNﬁ)Q'dﬁ+NVq

The Hamiltonian H [E,f] as an observable on the space P can be defined for any hypersurface
¥ equipped with a non-tangential non-degenerate vector field ¢. It is a quadratic observable (in the
sense of P), and it has support on the hypersurface X. It can be written as

HIS,1(0) = 5 oo IS o0~ T[S, 1]e6 (2.59)

where
H=n-q 'sa+m-pro+op-rt+o-vegp , (2.60)
T =I5 =j0 . (2.61)

This is also a well-defined observable on the boundary phase space B[X].
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3 Boundary conditions and extensions of
Laplace-like operators

Generalized boundary value

In this chapter we will investigate the question of boundary conditions. In the previous chapter we
have seen that the phase space can also be parametrized using values of the field on the boundary 0}
of the spacetime domain 2. Now we would like to introduce a more general notion of the boundary
values.

Most objects introduced in this chapter should carry an argument with the specification of the
spacetime domain € (e.g. ?[Q]) or the boundary 99 (e.g. 0F[01)]). Because we will work with one
fixed domain 2, we will drop the domain argument here to simplify the notation.

We can characterize a generalized boundary value by fixing a complementary vector space Py
to the space S in the space of all histories P, i.e. the space which satisfies

P=P, S , P,nS={0} . (3.1)
Let Dy and Aj be projectors onto S and Py

Dredp=¢ & ¢S , Apegdp=¢ & ¢9€Py

DyeDy, =Dy , ApeA,= (3.2)
DyeAy=A,eDy=0 , Dy+A,=0dp
Using the definition of & and (2.16) we get
FeDy=0 |, (3.3)
DyedFeDy;=0 (3.4)

The space Py can be interpreted as a space of histories with zero generalized B-value. The projector
Dy is an operator which acting on a history gives a solution of the free equation of motion with “the
same B-value”. "

The reason for the necessity to investigate boundary conditions is that the field operator F
is degenerate and non-symmetric on the space P. We choose a space Py in such way that it is

the maximal space of smooth field configurations on which the operator Fis non-degenerate. The
mazimality is expressed by condition (3.1). Of course, the choice of the space Pj is not unique —
we can have different boundary conditions.

It could seem that there are more unique choices of a subspace of P on which the operator F
is non-degenerate — for example the space P, of all histories with support in the interior of the
domain Q. But such a space is too small. In general, there is no solution in P, of equation (2.13)

with a non-zero source J. On the other hand, the operator F, (the restriction of F on P,) is
symmetric on P,. We would like to impose the same condition on the space Py. In other words,
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we are looking for a self-adjoint extension of the operator F, which coincides with 3} on the space
P5. The symmetry condition

P1, 020 € Py = preFepa=qgaeF e (3.5)
can be formulated in terms of a projector Ay
ApedF e Ay =0 . (3.6)

To conclude the definition of generalized boundary value we need to add a condition of localization
on the boundary 0. If we view the projector D;Z as a bi-distribution (with one functional and
one density argument), we will require that it has support on 9Q in the density argument. More
precisely, any distribution obtained by smoothing D, with a smooth source j € P has a support in
o0

supp (j e Dy) C O . (3.7

Finally we pick up two special cases. We use the indices p and N for Dirichlet and Neumann
boundary conditions. It means that P, is the space of fields with zero value on the boundary and
P is the space of fields with zero momentum.

Space of boundary values

The conditions on the projectors Dy and Ay restrict the character of the generalized boundary value.
We will prove that the generalized boundary value depends only on the value and momentum on
the boundary.

First we introduce a notion similar to the form ¢ for the generalized boundary value. We use
again the fact that the value of the solution of the homogenous field equation on the whole boundary
is sufficient to determine the solution. Therefore we can define the form of generalized boundary
value @, which assigns to a field ¢ the boundary value of the solution from & with the same B-value,
i.e.

0, P2V ., g,=geDs . (3.8)
Clearly
QB.¢:O<:>¢€PB , SQBZSQB°DB , (39)
©,* D=0y , Dy=D-y, (3.10)
and -
Fep=0 A QB.¢:(p & ¢p=D-p . (311)

Using the localization condition (3.7) we know that D, and therefore also g, can be sensitive
only to the value and (multiple) normal derivatives on the boundary. If we denote by ¢*) the form
which gives the k-th normal derivative on the boundary, we can write

e =7 gtk Y b (3.12)
k=2,3,...

where g, k5 and €* are linear coefficients (bi-density, bi-vector and operators on V). We have used
¢ and 7 instead of ©(® and (1), and we have scaled the zero-th coefficient by the quadratic form
7 defined in (2.39) for convenience.

The condition (3.6) together with (3.4) is equivalent to

OF = 0F e Dy + Dy 0 OF . (3.13)
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Substituting expressions (2.37), (2.39), (3.8) and (3.12) and comparing coefficients of terms with the
same order of normal derivatives, we get conditions

Ky =Ks , Ay =Xs (3.14)
Kpe Y+ edsg =0y (3.15)
=0 for n=2,3,... . (3.16)

It is straightforward to check that other conditions on D; do not provide additional conditions on
the coefficients A; and k;. We see that tpe choice of the boundary conditions can be characterized
by the choice of a quadratic form k; on V

Dy=D:+(y '+ Xsr@+kgrm) (3.17)

where \j is given by normalization (3.15). It means that a field with a zero B-value (i.e. from the
space Pj) has a value proportional to a momentum on the boundary with coefficients given by x5
and Ag. Similarly to (2.46) we also have

af:Q'SQB_SQB'ﬁ . (318)

The fact that it is possible to characterize the generalized boundary conditions we are interested
in by using the value and the momentum on the boundary allows us to restrict to the boundary phase
space B. The boundary phase space inherits structures from the space of all field configurations P.
We can define an equivalent of the phase space S (we use the same letter S to denote it) and spaces
B; as an equivalent of spaces P;. They are linear subspaces of the space B. We can also project
objects Dy, Ay, OF and @, w, ¥, @,, @, on the space P to the space B using 0® and we use the
same letter for them. The subspace S of the space B is characterized by the condition

peES & Vop=(m—7yr@)ed=0 . (3.19)

Similarly
pEB, & o= (kprm+y edyrp)op=0 . (3.20)

Thanks to (3.18) we see that observables generated by forms g, ¥ or w,, ¥ are canonically
conjugate in the sense of the boundary phase space. A generalization of the momentum m which is
canonically conjugate to a generalized boundary value ¢, will be introduced later.

Spaces of sources

The space of smooth sources P is the space of smooth densities on Q. It is clearly a subspace of the
distributional sources P’ = P*.

In the previous section we have imposed the condition that the support of the projector Dy in
the density argument is localized on the boundary 0. It suggests that we should work with a
class of sources broader than the smooth sources P. We should include sources with support on
the boundary. For our purposes a sufficiently wide set of sources is the class of sources which are
sensitive to some kind of B-value localized on the boundary. We have seen that such sources can
be sensitive only to a value and a normal derivative of the field on the boundary. Therefore these
sources can be defined as following

0T ={J:3¢pecP J=0Fep} . (3.21)
By J we denote the class of all generalized sources

T=0TaP . (3.22)
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It will be useful to introduce subsets of these spaces

IT={J:3¢eP J=¢eF} , (3.23)
0L ={J:3¢€8S J=0Feop}=
={J:J€OT AVGPES Jep=0}= (3.24)
=0JNT

The class J is the set of all generalized sources sensitive to any generalized value. Next we
introduce the sets of sources connected with fixed choice of the boundary value. The space of all
distributional sources 8J ; which are localized on ) and sensitive only to the B-value is

0T ={J:J€dT AVPEP, Jep=0}=

e (3.25)
={J:3jeP J=jeD,}
Similarly we define the space
Z,={J:3 s J=¢eF}=
{ ¢ € 7~> e F} (3.26)
={J:3jeP J=jeA;}
and R R R R R
JBZBJB@PZBJB@IB . (327)
Feynman Green function
We define 3-:3 as a projection of Fon Py, ie.
Fo=ApeF=FeA, . (3.28)
Using this definition and the relations above we immediately get
%NB:?_DB.af:?_‘_QB'Q N (329)

F 5 is a degenerate symmetric quadratic form on P which coincides with F on Py in the sense of
quadratic forms

¢1°§:NB'¢2=¢1'?'¢2 ¢1°3?°¢2 for ¢1,02 € Ps (3.30)
Frep=0 & ¢e8 . (3.31)

_ We can understand F » also as an operator from the space P to the space of generalized sources
J . Using the definitions (3.26) and (3.28), we see that the range of such an operator is

I,={J:3¢ecP J=¢peF,} . (3.32)

The smallest space of sources which contains all smooth sources and sources generated by F 5 is the
space J 5.

We can define an inverse 53 of the quadratic form F 5 as a bi-form on J . More precisely F B
is non-degenerate on P, and zero on S. E;NB is the inverse of the non-degenerate part of .w7-'NB and is
annihilated by the projection on S.

v e v w T —~

GB.fB:AB , DyeGz=0 , GB:GB . (333)



3 Boundary conditions and extensions of Laplace-like operators 24

Finally, we call the Feynman Green function GE the restriction of G 5 to the space of smooth
sources P

Gl = Galpyp - (3.34)

It can be also viewed as an operator from the space of smooth sources P to the distributions. It is
well known that the range of such an operator lies in the space of smooth fields P. Therefore we
can give meaning to expressions such as J e (G e j) with j € P and general J € J. For example
we have

Dye(GEej)=DpeGrej=0 for jeP . (3.35)
This means that GL ¢ j € P, for j € P. In the next chapter we will evaluate an action of other
sources localized on the boundary on the smoothed Feynman Green function, and we discuss why we
cannot consistently extend the Feynman Green function to the whole space J in both arguments.
Let us note that this is the place where we have to be more careful about associativity and domain
dependence.
Let us look for a smooth solution with zero B-value ¢ € Py of the equation

Foed=Jy , (3.36)
where f]NB € fB and therefore has the form
Jy=JeA, forsome JeP . (3.37)

Using E;NB we can write the solution explicitly as

p=Gre Jy=Gred=0,(]) , (3.38)

where

bs(J)=GEeJ for JeP . (3.39)
Now, equation (3.36) is possible to rewrite, using (3.29) and (2.47), as

Fodold) =T =0, (9(]) =D Gs(])) . (3.40)

The left side of this equation is a smooth density, and the right side is a source with support localized
on the boundary. Therefore both sides have to vanish separately.

Fedul)=T (3.41)
Do u(J) =0(J) . (3.42)

This means that ¢,(.J) is the solution of the equation of motion with zero B-value on the boundary.
It is easy to check that (3.42) is a consequence of (3.41), and it represents the “restriction” of the
equation of motion to the observables on the boundary.

We can also write down a solution of the equation of motion with given non-zero B-value on the
boundary

def

f.(i 7 where J€P,pecV & b=0¢5(J,0) = GEeJ+ Dy . (3.43)
Lp® P
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Extension of the field operator on the space P

The quadratic form F 5 is non-degenerate on Py, and it represents the “wave operator” for field
configurations with zero B-value on the boundary. Now we would like to find a generalization of the
quadratic form Fy from the action for a general boundary conditions. Such form has to be non-
degenerate on all smooth histories, even on histories from the phase space §. Therefore we need to
investigate a further extension of F s to a quadratic form F}, non-degenerate on the whole space P.
It will be necessary to introduce an additional structure which, as we will see later, corresponds in
the quantum case to the fixing of relative phases for some quantum states.

We will assume that F}, preserves the decomposition P = P & S, and we change the form F B
only on the phase space §. l.e. we define

Fo=Fs+Fp , (3-44)

where B . B B B
Ff=F, , ApeFp=0 , DpeFp=F, . (3.45)

The index b “includes” the index B and information about an additional structure. Fp is the
quadratic form of the classical action — it gives a value of the action on classical solutions of the
equation of motion. We assume that Fj, is non-degenerate on S.

Next we describe a specific construction of the quadratic forms Fj, and F;, which will be useful
in the quantum theory. We show that F}, is possible to fix by a choice of generalized momentum
canonically conjugate with the generalized boundary value.

The generalized B'-momentum can be characterized in the same way as a B-value by projectors
Dy and Ag on spaces Py and & which satisfy the same conditions listed in the section above. The
spaces P and P, have to be canonically conjugate, i.e. it has to be possible to write the symplectic
form OF as

OF = dF oy — dF s (3.46)
where = = -
AF s = Dy s dF py = AF sy # Dy,
ApodFuy =0 , dFmy oAy =0 , (3.47)
iF oy = dF oy
Clearly

d?‘-BBr + d?:B/B =0 . (3.48)

For simplicity we will use a cumulative index b for an ordered pair of indices which characterize
generalized value and momentum (we write e.g. b = BB'). We use the notation ~b = B,B; if b = B;B..
If some quantity is characterized by a single index of a generalized value but carries a cumulative
index, it is sensitive to the first index in the pair (i.e. @, = @, if b= B:B,). Also the b-value means
the B;-value and the b-momentum means the B,-momentum for b = B;B.. We fix the meaning of
indices d and n as

d=bpN , n=nNp , d=~n . (3.49)

The meaning of the canonically conjugate spaces will be more clear if we introduce a form of
generalized momentum — a mapping from P onto the space V of densities on the boundary

Tppr - P — ‘} ) gy = Do dN}BB’ . (350)

We have
m,eDop=m, , mpeA =0 |, (3.51)
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so m; is equivalent to the map ¢ _, for the ~b-value, except it maps to the space of densities. From
(3.46) and (3.10) follows

af:ﬂb'SQb_SQb'Eb > (3-52)
dj:bZSQb'Eb ) dszlb'SQb ) (3-53)

i.e. linear observables generated by ¢, and m; are canonically conjugate in the sense of the boundary
phase space B.

We can classify all possible momenta canonically conjugate with a generalized B-value. Similar
to ¢, we know that 7, has to be a linear combination of the forms ¢ and & and therefore also a
linear combination of g, and ¥, so we can write

Ty =Y @p+9 ="+ (7‘1-(Ab—7-7;1-7)-se+(nb+7;1)-£) , (3.54)

with a non-degenerate symmetric quadratic form ~;, as a coefficient. The symmetry of 7, and
the choice of the trivial coefficient in front of ¥ follows from the conditions (3.52) and (3.18), and
non-degeneracy follows from the condition (3.1) for the momentum space P.p. It means that all
generalized B’-momentum canonically conjugate with a generalized B-value can be characterized by
a choice of a quadratic form 7z on the space V.

We said that the form m; plays the role of the form g _, except for the normalization. The right
normalization is given by (3.15), so we obtain

e =2t 0= Qe =y ) gt (k) (3.55)
i.e.
Kb =Kb+7, " 5 A=A =7 Y Y . (3.56)
We also see that
Ty =Y*@wp > Tp D= (3.57)
and
Yo+ Yup =0 . (3.58)

Finally we can define the quadratic form Fj,
Fp=dFyeDy=DyedFy . (3.59)

The definition is consistent thanks to equations (3.4) and (3.46). Le. the form F is symmetric. We
can also express Fj, using quantities on the space V. Using (3.53), (3.54), (3.10) and (3.57) we get

szseb-%-ﬁb . (3.60)

As we expected, it is clear from this expression that the quadratic form Fj, is degenerate on P}, and
non-degenerate on S.
From the definition of F}, follows that

Fo=Fo+Fy=F+dFy=F+dF, . (3.61)

Green functions

Now we will introduce new Green functions connected with the structure discussed in the previous
chapter. Similar to G , we can define inverses of the quadratic forms F;, and Fj, by

GpeFr=Dy, , G} =Gy , ApeGp=0 |, (3.62)
GheFo=08 , Gl =G, , Go=Gp+Gp . (3.63)
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Here G, G}, and G » can be viewed as quadratic forms on the space of sources Jp, or as bi-vectors
on the space P or as operators from Jj, to P.
Because G, as the inverse of Fp on 8 is a solution of the homogenous equation of motion in both
arguments, we can write it as
Gy=D-v,'+D . (3.64)
From this follows

o,eGrey=7" , o eGpem, =0y , meGrem, =7 ,

e o e _ (3.65)
GpedFr,=Dp , GpedFupb=—D.p , Gpe0F =Dp,—D.y
For a smooth source J € P we have
a.,*GreJ=—-DeJ=0(]) (3.66)
and
Eb'Gb'J:(’)/b'v:l(Qb‘i'Q)'évb'J+Ef'Gb°J: (3.67)
=d0eGpeJ+DeJ=200e¢p(])—0(J)=0
This means that ~
Gy oJePy for JeP . (3.68)
Further,
FeGueJ=—dFyeGueJ+FpeGpel=1J . (3.69)
Comparing with (3.41) we see that
¢p(J) =GpeJ for JeP . (3.70)
This also means that G .;, acting on smooth sources coincides with the Feynman Green function GI’
G =Gublpyp - (3.71)

We have different extensions E;NB and Gy 5 of the Feynman Green function GZ on the spaces T s
and J» which allow us to compute the action of sources localized on the boundary which have a
form j«p, or j«p, with j € V on the smoothed Feynman Green function. For J € P we have

(j'SQB).(Gg‘.J):j'SQB.GB.J:O ’
(Ge0w) o (G o) = oy o Gunod = —j 7, 9(J])
But we cannot consistently define an action of the Feynman Green function on the sources localized
on the boundary in both arguments because of problems with an associativity

(3.72)

def _
-o(QB.(GII;_‘.SQB’) ~ SQB.GB’B.SQB’ :’YB’IIE ) (373)

def hoed
(0,0 GEYep, R g, e Grep, =0
We can give a sense only to the action of the Feynman Green function on the special sources both

from the space 3T 5 or both from the space 8F . Such sources can be written as j Qp O J» @
with j € V. We can write

(1 v0y) ¢ GE o (0 o) E (i s) e Goo(@pria) =0

. F .oy def /. . . S (374)
(1 =2y ) ¢ Gy o (@ =J2) = (J1-@p) ® Gun ® (Ly = J2) = J1 = Vo " J2
Specifically, we write down the following applications
JeGE e0F = JeGE edFy=~JeDy |, JeGFedF,=0 |, (3.75)

dF, e GF edFy=—F, , dFpeGFedF,=0 . (3.76)
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The structure of the boundary phase space

It can be instructive to investigate the projection of the introduced objects on the boundary phase
space B. For objects which depends only on the generalized boundary values, as Fp, @, or m;, we
do not lose any information, and it is possible to reconstruct fully the original objects on P from
their equivalents on B.
Let P and Py be canonically conjugate subspaces of P and let B, and By be their projections
on B. We can write
B=B;® By . (3.77)

Let Pgp, Ph be projectors on By, and By . It is straightforward to check that

Pz_OAbZO , PZ—ODb:Pir ,

B _ _ (3.78)
PooA,=0 , PooD. =P,
dFy =Py 0F 0P} , dFy=—Pf c0F 0P, | (3.79)
OF =P 00F 0Py + Py 00F 0P} . (3.80)
Projectors Pf can be represented as
PFr=P,. where P, =4 , m*P,=0 ,
li b Lh Lh b 1% b' b (3.81)
Pb :Eblﬂb where Eb'Eb:(sv 5 _‘(Qb'EbZO .
It is straightforward to check that
P,=(P+kop— P Ao ! :
P, ~(_ b=PeAipsyT) (3.82)
Po=Pekp—P-Ap-y™
where o
P= Ed , P= Ed (3-83)

are generators of elements of B with given value and zero momentum and vice versa.
The pair of spaces By and By can be characterized by a choice of a square root of the unity
operator,
lpw = PL, —P., . (3.84)

BB’

Such an operator satisfies the conditions

lpolp =08 , lpodFoly=—-0F . (3.85)
We can define
iAF,=0Folp (3.86)
and it is easy to check that
iAF, = d«j:b + d?:b = d?:b — d?:Nb =Fp—Fup - (3.87)

So the quadratic form AF} is defined also on P, and we see that
-7:b =F + §ZA.7:b y -7:~b =F - §ZA.7:b ) (388)

where 1 1
.7:25(.7:-1-.7:):5(.7:1)-1-.7:,\,1,) . (3.89)
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4 Complex boundary conditions and complex
structure

Complex structure on a linear phase space

In the previous sections we have studied a wide class of boundary conditions of a Laplace-like
operator. They can be characterized by subspaces P in the boundary phase space P. Thanks to
the linearity of this space we can introduce a complex variant of the boundary condition described
by subspaces in the complexified space PC.

The complex boundary conditions will play a key role in the definition of Fock quantization of
the scalar field. They provide us with a general positive-negative frequency splitting. Because the
frequency splitting and the Fock quantization is not necessarily connected with the scalar field, we
define these notions for a general linear symplectic space. We will return to the realization on the
boundary phase space in the next sections.

To define a general positive-negative frequency splitting we use a complex analog of the objects
described in the previous section. We introduce the complex structure J, and projectors P;)t as an
equivalent of the unity operator I, and the projectors Pf. We will look at this analogy in more
detail later.

So, let us assume that we have a vector space G with a symplectic structure w. We denote by
o the contraction over vector indices. (In the next chapters (G, W, o) will be realized as both the
boundary phase space (B,0F,¢) and the covariant phase space (S, W ,0).) First we turn the space
G to a complex space. It will be the same as the real vector space but we define additionally a
multiplication * by a complex number inside of G

ixp=Jp,00 . (4.1)
Here J, is an operator on G which satisfies
Jpol,=—-dg . (4.2)

Such operator is called a complex structure on the vector space G. There exist a lot of different
complex structures on G, and we will discuss their relation in chapter 8. At this moment we pick up
one and we use the index p for all quantities which depend on this complex structure. If we want to
stress the additional complex structure of the phase space we denote it as G,.

Next we define a positive definite product on G,. This is possible to do if we assume that J,
possesses the following properties:

or JyowWw=-wWol, , (4.3)

is positive definite . (4.4)

JyoWol, =%

Wp=Jpo W
The first property is called compatibility of J, with the symplectic structure @. Let’s note that if
J, is compatible with @', the bi-form @, is automatically symmetric

wp=w, . (4.5)
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Let assume that J,, satisfies both conditions (4.3) and (4.4). Now we can define a scalar product on
G by

]- — PR aaad
(b1, d2)p = dro5(@p —iw)ods . (4.6)
It is linear in the second argument, antilinear in the first argument, and positive definite.
(ix 1, 02)p = —id1,B2)p  (P1,i% P2)p = i(P1,b2)p (4.7)
1 _
(¢,¢)p:§¢owpoq§>0 for ¢#0 . (4.8)

The introduced complex structure allows us to define a positive-negative frequency splitting of
an element from G. J, as the operator on G does not have eigenvectors in G, but it has eigenvectors
in the complexification G® = C® G of the phase space. Its eigenvalues are +i (because squares
of them have to be —1), and we can explicitly write projectors on subspaces gpi of G€ with these
eigenvalues

1 .
pE = 5(0g Fily) . (4.9)
They have the properties
JpoPt=iPl | J,0P, =—iP, |
+ _p* _ pt + _ +x _
P,oP, =P, , PyoPF=0 , P;"=PF |, (4.10)

Pr+P,=dg , i(Pf-P;)=1,

The compatibility (4.3) of J, and @ is possible to reformulate as

PEoW = WoPF (4.11)
or
ProWoPr=0 , W=P,0oWoP+PfoWoP, . (4.12)
Similarly
P;to@poP;t:O , &;p:P;o&)poP;+P;oJ)poP; , (4.13)

We will call the positive or negative frequency part, respectively, of the element ¢ of the phase space
G the complex vector qﬁZ or ¢; defined by

¢, =Prog . (4.14)

We have
o=¢t +¢, , Joo=ild) —¢,) , &, =0 . (4.15)

The scalar product is possible to write as
(D1, 02)p = b1, 0Dy 0 ot = =i, 0 W 0 yh (4.16)

Note that not all linear operators on G are also p-linear on G,,. p-linearity of an operator L means
that L is linear with respect of multiplication x. Therefore it has to commute with multiplication
by the imaginary unity which is given by the action of the complex structure J,, i.e.

Lol,=J,0L (4.17)

or equivalently
LoPf=PfoL & L=P oLoP,+PloLoPl . (4.18)
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Similarly p-antilinearity of an operator A is equivalent to

AolJ,=-J,04 (4.19)
or
+ _ _p- + - +
AoPp_P;'):oA PN A_PpvoPp-i-PpoAOPp . (4.20)
We introduce the hermitian conjugation L of a p-linear operator L defined by

(010 LT o), = (d1,Loda)y (4.21)

It can be written explicitly as (remember T oW = —dg)
LW =—T""oLow (4.22)

and we see that it depends on the choice of J,, only through the p-linearity condition on L. Similarly
we can define the transposition A(T) for a p-antilinear operator A by

(610 ATV o) = (41, Ao ¢a), (4.23)

or "
AT =T 040w . (4.24)

Both these operator are particular cases of the transposition OT» of any operator O on G defined
using the bi-form w,:
O =w,'o0o0w, , (4.25)
LW =LT for L p-linear

4.26
AT = AT for A p-antilinear ( )

This operation depends on the choice of J,, explicitly.
Let us note that we can choose a p-orthonormal C-base u = {uy;k € Z} in G, where k is an
index from some, for simplicity discrete, set Z. p-orthonormality means

(uk,ul)p = (51(1 . (427)

The C-base is a set u that is complete in the Hilbert space G,, i.e. in the vector space with
multiplication *. The set {uk;,uk;;k € 7} of positive and negative frequency parts of vectors uy

forms a complete set in G® with the properties

uk?0$ou1§:0 , —iuk;0$ou1;:5k1 ,
wE* = T (4.28)
kp 'p

Characterization using value and momentum

Let us assume that we have defined a value and a momentum in our phase space G — i.e we have
a canonically conjugate pair of subspaces G,, Gy generated by a V-valued form ¢ and a V-valued
form m which satisfy

W=mp—p-T . (4.29)

As before we can define the generator P of vectors with given value and zero momentum and the
generator P of vectors with given momentum and zero value (see (3.83)). We can decompose the
complex structure to objects acting on the value space V. Using properties (4.2) and (4.3) we get

-lp:E'Ap'Q_E'BP'E_FE'CP'SQ_E'AP'E ) (4-30)
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where A, is an operator on V, B, and C, are non-degenerate symmetric quadratic forms on V and
Y which satisfy
B,=B, , C,=C, ,
ApeBy=8B,-A, , A,«Cp,=Cp-A, , (4.31)
By Cp=CpeBp =0y + A, A

Now we can get

W=y 2B eyl —i 2By

ajp:_,(Q'Cp'_,(Q_E'Ap'SQ_SQ'Ap'E"‘E'Bp'lz (432)
b= 2B bt 4+ T 2B e~
=Y, 2B, A 2B, Y
1 . -
P;:E(EHE-@Z,,)*-zs*,,-(¢91,,-gg+ig):(EJrz'E-ez,,)*-g+ , (4.33)
1. 1 ok . _ _
§(w—zw):§(g-9p+zﬂ) -Bp-(0p-gg+m):gp-28pl-y: , (4.34)

where ), is a complex symmetric non-degenerate quadratic form on V defined as

O, =B, - (0y —iAp) =Cpe (by +idy) " (4.35)
and 1
U =0 =SBy (e tin)
. (4.36)
%7 :_'(QOP; = §Bp-(9;-_‘@—2£)

The forms g; and y; gives the value of the positive and negative frequency parts. We can also

write conditions on the spaces g;, G, in terms of the value and momentum

peG, & (fprot+im)op=0 |,

f . ) (4.37)
pegG, & (Opro—im)op=0 |,
which can be interpreted in the case of the covariant phase space S as complex boundary conditions

for positive and negative frequency solutions.

Complex boundary conditions

Now we apply the formalism of positive-negative frequency splitting in the case of the boundary
phase space B. There the complex structure J, defines complex subspaces B:, B, of B® with
projectors P;‘, P, . These can be also characterized using quantities on the value space V.

We have mentioned that the complex structure J, is an analog of the unity operator l,. We can

define such an operator for p-boundary conditions
ilp=Jp . (4.38)

So we can speak about subspaces of zero p-value or zero p-momentum which turn out to be exactly
subspaces of negative or positive frequency parts, i.e. B, = B, and Bj = B.p,. The difference
is that now the spaces B, and B., are subspaces of the complexification B® and they are not
chosen independently — they are complex conjugate. We have compensated the expansion to Bt
by imposing the reality condition which can be expressed as

Jr=1J, or IF=—1, or Pj* =P> . (4.39)

p p p
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In the boundary phase space B we have additionally the subspace of physical solutions S char-
acterized, for example, by the quadratic form v via (3.19). We can check that S8® and B;‘ or B,
do not have common elements. For example an element of B, has the form ¢ = (P + iP. 6p) + ¢ for
some 1) € V (see (4.33)) and therefore

Dop=(iB, "+ B, A, —7) b #0 (4.40)

thanks to the non-degeneracy of Bj,. So we can define projectors A, = A7, D, = D on subspaces
B, = B;, S and A, = A}, D., = D on subspaces B., = B; and lift their action to the
complexified space of field configurations PC.

One thus defines canonically conjugate subspaces P, = P, and P, = ’P;‘ in PC, and all
objects we have introduced for canonically conjugate pair of real subspaces P}, P..p can be also
defined for the pair of complex subspaces P, P~p. Specifically we define dF,, dF,, AF,, Fp, Fp,
Fp and G p, Gp, G5 and @, Ap, kp, 7p-

In the case of the boundary phase space we use the brackets (,) for the scalar product (4.6), and
we define a similar operation for the real b-boundary condition (but it is not a scalar product on G
in the real case):

(61, 02)m = =i <>6{}',11 Oy = 1 © %(Jm COF —i0F) o (4.41)

where m can be a b or p-like index.

Let us note that the spaces ’Pff contain histories with positive or negative frequency parts on
the boundary — we have defined the complex structure J, in the boundary phase space.

Only properties of objects dependent on real or complex boundary conditions which can differ
are properties based on the complex conjugation. The main differences can be found in the following
list.

b-conditions p-conditions
p="db =1l =1, , I=-l, =1,
P = Pf P = PT = PE,
dFy* =dF, , dFy* =dF, dF,* = —dF, =dF.,
AFp =—-AF, AF) =AF, = -AF,, (4.42)
Fr=Fp Fp=Fup

JU 1 1
Rej:p:j: s Im]:pziA}-pzinoaf

B =F , Fp=7Fp For=Fp » Fpr=TFop
(B2, 01)p = —(92,¢1)p = (P01, 02)%p (B2,01)p = (1,02);, = —(d2,01)%,

Finally, we express the coefficients A,, k, using the complex structure. Clearly the forms y:

and y; are operator-proportional to @, and ¢_,. The right normalization given by (3.15) implies
kp=(y—ifp)"" , Ay =(y +igH T
p= (v .pz B p =0 o p. 371 B (4.43)

Kop=(Y+i0p) ", Ap=(y —ify )

and the relation (3.56) gives

1,
'Yp:_7~p:gz(cp'i")/'Bp"Y_'Y'Ap_Ap"Y): (4.44)

1. . .
= Si(y+i8;) 2 By e (v = i)
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Dependence on the orientation of the hypersurface

Now we will investigate a dependence on the orientation of the boundary. Or more generally, let’s
assume we are working on a phase space B[X] over some oriented hypersurface (not necessary a
whole boundary), and we choose a complex structure J, consistent with the symplectic structure
OF[X]. If we change the orientation of the hypersurface, the complex structure J, is not consistent
with 0F[X] any more because of the non-positivity of J, o 0F[E]. But clearly the complex structure

Jp=-1, | (4.45)

which we already have used above, is consistent with 0F[—X].
Moreover, we define p[¥], x[¥], and we find

Ap[=3l=-AX] , B[Sl =B,[X] , Cyp[-X]=0C[X] (4.46)
00l=S1 = GIEI , ¥ %] = pT[S)

In the case where the domain on which we are working is a sandwich-like region of a globally
hyperbolic spacetime, we can represent the boundary phase space as a direct sum of initial and
final canonical phase spaces By and B; with symplectic structures 0F¢ and 0F;. We will be mainly
interested in the complex structures J, which do not mix these subspaces. L.e., we can write such a
complex structure as

JP = _pr + in ’ (4-47)

with J,, an operator on B¢, and J,, an operator on B;. The minus sign in front of J,, is necessary
due to the different choices of the orientation of the final hypersurface in the case of final canonical
phase space Bt and in the case of the boundary phase space B.

Therefore the notion of the positive frequency part in the boundary phase space is equivalent
to the notion of the positive frequency part on the initial hypersurface and the negative frequency
part on the final hypersurface. This explains also a possible confusion that the space of complex
solutions S and the space of positive frequency parts (in the sense of the boundary phase space)
do not have common elements.
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5 Configuration quantization

Ideas of quantization

Quantization is a heuristic procedure of a construction of a quantum theory for a given classical
theory. Let us have a classical system described by a phase space G and symplectic structure @ .
Observables are functions on G, and the Poisson brackets are given by (B.5). Quantization tells us
to assign to (at least some) classical observables quantum observables — operators on a quantum
Hilbert space H. We will use letters with a hat to denote quantum observables, and we denote O the
algebra which they obey. They should satisfy the same algebraic relations as the classical observables
and the commutation relations generated by Poisson brackets. Specifically, if the quantum versions
of classical observables A, B and C = {A, B} are A, B, C, they should be related by

A, B < AB-BA=—iC . (5.1)

It is well known that the procedure described above cannot be carried out for all classical observ-
ables. Because quantum observables do not commute we have an “ordering problem” for observables
given by a product of non-commuting observables.

The usual quantization procedure tries to quantize some specific class of classical observables and
construct the physically interesting observables from them. Even in this case the operator ordering
ambiguity is encountered. But we have to expect this — a quantum theory is not fully determined
by the classical counterpart.

We will demonstrate quantization for a general example of a classical theory given on a phase
space G which has a cotangent bundle structure T* V as we discussed in chapter 1. The mathematical
structure of such a phase space is reviewed in appendix C. Afterwards we apply this method briefly
to scalar field theory. But we do not attempt to solve the dynamics of the theory here. We will
leave this question for the following chapters.

Let us note that the procedure described below has a well-defined sense for a finite-dimensional
configuration space V. Of course, this is not the case for the scalar field, where the configuration
space is V[X] as defined in chapter 2 — the space of functions on the manifold ¥. The technical
problems with generalization to infinite dimensional spaces is one of the reasons why we will not
primarily use this type of quantization for a scalar field. But we will apply the formalism to a scalar
field, which is, with some effort, possible to do, thanks mainly to linearity of the configuration space
Y. But it leads to problems with the definition of a “constant measure” on infinite-dimensional
spaces which we do not want to investigate.

Algebra of observables

At the end of chapter 1 we have introduced special kinds of observables on the phase space with a
cotangent bundle structure. We have defined the observables F¢ depending only on “position” (eq.
(1.37)) and the observables G, linear in momentum (eq. (1.38)). Their Poisson brackets are given in
(1.39). Now, we will quantize these observables. First we formulate more carefully what conditions
we are imposing on the quantum versions of these observables.
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We are looking for maps F and G from the test functions and test vector fields on the configuration
space V to the space of quantum observables O

FreO for fegVy ,

. (5.2)
G, €0 for a €V
which should be hermitian (for real f and a)
Fi=F; , Gl=G, , (5.3)
and should satisfy commutation relations motivated by Poisson brackets (1.39)
[IA:fUIA:fz] =0, (54)
[F7,6a] = iFuar (5.5)
o, Gan] = —iGlaysan) - (5.6)

Next we have to formulate the condition that the quantum observables satisfy “the same algebraic
relations as the classical ones”. For the observables F¢ it is straightforward because they commute
— we require that we can take out any algebraic operation g in the argument to the same operation
on the observable

Ieg(flvfz,...) :g(ﬁfur:an"') - (57)

For the G, we have to be more careful — they do not commute with each other and with the F ¥
observables. But we are interested in observables linear in momentum, so we need to investigate
only the vector-field dependence of the G,. We require

Gay+aay = Ga, +0G,, for a€R
Gfa = Ff%_” GaFf%+i7 for v E R . (5.9)
The last condition is an equivalent of the classical expression Gy, = FyG,, but it specifies the

ordering of the quantum theory. We have chosen the exponent of the f function in the special form
(1 —iv) and (3 + i7) to satisfy the hermiticity condition (5.3) with a real constant . The ordering
condition can be rewritten as

~ 1 s 1 .
Gfa:(§_ ’Y) FfGa+(§ +Z’Y)GaFf:

(FsGa + GaFy) + v Fauas - (5.10)
Finally we require that the position observables F ¢ form a complete set of commuting observables

Vi [F,Al=0 = 3g A=F, . (5.11)

Let us note that from these conditions follows

Via [F;,Al=0 [G,,A]=0 =  3JaecR A=ai . (5.13)

Position representation

Next we construct a position base in H on which the action of the operators IA:f and G, is very

simple. Or, in other words, we find a realization of the operators IA:f and Ga, which satisfy the
conditions formulated above, as operators on a space of densities on the configuration manifold V.
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We have, of course, immediately a candidate for such base. The observables F ¢ form a complete
set of commuting observables, so there exists a base of eigenvectors labeled by position in the
configuration space V such that

Fylpos :x) = f(x)[pos : %) . (5.14)

Strictly speaking, |pos : x) are not vectors from the Hilbert space H but generalized vectors which
can be defined, for example, by the conditions that the projectors on them form an operator-valued
density on the configuration space. It will be convenient later to give a character of a density of
some weight® o € C to this vectors. Le., we assume

lpos :x) e HRCXY . (5.15)

The base of eigenvectors is orthogonal, but to write down a normalization condition we need to
be careful. Because of the distributional character of the vectors we can normalize them only to a
delta-distribution. And to get the right normalization we need to choose a volume element p on the
value space. With such a volume element we can write the orthonormality relation®

(pos : x|pos : y) = (W?F 2710 (xly) . (5.16)

The completeness relation is

i= / lpos : Y(pos : .| p' 2R (5.17)
\%

Let us note that conditions above do not fix the base |pos : x) uniquely — they fix the base up
to an x-dependent phase factor. We will deal with this ambiguity below.
For any vector |state) € H we can define a wave function — a density of the weight a* on the
configuration space V
W state) (X) = (pos : x|state) . (5.18)

The density p defines the scalar product on this space which is an isomorphism to the product on
the quantum space

(st1]st2) = (U sp1), Wpst2))p = /wrsﬂ>x1qst2> pl-2Rea (5.19)
v

and it induces the hermitian conjugation on operators of densities of weight «

(A*r, )y = (W1, Atha)y (5.20)
We define the position representation of a, quantum observable A asan operator A on wave functions
A\I’|state) = \I]A|state) . (521)

Clearly
Fr=1o , (5.22)

which can be also written as

IA:f = /f lpos = Ypos : .| p'~2Re@ (5.23)
v
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Phase fixing

Now we proceed to find the position representation of the momentum observables Ga. In this section
we show that there exists a unique choice of the weight a = (% — i) and the phase of the base
|pos : x) for which

Go=—ila (5.24)
where Za is Lie derivative along the vector field a acting to the right.
First we define the position shift operator along a vector field a on the configuration space V as
Ua(e) = exp(—ieG,) . (5.25)
The commutation relation (5.5) gives us
UsFUL =Fuep - (5.26)
Here u,(¢) is a diffeomorphism on V induced by the vector field a

d
aua =a , ua(el + 62) = ua(el) ua(eg) y (527)

and u} is a map induced by the diffeomorphism on objects defined on the configuration space. The
equation (5.26) gives us

FrU,lpos : x) = (\Jaﬁu;—lf|pOS :x) = f(ux) Uy [pos : x) =

. (5.28)
= Uy |pos : x) is proportional to  |pos : u,x)

Here we have to be careful about the proportionality coefficient because vectors |pos : x) and
|[pos : ugx) are also densities in different points x and u,x. Because U,(e) forms a commuting
one-dimensional group for € € R we can write the proportionality relation as follows

ul (Oa\Pa(X)|pOS : X>) = U, (uyx)|pos : ugx) (5.29)

where ¥, is a function or density on V which is defined up to a function or density invariant under
the action of the diffeomorphism u,.
Next we prove that ¥, can be chosen as a density of weight (+ — ) in the form

U, = p= % exp(—ida) , (5.30)

where ¢, is a real function on V defined up to a function constant on the orbits of u,.
Thanks to the freedom in the choice of ¥,, we can write it as a density of the weight (3 — a) in
the form

U, = p % pgexp(—iga) (5.31)
with p,, ¢, real functions. The differential form of equation (5.29) gives
- 1 . . 1_ .
G, (,u2 pa exp(—ids)|pos : )) =iLl, (;ﬁ “pa exp(—idy)|pos : )) . (5.32)

From this follows the position representation of the G, observables:

- 1 w1 1 .
G, = —iL, —z((§ -« );Eau+aﬁa/}a+m-d¢a)6 . (5.33)
The definition (5.20) gives us
~ I ~ 1
Lo =—Lo+ 2Rea—1)—(Lop)d . (5.34)

I
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The hermiticity (5.3) implies G, = G}. Substituting to this condition we obtain
1
—Lopa=0 , (5.35)
Pa

which means we can choose p, = 1, and we have proved statement (5.30).
Finally we show that the function ¢, in equation (5.30) has the form

¢a:§0+$a ,

Fa(Ua(€)%) — Falx) =7 / %(Eau)de , (5.36)

for a real function ¢ independent of the vector field a.
Let us define a function

Ao = ardo, — 'yiﬁa,u . (5.37)

This allows us to write Ca as
Go=GL + X0, (5.38)
Gl =—il,— z’(% +iy— a*)i(ﬁa,u)& . (5.39)

It is easy to check that the operators G; have the same properties as the operators G,. Using the
consequences of the properties (5.8), (5.9) and (5.6), we get conditions on Ag:

>‘a1+fa2 = >\a1 + f>‘a2 5

5.40
A[al,ﬂz] =ar d>\a2 —ax " d>\a1 ( )

The first condition implies that A, = a - A for some form A on the configuration space V, and the
second condition implies that this form is closed: dA = 0. So, if we ignore topological problems (see
some comments below), we can rewrite (5.37) as

1
a-do, = a-dg0+7;£au (5.41)

for some real function ¢. Integrating along orbits of u,, we get the desired (5.36).
If we redefine our position base by the phase factor exp(—iyp), we obtain the position represen-

tation for the momentum observables G, in the form (5.39). We see that if we choose the density

weight of our position base as

1
a=g - o, (5.42)

the position representation reduces to the simple form (5.24). This also allows us to write the action

of G, in the position base:
Gglpos :.) =iLlylpos :.) . (5.43)

Let us note that for this choice of & we do not need any volume element on V because the
normalization and completeness conditions (5.16) and (5.17) reduce to

(pos : x|pos : y) =6(xly) , 1= /|pos s (pos .| . (5.44)
v
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Uniqueness of the quantization

Now we ask the question whether all realizations of our quantization of the basic observables F; and
G, are unitarily equivalent. Let assume we have two quantum versions of the basic observables F £
G, and F! , G; which both satisfy all the conditions formulated above. Clearly we can construct the
unitary operator which maps the position base of the first pair to the position base of the second pair,
except that we do not require a proper phase fixing. Such a unitary operator essentially identifies
the position observables but not necessarily the momentum observables.

Therefore we will investigate the relation between the observables G, and G/, which both, together
with common position observables F ¢, satisfy all the conditions above. The commutation relation
(5.5) together with completness (5.11) gives

A~

G — G, =Fy, (5.45)

for some a-dependent real function A,. The linearity (5.8) and the ordering condition (5.9) together
with (5.7) gives
Myifas = Ay + fhas = Ae=A-a (5.46)

for some form X on V. The commutation relation (5.6) implies
[0,1, 0,2] sA=ap- d(CLQ . )\) —as - d(a1 . )\) = dA=0 . (547)

If the configuration space V is sufficiently topologically trivial (precisely, if the first cohomology
group is trivial), from the last equation it follows that the form M is a gradient of some function .
In this case we can write . o .

G, = exp(—iF,)G, exp(iF,) (5.48)

and we see that Cf; and G, are unitary equivalent. If the configuration space is not topologically
trivial and closed forms are not the same as exact forms, we can have unitarily inequivalent real-
izations of the basic quantum variables. We have ignored this possibility in the construction of the
position base, and we will not investigate it further here.

Relation between different orderings

Here we will investigate a relation of two different ordering of the momentum observables. Let us
assume that 7' G and 72G together with position observables F; satisfy the conditions above with
parameter y; or ¥2 in the ordering condition (5.9). Similar to the previous discussion we get

nG, — 126, = IA:XQ ) (5.49)
Ny taas = Aa; + g, for a€R | (5.50)
S\fa = fS\a +(y1 —y)a-df . (5.51)

If we write the function A, using a density p on V as

1
Ao = ('Yl - 72);£a/1 +A (5.52)

we find that A\, satisfies the same properties as in the previous section, i.e. it represents the freedom
of the quantization of G, with the given ordering parameter. Because we have discussed it already,
we ignore it now. So we have found that different orderings of the momentum observable can be
written in the form . . .

G, = OGa +7F#'1Eau . (553)

It is easy to check that the p dependence for fixed - is of the form discussed in the previous section.
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Observables quadratic in momentum

Until now we have discussed only the quantization of observables independent of momentum and
linear in momentum. We have seen that these observables are sufficient for the construction of the
natural base in the quantum Hilbert space H. But they are not usually sufficient for the construction
of the dynamics of the theory. A typical Hamiltonian is quadratic in momenta. Therefore it is
necessary to address the question of the quantization of such observables. I.e., we want to quantize
classical observables of the form

Ke(x,p) =p-k'(x):p , (5.54)

where k is a metric on V, and we have restricted ourself to the case of a non-degenerate k.

We can formulate the conditions similar to those above for F ¢ and Ca. With a suitable choice of
a requirement of simplicity and covariance requirements it is possible to show that there is a one-
dimensional freedom in the ordering for the quadratic observables (labeled by a parameter £ € R)
and that the position representation Kj, of the quadratic observable is

Ke=Lp + &Ry, (5.55)

where L; and R, are the Laplace operator and scalar curvature of the metric k. But we will not
need this in our work, and therefore we will not discuss it in more detail here.

Scalar field theory

In the case of the scalar field theory we want to apply the previously developed formalism to the
quantization of the phase space B[X] with ¥ a Cauchy hypersurface or the whole boundary of a
domain Q. The space B[X] has the structure of a cotangent bundle T* V[X]. This brings good and
bad news. The value space V[X] is linear, but it is infinite-dimensional. Let’s ignore the infinite
dimension and do some formal manipulation first.

Linearity allows us to define observables of value and momentum ¢ and 7 (roughly speaking
operators X and p in the previous notations). These are, of course, not well defined objects in the
general case but in the case of a linear space V it is possible to define them as objects from the
spaces YV ® O and YV ® O. They are connected with general observables F 5 G, from the previous
chapters as

Fr=5)
Ga= (5 - al@) i + (G+inea(@)

where we have used a natural identification of the tangent spaces TV with V itself. The value and
momentum observables satisfy the canonical commutation relations

(5.56)

[p, 7] = byl . (5.57)

We can construct the value base normalized to a “constant measure” £ on the configuration
space V
Plval : ) = plval 1 ) for eV
ftlval : o) = idjval : @)

(val : p1|val = p2) = () (p1]p2) (5.58)
1= / 9 |val : p){val : |
pEVY

The wave functional for a state |state) has the form

Uistate) (p) = (val : plstate) (5.59)
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the scalar product on wave functions is

(st1]5t2) = / BB Q (5.60)
v

and the value representation of the observables ¢ and 7 are

2 \I’|state) (90) = SO\I’\state) (90) )

_ : (5.61)
T \IJ|state) ((P) =t d\IJ|state) (90)

The problem is that there is no such thing as a “constant measure” £ on the space V, and we
do not have a Hilbert space generated by a scalar product on wave functions. The solution of these
technical difficulties lies in a restriction of the possible wave functions to those which are sufficiently
falling off so the functional integral (5.60) has a sense even if the measure 9 itself does not have.
We will see in the next chapter that it is possible to construct such wave functions — they will be
suppressed by a Gaussian exponent — so the integral (5.60) turns into a Gaussian integration which
is well defined even for infinite-dimensional spaces.

We stop at this point with the study of the value representation, and we turn to a slightly different
way of quantizing the scalar field. We will return to the quantization discussed in this chapter in
the beginning of the next part and in the discussion of the quantum mechanics on the boundary for
the scalar field.
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6 Particle representation

Quantization of the covariant phase space

In this chapter we will quantize the free non-interacting scalar field theory based on the covariant
phase formulation. Most of the formalism can be applied to any linear phase space, and we will use
this fact in the next part.

But at this moment we want to find a quantum equivalent of observables on the covariant phase
space 8 — the subspace of the space of all field configurations P which contains solutions of the
free equations of motion (see 2). The situation is simplified by the fact that the space S is linear.
It allows one, similarly to the previous chapter, to quantize first a special kind of observables —
observables linear on the space 8. It is equivalent to quantization of the basic scalar field observable
& which can be viewed as a trivial S-valued (or P-valued) function. The quantum version ® of this
observable belongs to the space & ® O. We require it to satisfy the quantum variant of the Poisson
brackets (2.24)

[®, 8] = —iG.4 (6.1)

where we have used the fact that the causal Green function is constant on the covariant phase space
S, so its quantum version is proportional to the unity operator, and we do not have to face any
ordering problem yet. The same is true for the quantum versions of the linear observables L4 defined
in (2.25)

A

Ly=¢oWod |, (6.2)
[I:¢17 IA-¢2] = —igy o Wo P2 1 . (63)

If we realize the space S as a subspace of the space P, we have additionally the condition

~ A

Fed=0 . (6.4)

Let us note that the quantum variable ® is not a simple operator-valued solution of the equation
of motion (as an element of S ® O) but is rather a distributional object which could be defined, for
example, by its smoothed version (6.2).

For quadratic observables

A(@):%Q’oaot‘b , (6.5)

with a a quadratic form on &, we have an ambiguity in the ordering of two & observables. However,

because the commutator of two observables & is proportional to the unit operator, any quantum
version of A(®) can be written as

A=Zdogod+al (6.6)

N | =

where the number factor o (maybe infinite) is given by a particular choice of an operator ordering.
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Infinite dimensional phase space

Next, we want to realize the quantum observables d (or more precisely I:¢) defined by the properties
above as operators on a space H which we would ideally like to be a Hilbert space. But first we
make a comment about the infinite dimension of the covariant phase space of the scalar field and
consequences for the quantum theory. For a finite dimensional phase space a realization of the
algebra of linear observables described above would be unique up to unitary equivalence. But there
exist unitarily inequivalent representations of the quantum algebra on H in the case of an infinite
dimensional phase space &, and so H cannot be a Hilbert space.

We will not try to be technically precise in dealing with inequivalent representations, and we
will adopt the following intuitive point of view. We will look on H as a vector space which includes
all pure states (i.e. all states from different representations of algebra of observable), with a “scalar
product” between any two states (vectors). There exist sets of these states that each forms a Hilbert
space, but there are no well-defined unitary operators in the entire space H which relates one set to
another set. We will use formal expressions between states from different sets, but such expressions
may not have a well-defined mathematical meaning (e.g., an infinite sum can be divergent).

A mathematically precise approach to this question is algebraic quantization. In this approach
the space of states (not necessarily only pure states) is realized as a suitable restriction of the dual of
the appropriate algebra of quantum observables. This space contains all possible states and cannot
be wholly realized as density matrices on a Hilbert space on which the algebra of observables would
be also represented. But we can identify subspaces (called folia) which can be represented as density
matrices on a Hilbert space. Pure states from such a folium correspond to the set with well-defined
scalar product discussed in the previous paragraph. The difference between different folia means
essentially that some states are “too different” to be in the same Hilbert space.

However it is useful keep formally all pure states together in one quantum space H. But we
have to be beware of the possibility that some expressions can give ill-defined results — e.g. some
expectation values can be infinite. Intuitively, the sets mentioned above represent different “phases”
of the same physical system. Physically, for example, a vacuum of one phase contains an infinite
mean number of particles of another phase.

For a complete discussion of inequivalent representation see [3,4].

Particles and field

Now we want to find out more about the structure of the space H. To motivate the following
construction of the quantum space we will mention a couple of words about the notion of particles.

For the interpretation of a theory we usually need to pick up quantities which are measurable in
a physical experiment. This means one needs to find quantities to which a realistic detector coupled
to the field is sensitive. But we need even more for understanding a theory. We would like to have
an intuitive picture, a more descriptive way how to speak about our quantum system.

A very useful way to describe a quantum field is the language of particles. It is possible to
construct special states representing “definite numbers of quanta of field”, and the structure of the
theory becomes often much simpler when it is expressed in terms of these states. Particle states
do not have to be always straightforwardly measurable quantities — only in special situations it
is possible to construct a simple detector sensitive exactly to some particle states. But even in
situations when it is not simple to prepare the system in a particle state, it can be useful to use such
states for a description of physical processes.

First we have to define what particles are. Here is a short list of some elementary properties of
particles:

- discrete nature of particles
- particles as quanta of energy
- definiteness of position or momenta of particles
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- measurability by a detector
- a connection with quantization of a relativistic particle

The first property is the property we will use the most in this part. Particles can be counted;
they have a piece-like character. We speak about photons because we are able to detect discrete
hits on a screen when we illuminate it by a weak electromagnetic field. We speak about quanta of
energy in the case of a hydrogen atom because the atom can emit the energy in discrete pieces.

A discrete nature is only one of many properties of classical particles. But we are not speaking
about classical particles. We want to construct a useful notion of particles for quantum field theory.
And the notion of discrete pieces gives us the weakest sense of the word particle. Or, maybe, it
would be better to speak about quanta of the field.

Of course, we can be more restrictive about the notion of particles. As the second item in our
list suggests, we could require that particles are quanta of energy - i.e. that some particle states are
eigenstates of a Hamiltonian of our system. We will discuss this condition later. Let us only say
that this condition picks up a unique notion of particles but, unfortunately, in a general situation
we do not have a unique notion of energy.

Similarly, it is difficult to give a well defined sense to the position or momentum of a particle in
a general spacetime. Only in the case when our spacetime is sufficiently special we can introduce
some generalized momentum operator or find a simple detector sensitive exactly to some kind of
particles [5,6]. Localizability is an even more subtle issue.

There exists a completely different way how to construct quantum field theory [7,8] which we
will investigate in the last part. It is possible to quantize a relativistic particle using a sum over-
histories-approach and to find that transition amplitudes calculated in this way are exactly the
same as amplitudes between some particle states of the scalar field theory. This gives us another
interesting meaning to particle states.

But in the following construction we will use the notion of particles in the weakest sense of
discrete pieces. It is, essentially, only a particular way of construction of a realization of the H
based on a special base which we will call a particle base. However, the only formal meaning of this
name is that it has the structure of a Fock base.

Fock structure of the quantum space H

Let us concentrate on the basic particle property — the discrete nature of particles. We would like
to speak about a state with no particles, about states with one particle, two particles and so on.
The representation of this structure in quantum mechanics is well known. We want to find a Fock
structure in our quantum space H which divides H into subspaces with a vacuum state, one, two and
more particle states. As known, the Fock structure can be generated by creation and annihilation
operators élt and 4y which satisfy the commutation relations

[Ak, 8] =0 [élt,é]t]zo ) [ékaa;r]:aklﬂ , (6.7)

where indices k, I label one-particle states and «y is a transition amplitude between two one-particle
states labeled by k and 1. So, to find a particle interpretation of the free scalar field theory we need
to construct such creation and annihilation operators from our basic observable &. The construction
which we will describe below is motivated by [9].

First we describe the way in which we will label one-particle states. Particles used for the
description of a scalar field are scalar particles without any inner degrees of freedom. This means
that on the classical level the position and momenta at one time are sufficient for the determination
of the state of one particle. Therefore the quantum space J{; of one-particle states should be “co®”
dimensional (one vector of a base for each space point) as a complex vector space (let’s denote it
C-dimensionality). It means that as a real vector space it has “the same” R-dimension as the phase
space S of the scalar field — “2003”. These formal considerations suggest the use of the space S
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for labeling of one-particle states. More precisely, we would like to find a one-to-one map between
spaces H; and S.

This presents us with a problem. Some vectors in H; are related only by a phase and essentially
represent the same physical state. But their images (labels) in & are different. We would like to
know how these different labels are related. This means that we need to introduce a structure of
a Hilbert space to the phase space & in such way that our mapping between S and H; will be an
isomorphism of Hilbert spaces. But we already described such a structure at the end of the chapter
(4) — we are looking for a complex structure J,, on the phase space & which turns it into the Hilbert
space S,.

Now we can proceed and define creation and annihilation operators acting on H which are labeled
by vectors from S:

aplg] = (6, ®),

A A (6.8)
801" = (2,9),
for any ¢ € S. We can also express creation and annihilation operators using Ppi
Bplpl = =i, o Wod =—igoWodl | 69
e A 6.9
ap[p]l =igh cWod=igoWod

This means that the positive (or negative) frequency part of the field operator d is composed only
from annihilation (or creation) operators and vice versa. Using these expressions we can compute
the commutation relations of the introduced operators. For example,

A N . — s z z s T .

[ap[01],8p[¢2]T] = —i 1 0P 0 W o [, 8] 0 W oPfogyi=
:¢10P;oﬁoiGcoﬁoP;o¢2ﬂ:—i¢1oP;oﬁoP;o¢2ﬂ: (610)
= (¢1,¢2), 1

Similarly we get the complete set of commutation relations:
[ald1),aplgl] =0, [ylen]" aplee]'] =0,
[ép[¢1]aép[¢2m = <¢1,¢2>pﬂ

We see that these are really the commutation relations of creation and annihilation operators.
We can define a vacuum state by the condition

(6.11)

aplo]lp:vac) =0 foreachpe S

6.12
(p: vaclp : vac) =1 (6.12)
and multiple particle states by
ap[o1]Tap[ga]" . Ip : vac) . (6.13)
The mapping between the phase space S, and the one-particle space H; is given by
¢ 4l'|p:vac) (6.14)
and is really an isomorphism of Hilbert spaces
(p + vacliy[é]ap[d2] p < vac) = (p: vacllay[é1] aplga) llp s vac) = (61, 62)p (6.15
ixgp o alixgll|p:vac) =iay (@) |p:vac) . (6.1

We implicitly assumed that condition (6.12) selects a unique vacuum state (up to a phase
and creation operators acting on the vacuum state generate a complete set of vectors in H. Thi

)
6)
)
S
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assumption corresponds to the assumption that the set of observables d (or IA_¢) is a sufficient set of
observables for the description of our system, i.e. that we do not have any other degrees of freedom
which are not reflected in the field observables ®. In the opposite case we should use another kind
of field.

Finally we can write the linear observables I:¢ using annihilation and creation operators as

Lo = i(a,10] — a,[8]") = 8,01y 0 6] + [~ Jpel) . (6.17)

We have successfully found a Fock structure in our quantum space H with one-particle states
labeled by vectors from the classical phase space of the scalar field §. Or, in other words, we have
constructed a particular representation of the quantum algebra of observables generated by L4 on a
Hilbert space given by the Fock space based on one-particle space isomorphic with §,. We will call
such construction a particle interpretation of the scalar field theory. For this construction we have
used a new element — the complex structure J,. We can expect that different complex structures
can give us different Fock structures in H, and we will investigate their relations in chapter 8.

To conclude, we show a connection to the usual mode decomposition. We choose a p-orthonormal
Cbase u = {ux;k € I} in S, with, for simplicity a discrete, index set Z, as was discussed before.
It satisfies (4.27) and (4.28). These are standard properties [6] of modes which are used for the
expansion of a field operator. We can decompose d using the base {uk: s Uk, 3 keT}

b= Z(ékuk;g + ﬁluk;) , (6.18)
keT

where operator valued coefficients can be found using the relations (4.28)

é‘k:—iukfoz:jﬁoé:A[Uk] N
. P ’ (6.19)
a, =—i®ow ouk; = a,[ux ]t

We see that the usual mode expansion gives nothing other than our creation and annihilation
operators for a chosen base u in the phase space §. This connection also justifies using the words
positive and negative frequency part respectively for vectors from spaces Spi.

Green functions

We can ask whether the construction of the Fock structure in H using the complex structure is
not artificial. Does J, have any physical meaning? Is it connected with any interesting physical
quantity? The answer is yes. The complex structure has a rather simple interpretation. To show it
we have to introduce Green functions associated with a particular choice of vacuum state. They are
tensor objects from 83 which we represents, similarly to the causal Green function, as objects from
P2 which satisfy free equation of motion in both indices.

The Wightman functions are defined by

G;“’y =(p: vac|<i>“’<i>y|p jvac)

G, = (p:vac|®Y®"|p : vac)

(6.20)

The Hadamard Green function is
Gf"'y = (p : vac|®®PY + YIS |p : vac) . (6.21)
The causal Green function can be written as

—iG®Y = (p : vac|® Y — BYI®|p : vac) . (6.22)
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Relations among these Green functions are

Gl=Gf+G, , G.=ilG}-G,) , (6.23)

1 , _ 1 .
Gi = 5(Gj;’ —iG.) , G, = 5(G{;’ +iG.) (6.24)
GT=6; L GlT=6 a7 =-G. (6:25)
Gi*=G, , G*=G) |, G =aG. (6.26)

Let’s note that the causal Green function G, is independent of the choice of the complex structure
Jp, but the Green functions G;, G, and Gf depend of the choice of the vacuum state and therefore
on the choice of the particle interpretation.

Using the definition of the vacuum state (6.12) and equations (6.9) we can write

. B VT b - - B é 1 -
Gy = (p:vac|(®, + ) (®, + & )Ip:vac) = (p:vac|® & |p:vac) . (6.27)
This means that
GI=PfoGloPy | Gy =P, oG, oPF . (6.28)
Using equations (6.23), (4.12) and (4.10) we find
ngnpgo(;copj:;ip;toac , (6.29)
Gl =—i(Pf =P )oGe=—J,0G. =" (6.30)
or
* _ it
Py =FiGyow , (6.31)
p,=Glow . (6.32)

This means that the complex structure J, is essentially the Hadamard Green function. Or, more
precisely, the action of J,, on a solution ¢ € S is given by the Klein-Gordon product of the Hadamard
Green function with the solution ¢. Wightman functions are in similar relation to the projection
operators Ppi.

We can use this relation to derive compositions laws for Green functions. The translation of
equations (4.10), (4.2) to the language of Green functions gives us

GFoWoGf =+iGy |, GFoWoGI =0 , (6.33)
H _ “ H _
GlloWoGH =G, . (6.34)

We have seen that Green functions Gi¥, G}, GI are associated with each particle interpretation.
The Green functions of the same kind for different particle interpretations satisfy the same equations
and symmetry conditions. They differ by boundary conditions. If we choose a Cauchy hypersurface
¥, we can define the value and the momentum forms [¥] and 7[X]. In chapter 4 we have found that
the complex structure can be written in the form (4.30), and the positive and negative frequency
parts are given by conditions (4.37). So, thanks to (6.28), we can write the conditions on the

Wightman Green functions using quantities on the hypersurface X,

0y @o—im)oGr =0 , Gio(g-0,+ir)=0 |,

. . (6.35)
(Oprot+im)oG, =0 , G, o(p-0;—im)=0

If the complex structure J, is chosen using some physical structure on the hypersurface ¥ (as in

the case of the complex structure obtained by diagonalization of the Hamiltonian as will be defined

below), these equations gives the meaningful boundary conditions for Wightman Green functions.
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Total particle-number observable

We can define a quantum observable of the number of particles in a state labeled by a solution ¢:

A T/\
anlo] = 2] (6.36)
It satisfies
fip ] ép[¢]Tm|p Jvac) = mép[¢]Tm|p jvac) . (6.37)

Let’s choose again a p-orthonormal C-base u = {ux;k € 7T} in S,,. It generates an orthonormal
base in the quantum space H composed of particle states

[pu:m) = ap[u)'™|p s vac) . (6.38)

1
vm!

Here m = {my;k € 7} is a multi-index and we are using the shorthand

m! = H my! , au)f™= H é/p[uk]fmk = H 3lmk ) (6.39)

keZ kel kel

where creation operators ay are defined by equation (6.19). The combinatoric factor is chosen so
that states are normalized:
(pu:mlpu:m’) =0, - (6.40)

m is also called the occupation number, and (pu : m|state) and (pu : m|A|pu : n) are called the
occupation number representation or the particle representation of a state |state) and an operator

A.

The observable of the number of particles in a mode uy is
fipk = iylu] = afay (6.41)
and it satisfies
fpklpu:m) = mipu:m) . (6.42)

Now we can define the observable of the total number of p-particles

Np =) iy . (6.43)

keT

Using definitions (6.19) of creation and annihilation operators and orthonormality of the base u we
get

A

Np = Zép[“k]fép[uk] = Z(‘i),uk)p@ik, ®)p = (‘i’, (i>>p . (6.44)
keZ keZ

We see that Np is independent of the choice of the base u but it depends on the complex structure
Jp through the scalar product and therefore it depends on the particle interpretation. It will be

useful to write down also another representation of Np. First let’s note that using the commutator
relation (6.1), antisymmetry of the symplectic form and definition of causal Green function (2.21)
we can get

PoWod= —i(% trs ds) 1 = —i(trs, ds,) 1 . (6.45)
So

(6.46)
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Here the trace of the unit operator on S is, of course, infinite; but it does not change the following
reasoning. .
We see that N, is a quantum version of a classical quadratic observable

1
N, = 580508 (6.47)

with a special operator ordering. This operator ordering is called p-normal ordering and is defined
by the condition that in any product of operators all p-creation operators are on the left of all
p-annihilation operators. We denote a quantum version of a classical observable F(®) in p-normal
ordering by

F=:F(®): . (6.48)

It can be written more explicitly for any quadratic observable defined using a symmetric bi-form
keSS

_1 _ g + oy Lo - +
K(<I>)_§<I>okotl>_§<l>pok0<1>p+§<l>pok0<1>p+tI>poko<I>p , (6.49)
for which the p-normal ordered quantum version is
> e (B). — Lat sro La 5 1L dH 5+
K_.K((}).p_§<1>poko<1>p+§tl>pokotl>p+tl>pokotl>p . (6.50)
For the observable N,(®) using (4.13) we get
Ny, =&, 0w, 0 &) =N, ():, . (6.51)

We will discuss p-normal ordering in more detail in connection with the holomorphic represen-
tation.

Diagonalization of Hamiltonian

Let’s assume that a classical quadratic positive definite Hamiltonian is given,
1
H(<I>):§<I>0H0<I> , (6.52)

where A is a positive definite symmetric bi-form from 89 given, for example, by equation (2.60). We
can ask whether there exists a particle interpretation such that particle states have definite energy
and the energy is additive with respect to the number of particles. More precisely, we will look for
such a complex structure J, and h-orthonormal base u = {ux; k € Z} which satisfy

Hlhu:m) = (Z wkmk) [hu:m) (6.53)
kez

where wy € RT is the energy of the one-particle state élt |h : vac)
ICIélt |h @ vac) = wy élt |h:vac) . (6.54)
This requirement is equivalent to the requirement that the Hamiltonian have the form

H=> wdnc - (6.55)
keT
Using the definition of iy (6.41) and the orthonormality of the base u, we get

I:I:Z(é,uknwk(uk,@)h = <(i>,90(§)h = :@owhoﬂoé:h R (656)
kel
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where (2 is a h-linear hermitian positive definite operator on Sy, given by
Qo Uk = Wk Uk - (657)

h-linearity gives us the condition
[, J] =0 . (6.58)

Hermicity Q) = Q (following from wy € Rt) gives
WeQ=00%W & wWpod=0owy, . (659)
The quantum observable H should be a quantum version of the classical observable H(®) in

some operator ordering. As we have discussed, any two quantum versions of H(®) defined using two
different, operator orderings can differ only by multiple of the unit operator. Therefore we can write

H=:H(®): +aol =:dcHod:y +old . (6.60)
From a comparison with equation (6.56) we see that we need to satisfy
H=wpod , (6.61)
which is equivalent to
GeoH=1JpoQ . (6.62)

Let’s summarize. We are looking for a complex structure J;, and a positive definite operator 2
which satisfy conditions (4.3), (4.4), (6.58), (6.59) and (6.62). We can get such a J, and Q using a
polar decomposition” of the operator (G, o H). For a polar decomposition we need a transposition
of operators. Let us use the transposition defined using a positive definite symmetric bi-form A

AT =H 1o AdoH for any operator Aon S . (6.63)
Because
(GeoH)T = —(GeoH) (6.64)
left and right polar decompositions of (G, o H) coincide and we can define
Q= [GeoH| = ((Geo M) o (GeoH)? = (GeoH) o (Geo))P (6.65)
Jp=sign(GeoH) = (GeoH)o Q' =Q7 o (GeoH) (6.66)
GeoH=JpoQ=0Q0J; . (6.67)

It is straightforward to check all conditions on J; and 2. Positive definiteness and symmetry
(QT = Q) of O follows from the definition of square root, the compatibility of J, and @ follows from
(6.66) and symmetry of Q, positive definiteness of @y, follows from (6.66) and positive definiteness
of Q, (6.58) and (6.62) are the same as equation (6.67).

We have finally proved that the positive quadratic classical Hamiltonian H(®) picks up uniquely
the particle interpretation in which it is possible to diagonalize the quantum Hamiltonian, i.e. to
write

H=:H(@®): =) wdn , (6.68)

where 1 are observables of number of particle in modes uy which are eigenvectors of the operator
) with eigenvalues wik. A similar result can be found in [9,10].

Unfortunately we do not have a preferred 3 4 1 splitting in a general spacetime, and for a general
3 + 1 splitting the Hamiltonian is time dependent. This means that the diagonalization criterion
picks up different particle interpretations at different times. This reflects the fact that in a general
spacetime we do not have a preferred particle interpretation, and if we decide to choose particle
interpretations, connected with the Hamiltonian of some 3 + 1 decomposition, we have to expect
particle creation as will be described in chapter 8.
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Connection with value representation

Now we turn to investigate the connection of the introduced particle base with the value represen-
tation defined in the previous chapter. We will find the wave functional of the vacuum and one
particle states.

As we already mentioned, we can define V and V-valued forms @ and z on the phase space 8
and using them we can express the quantum version of the value and momentum observables as

pEl=elSlod |, #[S]=xlS]ed . (6.69)

They satisfy the commutation relation (5.57), and we can construct the value base |val : @) as
defined in (5.58).
We express the creation and annihilation operators using ¢ and 7 as

apl] = (6, ®)y = ¥ [6]- (9 +if0)

. Lt . o N (6.70)
aplg]" = (®,0), = (- 0p —iT) - ﬂp (4]
The condition on the vacuum state (6.12) gives
0= (val : ¢|(8p ¢ + i) |p : vac) = (8, - + d)(val : p|p : vac) . (6.71)
The solution of this variation equation is
1
U\ ,vacy (9) = (val : o|p : vac) = const exp(—;p b)) . (6.72)
Normalization gives us the prefactor:
1= (p:wvaclp: vac) = / Q(p : vaclval : p){val : p|p : vac) =
pEY
1 " )
= / 9 |const|” exp(—§g0- 0, +05) ) = / £ |const|” exp(—¢ Bl ) = (6.73)
p€eVY pEeVY
1
= 9 |const|* (Det 78,)>
Finally, the wave functional of the vacuum state is, dropping an arbitrary phase factor,
_1 -1 1
U pvacy () = Q72 (DetwB,) * exp(—§<p Oprp) . (6.74)

The action of the creation operator gives the wave functional of one particle states

Uy (6]t |pvacy (P) = QZW’] (val : @[(0;+§ —iT)|p: vac) =
= [¢]+ (0 -0 — d){val : plp : vac) = (6.75)
= (20,101 - 0p + ©) Uppivacy ()
and similarly for the wave functional of multiple particle states.
We have found that the wave functional of particle states is given by a Gaussian exponent

U vacy () multiplied by a polynomial expression in ¢. For such a wave functional the integral
(5.60) makes sense, as we promised above.
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7 Holomorphic representation

Coherent states

In the previous chapter we have defined the particle states depending on the choice of the particle
representation. It is useful to introduce other states connected with the particle interpretation, the
so-called coherent states. They allow us to skip making a particular choice of a base of modes to
form particle states and skip unpleasant expressions with sums over occupation numbers. Instead we
will be able to define a holomorphic representation of the quantum space H. We will be very formal
in our considerations, and basically we will ignore the infinite dimensional nature of our phase space
S.
Coherent states associated with the particle representation are defined by

1 -
|p coh : ¢) = exp(§(¢, ¢>p) WId] |p : vac) (7.1)
for any ¢ € 8. Here the displacement operator W[¢] is defined by
W(g] = exp(igo Wod) =exp(ily) - (7.2)
It is a unitary operator, and the name displacement operator is justified by the property
Wiolf @W[g] =& + o1 . (7.3)
Using the known identity
o . 1 ~ 4 ~ N
exp (A + B) = exp(—g[A, B]) exp(A) exp(B) (7.4)
for A,B satisfying [A, [A,]:%]] =0 and [B, [A,B]] =0 ,
we can write exponential versions of the commutation relations (6.1) and (6.11)
W [Wgo] = exp(i ¢ 0 & o 6o) W[ga]W[eh] (7.5)
exp (ap[61]) exp(aplgal’) = exp (1, 62)y) exp(apldal!) exp(aylon]) (7.6)
p-normal ordering of the displacement operator and an additivity property
~ R . 1 R R
W(g] = exp(a,[0)" — 8,[¢]) = exp(=5(d, #)y) exp (a,[0]7) exp(—a,[g]) (7.7)
. . 1 o .
W[p1]W(eo] = exp(i ghrewe $2) Wi + 2] . (7.8)
Using this relation we get
Ip coh : ) = exp(a,[d])|p: vac) . (7.9)
Here we have used
. — 1.
exp (ap[4]) |p : vac) = (Z map[¢] )|p tvac) = |p i vac) . (7.10)

n=0
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We see that a coherent state |p coh : ¢) contains only particles in the ¢ mode. It is a superposition
of particle states with any number of particles, and the mean value of particles in the mode ¢, is

given by
(p coh - lipld]lp coh : ) = L0001 0hp (7.11)
<¢1 ) ¢1>p
The scalar product of two coherent states is (using equations (7.9), (7.6), (7.10))
(p coh : ¢u|p coh = ¢2) = exp((d1, ¢2)p) (7.12)

This means that coherent states are not orthogonal. However, coherent states form a overcomplete
set in the quantum space H. This can be seen from the important completeness relation

i= [ 80 lpcoh: o)peon: ol . (7.13)

PES

where the measure §), on the phase space S is given by

9p(¢) = exp(—(d, ¢)p) AT . (7.14)

and dI is the canonical measure (B.8) on phase space S

s

W

[N

= (Det @)% . (7.15)
27
We will prove the identity (7.13) later (see equation (7.34)).
Finally, the coherent states are eigenvectors of the annihilation operators

bpl1] [p coh - ) =
= const (61, ®), W[¢] |p : vac) = const W[g] (61, 8), + (61,6),0)[p:vac) = (7.16)
= (61, 8)p Ipcoh = ),

where we have used equation (7.3). The action of a creation operator on a coherent state is given
by

ép[qﬁl]T |p coh : ¢) =
= (aplon]" exp(ayl6]") ) Ip : vac) = (1 o d exp(a,[9]) ) Ip : vac) = (7.17)
= ¢y od|pcoh : 9)

Holomorphic representation

First we recall the definition of a holomorphic function on complex vector spaces. A function
F : V — C on a complex vector space V' is holomorphic or antiholomorphic respectively, if for any
vector ¢ € V' a function F(z¢) is holomorphic or antiholomorphic in the complex variable z.

We will call a function F' : & — C on the phase space & p-holomorphic or p-antiholomorphic
respectivelly if it is holomorphic or antiholomorphic on the complex space S, with the multiplication
*, Le. if for any ¢ € § a function F'(z * ¢) is holomorphic or antiholomorphic in complex variable z.

A function F': 8§ — C is called analytical on 8 if it is possible to extend it to a holomorphic
function on 8¢ (holomorphic in the sense of SC). This extension is called the analytical extension
of F', and we will use the same letter F for it.

Using relations valid for any ¢ € S (see eq. (4.10)),

P;o(z*@ :z¢; , PJo(zx09) :z*q§; , (7.18)

p
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we can find that an analytical function F' on 8 is p-holomorphic or p-antiholomorphic respectively,
if and only if its analytical extension on s¢ depends only on the p-positive or p-negative frequency
part of its argument

F' is p-holomorphic & F(9)

Fio) (7.19)

F is p-antiholomorphic & F(9)

Now we will introduce the holomorphic representation of quantum space H. Any state |state)
can be represented by p-antiholomorphic function f, [|state)] : & — C on the phase space

fp [|state)](¢) = (p coh : ¢|state) = (p : vac|exp(4,[¢])|state) . (7.20)
Similarly we introduce p-holomorphic function f, [(state|]] : 8 — C for a covector (state| and the
function f, [A] : 8§ X8 — C p-antiholomorphic in the first and p-holomorphic in the second argument

for an operator A

fo [(statel(6) = (statelp coh : §) =, [lstate)](9)* (7.21)
i [A] (61,62) = (weoh: dulAlp coh s ) (7.22)

Using the completeness relation (7.13) it is trivial to prove the compositions laws

(statetlstate) = [ 9,(6) I, (statel[}(9) Ty state2))(0) .
PES

iy [Alstate)](0) = [ 9,06 1, [A] 0.0 5 [statel](@)
¢'eS
nﬁﬂmﬁazfﬁmmﬁﬂwmmJﬂw@>,

9ES

th= [ 9,05, [A] 0.0

0ES

(7.23)

Next we will find the action of annihilation and creation operators. Using equations (7.16), (7.17)

o b [yl state)](61) = (61,0}, Ty istate))(6n)
fo [as[61'A) (61,60) = (@1, 8)p fp [A] (01, 62)
fo lapldlstate))(61) = 6 o (df, [state)]) (61)
nhwmk@¢a=¢(mn[bwh@)

Here d; is the variation with respect to the left argument. Similar relations hold for f, [(state|a,[4]],
fp [Aép[cﬁ]] and so on.
Let us list the holomorphic representations of some states and operators:

(7.24)

fpllp i vac)](¢) =1 , (7.25)

fo [p[8] "D : vac)] (1) = (b1, 8)," (7.26)

fp [|p coh : ¢))(¢1) = ex ((¢1, D) (7.27)

fp [lp s vac)(p s vacll(¢1,¢2) =1, (7.28)
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fp [ﬂ-] ((bla ¢2) = exp((qSl, ¢2>p) ) (729)
(61, D)0
o [0p[0]] (91, 2) = 6,0 p((61,¢2)p) (7.30)
fo [Np| (61, 62) = (01, dn)p exp((61,62)) (7.31)
o [Ip coh = o) {(p coh = |](d1, 62) = exp({d1,8)p + (4, 62)p) (7.32)
fp |:W[¢]:| ((bla ¢2) - exp(_%«ba ¢>p + <¢17 ¢>p - <¢7 ¢2>p + <¢17¢2)P) . (733)

To conclude, we will prove the completeness relation (7.13):

| [ 9@l eon: aytpcon ol 61.00) =

9ES

= / dl exp(—(, ®)p + (D1, 0)p + (d, P2)p) =

peES
= [ dr exp(-500m,0 0+ 608,0 (015 + ) =
PES
= eXp( (61, +2,) 0@y o (91, +2,)) =
:eXp(<¢1a¢2>P) ,

where we used equations (7.32), (7.15) and Gaussian integration. Comparing with equation (7.29)
we get exactly the completeness relation (7.13).

(7.34)

p-normal ordering

Holomorphic representation of operators on H is closely related with p-normal ordering of the
operators. We will investigate this connection now. Let’s choose again a p-orthonormal C-base
u = {ux;k € I} in S,. It generates the particle base (6.38) in H

1
vm!

We are using the shorthands (6.39). Any operator A generated analytically by @ (i.e. defined by a
sum of products, maybe infinite, of ®) can be expressed in p-normal ordered form

A - Z am,n ép[u]fmap[u]n ) (736)

m,n

[pu:m) = ap[u) ™ p s vac) . (7.35)

where a,,, ,, are some complex valued coefficients. If we introduce the generating function ¥p [/f\] (¢1, P2)
by®
i [A] (61, 02) = Z . (1, )70, 2)7 (7.37)

we can write

A=, [A]@, &) =+, [A]@,, 8 (7.38)

The generating function is given by the previous equation uniquely. More precisely, if an operator

~

A can be written as

A=:F(® o), (7.39)
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where F'(¢1, ¢2) is a holomorphic function on S® in both arguments, than the function F restricted
on 8 is the generating function of the operator A

F(¢1,2) = [A] (f1,02) . (7.40)

The generating function is independent of the choice of base u as can be seen from the following.

We will find a relation between the generating function fp [A] and the holomorphic representation

fp [A] of an operator A. Using equations (7.36), (7.16), (7.37) we get

iy [A] (61, 62) = (p coh = 61| Alp coh : o) =
= Z p coh : ¢1|am, nép[u]fmép[u]ﬂp coh : ¢2) =

(7.41)
—Zamn (P1,u)p*(u, ¢2) 7 (p coh = d1|p coh = ¢z) =
= exp((¢1,¢2)p) fp [A] (¢1,02)
This means . o
A = exp(—(3,8), )fp[ ](q> &), . (7.42)

As useful examples we can find (using equations (7.28), (7.32)) p-normal ordered expressions for
projectors on the vacuum state and on a coherent state

|p : vac)(p : vac| = :exp(—(i), i’)p):p , (7.43)
|p coh : @) (p coh : ¢| = :exp(—(i) — ¢ﬂ,<i> qb]i) + (9, 9)p ) . (7.44)

Relation between holomorphic and particle representations
Finally we derive a relation between the holomorphic representation and the occupation number

representation of an operator. Using the base [pu: m) we can write

A = Z lpu:m)(pu:mlAjpu:n)(pu:n|=

m,n

= 3 S m Al m) ]! vac) (vl " = (7.45)

(pu: m|A|pu ) :(i), u)? exp(—(‘i’, <i>>p)(u, @);‘:p

1
B n;l vml!n!

We have expressed the operator A in the form (7.39); therefore, we can use equation (7.40)

fp[ ](¢1,¢’2 (Z\/—p“ m|Alpu:n) (i, u) ;" (u, d2)y )eXp(_<¢1,¢2)p) (7.46)

and finally we get expression for the holomorphic representation f, [/f\] in terms of the occupation

number representation (pu: m|Ajpu : n)

i [A] (61,02) = ZJ_pu mlAlpu: n) (g1, W7 (w,éa) (7.47)
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Inverse relations can be obtained by repeated variation and setting arguments to zero at the end®

———([wod)™ o5, [A]) 0.0 (7.48)

(pu:m|Ajpu:n) = '
m!n!

We could have found relation (7.47) faster — using (6.8), (7.9) and an expansion to the base we
get

peoh: ) =3 J%m, S lpucm) . (7.49)

Substituting to the definition of the holomorphic representation (7.22) we immediately get (7.47)
and similary also

ACES J%w, W)™ (pu : mlst) . (7.50)

The inverse relation is
(pu:m|sty =

o= (oo d™ 5 050) ) (751)
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8 Transition amplitudes

Two particle interpretations

Until now we have not addressed dynamical questions in the quantum theory. We have found
several methods for identifying some special observables or states in our quantum system, but we
have not studied their development. Because covariant phase space quantization is essentially in the
Heisenberg picture, the dynamics should be formulated as finding the time evolution of the quantum
observables. If we restrict to the situation in which we perform experiments only at the beginning
and at the end, we want to find relations between “the same kind” of observables defined at the
initial and final times.

In the previous chapter we have investigated a single particle interpretation of the scalar field
theory. But there exist a lot of different particle interpretations, each corresponding to a different
complex structure on the phase space, and in a general situation none of them has a preferred status.
However in most physical situations, we are dealing with a spacetime which has special properties
at least in the remote past and future. For example, the spacetime may be static in these regions.
This gives us usually the possibility to choose a preferred notion of particles in the past and in the
future. These particle interpretations are not generally the same. And their relation is exactly the
sort of dynamical question which we want to investigate. The dynamical information is hidden in
the comparison of objects built using these two particle interpretations — as particle or coherent
states, observables of number of particles, etc..

Therefore we need to investigate the relation between two different particle interpretations. This
problem is usually described in terms of Bogoljubov coefficients. We will reformulate the theory using
quantities independent of the choice of modes, and we will also find connections among different in-
out Green functions and find their geometrical interpretation, similar to the interpretation of Green
functions associated with the one particle interpretation. We will also find that given a Green
function with certain properties, we are able to reconstruct two different particle interpretations for
which the Green function is an in-out Green function.

Green functions

Let us choose two particle interpretations given by two complex structures J; and J¢. We will change
the letter p to the letters ¢ and f in all quantities defined in the previous chapter. This means that we
have two, generally different, vacuum states |i : vac), |f : vac), two sets of creation and annihilation
operators etc..

We can define new Green functions, beside G¥, GF, G¥, G}t. Let’s define the in-out Hadamard
Green function

Hay _ ([ vac|®*dY + $¥$®|i : vac)

(f : vac|i : vac) ’ (8.1)
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and Wightman functions
(f : vac|®*®Y|i : vac)

Gt=y —
fi (f : vacli : vac) ’ €2
G..®Y — <f : 'Uac|<i>y<i>m|i : ’UG,C> ’
A (f : vacli : vac)

For simplicity of the notation in the rest of this chapter we will skip the index fi which these
functions and related objects defined below should carry.
Relations similar to equations (6.23), (6.24) and (6.25) hold:

GH=G"+G , G.=ilG"-G) , (8.3)
Gt = %(GH —iG.) , G = %(GH +iG.) (8.4)
Gt'=¢- , ¢gfT=6¢" | @."=-G. . (8.5)

These Green functions are again elements from S2 C P32, i.e as bi-scalars they satisfy homogeneous
equations of motion in both arguments.
Let us define operators J and P on 8T using equations similar to equations (6.31), (6.32):

Pt=FiGto W (8.6)
J=G"oW=i(Pt-P")
Using the properties of the f and i vacuum states we get

Gt =PfG*=G*oP; |

8.8
G =P oG =G oP} ®.8)
From this follows
P+:P}'OP+:P+OP?' , OZP;OP+:P+OP; ,
B T o P 4 (8.9)
PT=P, cPT =P 0P, , 0=PoP =P oP; ,
PEoPT=0 , GFoWoGT=0 . (8.10)
From equation (8.3) we get
Pt +P~ =45 , (8.11)
and it, together with the previous equations, give
PEoPE=P* | GFoWoGF=4iGF | (8.12)
JoJ=-6s , GHoWoGH =G, . (8.13)
We can further show
PE oW oPt =
’ 8.14
W=PtoWoP  +P oWoPt | ( )
JoW==-ToJ . (8.15)

We see that J is a complex structure compatible with @, and P* are its eigenspace projectors.
However, there is a difference from the complex structures J; or J; — the complex structure J
does not act on the space 8 but on the complexified space St. More precisely, in general J* # J,
GH* £ GH P** £ PT, G** # GF. Therefore the complex structure J does not define a particle
interpretation (except, of course, in the degenerate case J; = J; = J).
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We can define real and imaginary parts of the complex structure J by

J=M+iN
1 . 1 \ (8.16)
M:ReJZQ(J+J ) N:ImJ:—z§(J—J )
Using equations (8.11), (8.9) and their complex conjugates and previous definitions we get
M=i(Pt—-P " =i(P*-P) ,
( ) =i i ) 3 (8.17)
N=P" +P™™ _—§s=0s —P~ —P~* |
and
—JfOM:—MOJi:55+N R —MOJf:—JiOM:(Ss—N . (8.18)
This gives us the important relation
1 1
[—§(Ji+Jf)]OM:MO[—§(Ji+Jf)] = s (8.19)
or
Lam v ey = Lwirop] ™ = Geo [H@ £ G oG 2
5( + )—[§(Wi+wf)] == 0°[§( iG] oG (820)
We will define a real symmetric bi-form @
— 1 — Raaad
o=[ReG"] = @ 4G T =ToMT (8.21)
Using the previous identity we get
1
W= 5(@1 + @f) . (8.22)

This means that @, and therefore also Re G, are positive definite.

The relations among the projectors P*, Pli, P? and the operator J can be translated into com-
position laws among Green function. Beside equations (8.12), (8.13) we have, for example (using
equation (8.8)),

G}FO?D”OGJFZZ'GJr , GtoWoGl =iGT . (8.23)

Reconstruction of initial and final particle interpretations

We have found that the Hadamard Green function G defined by equation (8.1) satisfies

FeGH=0 , GHT=GH | (8.24)
GloWoa =@, |, (8.25)
@ = [Re GH]fl is positive definite . (8.26)

Now we will show the opposite — that any Green function which satisfies these conditions can
be written in the form (8.1). This means that for given a Green function G¥ which satisfies the
conditions above, it is possible to find particle interpretations given by complex structures J;, Js
such that o o

[ vac|@®dY + dYO®|i : vac)

Haey __ <
¢ B (f : vac|i : vac)

(8.27)

Starting from G we will define operators J, M, N, in the same way as in the previous section
and operators P* as projectors on eigenspaces of J. From conditions (8.24), (8.25) follow equations
(8.13), (8.15), (8.17) and

MoW==-WoM , NoW=-WoN . (8.28)
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Using equation (8.13) we get

~ds=MoM—NoN+i(MoN+NoM) (8.29)

or
NoN=ds+MoM (8.30)
MoN=—-NoM . (8.31)

It will be helpful in the following derivation to define a real scalar product on the phase space &
and a corresponding transposition using the bi-form @

(f1,02) = 1 © o = P10 @ o for ¢1,920€8 ,

8.32
AT=0"'oAdow for A€S) (8.32)
It is straightforward to show
NY'=N |, MT=—-M . (8.33)
If we define the absolute value |M| and signum o of the operator M as’
M| = (MToM)E = (-MoM)E (8.34)
c=signM =Mo|M|""=|M| "o M (8.35)
M=o0o|M|=|M|co (8.36)
we find
ol=0"t |, o*=0 |, (8.37)
coWw =—-Woo (8.38)
ogoo =-ds , (8.39)
oo W is positive definite (8.40)
goN=-Noo (8.41)
and
\M[T = M|, (M= M| (8.42)
|M|o W = Wo|M| (8.43)
[|M|,N]=0 . (8.44)

Therefore |M| and N have common eigenvectors and can be written as functions of a single
operator. We can find these operators by solving equation (8.30):

N=thX , |M|=[chX]™" . (8.45)

The operator X satisfies

[N,x] =0 , [[M],xA]=0 , (8.46)
Xt=x , x=x , (8.47)
XoW=-WoX , (8.48)
Xoo=-00X (8.49)
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The Green function G can be written using the operators X and o as
G" oW =00 [chx]" +ithx . (8.50)

We will see below that the operator X is closely connected with the Bogoljubov transformation and
we will call it the Bogoljubov operator.
Finally we can define initial and final complex structures

) = exp(—X) og = UOGXP(X) ) (8 51)
Jr =exp(X) oo =0coexp(—X) |

Clearly, they are real complex structures. Compatibility with the symplectic structure follows from
equations (8.38), (8.48) and positive definiteness from equation (8.40) and positivity of the exponen-
tial function. Therefore J; and J; define particle interpretations. Next we have to check equation

(8.27). But it is straightforward to show that the real and imaginary parts M, N of the given Green
£ (f:vac|(@®)+($D) T |izvac)
(fvacli:vac)

function G¥ are the same as the real and imaginary parts o constructed

using equations (8.19) and (8.18). For example for the operator M,
1 1 —1 -1
_i(Ji +J5) = —i(exp(?() +exp(—X)) oo =0""ochX¥ =M , (8.52)

which is we wanted to prove.

We have proved that if a Green function G satisfying conditions (8.24), (8.25) and (8.24) is
given, it is possible to find initial and final particle interpretations defined by equations (8.51) for
which the Green function G is given by equation (8.27). Similar result can be found in [11].

Additionally, we can prove new properties of the operator X. Using the relations (8.51) and
properties of X' (8.48), and (8.49), we find that X is i-antilinear, f-antilinear and symmetric:

Xoli=—JioX | Xoly=—-Jjox , XN =x . (8.53)

Bogoljubov operators

We have studied the relation of two particle interpretations from the point of view of Green functions.
Now we will compare initial and final creation and annihilation operators.

Because the particle states defined using initial and final particle interpretations are generated
by creation and annihilation operators which satisfy the same commutation relations, we can expect
that they are related by a unitary transformation. In other words, for any experiment formulated
using the initial notion of particles, we can construct an experiment formulated in the same way
using the final notion of particles. These experiments will be generally different, but their description
should be related by a unitary transformation.

However this “translation” of the initial experiment to the final one is not unique. We have to
specify which initial and final states correspond to each other, which states have “the same physical
meaning” at the beginning and at the end. We have to specify, for example, how we change modes
which we use for labeling of one-particle states.

More precisely, we write a relation of initial and final particle states in following way

|f :vac) = ST |i : wac) (8.54)
arlso @' f : vac) = St a;[¢]T|i : vac) (8.55)
where S is a unitary operator on the quantum space H called the S-matrix,

St =81 (8.56)
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and s is a transition operator on the phase space & which “translates” initial modes to final modes
as we discussed above. This means that an initial one-particle state labeled by a mode ¢ is related
by a unitary transformation given by the S-matrix with a final one-particle state labeled by the
mode s o ¢. Of course, the S-matrix depends on a choice of the operator s.

The relation (8.54), (8.55) are equivalent to

=gt
gt

>

arls o ¢] ilg]
aslso ) i[¢]

Using the commutation relation (6.11) and unitarity of the S-matrix we get a condition on the
operator s,

R (8.57)

>

(s0¢1,50¢2)r = (P1,02)i - (8.58)

The operator s changes the initial scalar product on the phase space S to the final one. This is a
natural condition which expresses a meaning of the transition operator s — this operator translates
the initial labeling of one-particle states to the final one, and therefore it has to map all initial
structures on the phase space to the final ones. Consequences of the last equation are

Sowfos =w; , (8.59)
soWos=w (8.60)
_]fos:so_]i (861)

Using these relations and equation (8.57) we can get another relation between the S-matrix and the
operator s, . L
sod=S®S" | (8.62)

The transition operator s is closely related to Bogoljubov coefficients between initial and final
bases of modes. It can be seen from a decomposition of s to i-linear and i-antilinear parts (see
equations (4.17), (4.19))

s=a+f8 , (8.63)
aoJi:Ji0a , ﬂo_]i:—_]ioﬂ . (864)
Explicitly,
1
a=g(s—Jiesel) =PfosaPl +P osoPT
2 (8.65)
B=35(s+diosodi) =PfosoPy +P;osoP]

This allows us to write relations of initial and final positive and negative frequency projectors,

P}'os:P;"oa—{—Pi_OB ,

8.66
P;os:P;oa+Pj0ﬂ ( )
and relations of initial and final creation and annihilation operators,
5 — 5. 5 t
ar[so @] = a;lao @] —a;[B o ,
dlso )= o gl =53 .
agfsog]' = aifac @]’ —a;iBo g

This expresses the final creation and annihilation operators as a mixture of both initial creation
and annihilation operators. It shows explicitly that the initial and final notion of particles are
really different for 3 # 0. The relations (8.67) are a base-independent definition of the Bogoljubov
transformation, and we will call the operators «, 8 also Bogoljubov operators.
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Now we will investigate properties of Bogoljubov operators. It is straightforward to show (see
equations (4.22), (4.24) and (4.25) for definitions of the operations used) that

571 =—J;0 STi olJ; = aﬁ) — ﬁ<T> , (868)

sosti=—Jsol; . (8.69)

1

Substituting this and equation (8.63) into ds = sos~! = 57! o s and taking i-linear and i-antilinear

parts, we get identities
acal 8o =65 |, alloa—-pMop=04s , (8.70)
B ° Oé<f> = o B<T> , aﬁ) o ﬂ = B<T> o (871)

and their consequences

a M =a—-Boalop |, (8.72)
Bo al = [ﬁ o ail] M , alo B = [ail o B] m . (8.73)

The transition operator s is not fixed by equation (8.58) uniquely; we have some freedom in the
selection of this operator. It corresponds to the freedom in the labeling of our one-particle states.
We can change the labeling of initial one-particle states by an ¢-unitary transformation of the phase
space without changing the initial notion of particles and similarly with the final particles. If we
have two different transition operators s, and s, for translation of initial modes to final modes, they
both have to satisfy equation (8.58), and we easily see that they have to be related by

S¢ =SpouU; =Ufosy (8.74)

where u; (uy respectively) is an i-linear and é-unitary (f-linear and f-unitary respectively) operator
on the phase space S (see equations (4.17), (4.22))

ujolJi=Jiou; uzﬁ):ui_l ’ (875)
wrolds— | (1) _ =1 '
pedp=dpouy o upt =uy

All these equations can be simplified if we choose a special transition operator s. The operator

[N

SozeXpX:—O'OJi:—JfOO':[—JfOJi] (8.76)
satisfies conditions (8.60) and (8.61) and therefore also the condition (8.58), and so we can use it
as a special transition operator for the translation of initial to final modes. We will call this choice
canonical. We can define canonical Bogoljubov operators «,, 8, by equation (8.65), and than by
using equation (8.59), we get

So:eXP(X) :ao'i'ﬂo ) 5;1 :exp(—X) :ao_ﬂo )
a, =chX , B, =shX (8.77)
aoolir=Jisoas , Boolig=—JijoBo ,

S

T; _ Ty _
o =80 , So’ =S80 ,

8.78
a<T> = , B§T> =05, ( )

o

We also see that the operators a, and —f, play the role of inverse canonical Bogoljubov operators
for the transformation from final to initial particle states.
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A weaker version of these relations can be derived for general Bogoljubov operators «, 3. Using
eqs. (8.68), (8.74) and (8.77) we find

s=exp(X)ou; —a+

8.79
s1Ti = exp(—X)ou; =a — 3 (8.79)

This immediately gives
a=chXou; , B=shXou; ,

8.80
foal =thyt ( )

Now we will show a connection with standard Bogoljubov coefficients. Let’s assume that -
orthonormal and f-orthonormal bases u = {ux;k € Z} and v = {uvy;k € T}, respectively, for the
description of initial and final modes, are chosen. These define the transition operator s by the
conditions

v =soux , Jrouvx=s0J;0ux (8.81)

for all k € Z. The Bogoljubov coefficients ayi, Bk are defined by equations [7]

wy = Z(Ulf anc +u; fi) - (8.82)
keT
Using equation (8.66) we see
an = (u,aour);  Pa = (uk,Bow); (8.83)

i.e., the Bogoljubov coefficients are matrix elements of the Bogoljubov operators in a chosen base.
We can use eigenvectors of the operator X' to define special bases of initial and final modes
— so called canonical bases [12]. Because the operator X’ is i-symmetric it has a complete set of
eigenvectors. From i-antilinearity follows that for each eigenvector w the vector J; o u is also an
eigenvector with the opposite sign of the eigenvalue. Therefore we can choose an R-base {uy,J; o
ux;k € T} such that
Xouk = xkuk xk =20 (8.84)
Xoljour = —xi Ji oux
The base can be chosen orthonormal with respect to the real scalar product defined by the bi-form
(Dia
Uy 0 W; ° U = Ok , ugow;oldiou =0 . (885)

If the operator X’ is non-degenerate with different eigenvalues, the base is fixed uniquely. The subset
{ux; k € Z} of this R-base forms the i-orthonormal C-base. It will be used for labeling of initial
particles. The final f-orthonormal C-base {vy;k € 7} will be generated by the canonical transition
operator s,,

Uk = 8o o Uk = exp(xk) ux - (8.86)
The Bogoljubov transformation between these two bases is
vk}' = uki.' ch(xx) +wi; sh(xx) (8.87)
and the final and initial creation and annihilation operators are related by

ag[ve] = a;[ui]ch(xi) — asfui]'sh(xw)

éf[vk]Jr = &;[w]Tch(xi) — as[ui]sh(x) (8.88)
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Elementary transition amplitudes

Now we are prepared to calculate in-out transition amplitudes, i.e., amplitudes between initial and
final particle states. In the next section we show (see also [7]) that amplitudes between many-particle
states can be reduced to one-particle transition amplitudes. Therefore we will calculate only these
simple amplitudes. First, using equation (8.67) and its inverse, we get the identities

ailo]' =aglscatoglf +aBoa"tog]

8.89
arlo] = éi[sfl o o ¢] — 3f[B(T) o o ¢]‘r ( )

Now it is easy to check that vacuum — one-particle transition amplitudes vanish
(f vac|a;[d]']i : vac) = (f :vac|(Ay[sca™ o ] + &;[Boa™])|i :vac) =0 (3.90)

(f :vaclag[@]li - vacy =0
The one-particle to one-particle transition amplitude is
(f : vaclayls o guJailgalt i : vac)
(f : vacli : vac) N
(f s vaclag[so dr](ar[soa™ e do]t +4;[Boa™" o go])i : vac) (8.91)
(f : vac|i : vac) B
=(sopr,s0a " o)y = (d1,a o )i

where we have used the commutation relation (6.11). Vacuum to two-particle transition amplitudes
are

(f : vacla;[o1]tai[p2]t]i : vac) B
(f : vacli : vac) o
(f : vac| (éf[s calog |t +4;foa"to (bl])éi[(bg]”i : vac) _ (8.92)
(f : vac|i : vac) o
:<B°a_1°¢17¢2>i )
(f : vacligls o ¢1Jasls o galli : vac)
(f : vacli : vac)

= —<¢1, Oé_l o B o ¢2>z . (893)

These expressions are connected more closely with initial modes — we have used a transition
operator s to generate final modes. It is also possible to obtain translation amplitudes without this
asymmetry. Simply choosing the canonical operator s, and doing some algebra, we can get

oty L )
= ((ds — thX) 0 ¢1,¢2); = (¢1, (ds + thX) 0 ga) s =
=—prowWoGToWogy ,
def (f : vacla;[é1]ta:[ga]t i : vac)

proNogy = (f : vacli : vac) - (8.95)

1 — —
:<th(X)°¢la¢2>i:§¢1°Pj_0 U oGH oW on‘o¢2 ,

(8.94)

def (f :vaclay[pi]ay[ga]]i : vac)
$roVedy = (f : vacli : vac) B (8.96)

]. Rl d R ead —
= —(¢1,th(X) o p2) s = §¢1°PJ?° GoGH oW o P} o¢y
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We have thus calculated the in-out one-particle transition amplitudes, except for calculating the
normalization factor (f : vac|i : vac). We will derive it in the next section — see equation (8.110).

Other interesting physical quantities are the mean number of final particles in the initial vacuum.
Using the identities (8.67) we get

(i : vac|iy[s, 0 @i : vac) =

(i :vaclag[so o ¢)Tai[so 0 @]|i : vac)

_ (i vac] (ailo, o 9] — i[B, © ¢]) (Ailao © 9] — &i[B, © ¢IF) i : vac) _ (8.97)
_ (Boo 6,800 9 _ (sh(X) o 4,sh(X) o 9),
This means
(i vacliif[@]|i : vac) = (sh() O<Z: ;};;X) 20 ) (8.98)
and similarly
e (Sh(X) 06 sh(X) o 6),
(f : vac|ty;[]|f : vac) 6.0 (8.99)
The mean total number of particles is
(i: Uac|Nf|i :vac) = Z(z vacliig[vi]]i - vac) = Z(Uk, (shX)? o vy ) s (8.100)
kez keT
for some f-orthonormal C-base, i.e.
(i vac|Ny|i - vac) = trs, (shX)* = Z(sth)2 (8.101)
keT
and similarly
(f : vac|N;|f : vac) = trs, (shX)? = 2:(shxk)2 . (8.102)
keZ

When this quantity is finite, one has a unitary equivalence of the initial and final particle represen-
tations of the quantum algebra and regularity of the vacuum — vacuum amplitude (8.110) (see [3,4]).

S-matrix

After computing the elementary transition amplitudes we turn to investigate the S-matrix in more
detail, and we derive the structure of multiple-particle transition amplitudes. We will compute the
S-matrix using the holomorphic representation to show the advantages of this method. We can
write, combining equations (8.57) and (8.67),

A~

S (a;lao¢] — ailBog]t) = aifg]S
S (aslao @] — ;80 ¢]) = a;[g]" S

The holomorphic representation of these equations using the action of the annihilation and creation
operators (7.24) is

(8.103)

([eo 6,620 =60 Bodu]ii [$]) (01,62) = do (cafi [$]) (@n,02)

S
([poaed = (Bog,golfi [8]) (@1, 2) = (61,00 fi [S] (81, 62) o
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Solving the latter equation with respect to the variation term, substituting it into the former and
using identity (8.72), we get

$podifi [S] = (¢, o go)i — (P10 0 Bod)i) fi [S] ,

bodefi [8] = (01,07 0 @i + (Boa™ 0 6,62):) Ti [9)] (8.105)

The solution to these variation equations is

ji [$] (01, 02) =
(8.106)
=o0 exp(

1 1
—5<¢’1,04_1 °ofBo¢i)i+ 5(5004_1 o o, pa)i + (P, o pa)i)

where we have used definitions (8.94-8.96) and the symmetry of V and A. The prefactor o can be
obtained from the unitarity of the S-matrix,

SfS=1 . (8.107)

The holomorphic representation of this condition leads to a Gaussian integral which can be done
explicitly, giving the prefactor (with the simplest choice of the phase)

N

0 = (dets chX) - (dets, chX)_% = (H cth)i i (8.108)

keT

Note that this is nonzero if and only if the mean number of particles, given by (8.102) is finite,
i.e., if and only if there is a unitary equivalence between the initial and final particle representations.
If o = 0, the equations of this section are merely formal.

From the holomorphic representation of the S-matrix, we can get a normal-ordered form of the
S-matrix using equation (7.42):

S=o :exp(%(ﬁ oatod &) — —(B,a o fod); + (d,a o B); — (B, é)i):i (8.109)

Now we can find a meaning of the prefactor o:

=

(f - vacli : vac) = (i : vae|S|i : vac) = o0 = (dets, chX) (8.110)
We can also express the final vacuum using initial particle states
1. N

|f :vac) = (i : vac|f : vac) exp(§<1> oA* o ®@)|i :vac) . (8.111)

It is possible to find an explicit expression for the S-matrix without normal ordering. A derivation
in appendix E gives the S-matrix associated with a transition operator s as

§= exp(_¢<<i>,¢o é)i) expG(X o, By, — %(ci),/’\,’ o <i>>i> , (8.112)

where 1) is an i-linear i-hermitian operator on the phase space S defined by

$=S,0u; =S,0exp(Jiot))

Yoli=Jioy , =y (8.113)



8 Transition amplitudes 71

In-out holomorphic representation

The S-matrix formalism has a disadvantage of introducing an additional structure — the transition
operator s. If we are interested in transition amplitudes of the type (8.94-8.96), we do not need to
choose the transition operator. Therefore we introduce an in-out holomorphic representation which
will be a better tool for the computation of general transition amplitudes between independently
described initial and final states.

The in-out holomorphic representation can be introduced if we have two particle interpretations
given by complex structures J¢, J;. It is a mixture of the final and initial holomorphic representations
— vectors from the quantum space are represented using the f-representation and covectors are
represented using the i-holomorphic representation:

flIst)](¢) = (f coh : p|st)
f [(st]](¢) = (stlicoh: ) , (8.114)

f [A] (¢, ¢i) = (f coh : ¢f|A|'L coh : ¢;)

It has properties similar to (7.24):

i [ar[o]|st)] (dr) = (br, d)s T |58 (6)

Flaglsllsty](ée) = 6o (df [ls)]) (@)

Fl(stlaslll(6n) = (6 du)e § [(st)(r) (8.115)
P [(staid]](é) = 6o (df [(st]]) (60)

We can also find equivalents to expressions (7.25-7.28):

fllf svac)](@) =1, §l{i:vac(¢) =1 , (8.116)

i [arlg]'"If s vac)] (¢r) = (dr,0)s" L0 :vaclai[g]"](d) = (6, 01)" (8.117)
FIIf coh = §)](d5) = exp((dr, d)r) , fl{icoh:¢ll(¢r) = exp((b,di)i) (8.118)
FIIf = vac)(i - vacll(ér, di) =1 (8.119)

We can formulate the following “trace-composition law”:

wAlA) = [ sieonien s [M]ener s [R]ener . s

oriz,pi €S

which is a consequence of (7.23). But it is not straightforward to find composition laws more similar
o (7.23).

Now we compute the in-out holomorphic representation of the unit operator. From eq. (8.55)
follows

(f coh: | = (icoh:s'o¢|S | (8.121)
and therefore, using (8.109) and definitions (8.94-8.96) of I, V, A, we get
(f coh: rli coh : ¢r) =1 [1](6r. 61) = fi [S] (s o 61, 61) =
) . (8.122)
=0 eXP(§¢f°V°¢f+§¢10A°¢i+¢f010¢1)

As we will see in the next section, this is a generating function for the multiple-particle amplitudes.
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Next we can find the in-out holomorphic representation of the displacement operator. Using
again the definition of coherent states, the additivity property of the displacement operator (7.8)
and properties of the amplitudes I, V and A, we obtain

(f coh : ¢e[Wglli coh : ¢5) = (f : vac|W[g]Ji : vac) =

1 1 (8.123)
x exp(§¢fovo¢f+§¢i°A°¢i+¢f°I°¢i+¢7f010¢_¢°1°¢7i)
A similar calculation shows
(f :vac|W[¢]|i : vac) = o exp(—¢olog) . (8.124)
A slightly different calculation leads to the mean value of the field
(f coh : ¢¢|®|i coh : ¢;) _ (f coh : ¢f|(@i_ + @;)h coh: ¢i)
(F coh : grli coh : &) (F coh = gli coh : ) 5129

= ¢if +G7 o (deInf [1])(dr,01) = &7 + Gy oMo+ gpoloGf =
= —i(-G o Wogt +GToWogy)

Here we have used properties of coherent states under the action of annihilation and creation op-
erators (positive and negative frequancy parts of the field operator), the amplitude (8.122) and
properties of Green functions and amplitudes A and I. See the end of this chapter (eq. (8.142)) for
further possible simplification of this expression.

Finally we write down the relation of the in-out holomorphic representation to the particle
representation. Let v = {uv;k € Z¢} and u = {uy;k € Z;} be f and i-orthonormal bases in . Using
(7.49) we obtain

i [A](@r, 01 fu:mlAliw: n)gn, w7 u, é)F

1
)= w;l \/m!n!<

(fu:ml|Aliu:n) =

(8.126)

(fuod]™ [wod]™ 1 [A])(0,0)

m!n!

Transition amplitudes

If we apply the last equation on the unit operator we get the multiple-particle transition amplitudes
we are looking for:

(fv:mliu:n)= ﬁ([vodl]m [wed.]"§[])(0,0) (8.127)

where f [1] is given by (8.122). It is a variation of the exponential function with a quadratic
exponent. It is easy to check that the result is given by all possible pairings of the bi-form in the
exponent. It can be suggestively represented in a diagrammatical form.

We will use the following dictionary between algebraic and diagrammatical forms®

(f 1 vacli :vac) =0 <+

O ,

(8.128)
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(f :vaclas[vi]ag[u]|i : vac)
(f : vacli : vac)
Vk (]

=wvoVou L d

(8.129)
O ,
(f vacla;[w]ta;[w]|i : vac)
(f : vacli : vac) =uwceAow &
(8.130)
O )
Uk (73]
(f : vaclas[oa;[w]tli s vac) Te
(f : vacli : vac) =ucolow &
Uk
(8.131)
@) ,
uy
(f - vaclas[v]™a; ]t i s vac) = VmIn! (fv :mliu:n) &
m X v
(8.132)
@)
nxXu

Here n x u symbolically represents a sequence of u modes in which a mode uy is repeated ny times.
Multiplication will be represented simply by composition of diagrams.
The result for a general transition amplitude in the diagrammatical form is

© - 0000 : 0000 980 - .

where the sum is over all possible connections of n x u initial particle states and m x v final particle
states with three basic propagators (8.129), (8.130) and (8.131).

Feynman Green function

Until now in this part, we have worked mainly on the covariant phase space. It will be useful to
introduce some related objects living in different spaces.

First we return to the note mentioned at the end of chapter 4. Using two complex structures J¢
and J; on the covariant phase space we can construct a complex structure J, on the boundary phase
space. We have natural isomorphisms 0®; and 99, of the covariant phase space with the final and
initial canonical phase spaces B and B;, and the boundary phase space B is direct sum of these
two. So, we can construct the complex structure on B as

Jy=—J+di , (8.134)
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where J; is acting on By and J; is acting on B;. As we discussed, the notion of g-positive frequencies
is equivalent to f-negative frequencies on ¢ and i-positive frequencies on ;.

The complex structure J, allows us to introduce a notion of g-complex boundary conditions and
associated objects as the wave operator F, projector D, or the Feynman Green function GqF . Now

we prove that
1
Gq =i5Gq + Gaym = iGq + Gaay =iGq + Grer - (8.135)

Here Gé’ = Gﬁ is the in-out Hadamard Green function (8.1) associated with the complex structures
Js, and J; and similarly for Wightman functions. The last two equalities follow from the first one
using the relations (8.4) and (2.33), (2.30). So we shall prove the first one.

Feynman Green functions, similar to retarded and advanced Green functions, are defined by
their actions on the smooth sources. Therefore we will prove the smoothed version of the statement.
Clearly, for a smooth source J we have

> ]_ ~
f-(z;GH+Gsym)-J:f-GSym-J: J . (8.136)
Next we want to prove the boundary conditions
1
Y 109 (i5Gy + Goym) o T =
- 1 1
= ﬁf [Ef] * (Z§Gf + Gsym - Gadv) o J+ %j[zl] L (Z§Gf + Gsym — Gret) o.J =

:@Jj[zf].aj.Jﬂg[zi].G;.J:
:i%;oG;oJ+i%:'oG;.J:0 ,

(8.137)

where we used a decomposition of the form Qq* [092] into parts on the final and initial hypersurfaces,

added retarded and advanced Green functions (which do not contribute thanks to their boundary
conditions), and used (8.8). Therefore we have proved

1 _
(zin +Gym)eJ EPq=P, , (8.138)

which, together with (3.43), proves equations (8.135).
From these relations we get

Gy for = aftery
—iGE" = G Y for « befory | (8.139)
Gz;zy =G, "= %G{l“y for z,y space-like separated
This means that the Feynman Green function is in-out vacuum mean value of the two time-ordered
field observables,
(f - vac|T (®®)]i : vac)

(f : vacli : vac)

Gl =

(8.140)

Using the relation between the Feynman and Hadamard Green functions we can rewrite the
amplitudes (8.94-8.96) in the following symmetric way:

Ny = dF (i) «iGF o dF[%i]
Vo= dF[-5] »iGE o dF[-%] (8.141)
Iy =dFq[-%]e inf o dFq[%]
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At the end we prove that
—i(—Gy « OF[S¢] + Gf « 0F[%5]) = D,[0Q] . (8.142)
A quick proof would be
- 'L(—G; . 8]—‘[Ef] + G;; . 8.7:[21]) =
= —((iG; + Gret)  OF[—3¢] + (iGY + Gaav) » OF[%5]) = (8.143)
= -Gl «0F[09] = D409]

with the help of (3.75). But here we implicitly assumed a smoothing with a smooth source, and
we could have problems, for example, with the source (ggq » ) which is localized on the boundary,
because of inconsistency discussed in (3.73).

Therefore we will prove the statement above in a more general situation. We show that D,
defined by the expression (8.142) satisfies all necessary properties of the desired projection operator.
First D, e ¢ is clearly in S because both qu act on §. Next, for ¢ € S we have

—i(—G ¢ OF[Se]| + G 0 0F[Si]) oo = —i(Gf —G)oWoep=—GeoWodp=¢ . (8.144)

And finally, for ¢ € Py (i.e. y; [E¢]e¢ =0 and y;" [Xi] ¢ = 0), using again (8.8) and (3.79), we get

~n

—i(—G « OF[Se] + G ¢ OF[Si]) 0 ¢ = —i (=G « dF ;[ + Gf e dFi[Si]) o =0 . (8.145)

This concludes the proof that D, is the projector on & parallel to P,,.



QFT — Canonical Quantization 76

9 Interaction with an external source

Quantization of a non-linear phase space

Until now we have worked with the free theory, i.e. we have set J = 0. In this chapter we generalize
the formalism to the case of a non-zero source. We will work again on the fixed sandwich domain
Q = (¢, %), and we drop the domain dependence in the notation. But let us emphasize that some

equations below make sense only on the domain 2. For example Fo ¢ = J means F [Q] e ¢ = J[Q]
and so on.

In the case J = 0 we had an advantage that the covariant phase space, which we have used
for quantization, was a linear space. It allowed us to define the basic quantum observable ® as an
element of the tensor product & ® H. For non-zero external source the covariant phase space Sy
is not a vector space. Therefore we have to move to the larger space and define the basic quantum
observable as an element from P ® H. (More precisely it is again an operator-valued distribution.)
We require that it satisfy the equation of motion

Fed=Ji . (9.1)

Luckily, the Poisson brackets of the basic field observable ® (which can be defined thanks to the
linearity of the space of histories P) are still

{CI): (I)} =G. . (9.2)

It is important that the right-hand side is a constant on &7, so we will not have any problems with
operator ordering of the basic commutator relations

[®,8] = —iG.1 . (9.3)

But the situation is not too bad — the space & is parallel to the free phase space S. Le. if we
choose an origin ¢ in &, any element ¢ from this space can be decomposed as

¢ = ¢free + & ) (94)
with @gee from the free space §. We will decomposite the quantum observable ® in a similar way:
$ = dpee+ o1, (9.5)

and we obtain a quantum observable <i>free which satisfies the free field equation and the commutator
relation (6.1) of the free field theory. Therefore we can apply the formalism of the previous chapters
and build a quantum space using this observable.

But first we have to choose an origin ¢ in S;. Of course, the different choices gives unitarily
equivalent theories; however, we have to identify the physical states. We have to specify, for example,
which state is the vacuum at the beginning. But the vacuum state is dependent on the choice of the
origin ¢.
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We have a natural choice for identification of the final and initial states — we choose the free
fields ®¢ and ®; which are identical with a real quantum field ® on the final or intial hypersurface.
It is equivalent to the choice

~

P = &¢ + Paay(J) 1 = B + bree(J) L . (9.6)

Now we can construct final states using <i>f, and similarly for initial states. To denote this dependence
we add a new label to all objects defined using these free fields. For example, if we choose particle
interpretations given by the complex structures J,, and J,, for final and initial states, we will write
I, pr : vac), |f, pe coh : @), 4¢ pe[¢] or Wi[@] for objects constructed using ®; and similarly for ;.

Now we can compute transition amplitudes between such states. But it will be more symmetric
if we choose some auxiliary free field which we use for the computation. We choose it in the following
form (see eq. (3.39))

O =d,+ ¢(J) (9.7)

with some real b-boundary conditions. The physical results will be, of course, independent of this
choice. Again, the objects constructed using this observable will carry an additional label b.
The relations between free quantum observables are (using (7.3))

& = &, + Ap g i= VAVb[A%f]Jr o, Wb[be] )

. . PO A (9.8)
b = &, + agy,; 1 = Wy[apy]" @, Wh[agy]
where
A¢bf = &b(‘]) - éadv(‘]) ) A¢bi = éb(l]) - &ret(‘]) . (99)
These elements of S satisfy
Dppe — Dpy; = (bc(‘]) ’ (910)
Moo T o by = T o (G — Gogm) 0 T =i T o Gl 0] (9.11)
with ¢.(J) defied in (2.31). Let’s prove the last equation
Appg o W o Mppy = (¢ — Paav) @ OF[Z] @ (¢h — fret) =
= 20y (OF[~ ] » buee + OFID] » dua) = By » DF[I o iy = 012)

= fpo (F—TF) o fsym=dpoJ —J o dogm = Jo(GF — Goym)oJ

Vacuum-vacuum amplitude and the phase fixing

The equations (9.8) represent the unitary transformation between free quantum fields. We can trans-
form states constructed using these fields, except that the transformation for quantum observables
do not fix a phase for the transformation between states.

Let us choose the initial and final particle representations generated by the complex structures
Jp. and Jp; which induce the complex structure J, on the boundary phase space as discussed at
the end of the previous chapter. We can write a relation between vacuum states of these particle
interpretations defined using different free field observables

If, pr = vac) = e Wp[Adye]T|b, pr - vac)

. (9.13)
li, pi : vac) = Wy [ay]t|b, pi : vac)
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with some phase factors ¢¢, ¢;. The vacuum-vacuum amplitude is

(£, pr : vacli, p; : vac) = cici (b, pr : vaclWy[apy Wy [—apy]|b, pi < vac) =
= cies exp(—ig My o T o M) (b, e vacl W[ b, vac) =
=ciG exp(—%@ el e, + %J . %Gf . J) (b, p¢ : vac|b, p; : vac) = (9.14)
=cfc op exp(—iJo (Gf -Gy J) =
= cfciop exp(—i%J-Gg oJ) exp(i%Jonj oJ)

Here we have used the additive property of the displacement operator (7.8), the transition amplitude
(8.124), (8.108), (8.94), and properties of the Green functions.

In will be extremely useful to choose the phase factor cfc; in such way that the the vacuum-
vacuum amplitude does not depend on the choice of the auxiliary field &,. Therefore we set

1
crei = exp(iiJOG{; oJ) . (9.15)

This gives us a simple form of the vacuum-vacuum amplitude,

1
op(J) def (£, pr : vacli, pi : vac) = op exp(iiJ- Gg . J) : (9.16)

Transition amplitudes

Similar to the free field case we can obtain multi-particle transition amplitudes by the variation of
the coherent states transition amplitude (see (8.126)). Therefore we will write down this amplitude.
The relation between coherent states constructed using different free field observables is the same as
for vacuum states thanks to the unitarity of the transformation. Therefore we can apply the same
calculation as for vacuum-vacuum amplitude and obtain
(f, pr coh : ¢¢li, pi coh : ) =
1 1 (9.17)
= 0y(J) exp(50r° Vo br + 500 Apo i+ drolyo gt droTp+Lp061)

where the amplitudes V,,, Ap, I, are defined in (8.94-8.96) or in (8.141) and the new amplitudes T,
and L, are given by

Ty =Ty00.(J) = & oG o J = —idFp[-S] e GF o] |

- (9.18)
Ly=¢.(J)el,=TJeGl oW =—JeG) eidF,[%]
Using the relation (8.142) we get
proTp+Lpody=—iJeGL e dF[0N$ =iJeD,e0d (9.19)

where ¢ is the projection of ¢; on ¥; and of ¢¢ on ¢ to the boundary phase space B[0?] (information
on the boundary phase space is sufficient for the action of D),

0 = 0®[%¢] ® ¢r + OP[Ni] e i . (9.20)
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Using the relations between Green functions and field operators, we can transform the transition
amplitude to another form:

(f, pr coh : d¢|i, pi coh : ) =

— o, exp(%jp(J, 09) iGy « Tp(J, ‘%’)) = (9.21)

1- -
=0, exp(585(1,06) +iF.p  3,(7,00))
= Op €xXp (iS'p(J, 6¢)) )

where the generalized source, the classical solution and the classical action associated with the
p-boundary conditions are

To(J,00) = J = 8¢« dF ), = Fups $p(J,06) (9.22)
¢p(J,00) = GL o J + Dy e0¢ =Gop e Tp(J,00) (9.23)
So(5,00) = ~55,(7,00) » Fy » ,(J,00) + T+ 5,(,06) (924

For the demonstration we compute also an in-out mean value of the quantum field

(£, pr coh : ¢f|‘i’|i,pi coh : ¢;) _
(£, pr coh : ¢¢|i, pi coh : ;)
_ (f, pr coh : ¢f|WP[A¢bf]‘i’lin[—A¢bi]|i,pi coh : ¢;) +au(]) =
(£, pe coh = G¢|Wp[2h,e ] W [— 201, ]|i, pi coh = ¢1)
(f,pr coh : ¢r — NPpe| P i, i cOh = oy — Ay -
~ (. prcohgr — A;iflli,'pi coh 61— o) D
=Dy (8¢ — 0@ e ¢y (J)) + ¢u(J) =

= &P (J7 8¢) )

(9.25)

where again 0¢ is given by eq. (9.20). Here we have used 9®[%¢] o Ap; = P[] o ¢p(J) and
similarly on ;.
The multi-particle amplitude (8.133) in the presence of the external source has the form

(f, pr = vaclas p, [V]™aip 0] i, pi : vac) = VmIn! (£, prv :mli,pu:n)

® - ®000 + @000 +
TLXll n Xu n Xu (926)
930 9300 - 9%0 -

where we have introduced the following diagrammatical representations of Tp, Lp, and op(J) am-
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plitudes

(£, pe : vaclag p[]]i, pi @ vac)

=voT
(f, pr : vacli, p; : vac) Yk
v
1 (9.27)
(f, pr : vaclai p, [wet|i, pi : vac) CLew
(£, pr : vacli, p; : vac) :
(9.28)
Uy
(£, pr :vacli,pi vac) =o(J)
(9.29)

©)

We can be even more explicit and decompose diagrams for elementary transition amplitudes T,
Ly, and op(J) using (9.18) and (9.16) as

©, - O : (9.30)
@

= 9 , (9.31)
© O
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where we understand
—~iGY “ O (9.33)
iJ > @ (9.34)
vl
—inedF,[-%] (9.35)
e dF 5] (9.36)
U

Thanks to (8.141) the diagrams for the amplitudes V,, Ap, and I, can be also viewed as composed

from the elements above.
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10 General formulation

Introduction

In this part we will develop boundary quantum mechanics — a variation of quantum mechanics
based on the quantization of the boundary phase space. First we present a general overview of the
method, and next we apply it to scalar field theory.

Let start with the quantum theory described in chapter 5. There we have quantized observables
F; and G, on a phase space with the cotangent bundle structure. We have found their quantum
forms F s and Ca, and we have constructed the special position base |pos : x). We have not formulated
the dynamical part of the theory, so we touch this question now.

We are interested in a situation when we study the system only at the “beginning” and at the
“end”. More precisely, we are interested only in observables with support on the initial and final
hypersurfaces of the sandwich domain Q = (X¢, ¥;) in a globally hyperbolic spacetime. In this case
we can quantize the initial and final canonical phase spaces Bi = B[%;] and By = B[X] — i.e.
we construct the quantum observables IA:ff, Gra and IA:if, Gi, on the quantum space H satisfying
the conditions (5.2-5.11) with the ordering parameters vy = —7;, and the corresponding bases!®
If pos : x¢) and |ipos : x;) in the space H. The dynamics reduces to the investigation of the relations
between these two sets of observables or the relations between objects generated by them — for
example the position bases. We can say we have solved the dynamical problem if we find in-out
transition amplitudes (f pos : x¢|ipos : x;) for all x¢ € V[X¢] and x; € V[%].

We do not attempt to find the transition amplitudes in a general situation (but we have proceeded
in a similar way for the scalar field already). However we reformulate this setting in a slightly different
language.

Construction of the boundary quantum space

We have represented the quantization of both By and B; on a common quantum Hilbert space .
Let us construct another representation on the boundary quantum space

Hp=H oK (10.1)

(the space of tensor products of covector and vector elements of the form (f| ® |i), i.e. essentially
operators on H). We use the notation |state) for vectors from Hg, and we use the accent” to denote
observables on this space.

We interpret the boundary quantum space in the following way: We assign to any pair of f-
dependent and i-dependent vectors |f) and |i) the vector |fi) from Hp by mapping

) = (f| @ i) . (10.2)

Here f-dependent vector suggests that the vector is identified using quantum observables on ¢, but
of course, it can be any vector from H. Particularly we define for x = [x¢, x;] € V[0Q] = V[Z¢] X Vi)
the vector in Hgp

|pos : x) = (f pos : x¢| ® |ipos : x;) . (10.3)
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This allows us to “lift” any f-dependent or i-dependent operator Af or A; on H to an operator
on the boundary quantum space Hpg

A=Al o Adf) = (fA o i) 104
L=irohs  AR) = (1o Al |
Using these definitions we find
[Ar,Ai] =0 . (10.5)

We apply this method to construct observables Ief s éf ap and IA:i £ Ci «; for any functions and
vector fields fr, ar or fi, a; on the value spaces V[X¢] or V[¥;]. Next we want to construct a

generalization of these observables F; and G, for any function f and vector field a on the value
space V][9] = V[Z¢] x V[i]. Thanks to (5.4) for both F¢ ; and Fi s and to equation (10.5), we do
not have ordering problems with F 7 for f(x) = f(xe,xi)

|":f = / If pos : x¢)(f pos : x¢| ® |ipos : x;)(ipos : xi| f(xf,%;) =
xfEV[Z¢]
X EV[Zi] (10.6)
= / |pos : x)(pos : x| f(x)
x€V[0Q]

Similarily, for any vector field a(x) = a¢(x¢) @ ai(x;) on V[0N] where ar € TV[Z¢] and a; € T V[Ei],
motivated by (1.22), we can write

Go = —Gra, + Gia, - (10.7)

It is straightforward to check that IA:f, G, are quantizations of the observables F¢, G, on the
boundary phase space B[0Q]; i.e. they satisfy (5.2-5.11) with the ordering parameter v = v; = ~.
Note that different orientation of the bounary 02 and the final hypersurface ¢, which translates to
the different sign of the symplectic structures (1.21) and to the definition of the momenta (1.22), is
compensated by the covector representation of f-dependent vectors.

Let us summarize: quantization of the basic observables on the final and initial hypersurfaces ¢
and ¥ gives arise to the quantization of the basic observables F¢, G, on the whole boundary 99Q. Le.
we are able to formulate the “kinematics” of the theory using quantization of the boundary phase
space B[O€Y] — which we call the boundary quantum mechanics. The boundary quantum space Hz
represents all possible quantum states at the beginning and at the end chosen independently on a real
evolution of the system. Essentially we are treating the initial and final experiments as experiments
on independent systems. States in Hpg represents outputs of such understood measurements.

Before we turn to the dynamics let us list some properties of the space Hg = H' @ H. For
vectors and operators in the “product” form

fi) = (| i) ,
=l (103)
O =0l®0; |,

we can write
(fist1|fist2) = (f st2|f st1) (istl]ist2) = Trac((|f st2)(f st1])T ([ist2)(istl]))
6 =)t =1f) @ (1| , AsBa=(BIA))® BiA) |, (10.9)
Oﬁ|ﬁ) = (f|0}f & Oi|i> R Trg}(,s Oﬁ = Trg¢ O;f Trgc Oi
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Dynamics in the boundary quantum space

Of course, much more interesting is the dynamical part of a theory. We have to ask the question
whether we are able to translate the dynamically interesting quantities to the language of boundary
quantum mechanics. As we sketched, the dynamical information is hidden in the in-out transition
amplitudes (f]i). Such an amplitude can be written as

(£li) = Trge (17 [i)(F]) = (phys|fi) | (10.10)

where |fi) is as in (10.8) and the physical state |phys) is given by

Iphys) =Y (k| ®[k) = 1 (10.11)
k

for some complete orthonormal base |k) in K.

This means that there exists a prefered physical state |phys) in the boundary quantum space
Hp which determines the dynamics of the theory. Specifically, if we set up some initial and final
experiments which determine the quantum state |state) € Hg, the physical transition amplitude
corresponding to this state is given by

A(state) = (phys|state) . (10.12)
For example, for the position base |pos : x) we get
Apos(x) = Apos(xc|xi) = (phys|pos : x) = (f pos : x¢lipos 1 xi) . (10.13)

We will call A,0s(x) the position transition amplitude.

Boundary quantum mechanics

In the previous sections we have constructed the boundary quantum space and observables on it
using quantization based on the initial and final phase spaces. But it is clear that we can skip the
splitting of the boundary into two pieces and quantize directly the basic observables F¢, G, on the
boundary phase space B[0f]. It is a phase space with a cotangent bundle structure, so we can apply
the general formalism and obtain the quantum observables F ¢ and G,. We can also construct the
position base |pos : x). And we do not need any causal information for this; we do not need any
global time flow on the underlying manifold or a causal decomposition of the boundary.

This means that we can build boundary quantum mechanics even in situations where we do
not have any natural splitting of the boundary into two pieces, for example for Euclidian theories.
Therefore we will call the boundary quantum mechanics also time-symmetric quantum mechanics.

But in this setting we have to find the physical state |phys) without reference to the initial and
final decomposition'!. Again we cannot expect an answer on a general level — this is a question
equivalent to a solution of the quantum evolution. But we suggest a method for determination of
the physical state and in the next chapter we apply this method in the case of the non-interacting
scalar field theory.

The classical evolution in the boundary phase space B[0f2] is determined by specification of the
physical phase space S as a subspace of B[0}]. It can be done, for example, by condition (1.15),
or, expressed using observables F¢, G, by the condition

Go+Foyg=0 forall aeIV[OQ . (10.14)

ILe., on the classical level we have specified physical states by the constraints in the phase space. In
the usual canonical quantization one tries to quantize the constrained subspace S. In the boundary
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quantum mechanics we quantize the full boundary phase space and impose conditions on the physical
state inspired by the classical constraints

(Ga + Fouag)phys) = 0 (10.15)

for at least some vector field on the value space V[99)].

We cannot expect the condition above to be satisfied for all vector fields a due to the noncommu-
tativity of the position and momentum observables (G, is some ordering of “a(x) - p” observable).
We will see that such strong requirement would be inconsistent. It will turn out that the choice of
the class of vector fields for which the condition (10.15) is required to hold (i.e. the choice of the
preferred operator ordering), is equivalent to the solution of the dynamical problem. So, if we have
some preferred vector fields, it can provide us with a method for finding the transition amplitudes
we are looking for.

Let us look at the position representation of the constraint conditions. Using (5.14) and (5.43)
we find i i

(phys|(Ga + Fouaz)|pos ) = (iLe + a+dS)(phys|pos: ) =0 . (10.16)

If we represent the position transition amplitude as

Apos(x) = a(x) exp(iS(x)) (10.17)

with a(x) a density of the weight (5 — iv), the condition above translates to

1
2
Loa=0 . (10.18)

This confirms that the constraint conditions cannot be satisfied for all vector fields a. And if we
find a linearly complete set of vector fields for which the constraint conditions should be satisfied, it
determines the density a up to a constant multiplicative factor completely. The freedom is, of course,
equivalent to the right normalization and the choice of a relative phase factor which is unphysical.

The density a contains all quantum corrections to the transition amplitude A,,s. So we can
expect that for a non-interacting theory there should exists a natural choice of a “constant” density
a, — constant with respect of a set of some natural vector fields a. This is true for the scalar field,
as we will see in the next chapter.

Path integral

There exists another approach to the quantization of the system. This is path integral quantization,
which gives essentially a prescription for the position transition amplitude on the basis of a completely
different calculation — through a sum of elementary amplitudes over all possible histories with fixed
boundary values,

(fpos : x¢lipos : xi) = Apos(xe|xi) = / M” (h) exp(iS(h)) . (10.19)
heH
x(h)=[x¢,xi]
We will discuss this method more in the last part.

The integral over the space of histories faces serious problems due to the infinite dimension
of this space and the oscillatory character of the integrand. A technical solution usually leads to
the computation of some Euclidian equivalent of this integral, which is usually better defined, and
performance of some transformation from the Euclidian to the Lorentzian theory. We can view this
as only a technical detour without a physical interpretation. Only after the computation of the
integral are we able to identify the results with the transition amplitudes of quantum mechanics.
Anyway, in the usual framework we do not know what would be the quantum mechanics of the
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Euclidian formulation of the theory — the usual quantum mechanics essentially uses the causal
structure for the definition of commutation relations and definitions of initial and final states.

The formalism developed in this chapter gives us a hope for another option. We could formulate
boundary quantum mechanics even for a Euclidian version of the theory and make the connection
with the path integral already in the Euclidian formulation

(phys|pos : x) = Apes(x) = / MF (h) exp(-I(h)) . (10.20)
heH
x(h)=x
In the Lorentzian case this reduces to the relations (10.19) above. In the Euclidian case it would
give an interpretation for the path integral amplitude in terms of transition amplitudes of boundary
quantum mechanics.

Unfortunately, the situation is not so straightforward. The form of boundary quantum mechanics
formulated here in the Euclidian version does not correspond with the Euclidian path integral. The
problem is hidden in the method of quantization we have used. The translation of Poisson brackets
of the classical theory to the commutators of the quantum theory

{,r—=il,] (10.21)

intrinsically contains reference to the Lorentzian signature. The imaginary unit in this translation
causes the imaginary unit in the exponent of the transition amplitude (10.17) computed in boundary
quantum mechanics independently of the version of the theory. For the Euclidian theory it would be
more appropriate to construct a “Euclidian quantum mechanics” based on the commutation relation
generated by the rule

=01, (10.22)

with observables represented, probably, on a real Hilbert space. But we do not attempt to build
such quantum mechanics here. However, escaping the necessity of a causal structure in the usual
quantum mechanics through the method of quantization of the boundary phase space is the first
step towards a Euclidian quantum mechanics.

Let us finally note that the rules above can be written uniformly using theEuclidian convention
for Poisson brackets (see (D.10) in appendix D)

E{a}_)_[a] : (10.23)
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11 Configuration and holomorphic
representations

Introduction

In the previous part we have formulated the quantum theory of a non-interacting scalar field based
on quantization of the covariant phase space. Now we build up boundary quantum mechanics for the
scalar field — the quantum mechanics based on the quantization of the boundary phase space. First
we apply a general method for the quantization of a linear phase space discussed in the chapters 5,
6 and 7, and we construct special bases in the quantum space Hg of boundary quantum mechanics.
Than we formulate conditions for the physical state and compute the transition amplitudes. Finally
we compare the results with the previous formulation.

Most of the first part can be again applied for a general linear phase space. This essentially gives
a unified form for configuration and holomorphic representation following the similar coresspondence
on the classical level where were able to deal with the real and complex boundary conditions using
one formalism (see chapters 3, 4).

Quantization of the boundary phase space

In chapter 2 we have introduced the boundary phase space'? B[] associated with the boundary
00 of the investigated domain . It is a linear phase space with the basic observable 0®, the
Poisson brackets of which are given in (2.19). Similar what was done in chapter 6, we assume that

the quantum version of the basic observable $ € B® Op has the commutation relations
[®,8] = —ihdF 1 . (11.1)

As before, we drop the domain and boundary dependence in the notation where it cannot lead to
confusion.

We have also introduced a constant & in the commutation relations. It can represent the usual
Planck constant, but we use it mainly to trace the influence of the constant in the commutation
relations on the transition amplitudes, motivated by comments at the end of the previous chapter.
In comparison with the path integral approach (see chapter 16), we will find that we would need to
set its value to % But the reasoning in this chapter is consistent only for real positive value of A,
i.e. only for physical value of the signature factor n of the spacetime metric. In the Euclidian case
further investigation is needed of how to generalize the quantization scheme to accommodate an

imaginary value for 5. We also have to change definitions of some other quantities as, for example,

. o 1
the product (¢1,¢2)m = —5¢1 ©dF ¢ ¢2, or the measure dI' = Det gr—fh 2, etc..
We can define the displacement operator

W] = exp(ih¢ o OF o Ci’) . (11.2)

with the same properties as its counter-part in the covariant phase space quantization.
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We can build up the same machinery of the particle and coherent states based on the choice
of a complex structure J, on the boundary phase space, which also determines complex boundary
conditions on the boundary.

Now we define a similar construction for real boundary conditions characterized, for example,
by the unit operator Ij, as discussed in chapter 3. It is straightforward to generate the configuration
(value) representation, but we will do it in a manner more close to the holomorphic representation.

Given real boundary conditions we can define V and V-valued quantum observables of the field
value and momentum on the boundary:

~ al A-I— ~
= o (P s = s
Pr = L»p - ‘Pf b (11.3)
fh=mped | =7
with commutation relations
[P, Tb) = ihdpl [Py, @] =0 , [Fp, 7] =0 . (11.4)

These define value and momentum bases as discussed in chapter 5. Specifically we choose the
following phase fixing and normalization'?

@plbval : ) = plbval : ) , 7plbval : ) =ihd|bval : @)

vt ulbva s 2) = (@00 (prlea) A= [ Qupbval: povatzgl (11
PEV
p|bmom : ) = w|lbmom : 1) <f0b|bmom:7r):—ihd|bmom:7r) ,
: o) = | 2
(bmom.7r1|bmom.7r2)—(535)(2ﬂ_h 27rh) , /Db( )|bmom w)(bmom : 7|
pEV

(bmom : w|bval : p) € R"
(11.6)
Here £y, is a constant measure on V associated with the b-boundary conditions. It is easy to check
that with this normalization we have
(bmom : wlbwval : p) = exp(—%w o) . (11.7)

Next we define generators of the shift operators

Wlo) = (6,8)y = —podFro b= —im(6)of, .

] o / (11.8)

éb[¢]=(‘I’,¢)bZ—ﬁ‘ﬁod}'boﬁﬁ:—ﬁ%(@“}b ;

with properties
exp(—¢n[¢]) @y, exp(enld]) = @, + sob(¢)fl : 119)
exp(ap[@]) Tp exp(—ap[o]) = 7p + mp(P) 1

exp(éy[¢]) [bval : @) = |bval : o + () (11.10)

exp(—ap[@]) |bmom : ) |bmom T+ 7(¢)
¢ o OF o ® = ih(ap[d] + ap[d]) = —zh(cb[qb] +¢upld]) (11.11)

Wie] = exp (5 (6, 0)s) exp(~as[g]) exp (e416]) = exp(~3(6,9)s) exp(Esld]) exp(~anfg])  (11.12)
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and the commutation relations

[an[p1], en[p2]] = (¢1,d2)p 1,
[ap[n], aplge]] =0, [eblen], Colda]] =0
The definitions and commutation relations of these operators have a clear resemblance to annihilation

and creation operators a,[@] and a,[¢]" for the complex boundary conditions. However the similarity
breaks down with operations based on complex conjugation. For example,

(11.13)

(11.14)

But we will follow the resemblance with the case of complex boundary conditions further, so we can
use the formalism developed for coherent states.

Generalized holomorphic representation

Let an m-index represents a real or complex boundary condition. We define an m-base as vectors in
the quantum space Hpg labeled by elements from B in a way similar to (7.16) and (7.17)

am[g] |m : 1) = (¢, 1)m

. (11.15)
Cm[¢]|m : ¢1) = pod|m: 1)
Similarly we define a m-cobase as a base for covectors
* Cm = ) m
(m ¢’1|CA [$2] = (¢1,82) (11.16)
(mx: ¢1|am[d] = pod(m*: ¢
with relative normalization
(mx:0m:0)=1 . (11.17)
From the properties of the displacement operator, it follows that
1 < .
[m s 8) = exp(5 (6, 6)m) W6 |m : 0) = exp (Emlg]) [m: 0)
2 (11.18)

(9] = exp (5 (6, 6)m) (mx : O] WI4]1 = (s - ] exp (3]

For the real boundary conditions we have only reformulated previous definitions of the value and
momentum bases

|b:¢) =albval : pp(¢)) , (bx:¢|= é(bmom : ()] (11.19)
with some normalization factor « € C. Using (11.7) and the completeness of the bases we get
(bx:¢1]b: ¢2) = exp((¢1, P2)p) (11.20)
1= / dl' 5 exp(—(#,9)p) |b: ) (bx: | (11.21)
pEB
P, odlb:.)=0 , Plod(bx:.|=0 . (11.22)

Here dI' 5 is a cannonical measure (B.8) on the phase space B.
For the complex boundary conditions the p-base and cobase reduces to the base of coherent
states

p:@)=Ipx:¢)=Ipcoh:¢) (11.23)
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and we have already proven relations (11.20-11.22) above for this case.

So we have found that the m-base and cobase share some properties of the coherent states.
We can define a representation similar to the holomorphic representation and use formulas derived
before, now in both real and complex cases.

fm [|state)](¢) = (m* : p|state) (11.24)
fm [(state|](¢) = (state|m : @) (11.25)
i [A] (81, 62) = (mx: g1A|m : 6a) (11.26)

Thanks to the completeness relations derived above we have composition laws similar to (7.23) for
this representation. We list some of the properties derived in chapter 7.

fm [Cm[@]|st)](1) = (D1, D)m fm [|58)](D1)

i [am[@1s8)] (61) = 6o (Afm [|sD)]) (1)
b [t [} (61) = (661 ) fn [(5E])(61) (H-27)

i [(stlem[ @l (@1) = @ o (d Fim [(st]) (61)

fu [lm : ¢2)](¢1) = exp((¢1, d2)m) (11.28)
fm [(m* : ¢1)](d2) = exp((¢1,d2)m) (11.29)
i [Em[0]" m : 62))(61) = (61, 0)m™ exp((1,2)m) (11.30)
Fm[lm s @)(m* : B)(d1, 62) = exp((d1,®)m + (6, $2)m) (11.31)
fm [](¢1,¢2)= p((¢1,02)m) (11.32)
b [ W16 (61,62) = exD(~ 5 (6, B + (61, 6)n — (6, 62)m + (91, 02)m) (11:33)

We can introduce also a normal ordering, which in the real case arranges all momenta observables
to be to the left of the value observables and in the complex case coincides with the previously
discussed normal ordering.

To summarize, we have introduced notation in which it is possible to treat on the same level
both value and momentum representation for real boundary conditions and the coherent states
representation for complex boundary conditions. We can use most of the formulas derived for
the coherent states and holomorphic representation in chapter 7. We only have to be careful to
distinguish the vectors and covectors because in the real case the elements of the base and cobase
are not hermitian conjugates.

Specially related boundary conditions

It would be possible to develop the formalism for the comparison of two different real boundary
conditions similarly to what we did for complex boundary conditions in chapter 8. We will do
it explicitly only for specially related boundary conditions — for conditions which differ only in
the value or momentum space. We cannot do something similar for complex boundary conditions,
because in this case the spaces B, = B, and B., = B;,L are not chosen independently but are
complex conjugate.

First we investigate the dependence of a real b-base |b : ¢) on the choice of the b-momentum.
Let |BB; : ¢) and |BB: : ¢) be BB, and BB.-bases for boundary conditions with the same value space
B; and different momentum spaces By, and Bj,. The first of the conditions of (11.15) says

@u|BB::0) =0 , @,BB::0)=0 |, (11.34)
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so states |BB; : 0) and |BB. : 0) are proportional. The second of the conditions of (11.15) essentially
fixes the relative phase between states of the base. But we have the freedom to choose a global
normalization, i.e. we can choose

|BB; : 0) = |BB. : 0) . (11.35)
Using (3.61) we find
d?:BBz - d?:BBl = fBBg - -7:BB1 = ﬁBBZ - -7'_—331 y (1136)

and therefore
i _ _

((ba ¢)BBZ = (¢)7 ¢))B31 - ﬁ(b < (-7:332 - -7:331) <& ¢7 . (]-]-37)
Therefore from eq. (11.18) follows
134 = =
|BB, : ¢) = exp(i%cﬁo (Fon, — Fon,) 0 @) |BB 1 ) . (11.38)

We see that |BB: : ¢) and |BB; : ¢) differ only by a phase factor.
We can write down also the relations of the shift operators,

éBBZ [¢] = é‘BBl [GBBI < ﬁBBZ < ¢] s

_ _ 11.39
éBBz [¢] = éBBl [¢] + é‘BBl [(GBB1 © ‘7:332 - 63) © ¢] ( )

Next we turn to compare boundary conditions with different value space and the same momentum
space. A similar calculation to the previous one gives

éaBgB[¢] = é‘B1B |:¢:| + éBlB [(GBBI ¢ diﬁ:B?B o 68) ° ¢] ’ (1140)

We have different “annihilation” operators, so we get different states |B,;B : 0) and |B.B : 0). The
conditions

(BiB*: ¢1]a[@]|B:B:0) =0 (11.41)

using the properties of the generalized holomorphic representation, gives a variation equation for
(BiBx: ¢|B:B : 0). The solution is

1 _ _
(BiB* : ¢|B:B : 0) = const exp(§% ¢ o (Fup, — Fun,) © 0) (11.42)
with
const = (B,B*: 0|B:B:0) . (11.43)
Thanks to the fact that
(-7?331 - -7:—332) = (-7?331 - -7:—332) oDy (11'44)

and using the properties of the generalized holomorphic representation, we get

% b o (Fup, — Fony) 0 @) BB :0) (11.45)

DN | =

|B.B : 0) = const exp(
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The physical state

As we have discussed at the general level, the dynamics of boundary quantum mechanics is described
by the physical state. The conditions which characterize the relations of the physical observables to
this state are quantum versions of the classical constraints given by the classical equation of motion.
Now we apply this idea to scalar field theory and derive transition amplitudes.

The classical equation of motion reduced to the boundary is given by equation (3.42). This
equation is formed from linear observables, so we can write down its quantum version. It can be
expressed in any of the following equivalent forms:

Vo €S ¢odF o ®|phys) = ¢ J|phys)
Dm0 OF o ® |phys) = Dy, e J|phys) (11.46)
O|phys) = Im(J) [phys)

where the quantum version of the generator of the physical phase space ﬁ can be written for real
boundary conditions as

b=y (11.47)

We are investigating theories with a generally non-zero external source. It will be useful to fix a
phase of the bases introduced above relative to the physical state for different values of the external
source. We will use the following choice
i

(phys|m : 0) = op exp(h

1
5J.GQ.J) , (11.48)

with some complex number oy,.

Using these conditions we can derive the generalized holomorphic representation of the physical
state — the transition amplitudes we are interested in. The holomorphic representation of the
constraint equation (11.46) gives

(phys|(Dm ¢ dF o ® — Dy o J)|m: ¢) =
= (phys|(=® © dFm o Doy + Do dF o ® — Dye J)|m: ¢) = (11.49)
= —ihDpy o d(phys|m: ¢) + (¢ o Fy — J D) (phys|m : ¢)

where we used the definition properties (11.15) of the m-base. This variation equation has a solution

(phys|m': ¢) =
B 1i, - i i o N\
—Omexp(—§ﬁ¢0fm0¢+ EJ.Dm.¢+§EJ.Gm.J) =
.
= 00 exp (37 (7 8) * Gom * Tu(J,6)) =

zomexp(;—.igm(l]7¢)) )

(11.50)

with the classical action associated with the m-boundary conditions given by (9.24).

This amplitude is interpreted as the transition amplitude between a state measured by an ob-
server on the boundary and the physical state of the system. IL.e., as the physical amplitude for an
experiment performed on the system on the whole boundary — including both the initial and final
measurements, if the notions of initial and final have sense.
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Relation to usual quantum mechanics

We have computed the physical transition amplitudes in boundary quantum mechanics without
reference to some causal structure, without distinguishing between initial and final states. Now
we compare it with the previously derived results in the case of a sandwich domain in a globally
hyperbolic spacetime.

As we discussed in the general introduction to boundary quantum mechanics in the case when
we have well defined initial and final parts of the boundary which carry full sets of Cauchy data,
we can represent the quantum space of the boundary quantum mechanics as a tensor product of
quantum spaces build on canonical phase spaces. Precisely, for initial and final states |i st}, |fst) we
have the state from Hzp given by the tensor product

(fst| ® |ist) . (11.51)

Similarily we can construct observables on Hg using observables on K.
In the case of the scalar field we have a clear correspondence between basic observables

B[00 = P[-] 01 ¢ 1 ® IP[T] = 0B[-Tf] e P01 S 1 @ IB[Li] e & . (11.52)

Next we will assume that the boundary conditions we are using are local for both parts of the
boundary — it is possible to formulate them using independent conditions on the initial and final
hypersurface. Then we can write for the real boundary conditions

P[00 = @p[Ef] @1 @1 @ @p[=i]

. . A (11.53)
Tp[ON] = —7p[Zf] @ 1 © 1 @ 7p[X4]
The value and momentum bases are related by
|bval : pr ® ¢;) = (f,bval : p¢| @ |i, bval : ¢;) (11.54)
|bmom : —m¢ @ m;) = (£, bmom : 7¢| ® |i, bmom : ;) ’
From this follows that
(phys|bval : or ® i) = (f, bval : peli,bval : ¢;) . (11.55)

For the complex boundary conditions we already discussed that the complex structures on the
initial and final hypersurfaces induce the complex structure on the boundary phase space

Jp=—=Jp @y (11.56)
In this case we have the relationship
|p coh : ¢ @ &) = (f,pr coh : ¢¢| @ |i,pi coh = ¢y) (11.57)
and therefore
(phys|p coh : ¢r © ¢i) = (£, pr coh : ¢li,pi coh : i) . (11.58)

Now we can compare the amplitude (9.21) computed in the previous part with the amplitude
(11.50) and we see that we have obtained the same results, except that in the boundary quantum
mechanics we do not derive the normalization constant o,. We have also introduced the constant A
to the commutation relations which is reflected in the transition amplitudes.



Part IV

Sum-over-Histories Formulation of
a Particle-like Theory

95



Sume-over-Histories Formulation of a Particle-like Theory 96

12 General principles of the sum-over-histories
formulation of quantum mechanics

Introduction

In this part we will discuss the particle-like theory using the sum-over-histories approach to quantum
mechanics. Our goal is to show that such a theory leads to the same predictions of amplitudes as the
field theory discussed in the previous parts. We want to establish a relation between particle inter-
pretations of field theory and interactions of particles with space-like boundaries (i.e “measurement”
of particles at initial and final time) in the particle theory.

The usual approach to a quantized relativistic particle is through field theory. But it would be
nice to see that field theory is really equivalent to some kind of quantization of the classical particle
theory. But the straightforward canonical quantization of the relativistic particle theory faces several
well known problems. Therefore it is necessary to adopt some other approach for quantization.

Another reason for attempting to quantize a classical relativistic particle is that this theory is
equivalent from the mathematical point of view to classical minisuperspace models for cosmology.
It is well known that classical gravitation coupled with matter reduces to a particle-like theory in a
Lorentzian manifold with a potential, when restricted to a finite number of degrees of freedom. And
we would like to understand a quantum version of such a minisuperspace theory. Unfortunately
the quantization using the field theory does not help us with this understanding — there is too
big a gap in the interpretation of such a theory. We need a more straightforward way to quantize
minisuperspace models.

A much more promising way to understand quantization of such theories is the sum-over-histories
approach to quantum mechanics. The classical explanation of this approach for usual nonrelativistic
physics can be found in [13] and more technically in [14-17]. An overview for a relativistic theory
can be found in [18]. Beside these classical introductions, this approach has received considerable
attention in recent years (see for example [8]). The new development has led to a generalization of
this method called generalized quantum mechanics (see [8,19-22]).

Space of histories and probabilistic interpretation

The sum-over-histories approach is based on emphasizing the role of amplitudes. In this approach
the basic notions are histories and their amplitudes. For each theory we have to specify a space
of elementary histories — the set of trajectories in spacetime in the case of particle theory, the
spacetime field configurations in the case of field theory, etc.. These elementary histories can be
gathered to sets of histories which represents physical questions we can ask about the system under
investigation. I.e., a set of histories can be characterized by a condition that its elements possess
some property, or have correlations of some properties — e.g. the set of all histories which cross
a spacetime region in the case of a particle theory or all field configurations with some value at a
initial time and another value at the final time for the field theory.

Next we need some mechanism which give us predictions about experimental questions. As usual
in quantum mechanics we are looking for probabilistic predictions — the predictions which can be
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interpreted as a confidence to the expectation that correlations of properties represented by the
set of histories is observed. We need a rule which tells us to which sets of histories we can assign
probabilities and what are their values. The main weakness of the sum-over-histories approach is that
this rule is stated very intuitively — it tells us that we can assign a probability to a set of histories
which is “physically distinguishable” from its complement, or a bit more generally, we can assign
probabilities to a sequence of mutually disjoint sets of histories, which together exhaust the whole
space of histories, if they are “physically distinguishable”. What exactly the phrase “physically
distinguishable” means is a very delicate problem connected with a definition of a measurement
situation. But it can be used very powerfully on the intuitive level as can be seen for example
in [13]. Attempts to define this notion more precisely led to the mentioned generalized quantum
mechanics and an introduction of a decoherence functional. But before discussing this point in more
detail we assume for now that we know an algorithm which tells us for which sets of histories we
have a probabilistic interpretation.

Quantum amplitudes

Now we would like to now what the probability is. Quantum mechanics tells us, that the probability
(if it has meaning) is given by the square of the absolute value of a quantum amplitude — of
a complex number associated with each set of histories. And the sum-over-histories approach is
mainly an algorithm for how to calculate such amplitudes. It can be summarized in two main rules:

- The amplitude of a set of histories is given by the sum of amplitudes of all (12.1)
elementary histories in the set. '
- The amplitude of an elementary history composed from independent components

is given by the multiplication of amplitudes of all these components. (12.2)

The second rule introduces the possibility that an elementary history has some inner structure. It
is common to assume that an elementary history of a complex system can be viewed as a composition
of several elementary histories of subsystems of the whole system. E.g., the elementary history of
two-particle theory is composed from two elementary histories of two one-particle theories. Another
common situation is that the elementary history is composed from a couple of consequent parts or
events. For example an elementary history of a system which is composed from two subsystems
which interact with each other can be represented by elementary histories of each subsystem and
events of interactions.

To conclude the definition of the algorithm for the calculation of quantum amplitudes, values of
amplitudes of basic components of elementary histories has to be given. The usual heuristic for the
most systems is that the amplitude of an elementary history is proportional to the exponential of
its classical action'*

A(h) = Mm(h) exp(—[(h)) . (12.3)

Here 90t is a measure on the space of histories which has to be specify for each particular theory.
Clearly, there is an ambiguity in the separation of the amplitude into the measure and action parts.
Intuitively the most of the important physical information is contained in the action part. But the
measure can also contain nontrivial information (as we will see below), and it would be nice to have
some general prescription for it.

We can ask whether we need to investigate an inner structure of elementary histories. The
answer is yes, we do. The reason is that the only “canonical” choice of histories without structure
would be fully extended histories (i.e. for example not bounded in the time direction). However for
such histories we expect that the amplitude given by the expression (12.3) is not well defined (the
action is infinite). We need to work with histories bounded in time. But this makes it necessary to
introduce some inner structure for elementary histories.

It can be noted that the exponential nature of the action part of the elementary amplitude and
usual additivity of the action reflects the rule (12.2). This suggests that the elementary history can
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be viewed as a sequence of infinitesimal sub-histories and the amplitude can be determined using
(12.2) from amplitudes of these pieces. Such an argument can impose a condition on the measure
9 — it has to satisfy some kind of composition law similar to the rule (12.2). Such a condition can
be used in the definition of the measure as we will see in the next chapter.

Relation to a generalized quantum mechanics

As mentioned above, a generalization of the sum-over-histories approach led to the formulation of
generalized quantum mechanics. It is a much broader framework which mainly addresses the question
of the probabilistic interpretation of a quantum theory. It introduces a tool for determination of
which sets of histories (and associated questions about the system) can be assigned probabilities. The
central object of the generalized quantum mechanics is a decoherence functional which is essentially
a generalization of the quantum amplitude. Using this functional we can introduce a notion of
decoherent sets of histories — physically distinguishable sets of histories in the sense discussed
above.

The decoherence functional D assigns a complex number D(H;, H) to a pair of sets of histories Hy
and Hy. The sequence of sets of mutually disjoint sets of histories {H} which together exhaust the
whole space of histories is called decoherent if the decoherence functional of these sets is sufficiently
diagonal, i.e.

D(Hk, Hl) ~ p(Hk)(skl . (124)

The probabilities assigned to such decoherent histories then are given by the coefficients p(H). The
exactness of diagonality give us a quantitative measure for the notion of physical distinguishability
we were missing in the sum-over-histories approach.

The decoherence functional must satisfy the following conditions:

Additivity: D(H; UH,, H) = D(H;,H) + D(H, H) for HiNnH, =0 |, (12.5)
Hermiticity: D(H;,H,) =D(H,Hy)" (12.6)
Positivity: D(H,H) >0 , (12.7)
Normalization: DH,H)=1 , (12.8)

where H is a set of all histories. The first condition is an analog of the rule (12.1) of the sum-
over-histories approach and reflects the principle of superposition in the quantum mechanics. Using
this property a value of the decoherence functional for general sets of histories can be determined
from a knowledge of the decoherence functional for elementary histories. The second condition tells
us about a relation of both arguments of the decoherence functional. The last two conditions are
needed for the interpretation of coefficients in (12.4) as probabilities.

The sum-over-histories version of a quantum theory can be formulated as a generalized quantum
mechanics if we define the decoherence functional using amplitudes. A general way how to do it is
to define the decoherence functional for elementary histories as

D(hi,hy) = A(hy)A(h2)" = 9ﬁ(h1)9ﬁ(h2)exp(—1(h1) - I(h2)*) . (12.9)

The problem with this definition is that the amplitude for a whole history is not usually well de-
fined. For example the values of the action for unbounded particle trajectory or configuration of a
field on whole spacetime are infinite. Therefore we restrict histories to some domain “bounded in
the time direction”. But in this case we have to include some additional terms in the definition of
the decoherence functional which are localized on a “boundary” of restricted histories and which
correspond to initial and final states of the system. Unfortunately these terms have different struc-
tures for different theories, and one of the main motivations of our work is the desire for a better
understanding of an origin of these terms.
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Beside this problem with the definition of the decoherence functional, the generalized quantum
mechanics has another weakness. In distinction to the sum-over-histories approach it is missing an
analog of the rule (12.2). We do not know the behavior of the decoherence functional under the
decomposition of elementary histories to its components. This lack of knowledge is closely related
to the previous problem — we need to know some composition law for the decoherence functional.

In the following we will use the sum-over-histories approach to quantize a particle-like theory
instead of the other candidate — generalized quantum mechanics — mainly because the problems
mentioned above. The price we are paying is that we do not have a clear definition of decoherent
histories, and we will have to supply it by more intuitive arguments. But we hope that this approach
gives us a better understanding of possible solutions of these problems.
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13 Particle in a curved space without boundary

Space of histories and action

In this chapter we shortly repeat the classical formulation of a particle-like theory and formulate the
quantum version of the theory using the sum-over-histories approach.

As usual in the sum-over-histories approach, the theory is characterized by a space of histories
and an action. An elementary history in our case is a trajectory — an imbedding X of a 1-
dimensional manifold N (called the inner space) with two one-point boundaries to a d-dimensional
target manifold M — and an inner space metric h on the inner manifold V.

X:N =N , heZIN . (13.1)

M is equipped with a target space metric g and scalar potential V.
In the Euclidian version of the theory h is positive definite; in the physical version it is negative
definite. For a non-relativistic particle g is positive definite; for a relativistic particle it is Lorentzian.
The Euclidian action'® is given by

IR N) = 5 [ (1% DEX DEX gap(X0) +VO) 0¥ (13.2)

N

Nl=

where h% is volume element associated with the inner metric h.

This is the simplest example of a o-model theory. In the general case the inner space N can have
a higher dimension. The case dimN = 2 leads to a string theory.

Clearly, the action is invariant under diffeomorphisms of the inner manifold N. For f €
Diff (N, N) we have

[X7h7 N] _> [X7FL7 N] )

f:NoN , X=X , h=fh , (13.3)

We can use this fact for a parametrization of the space of histories. Let N be a fixed “canonical”
copy of the inner space with a fixed coordinate 7 : N — (0,1). For any history [X,h, N] we can
always find an equivalent history [X,h, N] related by a diffecomorphism f : N — N and using a
diffeomorphism of N itself we can choose a history for which

=

hap = V272 denden 6 =vrdy , TER" (13.4)
where 7 is an inner length or inner time of the space N in the metric h which is diffeomorphism
invariant. v is a constant signature factor distinguishing Euclidian and physical versions of the
theory (see appendix D). In the former case v is real, in the later one it is imaginary. We use it
also to fix a proper numerical factor in the action in front of the kinetic term. We set v = m™ in
the case of nonrelativistic particle and v = 2 for relativistic particle in the Euclidian version of the

theory. In the physical version of the theory these values are multiplied by 4.
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Moreover, we can use for simplicity maps x, f

z:(0,1) - M , zhn=X ,

Fi00) - N, f)=f (135)

instead of the imbedding X and diffeomorphism f. The conditions above fix x, T, f uniquely, and
therefore a general history [ X, h, N] can be parametrized by z, , f.
The action in these variables has the form

1

I(ra)= T2, )= 5 / (%g’;%ﬁgaﬁ(x) + uTv(:c)) dy (13.6)

(0,1)

As we expected, it is independent of the diffeomorphism parameter f.

Amplitudes

The sum-over-histories approach to quantum theory is based on the notion of quantum amplitudes.
For a set of histories H we can define an amplitude A(H) by “summing” over amplitudes of elementary
histories in the set,

A(H) = / M(h) exp(—I(h)) . (13.7)
heH

Here 2 is a measure on the space of histories. We will assume that it has the same symmetry as
the action. It is well known that there are severe technical problems in defining such a measure, at
least in the case of Lorentzian theory, but we will ignore them now.

The quantum amplitude is not directly a physical measurable quantity. As we said, we need an
additional notion of distinguishable or decoherent histories to give a probabilistic interpretation to
the square of amplitudes. We expect that this notion has the same symmetry as the action and the
measure. This means that we will be always interested in amplitudes of sets of histories which are
invariant under the action of the diffeomorphism group. For such sets we can factorize the path
integral and eliminate the reference to the diffeomorphism:

A® = [ e(-1w) = [ D) exp(~1(h)) =

heH fEDIff
[h]eH/Diff (13.8)
= / mred([h]) exp(—[([h])) ’
[h]€H/Diff

where a reduced measure Mg = (M/D) [. D contains all factors given by change of variables
(Fadeev-Popov determinant) and an integral over symmetry orbits (here D is an invariant measure
on the diffeomorphism group). We assume such a normalization of 9t that 9M,..4 is “well” defined.
It, of course, implies some kind of regularization of the infinite normalization factors which we will
escape by a characterization of the measure 9.4 instead of the original measure. But see [23] for
a discussion of this question.

If we rewrite the last equation in variables h = [7, ] we get

A(H) = / M,ea(r, @) exp(~I(r,z)) . (13.9)
[r,®]€H
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Propagator

It is useful to compute an amplitude %K (7, z¢|z;) — called the propagator or heat kernel — for the
set of histories restricted only by positions of end points of the trajectory zr and z; in the target
manifold M and by fixing an inner time to a particular value 7:

%l(@;xdmﬁ - (/' MF (7, a1|2:)[z] exp(~I(r,z)) (13.10)

€T (z¢|zi)

where T (z¢|z;) is a set of trajectories x : (0,1) — M with (1) = 2 and x(0) = ;. Because the set
of histories [, T (z¢|zi)] = {7} x T (z¢|z;) is a lower dimensional subset of the space of all histories,
K (7, z¢|7;) is essentially an amplitude “density” on the space Rt x M x M of values [r,z¢, 7.
Therefore we have to expect that the restriction 9 (7, z¢|z;) of the measure 9.4 to the space
[, T (z¢]z;)], which we call the Feynman measure, depends on 7 and end points x¢ and z;; maybe
only in a “trivial” way. The factor n governs the signature of the spacetime metric!® (see appendix
D).
In other words, an amplitude density of an elementary history on the space [r, T (z¢|z;)] is

A(r,z) = ME (7, z¢|m:) [2] exp(—I(r,z)) . (13.11)

It is well known [7,8,14,24] that with the right choice of the measure 9 (7, z¢|z;) the propagator
satisfies the equation

—K(T)Z%FOK(T) , K(0)=g" | (13.12)

where F is a wave operator fixed by the action and the measure, G = g%é is as before a delta

. . . 1 . .
distribution on M normalized to the volume element gz. (See appendix A for more details on
notation.) In other words, K is the exponential of F

K(r) = exp (—%F) N (13.13)

We have not specified the “right choice” of the measure yet. As mentioned, it can be a very
problematic task from the pure mathematical point of view. Instead of trying to develop a measure
theory on infinite dimensional spaces for oscillatory integrals (where the main problem lies), we
take the usual approach of formal manipulations, and we define the measure by its decomposition
properties and approximation for small time intervals. The former is given in equation (13.19), and
the latter is given in equation (13.30).

The idea of the proof of the relations (13.12) is in proving key properties of the exponential,

K(rr)sGeK(n) = K(rr+1) (13.14)
@Kupg:g—%f+m#), (13.15)

where F = G o F is the quadratic form of the differential operator F.

Composition law

The first condition (13.14) is a composition law for the amplitude K. This law reflects the possibility
to decompose a history [r, ] into histories [11, x;] during an initial amount of inner time 7; and [7¢, ]
during a final amount of inner time 7¢. We say that a history [r, ] is given by joining of histories
[, z¢] and [1, x;] if

[r,x] = [t, z¢] © [11, =] iff
T +77Tf) o m(ﬂ) . (13.16)

T=m+7n , @(0)=xi(1) , =z =x( - .
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The actions of such histories are related by
I(r,z) = I(1, ) + I (73, 25) (13.17)

This induces a decomposition of the set of histories [r,T (zf|z;)] which defines the propagator
K (7, z¢|z;) to disjoint sets [7r, T (z¢|xo)] X [11, T (To|®i)]

[ T (aele)] = I, T (ailao)] x 1, T (wol2)] (13.18)

T EM
If the measures on these sets are related by
IME (7, e |;) [x] = MF (15, |20 ) [224] ng%(wo) ME (1, wo|zi) 5] (13.19)

for [r, ] = [, xr] © [1, ] it follows that

K (1, z¢la;) = / n smF(r, xe|xi) 2] exp(—I(T,w)) =
€T (z¢|zi)
= [ ete) [ no(ade)ad exp(-Im,20)-
zoEM GDfGT(If‘IO) (1320)
x / n M (11, zo|zi)[2i] exp(—I(m,x;)) =
2 €T (zo|zi)

= [K(m) «G o K(n)] (wt|as)

which is what we wanted to prove.

The condition (13.19) represents a reasonable assumption of the locality of the measure .
Together with the additivity of the action it reflects the rule (12.2) of the sum-over-histories approach
to quantum mechanics — that the amplitude of independent (here consequent) events is given by
multiplication of individual amplitudes. This condition is the first part of our definition of the
measure. Now we know how to construct the measure 9% (7) for some time 7 from measures
for shorter time intervals. To conclude the definition of the measure, we need to specify it for an
infinitesimally short inner time interval. This moves us to an investigation of the short time behavior
of the heat kernel.

Short time amplitude

Now we turn to prove equation (13.15). It can be found in the literature (e.g. [7,24]), but we present
it here to show how the measure is actually determined and how the operator F depends on this
choice.

As we said, we ignore technical difficulties in the definition of the path integral, and we assume
that this integral has most of the properties of a usual integral in a finite-dimensional manifold. This
allows us to find the short time behavior for the propagator.

First we write an expansion of the action for small 7

I(r,x) = L Iy(x)+ Io(z)+7hL(x)+... . (13.21)

T
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For the simplest action we are using we have

1

I(z) = &P gap(x)dy (13.22)
776<071>

I(z) =0 , (13.23)

Il(:c):g / Viz)dy . (13.24)
ne(0,1)

We assume that the measure is slowly changing in 7 compared to the leading term in the action.

The dominant contribution to the integral (13.10) comes from an extremum Z(z¢|z;) of the
leading term I_; in the exponent. But the extremum of the functional (13.22) is clearly a geodesic
of the metric g. We expand all expressions around this extremum

x = &(ze|lw;) +VTE (13.25)

where & is a tangent vector to the space T (z¢|z;) at the extremum Z(x¢|x;). We actually need to
specify what the addition in the last equation means. It will be done more carefully in a similar
situation in appendix F (see eq. (F.5)). But now we are interested more in a qualitative answer, so
we skip these details here. The expanded integral (13.10) has the structure

% K(r,z¢|z;) = exp(—[(:ﬁ(mdxi))) / MY, (1, z¢|z;) exp <—%§5 02T (x (¢ |7y)) - 53‘) x

€Tz T
x (1 + /7 (@°% terms) + T (2"~ terms) + .. ) .
(13.26)

Here MY, (7, z¢|z;) is a leading term in 7 and the #-expansion of the measure MY (7, z¢|x;) after
change of variables  — &. MY, is a constant measure on the vector space Tz, |z T (z¢|21) (a
tangent space to the space of trajectories T (x¢|x;)). The actual dependence on & is hidden in higher
terms of the #-expansion. As a leading term in the 7-expansion, 9%, depends on 7 in a trivial way
— it is proportional to a power of 7. Of course, this statement is formal — the exponent of 7 in
IMMF, is of the order of the dimension of the space ’i", which is infinite.

“Z-terms” in the last equation represents terms resulting from the expansion of the action and the
measure; Z°% or #°V°" suggest that # occurs in these terms in odd or even power. For convenience
we combined the term 71; into the prefactor despite the fact that it could be included among terms
proportional to 7.

The value vI_; (Z(z¢|z;)) is a well-known quantity called the world function, or half the squared
geodesic distance,

o(ze|m) = vI i (T (xf|;)) = % / Z(ze|mi) - g(x(z¢|m1)) - T (we|7i) dnp . (13.27)
(0,1)
We also use the notation
V(arler) = ~h(@(ardan)) = [ viaaln)an (13.28)

(0,1)

The integral (13.26) is a simple Gaussian integration. (In fact, one approach to defining infinite-
dimensional integrals is through the definition of a “Gaussian” measure which in our case would be
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me, exp(—% 021 1 - #)). The integration can be performed, at least formally, to give

1 1
nK(T ze|7i) = exp( — V—Tﬂ(l'f|l'1) - ?T (z¢|;))

.
« M, (7, x5 ) D ( xf'“")))_ (1+7()+.)

QWVT

(13.29)

[N

The terms proportional to /7 disappear during integration, thanks to the odd power of #. Coeffi-
cients in front of powers of 7 could be expressed in terms of variations of the action and the measure.
But because we did not specify the measure precisely yet, we can do it now by fixing this short time
amplitude. Le., we can define the measure M by choosing functions ag(z¢|z;) and o (z¢|z:) in a
slightly rearranged version of the last equation,

n 14

K(r,aln) = —— Aarla) (ao(orla) = 75 a1 arlar) + O(2) )

(2wvT)>2 (13.30)
exp (=0 (a|z) — L0 (arla) |
x exp | —— i) — = i )
P I/TU xr|T 5 Tf|T
where ag(z¢|z;) satisfies

ap(zlz) =1 . (13.31)

Here A(z¢|z;) is Van Vleck-Morette determinant (see (G.13)). This ansatz together with equation
(13.31) gives us a condition

[N

WF*(T,Z‘M‘) Det, (M>_ = # . (13‘32)

2mvT (27ry7') %

As we will see, this 7-dependence of the measure is necessary for further proof of equation (13.15),
and the particular choice a coincidence limit of the coefficient ay is needed for a proper normalization
n (13.12).

In the following we will prove that a form of the operator F in (13.15) depends only on the
coincidence limits of a; and the first two derivatives of ag. So we can ignore terms with higher
power of 7 in eq. (13.30). As discussed before, equations (13.15) together with composition law
(13.14) determines the propagator K, i.e. also all important information hidden in the measure 9t%".
This means that a knowledge of the mentioned coincidence limits concludes our definition of the
measure and path integral itself.

Let us note that this section is some kind of justification of the usual time-discretization of the
path integral and on a priori choice of the short time amplitude in the form (13.30). But in principle
it would be possible to define the measure M’ in some more compact way and compute exactly the
form of the functions ag and «; in terms of variation of the action and the measure. This would
be a hard task because variations of I 1 up to the fourth order are important for a;. Also some
kind of regularization would be needed because of the infinite dimension of the space of trajectories.
It probably does not make sense to attempt to do this before we have a better understanding of a
definition of the measure 9" in general.

As equation (13.32) suggests, the leading term 9", should be “almost” the same as Det(‘;{; )%,
and our guess is that the full measure has this structure but with some specific boundary conditions
needed for the definitions of §27_; and for the functional determinant Det which are different from
Dirichlet conditions used for these definitions in (13.29). The difference will cause the extra factor

(27v7) 2 A in our ansatz (13.30). But this is more-or-less a speculation at this moment.
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Short time behavior of the heat kernel

Now we continue with the proof of equation (13.15). We show that for small 7 the amplitude (13.30)
has the desired behavior in a distributional sense. Most of the technical work is done in appendix F
where it is shown that for small 7 the following expansion holds (equation (F.8))
n 1 1 1
[ @@t ) Alel) exp(--oel2) i) =
(2mvT)2 vT
z,2EM (1333)

:spogoz/)—rg(poﬁod){-(?(’fj) R

where ¢ and ¢ are smooth test functions and £ is the Laplace operator quadratic form

w-ﬁ-wz/g% (dg) - g - (dy) =
M 1 1 (13.34)
=~ [ato () = - [aho (V)

M M

Let us remember that now we are discussing the case of a manifold without boundary, and therefore
we do not have to worry about boundary conditions for the Laplace operator and integration by

parts.
Using this result it is easy to show that
(pogoK(T)ogo'(/) =
n 1 1 v
=7 / 8} (@) ()A(w]2) (ao(w]2) = 75 an a]2) + (%)) »
(27wvT)2 2

z,ze€M

o (= otels) — V) pl(e) =

= / (9l2) = 75L(1)) e@i(z) (ao(alz) = 75 ar(o]2)) »
z,2EM (13.35)
<exp (-5 V(l2)) (14 0() =
= peGetp—

— 75 0o (L4 (V) + (07 # [daudracld) + ([1]6) ) » 1~

- T% pe ((H'g_l -[dicv]) # G + G » ([dravo] gla))) o)+

+0()
where we used [V] =V and [ap] = 1. Here the [A] denotes a coincidence limit of a bitensor A, d,A
and d; A are derivatives with respect of the right and left arguments and the bi-distributions (fG),

d and d are defined as in (A.6), (A.7).
If the condition
[drag] = [d1ao] =0 (13.36)

is satisfied, we see that the propagator K(7) has really the form (13.15) with

F=L+V , (13.37)
V= (V4] + g # [diudema])G (13.38)
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I.e., F is a Laplace operator with a potential term which include the original potential V' from the
action and additional parts depending on the choice of the measure.
A common choice for aq is a power of the Van Vleck-Morette determinant

ag=AP (13.39)
which satisfies the condition (13.36). It leads to an additional part in the potential,

g [dyde, A7) = %’R , (13.40)

where R is a scalar curvature of the metric g.
The condition (13.36) is actually a consequence of (13.31) and an assumption of the symmetry
of (&%)
ap(z|z) = ap(z|z) . (13.41)

It is a natural assumption in the case when the theory is symmetric under trajectory reversal.
However this condition does not have to be satisfied if there is a preferred path direction as for
example in the case of interaction with an electromagnetic field. (In this case the operator F is
Laplace-like operator with the covariant derivative containing an EM vector potential and corrections
from a measure.) But we will not discuss such a situation, and in the following we will assume that
the conditions (13.41) and (13.36) are satisfied.

This concludes our proof of the relation (13.15). In summary, we have seen that for small 7 the
propagator K (7) has the behavior given by (13.15) where the operator F is the Laplace-like operator
associated with the metric g and is fixed by the action and the measure. If the measure is defined
using the decomposition property (13.14) and the short time amplitude (13.30), the operator F is
fixed by knowledge of the coincidence limits of «; and the first two derivatives of «y.

Interacting theory

Now we introduce an interacting theory — a many particle theory in which particles can be created
or annihilated and can interact with each other. This theory can be build from the free theory
using general ideas of the sum-over-histories approach to quantum mechanics as discussed in the
introduction of this part.

The space of histories of such an interacting theory is the set of an arbitrary number of copies
of one-particle free histories, endpoints of which can be glued in interaction vertices. An example of
an elementary history is shown in the figure 13.1. Next we have to specify the amplitude (density)
associated with such an elementary history. According to the general principle, the amplitude of a
history composed from several one-particle histories is given by a product of amplitudes of all these
histories. If interactions are present, the amplitude has to be additionally multiplied by amplitudes
associated with each interaction. Finally, the amplitude of a set of histories is, as usual, given by
the sum of amplitudes of elementary histories in the set.

The simplest interaction are sources (one-leg vertices — e.g. J-vertex in the figure) and a
potential interaction (two-leg vertices — e.g. V-vertex in the figure). Non-trivial interaction is
introduced using vertices of higher order.

In the next chapter we encounter also an interaction of particles with a boundary.

Dynamical origin of the potential

We have started with the action in the form (13.6) with a general potential V. But it is actually
possible to derive the form of this action using an action without a potential and an assumption of
a simple potential interaction.
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Figure 13.1: An example of the elementary history of the interacting theory.

The elementary history of the many particle interacting theory is formed by one-particle
histories which can be glued in interaction vertices. The simplest interaction are sources
— one-leg J-vertices in the figure — and a potential interaction — two-leg V-vertices in
the figure.

We start with a free particle with the action

(N T
@) = 5 [ 5 0" gapl@)dn (13.42)

(0,1)

and we assume that such particle can interact through an interaction which conserves the number
of particles, i.e., the interaction represented by a two-leg vertex. The amplitude associated with this
interaction can be generally a space-dependent function, more precisely a density, which we denote
—ng% V.

Thanks to the conservation of the number of particles through the interaction we can restrict
ourself again to the one-particle theory. An elementary history of such one-particle interacting theory
can be parametrized by its components between interactions, i.e.

h=[[rv,zn],...,[1,21], [0, @0] | where @(0) =z4_1(1) for k=1,...,N , (13.43)
or by joining these components to a single trajectory and specifying when the interactions occur

h= [[Tam]QﬂN,---ﬂh] ’ (1344)

where
l=ngnvp2npn=2---2m2n0=0 ,
T =T\ , M =Ner1—m for k=0,....,N

[7_7 112] = @ [Tkamk]

k=1,...,N

(13.45)

7 and x are called an inner time and a trajectory of the elementary history of the one-particle
interacting theory.

Now, let us compute the amplitude associated with a set of histories which includes all elementary
histories with common inner time 7 and trajectory & but with an arbitrary number of interaction.
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It is given by

( [T (-t v)@m) %dnk)>x
- k=1,...N
1308 220 20 (13.46)

X H Afree (Tka il!k)

k=0,....N

Here we used the fact that the amplitude of an elementary history is given by the product of
amplitudes of its free components and amplitudes of all interactions. And then we summed over all
possible numbers of interactions and all times when interactions occurred. We chose the measure
for summing over all possible times of interactions to be

v vT
—dr = — . 13.4
2d7’ 5 dn (13.47)

Next we substitute the free amplitude given by eq. (13.11) with the action e, use the additivity
of the action Itee(T, @) = > 4—o . n Ifree(Tk, Tk) and the composition law (13.19) for the measure
and relable times 7, in such way that we relax the condition 1 > ny > --- > m > 0, and we get

A(r,x) =

- = ( 11 (—VQ_T)V(w(nk))dnk> M (7, wrlws) ] exp(—Iivee(7, @) =

k=1,...,N

Il
N
2| 7s
i
\2
vl

vi@ydn )" ) M (e )] exp(~Tielr,2) =

= M (7, ) ;) 2] exp(—Ifree(T,m) _ % / V(x) dn) -
©.1)
= M (1, z¢|m)[2] exp(-I(r,2))
(13.48)

where I is given by eq. (13.6). This shows that the non-interacting theory with the action I is
equivalent to the simple interacting theory with the free action I in the sense that the amplitude
of an elementary history [r, 2] of the former theory is the same as the amplitude of the set of histories
of the latter theory composed of histories with common inner time 7 and trajectory .

Feynman Green Function

There are other amplitudes we can be interested in beside the heat kernel %K (). Especially for
the relativistic particle the inner time is physically undetectable and therefore any physical set of
histories will include elementary histories with all possible inner times. Therefore we are interested
in the amplitude LG (z¢|x;) associated with the set of histories restricted only by the initial and
final points x¢, z;. This amplitude is called the Feynman Green function. We can obtain it from the
propagator < K (7, 2¢|x;) by summing over all possible inner times 7 using the measure (13.47)'6

1 _r 1 v

- = | =K (r,zi|w) Zdr 13.4

nG (x¢|x) /n (r .’L'f|.’L')2dT (13.49)
R+

Using eq. (13.13) we immediately get that the Feynman Green function is the inverse of the wave
operator F,
GF(z|z) = F Yz|z) ie. FoeGF=45 . (13.50)
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Finally, let us note that we do not have an immediate generalization of the composition law for
the Feynman Green function similar to (13.14).

Boundary conditions

In this chapter we completely ignored the question of boundary conditions using as excuse that we are
working in a manifold without boundary. Certainly this is correct, if the manifold M is compact. But
it is also correct in the case of a non-compact manifold with a sufficiently “nice” metric ¢ at infinities.
In such cases there exists a canonical choice of boundary conditions for differential operators used
above, and these boundary conditions usually allow us to integrate by parts. Problem can arise for
the relativistic particle when the manifold M is Lorentzian and operators as £, F are hyperbolic. In
this case the choice of boundary conditions at the temporal infinities plays an important physical role,
and it is worth further investigation. First let us note that in a special situations (e.g. existence of
a time-like Killing vector in the distant past and future) a canonical choice of boundary conditions
still exists. But canonical here essentially means the most natural physical choice. In a general
spacetime we do not have this special choice, and we have to address the question of the boundary
conditions. To deal with this problem we will investigate our theory in a bounded domain 2 of the
manifold M in the next chapter.
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14 Particle in a curved space with boundary

General consideration

Now we want to generalize the theory described in the previous chapter to manifolds with boundaries.
Our goal is a better understanding of the physical meaning of boundary conditions for the differential
operators in the Schrodinger or Klein-Gordon equation. Therefore we restrict ourselves to a domain
Q in the manifold M which is bounded “in all physically interesting directions”. This means that
we will investigate the boundary conditions on boundaries which are not at infinity. But we allow
the domain © be unbounded if we know that its infinity is “safe”.

The main situation we have in the mind is the Lorentzian globally hyperbolic manifold with
asymptotically flat spatial infinity. In this case we can ignore spatial infinity because it makes
a sense to restrict ourselves to situations in which spacetime is “empty” sufficiently far in space
directions. (Let us note that in non-asymptotically flat space the notion “empty” may not have a
clear definition.) But because of the hyperbolic nature of the evolution equation we cannot ignore
boundary conditions in the time directions. They represent “initial” and “final” conditions of the
system. And we want to understand exactly this relationship.

Therefore in the case of a Lorentzian globally hyperbolic manifold, the typical choice of the
domain will be a sandwich domain between two Cauchy surfaces. Such a domain is unbounded in
spatial directions, but this “boundary in infinity” does not create important problems. Physically
interesting boundary conditions are in the time directions which we restrict by boundary Cauchy
surfaces.

Restriction to a domain — naive approach

Let us start with a straighforward restriction to a domain 2 in the target space M. We want
to compute an amplitude K,(7,z¢|z;) which corresponds to a set of histories with inner time T,
endpoints z;, ¢ and which wholly belong to the domain 2. We can repeat the derivation of the
short time amplitude (13.30), at least for x¢, x; sufficiently far from the boundary, because for small
7 only trajectories near to the geodesic between z¢ and z; contribute to the amplitude.

If we compute the asymptotic expansion of the short time amplitude (13.30) in the domain with
boundary, we find that there is a new term in the expansion. As can be seen in eq. (F.7), the
smoothed short time amplitude leads to a Gauss integration in a variable Z from a tangent space
at a point x, and in the case of a space without boundary the integration of odd powers of Z
disappears. But in the case of a domain with a boundary for a point x near the boundary the Gauss
integration is not always over the whole tangent space and therefore the integral of odd powers of
Z does not disappear. As shown in appendix F (equation (F.26)), the correct asymptotic expansion
of the leading term of the short time amplitude (equivalent of (13.33)) is given by'®

n 1 1
— / 02 (7)g2 (2)A(2]2) exp —;0($|2) p(x)Y(z) =
@mr)> Ly < ) (14.1)

— e <g n \/?(_%\/;)Q - rg? + O(T%)> o,

=
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where Q[0€)] is a delta bi-distribution localized on the boundary normalized to the boundary volume
element, q% understood as a distribution on spacetime,

so-Q-dJ:/smqu% , (14.2)

o

and L is a particular ordering of the Laplace operator given by

~y

2”:%( v 7). (14.3)

L+L
poLot= —/w(V%)g% : (14.4)
Q

Using this result it is easy to show that the expansion of the propagator K, is

G-KO(T)-G=Q+\F(—%\/;)Q — rg“f + O(r3) (14.5)

and F is a Laplace-like quadratic form with potential,
Wf:%(?—+7—‘):f+v : (14.6)
FT_oF_Tav . (14.7

The corrected potential ) is given again by the expression (13.38) and we have assumed the condition
(13.36) is satisfied.

We see that the expansion of the propagator has an additional term localized on the boundary 92
proportional to /7. This 7-dependence causes a problem because K,(0) is singular on the boundary.
An origin of the singular term on the boundary lies in our careless approximation of the propagator
by the short time amplitude (13.30). This approximation is correct only for endpoints sufficiently
far from the boundary. For points near the boundary we have to investigate the structure of the
propagator more thoroughly.

Boundary correction term

The short time amplitude (13.30) represents the dominant contribution to the heat kernel from
trajectories near the geodesic joining endpoints zr and z;. But in the case of a sum over trajectories
restricted to the domain ) there are other dominant terms given by contributions of trajectories
near extremal paths which reflect on the boundary.

In general we should take into account trajectories with an arbitrary number of reflections on
the boundary and compute the dominant contributions from all of them. However, for endpoints
sufficiently far from the boundary the contributions from the reflected paths are negligible compared
to the straight geodesic — for small 7 only short paths contribute to the sum (therefore the leading
term is non-trivial only for close endpoints), and any trajectory with a reflection on the boundary
is too long (see figure 14.1)

But for endpoints near to the boundary the contributions from the reflected trajectories can be
comparable with the leading term. For the endpoints near a smooth boundary there exists exactly
one extreme trajectory @y (z|z)) with one reflection which gives a contribution comparable to the
contribution from the straight geodesic &(z|z)) (see figure 14.1). Let us note that for boundary
with “corners” we would have other non-trivial terms corresponding to trajectories with multiple
reflections.



14 Particle in a curved space with boundary 113

Figure 14.1: Example of extremal trajectories.
Dominant terms to sum over trajectories are given by trajectories near to extreme tra-
jectories, possibly reflected from the boundary. If close endpoints are sufficiently far
from the boundary, the reflected geodesics are longer then the straight geodesic. If the
endpoints are near the boundary, there is a reflected geodesic with the length compara-
ble to the length of straight one. Near the corner there is more reflected geodesics with
comparable length.

Now we will write down conditions on the reflected extreme trajectory &y (z|z)). It is an ex-
tremum of the leading term of the action (13.22) with the additional condition that the trajectory
reflects on the boundary. Let’s denote the point of the reflection b(z|z) and the parameter for which
the reflection occurs A;(z|z) and its complement A\ (x|z)

b(z|2) = Zu(]2)|x, (2]2) € OR

14.8
1= N(z|2) + A (z]2) (148)
The extremum condition implies that the trajectory is a joining of two geodesics
[, b (2]2)] = [M(2|2)7, @(2]b(2|2))] © [Ac(2|2)T, 2(b(2|2)]2)] - (14.9)
Using additivity of the action we get the value of its leading term
def _ oi(zlz) | o:(z]2)
=vl_ = 14.10
ov(ele) ¥ vl @o(ele) = $O5 + TS (14.10)
where, following the convention (G.77),
o(z)|z) = o(zb(z|z)) , or(z|z) =o(b(z|z)]z) . (14.11)
The extremum requirement gives us conditions on b and A, A\,
Do (z[b(z]2)) | Do(b(z]2)|z)
+ =0 |, 14.12
N T nGl) .
g1 Oy
— = — 14.13
=% (14.13)
where D denotes the orthogonal projection of the gradient on the boundary
Daf=02dgf , 08 =08 —iPn, . (14.14)

See appendix G for more details and other quantities defined on the boundary.

Now we can estimate the contribution from the trajectories near to the reflected geodesic Zp(x|z)).
Using reasoning similar to that used for deriving (13.30), we can write an approximation of the short
time amplitude associated with the reflected geodesic as

- 1
Ky (1, z¢|z;) = ﬁAi P(ze|m;) B(T,wf|wi)exp(—;ab(wdwi)) , (14.15)
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where Ay, is Van Vleck-Morette determinant associated with the reflected geodesic (see (G.89)). The
coefficient f is an analog of the coefficients ag, a1, only in this case we have to expect an expansion
in powers of /T:

B(1,z|z) = Bo(|2) + VTR (z]2) + O(T) . (14.16)

As we will see, the right normalization relative to the leading term K, requires
Bolzlz) =1 . (14.17)

We did not bother to write down a potential term, because terms of order O(r) are negligible in the
approximation we need, as can be seen in the calculation in appendix F. We also already anticipated
an arbitrary power of the Van Vleck-Morette determinant, similarly to the choice (13.39).

Fixing this short time amplitude (i.e. specification of coefficients p and 3, or more precisely its
coincidence limits as we will see below) together with amplitude (13.30) concludes the definition of
the path integral in the domain with a smooth boundary.

Short time behavior of the heat kernel

Next we proceed to derive the short time behavior of the propagator. Again, the technical work is
done in appendix F, where it is shown that for small 7 we have the expansion (see eq. (F.46))

gO'g'Kb(T)OQOLZJ:

1/
:\/7_-E %@ogo@[)—
Y[§
vl

- . (14.18)
—7'5 5()0.(d.7‘d+d‘7:d)'¢_

- T% pe (%k + B—terms) Qetp+ O(T%)

The S-terms contains coincidence limits of the first two derivatives of the coefficient 8 on the bound-
ary, and the exact form can be found in (F.56). k is the trace of the external curvature (see equation
(G.50)). Here we already have used the normalization (14.17), otherwise the first term would contain
a coincidence limit [8p] on the boundary. Our normalization ensure that the /7 term in K}, cancels
exactly with such a term in K.

So, if we add both dominant terms we get

Ki(1) = Ko(1) + Kp(1) (14.19)
GeKi(r) oG =G —T5Fu+0(%) (14.20)
where F_ is the quadratic form of Laplace-like operator with the boundary conditions given by the

choice of 3 coefficients
Fok =Fd — Ok (14.21)

with Fy corresponding to the Dirichlet boundary condition (defined in (2.3)) with a potential term
in the form (13.38), and

e e 1
O % 1y 0 0% (%k + frtorms) Q. (14.22)

F .k identifies what kind of boundary conditions the propagator K satisfies. If we compare F. i
with the operator F, equation (3.61) gives us

d?:Nk = d?:d - ®k = Q- (E — 7"01( . gQ) - (14.23)



14 Particle in a curved space with boundary 115

We see that ~k-boundary conditions have the same generalized value as the Dirichlet boundary
conditions but different generalized momentum,

Lk=¢ , T =n-"0-g . (14.24)

Le., these boundary conditions have the structure k = kp. Equation (3.57) and the normalization
condition (3.15) give similar expressions for g, and m;:

=Tk (@ =0 0) , T =—Vukrg
Yok =7 — "0
dF = dFa +0O) . (14.26)

(14.25)

The short time behavior (14.20) together with the composition law again prove the heat equation
for the propagator:
. v
—G e Ki(r) =5
The solution of the heat equation is smooth for non-zero time 7. To see clearly what kind of boundary
conditions it satisfies, we write the heat equation in the following way

Fok ® Ki(7) (14.27)

—G e Ki(r) = g FoKi(r)+ g AF o Ki(7) (14.28)
The left-hand side is smooth, as well as the first term on the right-hand side. The second term is
localized on the boundary and therefore it has to vanish. So we find
dF ko Ki(r) = —dFre Ky =0  ie. @ o Ki(r) =0 (14.29)
or, in terms of value and momentum on the boundary,
(r—"0c-g) e Ki(1) =0 . (14.30)

Let us summarize. We have found that the propagator given by the sum of amplitudes over
histories in the domain Q with fixed endpoints and inner time 7 is a solution of the heat equation
with specific boundary conditions. The boundary conditions depend on the definition of the path
integral through the coincidence limits of derivatives of coefficients § in the short time amplitude
(14.15). In general, they are Robin-like conditions with a non-degenerate coefficient in front of
momentum.

Green function

In the case of a relativistic particle the inner time is an unphysical quantity, and all physically
distinguishable sets of histories should contain histories with all possible inner times. Therefore we
will compute the amplitude associated with the set of histories with fixed endpoints but without a
restriction on the inner time. As before, we will call this amplitude the Feynman Green function!®

1 1 v
EGNk(a?|z) = / ﬁKk(T,l‘|Z)§dT . (14.31)
TERT

The name is consistent with the usage in chapter 3 in the spirit of equation (3.71). Using the heat
equation and initial conditions for the heat kernel, the integration gives

FokoeGuk =96 (14.32)
and thanks to the boundary conditions for K we have
DyeG e J=0 for JeP . (14.33)

So, Gk is the inverse of F_x and restricted to smooth sources it satisfies the same boundary
conditions as the propagator K — it is an extension of the Feynman Green function.
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Amplitude of particles emitted by a source

Let us compute the amplitude Zlgl)(J ) of a set of histories which end at a given point z and are
emitted by a source described by a spacetime dependent amplitude!” nJ. We will call it the one-
particle amplitude. It is clearly given by

ZW() = Gore J = di(J) . (14.34)

It satisfies the same boundary conditions as the Feynman Green function.

We will interpret these boundary conditions as a consequence of the fact that we have not allowed
particles to start on the boundary. More precisely, we have allowed the smooth source to be non-zero
up to the boundary, but we have not allowed an emission of particles from the boundary comparable
to an emission from a finite volume.

We can ask why some particular boundary conditions means that no particles are emitted from
the boundary. What about different boundary conditions? Why is the choice of the conditions
above special? We are touching a question of what kind of particles we are dealing with. What
does it mean that no particles are emitted (or absorbed — for scalar particle the meanings are
interchangeable, if we do not distinguish initial and final parts of the boundary).

First we have to realize that the statement “no particles on the boundary” has to be interpreted as
a result of a measurement on the boundary. We have to arrange apparatuses on the whole boundary
which are sensitive to particles, and when all these devices measure no particle we can speak about
no emission or absorption. Clearly this is very complicated global measurement. It depends on an
exact arrangement of experimental devices on the whole boundary and on an interaction of particles
with devices. We have hidden this dependence in the definition of the path integral through the
non-specified S-terms. Therefore we see that we cannot expect a unique canonical meaning for
the statement “no particles on the boundary”. Only if we specify the kind of measurement we
are performing do we have a meaning for this statement. And information about experimental
devices can be phenomenologically characterized by the choice of boundary conditions of the type
we encountered above.

Emission from the boundary

Of course, we can ask what the amplitude is to find a particle at a point z if we allow an emission
from the boundary. Let us assume that the amplitude of the emission from the boundary is given by
a density nj € V[0Q] on the boundary manifold, which we call the boundary source. The amplitude

Z 151) (1;7) associated with the set of one-particle histories which are emitted by this boundary source
and end in time 7 at a point z, can be written using the boundary propagator K}

Z(r;4) = K(r)+j (14.35)

The boundary propagator propagates between points inside of the domain and boundary sources.
It has the character of a function on the domain 2 in the left argument and the function on the
boundary manifold 912 in the right argument.

Clearly, the boundary propagator satisfies a composition law similar to (13.14)

K1) = Ki(t —€) o Go K}l(e) . (14.36)
We can take a limit € — 0 and get

K{(r) = K(r) s Ky, (14.37)

K gerio) . (14.38)
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We see that the amplitude is given by the propagator Kj(7) with no emission from the boundary,

and by the boundary term K which “translates” between the space of sources on the boundary
and amplitudes in the domain. Similarly, if we sum over all possible inner times we get

ZM(j) =Gk o Kivj (14.39)

The boundary term K is a zero-time amplitude, so it is straightforward to estimate it. The
short time amplitude approximation similar to (13.30) for the boundary propagator is

peGe k()] =
= [ @@ Al e (-0l (1+ 0) =

(2mvT) oo vT
€00 (14.40)
/ o)) (1+0(/7) =

Therefore, for zero inner time we get
Ki=p . (14.41)

We have found that the emission from the boundary is equivalent to the emission of particles
inside of the domain but with a distributional source with support on the boundary

DI =jr@€edT ki C Tk - (14.42)

It is consistent with the fact that K is exponential and G . is the inverse of .. in the space :7~k,
so they can be coupled to such a source. We will use both representations of boundary sources 0.J
or j as will be convenient.

Thanks to the property (3.66) of the Green function, we find

Z\ ()= Gukogrj=Dnitei (14.43)
or )
ZMOT) =G eI =Gk dJ = (d]) for T €Tk . 14.44
k

Ie. the one-particle amplitude with sources only on the boundary is a solution of the free field
equation.

Allowing both boundary sources and sources inside of the domain, we find that the one-particle
amplitude is

ZW(J,00) = Gur o (J+0J) = (T +0JT) . (14.45)
It satisfies the full equation of motion in the form

Foxed(J+0J)=J+0J . (14.46)

We can represent boundary sources also in a different way — we can use the one-particle ampli-
tude near to the boundary to identify the boundary source. Substituting the decomposition of the

operator F_ i = .~7:i — d?:k into the field equation gives

0T = —dF e (T +0J) . (14.47)
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Therefore the restriction of the one-particle amplitude to the boundary phase space determines the
boundary source. Actually, only the projection to the subspace By is important for determination
of the boundary sources. It is consistent with what we said before — the part of the amplitude with
zero k-value originates from sources with no emission on the boundary. If we use the restriction
of the one-particle amplitude to the boundary phase space for the representation of the boundary
sources, we get

ZM(1,0¢) = GE o (J — dF i+ 0¢) = d(J,09) (14.48)
with ¢y introduced in eq. (9.23).
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15 Many-particle theory and transition
amplitudes

Multi-particle histories

Now we turn to the many-particle theory. We will investigate amplitudes of sets of multi-particle
histories, i.e. histories which are composed from elementary one-particle histories, perhaps inter-
acting. First we realize what consequences the rules (12.1) and (12.2) have for computations of
amplitudes in this case.

As we discussed in chapter 13, multi-particle histories can be represented by elementary one-
particle histories with endpoints possibly joined in interaction vertices. I.e. we can associate with
each multi-particle history a graph with vertices given by free endpoints and interactions, and lines
given by one-particle trajectories. We say that two histories have the same structure if they are
associated with the same graph. We can also speak about connected components of multi-particle
histories — subhistories with connected graphs.

Let’s assume that we have a set of multi-particle histories. We can divide it into disjunct subsets,
each of them which is composed of histories with the same structure. Rule (12.1) tells us that the
amplitude of the whole set is given by the sum of amplitudes of these subsets.

If the set of histories with the same structure is characterized only by fixing endpoints and
specifying interactions, we can always sum over all possible one-particle components with fixed
endpoints — which gives the propagator computed in the previous chapter — and after that multiply
these one-particle amplitudes by the amplitudes of interactions and sum over all possible connection
points of the interaction and the one-particle histories. This mean that the amplitude of the set
of histories of this type is given by product of amplitudes (propagators) corresponding to the lines
of the associated graph, and amplitudes of interactions corresponding to vertices, summed over all
possible connections of these lines and vertices at the end.

But this structure is in exact correspondence with the diagrammatic notation (see appendix I) for
the algebra of multi-argument functions and distributions which we use for writing down transition
amplitudes. Therefore it will be very useful to use this notation. Diagrams for the amplitudes which
we will use, will have two meanings. They first suggest an amplitude of which set of histories we
compute — the set of histories restricted only by the requirement that they are associated with
a given graph. But they also represent the exact expression for the amplitude in the sense of the
diagrammatic notation.

Before we define and compute some concrete multi-particle amplitudes, we make one more general
comment. Let us again assume that we have a set of histories H composed of all possible histories
with the same structure. IL.e., all have the same graph. Such a set of histories can be represented
as the Cartesian product H = H; x Hy x ... where each of set of subhistories Hy, Hs, ..., contains
all subhistories with the same connected graph and product is over all connected components of
the graph of the whole set H. Thanks to rule (12.2), the amplitude of each history is given by the
product of amplitudes of its connected components, and therefore the amplitude of the set H also
factorizes to the product

AH) =[] AMH) - (15.1)
k



15 Many-particle theory and transition amplitudes 120

Diagrammatic dictionary

As we said, it will be easier to remember the meaning of the amplitudes if we use a diagrammatic
notation for them. See appendix I for some details on diagrammatic notation in general. We can use
this notation because the multi-argument functions (and distributions) on the spacatime domain
can be understood as tensors from spaces ’Pi. Tensor indices are essentially arguments of these
functions, and contraction is the integration over the domain (or application of distributions on
test functions). The diagrammatic notation can be viewed as only a convenient representation of
such tensors. But it remains slightly a mystery that this representation is intuitively so close to the
interpretation of the theory.

So we represent amplitudes using diagrams. We enclose each diagram in a bounded area to
suggest the fact that we are working in a domain with boundary. Because we will not distinguish
initial and final boundaries, we use only one boundary in our diagrams, in contrast to chapters 8
and 9. The boundary of the diagrams will serve to emphasize that we work also with tensors which
have a distributional character with “the support of the tensor indices localized on the boundary”.
Usually, legs of diagrams representing such tensor indices will originate from the boundary of the
diagram, as e.g. in the case of boundary sources (15.3) below.

As before, we represents the smooth source J by the diagram

nJ D

ndJ o Q (15.3)

0J

: (15.2)

and boundary sources 9J by

where hatching labels the boundary phase space to which 8J belongs. If it cannot lead to confusion,
we use also elements of the boundary phase space for labeling of boundary sources as discussed at
the end of the previous chapter. But we have to be careful with this convention if we deal with
different boundary conditions, because in this case the same element of boundary phase space can
represent different boundary sources.

The propagator between two points computed in the last chapter will be represent as

1
—Gox o (15.4)
n

where again, hatching labels boundary conditions.
Next we introduce the simplest amplitude — the vacuum amplitude

A1(<0) “ & . (15.5)
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It is the amplitude that no particle is emitted or absorbed from any source inside or on the boundary
of the domain. It corresponds to multi-particle histories without endpoints. We do not compute
this amplitude in sum-over-histories formalism — it would need an additional discussion of the
path integral over closed paths (but see [23] for some details). The vacuum amplitude is usually a
prefactor of other amplitudes, and we can factor it out. We call amplitudes not including this global
prefactor relative amplitudes. But let us note that the vacuum amplitude has a physical meaning.
As we will see in the last chapter, it corresponds to the vacuum—vacuum amplitude of canonical
quantized scalar field theory.

If sources n.J inside of the domain are present, we denote the amplitude that no particle is
detected anywhere as

A0 e Q . (15.6)

More precisely this amplitude is associated with the set of multiple-particle histories which are com-
posed of arbitrary number of one-particle histories emitted and absorbed by the source nJ. The
corresponding graphs have the structure of all possible combinations of connected pieces which con-
tains the source, and vacuum amplitude. I.e., if we denote the relative connected vacuum amplitude
as

zZ0) o QD , (15.7)
we have

(D@ EE@

In other words

—~

15.8)

A9y = A9 exp (ZE’)) . (15.9)

Clearly, the only connected component which contains sources is

Similarly we define the vacuum amplitude in the presence of boundary sources

A9 00 , (15.11)
0.J
7000 . (15.12)

oJ
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The connected relative amplitudes are

a7 o7 a7

= @@@ + + . (15.13)

oJ

and again

0J

This means

A9 (7,07) = A9 exp (n%(J FOD Gl (T +0D) | (15.15)

Next we define amplitudes associated with the set of histories with given endpoints. I.e. the
corresponding set of histories contains multi-particle histories with given endpoints which can be
emitted from the source J. In general, for m endpoints we have amplitude Al({m)ml"'“’m (J) which are
represented by graphs with m free legs

Similarly, if the boundary sources are present
Am™gen e (15.17)

Relative connected amplitudes correspond to connected histories which contain a source or an end-
point. The notation is obvious, e.g.

zZM(1,07) & (15.18)

We have already encountered two examples of such amplitudes — the one-particle amplitude

zWg00) o = + . (15.19)

o.J 8.J
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and the propagator

ZAg00) o = . (15.20)

oJ

Finally, we define amplitudes associated with the set of histories for which a fixed number of
particles is additionally emitted from the boundary sources with prescribed source amplitudes,

0J1 0Jy  0J,
S

A, 0, OT(1,0T) : (15.21)

9.

and similarly for the relative connected amplitude.
All these amplitudes can be derived from the basic vacuum amplitude (15.15) by variation with
respect of sources nJ and ndJ. Specifically

w1 .
A™(],5) = n—md...dAlﬁ")(J,]) , (15.22)
Ay, (T, 5) = dieda jarda ... AT (T5) (15.23)

where d is the variation with respect to J and dp with respect to j. Therefore we will call the
vacuum amplitude the generating functional. The proof follows from the structure of amplitudes —
they are associated with set of histories composed of all possible connections of the given sources and
endpoints. But endpoints can be created by “tearing out” the source J. As discussed in appendix
I, this operation is essentially the variation with respect to J. Similarly for boundary sources. The
fact that A,((O) (J,0J) is the generating functional of other amplitudes can be also represented by the
identities

oJ

A\

oJ dJ dJ

aJ
Summarizing, we have introduced a number of physically interesting amplitudes which are deriv-

able from the vacuum amplitude (15.15), also called the generating functional. Similarly, we have a
generating functional for connected relative amplitudes

29(7,0j) = n%(J+6J) cGFe(J+0T) . (15.25)
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By varying this functional we get elementary connected amplitudes. As expected for the non-
interacting theory, there are only a few of them. Additionally to ZI((O) (J,0J) (eq. (15.13)), ZI((D (J,0J)
(eq. (15.19)), and Z\*(J,8.J) (eq. (15.20)), we have

0.1, dJy 911
oJ o.J
(15.26)
o, 0Js o0J; 0Js
\ S \ -
Aononson o @@ R
oJ

Interaction with the boundary

Now we return to investigate the meaning of boundary conditions on the propagator. We have
derived that the propagator is given by the Green function G.x and boundary sources live in
the space 0T i with k-boundary conditions given by (14.25). We said that the choice of these
boundary conditions is given by the particular choice of measurement devices on the boundary. But
we admitted that we could have different experimental apparatuses on the boundary, and they can
lead to different boundary conditions. Now we demonstrate this on the phenomenological level.

For simplicity of notation let’s assume we have made such a choice of experimental setup which
leads to Neumann boundary conditions!®, i.e. ©, = 0 in (14.21). Now we would like to investigate
some another experimental setup from this point of view. I.e. let us have some different set of
measurement devices which can be used for the definition of no emission from the boundary, one-
particle emission, etc.. But a different measurement of particles means a different interaction of
particles with apparatuses on the boundary. Therefore we have to expect that the new devices on
the boundary emit and absorb particles in our original sense, even if they themselves do not measure
any particles. Let us use this fact for the phenomenological description of the new experimental
devices — we characterize them by their interaction with our particles. We will investigate some of
the simplest examples of such interactions.

We have already discussed sources on the boundary — they correspond to emission by our original
devices from the boundary. To describe different devices we need to go behind the sources. The next
simplest choice is an interaction which can emit or absorb particles on the boundary in pairs. Le.
let us study the situation when we have additionally to sources n.J and ndJ also the possibility of
pair emission on the boundary described by an interaction vertex n©®g. In general, it is a symmetric
two-point distribution with arguments which have the character of boundary sources

®k =Q- "Hk LY2Z8 (1528)

If we allow some more complicated global measurements, it can even be non-local. We use the
following diagram for this interaction vertex

nOr o . (15.29)
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Now we want to know what description an observer who does not see this interaction has to use,
an observer who is using different experimental devices (which cause this interaction from our point
of view) for the definition of his notion of particles. We are looking for a description in which he has
only a free propagator (maybe different from ours) and sources as basic elements, which produce the
same amplitudes for the set of histories as our description (which includes additional interactions).
Of course, it is not clear that such a description exists.

But it does. We can give a prescription for the new propagator and show that the amplitudes
defined in the previous section computed using this new propagator are equivalent to the amplitudes
computed using our original propagator, including the additional interaction. L.e., a different mea-
surement of particles with no additional interaction is equivalent to our measurement of particles
with a possible interaction caused by another measurement process.

The new propagator must clearly contain the cumulative effect of an arbitrary number of inter-
actions with the boundary, i.e.

- 4 4 ... . (15.30)
%4
N S 4 4

This means
Guk=Gun+Gpno0reG o +Gon00eG 006Gy +---=
‘ _1 _1 ‘ 1 « § (15.31)
= (GNH - @k) = -7:~ )
where
Fork =Fon — O . (15.32)

So, the new propagator is again a Green function, but with different boundary conditions. Moreover,
thanks to (15.28), we have boundary conditions exactly of the kind obtained from the path integral
in the previous chapter (at least for local "0y).

The change of the propagator does not affect the source space — both the original and new
boundary conditions have the same space of boundary sources,

OT ok =0T on=0Tp . (15.33)

In diagrammatic notation this means

= . (15.34)

0. .
It is straightforward to see that in the description with the new propagator without an interaction

is equivalent to the description with the old propagator and the interaction. For example we have

a7 aJ a7 a7
g y/

+... . (15.35)




15 Many-particle theory and transition amplitudes 126

More non-trivial is the relation between vacuum amplitudes. If we define the relative connected
amplitude ZIE? as

(0)

Z\ =1n % o :
(15.36)
% ) & + w |
we have
= (15.37)

Comparing with (I1.9) we see that the right hand side is minus half of the trace of the logarithm of

the operator
O @ (15.38)

§—GonoOr=A_+ Dok —G neOr=A_ +D-(6y —7y"'+0) o=
=Ak+D vy vk

with .k given by relation (14.25). Here the first graph represents the delta distribution. Therefore,
exponentiating back to full amplitudes, we find

_ 1
2

= AD (detv Ayl 7) . (15.39)

1
2

A = 40 (detBn G o ka)

To recapitulate, we have found that the phenomenological description of different measurement
devices by pair creation on the boundary leads to the notion of particles with a different propagator
and the same boundary source space. The new propagator corresponds to different boundary con-
ditions. The new and old boundary conditions differ in their value space, but they have the same
momentum space.

Therefore conversely, we can use the boundary conditions k = kD for a phenomenological speci-
fication of the measurement devices on the boundary. We know that any such boundary conditions
can be realized by a suitable interaction localized on the boundary.

Interaction of boundary sources

Now we turn to a different possibility of changing the experimental setup. In the sense of our original
meaning of particles, the particles emitted from the boundary and absorbed again on the boundary
propagate only through the interior of the domain. This propagation is described by the propagator
G.n. But let us investigate a situation when we allow additional propagation between boundary
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sources caused by an additional experimental devices on the boundary. We would like to interpret
such a situation in a similar way as we did with pair creation in the previous section. I.e. we would
like to find a new propagator and new sources which give the same predictions for amplitudes as the
old propagator and sources in the presence of the additional propagation between boundary sources.

The additional propagation “inside boundary” does not affect any propagation inside the domain,
it affects only amplitudes which contains a propagation between two boundary sources, i.e. the
elementary amplitude now is

N
, (15.40)
0.J1 0.Ja 0.Ji 0.J2
where the additional propagator
1o > (15.41)
n- " )
is sensitive only to the boundary sources. Therefore it can be represented as
Ew =Gunem"0_ L emeGL, (15.42)
because for smooth .J
JeG pemr=0 . (15.43)
Diagrammatically
(15.44)
nms ’"G:i, T >
The additional propagation can be also written using quantities living on value space only,
jl pe = ° . jQ = j1 . 7"0:; . jg . (1545)

The definition of the new propagator is not so straightforward as it would seem. If we would
define the new propagator as G.., — =, it would correspond to the wave operator

(Gon—Zw) ' =Fon+ FonoCpoFon+FonoZp o FuneCy o Fn+ - =

= (15.46)

:‘7:'\'H+£'T9~n’ T
The associated boundary conditions have the same value space as n-boundary conditions but a
different momentum space. Therefore the boundary source spaces differ, and we need to find the
right correspondence between sources.
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This is possible to do, if we define the new propagator in a different way and rearrange all
amplitudes in specific way. The key observation is the identity

Gon—Zw =(0—Gunerm"0 ) vn)eGuwe(6—m+"0 L +meGon) (15.47)
where the new propagator is
Guw = (G2t —x+02) ex) ™" . (15.48)

Now, if we substitute for the term G .., — =, using this identity in any amplitude composed from the
old propagator %GNH, additional propagator —%En/, and sources, and absorb the term (§ — G., o
m+"0_L « 1) into the definition of sources, we get the desired result — the description with the new
propagator G, sources n.J inside the domain, and new boundary sources nd.J, , which predict the
same amplitudes as the old description.

First we find the boundary conditions of the new propagator. From the definition of the propa-
gator we get

Font =Fen—m"0 L o1, (15.49)

QFn = GFom =10, m = (om0 L) er (15.50)

n

I.e., the n’-boundary conditions have the same value space Py as Neumann boundary conditions
and different momentum space Pp . A calculation similar to the one in the case of k-boundary
condition gives
Qo = Yowt 2V (@ ="y )
Q=7 Ty =ve(e="0 1) (15.51)
Yo =Y =Y Oy
Next we can check what the new sources are. The sources inside of the domain do not change,

Je(0—Gupom+0 ) ) =J (15.52)
but boundary sources do change
OJpy = 0Jy e (5 —Gopems ’”03, 'E) =
=3JyeD-(@—"0_) 1) = (15.53)
=0Jue Dy vty

and we see that they belong to the boundary source space, which is consistent with the boundary
conditions of the propagator, R
0Jw € 0T e - (15.54)

Diagrammatically we can summarize

= , (15.55)

where

= - , (15.56)
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(15.57)
) ‘ + @ |
The last equality follows from
nmeGopemr=0 ; (15.58)
i.e., the new propagator is
Gow =G+ 2y (15.59)

instead of the first guess G, — =y -

We finally can conclude that the additional propagation between boundary sources from the
point of view of the original experimental setup can be interpreted as no additional propagation
in the new description which uses the new propagator and different sources. The new description
corresponds to boundary conditions n’ = ~Np'. This means that we have the same notion of no-
particle emission (the value spaces do not change), but we have a different description of boundary
sources and different propagators.

Note that the one-particle amplitudes computed from the sources 8.,y and 9.J, related by relation
(15.53) are the same,

Z\0(7,00,) = 2 (J,07,) . (15.60)

Therefore, in comparing amplitudes for these two different boundary conditions, it will be useful to
represent the boundary sources by one-particle amplitudes restricted to the boundary phase space

as we discussed in the previous chapter. This is so, because if we compute generalized sources from
J € P and 0¢ € B as

J+0Jy = Tw(J,00) , J+0Jy=Tu(J,00) , (15.61)

0Jy and 0.J, are related by (15.53).
Finally we compare the generating functionals. Substituting into (15.15), we get

1
A (1,09) = exp(—ng 0p e -0} - m e 00) AP (1,09) (15.62)
what is exactly what we have expected — an additional propagation between boundary sources.

Other boundary conditions

In the previous two sections we have interpreted the boundary conditions of the type n’ = N0’ and
k = kD as introducing some additional interaction on the boundary in the original setup (which we
have chosen to be given by Neumann boundary conditions n = np). Clearly, a combination of these
two methods subsequently can interpret any boundary conditions b = kp'.

This means that the theory in which amplitudes are computed using the propagator %GNb and
sources nJ € P and 8J., € 8F 1, for b-boundary conditions can be interpreted as the theory where
amplitudes are computed using the propagator %GNk obtained from the path integral, translated
sources n.J and 8.7 k, and additional pair creation on the boundary, and an additional propagation
between boundary sources. These can be understood as an influence of some more complicated
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experimental devices on the boundary than was originally assumed in the definition of the path
integral. I.e., the theory based on any boundary conditions can be interpreted in the sum-over-
histories framework.

In closing, let us comment on the case of complex boundary conditions. It seems that there should
be no problem to choose such additional interactions and propagation that we could reach complex
boundary conditions. But in this case it is necessary to choose both kinds of discussed interaction
simultaneously, because for complex boundary conditions the value and momentum spaces are not
independent. It would be worth investigating the relation to complex boundary conditions in more
detail to clarify all possible problems which could be hidden here.
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16 Comparison with scalar field theory

Translation between theories

Finally we can compare the sum-over-histories quantization of relativistic particle theory (RPT)
with scalar field theory (SFT). These two theories start from completely different backgrounds, and
it seems they deal with completely different objects. But we can make a translation of some notions
in these theories which allow us to compare the amplitudes computed in these theories, and we find
that these amplitudes coincide.

After a detailed study of particle aspects in both theories the translation dictionary is obvious.
We will identify the spacetime, identify external sources .J, and identify the spacetime potential
VG of SFT with the corrected potential V (eq. (13.38)) of the RPT. Next we identify the pseudo-
particles in the SFT and particles emitted from the boundary in RPT, both corresponding to the
same boundary conditions. By pseudo-particles associated with b-boundary conditions we means
states

cp[u]™|b : 0) (16.1)

with a set of modes u = {ux;k € Z} in boundary phase space, and a multiindex® m.

This means that we can speak in both theories about transition amplitudes between specified
particle modes on the boundary — in the case of SF'T modes they label pseudo-particle states, in
the case of RPT they label boundary sources.

Transition amplitudes

Now we are prepared to compare the physical predictions of both theories — transition amplitudes.
We claim that both theories give the same predictions. Specifically the following amplitudes coincide

& (physlesu]™b:0) = AV m x u](J) . (16.2)

Here we have represented boundary sources of RPT by one-particle amplitudes given by modes
m x u. We can even write a more general relation

m Xu

& (physlesu™|b: 06) = A [m x u](J,04) . (16.3)

N

A
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All these identities follows from the equivalence of generating functionals

(phys|b : 0¢) = AL (J,0¢) =
=0 exp(n% TIb(J,00) ¢ Gp o Tn(J,00))

oo
For the SFT it is given by equation (11.50), for RPT by equation (15.15), and we have identified

op=A (16.5)

To conclude the proof of (16.2) and (16.3) we note that in both theories these multi-particle
amplitudes are obtained from the generating functional in an identical way — by variation with
respect to the argument which describes the particle mode in SFT or the boundary source in RPT.

Let us note that the equivalence is true for the physical signature of the spacetime metric n = i.
For Euclidian signature n = 1 we would need to choose /i = i in equation (11.50). But for imaginary
h the canonical quantization is not consistent. As we have discussed in chapter 5, this is connected
with application of usual the quantization procedure on Euclidian theory. We have already suggested
it could be solved by generalization of quantization scheme which would employ the quantization
rule (10.22).

It seems plausible that a similar correspondence holds for the particle notion of SFT based on
complex boundary conditions (usual particle states which form a Fock base) and particles in RPT
defined by the same boundary conditions. But as we said in the previous chapter, particles in RPT
corresponding to complex boundary conditions need further investigation.

Summary

We have found that SFT and RPT theories are equivalent on the level of transition amplitudes.
The bridge between the two theories is the notion of particles. In both theories we can formulate
experimental statements of the type “particles are emitted or absorbed from the boundary in given
modes”. Amplitudes predicted for such experimental statements computed in both theories coincide.
In the SFT particle modes are realized by pseudo-particle states associated with a real boundary
conditions, in the RPT particle modes represent boundary sources. Boundary conditions are phe-
nomenological descriptions of the measurement setup on the boundary used for the definitions of
the particles.
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Recapitulation

The main goal of this work was to compare two quantum theories of a relativistic particle — the
usual scalar field theory and the sum-over-histories quantization. It was accomplished in two steps.
In the first three parts we investigated scalar field theory (SFT) and in the last part we quantized
the sigma model action of a relativistic particle using the sum-over-histories approach.

First, we have looked at the classical level of SFT with special attention to the restriction
of the theory to a bounded domain. We have introduced the notion of a boundary phase space
which carries information about the value and momentum on the whole boundary with a natural
symplectic structure derivable from the action. We have classified a wide class of boundary conditions
which depend linearly on the value and momentum on the boundary of the domain. The boundary
conditions were characterized using a subspace of the boundary phase space. We have studied the
wave operator and its inverse — Green functions — for different boundary conditions, especially their
extension on the space of generalized sources with distributional terms localized on the boundary.
Finally we have studied the necessity of the causal structure for the theory, and we showed that it is
not needed for structures on the boundary phase space but is needed for the definition of covariant
and canonical phase spaces.

The content of the first part is mainly a review of the known classical formalism but some new
ideas were used. The definition of the boundary phase space and the covariant phase space and
the derivation of their symplectic structures from the action is new. Also the classification of the
boundary conditions using a distributional representation of the wave operator is a slightly different
approach from the one usually taken in mathematics.

The second part has been devoted to canonical quantization of SFT. The quantum Hilbert
space of a free scalar field has been built using Fock quantization based on a choice of a particle
interpretation — a generalized positive—negative frequency splitting. The classification of all possible
particle interpretations has been done using a complex structure on the covariant phase space. The
association with boundary conditions has been studied. It has been also shown that the condition
of diagonalization of the Hamiltonian picks up a unique particle interpretation. This material is
mainly a reformulation of known facts using the formalism based on the covariant phase space. But
the explicit form of the dependence on the boundary conditions cannot be found elsewhere, to the
author’s knowledge.

Beside the particle representation, the holomorphic representation (the representation using co-
herent states) has been introduced. The formalism of covariantly labeled coherent states has been
built. This formulation is original but is mostly equivalent to the usual coherent states defined using
some special choice of value and momentum spaces.

Next, the relation between two particle interpretations has been studied. The covariant form of
Bogoljubov coefficients has been defined, and the S-matrix has been computed. The in-out holomor-
phic representation has been introduced, and the generating functional for transition amplitudes has
been found. It has been also shown that initial and final particle interpretations can be found from
the knowledge of in-out Hadamard Green function. The covariant definition of the Bogoljubov op-
erator is original, as well as the derivation of a number of properties of in-out Green functions (e.g.,
the composition law for Green functions, etc.), and the covariant form of the transition amplitude
between coherent states.

Finally, the canonical formalism has been generalized to the case with non-zero external source.

In the third part we have introduced boundary quantum mechanics. It is essentially quantization
of the boundary phase space. An advantage of this approach is that one does not need a causal
structure. It treats the initial and final boundary of the investigated domain in a unique way, which
simplifies the formalism, and it opens doors to a connection with the path integral formulation and
the quantization of the Euclidian form of the theory.

We have generalized the value, particle and holomorphic representations to boundary quantum
mechanics and have found a clear connection with boundary conditions of the wave operator. Finally
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we have found the transition amplitudes in this formalism.

The material of this part is entirely new. But the idea of treating initial and final states on the
same level, but developed in different manner, can be found, for example in [25].

Simultaneously with the study of scalar field theory we investigated similar approaches on a
general level. In chapter 1 we have built the full classical formalism for a very wide class of theories,
defined boundary, covariant and canonical phase spaces and studied their relation. In chapter 5 we
have studied canonical quantization of phase space with a cotangent bundle structure. It is essentially
a generalization of the usual quantum mechanics to the case of a general curved configuration space.
The covariant formulation of this material is original. In chapter 10 we have formulated the boundary
quantum mechanics on a general level.

In the last part we have turned to investigate the sum-over-histories approach to the quantization
of a relativistic particle. In chapter 12 the general ideas of this approach have been reviewed as well
as the relation to generalized quantum mechanics. Some advantages and disadvantages of both
methods have been discussed.

Applying the general method to the particle theory, we have computed the propagator for such a
theory. The computation in spacetime without boundary is mostly a review of known material, but
the generalization to a domain with boundary is new. Appendix F contains most of the technically
non-trivial original computation.

Next, we have derived transition amplitudes for the multi-particle theory with sources of particles
localized on the boundary. We have studied the influence of boundary conditions and interpreted
different boundary conditions using phenomenological descriptions of a measurement process on the
boundary. These ideas are original.

Finally we have compared scalar field theory and relativistic particle theory quantized using
the sum-over-histories approach. We have shown that both theories are equivalent at the level of
transition amplitudes. This comparison clarifies the relation of both theories, the nature of which
was not completely clear before (see [21]). This is also a main result of this work.
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work.

Open problems

Despite the fact that we have tried to cover thoroughly the investigated area, some open problems
remain. Now we would like to mention some of them.

Both scalar field theory and quantization of a relativistic particle were studied in the absence
of self-interaction. The generalization to the interacting theory would be desirable. The methods
for such generalization are well known. In the case of SFT theory it is perturbation theory and
in the case of RPT we have to add interaction vertices in calculations of multi-particle transition
amplitudes. Most of the discussion about definitions of the boundary states and the boundary
sources remains the same as in the non-interacting case.

In the third part we have encountered the problem of quantization of the Euclidian version of
the theory. We have suggested that the “right” quantization should be based on a realization of
the quantization rule (10.22) for commutation relations on a (real) Hilbert space. This idea needs
further development.

It would be also worthwhile to investigate more thoroughly the dynamical equation of boundary
quantum mechanics and to find its more explicit form on a general level.

Another interesting question is the relation of boundary quantum mechanics for different do-
mains. It should be possible to develop a formalism which relates boundary quantum mechanics of
the domain composed of two subdomains with boundary quantum mechanics of both subdomains.
Some kind of infinitesimal foliation of the spacetime to small domains and boundary quantum me-
chanics on these small domains could lead to an interesting relation with the path integral over field
configurations.

As discussed in the overview of the sum-over-histories approach to quantum mechanics and its
relation to generalized quantum mechanics, the notion of the decoherence functional needs further
investigation of its dependence on the spacetime domain. The lack of this knowledge is a main
disadvantage of generalized boundary mechanics compared with the sum-over-histories approach,
although otherwise generalized quantum mechanics seems to be the best foundation for consistent
formulation of quantum mechanics.

We have devoted part of chapter 13 to gathering properties of the path-integral measure. But
the definition of this object needs further clarification which would open the way for a more com-
plete derivation of the amplitudes, particularly of the propagators. More explicit knowledge of the
dependence of the measure on the choice of the spacetime domain would be also desirable.

In chapter 15 we have studied the interaction of particles with devices on the boundary of the
domain described in a phenomenological way, using a new interaction vertex or a new propagation on
the boundary. It would be very instructive to have an explicit realization of such interactions on the
boundary. Such realization would give a more clear physical interpretation for different boundary
conditions and the notion of particles itself.

Particularly a further investigation of interactions leading to complex boundary conditions would
be very useful, because the usual particle states of scalar field theory are associated precisely with
such boundary conditions.
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A Notation

Vector spaces

We often encounter vector spaces and tensor algebras over them. If V' is a vector space we denote
its dual as V*. Then we can form the tensor space V}¥

Vi=VeVve.. VeVie.. . (A1)
k l

We use abstract indices to denote a tensor structure of objects from these spaces (see e.g. [27]).
They tell from which space the object is, and allow us to write down a contraction in the tensor
algebra by the usual repetition of the indices. We use bold letters for the abstract indices.

Of course, abstract indices are a generalization of coordinate indices and in most cases could
be understood as such. But it is a question of a personal taste to distinguish covariant notions
independent of the choice of a base, and the representation in a particular base. Therefore we
distinguish tensors with abstract indices from their coordinate representation. We use normal letters
for coordinate indices (but you can hardly find them here). L.e. choosing a base e? and dual base
€,a=1,2,... we can write

aias... __ a1a... al as b1 b2
Able___ —Ab1b2___ €1 Can v vv Ep €po et (A2)
a1as2... __ A@1@3... a1 .4 b b> )
Aplpr = Al €gi€ay - €y €pn -

Here Ap'p> is a tensor object and Ay';”" is a bunch of numbers depending on the base.

Because it can be tiresome to write always indices (but it is sometimes inescapable), we drop
them if it is clear what structure the object has. (In fact, we view the abstract indices as some
kind of “dress” for the object serving for the denotation of tensor operations.) We also use an
alternative notation for contraction using an infix operator dot (we use different dots for different
spaces). The usage of the dot copies the index notation. It can be sometimes a bit tricky, especially
when multiplying operators — i.e contracting tensors from Vi'. To clarify our convention we give
an example. Let A, B € V! and k € V). Now we can can write

Bk k™" -A=A.B  because  BJl'kmpk~'P"A) = AYBP (A.3)
Or
B-A-k=(A-B)-k because Bl AT kb = (A-B) 0 kmpy (A.4)

where (A-B)g = AgB,’:. Le. the order of multiplication of operators is given by the tensor structure
of surrounding contracting objects. If there is no surrounding object which would determine an
order of multiplication, the usual left to right order is used. See also note 5 for other examples.

Tensor bundles

We denote by E M a fiber bundle over base manifold M with standard fiber E, and by E, M the
fiber at point x. If E is a vector space, Ef M denotes a fiber bundle with standard fiber the tensor
space E;“ Sect E M denotes the space of sections of the bundle.
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In particular we use the following fiber bundles: RM and CM are trivial bundles of real and
complex numbers over M, § M is the space of the sections of either of them (i.e. the space of
functions on the manifold M). R* M and C* M are bundles of densities® of weight & on M and
F* M is the space of their sections. If the weight « is omitted, & = 1 is assumed. T M denotes
the tangent vector bundle, T* M = T9 M the bundle of tangent covectors and TF M is the space of
sections of the tangent tensor bundle TF M.

Functional spaces

We often work with spaces of functions over a manifold (for example P or V[X]) and we deal with
them almost as with finite-dimensional spaces. It is, of course, dangerous — in the case of infinite-
dimensional spaces attention has to be paid to the topology. There are two main methods which
are used for handling this problem (not necessarily contradictory) — to work with distributional
spaces, or to work with Hilbert spaces. See, for example, [28-30]. We use mainly the first method.
It forces us to be careful with the notion of the dual space. The problem (or an advantage?) is that
the functional dual to the space of test (sufficiently nice) functions is a bigger space which contains
singular functions — distributions. (The advantage of the Hilbert space approach is that the dual
space of a Hilbert space has “the same size”, similarly to finite-dimensional vector spaces.)

Therefore for vector functions on a manifold M we introduce an additional notation. Let & =
Sect E M be the space of test sections of a vector bundle on the manifold M. We denote by
€ = Sect E* M = Sect (]R ® E*) M the space of test densities with the dual vector structure (i.e., if
elements of E M are vectors, elements of E* M are covectors, etc.). The space of vector distributions
than is & = & — the functional dual to the space €. The space of test vector functions can be
identified as subspace of distributions €& C €. Let us also note that we will use the word smooth in
the sense of smoothness of manifold dependence, not in the sense of topology of functional spaces.

In chapter 1 we speak about the space of histories H which can be represented as sections of
a fiber bundle H = Sect HM (it is not necessarily a vector bundle). We represent its tangent
fiber® Ty H as ThH = (Th H) M and by distributions (T}, H)' we mean a functional dual to
Th) H = (Tu) H) M following the definition above.

The space of test functions is always the space of infinitely differentiable functions with a compact
support. But in the case of a manifold with boundary we have to identify the space of test functions
more precisely. We define it as the space of functions with compact support which have all derivatives
bounded up to the boundary. Let us note that there is another possibility for the choice of the space
of test functions (see e.g. [30]), which requires compact support inside the interior of the manifold
(and a carefully chosen topology). These two definitions differ in the notion of distributions on
the boundary. Our choice allows us to identify distributions on the domain {2 with a subspace of
distributions on the surrounding manifold M with support on (.

Finally, we use abstract indices notation also for functional spaces. The vector index here rep-
resents a cumulative index for local vector indices and manifold dependence. The contraction can
have different meanings in this case — it can be an integration of test functions or an application
of a distribution on a test function. It has always to be checked that we do not attempt to contract
two distributions that are too singular. They have to be sufficiently smooth that the operation is
well-defined.

Differential operators and quadratic forms

First we note that a volume element g% on spacetime defines a bi-distribution G — a delta function
normalized to the volume element — as

G=g's . peGeu=[ovat | (A5)
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For a smooth function f we can define the distribution fG
oo 19w = [ ot rov . (A6)

It is often convenient to represent differential operators on the manifold M as bi-distributions.
We use arrows « and ~ to indicate direction of derivatives. So, for example,

“~n

Pe (daao‘) cw=we (aaga) o) = /w a®da (A.7)

for a test function 1, a test density w, and a vector field a.
In general, if D is a differential operator and D its distributional representation, we can define a
distribution fD for sufficiently smooth f as

wo(fﬁ).¢:i/uJ(D¢) . (A.8)

For second order operators we will mostly use an associated quadratic form (in the presence of
a volume element). For an operator A represented by bi-distribution A we define

We also write )
A=3 (A+A) (A.10)

and

DA9] = X[Q] A - Ax[Q]

00400+ v = [ (o (A0) ~ ¥ (Ap) g (A1)
Q

Here x[?] is the characteristic function of the domain Q defined below. 0.A[0€)] is the distribution
localized on the boundary.

Delta distributions localized on a submanifold

We define the characteristic function of a domain Q as

1 on(
Q] = ’ A.12
X9 {0 outside of 0 . ( )

The delta function localized on the boundary of the domain € can be defined as a gradient of
the characteristic function
5[00] = dax[Q] . (A.13)

It is possible to generalize this distribution to any oriented hypersurface . We will say that a
non-tangent non-degenerate vector on ¥ has a direction in the sense of the hypersurface if

5:[5] & 5 64 2] (A.14)

is a positive delta function on the hypersurface. From this definition it follows that we have chosen
the inside orientation for a hypersurface 92 given as the boundary of the domain €.
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Lorentzian signature convention

Here we list the conventions for spacetime quantities in the physical (Lorentzian) version of the
theory. See appendix D for the case of Euclidian theory.

In general, we use the MTW sign convention ([2]) with the possible exception of the definition of
the extrinsic curvature where the sign depends on the orientation of the hypersurface. Specifically

Jap = —Nanlg +Gap , ¢ positive definite
Vg=0 ,

Raﬁ”ua” = V[ana” ,

Ricag = Ruats

A15
R=Ricap g'*? , (4.15)
K[¥]ap = 0505 Vun, ,  nhas the orientation of the hypersurface ¥,
ko] = K[X]ap g P
08 =08 —iiPn, , fA* = —n,gtH
For two connections V, V we write
V=vel iff Vua*=Vua*+IT5ad" . (A.16)
It induces the relation for derivatives of a tensor density A € ‘f“f M
Vy A = Vy A+ T AR+ T g AR — - — ol AR (A.17)

Abstract indices dictionary

Here we list what abstract indices and contraction operators we are using for different spaces.

space indices dot description
tangent spaces of spacetime (inner manifold in the
T M a,B,. .. . first three parts and target manifold in the last
part)
tangent spaces of a part of boundary manifold (a
T
hypersurface)
TN a,b,... tangent spaces of inner manifold in the last part
TH . tangent spaces of the space of histories in chapters
By 1,2 and 10
TV[S] N . tangent spaces of the value space in chapters 1, 2
A and 10
TB[Y] R tangent spaces of the boundary or canonical phase
AoBoees space in chapters 1, 2 and 10
TS . tangent spaces of the covariant phase space in
A8 chapters 1, 2 and 10
P z,y,. .. . space of scalar field histories
VX Xy ¥y one . space of values of scalar field on hypersurface ¥
B[Y] AyBy ... o boundary or canonical phase space of scalar field

S A, B, ... ° covariant phase space of scalar field
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B Symplectic geometry

The phase space is a manifold G of even dimension 2n with a symplectic form @ which satisfies

T =-T , Tewng ,
w is non-degenerate (B.1)
W s closed (i.e. dW =0)
We can invert it .
W oW = —5g (B.2)

and define a canonical vector field associated with a function H on G
Xy =(dH) oW . (B.3)

This canonical vector field generates a canonical transformation on G which does not change the
symplectic structure:

Lx, W =0 . (B.4)
We can define Poisson brackets of functions on G as
{A,BY=X,0dB=X40%W 0Xp=(d4d)o W  o(dB) . (B.5)
We have
d , def

B = ‘CXHB: {H)B} )
[XAyXB] :X{A7B} )

—~
oo}
D

~

dt

where [,] are Lie brackets on vector fields. The symplectic structure also induces the measure on G

dl' = (2m) alw/\w/\---Awl:(Det%) . (B.8)
n times
Finally, if we choose coordinates (z®,p,) for a = 1,...,n such that
W =dp, Adz™ (B.9)
we get
{z% pp} = =05 (B.10)

and (z%,p,) are canonical coordinates.
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C Tangent and cotangent bundle geometry

In this appendix we discuss the geometry of tangent bundles to some manifold V. We define
“partial derivatives” of observables on these spaces in a covariant way. We also show that the
cotangent bundle has the structure of a symplectic manifold. We will use a,b,... as indices for
tensors on the manifold V and the dot « for contraction of this type, and a,s,... as indices for
tensors from tangent spaces to the cotangent bundle G = T* V.

Functions such as the Lagrangian L(z,v) or the Hamiltonian H (z,p), respectively, are functions
on the tangent or cotangent bundle, respectively, of a configuration space V. Because velocities v
(or momenta p) are vectors (covectors) from different fibers for different position « (T, V # T,V
for © # y), we have to be a bit careful to use a partial derivative with respect of the position z.
There is no problem with the definition

oL o OL _d
%(m,v) : ov %(w,v) = ;L(m,v + €dv)]|c=0 (C.1)

— a derivative with constant © — but to define the derivative with constant v we need a connection

VonV

aVnl
ox

vaaxL (:17,1)) = iL(m + €6w,ve)|e:0 ) (02)

(z,v) : ox %

where v, is the parallel transport of v in §z direction in the sense of the connection V (i.e. %ve =0).
Similarly, for a function on the cotangent bundle,

oOH o0H d

~—(z,p) : 0pnp—(2,p) = —H(x,p+ €dp)|e=0

Opa Opn de (03)
VaH , WVaH, o d

5 (z,p) : ox 5 (z,p) = deH(:U + 0z, pe)|e=o0

where again ¥-p, = 0.
We will see that the cotangent bundle G = T* V has the structure of a phase space. Therefore
it is useful to define a covariant generalization of “coordinate” vector fields and forms

o o OH
a vector field on G for which —dH=— ,
Opa Opa Opa (C.4)
A A H
& a vector field on G for which &dAH = Va
oz oz oz
8% is actually the natural identification of the vector space T% V with its tangent space T(T% V)

and % is the horizontal shift of the connection V. Dual forms to these vector fields

Dax differential of the bundle projection z: TV-oV, pl. >z, (.5)
VaDa ) .
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are defined by

N o A am

—2 Dbz =67 a =0 =2 =0 DPz =0
or N T a apb va a oz Vpr ) apa N ’
A (C.6)
vl’l n aA A
%Dax'i' a—panpn = 63
Now we can write down the canonical cotangent bundle symplectic form
(ZJ)AB = Vapa A D:CU = Vapa D§€U - D:ZL' Vspa (07)
A B A B
oprlas O Ve Vad (C.8)
Opn Ox or Opn
and we can even explicitly write the symplectic potential
Was =dpbs , Oy =paDPz . (C.9)
Canonical vector fields and Poisson brackets are
OF V, Vu,F 0
Xp=7r——7—— — C.10
F Opn Ox o0t Opn ( )
0A V,B V,A OB
ABl= ——7F7"—— —— C.11
{4, B} Opn Oz 0z Opn ( )
If we change the connection to another one,
V=vVaorl ,
< b b b = (C.12)
Vaa’ = Vaa’ + I‘ana’n ) Vapb - Vapb - F:bpn )
we get ~
VA vA aA
-2 =2 rFr } a._ ) )
5y (P = 52 (@,p) + mels(z,p) e (z,p) (C.13)

VaPa(z,p) = Vapa(z,p) — pi[he(z, p)Diz(z, p)

By straightforward calculations, we can check that quantities @, #, X and {,} do not depend on
the choice of the connection.
Finally, coordinates z* on V generate coordinates (z*,p,) on G by

a

Pa = Pa% (C.14)
and they define the coordinate connection 9 on V by
0
odz*=0 , 0 =0 fora=1,2,....,n . (C.15)
ox?

Using this connection, and expressing everything in coordinates, we get the standard relations

(Z:?AB =dapn Adez" , Oa =ppdaz” (0-16)
oF o* oF o*
a_ Y8 _
Xr" = Opn Oz Ox" Op, ' (C17)
{A,B} = % 0B 04 0B (C.18)

Opn dz"  Ox" B—pn
fo ) = 0% . (C.19)
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D Euclidian and physical versions of the theory

Euclidian theory

A very powerful tool in quantum field theory in flat spacetime is Wick rotation to the Euclidian
sector of the theory. The Euclidian version of the theory is used to define objects which are not
mathematically well-defined in the physical version. The desired results are computed in the Euclid-
ian version and afterwards it “rotated” to the physical sector of the theory. The “rotation” means
usually analytical continuation in the time coordinate from the real to the imaginary axis.

There exist different attempts to generalize this method to non-flat spacetime. The most straight-
forward generalization is analytical continuation in some special coordinates, but it lacks a good
covariant foundation. There are two main approaches to more geometrical generalization of Wick
rotation. The first is to change the spacetime to a complex manifold with complex coordinates and
identify real submanifolds of the physical and Euclidian theory in this complex manifold. The an-
other approach keeps the spacetime manifold fixed and uses complex fields living in the complexified
bundles over the real spacetime manifold. Specifically, it uses the complexified metric g.

Both approaches have problems. The Wick rotation is not uniquely defined, if defined at all.
But despite the problems, the Euclidian formulation is a useful tool at least in some special cases.

We adopt the latter approach to the Euclidian formulation of the theory in a curved space-
time. Our motivation will be following. We can encounter technical problems connected with the
Lorentzian signature of the spacetime metric in definitions of some physical quantities, as e.g. tran-
sition amplitudes, propagator, etc.. For example, some integrals have an ugly oscillatory character.
It is usually easier to define similar quantities for a positive definite metric. And if the dependence of
the investigated quantity on the spacetime metric is sufficiently nice (in the best case analytical), we
can hope that the definition of the quantity for Lorentzian metric can be obtained by an extension
of the definition for the Euclidian metrics in the space of complex metrics to the “imaginary axis”
with Lorentzian metrics.

This method is common in definitions of some distribution as the continuation of an analytical

1

function to the border of analyticity. We give a trivial example. We want to define distributions TH

or In g for g on the negative real axis R~ (“Lorentzian values” of g). These functions are well defined
for “Euclidian values” g € R™, and we can use these Euclidian versions together with a specification
of analytical continuation to define the Lorentzian versions of these distributions. There exist many
analytical continuations from Rt to R™, and using different continuations we obtain different results.
In our example, continuation through the upper or lower complex half-plane give for g € R~

1 1 1
T3g+i0 1ty mA+9) 590 1ty
In(g +i0) =1n|g| +imr In(g —i0) =Iln|g| —imr . (D.2)

+irs(l+g) (D.1)

Here P denotes the distribution defined using the principal value.

We interpret the Euclidian version of the physical theory in a similar way. We use the Euclidian
version to define mathematically well-defined objects which have a sufficiently nice dependence on the
metric, and by specification of generalized Wick rotation — analytical continuation from Euclidian
metrics to Lorentzian metrics — we define Lorentzian (physical) versions of the investigated objects.
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Special Wick rotation in curved space

We have suggested that the generalization of Wick rotation is essentially some way how to analyti-
cally continue some functional of the spacetime metric from Euclidian metrics to Lorentzian. We will
not study this concept in its generality — but it would be worthwhile to find how many different
analytical continuation we have and how we may classify them. We will study a special case of
continuation from Euclidian metrics to Lorentzian ones which is a straightforward generalization of
the rotation of the time coordinate in flat spacetime.

Let us investigate a neighborhood U in a d-dimensional (spacetime) manifold which has topology
R x ¥. In such a part of the manifold we can define the d-dimensional generalization of the 3 + 1
splitting from chapter 2. Le., we choose “time” coordinate ¢ and time flow vector field # for which
- dt = 1. This defines for us the foliation of the neighborhood U into hypersurfaces ¥; defined by
the condition ¢ = const. Now we will investigate a complex metric ¢ (symmetric non-degenerate
quadratic form) on U in the following form

g=n?>n"n+q |, (D.3)

where n is a constant complex factor (usually just phase factor), *n is the real form normal to the
hypersurfaces ¥; and ¢ is a positive definite real metric on hypersurfaces?® ;. If the metric g is
positive definite (for n real) we call it Euclidian, if it has signature (— 4+ +...) (for n imaginary)
we call it Lorentzian. Choosing a contour in complex plane joining the Euclidian and Lorentzian
values of n defines a specific continuation from Euclidian metric to Lorentzian metric — generalized
Wick rotation. We will investigate only this type of Wick rotation, even if we can imagine more
complicated transitions from the Euclidian sector to the Lorentzian.

Next we will define some useful quantities in the case of general signature. There are two useful
conventions which we can adopt. One of them — which we call Euclidian convention — pretends
that the metric is Euclidian and defines all quantities in the most natural way for a Euclidian metric.
As a result some quantities can have a complex value for non-Euclidian metric. This convention
suggests, that the Euclidian metrics are the “simplest” ones and that most relations should have a
simple form using the Euclidian convention. And if we would express equations in the main text in
this convention, we would see that they really simplify by the elimination of some numeric factor.

Another convention — which we call Lorentzian convention — tries explicitly to trace out the
signature factor n and defines most quantities in the way that they are real even for complex metric
g. Because the physical metric is in some sense a “complex metric” (the metric is Lorentzian for
imaginary value of n), it will be more natural to adopt this convention to obtain the usual definitions
of the quantities, and we will do so in the main text.

But it does not matter which convention we use — the choice is only a question of convenience
in a specific problem. We can use both conventions, independently in which version of the theory
we work — Euclidian or Lorentzian — or even if we work with a general complex metric.

Metric dependent quantities

Below we list some definitions of quantities connected with (d — 1) + 1 splitting in both conventions
and translation between both conventions. We define lapse N and shift N , normal vector i, projector
o on hypersurface ¥;, volume elements g% and q%, and external curvature K. In the Euclidian (or
Lorentzian respectively) convention we add the index # (or * respectively) in front of the a quantity.
In the main text we drop the index ™.

Euclidian translation Lorentzian (D.4)
g="n"n+gq n=n"'n g=n’"Tn"n+q ,

n="Ndt N =n'"N 'n="Ndt ,
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1
Pi.Pn=1 Fi.q=0 i=-"d fi-fn=1 'i.-¢g=0 |,
n
b =& — Fi"n o=0— i
g—l _ EﬁEﬁ+ q—l g—l _ LﬁLﬁ+ q—l ,
1
Ez g_E4:1 En gl n =1 Lﬁ g'Lﬁ—TL2 LH g—l Ln:_2 ,
n
1
En:g Eﬁ Eﬁ:g—l En Ln:_29 Lﬁ L—’:n2g—1 LH ,
n
f="N"f+ N F='N"i+N |,
1
By = Det g By =n?k "g= = Detyg
n
1 1
q%:(Detq)2 q%:(Detq)2 ,
Eg2 = ENdt q2 Eg% :nLg% Lg2 = INdt qz
K =9-V"n K =n'"K "K=b-V'n

Let’s note that for these metric dependent quantities the relations between quantities in the
Euclidian convention are the same as between quantities in Lorentzian convention with n = 1.
But beware that this will not be always so — specifically for quantities connected with the action
introduced in the next section.

Action dependent quantities

Now we turn to investigate the action and related quantities in Euclidian context. We will look first
at a general theory in Lagrangian form. It can be formulated as a theory based on a one-dimensional
inner manifold N (manifold of physical time parameter) with inner metric A which determines the
choice of the physical time coordinate. History can be viewed as a map from the inner manifold N
to some target manifold. Most physical theories can be reformulated in this form. A particle theory
is already in this form, scalar field theory can be brought to this form using (d — 1) + 1 splitting
discussed above.

In this case we speak about Euclidian or physical version of the theory if the inner space metric
h is Euclidian (positive definite) or Lorentzian (i.e. in this case negative definite). The physical time
t is coordinate on the inner space related to the metric h by

=

h=v’dtdt , (Deth)? =wdt . (D.5)
Here v is equivalent of the signature factor n from the previous section for the inner metric h — i.e.
it is a constant complex number which determines the version of the theory.

The action S is a functional on the space of histories. In the case of Euclidian theory it turns
out to be more convenient to define the Fuclidian action I. We will view the Euclidian action as
the action in the Euclidian convention (I = £S). Again, we can use both Euclidian and Lorentzian
actions in both theories, depending which form is more convenient. The relation between both
actions is

-I=vS . (D.6)

We assume that the action has a Lagrangian form, i.e. that it is expressed as the integral of a
Lagrangian over inner manifold. We define Lagrangian L and related quantities — canonical mo-
mentum p, canonical velocity v and Hamiltonian H — in both Euclidian and Lorentzian convention.
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These quantities are derivable from Euclidian or Lorentzian action in the same fashion.

Euclidian translation Lorentzian (D.7)
= /EL(a:,a‘:)dt () = v (me) S = /LL(a:,a‘:)dt ,
E, _ 0°L E, _ L L _ ai
p(r,v) = S (2,0) () = vp(ee) ) = ()
(e, pla, ) = v a,p) =, —0) e ) = v
v

BfJ — LEf _

o e H@p) = —vH@-D) TP
=p-"v(z,p) - "L(z, "v(z, p)) v =p- "u(z,p) - "Lz, "(z,p))

Specifically for the Lagrangian given by a sum of a quadratic kinetic term and a potential term we
have

L(x,v) = %% veg(z) -v+vV(x) "L(z,v) = —%% vog(z)-v—V(z) |,
Ba,0) = 5 (o) 0 Do) = = (@) 0 (03)
PH(z,p) = V(%p g (z) - p V(w)) "H(z,p) = —%VQ pg'(x)-p+ V()

Here g is a metric on the target manifold. Let us note that now we have studied Wick rotation in
inner manifold metric h, not in the target manifold metric g. It can be desirable to combine both
methods as will be done in the last part of the work. But it only introduces a possibility for g to be
a complex metric and does not change the definitions above.

Scalar field theory

Next we return to study a theory formulated on a d-dimensional spacetime manifold. It can be
reduced to the previous case using (d—1)+1 splitting technique. But in chapter 1 we have formulated
a general formalism without such splitting and we have applied it to the case of the scalar field theory
in chapter 2. Now we present definitions from those chapters using both Euclidian and Lorentzian
convention.

First we add the Laplace-like quadratic form and source term to our list of metric-dependent
quantities

Euclidian translation Lorentzian (D.9)
Q] = (X[QV "G)+ "FalQ] = (x[QV "G)+
’ e -laB ~ FFalQ] = n "FalQ] ! “ 1aB ~ )
+da e (x[Qg" > 7G) s dp +da e (x[Qg" " "G) e dpg
FIQ] = X[Q] V - - “FIQ) = X[Q] VA
eV FHel=a ) e
+x[0] da o (97" "Gdg) +x[Q] da * (97" *° "Gdp)
"AF[00) = "F[Q] - "FIQ) DF[ON] = n "0F[00]  "OF[9Q) = "F[Q] — "FO] |
EQF 4109 = FF4[Q) — EF[Q)] EAF4[0Q) = n "[dFq[0Q)  HdFa[09] = LF4[Q) — “FIQ)
Eg:Eg%(; Eg:nLg Lg:Lg%(S ’
F] =Fgz J E]=nn] L] =gz J
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Next we list action-dependent quantities

Euclidian translation Lorentzian (D.10)
1 1
1] = 5¢e"FulQ e~ "Tep —I=nS Sl = —5¢¢ FalQe o+ "o
a1[0] = X[QU6T — (O] _mpo0] = nipoR]  dS[O] = (0165 — P09
ST ="Fegp—"J — 61 =ndS n=—"F+5 |
d"B=-"0F =g -1 —d”P =nd"p d"B="0F ="n+p—-p-"1 ,
Ed(‘:ﬁrd:_Eﬂlg _EEZnLE Ld}d:LEIQ ,
(A, Blg=dAo(d"R)'edB —-n"{,}5=",}s YA B}g=dAo(d"p) «dB |,
1
4o (A7) = @ = @) e (@) =

Note that the relations between the metric-dependent and the action-dependent quantities are
not always the same in Euclidian and Lorentzian conventions due to the extra minus sign in the
definition of the Euclidian action.
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E S-matrix

We want to prove the explicit form (8.112) of the S-matrix associated with a transition operator
s. The following proof is generalization of the derivation for two-dimensional phase space presented
in [31].

Let define for £, ¢ € R a transition operator s¢ ¢ in the form (8.113)

sec = exp(EX) ouge = exp(EX) oexp(Cliot)) (E.1)

where X' and 1) are those from equation (8.113). Clearly we are interested in the case £ = ( = 1.
For ¢ = 0 the normal ordered form of the S-matrix (8.109) has the form

S()’g = :exp((exp((]i o 1/)) o ®, @)l — (<i>, @)l), . (E.2)
The derivative with respect of ( is
d A 2 A 2 A 2
cSoc =3 Qieveep((ioy) 2 @, ); exp ((exp(Cli o 0) 0 B, B); — (8, 8):) 4 =
= —ifuic 00,80, @) = —i{uic o o Burc 0 )i So¢ = (E3)
= _’L<(i)7¢ ° (i)>7, SO,C )
where we have used . o . o
(@, F()®);; = (@, :F(®): )i (E.4)

equation (8.62) and i-unitarity of u;c operator. The solution of this differential equation together
with initial conditions Sp,p = 1is

So.c = exp(—i(B,p0B);) . (E.5)

For general £ and ( = 1 the normal ordered form of the S-matrix has the form
1
~ -7 1 A A
Sen = (dets ch(f)()) :exp<§<th(§X) 0 d, ) —
1 . . . ] .
- §<ul o q’,th(f/\/) ou; o (I)>z + <<I>, (u;l och 1(£X) - 63) o (I)>z> 4]

The derivative with respect of £ is
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1 N VA S
= — 7 trs (X o th(€X)) Seu +Sea 5<ch2(€){) o B, q>>i_
1 X A\ . . Xosh(€X) .
= g b ey oo ®), 8o = (o 8 8ea S o 8),
. 1 1, X . .
= Sg,l <_§ trg (X Oth(f.)()) + §<Ch2(£X) o ‘P, @>Z— (E 7)
1 ~ Xoexp(—&X N ~ X osh(¢Xx A
- 3{exn(oga) o b, TSI 0 8) — (exp-er) 0, Tt o d) )

Here we have used (E.4) and

(D, F(®) Ao d);z; = (

R ® R R (E.8)
:<AO (I>7 F((}) (I>>l:z = :F((I)):l <AO (I>7(I>>z

for an i-antilinear operator A, the fact that X is i-antilinear, and again relation (8.62). Using
trigonometric identities we can rearrange expression (E.7) to

Ser (%(x o, d).

+ %(th(f?() 0d, X od) — %(t},th(f)() o X o d)

<(i)’Xo<i>> trs(XOth(€X))+

) _ (E.9)

DN | =
| =

i
A

i
L1 A 2 o ~
=Sea5 (Yo 8,8), - (,x08),) |
where we have used i-antilinearity of the operator X' and equation (6.45). Integration with respect
of &, using equation (E.5) as initial conditions, gives the desired result

§=§,, = exp(—z(@,zﬁ 0 é)i) exp((?( 0 d,3) — (b, X <i>)i) . (E.10)

)
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F Asymptotic expansion of the leading term in
the heat kernel

Vector space

In a vector space V equipped with a positive nondegenerate quadratic form g a simple Gaussian
integration gives

1 1
m / g2 (X)g
X,ZeV

:(2;’/)3 /g (X)p(X) / g%(y)¢(X+ﬁy)eXp(_2_1yy_g_Y):

XeVv YeVv

=

(2)p(X)(7) exp (g (X = 2) g+ (X ~ 7)) =

vT

N

- 21 . / X)) 3 74 B - O] (X)
et ) L
1 L 1 (F-1)
5 / gi(Y) Y. yon exp(—ﬁY-g-Y) -
vev
= [ steoecn) ¥ CES e (6 Pou0armu) ) -
Xev meENy ’
1 vT\m
=Y i(5) eecmev

Here ¢, 1 are test functions, g% is the constant volume element of the metric g, v is a number
(ReL > 0) and L™ represents a bi-distribution

poLMet) = /géw[(g'laf’@a@a)mw] = /gélﬁ[(g'l“ﬁ@a@ﬁ)m@] : (F.2)
v v
It can be viewed as an “m-th” power of the Laplace quadratic form £ associated with the metric g

on the vector space V.
So we can write the asymptotic expansion for small 7 as

(X=2)-9-(X-2))= 3 L (—T—Q”)mcm . (F3)

m!
0

n

(27vT)2

Nl=

. 1
3(X ——
g2 (X)g 5T

(Z) eXp(

me

Here we allowed the metric g to be Lorentzian — this case can be obtained by analytical continuation
in g. The nature of g is given by a value of the phase factor n as discussed in appendix D and the
extra factor n in (F.3) came from the Lorentzian convention for the volume element g%.

In the case of the vector space the expression on the left side of eq. (F.3) is the heat kernel
of the operator £. Because the right side is formally the exponential we see that the expansion is
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exact. To say more about convergence it is necessary to specify functional spaces on which all the
operators act and we will not do this here. But see e.g. [28] for some details.

Manifold without a boundary

Now we would like to find the expansion of the similar expression in a general manifold M without
boundary. More precisely, we want to expand

n

1 1 1
WA@V)GQ(HJ)GQ(Z) eXp(—;a(mLz)) (F.4)

IR

for small .

We smooth both arguments with test functions ¢, ¥ and note that for a small 7 the integration
over x and z is dominated by a diagonal x & z thanks to o(z|z) = 0 for z = z. Therefore for a fixed
T we can restrict integration over z to a normal neighborhood of x. In this neighborhood we can
change variables z — Z with

z=u, (VT2 mx+VT7 (F.5)

where u,(eZ) is a geodesic with an origin x and initial tangent vector Z (see (G.1)). This is the
exact meaning of “adding” of a vector to a point as mentioned after equation (13.25).

The Jacobian associated with this change of variables is given by Van-Vleck Morette determinant
(see (G.43))

(u*08)(V7Z) = TH gt (@) [Z] A M (z]2) (F.6)
where g2 (z)[Z] is understood as a constant measure on the target vector space T, M at vector Z.

After a change of variables, using (G.16), expanding 1 and performing a Gaussian integration, we
get

ﬁ ZM Aal)at ()6 ()p(x)(2) exp (o (a]2)) =
= [ dwpw [ dwia-
(2myT)z2 ey ZeT. M (F.7)
x (Z %qubkalwak(a:) zZt ...Zo"“) exp(—V—ITZ -g(z) - Z) =
k€eNg
= /géw (¢ + % g *Prap + 0(72))
M

Using (G.27) we have ¢ = Vdu, so we get

n

1 1 1 vT 5
WAMZ)QQ (z)g?(z) exp (—;U(aﬂz)) =G - 75 +0(m?) . (F.8)

Half line

Next we will investigate the simplest case of the manifold with the boundary — half line Rt. We
assume it is equipped with a special coordinate n which selects a measure and derivative

0
w=dn , M=pus , a_a—n . (F.9)
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We define bi-distributions of the m-th derivative

wed™ p=we(dMp) = /w(@mcp) ) (m) = §mT ) (F.10)
R+
a=0M | =00 . (F.11)
We can define also a boundary delta bi-distribution D as
peDe) = (pY)|boundary - (F.12)
Integration by parts can be expressed by the relation
deM+Med=-D
Him+1) o Af 4 (=1)™M o Hlm+1) — _ Z (m=k) g Do 5k (F.13)
k=0,....,m
Next we define quadratic forms of powers of the Laplace operator
L=-Moe , LM = (D)™ Me g™
L= 5<2> M, LM = (—)meC™ e M
FToY LT Fmy _ LFmy . Fom) (F-14)
5:5( +£) , £™ :5(57” + Ly
L=0sMed
The symplectic form on the boundary is
=L-L=—0eD+Ded . (F.15)
It is straightforward to check that
Lm _Zm —(—pym 3 9Weped®h (F.16)
k,IENg
k+l+1=2m
Now we prove the following expansion for small 7
1 1 N
e —_— —_ =
T (5, (6 ) wOO
v\ T 1 [ ~
_ Z(o0m o e 9(m) =
=Y raan(3) 3(0" M M)
mENo
N Z m! (7) L+
mENg
™ rpymts 1 ket “*
- Dz R epegl
+Z (2) 5 > (-1 9® ..
meNg k,l€Ng

k+l=2m

Here v is a complex number such that % has non-negative real part. Strictly speaking, the following
derivation needs a positive real part; but for an imaginary value of v the relation can be obtained
by limiting procedure. Because only a combination the 7v appears in the equation, we drop v in
the following derivation — it can be easily restored by inspection of the 7-dependence.
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Clearly, the second equality follows from integration by parts (F.13). To prove the first one we
smooth it with test functions ¢ and ¢ and get

= [ en(—5-€= ) pOu(Q mEOn(©) =

£,CERT

—= [ & [ @eouoen(-5e-0?)+ (F.15)

£€(0,e)  (ERF

¥ 217” / & [ dcp©wQem (-5~ 0?)

CERT

for some € € Rt.

For a small 7 the exponential suppresses any contribution except from & ~ (. Therefore for
small € only small values of £ and ( contribute to the first term of the last equation. We can rescale
variables by factor \/7 and expand ¢ and v at zero and obtain

2171'7' /df /dCcp eXP(-%(f—(F):

£€(0,€) (ER+

[ deetvro S rtut0) [ acdexn(-5€-02) =

V2rT
Mg (0.2 et IR+
1 k141 1
- = ¥ A0 5 [ aeRn© (F.19)
" kien €e(0,52)

where we have used the definition of special functions R; (H.1). Properties of these special functions
are summarized in appendix H. Using equation (H.17) the last expression gives

LESESY
—2

r > @0 p0)x

k,l€Np

x < (1) Rpyr42(0)+

NG) 2m — 1! l ket —2m+1
+ 27 @m —1)! (i) +
MR 2o F+l—2m+1 Nz

2m<l
+ (_l)l Z y %(%)m Rk+l—m+2(_%)> =

m 1 -11
=y (2 SRR 1) 5 Y e o) p00)+
méENg [=0,...,m
k+l+1

+ Z 2m 2m)! Z m ®(0) pH2m(0)+

meNo

+ exp(—%e—) O(r) =
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_ Z ™m 1 Z (_1)1 80(2m7171>(0) ¢(l)(0)+

(2m)!!2! 0. St
m+2 _1
+ > BT Z (—1)’ ©m0(0) 1 (0)+
(2m + 27r
meN (F.20)
k+l+1 (k) (l+2m)
> 2m @m)l Z kvlv(k+l+1)“’ (0)wTH0)+

meNo
2

+ exp(—%%) O(1)

Here we have used relations (H.10) and (H.14).

In the second term of the expression (F.18) we change variables ( — n = %(f — () using again
the fact that only the contribution from ( & ¢ is not suppressed by the exponential. Next we expand
1 around n = 0 and obtain

S / & [ dcpeuQem (-5~ 07) =

g€ CeER+
1 k
= 0 d€ p(€) ¢<k>(§)7'5x
2 £E<Zoo> kgo
x (E / dﬂﬂkexp(—%UQ) _E / dnnkexp(__n2)>
neRr 776(—oo7ﬁ)
= [ st
m=Np (2m) §E<[OO>
\/ > Z / * (i)lRk*tﬂ(—i)w(aw“ﬁ(o=
2TT Ny =0k VT VT
(€,00)
= — ) T (2m)
_mg (2m)!! / APV - ,,;N (2m)!! / d p(&)Y ™€)+
0 ceR+ 0 £cl0.0) (F21)
2
o)

Here we used (H.15), (H.11), (H.16) and (H.14). For small € we can expand ¢ and 1™ about zero
in the second term of the last expression. Performing also an integration by parts in the first term
transforms the last expression to

2 —(2::)!!% / de (PmUENp(E) + p(Eu™(E)) +

mENy EER+
D ,.2 S (-1 P h0) w0 -
meN —=0,...2m—1 (F.22)
T 0y g
_m%()@ i Z Rk 7 (0) p(0)+

2

+ exp (—%%)(’)(7)
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Substituting equations (F.20) and (F.22) to equation (F.18) and ignoring exponentially sup-
pressed terms exp(—lﬁ)(’)(r) we obtain the desired relation (F.17).

2T
Next we will prove another expansion for small 7

1 (EC) (_i(g+<)2)u(£)u(4)=

V2rvr \E+(
_ Z (2) il 1+1 Z w<m>(0) (m;—j}rgnml—i-l) 3(1@) .D.g(z) , (F.23)
n€ENy 2 F(nT) m,k,lENy n+m+1 ( m )
k+l+m=n

where w is some smooth function. As a corollary for w =1 we get

1 1
Sy exp(—ﬁ(f + C)2) M(E)M(C) =
1 P -
_ -~ (™ 20k eDe ) = F.24
kJ%OF(’“+§+1+1)(2) 50 ) (F.24)
1 /™1 o e
=Y —(%) 5 O eDe )y
= m!( 2 ) 2 k%g
k+1+1=2m
R
GNO k,lENp

As before, we drop the factor v in the proof because it can easily be restored from the 7 de-
pendence. Again, we smooth the relation with test functions ¢ and . Thanks to the exponential
suppression, only small values of ¢ and ( contributes to the integrals. Therefore we can rescale £
and ¢ by /7, expand ¢, ¢, and w about zero, and get

o [ PO () exp(- g+ 0?) dedc =

2wt E+¢
£,CERT
_ 541 P00 b 0) wm0) «
_27rrZT 2 g OO 0)
neNy k,l,m€eNy
k+l+m=n
£m+k<m+l 1 5\
o [ deac e ew(—5e+ 07) =
ECR
e 1 wim(o) (") (") (k) 0
0w, X s e 00 e
k+l+m=n

what proves the relation (F.23). Here we have used the integral (H.18).

Manifold with boundary — no reflection contribution

Now we find an expansion of the contribution to the short time amplitude from the trajectories near
the geodesic without reflection in the domain  with boundary 9Q2. We will prove for small 7

g @e ()AGe) exp(—-o(al2)) =

=g+ \/_(——\/%)Q — 12 T + O(r})

(F.26)
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As usual, we will be proving a smoothed version of this relation — we multiply the expression
by test functions p(z) and ¥(z), and integrate over z and z. Thanks to the exponential suppression
the only non-trivial contribution is from x &~ z. Therefore it is sufficient to prove the relation locally.
Clearly, for ¢ and ¢ with support inside of interior of the domain 2 the boundary does not have any
influence and the relation reduces to the case without boundary. Therefore we will investigate only
the case when ¢ and ¢ are localized near the boundary. Thanks to locality we can also, without
losing generality, assume that the test functions are localized on the neighborhood U C Q of the
boundary with topology R x 02 on which the geodesics normal to the boundary do not cross. In
such a neighborhood we can use the method described in appendix G and change the integration

over a neighborhood to integration over the boundary 02 and geodesic distance from the boundary
(see (G.60))

T =T, , r=w(Z, ,
¢ 0(2.6) -
y—=9,¢ , y=o(,0)
The Jacobian associated with this change of variables is
0% (8) = d64*(2,6) = d€j(3,0)q% . (F.28)

Here we use the convention (G.62) — we denote the spacetime dependent object A(z) in variables

Z, ¢ and tensor indices moved to the boundary as A(Z,£). Changing variables we get

Ty [ at@at a6l e (- -ael2))ailz) =
z,2€Q
=ﬁ / de d¢ j(7,€)a* (2) (2, 0)a? () A@, ]2, )~
2,2€00
€,CeRT
oxp (=50, €12,0)) 6L, )z, Q) =
= [ @Gy [ a6 o
ZEOQ £,CERT
- A (F.29)
i | ORI IO ep(— 56820 +1@.82.0)
Z€oN
Here we have defined
16650 = (35 0 D@20
16,612, = (36,0288 D56.0 ) (F.30)

where A(Z|2) is the Van-Vleck Morette determinant of the metric ¢ in the boundary manifold.
Exponential suppression ensures again that the only contributions comes from z & 2. So we can
change variables

To>y==z ,

F.31
EoY eT 00 |, z=v,(V7Y) (F-31)

with the exponential map v;(Y’) defined as in (G.1) but on the boundary manifold. The Jacobian

for this change of variables is given by an equation similar to (G.43), only with the Van-Vleck
Morette determinant A(Z, %) defined using the metric ¢ on the boundary manifold. We use covariant
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expansions
VT = €O T T S GO VR ()
1(5,€19, V7Y, C) =k§ T%kli 0k by ;;(y Q)Y Y (F.33)
BONVT0 = T b O T T (F31)

with coefficients given by expressions (G.99-G.103), (G.104-G.106), and (G.27). Expanding the
exponential, gathering all terms up to order O(r), and performing a Gaussian integration over Y
lead to

2

/ Gt [ dedc exp(=5-(¢-€7) i@:6.0) (@£ 0+ 3.0+ 0G?) (P39)

2muT)
PEIQ £,CERT
with
J3:€0 = 75,6 A@£05.0 75,0 a* (3) (Det, 502(3:6.0)) =
X ) (F.36)
= (16,920.89.03@.0)" .
wo(;6,0) = (5,6 $(3,0) (F.37)
~ A~ TN 1 vVa-lk 15 ~- v
w1 (y7£7<) =v @(yag) ¢(y7<) (_gUO 4prve UO 2H 0-012 A 510721“1 0-0172H +
1 aB~lk 1~ - Vel
+ 8U0 3pva 00,3628 ‘70 2“ ‘7012 p 012 A - §l071H 00,3 kAv ‘70 2” ‘7012 >+
1 afB~-1k 1" 7 ~- v ~
120'0 3pra 00,3028 0'0 2“ 0'012 ﬁ0_012 >+ _1071p lo1v 0'0172“ )(%5: O+ (F.38)
+v §(y;¢) ¢1u 7;¢) 002 (lo v — _0-03n)\1/0-02 )(27§57C)+
+ v B(55€) %o (3:€) 554 (5;€,C)

The equality in (F.36) is proved in (G.76). Applying the expansion in (F.17) in (F.35) and using
(F.6) we get

/ 0% (y) o(y) Y(y)+

ye
wvi(-2 L) [ d@em e

pen (F.39)
~ vV ~q,~ 1 1s ~ ~ rrrs
+7 / dnaz(§) 7 (5;n) (—le(on) + —5 77 (Jwo) +w1)(y 1,7)
JEOIQ
ner+
+0(r?)

where f¥(£,¢) (or f7(£,¢)) means derivative of a function f with respect of the left (or right)
argument.
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We see that we have proved already the desired expansion up to order /7. Now we proceed to
prove it in the order 7. We split the integrand of the last term to pieces and compute each of them.
First we note that (see (G.101))

[Go2] =G , (F.40)
where by a coincidence limit of a function f(&, () depending on two real parameters we mean [f](n) =
f(n,m). Using (G.107) and (G.108) we get

Loy =g 12
ﬁ[(ln]) ]—an ,

1 ~ 1 - 1 - n?o, 1. (F.41)
2 [(nj)™™] = 3,z (Ing)™ + Q—TLQ[(IHA)”] = -G K3k
and therefore
1 o1 rry i ~ T T T lﬁr _1 2752 1“2 o)
= [ o)™ = = @0 + ki + (38 — n?R2+ 1F) 00 (F.42)

- 2
Here k is a trace of extrinsic curvature and K is a square of the extrinsic curvature (eq. (G.51)).

Next, using (G.27), (G.105), and (G.102), transforming the connection V to V (eq. (G.64)) and
performing an integration by parts gives

YA [ aclur O ~ ~-lpv > 1. ~lk
g/q%JSO (qu ¢2uu+¢1pq1“ ([lo,lu]_g[go,Snku]ql A)) =
Glel (F.43)

Substituting for [7o 4] and [Io] in remaining terms of [w;], a straightforward long calculation gives

1 - - 1~ -
- _[&074pun)\] @ 1}“/@ L + 5[1072;11/] a 1”V+

8
]. - V~~-laf~-1kr ]- 7T 7T ~~ 174
+§[80,3yua] [G0,328] @ s q ' ﬂql )\+§[l0,1[1] [T010] qlu +
F.44)
1 poasomn L e P (
+E[&0,3pna] [&0,31/)\5] 61” ql ﬁql A_g[lo,lu] [00,3'@}\1/] qu ql A =
_ 1o, n’oy n’oy
=v(—gh + 5K - 5F)
Putting together (F.42-F.44), and integrating by parts we find
N UV~ /~ 11 | r
/ dnaz () 7(@;n) (4n2j (Gwo)™ " + 537 (jwo) +w1)(y,n,n)—
Jeon
nert
s 1 ~11 7. ~ T 7. (~1 7 ~ T ~
ZV/dn/ﬁ(W (so b+ o9 +n2k(<p¢+so¢))—§Du<pq # D ¢> =
R+  8Q
_ v ~1 1 ~r T ~ ~-luv 7. v 1 ~17 ~ T _
——E/dn/w(ﬁwb +Dupq Duzﬁ) mrel RN (so¢+so¢) =
R+  8Q a0
v 1 1w v 1 N N
2—5/9é dup g * du@b—m/q; (¢H“du¢+¢ﬂ“du¢) =
Q 9
v 1, « ~ v s
:—Ecpo(Ed—§(dﬁd+dﬁd))°1/1:—§§0'ﬁ'1/1 . (F.45)

This concludes the proof of the expansion in (F.26).
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Manifold with boundary — reflection contribution
Finally we will prove the last expansion we have needed in the main text:

(2mvT) 2

=7 —\/7Q—T— ~(dFa+dFa) -T2 (—k+6 terms ) + O(7#)

_ AP (a)2) B(r o)) exp(—yiab(mz)) -
(F.46)

Similarly to the previous section, we smooth this expression with test functions, perform a change
of variables (F.27) and consequently (F.31), and use the covariant expansions (F.34),

B(r,2,€[2, ) = Bol#,£12,¢) + v/7By (,€]2,0) + O()
Boi 5V, = 3 T8 By, B6,Q Y VH

(F.47)
k=N
similarly for 81 (z|2); and
a-b(@: £|g7 \/;Ya C) = TTL2%(€ + C)Q + T%% a-bO,k ey, (gv 57 C) YHL Y HE ) (F48)
k=2,3,... ’
’ib(@7£|ga \/FY C Z T%kl i b0,k pey... ey, (gvfa C) YHL Y HE ) (F49)
k=N
where
- . ALP(Z. €12, 0) A
1(2,€[2,¢) = In (j(mMj(z, o) (F.50)
A(Z]2)

This leads to a Gaussian integration in the variable Y € Tyaﬂ in which only leading terms in
expansions survive and we get

ﬁ / g (z)g

o=

(2) ol (=) AP ale) B(r,l2) exp (v (al2)) =

z,26Q
2
- / e / d§d¢ exp(—5—(6+€)) 25,8 $(7,€) ~ (F.51)
geoQ £,CeRt

Gu(:6 E52.0 (BolB:6 85,0 + VR B8, £%.0 + 0(m)

where
(@36, £5,0 = 7(5,€) Af-f’@,a.@,o 73.0) qE(l.@) (Detyd102(3:6,0)) = _—
= (7@.9 2 @:€3,.0 5@.0)°
Bo(B3 6, 552, Q) = Bo(@,€19,0) (F.53)

with analytical dependence of j, and Bg on their three real arguments. B 1 is defined in similar way

as . Here we anticipate that Ay, and 3 can have more complicated analytical dependence on &
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and (. The equality in (F.52) follows from (G.98). Using the expansion (F.23) we obtain

[ (v b 5a(3:0,0.0 @)+

P€8Q
+ 75 o(3:0,0,0) (7 (3,000(3,0) + 5(7, 0% (7,0) )+
+7 (27 (0B0)" + 75 (o) "+ (F.54)
¥ g (oBo)™ + [ B, ):0,0,0) o) () +
+ow%>

Using the expansion (G.116) of j, and obvious relations for 3 (§;0,0,0) and B% (%;0,0,0), this

expression is equal to

/q%@)(fl - 5(0,319)

J€oQ

(@) (®H)+

o B0.319) ( (y,oﬂ@,m+@<@,0)@'<@,0))+
(F.55)

+%(—ﬂﬂ( MR + 21/ 50 0,717+

+ (oo™ + 5B + —Bo'"')@;o,o,m) o))+

+0@%>

Using the normalization condition (14.17) concludes the proof of the expansion (F.46). By inspection

we see that the S-terms have form

5= B0,917) - (iﬁol’+i50r’+%éo‘“’)(@;o,o,0) . (F.56)

SB-terms =
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G Geodesic theory

Basic definitions

In this appendix we review some facts from geodesic theory and list a number of useful expansion,
some of which we have used in this work. The material related to a manifold without boundary is
well known — see for example the classical works [1,32] and [33]. The theory of expansion near a
boundary is less known. Some material can be found in [26,34,35]. The calculations are usually
straightforward but cumbersome. We will present mostly only results. But all expressions presented
were computed and checked by the author (see [36]).

We start with introducing the covariant expansion in a curved manifold. We would like to
expand a sufficiently smooth tensor field AZ: on a manifold around a point z. First we change the
dependence on a point z in the manifold M to the dependence on a vector Z from T, M, then we
transform vector indices from different tangent spaces to one common tensor space, and finally we
do the usual Taylor expansion of a linear-space-valued function on a vector space.

To transform the tensor field on the manifold to a linear-space-valued function we need to know
how to move tensors from one tangent point to another. We assume that we have given a metric g
which define a parallel transport. It allows us to transform tensors from the tangent space at point
z in a normal neighborhood of the point z to the space T, M along the geodetic joining these two
points. In the normal neighborhood of z we can parametrize a geodesic by its tangent vector at z,
i.e. we can define an exponential map u,

u, T, M—->M | (G.1)
VvV D D
%EUE(TX) =0 5 Euz(TX”T:O =X . (G2)

If f(2) is some manifold dependent function, we use notation f(z;Z) = f(u,(Z)). This transfor-
mation concludes our first step. Next we parallel transform vector indices of the tensor field to the
space T, M along the geodesics starting from z. We define the tensor of geodesic transport 1(x|z)
from z to x

Mo (@]z) € Tu M&T M | dzL(x,um(TX)) —0 | (G-3)
T
and its version with indices up and down
I=1-gY , 1=g-1 . (G.4)

Using this tensor we can write down the tensor field A with transported indices explicitly. We obtain
the linear-space-valued function on a linear space

Al (2 ) 1 (s ) o T (). Ta M = Tuf M. (G.5)

Finally we can write the covariant expansion

1
Al (23 Z2) 1 (@l Z2) . (el Z) .= Y AR e, () 2P 2 (G6)
kENg
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We call A (z) the coefficients of the covariant expansion of the field A at z. They are tensors at z
symmetric in indices py, ..., py.

To compute these coefficients we need to develop geodesic theory to greater detail. First we
define the world function o(z|z) of the metric g. It is given by half of the squared geodesic distance
between points  and z — see (13.27). For time-like separated points it is negative. The geodesic
distance is then given by

s(z)z) = 20(z|2)|> . (G.7)
We define geodesic tangent vectors ?, b
— -1 — -1
o(zlz) = g7 (z) - dvo(zlz) , o(z]2) =deo(a]z) g7 (2) - (G-8)

Here, as before, d; f or d, f denote the gradient in the left or right argument of a bi-function f(z|z).

The basic properties of the world function (see e.g. [1]) are that its gradient vector ?(az|z) is
really tangent to the geodesic between = and z and it is normalized to the length of the geodesic.
Le.

—Z=0(z|x;Z) . (G.9)
We also introduce a special notation for the second derivatives of the world function
>
o

0=Vidio , o=didio , 0=Vedoo . (G.10)

To conclude our definition we introduce also determinants of ¢, ¢, v. They are well-defined objects
— bi-densities on M

1

i(al2) = - Detu(al) = g @ad (:) , ial) =y Detulel) =g} )gt(x) . (GD)
SMQZ%DM%MM cR, Mok M . (G.12)

Finally we define Van-Vleck Morette determinant
Ale]2) = s(al2) i (z]2) = s(a]2) g7 (2)g 2 (=) - (G.13)

For a bi-tensor F'(z|z) on the manifold — a tensor object depending on two points in the manifold
— we denote the coincidence limit

[F](z) = F(z|z) . (G.14)
The generalized Synge’s theorem (see e.g. [37]) tells us that

V[F] = [ViF] + [V.F] . (G.15)

Coincidence limits and covariant expansions
Equation (G.9) gives

G.g0o=-0-g-0 (G.16)

DN | =
N =

1 1
a:§dra-g'1-dra:§dla-g'1-dla:

Taking repeatedly derivatives of this expression in both arguments we can derive

— e T T e
c-g=0c-0=0-0 , g-0=0-0=0-0 , (G.17)
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and following identities

g”dlua =20 (G.18)
Vg =" (©.19)
FTNEE -

e — — —» — >

© _ -1 pv (e %
0"Viuoap =00 — 0anopry " —Raugvot o’
— > > —» >

7 _ -1 pv

0"Viuoag =00 — 0anyg *oug

N o (G.20)
o

“ _ R d <>
”Vlygaﬁ: chﬁ_gluuauaguﬁ )
— —» —» —» _
0"*"V1aVigVipo = 0ap — Capdpuyg Lpy
Similar, more complicated relations hold for higher derivatives. Using the fact that coincidence limits

of the world function and tangent geodesic vector are zero, taking coincidence limits of relations above
and similar relations for higher derivatives, and using the Synge’s theorem, we get

[c]=0 , (G.21)

[dio] = [deo] =0 (G.22)

[ViVio] = =[V1Veo] = [V Vo]l =g (G.23)

[V1V1V10] = [VaViV,o] = [ViV,Ve0] = [VoVeVeo] =0 (G.24)
[V1aVigV1iuVivo] = =[VigV1uV1uViao] = V1, V1, Ve gViao] = (@.25)
.25

= _[Vluvruvrﬁvrag] = [Vruvruvrﬁvrag] = _%(Rapﬁu + Rauﬁu)
Similar relation for the fifth and sixth derivative can be found in [36].

Now we are prepared to compute at least some coefficients of covariant expansion. We start with
the simplest case of the covariant expansion of a function f on the manifold. In this case we do
not have problems with tensor nature of f and we do not have to worry about parallel transport of
tensor indices. The equation (G.6) can be rewritten using (G.9) as

(_l)k —p —p
F&) =30 S Frwroan (@) 01 (,2) T (w,2) (G.26)

k€ENp

Taking derivatives of this equation and coincidence limits we can find that the coefficients are given
by

fk P bgy — V(F"l cee v“k)f . (G27)

To do a similar calculation for a general tensor field A we need to know the coincidence limits of
the geodesic transport tensor. They can be calculated from the equation

— —

c=—L-0

(G.28)

by taking derivatives and coincidence limits. We give only a list of some of them (see [33,37] or [36]).

=g , (G.29)
Vil = [Vet] =0 (G.30)
1
_[vlﬁvlaépu] = [Vlavrﬁéuu] = _[Vravrﬁéuy] = §R‘aﬁ}“’ ) (G?)].)
1 1
[Vlvvlﬁvlaéyy] = _gv'yRaﬁyu - gvﬁRa'ﬂtu ) (G32)
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[vlﬁvl—yvlﬁvlakﬂy] =
1 1 1
— ZV&V—YRI_“,QL-) — ZVngRWM — ZVA,V[.;RWQ&-F

-1k

1 1 1
+ g Ryu&)\ Rnaﬁ’y g—ln)\ + g Ryu—yA Rnaﬁ& g—ln)\ + g RyuﬁA Rna—yﬁ g +

-1k + 1

J— BN
24 +

1
Ruuﬁy}\ Rnﬁaé 9_1'{)‘ + — Ruué)\ Rn—yaﬁ g

Ruué)\ Rnﬁaﬂ/ g 24

L1
24
1 a1 ka1 ]
+ Ru}\—yé Rnuaﬁ g + ] Ru}\ﬁé Rnuaﬂ/ g + s Ru}\ﬁﬂ/ Rnua& g

8
1 1 1

+ g Ruras Rnuﬁﬂ/ 9_1'{)‘ + 3 RuAa—y Rnuﬁﬁ g_l'{)‘ + g Ru}\aﬁ Rnuﬂ/& g_ln}\"‘
1

G.33
ln}\+ ( )

8

1 1
Ruulvy Raﬁé)\ 9_1'{)‘ + ﬂ Ruunﬁ Ra—yé)\ 9_1'{)‘ + ﬂ Ruunﬁ Ra&—y)\ g_ln}\"‘

) 1 )
1k + g Rup,l{a Rﬁ)\‘yﬁ g 1k

+ J—
24
1
24
Derivatives in other argument can be obtained using Synge’s theorem and commuting covariant
derivatives.

Now it is straightforward to compute the coefficients in a covariant expansion of a general field.
It can be done by taking covariant derivatives and coincidence limits of the rewritten equation (G.6)

W... a -lv (_l)k ... g Ty,
Ap(2) i (z]2) .. O p(El2) . = Z TAk,B"'”l"'”k(x) o1 (z|z) ..o (z]z) . (G.34)
kENp

) 1
Ruuna Rﬁ—yé)\ g 1rX + — Ruuna Rﬁﬁ—y)\ g A

+ 24

We will not list explicit results.
We can also expand a bi-tensor A(z|z) in both its arguments around some point y. We denote
coefficients of such expansion Ay ;(y). Le.

Fyly; X)Wl 2) AW X1y 2) = > Akitpy s (y) XP0 U XPE 22022 (G35)
k,EN

where by ¢*(y|z) A(z) we mean a parallel transport of all indices from z to y. In the case of a bi-scalar
f(z|z), similarly to (G.27) we can derive that

Fripwrown = [Vap, - Vig) Vs -+ Ve /1 (G.36)

For calculations in appendix F we need the covariant expansion of the world function o(z|z).
When we expand both its arguments at point y using the method described above we obtain

1 v 1 V7K
oy Xly; 2) = 5 (X = 2)" g (v) (X = 2)” = XXV 2727 Ryuwarn () + - (G.37)
Clearly, the expansion of the world function at one of its arguments is given by equation (G.16).

Similarly, it is possible to derive (see [36,37]) that coincidence limits of derivatives of the Van-
Vleck Morette determinant are

[Al=1 (G.38)
[d1A] = [d:A] =0 (G.39)
[ViuVinA] = — [V, Vi A] = [Vep Vi A] = éRicuV . (G.40)
and the covariant expansion
A(y;X|y;Z):1+1(X—Z)-Ric-(X—Z)+... . (G.41)

6



G Geodesic theory 167

Finally let us note that the Jacobian associated with a map

w2z Z=—0(z|2) (G.42)

T
is given by

|Det Du (z)| = |Det(g'1(m) . (g(:n|z))| =gt(z) s(z]2) = i(z]2) Az]z) . (G.43)

(d — 1) + 1 splitting near a boundary

Now we turn to investigate the domain ) with a boundary. We will study this situation locally
— i.e. we will work on a neighborhood of the boundary with topology R x ¥ where ¥ is part of
boundary manifold. In such neighborhood we can perform a (d —1) + 1 splitting which we discussed
already in appendix D (see also e.g. [2]). It is given by a time function t and time flow vector i such
that - dt = 1. We use notation of usual 3 + 1 splitting of spacetime even if we do not necessarily
assume that ¢ plays the role of a time coordinate. We assume that the condition ¢ = 0 defines the
boundary and that ¢ > 0 inside of the domain 2. We denote X; hypersurfaces defined by conditions
t = const. We denote n and i inside oriented normalized normal form and vector, g orthogonal
projection of the metric g on the hypersurfaces ¥;, and ¢ orthogonal projector to hypersurfaces X;.
Le.

g=n’nn+q , gl=nlidi4+q¢t , d=in+b , (G.44)
where ¢! is inverse of ¢ in the tangent space to the hypersurfaces. The phase factor n governs the
signature of the metric ¢ and the character of the hypersurfaces (see appendix D). We will use
shorthands

Azt = At v i ny (G.45)
We also use . o def o o
UH dé UIIII ) UII dé UHH Y UII d:e UII\I . (G'46)

Decomposition of the time flow vector # defines lapse N and shift N
f=Ni+N , dt=Nn . (G.47)

We denote D the hypersurface gradient — an orthogonal projection of a spacetime gradient to
the hypersurfaces X;
Df=0-df , (G.48)

and V the hypersurface connection of the metric ¢. It is related to the spacetime connection as
VA=10*VA for A such that A=0b"A . (G.49)

where by 9*A we mean projection of all tensor indices to the spaces tangent to the boundary. We
denote by R, RIC, R, and V? the Riemann curvature tensor, Ricci tensor, scalar curvature and
Laplace operator of the metric q.

The extrinsic curvature K is given by covariant derivative of the normal form

K=b-Vn , (G.50)

and we use shorthands
k= K;Lug_l w )

G.51
K2 — Kn/.LK)\ug_l n)\g—l pv ( )

We define the time derivative of a tensor field A tangent to the hypersurfaces:

A =0"LFA for A such that A=0b"A . (G.52)
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Now we list a number of useful relations between spacetime quantities and “space” quantities,
derivations of which are straightforward and for the case n? = —1 can be mostly found, for example,
in [2].

i-Vn=-DInN |

G.53

V-d=nk , ( )

fi-Vq:n(n(DlnN)-l—(DlnN)n) , (@54
bg quaﬁ = —HaKﬁ.y — HﬁKa.y y

V. o=-n’nk+DInN (G.55)

b-(Vb)-0=-Ki
¢ =2n’NK + Lya
K’:N(ﬁ-VK)IIII+2n2NK-q'1-K-l-EﬁK , (G.56)
k' =Ni-dk+ Nk
The curvature tensors of the spacetime metric g and of the space metric ¢ are related by
Ria g5 = Rapys +1° (KasKpy — KayKps)
Ricigyt = 1*(VaKpy = VoKay)

Ry = n' (Kk—K-¢' - K) —n? (vv N + (pInN) (DIn N) + (V- (ﬁ‘K))HH) - (G357
1 1
_ .4 e 2 il P .
=n'K-¢'-K-n (vvlnN+(D1nN)(D1nN)+NK NENK) :

Ric,, =RIC—VVInN — (DInN) (DIn N) — (V - (8K))
Ric,, =n*(v-¢' - K—-Dpk) ,

n

Ric, | = n4(k2 — K2) —n2v .- (ﬁk +q'- (DlnN)) _ (G.58)
= -—n'K? —n2(v21nN+ (DInN)-¢'- (DInN) +ﬁ-dk)
R=R+n’(k’ —K*) -2V - (ik+q"' - (DInN)) =
(G.59)

=R —n?(k* + K?) —2(ﬁ-dk+v21nN+ (DInN) - ¢ - (DlnN))

Geodesic theory near a boundary

We can develop geodesic theory on a hypersurface ¥ similarly to what we did for the spacetime

M. On the boundary we denote the exponential map v,, the tensor of geodesic transform and
its determinant ¢ and j, the world function, its derivatives and its determinant p, z, ;, 7)», (B, «,5

and t, and Van-Vleck Morette determinant A. Finally, we denote {.} the coincidence limit on the
boundary.
In the neighborhood of a part of the boundary ¥ of the domain 2 in which geodesics orthogonal
to the boundary do not cross we can also define the map w
W:XXR—->M |
, (G.60)
w(zr,n) isgeodesic , @(z,0)=2 , @ (z,0)=1
It maps point  on the boundary “orthogonally” to the domain €2 by the distance . We denote X,

the hypersurface which we obtain by shifting ¥ = ¥, by the distance . We also use the notation
Wy, X=X, , w,(r)=w(xn ,
o T (G.61)
We:Ng =X, Wee=we(We ) -
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This foliation is special case of the foliation discussed above. We obtain it for the choice of lapse
and shift N =1 and N = 0.

For a tensor field A(x) on spacetime we denote by A(Z, ) its dependence on Z and &, and ;l(:“n, §)
the tensor field on the boundary manifold given by

A(3,6) = A(®(Z, ) A2, 6) = D A(de(2) (G.62)

where ﬁ)z is the induced transformation on tangent bundles. For a bi-tensor A(x|z) we mean by the
boundary coincidence limit

{A4}(@;¢,0 = A@,¢19,0 - (G.63)
Specially, we have a metric §(7,n) (generally different from ¢(7)) on the boundary manifold,
volume element a% (7,n), and associated connection V. It is related to the connection V by

V=vaey . (G.64)
The relation of corresponding curvature tensors is (see e.g. [2])

5 8 5 5 o6 & o6 ~5 = ~5 =
Rya’s =Rya'g + VyVap = VaT¥ys T JauTys — VyuTas

- . . o o (G.65)
RICap = RICap + VuThg — Vo, + TanThe — T Tas
From the definition of the map @ we have
{0}3:60 =€~ 039 . (G.66)
{P1oc} =0 . (G.67)
Differentiating this equation we obtain the differential map Db
Dﬁ)&g(l‘) T, Eg — T, EC , 2= ﬁ)g,c (l‘) R
v o 1 ke (G68)
Dje ¢ (v) = —(ViuVieo) (z]2) 0 ™ (z]2)
In the special case £ = 0 we get
DY, (5) = — (nn*Kpw () + 0o @15,m) % @l7,1) (G.69)

1. . . ~ ~ -1
Here ((?Hl is the inverse of o, in spaces tangent to hypersurfaces Yy. Because Dg ¢ = D, . we
have

{00} = {(V1pV1e0) (Voo Vero) 7152} (G.70)

Using this relation, the definition of the Van-Vleck Morette determinant and
fi(z) - o (x]z) = —(2) - g(z) for z=1wec(x) (G.71)
we get an expression for the Jacobian associated with the map ¢ ¢,
§(5:6,0) = |Det, Dive.c| (7,€) =
- ~ -1y o
= {A ! q ! (Det\l vlvlg})(y7 57 C) = {A q(DetH vrvra-} )(y7 57 C)

As special cases we have

(G.72)

A A 1 A

i@m =301 , 1@60=7 3.671,0 . (G.73)
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This also gives the expression for the Van-Vleck Morette determinant,

A 85,0 = a3 5,6 75 (5,0) ((Dety 92710) (Det, 9:9:0)) (5, €[5,¢) - (G.74)

Finally we can prove that

35,6 A, €05,0 53,0 = a() (Det, v1v18)@, €15, ¢) = q(5) (Det, V29.:8)(3, €[, ¢)

(G.75)
Thanks to (G.67), (G.72), and (G.73), the function j defined in (F.36) is
J3:6.0 = 73,0 A@ 5,0 75,0 ab () (Det, vv25) "(3,€15,0) =
=3(5: A0,€9,0 3 (35,Q) (Det, 7:9.5) “(3,€15,0) = 16

[N

= j(@)A]2) 4* (2) (Det, Veve0)  (r]2) = () A} (2]2) (556, )
= (7.9 23,€9,07@.0)

3
The equation previous to this one is a straightforward consequence.

Reflection on the boundary

In chapter 14 we have worked with the geodesic reflected on the boundary. We recall its definition
here and list some useful properties which allows us to prove the relation (F.52).

We will study the geodesic &y (z|z) between points  and z which is reflecting on the boundary at
point b(z|z) — an extreme trajectory of the functional given by the half of squared length, with the
condition that it has to touch the boundary. We use the convention, that for any quantity depending
on two spacetime points f(z|z) we denote

filalz) = f(zlb(x|z)) ,  felz]z) = fblzl2)]2) - (G.77)

If we denote the parameter at which the geodesic reflects on the boundary A, (z|z) and its complement
Xi(z]z)
|2) €0

b(z|z) = zp(z]2)

1= M(z|z) + Ae(2|2) (G.78)
we can write the reflected geodesic as joining of two geodesics
[T, Zv] = [T, 1] © [A:eT, 2] . (G.79)
The extremum conditions on position of the reflection point and reflection parameter are
(DA—‘T)I + (D;r)r =0 , ;—1; = % . (G.80)
We define reflection world function oy, as
Ub:%+%:%:% . (G.81)
Clearly
A= 2 A== ;
Ohb (G.82)

= a0 oV DV
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Using the last equation we can get

di/op, = (divo) , dev/op = (de/o)r - (G.83)
Similarly to the case without boundary we define
Sp = |\/20'b| = S + S¢ (G84)
—
oy =gt dioy, = a , op=deo, gt = Ir ) (G.85)
Al Ar
0b=ViVio, , op=dideop, , Op=ViVioy . (G.86)
Additionally we define
1., 1, . "
s, = N i) - (deo) = W i) - (d1o), = 8- (dyop) = i - (dpop,) (G.87)
and we denote differentials of maps x — b(z|z) and z — b(z|z) as
— —
b=Dib , b=D;b , (G.88)

i.e. if we displace points x and z in directions X and Z, the reflection point moves in direction
X b(xlz)+ b(z|z)-Z
Finally we define the reflection Van-Vleck Morette determinant Ay,

Ap = [Det op| it . (G.89)
Some long algebra gives
- - 1 A 1-
c,=—-b-B-b— ——(dlab)(dlab) +—01 ,
201 A\ 1
o — —
ocpb=—b-B-b+ —(dlob)(drob) R (GQO)
20’b
b B b Moy v
Op = — : _ﬁx( ) ( rab)+_r(71 )

where

—2\/U_b(vv\/_)l+vlvl\/_)):

.
o‘,l o,r 1 op

)\1 )\r 2 010y

(D10): (Do) + 25, K(b) . (G.91)

Using these relations, a more intricate calculation gives the space coincidence limits

(Gu)y=—{0-B-b} | (G.92)
J - —{Z-B} A5 =) (G.93)
{ Vlvlab } {O'b” VeV O'b O'b”} =
o ) 4 o (G.94)
=q0, (VeVyeo) - (Al(v Vo)t + A (ViVi0); ) (VyVyo) - ,,1} ,
{(Vlvlab O'b‘,} {O'b“' Vs Vrab)} . (G.95)

Here inverses are taken in the spaces tangent to the boundary. Taking the determinant of the last
equation, we find

{(Det 17 1,)?} = {(Det, V1V10n) (Det, Ve Veon)}

. L 1 (G.96)
Ay (9,€l9,¢) = (Cl_E (1,6 a2(¥,¢) (Det, V1Vioy) (Det, vrvrfj'b)) (4,€19,¢)
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and
j2((§)) (Det, V1V10) (z]2) = j2((zz)) (Det, V:Vy01) (z]2) =
q 7* (@) q (G971
= (M(Te720)! + (7192007 ) (a2)
for z = @(y,€) and z = W(y, (). Putting these relation together we obtain
(@) Au(a]2)j(2) = jq ((;)) (Det, V19100) (¢]2) = jq ((ZZ)) (Det, V. Vs00) (c]2) (G.98)

for z = @(y,€) and z = W(7,(). The equality in (F.52) is a straightforward consequence of this
relation.

Covariant expansions near boundary

Finally we will write down coefficients in covariant expansions (F.32) and (F.33) of the world func-
tion o and function [ defined in (F.30). These are expansions inside of the boundary manifold of

w-mapped functions (%, £|2,¢) and 1(z,£|2,¢) around point Z. The derivation is long and tech-
nical. It uses the general method discussed above and a transformation of the connection V to the
connection V. Fortunately, we need only the spacetime coincidence limit of the coefficients (i.e.
Fk.1(F;m,7m)), which simplifies the calculations significantly. But even then the calculations is too
long and uninteresting to be included it here. We list only the results. See also [26,34,35] for similar
calculations.

The coefficients of the boundary covariant expansion of the spacetime world function ¢ at some
general point § (slight generalization of eq. (F.32)) are

ool 6,0 = 57 (€~ O (G99

00,1(9;6,¢) = 510(1;6,() =0 (G.100)

[020] = —[01,1] = [002] =G (G.101)

[03,008] = [Go3apy] = 3@(:5@—7),1 , 02108kl =[01,2a] = —Q:ﬁ@n” , (G.102)

[&4,0 aﬁ—y&] = [80,4 aﬁ‘y&] =
= _nQK(aﬁK*y&) + 4(6((1;)\/5:/)@5)# + 8”)\//4 a’?ﬁ—yaﬁ)u + 37(
(031 a8y k] = 0180 apy] =
. m e mawn G.103
=n K(aﬁK'y)n - (v(a’)/ﬁ’fy))qpn - ’Y(aﬁ’yv pqun ’ ( )
- 1
[02,2 af n)\] = _5 (Ranﬁ)\ + Ra)\ﬁn)_

1 ~ 1 gt gt > > ~ SV~
— §n2Ka,{Kﬁ)\ — §n2Ka}\Kﬁn - n2KOLﬁKR)\ - 'ycfa’)/n}\quu

The coefficients of the boundary covariant expansion of the function [ at some general point g
(slight generalization of eq. (F.33)) are

[lo0] =2Inj (G.104)
[10al = o1l =74, (G.105)
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[72,0aﬁ] = [70,2aﬁ] =

1/ - S P
— - (—Kaﬁ + 20 KapwKend Y — n’Kaph+

’ . (G.106)
+ 30, + AL + 20
[111a8] = & (Ko — 20°RauRoud ™ + nKogh)
Computing normal derivatives we also get
Sy =nk
’f . A (G.107)
ﬁ(ln])’ =k ;
and
1., -
[y =0
. i (G.108)
—2[(1nj)r'r = —gl(k + n2K2)
Finally, we have boundary coincidence limits
{0} (@:6,0) = l1”02(6 +0° , {s}@:60 =+ 0 (G.109)
{03360 = €+ QiF,0) , {ou}F:E0 = E+QiF,0) (G.110)
- & ¢
{M}(3:6,0) = £1c {M}E:6,0) = e (G.111)
Using these relations, equations (G.92), (G.93), with help of (G.69) and
{00} 360 =a@) + 0, {0.u}F:6,0 = 4@) + 0 (G.112)
we can derive
_ ¢ N
~{ondE60 =a) + (64 ¢~ 220 )n"KG) + O(E+0) (G.113)
From this follows
NETY _ £¢ -
D360 =1+ (64 =225 )n'k(H) + 06+ 07) - (G.114)
Together with
i@ =1+ n%k@)n + O0n?) (G.115)
and the definition (F.52), it finally gives the expansion for jy,,
o620 = 14 (535 — (1 - )\ )nk(@) + (6 + C+ 1)) (G.116)
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H Special functions R,

In appendix F we have used various integrals of exponentials of quadratic exponent and integrals
of such integrals. Here we summarize properties of such integrals. We will introduce a special
function R, closely related to error functions erfc(z), the definition and properties of which can be
found, for example, in [38]. The derivation of the properties below are not all simple, and we do not

include them here.
We define the function R, (z) for positive v as

R,(z) = ﬁ /dm vt exp(—%(m - z)2)
R+

It is a solution of the differential equation
R, (2) = vRy41(2) — 2R, (2) , R, =2=30

In the limit v — 0 and for v = 1 we have

Ro(2) = exp(—%z2) ,

Ri(z) = V21 — \/gerfc(%)

We also have the recurrence relation

Ryi2(2) = (zRu41(2) + Ru(2))

v+1

For v € N these functions are combinations of Ry and R; with polynomial coefficients
Rnt1 = pnRi + an-1Ro for n €N ;

where

Prt1(2) = (zpn(2) + Pn-1(2)) , Po=1 , pi=2z ,

n+1

1
(ZQn(Z) +anl(z)) , Q=1 , q1= 52

These polynomials satisfy

!

Pn =DPn-1 q'ln, =(M+2)dns1 — Pnt1

and

V21 pn(2) = Rut1(2) + (=1)"Rata(—2) = W@H”(Z\%) ,

where H,, are the Hermite polynomials (see [38]).

(H.1)
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Values at zero are

R, (0) = 0% F(% +1) _ 1 _ V2T _ (ffl)” for v natural and even , (H.10)
Flv+1) 225 1(%5L +1) 27v/5 for v natural and odd
L for n even 0 for n even
n(0) =g ™ , = : H.11
P (0) {O for n odd Pn { (njl)!! for n odd ( )
—L - for n even 0 for n even
0) = ¢ (nHD! , "= H.12
4 (0) {O for n odd I ﬁ — (n+11)!! for n odd ( )
The behavior for small z can be found for natural v with help of relations (H.5) and
(=1*
R, =
’ 1) (H.13)
T _
Ri(z) = \/j—i— Z 7”22'“'1
2 = (2k + 1) (2K)!
The behavior for |z| > 1 and n € Ny is
1, 1
Rpt1(z) = V27rpa(z)0(2) + exp(—iz ) O(an) , (H.14)

where 6(z) is the step function.
Now we can write down results of some integrals in terms of these functions. For n € Ny we have

1 1
o dzr z" exp(—§(a: - 2)2) =V2rpu(z) . (H.15)
R
Further for k,1 € Ny we have
-1 I+m m
7 / darfle(a:) = %x Risiomi(T) =
(—o00,2) m=0,...,0
V2 2m -1 (k-1
_ 1\l k+1—2m __
= V2r(=1Pen (0) + 7y, 2 it —2m< 2m )”“” (H.16)
2m<k—1
1 m
- Z ﬁm Ripicmp(=2)
m=0,..,l
1 I
7 dz &Ry (x) =
(0,z)
V2m 2m - (k-1
= (-1 k k+l—-2m _
2mm§k71
1 m
- Z ml' Risiomr (=)
m=0,...,0 ’

Finally for m, k,l € R and n = m + k + [ we have

1 gmrkgmH 1 0\ _opt D4+ k+1)T(m+141)
£,CERT
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I Diagrammatic notation

In this appendix we make some comments about the diagrammatic notation. A well-known
application of this notation are Feynman diagrams used in field theory (a modification of which
we use in the text). But in general, this notation is nothing other then a graphical representation
of algebra of tensor objects. See for example [27] for an application to the spacetime tensors and
spinors.

The main idea is to represent tensors by geometrical objects with “legs” which correspond to
tensor indices. Different kind of tensor indices should be represented by different kind of legs. The
contraction of tensor indices is represented by connection of corresponding legs. We can add the
diagrams with the same leg structure and multiply them to obtain a diagram with more complicated
leg structure which represents the tensor product of the component.

The only difference from the usual algebra is that we associate with each diagram a symmetry
factor and we include the reciprocal of this numerical factor with the diagram. The symmetry factor
is the number of ways in which the diagram can be re-arranged to obtain the identical diagram. If
we want to use the diagram without the symmetry factor, we precede it with a # sign. To illustrate
this convention we give some examples. Let a, b, k, H, and O be tensors represented by following
diagrams

at O— 5 kmn (O, kmn=knm ,
-

b . o— . g™ o ., H™m=pgnm (L1)

We can write

kmnb” & 0o =#000 , (1.2)
1 m n J—
3¢ kmna © O{}O =3 #OO—O ; (I.3)

(@™ kmna™)? “ o()o = 53] #o-()o , (1.4)

[\V)
@
@ =

1
S (@ ke (a7 457)
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Power expansion of some functions gives

exp(%amkmna") ~
+ + oo + to=
11000+ 2824000

oo
—14 55 #0004 iy #0043 #0Q0 +

(k-l—H)'lmn o
O+ OO + OO0+ = (L8)
=#0O+ #0000 + # OO+

1 11 11
=§#®+§5#©+55# +——#

There are some common operation which have a nice graphical interpretation. Let have some set
of elementary connected diagrams (i.e. diagrams which are not explicit product of other diagrams)
without free legs. The sum of all diagrams composed of an arbitrary number of these connected
diagrams is the exponential of the sum of the diagrams. For example

exp(D-l-D):
=1+ [ |+ []+
++UE+ 80
++UE+0O 0+ B E -

This fact is powerful in an opposite direction — if an expression is given by the sum of all possible
products of elementary connected components, the sum of these connected components is given by
logarithm of the expression.

In combination with (L.9) we also find that det(§ — O)~2 is given by the sum of all possible
products of loops formed using the diagram of the operator O.

(1.10)

Next, let us have an expression given by the product of elementary diagrams which contains
the diagram representing a vector a. We can understand it as an analytical tensor-valued function
of the vector a. The derivation with respect of its argument is graphically represented as sum of
graphs which we get by “tearing out” the diagram a from all possible symmetrically non-equivalent
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Frn(@) Kiﬂ@D@
W) o @ oD+ @ooB+ B0 B

Note that the numerical factors above are correct thanks to symmetry factors included in the dia-
grams.

positions. E.g.

(111)
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I To define the “velocity” — an inner space derivative of the history — we need some additional
structure on the fibre bundle H, for example a connection on this bundle. There can exist
a natural connection (for example if we can identify fibres of the bundle) or a choice of the
connection is equivalent to specification of a external field (e.g., a gauge field for the Yang-Mills
theories). In the following we will not need to specify the exact nature of this structure. We
will only assume that velocities Dh have a vector bundle structure over the inner manifold M
so we can define the derivative of the Lagrangian density with respect of the velocities %.
For the definition of the derivative of the Lagrangian density with respect of boundary value
we need also some additional structure (see appendix C for discussion of similar questions for
tangent bundles) which we also will not specify becacause we are not interested in an exact
form of the equations of motion at this moment.

[£1, &) are Lie brackets of the tangent vectors &1, &o.

3 We should be careful to distinguish the spaces P and S. We have S C P but it is not true for
duals 8* ¢ P*. We can only define a natural restriction P* —+ S8*. Similar comments apply
for B and S§. Therefore, if we will work with tensors intrinsic to & we use the tensor indices
a,B,... and we use o for the contraction operation. But for vector objects we sometimes use
the natural identification S C P or S C B, for example for ¢1,¢2 € S

proWody=q¢1e0F[S]ego=¢1o(mp —gm)ods |,

where in the former term the symplectic form lives on &, in the second one in P and in the
last one in B.

We have T Y C T M, so there is a unique meaning in writing a space vector with a spacetime
index (e.g. N%). It is not well defined for covectors. To write gag We have to specify that we
are using an orthogonal projection from T M to T X in sense of the metric gag-

We are using the following convention for operators
Teprp =Txpy ¥’
peprm =¥ pyTx

This means that in the first case the operator p acts to the right, in the latter case to the
left. The order is determined by the fact that ¢ is vector and 7 is covector. This convention
simulates contraction of vector indices, and it is necessary to be careful in some cases. For
example if A, B € S| are operators on S we can write

(Ao W 0G0 B)Y = AW .G B2 = —AU6s5BE = —(Bo A)T

Note the reverse order of the operators in the last term. To get used to the convention, we

give another example. Let J be an operator on S satisfying Jo W = — @ o J. We can write
“ny any s T e\ T
Jow=-wol=w olJ=Uow)

or, using indices,
(JoW)ay =2 Woy = —Wardy = Weal) =05 Wee = JoW)ya=UJow)

On any manifold M we can define a vector bundle of tangent densities of a weight a which
we denote R* M or C* M if the densities are real or complex. The space of sections will be
denoted §* M. The standard fiber of this bundles are vector space of real or complex numbers.
As for any tangent bundle, the density bundle can be defined by a map from bases e, in tangent
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vector spaces to the standard fiber which is a representation of the linear group on the bases.
The map tells by what factor is a density p is different from the coordinate density e given by
the base e,

pled] = pet , eled =1

The representation for densities of the weight « is
u[ALes] = (det A)° plea]

Clearly we can define complex densities even for a complex weight.

Beside the linear operation we can define also multiplication and constant powers of densities.
Of course, these operations map densities of some weight to densities of a different weight. Let
us note that complex conjugation maps the densities of a weight a to densities of the weight
a* and therefore “the absolute value” belongs to densities of weight Re a.

Polar decomposition is a decomposition of an operator in a Hilbert space into its absolute
value and signum. We will use it for a real Hilbert space, i.e. a real vector space with a scalar
product defined by a symmetric positive quadratic form h

(a,b)=aT -b=a-h-b a,b vectors
AT =h"1. A4-h A an operator
There exists unique left and right decomposition of an operator O
O =|0|, - sign; O =sign, O - |O],.
to a positive definite symmetric operator |O|, or |O|, and an orthogonal operator sign; O or
sign, O
01}, =10, , 0|, positive definite
(sign; , 0)" = (sign; , 0) ",
and these operators are given by
1 1
0, =(0-07)* , 0], =(0"-0)* ,
sign, 0 = |00 , sign,0=0-|0["

If O commutes with OT both decompositions coincide.

Let us remember that in our convention

(6w = T (6w

ke

and

[wod)™ F =[] [uoa]™|F

kel

Filled circles correspond to disconnected transition amplitudes and empty circles to connected
ones. As with usual Feynman diagrams, numerical prefactors computable from the symmetry
of diagrams are included in diagrams. See more appendix I and chapter 15 for more details on
diagrammatic notation.
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10

11

12

13

14

15

16

17

18

19

20

We use the proper normalization of the position bases and choose the density weight of the
base equal to (3 — iyr) and (3 — i7;), where v and 7; are the order parameters as defined in
(5.9). Le. we do not need to choose any volume element on V[¥¢] or V[%;] and it makes sense
to write, for example

ﬁff = / |f pos : x¢)(f pos : x|

xsEV[E¢]

More precisely, in the Heisenberg picture which we are using, the physical state |phys) is a fixed
dynamically independent state, and the dynamics is hidden in the relations of basic observables
Igf, Ca to this state. But we will be a bit vague and will speak about determination of the
physical state |phys) because it is more intuitive and does not influence any computation.

We will use ¢, ... for elements of B instead of more appropriate d¢, ... to simplify the notation.
It can be also understood as a representative from P of the element in B. Of course, only the

value and the normal derivative on the boundary is important for the boundary phase space
B.

Here we use the same letter for a general momentum 7 € V and the constant 7 = 3.1415... in
the normalization of the measure for momenta. It is left to an intelligent reader to distinguish
the meaning from the context.

The Euclidian action is used here because it includes all necessary numerical factors. As
discussed in appendix D, we can use both Euclidian or physical actions regardless of which
version of the theory we are working. They are related by

—I(h) = vS(h)

The version of the theory is determined by actual value of the factor v — whether it is real or
imaginary.

In this part we use the Lorentzian (i.e. physical) convention in the sense of appendix D with
an exception that we use the Euclidian action I. It cannot lead to confusion, because we have
denoted it by a different symbol than the physical action S.

The factor n, which governs the signature of the spacetime metric, is chosen here for conve-
nience and reflects that we are using Lorentzian convention for volume element. I.e., the phys-
ical amplitude is %K , but the quantity K will have nicer properties in language of Lorentzian
quantities. Similarly, for the Green function the physical amplitude is %GF , but we will use
often the quantity G¥ to express properties of the amplitude.

Again, we factorize out the prefactor n motivated by the fact that J is a density, i.e. propor-
. 1
tional to volume element g=.

We do not lose any generality — all the following could be done with respect to some general
b-boundary conditions, only instead of @, 7, 7 and related quantities we would have to use

.‘(Q,\,b: Ewba ’y~b7 etc..

Here, the standard fiber Ty, H is equal to the standard fiber of the tangent space of the fiber
manifold H.

Here we mean that ¢ is a non-degenerate metric on ¥, if restricted on tangent space T ¥;.
But we use here identification of tangent spaces to X; with tangent spaces of the manifold
assuming orthogonal projections for covectors using metric g.
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