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Waves propagating with speed of light

e Spacetime with a null coordinate u
e Field with a phase dependence ¢(u)

e A possible dependence on transversal directions ¢(u, ")

pp-waves

g=—2Hdu* —du Vv dr+d¢Vvd¢ G

Kundt waves

g=—2Hdu® —duVdr + (Wd¢ + Wd¢) vV du+d¢ v d¢

H and W have no or just a trivial dependence on r
¢, ¢ — transversal directions



Null fluid

e Null hypersurface u = constant generated by a null congruence k
e k is algebraically special direction of the geometry

e Standard matter fields aligned with £

phenomenological description of a null dust or of a coherent light beam:

T = j, du?



Gyratonic matter

e ceneralization of null fluid

e allowing intrinsic rotation (spin) of the fluid
(e.g., circularly polarized light)

e allowing transversal transfer and accumulation of energy

(sort of heating or cooling processes)
T :ju du2 +j V du

Ju — energy density of the fluid (transverse scalar)

j = j;dat — intrinsic energy transfer (transverse 1-form)

local energy conservation:

V-T=0

e in general, problems with causality (energy conditions violated)

e 10 heating/cooling = no accumulation of energy
= j, constant along the null congruence k



Gyratons

Gravitational waves which include a response to gyratonic matter

e we restrict to the class of Kundt waves

e we allow additional aligned electromagnetic field



Gyratons on Minkowski spacetime

V. P. Frolov, W. Israel, A. Zelnikov: Gravitational field of relativistic gyratons, Phys.Rev. D 72 (2005) 084031

e flat Minkowski background
e ceneral dimension

e Kundt form of the full metric

metric:
g=—2Hduw’ —duVdr+aVdu+gq

gyratonic matter:
T = j,du®+ j vV du

u — null coordinate
k=0, — null congruence
r — complementary time coordinate = affine parameter of the congruence k
! — transverse coordinates
q= Z dz'da’ — flat transverse metric
i
H(u,x") — characteristic pp-wave term (scalar function)
a(u, z") — characteristic gyratonic term (transverse 1-form)

H=0 a=0 — Minkowski background



Gyratons on Minkowski spacetimes

Field equations:
divf =7

1
— A H:ju+§f2+8udiva

f=da — ‘strength’ of the gyratonic 1-form a (transverse 2-form)

f?= % [ fii — transverse square of F

div — transverse divergence (with respect to the transverse metric q)

A — transverse laplace (with respect to the transverse metric q)
Properties:

e field equations are formulated in terms of transverse space

e separation of equation for ¢ and H

e lincar structure of equations (solvable in terms of the Green functions)

e in 4 dimensions, in vacuum region, the gyratonic term a is locally gauge trivial

e it is not globaly gauge trivial (a nontrivial integral characteristic related to the sources)

e belongs to the class of VSI spacetimes



Gyratons on direct-product spacetime

H. Kadlecova, A. Zelnikov, P. Krtous, J. Podolsky: Gyratons on direct-product spacetimes, Phys.Rev. D 80 (2009) 024004

e special subclass of 4-dimensional Kundt spacetimes
e additional electromagnetic field and non-trivial cosmological constant

e direct-product background

metric:
g=—-2Hdvw —duVvdr+aVvdu+g

electromagnetic field:
F=FdrAdu+Be+duANho

gyratonic matter:
T = ]—udUZ + 7 Vdu

q(u, ") — general transverse metric

H(r,u,x") — characteristic pp-wave term (scalar function)

a(u, z") — characteristic gyratonic term (transverse 1-form)

e(u, 2" — transverse Levi-Civita tensor (transverse 2-form)

E, B — constants characterizing the background EM field

o(r,u, z") — transverse 1-form describing a deformation of EM field due to the gyraton

V= %(E2 + B2) — energy density of EM field



Transverse space

1 = constant — null hypersurfaces of a ‘constant phase’
k= —fdu — null congruence = direction of the ray propagation
r — affine parametrization of the congruence k

u,r = constant — transverse space = the ‘wave front’ of the gyraton

Characteristic features of the gyratons:
e transverse geometry is independent of the gyraton

e all equation can be formulated on the transverse space



r-dependence and gauge

geometrical assumptions and the field equations =

0rq =10 Ora =10 00 =

coordinate gauge freedom =

0,9 =0 diva =0

the energy conservation for gyratonic matter =

Ju=rdivj+t 0] =

transverse trace of the Einstein equations =

H=-iA7r*+gr+h

notation: AL =AL+V

0

djVj

t(u, z’)
densjty
9(u, 2%) 4
WéLVe o) tb@



Field equations

e cquations formulated on the transverse space
e cquations separate — they can be solved subsequently
e linear structure of the equations

e solvable in terms of the Green functions on the transverse space

order of solving of the field equation:

transverse metric g
gyratonic term a (gravitational response to intrinsic spin)
metric function g (gravitational response intrinsic energy transfer)

electromagnetic field o (EM response to graviton)

AT e

. metric function h (gravitational wave contribution)
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scalar curvature of ¢ = 2A_



Field equations
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%Ab+A+b:—r0tj rota = b diva =0
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Ag=divj



Field equations
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order of solving of the field equation:
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AN A e

. metric function h (gravitational wave contribution)

roto =0 dive = —Brota



Field equations

e cquations formulated on the transverse space
e cquations separate — they can be solved subsequently
e linear structure of the equations
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order of solving of the field equation:
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AT e
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Ah:L—%b2—|—/\_a2—2a-dg+(a—Ea)2



Properties of the gyraton

e cecometry of the transverse space is independent of the gyraton

e spacetime polynomial curvature invariants are independent of the gyraton
(CSI spacetimes)

e algebraic type II solutions

e null congruence k£ is geodesic, expansion-free, sheer-free, twist-free, recurrent
and algebraically special



Backgrounds

background spacetime given by

direct-product spacetimes

product of two 2-dimensional spaces of constant curvatures:

e Lorentzian space spanned by coordinates r, u

e Riemaniann space spanned by coordinates z*

special subcases:

— curvature 2A_

— curvature 2\,

A V A Ay geometry spacetime

=0 = 0 0 M, x E? Minkowski

>0 =0 A A dSy x S? Nariai

<0 =0 A A AdS, x H? anti-Narial

=0 >0 -V V AdSy x S? Bertotti-Robinson
>0 =A 0 2\ M x S? Plebanski-Hacyan
<0 =|Al 2A 0 AdS, x E? Plebanski-Hacyan



‘Melvinization’ of gyratons on direct-product spacetimes

P. Krtous, H. Kadlecova: in preparation

e switching on a stronger electromagnetic field
e solutions from the Kundt class
e transverse metric with rotational symmetry

spacetime metric:

SQ
g = 22(—2Hdu2 —du\/dr+a\/du+dp2) +§dg02
electromagnetic field:
F=EdrAdu+Y?Be+duno
gyratonic matter:
T = j,du* +j Vv du
P, P — radial and angular transverse coordinates
X(p) — a new metric function amplifying influence of the EM field

S(p) — a new transverse metric function



Transverse geometry

transverse metric:

20 9 ST,
field equations =
1. 4 ) 1/2
Y,=7S X, = —gAE +aX+ Y-V
a, 3, = constant solution in terms of inverse of Euler integrals
a new radial coordinate x (Plebariski form of the metric)
Ly 2
Y=1+vx = q:édp + Gdp

(G is an explicit rational function of x

regularity at the axis =
independent constants A, V. ~

2
a=AN—-V+2y 5:—§A+2V—2y



Transverse geometry
v =0 = Y =1 = direct-product spacetimes

embedding diagrams of the transverse space:

A_|_>O A+:0 A+<O



Transverse geometry

v # 0 A>0 = closed space

embedding diagrams of the transverse space:




Transverse geometry

v # 0 A=0
embedding diagrams of the transverse space:
closed space asymptotically closed space asymptotically cylindrical space
V> 2y V =2y V <2y

Melvin universe

H. Kadlecova, P. Krtous: Gyratons on Melvin spacetime, arXiv:1006.1794



Transverse geometry
v £ 0 A<0

embedding diagrams of the transverse space:

closed space asymptotically closed space open space

V< Vs V= T V> Vs



Spacetime curvature invariants

e spacetime polynomial curvature invariants are independent of the gyraton

A. Coley, S. Hervik, N. Pelavas: Lorentzian manifolds and scalar curvature invariants, arXiv:1003.2373



Kundt family of spacetimes in higher dimensions

P. Krtous, A. Zelnikov, H. Kadlecova, J. Podolsky: Higher-dimensional Kundt waves and gyratons, in preparation

J. Podolsky, M. Zofka: General Kundt spacetimes in higher dimensions, Class. Quantum Grav. 26, 105008 (2009)

Generalization to higher dimensions D = d + 2:

general formalism of 2+d-splitting of spacetimes
admitting a null hypersurface

metric:
g=-2Hdvw —duVvdr+aVdu+gq
assumptions:
q=0 a=10

Ricci tensor: ]j()/f(?f_

D f /]Ojj

Ric,, =0 S d)f
PRic,s =0 /< P
PRic,, = H “ X /zf
1 . 1 9%,

PRicy, =4 H + (da) o (da) + §H<H+§a2) +diva—sqeq—2H6,-0,

b RiCTT = Ric



Field equations

properties:
e the field equations formulated on the transverse space
e decoupling of the field equations

e semi-linearity of the field equations

new features:

e nontrivial transverse geometry ¢

(e.g., gauge freedom does not eliminate u-dependence of q)
e nontrivial magnetic field B

e compatibility of the transverse geometry and of the magnetic field

(e.g., B =0 or direct-product structure of two dimensional spaces)
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