Gyratonic solutions in Kundt class

Pavel Krtouš

Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, Prague

> GR19, Mexic-City July 4–10, 2010

Pavel.Krtous@mff.cuni.cz
http://utf.mff.cuni.cz/~krtous/

in collaboration with:

- Hedvika Kadlecová (Charles University, Prague)
- Andrei Zelnikov (University of Alberta, Edmonton)
- Jiří Podolský (Charles University, Prague)

contents:

- pp-waves and Kundt waves
- gyratons and gyratonic matter
- gyratons on Minkowski and AdS spacetimes
- gyratons on ('Melvin-ized') direct-product spacetimes
- gyratons in higher dimensions

Waves propagating with speed of light

- \bullet Spacetime with a null coordinate u
- Field with a phase dependence $\phi(u)$
- A possible dependence on transversal directions $\phi(u, x^i)$

pp-waves

$$g = -2H du^2 - du \vee dr + d\zeta \vee d\bar{\zeta}$$

 $a_{V_{\beta}} = a_{\beta}$

Kundt waves

$$g = -2H du^2 - du \vee dr + (W d\zeta + \bar{W} d\bar{\zeta}) \vee du + d\zeta \vee d\bar{\zeta}$$

H and W have no or just a trivial dependence on r ζ , $\bar{\zeta}$ – transversal directions

Null fluid

- \bullet Null hypersurface u= constant generated by a null congruence k
- \bullet k is algebraically special direction of the geometry
- ullet Standard matter fields aligned with k

phenomenological description of a null dust or of a coherent light beam:

$$T = j_u \, \mathrm{d}u^2$$

Gyratonic matter

- generalization of null fluid
- allowing intrinsic rotation (spin) of the fluid (e.g., circularly polarized light)
- allowing transversal transfer and accumulation of energy (sort of heating or cooling processes)

$$T = j_u \, \mathrm{d}u^2 + j \vee \mathrm{d}u$$

 j_u — energy density of the fluid (transverse scalar) $j = j_i dx^i$ — intrinsic energy transfer (transverse 1-form)

local energy conservation:

$$\nabla \cdot T = 0$$

- in general, problems with causality (energy conditions violated)
- no heating/cooling = no accumulation of energy = j_u constant along the null congruence k

Gyratons

Gravitational waves which include a response to gyratonic matter

- we restrict to the class of Kundt waves
- we allow additional aligned electromagnetic field

Gyratons on Minkowski spacetime

V. P. Frolov, W. Israel, A. Zelnikov: Gravitational field of relativistic gyratons, Phys.Rev. D 72 (2005) 084031

- flat Minkowski background
- general dimension
- Kundt form of the full metric

metric:

$$g = -2H du^2 - du \vee dr + a \vee du + q$$

gyratonic matter:

$$T = j_u du^2 + j \vee du$$

```
\begin{array}{lll} u & & - \text{ null coordinate} \\ k = \partial_r & & - \text{ null congruence} \\ r & & - \text{ complementary time coordinate} = \text{ affine parameter of the congruence} \ k \\ x^i & & - \text{ transverse coordinates} \\ q = \sum_i \mathrm{d} x^i \mathrm{d} x^i & & - \text{ flat transverse metric} \\ H(u, x^i) & & - \text{ characteristic } pp\text{-wave term (scalar function)} \\ a(u, x^i) & & - \text{ characteristic gyratonic term (transverse 1-form)} \\ H = 0 & a = 0 & - \text{ Minkowski background} \end{array}
```

Gyratons on Minkowski spacetimes

Field equations:

$$\operatorname{div} f = j$$

$$- \triangle H = j_u + \frac{1}{2}f^2 + \partial_u \operatorname{div} a$$

```
f = da — 'strength' of the gyratonic 1-form a (transverse 2-form)
f^{2} = \frac{1}{2}f^{ij}f_{ij} — transverse square of F — transverse divergence (with respect to the transverse metric q)
\Delta — transverse laplace (with respect to the transverse metric q)
```

Properties:

- field equations are formulated in terms of transverse space
- \bullet separation of equation for a and H
- linear structure of equations (solvable in terms of the Green functions)
- \bullet in 4 dimensions, in vacuum region, the gyratonic term a is locally gauge trivial
- it is not globaly gauge trivial (a nontrivial integral characteristic related to the sources)
- belongs to the class of VSI spacetimes

Gyratons on direct-product spacetime

H. Kadlecova, A. Zelnikov, P. Krtouš, J. Podolský: Gyratons on direct-product spacetimes, Phys.Rev. D 80 (2009) 024004

- special subclass of 4-dimensional Kundt spacetimes
- additional electromagnetic field and non-trivial cosmological constant
- direct-product background

metric:

$$g = -2H du^2 - du \vee dr + a \vee du + q$$

electromagnetic field:

$$F = E dr \wedge du + B \epsilon + du \wedge \sigma$$

gyratonic matter:

$$T = j_u \, \mathrm{d}u^2 + j \vee \mathrm{d}u$$

```
\begin{array}{lll} q(u,x^i) & - \mbox{ general transverse metric} \\ H(r,u,x^i) & - \mbox{ characteristic $pp$-wave term (scalar function)} \\ a(u,x^i) & - \mbox{ characteristic gyratonic term (transverse 1-form)} \\ \epsilon(u,x^i) & - \mbox{ transverse Levi-Civita tensor (transverse 2-form)} \\ E,B & - \mbox{ constants characterizing the background EM field} \\ \sigma(r,u,x^i) & - \mbox{ transverse 1-form describing a deformation of EM field due to the gyraton} \\ V=\frac{1}{2}(E^2+B^2) & - \mbox{ energy density of EM field} \end{array}
```

Transverse space

```
u={\rm constant} — null hypersurfaces of a 'constant phase' k=-^\sharp {\rm d} u — null congruence = direction of the ray propagation  r \qquad \qquad -{\rm affine\ parametrization\ of\ the\ congruence\ } k u,r={\rm constant}\qquad -{\rm transverse\ space}={\rm the\ `wave\ front'\ of\ the\ gyraton}
```

Characteristic features of the gyratons:

- ullet transverse geometry is independent of the gyraton
- all equation can be formulated on the transverse space

r-dependence and gauge

geometrical assumptions and the field equations \Rightarrow

$$\partial_r q = 0$$

$$\partial_r a = 0$$

$$\partial_r q = 0$$
 $\partial_r a = 0$ $\partial_r \sigma = 0$

coordinate gauge freedom \Rightarrow

$$\partial_u q = 0$$

$$\partial_u q = 0$$
 div $a = 0$

the energy conservation for gyratonic matter \Rightarrow

$$j_u = r \operatorname{div} j + \iota$$

$$\partial_r j = 0$$

 $\operatorname{div} j$ – intrinsic energy accumulation $\iota(u,x^i)$ – initial energy

transverse trace of the Einstein equations \Rightarrow

$$H = -\frac{1}{2}\Lambda_{-}r^2 + gr + h$$

$$g(u, x^i)$$
 and $h(u, x^i)$
characterize gravitational
wave of the gyraton

notation:
$$\Lambda_{+} = \Lambda \pm V$$

- equations formulated on the transverse space
- equations separate they can be solved subsequently
- linear structure of the equations
- solvable in terms of the Green functions on the transverse space

- 1. transverse metric q
- 2. gyratonic term a (gravitational response to intrinsic spin)
- 3. metric function g (gravitational response intrinsic energy transfer)
- 4. electromagnetic field σ (EM response to graviton)
- 5. metric function h (gravitational wave contribution)

- equations formulated on the transverse space
- equations separate they can be solved subsequently
- linear structure of the equations
- solvable in terms of the Green functions on the transverse space

order of solving of the field equation:

- 1. transverse metric q
- 2. gyratonic term a (gravitational response to intrinsic spin)
- 3. metric function g (gravitational response intrinsic energy transfer)
- 4. electromagnetic field σ (EM response to graviton)
- 5. metric function h (gravitational wave contribution)

scalar curvature of $q = 2\Lambda_{-}$

- equations formulated on the transverse space
- equations separate they can be solved subsequently
- linear structure of the equations
- solvable in terms of the Green functions on the transverse space

- 1. transverse metric q
- 2. gyratonic term a (gravitational response to intrinsic spin)
- 3. metric function g (gravitational response intrinsic energy transfer)
- 4. electromagnetic field σ (EM response to graviton)
- 5. metric function h (gravitational wave contribution)

$$\frac{1}{2} \triangle b + \Lambda_+ b = -\operatorname{rot} j$$
 $\operatorname{rot} a = b$ $\operatorname{div} a = 0$

- equations formulated on the transverse space
- equations separate they can be solved subsequently
- linear structure of the equations
- solvable in terms of the Green functions on the transverse space

- 1. transverse metric q
- 2. gyratonic term a (gravitational response to intrinsic spin)
- 3. metric function g (gravitational response intrinsic energy transfer)
- 4. electromagnetic field σ (EM response to graviton)
- 5. metric function h (gravitational wave contribution)

$$\triangle g = \operatorname{div} j$$

- equations formulated on the transverse space
- equations separate they can be solved subsequently
- linear structure of the equations
- solvable in terms of the Green functions on the transverse space

- 1. transverse metric q
- 2. gyratonic term a (gravitational response to intrinsic spin)
- 3. metric function g (gravitational response intrinsic energy transfer)
- 4. electromagnetic field σ (EM response to graviton)
- 5. metric function h (gravitational wave contribution)

$$\operatorname{rot} \sigma = 0$$
 $\operatorname{div} \sigma = -B \operatorname{rot} a$

- equations formulated on the transverse space
- equations separate they can be solved subsequently
- linear structure of the equations
- solvable in terms of the Green functions on the transverse space

- 1. transverse metric q
- 2. gyratonic term a (gravitational response to intrinsic spin)
- 3. metric function g (gravitational response intrinsic energy transfer)
- 4. electromagnetic field σ (EM response to graviton)
- 5. metric function h (gravitational wave contribution)

$$\triangle h = \iota - \frac{1}{2}b^2 + \Lambda_{-}a^2 - 2a \cdot dg + (\sigma - Ea)^2$$

Properties of the gyraton

- geometry of the transverse space is independent of the gyraton
- spacetime polynomial curvature invariants are independent of the gyraton (CSI spacetimes)
- algebraic type II solutions
- ullet null congruence k is geodesic, expansion-free, sheer-free, twist-free, recurrent and algebraically special

Backgrounds

background spacetime given by

$$h = 0$$
 $g = 0$ $a = 0$

direct-product spacetimes

product of two 2-dimensional spaces of constant curvatures:

- Lorentzian space spanned by coordinates r, u curvature $2\Lambda_-$
- Riemaniann space spanned by coordinates x^i curvature $2\Lambda_+$

special subcases:

Λ	V	Λ_{-}	Λ_{+}	geometry	spacetime
=0	= 0	0	0	$M_2 \times E^2$	Minkowski
> 0	=0	Λ	Λ	$dS_2 \times S^2$	Nariai
< 0	=0	Λ	Λ	$AdS_2 \times H^2$	anti-Nariai
=0	> 0	-V	V	$AdS_2 \times S^2$	Bertotti–Robinson
> 0	$=\Lambda$	0	2Λ	$M_2 \times S^2$	Plebański–Hacyan
< 0	$= \Lambda $	2Λ	0	$AdS_2 \times E^2$	Plebański–Hacyan

'Melvinization' of gyratons on direct-product spacetimes

P. Krtouš, H. Kadlecová: in preparation

- switching on a stronger electromagnetic field
- solutions from the Kundt class
- transverse metric with rotational symmetry

spacetime metric:

$$g = \Sigma^{2} \left(-2H du^{2} - du \vee dr + a \vee du + d\rho^{2} \right) + \frac{S^{2}}{\Sigma^{2}} d\varphi^{2}$$

electromagnetic field:

$$F = E dr \wedge du + \Sigma^{-2} B \epsilon + du \wedge \sigma$$

gyratonic matter:

$$T = j_u \, \mathrm{d}u^2 + j \vee \mathrm{d}u$$

 ρ, φ — radial and angular transverse coordinates

 $\Sigma(\rho)$ — a new metric function amplifying influence of the EM field

 $S(\rho)$ — a new transverse metric function

transverse metric:

$$q = \Sigma^2 \,\mathrm{d}\rho^2 + \frac{S^2}{\Sigma^2} \,\mathrm{d}\varphi^2$$

field equations \Rightarrow

$$\Sigma_{,\rho} = \gamma S$$

$$\Sigma_{,\rho} = \left[-\frac{1}{3} \Lambda \Sigma^4 + \alpha \Sigma^2 + \beta \Sigma - V \right]^{1/2}$$

 $\alpha, \beta, \gamma = \text{constant}$ solution in terms of inverse of Euler integrals

a new radial coordinate x (Plebański form of the metric)

$$\Sigma = 1 + \gamma x$$
 \Rightarrow $q = \frac{1}{G} d\rho^2 + G d\varphi^2$

G is an explicit rational function of x

regularity at the axis \Rightarrow

independent constants Λ , V, γ

$$\alpha = \Lambda - V + 2\gamma$$
 $\beta = -\frac{2}{3}\Lambda + 2V - 2\gamma$

$$\gamma = 0$$
 \Rightarrow $\Sigma = 1$ \Rightarrow direct-product spacetimes

embedding diagrams of the transverse space:

$$\gamma \neq 0$$

$$\Lambda > 0$$

$$\Rightarrow$$

 $\gamma \neq 0$ $\Lambda > 0$ \Rightarrow closed space

embedding diagrams of the transverse space:

embedding diagrams of the transverse space:

closed space

asymptotically closed space asymptotically cylindrical space

$$V=2\gamma$$
 Melvin universe

$$V < 2\gamma$$

 $\gamma \neq 0$ $\Lambda < 0$

embedding diagrams of the transverse space:

closed space

asymptotically closed space

open space

$$\gamma = \gamma_*$$

$$\gamma > \gamma_*$$

Spacetime curvature invariants

- spacetime polynomial curvature invariants are independent of the gyraton
- in general, these invariants are not constant !!!!!

A. Coley, S. Hervik, N. Pelavas: Lorentzian manifolds and scalar curvature invariants, arXiv:1003.2373

Kundt family of spacetimes in higher dimensions

- P. Krtouš, A. Zelnikov, H. Kadlecova, J. Podolský: Higher-dimensional Kundt waves and gyratons, in preparation
- J. Podolský, M. Žofka: General Kundt spacetimes in higher dimensions, Class. Quantum Grav. 26, 105008 (2009)

Generalization to higher dimensions D = d + 2:

general formalism of 2+d-splitting of spacetimes admitting a null hypersurface

metric:

$$g = -2H du^2 - du \vee dr + a \vee du + q$$

assumptions:

$$\dot{q} = 0$$
 $\dot{a} = 0$

Ricci tensor:

ensor:
$${}^{D}\operatorname{Ric}_{rr} = 0$$

$${}^{D}\operatorname{Ric}_{rt} = 0$$

$${}^{D}\operatorname{Ric}_{ru} = \ddot{H}$$

$${}^{D}\operatorname{Ric}_{ut} = -\frac{1}{2}\operatorname{div}\operatorname{d}a + \operatorname{d}\dot{H} + \frac{1}{2}\operatorname{div}\mathring{q} - \operatorname{d}\theta_{u}$$

$${}^{D}\operatorname{Ric}_{uu} = \Delta H + (\operatorname{d}a) \bullet (\operatorname{d}a) + \frac{1}{2}\ddot{H}\left(H + \frac{1}{2}a^{2}\right) + \operatorname{div}\dot{a} - \frac{1}{2}\mathring{q} \bullet \mathring{q} - 2\dot{H}\theta_{u} - \mathring{\theta}_{u}$$

$${}^{D}\operatorname{Ric}_{tt} = \operatorname{Ric}$$

properties:

- the field equations formulated on the transverse space
- decoupling of the field equations
- semi-linearity of the field equations

new features:

- nontrivial transverse geometry q

 (e.g., gauge freedom does not eliminate u-dependence of q)
- nontrivial magnetic field B
- compatibility of the transverse geometry and of the magnetic field (e.g., B = 0 or direct-product structure of two dimensional spaces)

References:

- V. P. Frolov, W. Israel, A. Zelnikov: Gravitational field of relativistic gyratons, Phys.Rev. D **72** (2005) 084031
- J. Podolský, M. Žofka: General Kundt spacetimes in higher dimensions, Class. Quantum Grav. 26, 105008 (2009)
- H. Kadlecova, A. Zelnikov, P. Krtouš, J. Podolský: Gyratons on direct-product spacetimes, Phys.Rev. D 80 (2009) 024004
- H. Kadlecova, P. Krtouš: Gyratons on Melvin spacetime, arXiv:1006.1794
- P. Krtouš, H. Kadlecová: Gravitational waves on Melvinized direct-product spacetimes, in preparation
- P. Krtouš, A. Zelnikov, H. Kadlecova, J. Podolský: *Higher-dimensional Kundt waves and gyratons*, in preparation

cf. also talks by $Hedvika\ Kadlecov\'a$ and $Martin\ \check{Z}ofka$