
MathematicaÒ programming: an
advanced introduction

Leonid Shifrin

Part I: The core language

Version 1.01

2

Archie
Typewritten Text

Archie
Typewritten Text
Mathematica programming: an advanced introduction

Archie
Typewritten Text

Archie
Typewritten Text

Archie
Typewritten Text
Leonid ShifrinCopyright © Leonid Shifrin, 2008This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
Archie
Typewritten Text
MathematicaTM is a registered trademark of Wolfram Research Inc.

Archie
Typewritten Text
Other symbols, where used, are registered trademarks of their respective owners.

To my parents

 3

Contents

Preface...18

I. Introduction..26

� 1.1 First principle: everything is an expression..26

� 1.1.1 Atoms and the built-in AtomQ predicate..26

� 1.1.2 Mathematica normal (composite) expressions..26

� 1.1.3 Literal equivalents of built-in functions, and FullForm command................................26

� 1.1.4. All normal expressions are trees - TreeForm command.. .27

� 1.1.5. Heads of expressions and the Head command...27

� 1.1.6 Accessing individual parts of expressions through indexing28

� 1.1.7 Levels of expressions and the Level command...28

� 1.2 Second principle: pattern-matching and rule substitution...30

� 1.2.1 Rewrite Rules..30

� 1.2.2 An example of a simple pattern-defined function..30

� 1.2.3 Functions are really rules : DownValues command..31

� 1.2.4 Example of a function based on a restricted pattern...31

� 1.2.5 A bit about evaluation..31

� 1.2.6 Patterns allow for multiple definitions of the same function...31

� 1.2.7 Non - commutativity of rules substitution...32

� 1.2.8 Automatic rule reordering...32

� 1.3 Third principle: expression evaluation..33

� Summary...33

II. Elementary operations..34

� 2.1 Introduction..34

� 2.2 Symbols and variables... ..34

� 2.2.1 Legitimate symbol names... 34

� 2.2.2 Getting information about symbols

4

�

2.2.2 Getting information about symbols...35

� 2.2.3 "Proper" variables and OwnValues...36

� 2.2.4 Indexed variables and DownValues..36

� 2.2.5 Composite variables and SubValues..37

� 2.2.6 Clearing variables...37

� 2.2.7 Does a variable have a value? ValueQ...39

� 2.2.8 Assignments attach rules to Symbol-s...39

� 2.2.9 Summary..40

� 2.3 Dynamic data typing...40

� 2.4 Assignments...41

� 2.4.1 Immediate and delayed assignments: Set and SetDelayed...41

� 2.4.2 The difference between Set and SetDelayed : an example...41

� 2.4.3 Chain assignments...42

� 2.4.4 Don’ t use SetDelayed with more than two arguments...43

� 2.4.5 Set and SetDelayed : when which one is used...44

� 2.5 Equality checks.. ..44

� 2.5.1 Equal...44

� 2.5.2 Beware: Equal may return "unevaluated"...44

� 2.5.3 Equal is used by built-in solvers to build equations..45

� 2.5.4 Assigning the result of Equal to a variable, and more on evaluation..............................45

� 2.5.5 The role of side effects...46

� 2.5.6 A digression: standard and non-standard evaluation..46

� 2.5.7 Pass by reference semantics - possible to imitate..47

� 2.5.8 SameQ..47

� 2.5.9 TrueQ..48

� 2.6 Logical operators..49

� 2.7 Conditionals...50

� 2.7.1 The If operator..50

� 2.7.2 If may return "unevaluated"..50

� 2.7.3 If returns a value

 5

�

2.7.3 If returns a value..50

� 2.7.4 Operators Which and Switch...51

� 2.8 Loops...52

� 2.8.1 For loop...52

� 2.8.2 While loop...52

� 2.8.3 Do loop..52

� 2.8.4 Side effects induced by loops...53

� 2.8.5 Blocks of operators - the CompoundExpression command..53

� 2.8.6 Local goto statements: Break, Continue, Return..53

� 2.8.7 Programs using loops are often inefficient in Mathematica..54

� 2.9 Four types of brackets in Mathematica...55

� 2.9.1 Parentheses ()..55

� 2.9.2 Curly braces {}..55

� 2.9.3 Single square brackets []... 55

� 2.9.4 Double square brackets [[]]..56

� Summary.. .57

III. Lists... .58

� 3.1 Introduction...58

� 3.2 The main rule of thumb when working with lists in Mathematica.................58

� 3.3 The content of lists..58

� 3.4 Generation of lists...58

� 3.4.1 Generating a list by hand..58

� 3.4.2 Generation of lists of equidistant numbers by the Range command..............................59

� 3.4.3 Generation of lists with the Table command...59

� 3.4.4 A comment on universality of Range..60

� 3.4.5 Generation of lists inside loops...62

� 3.5 Internal (full) form of lists...64

� 3.6 Working with lists and their parts

6

�

3.6 Working with lists and their parts..64

� 3.6.1 List indexing and element extraction with the Part command...64

� 3.6.2 Extract...66

� 3.6.3 Take and Drop..66

� 3.6.4 First, Rest, Last and Most...67

� 3.6.5 Length...67

� 3.6.6 Modification of list elements by direct indexing (using Part)...68

� 3.6.7 ReplacePart..69

� 3.6.8 Position...70

� 3.7 Adding elements to the list and removing them from the list.....................75

� 3.7.1 Append, Prepend, AppendTo and PrependTo..75

� 3.7.2 Insert and Delete...76

� 3.8 Working with nested lists...77

� 3.8.1 Partition...77

� 3.8.2 Transpose...81

� 3.8.3 Flatten ...82

� 3.9 Working with several lists...84

� 3.9.1 The Join command...85

� 3.9.2 The Intersection command...85

� 3.9.3 The Complement command...85

� 3.10 Functions related to list sorting ..86

� 3.10.1 The Sort command..86

� 3.10.2 The Union command...88

� 3.10.3 The Split command..89

� Summary..91

IV. Rules, patterns and functions..92

� 4.1 Introduction..92

� 4.2 Rules and patterns

 7

�

4.2 Rules and patterns..92

� 4.2.1 Rule, RuleDelayed, Replace and ReplaceAll commands...92

� 4.2.2 Rule substitution is not commutative...95

� 4.2.3 An interplay between rules and evaluation process...96

� 4.2.4 Rules and simple (unrestricted) patterns...98

� 4.2.5 Applying rules repeatedly - the ReplaceRepeated function..111

� 4.2.6 Conditional (restricted) patterns..114

� 4.2.7 Alternative patterns...120

� 4.2.8 Giving names to entire patterns - the Pattern command ..121

� 4.2.9 Optional patterns...121

� 4.2.10 Repeated patterns...122

� 4.3 Built-in functions that use patterns..123

� 4.3.1 Cases...123

� 4.3.2 DeleteCases...128

� 4.3.3 MemberQ..130

� 4.3.4 Position - a second look...132

� 4.3.5 Count...133

� 4.3.6 FreeQ..134

� 4.3.7 A note on the Heads option...134

� 4.3.8 A more complicated example - finding subsequences..134

� 4.4 Functions - starting examples and syntax..138

� 4.4.1 A definition and a simple example..138

� 4.4.2 More on function names and evaluation surprises...139

� 4.4.3 On the necessity of patterns...139

� 4.4.4 More on the correct syntax of the function calls..140

� 4.4.5 On function definitions and assignment operators..141

� 4.4.6 Assigning values to function symbols (names)...143

� 4.4.7 Advanced topic: parameter passing..144

� 4.4.8 Function calls: prefix and postfix syntax ...149

� 4.4.9 Function name conventions...151

� 4.5 Examples of functions of a single argument

8

�

4.5 Examples of functions of a single argument...151

� 4.5.1 Example: Integer part of a number..152

� 4.5.2 What we will not call a function definition..152

� 4.5.3 Example: some trigonometric function..153

� 4.5.4 Example: a function to reverse a string of symbols ...153

� 4.5.5 Example: A function of function..154

� 4.5.6 Example: a function which exchanges another function and its argument...................155

� 4.5.7 Example: a recursive factorial function...155

� 4.5.8 Infinite iteration and recursion traps...156

� 4.5.9 An esoteric example: a self-destructive printing function..157

� 4.5.10 Mathematical functions and programming functions...158

� 4.6 Functions of several variables..159

� 4.6.1 Starting examples and a definition..159

� 4.6.2 Putting constraints on the arguments..160

� 4.6.3 Examples of functions of several variables (arguments)..163

� 4.6.4 Functions with the variable number of arguments...171

� 4.7 Functions with multiple definitions...173

� 4.7.1 Example: a discontinuous function...173

� 4.7.2 Adding more definitions..174

� 4.7.3 Changing definitions selectively...175

� 4.7.4 Warning: a common mistake..176

� 4.7.5 Selective removal of the definitions..176

� 4.7.6 Case study: changing the weights of words.. .176

� 4.8 Larger functions, local variables and the code modularization...................180

� 4.8.1 Module...180

� 4.8.2 Block..181

� 4.8.3. With...182

� 4.9 Function attributes...182

� 4.9.1 Listable attribute and SetAttributes command

 9

�

4.9.1 Listable attribute and SetAttributes command..183

� 4.9.2 Clearing Attributes - the ClearAll command...185

� 4.9.3 Orderless attribute..186

� 4.9.4 Flat attribute..186

� 4.9.5 Protected attribute...187

� 4.9.6 Attributes are properties of symbols..188

� 4.9.7 Attributes HoldFirst, HoldRest and HoldAll...188

� 4.9.8 Attributes and the evaluation process...191

� 4.10 Advanced topic: parameter passing and local variables.......................192

� 4. 11 Pure functions...194

� 4.11.1 The # - & notation..195

� 4.11.2 Pure functions defined with Function..201

� 4.11.3 Differences between pure functions defined with Function and with # - & notation.....202

� 4.12 Functions with defaults and options ..205

� 4.12.1 Functions with defaults..205

� 4.12.2 Functions with options...206

� Summary..212

V. Functions on lists and functional programming.......................214

� 5.1 Introduction...214

� 5.2 Core higher-order functions..215

� 5.2.1 Introduction...215

� 5.2.2 Map...215

� 5.2.3 MapAt...227

� 5.2.4 MapAll..232

� 5.2.5 Scan...235

� 5.2.6 MapIndexed..236

� 5.2.7 Apply..244

� 5.2.8 When short-hands let us down: the Heads option...255

� 5.3 Generalizations

10

�

5.3 Generalizations..257

� 5.3.1 Thread..257

� 5.3.2 MapThread...263

� 5.3.3 Inner...277

� 5.3.4 Outer..280

� 5.4 Nest Family ...292

� 5.4.1 Nest and NestList...292

� 5.4.2 NestWhile and NestWhileList...301

� 5.5 Fold and FoldList..320

� 5.5.1 Fold: syntax and starting examples...320

� 5.5.2 More examples..320

� 5.5.3 Restriction of Fold-ed function to two arguments is spurious......................................330

� 5.5.4 Case study: Gram - Schmidt orthogonalization...333

� 5.5.5 Small case study: local maxima for a list..339

� 5.6 FixedPoint and FixedPointList ..342

� 5.6.1 The syntax and functionality..342

� 5.6.2 Example: the Collatz problem revisited..342

� 5.6.3 How to reformulate a problem for FixedPoint..343

� 5.6.4 Example: deleting numbers from the list revisited..343

� 5.6.5 Example: approximating the square root of a number revisited.................................344

� 5.6.6 FixedPoint dangers...344

� 5.6.7 Small case study: merging overlapping intervals - Functional vs. Rule-based...........345

� 5.6.8 Example: local (relative) maxima in a list revisited..348

� 5.7 Operators on functions...350

� 5.7.1 Through..350

� 5.7.2 Operate..353

� Summary

 11

�

Summary...354

VI. Writing efficient programs: some techniques and applications...355

� 6.1 Introduction...355

� 6.2 Case study I: checking if a square matrix is diagonal..............................355

� 6.2.1 The problem..355

� 6.2.2 The test matrices..355

� 6.2.3 Procedural implementation...355

� 6.2.4 Functional implementations..356

� 6.2.5 Implementations based on structural operations..357

� 6.2.6 Conclusions..361

� 6.3 Case study II: extracting matrix diagonals..362

� 6.3.1 The problem...362

� 6.3.2 Test matrices..362

� 6.3.3 Extract - based implementation..362

� 6.3.4 Procedural implementation...369

� 6.3.5 The fastest version for all diagonal extraction, based on structural operations...........371

� 6.3.6 Conclusions..375

� 6.4 Case study III: generating complex random Wishart matrices...............376

� 6.4.1 The problem...376

� 6.4.2 Preliminaries..376

� 6.4.3 Procedural implementation..376

� 6.4.4 Functional implementation...377

� 6.4.5 Implementation based on structural operations...379

� 6.4.6 Conclusions...380

� 6.5 Case study IV: sorting, mapping and membership tests..........................381

� 6.5.1 The problem..381

� 6.5.2 Test sets

12

�

6.5.2 Test sets...381

� 6.5.3 Procedural solutions...381

� 6.5.4 Functional implementations..384

� 6.5.5 Yet faster implementations - read if you enjoy hacking..387

� 6.5.6 Conclusions..393

� Summary ...394

Appendices...395

� Appendix A What is so special about Mathematica (a personal evaluation)395

� Appendix B Some of my favorite books on Mathematica programming - brief reviews.. 399

� Appendix C Performance of some built-in functions in certain important special cases.........401

� ReplacePart...401

� Insert..401

� Union, Intersection and Complement...402

� Sort ...404

� MapAt..405

� Appendix D Some online Mathematica resources...407

The bibliography..408

 13

List of case studies and selected examples

Examples

� 3.6.8.3 Extracting sublists containing given element...71

� 3.6.8.4 Sublists with odd number of odd elements..72

� 3.8.1.2 Computation of the moving average in a list..77

� 3.8.2.3 Combining names with grades...81

� 3.8.3.3 Computation of quadratic norm of a tensor of arbitrary rank (vector, matrix etc)...........83

� 3.8.3.4 Relatively fast list generation with Flatten..84

� 3.10.3.3 Run-length encoding..90

� 3.10.3.4 Computing frequencies of identical list elements...90

� 4.2.4.4 Patterns: any function of a single fixed argument...101

� 4.2.4.5 Patterns: any function of 2 arguments, but with the first fixed......................................101

� 4.2.4.6 Patterns: combining 1, 2 and 3-argument cases together..102

� 4.2.4.10 Patterns: rule within a rule, and a better catchall solution for our example..................104

� 4.2.4.15 Patterns: a bit more useful example..109

� 4.2.5.1 ReplaceRepeated: sorting a list of numbers...111

� 4.2.5.2 ReplaceRepeated: deleting duplicate elements...111

� 4.2.5.3 ReplaceRepeated - a rule-based factorial..112

� 4.3.1.2 Filtering data...123

� 4.3.1.6 Sublists with odd number of odd elements: pattern-based solution.............................126

� 4.3.1.9 Collecting terms in a polynomial of 2 variables...127

� 4.3.2.1 Deleting odd numbers from a list...128

� 4.3.2.2 Non-zero ineteger subsequences..129

� 4.3.3.4 Unsorted Intersection...131

� 4.3.4.2 An example with symbolic expression...132

� 4.3.5.2 Counting characters..133

� 4.3.8 Locating given subsequences..134

� 4.5.5 Functions of a single argument: a function of function...154

� 4.5.6 Functions of a single argument: a function which exchanges another function.........155
 and its argument

� 4.5.7 Functions of a single argument: a recursive factorial function

14

�

4.5.7 Functions of a single argument: a recursive factorial function...155

� 4.5.9 Functions of a single argument: an exotic example: a self-destructive............................157
 printing function

� 4.6.2.3 Using constraints to make functions safer...162

� 4.6.3.1 Functions of multiple arguments: words containing a given substring..............................164

� 4.6.3.2 Functions of multiple arguments: transforming numbers to decimal from other bases.....164

� 4.6.3.3 Functions of multiple arguments: common digit subsequences of two numbers..............165

� 4.6.3.4* A longer example - numbers and intervals..166

� 4.7.1 Functions with multiple definitions: a discontinuous function...173

� 4.9.1.3 Partial listability: A way out in some cases...184

� 4.11.3.1 Currying..202

� 4.11.3.2 An accumulator problem ...203

� 4.11.3.3 The Listable SubValues hack revisited..204

� 4.12.2.1 Options: selecting and printing prime numbers..206

� 4.12.2.3 Passing options to other functions: an example..208

� 5.2.2.9.1 Partial sums...221

� 5.2.2.9.2 Simulating MapIndexed...221

� 5.2.2.9.3 Moving average revisited..221

� 5.2.2.10.2 Using Map to sort sublists in a nested list...224

� 5.2.3.4 Multiple random walks...229

� 5.2.3.7 Imitating DeleteCases...231

� 5.2.5.2 Conditional list splitting...236

� 5.2.6.2.1 Creation of specific matrices..237

� 5.2.6.2.2 Creation and manipulation of matrices of functions..238

� 5.2.6.2.3 Imitating the Position command..239

� 5.2.6.2.4 Imitating a Partition command...239

� 5.2.6.2.5 Computing an unsorted union of a list...240

� 5.2.6.2.6 Computing frequencies of objects in a list - different implementation.............................242

� 5.2.7.3.1 Computing a quadratic norm of a tensor of arbitrary rank revisited................................245

� 5.2.7.3.2 Conditional summing of even numbers in a list...246

� 5.2.7.3.3 Words containing given letters - realizing alternative patterns programmatically...........248

� 5.2.7.3.4 Extracting matrix diagonals ..251

 15

� 5.3.1.2 Imitating Thread..257

� 5.3.1.3 Performance study: redoing the Mapping-a-function-with-several-arguments258
 example with Thread

� 5.3.1.4 Performance study: redoing a supplying-function-arguments example with Thread259

� 5.3.1.5 Simple encoding - using Thread to create a list of rules..260

� 5.3.1.6 Unsorted union problem revisited ..262

� 5.3.2.4.1 Replacing the main diagonal in the square matrix..269

� 5.3.2.4.2 Appending sublists of a nested list...271

� 5.3.2.4.3 Deleting from each sublist of a nested list given number of elements at the.................272
 beginning

� 5.3.2.4.4 A digression : stricter error - checking..273

� 5.3.2.4.5 Rotating each sublist in a nested list differently...274

� 5.3.2.4.6 Imitating Transpose...275

� 5.3.3.2 Imitating Inner..277

� 5.3.3.3 Creating a list of rules..277

� 5.3.3.4 Comparing two lists..278

� 5.3.3.5 Reconstructing a number from its factorized form...279

� 5.3.4.3 Binary numbers..281

� 5.3.4.4 Table of values for trigonometric functions..281

� 5.3.4.5 Creating interpolations for functions of several variables..282

� 5.3.4.6 Imitating Outer..285

� 5.4.1.4 Imitating Nest..293

� 5.4.1.5 Approximating the square root of a number...294

� 5.4.1.6 Generating Hermite polynomials...296

� 5.4.2.3 Restricted random sequences...303

� 5.4.2.4 Visualizing poker probabilities...304

� 5.4.2.5 Generating distinct random numbers..307

� 5.4.2.6 The Collatz problem..309

� 5.5.2.1 Partial sums revisited..320

� 5.5.2.2 Position intervals for list splitting...321

� 5.5.2.3 Splitting the list into sublists of specified lengths (generalized Take operation)...........321

� 5.5.2.4 Imitating a factorial function..322

� 5.5.2.5 Imitating FromDigits..323

16

� 5.5.2.6 Powers of a differential operator..324

� 5.5.2.7 Autocorrelated random walks..325

� 5.5.2.8 Linked lists and the fast accumulation of results...327

� 5.5.2.9 Joining linked lists..329

� 5.5.3.1 Random changes in the list..330

� 5.5.3.2 Running standard deviation for an increasing or running list of data331

� 5.6.2 The Collatz problem revisited...342

� 5.6.4 Deleting numbers from the list revisited...343

� 5.6.5 Approximating the square root of a number revisited...344

� 5.6.8 Local (relative) maxima in a list revisited ...348

� 5.7.1.4 Picking list elements randomly with prescribed probabilities....................................351

Case studies

� 4.7.6 Changing the weights of words...176

� 5.3.2.3 Checking lists for equality...265

� 5.3.4.7 Creating ordered subsets for a given set..286

� 5.4.1.7 Sorting a list of numbers...297

� 5.4.2.7 Automatic and programmatic construction of patterns - patterns for poker311
 combinations revisited (not NestWhile - related)

� 5.4.2.8 Fibonacci numbers...314

� 5.5.4 Gram - Schmidt orthogonalization..333

� 5.5.5 Local maxima for a list..339

� 5.6.7 Merging overlapping intervals - Functional vs. Rule-based..345

� 6.2 Checking if a square matrix is diagonal..355

� 6.3 Extracting matrix diagonals...362

� 6.4 Generating complex random Wishart matrices...376

� 6.5 Sorting, mapping and membership tests...381

 17

Preface

� The history of this project

I started using Mathematica about 10 years ago for my Masters thesis. Since then, I have been using it
occasionally during my PhD, until about 3 years ago. At that point, just for curiosity, I tried to use Mathe-
matica for a small side project which had nothing to do with the field of my professional activity
(theoretical physics). And then, I have suddenly discovered that behind all the built - in commands and
simple procedural programming constructs there is a much more powerful programming language (the
fact of course well-known by then to lots of people, but not to me). I was hooked and spent some time
experimenting with its different features and then read a few books to get a deeper insight into it. At that
time, it was mostly for my own amusement, since ways in which I used Mathematica professionally did
not require even a fraction of the full power of this language. However, the character of my work has
changed since, and it’s been about one and a half years now that I use Mathematica heavily on a daily
basis and very frequently need the full power it can give me, in terms of speed, numerical and symbolic
capabilities. And I can safely say that without the knowledge of how to program in it properly, most of my
recent scientific results would be a lot harder to get. At some point, I decided to create some notes on
Mathematica programming, mainly for myself, and also to somehow organize the code that I have accumu-
lated so far for various projects. But as the notes started to expand, it occurred to me that with some more
effort I could convert them into a text possibly useful for other people. So, that’s how it started.

� The audience for this book

When writing this book I mostly had in mind people who want to understand Mathematica program-
ming, and particularly those Mathematica users who would like to make a transition from a user to a
programmer, or perhaps those who already have some limited Mathematica programming experience but
want to improve their command of the system. Expert Mathematica programmers will probably find little
new information in the book - may be, the last chapter could be of some interest to them.

The first part of the audience for this book are scientists who would like to understand Mathematica
programming better, to take advantage of the possibilities it offers. The second part are (software) engi-
neers who may consider Mathematica as a tool for a prototype design. In this context, Mathematica can
serve as a tool of "experimental programming", especially useful in projects where some non-trivial
computations/research have to accompany programming.

18

� Why Mathematica?

At the end of the day, there is nothing that can be done in Mathematica and absolutely can not be done in
other programming environments. For many problems however, especially those involving symbolic
programming, solving a problem in a language such as C or C++ will be eventually equivalent to reimple-
menting a subset of Mathematica (or other system for symbolic manipulations) needed to solve the
problem. The point is that many things are done in Mathematica with less or a lot less effort and time,
because a lot of both generic and specific functionality is already built in Mathematica. And because it is
so general, I expect this statement to be true for almost any field where some computations, prototype or
program design and development, simulations etc are used. Mathematica seems to be an ideal tool for
development of toy - models, prototypes, or just ideas. While Mathematica may be also quite useful for
validating some ideas or solutions, as well as to power some quite complex technologies also in their final
form, my feeling is that it may be most useful as a tool of experimental research (or programming), where
the answer (or design) is not known in advance.

For the scientific part of my audience, it is probably easier to argue in favour of Mathematica, since the
end product in science is usually a solution of certain problem, and Mathematica serves as a tool of
research. Its value here is that it has many built-in functions and commands which allow to do a lot of
things quickly.

On the other hand, there are many great programming languages, environments and tools. Many of them
have an added advantage of being free and open source. For the programming and prototype design
purposes, one may well question the advantages of using a proprietary software, which also is intrinsically
built in a way that does not allow to make an executable directly (it would require to package the entire
kernel together with your code and lead to a very large size of an executable. The Mathematica Player
technology seems to be a step in this direction).

Here are 10 good reasons to use Mathematica:

1. Multiparadigm language : the richness of the language allows to pick for any problem a programming
paradigm or style which corresponds to it most directly. You spend most of the time thinking about the
problem rather than implementation. The very high level of the language means that a lot of work is done
for you by the system.

2. Interactivity. Mathematica is an interpreted language, which allows interactive and incremental pro-
gram development. The Mathematica front - end adds another layer of interactivity, being able to display
various forms of input and output (and this can be controlled programmatically). Yet another layer of
interactivity is added by many new features of version 6.

3. Programming in the large. The typically small size and high level of abstraction of the code allows a
single person to manage substantial projects. There is also a built-in support for large projects through the
system of packages.

3. Built-ins. Availability of thousands of built-in functions makes it possible to do sophisticated analysis
very quickly. Extended error message system (each built-in function can issue a lot of error messages on
improper inputs) greatly simplifies debugging.

4. Genericity, higher-order functions and tight system integration . The very general principles of Mathe-
matica, its uniform expression structure, generic nature of many built-in functions, and tight integration of
all components allows to use all other built-in functions much easier than one would use libraries in other
languages. The Help system is also uniform and it is immediate to learn the functionality of any built-in
function that you have never used before.

 19

4. Genericity, higher-order functions and tight system integration . The very general principles of Mathe-
matica, its uniform expression structure, generic nature of many built-in functions, and tight integration of
all components allows to use all other built-in functions much easier than one would use libraries in other
languages. The Help system is also uniform and it is immediate to learn the functionality of any built-in
function that you have never used before.

6. Visualizations. Great dynamic and visualization capabilities (especially in version 6).

7. Cross-platform. The Mathematica code developed in one environment or OS will work in exactly the
same way in all others where Mathematica is available.

8. Connectivity: the developers keep increasing the number of file formats which Mathematica can
understand and process. Also, tools like MathLink , J/Link , database connectivity etc. allow one to con-
nect Mathematica to external programs

9. Backward compatibility : since the version 1 and up to these days developers are careful to maintain
very high level of backwards compatibility. This means that one should not worry too much that solutions
developed in the current version will need a rewrite to work on the future versions (apart from possible
improvements related to availability of new built - in functions, if one is so inclined).

10. Support for parallel and distributed computing .

In addition to this, version 6 front - end contains a built - in mini - IDE (text highlighting which is aware of
the syntax of built - in commands, allows to automatically track scope of variables, etc.; package creating
and testing greatly simplified; interactive debugger). These features make version 6 a full-blown develop-
ment environment - I personally found it much more fun to develop code in it than in the previous ver-
sions. Also, there is Eclipse - based Wolfram Workbench IDE for development of larger projects.

� The choice of the material

Since the first part of the tutorial is devoted to the core language of Mathematica (or, if you wish, impor-
tant built - in commands), the choice of material and even examples in this part are necessarily mostly
"standard". This means that there will be a lot of overlaps with many existing sources, and many things are
actually explained in much more detail elsewhere. I have included small discussions of some tidbits based
on personal experience with certain specific cases, where I felt appropriate.

One more comment due here is that I made an emphasis on the functional subset of Mathematica lan-
guage, which means that the book is geared more towards software development. The rule - based
approach is covered but perhaps under - represented, which I hope to remedy in the next part (s) of this
tutorial. Here I just want to emphasize that while the functional layer of Mathematica is nice for writing
fast and compact programs, it is the rule-based engine that gives Mathematica real uniqueness, power and
generality.

20

� The style of presentation

I firmly believe that the best way to learn Mathematica programming is to learn it as a natural language.
Mathematica programming language is very rich and in fact "overcomplete" in the sense that many built -
in functions are in principle derivable from other built - in functions or their combinations. However, it is
not an unstructured collection of functions "for everything" - it is built on powerful principles and has a
uniform structure. To find a way through this large number of commands and understand their relative
importance and relevance for a particular problem, it seems best to me to study the main principles and
the structure of the language, but then go through the many language idioms and illustrate the use of each
with many examples.

Thus, my way of presenting Mathematica programming can be characterized as language-driven and
example-driven, but, unlike many other books, I do not cover separately different programming styles
(procedural, rule-based, functional). Rather, I try to often give more than one implementation for a solu-
tion to a given problem, usually using different programming styles, and then discuss the differences,
advantages and disadvantages of each on the level of individual examples. Because really, choosing your
programming style before you start to understand the problem is like choosing tools to fix the car without
knowing what’s broken. For the same reasons, I deliberately avoided discussions of any of thousands of
the specialized tasks that Mathematica can perform, and instead considered it from a pure programming
viewpoint. If we can imagine such a thing as "Mathematica cookbook", then I tried to make my book the
exact opposite of it.

The examples I give are increasing in complexity as we go along, and in some cases I use constructs not
yet covered, just for illustration (in such cases, it is best to concentrate on the part of the code which is
currently discussed and ignore the unclear pieces, but revisit them later). However, many examples are
admittedly rather contrived. This is because they serve to illustrate a given language idiom in the simplest
possible setting. You will notice that many of the examples are concerned with imitation of the functional-
ity of some built-in commands. This is not because I could not come up with more informative examples
demonstrating the application of Mathematica to some "real world" problems, but because they are useful
in understanding the system. By "reproducing" one built-in function with some combination of others, we
not only learn about the inter-relations of various built-in commands, but also about performance wins and
losses, avoiding the frustration associated with learning the same things "the hard way" on more compli-
cated examples.

In my opinion, different programming techniques available in Mathematica in some sense split the lan-
guage into several layers in terms of efficiency. I would call them scripting, intermediate and system
layers. I try to introduce Mathematica programming in a way which at least does not completely ignore
these language layers, by often providing alternative implementations for a given problem.

I hope to convince the reader that the advantages that Mathematica brings overweight the perhaps rather
steep learning curve, and that Mathematica programming can be both useful and powerful, and a lot of
fun.

 21

� Prerequisites

I assume that the reader has a basic familiarity with Mathematica, on the level of more or less the first part
of the Stephen Wolfram’ s Mathematica book [9]. In particular, while I discuss some parts of the syntax
along the way, I do not systematically introduce the syntax from the ground up. However, I tried to make
the book self - contained, and in principle it should be possible for someone completely new to Mathemat-
ica to follow the text, consulting Mathematica Help when things are unclear. Prior programming experi-
ence would be quite helpful (although not absolutely necessary) since I don’ t discuss in a pedagogical
manner the basic programming concepts such as loops etc.

� The organization of the book

This first part of the tutorial is organized in 6 chapters.

Chapter 1 - Introduction - describes the main principles on which the Mathematica programming is
based. I also have made a rather radical step to introduce along the way certain notions which are usually
considered advanced and are discussed much later, such as DownValues or non - standard evaluation. But
in my view, they are essential enough and simple enough to be at least touched early on.

Chapter 2 - Elementary operations - is mostly devoted to such absolutely essential elements of the
Mathematica language as variables, assignments, equality checks etc. Here I also briefly describe the
procedural control flow, branching, loops etc.

Chapter 3 - Lists - introduces lists as Mathematica main data structure building blocks, and then we go
through many built-in functions available for various manipulations with lists. This chapter is rather large
but quite important since it is essential to have a good handle on lists in Mathematica programming.

Chapter 4 - Rules, patterns and functions - has actually two major parts. The first one describes patterns
and rules, and then the second one describes how one can define various functions in Mathematica. In
fact, from the system point of view, rules and patterns are more fundamental than functions, the latter
being just special kind of rules. I have combined them together for pragmatic reasons: people most com-
monly use the rule-based programming in Mathematica when they define their own functions. But fre-
quently they have no idea about the role of rules and patterns in the functions they define, and this limits
their possibilities or sometimes leads to misunderstandings and errors. Hopefully this chapter will clarify
these issues.

Chapter 5 - Functions on lists and functional programming - is really the most important chapter in this
part. It introduces functional programming - that is, application of functions to lists (data) and other
functions. It builds up on the material of the previous two chapters. The notion of the higher order func-
tion is introduced, and then most of the important general - purpose higher - order functions are considered
in detail and illustrated by many examples. Starting with this chapter, I also systematically emphasize
performance considerations in Mathematica programming.

Chapter 6 - Writing efficient programs - the last chapter of this part, describes a few applications devel-
oped in the style discussed earlier. I present and compare several different implementations in each case.
The main idea of this chapter is to show how a larger Mathematica program typically looks like, and
which programming style is best for in which aspects. The case studies considered in this chapter can also
serve as an illustration of several performance-tuning techniques.

22

Chapter 5 - Functions on lists and functional programming - is really the most important chapter in this
part. It introduces functional programming - that is, application of functions to lists (data) and other
functions. It builds up on the material of the previous two chapters. The notion of the higher order func-
tion is introduced, and then most of the inportant general - purpose higher - order functions are considered
in detail and illustrated by many examples. Starting with this chapter, I also systematically emphasize
performance considerations in Mathematica programming.

Chapter 6 - Writing efficient programs - the last chapter of this part, describes a few applications devel-
oped in the style discussed earlier. I present and compare several different implementations in each case.
The main idea of this chapter is to show how a larger Mathematica program typically looks like, and
which programming style is best for in which aspects. The case studies considered in this chapter can also
serve as an illustration of several performance-tuning techniques.

There are also several appendices containing some additional information or remarks, and the
bibliography.

� Printing conventions

For the presentation of text, code, etc, I used the following conventions : each chapter, section, subsection
and subsubsection are indexed. The maximum indexing depth in the book is 5 levels (the 5 - level index
looks 1.2.3.4.5), although such long indexes are not always used. The names of chapters, sections, subsec-
tions and subsubsections are printed in Arial, the text is Times, example code is Courier Bold, and the
output is Courier. The headers of some examples (typically smaller ones) is small Times Italic. The
Times Italic Bold is used sometimes to separate logical steps in longer examples/case studies.

Some portions of the code are highlighted by a gray background. This is typically done to separate the
logically more important pieces (like the code itself, a solution of some problem), from the other code
(tests, checks, etc). Also, most complete functions are highlighted in this way.

� How to use the book

The book can be either read systematically or one can just look at the topic of interest. Since it is generally
example - based and centred around important built - in functions, inter - dependencies of different
chapters or sections are generally not very strong, and mainly through the built - in functions used in the
examples. Another use of the book could be as an additional source of examples of use for various built -
in functions, and in this capacity it could supplement the standard examples from Mathematica Help or
Mathematica Book. However, I did not have in mind to just assemble the collection of totally unrelated
examples. So, for gaining a general understanding of the system there could be certain advantage in
systematic reading of the book.

Another comment is that this book is no substitute for books containing more specific information on how
to do certain types of mathematics, such as [10-12]. Neither is it a substitute for Mathematica manual,
Help system or Mathematica Book [9]. Here, I stripped off all the aspects of Mathematica except those
very closely related to its "programming engine", to make a pure programming book. But you will need
also to know the other side of Mathematica to program real applications (although my experience is that
this side is easy when you know how to program).

� About the code in the book

Except when explicitly stated otherwise, all implementations are mine. I am the only one responsible for
any errors present in the code (in the sense outlined in disclaimer below). I made an effort to ensure that it
is reasonably bug-free. In particular, all examples were tested with Mathematica 5.2, and some with
Mathematica 6.0. The code however was meant to serve purely pedagogical purposes, rather than to be
any "production quality" (no extensive testing, arguments checks etc). It almost certainly does contain
some bugs. If you find one (or more!), I will be most happy to learn about it, to get rid of it in the future
versions of the book. If you decide to use the code for whatever purposes, however, do it at your own
risk - please see the disclaimer.

� Important topics not covered

 23

�

Important topics not covered

Basically, I did not cover anything not related to the core language of Mathematica. This includes numer-
ous functions computing integrals, derivatives, solving equations or inequalities of various types, plotting
graphs etc - this material is covered in many texts, for instance [10-12]. But apart from these, several
other important topics are missing. Perhaps the most serious omissions are: 1). I don’t cover the wealth of
new possibilities brought about by Mathematica 6. The partial excuse for this is that I focus on the core
language which, as far as I could judge, did not change as much as some other features. 2). The MathLink
protocol, and other connecting technologies like J/Link etc. 3). Certain topics such as front-end and
notebook programming, or graphics and sound programming. 4). Working with the Wolfram WorkBench
(the IDE) and using the debugger (version 6). 5) Internal compilation. 6) String operations, string-match-
ing capabilities of Mathematica, regular expressions etc.

The main reason for these omissions is that I did not use these technologies as much in my work as to
consider myself worthy of describing them. Besides, the volume of the book has grown way too much
anyway, and these topics are still somewhat separate from the Mathematica language proper, which is the
main focus of the book. Finally, some of these topics have received an excellent coverage elsewhere in the
Mathematica literature.

� License terms

This book is licensed under the Creative Commons Attribution - Noncommercial - Share Alike 3.0
United States License [http : // creativecommons.org/licenses/by - nc - sa/3.0/].

The license basically states that you are free to copy, distribute and display the book, as long as you give
credit to me. You can modify or build upon this work, if you clearly mark all changes and release the
modified work under the same license as this book. The restrictions are that you will need my permission
to use the book for commercial purposes.

You can read the exact text of the license in full, by visiting the Creative Commons website [http : //
creativecommons.org/licenses/by - nc - sa/3.0/].

� The official web site

The official web site of the book is www.mathprogramming - intro.org [http://www.mathprogramming -
intro.org]. You can download the latest version of the book from the web-site, and also send me a feed-
back. The online version of the book will also soon appear there.

� Disclaimer

All the information in this book represents my strictly personal view on the MathematicaTM system. I am
not affiliated with Wolfram Research Inc. in any way, as of the time of this writing.

All the information in this book is provided AS IS, with no warranty of any kind, expressed or implied.
Neither I nor Wolfram Research Inc. will be liable, under any circumstances, in any loss of any form,
direct or indirect, related to or caused by the use of any of the materials in this book.

� Akcnowledgements

24

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.mathprogramming-intro.org

�

Acknowledgements

First of all, my thanks go to the developers of Mathematica for the great system they have created. Apart
from being a great aid in my research, using Mathematica changed my way of thinking, gave valuable
insights and opened my eyes on many things which I probably would never think about otherwise. These
thanks extend to authors of several excellent books on Mathematica which helped me understand the
system much better, in particular Stephen Wolfram, David Wagner, Roman Maeder, John Gray and
Michael Trott.

A number of people influenced my Mathematica - related activities in this or that way. I am grateful to
Gernot Akemann for our fruitful collaboration which provided me with a source of countless problems
that shaped my Mathematica skills, to Michael Phillips for the collaboration and nice discussions, and also
for reassuring me of my sanity, to Alexey Pichugin for convincing me that C is a great language, to
Jacques Bloch for collaboration and an opportunity to work together on a tough problem and learn about
my limitations in Mathematica, to Dmitry Logunov for a joint project which did not quite work out but
brought me down to earth, to PierPaolo Vivo for many nice discussions, a couple of nice problems to
work on, and his ability to turn me into a good mood, and most importantly, to my wife Katya and daugh-
ter Anya for their patience and support during countless hours of my experimentation with Mathematica
and then writing of this book.

Additionally, I am grateful to the members of the technical staff at SUNY at Stony Brook ,USA, and then
at Brunel University West London, United Kingdom (particularly to Neil Turner) for providing me with an
access to the most recent versions of MathematicaTM.

� Comments, suggestions, criticism

I tried to make the book as self - contained and technically correct as I could. But please don’t hesitate to
contact me with any comments, suggestions or (preferably constructive) criticism - I will make all possible
efforts to improve the book. You can e-mail me at

leonid@mathprogramming-intro.org

 25

I. Introduction

Mathematica is built on a small number of universal principles. Good understanding of these principles is
a pre-requisite for understanding how to program in Mathematica. Here I will discuss them, but rather
briefly. Excellent and in-depth discussion of them can be found in several places [1,2,6 - 9].

� 1.1 First principle: everything is an expression

The first principle states that every object dealt with by Mathematica, is an expression. Every Mathe-
matica expression is either Atom, or a Normal Expression.

� 1.1.1 Atoms and the built-in AtomQ predicate

Atoms are numbers, symbols and strings, and numbers are further divided into Integers, Reals, Rationals
and Complex. All other objects are composite and are called Normal Expressions. It is always possible to
check whether or not an expression is an atom or a composite, by acting on it with the built-in predicate
AtomQ. For instance:

ClearAll@"Global‘*"D;
8AtomQ@xD, AtomQ@Sin@xDD, AtomQ@1 +I*2D, AtomQ@2�3D<
8True, False, True, True<

� 1.1.2 Mathematica normal (composite) expressions

Every normal expression (composite) is built according to a universal pattern:

expr@el1, ..., elnD
Here it is required that some symbol < expr > is present (it can itself be a normal expression, not necessar-
ily an atom), as well as the single square brackets. Inside the square brackets, there can be zero, one or
several comma-separated elements <el1>,...,<eln>. These elements themselves can be either atoms or
normal expressions. In an expression Sin[x], <expr> is Sin, and there is a single element <x>, which is
atom (as long as x is not defined as something else, but this already has to do with expression evaluation
and will be discussed below). It is clear that an arbitrary Mathematica expression must have a tree-like
structure, with the branches being normal (sub)expressions and leaves being atoms.

� 1.1.3 Literal equivalents of built-in functions, and FullForm command

 As a consequence, any built-in command/function in Mathematica has a literal/string equivalent (so that
it can be represented in the above uniform way). This is most easily seen with the help of the built-in
function FullForm, which shows the internal representation of any object/expression, in the way it is really
"seen" by the kernel. For instance:

8z*Sin@x +yD, FullForm@z*Sin@x +yDD<
8z Sin@x +yD, Times@z, Sin@Plus@x, yDDD<

The second expression in the curly braces is equivalent to the first one, but explicitly shows the structure
described above.

26

The second expression in the curly braces is equivalent to the first one, but explicitly shows the structure
described above.

� 1.1.4. All normal expressions are trees - TreeForm command

 That it is a tree, can be seen most clearly with another built-in command TreeForm:

TreeForm@z*Sin@x +yDD

Times

z Sin

Plus

x y

Since it is a tree, it is possible to index and access the subexpressions. In the following example <expr> is
Times (the multiplication command):

a = z*Sin@x +yD;
FullForm@aD
Times@z, Sin@Plus@x, yDDD

� 1.1.5. Heads of expressions and the Head command

In general, an expression outside the square brackets has a name - it is called a head of expression, or just
head. There is a built-in function with the same name, which allows to obtain the head of an arbitrary
expression. For example:

Head@aD
Times

A head of an expression may be either an atom or a normal expression itself. For example :

Clear@b, f, g, h, xD;
b = f@gD@hD@xD;
Head@bD
f@gD@hD
Head@f@gD@hDD
f@gD

 27

Head@f@gDD
f

Every expression has a head, even atoms. Heads for them are String, Symbol, Integer, Real, Rational and
Complex. For instance :

8Head@fD, Head@2D, Head@PiD,
Head@3.14D, Head@"abc"D, Head@2�3D, Head@1 +ID<

8Symbol, Integer, Symbol, Real, String, Rational, Complex<
� 1.1.6 Accessing individual parts of expressions through indexing

One can access also the internal parts of an expression (those inside the square brackets), by using index-
ing (Part command). The following example illustrates this.

8a@@0DD, a@@1DD, a@@2DD, a@@2, 0DD, a@@2, 1DD, a@@2, 1, 0DD,
a@@2, 1, 1DD, a@@2, 1, 2DD<

8Times, z, Sin@x +yD, Sin, x +y, Plus, x, y<
We have just deconstructed our expression to pieces. In fact, we started from the "stem" and then went
down along the "branches" to the "leaves" of the tree which we have seen above with the TreeForm. We
see that the addresses (index sequences) which end with zero give the Heads of the subexpressions - this
is a convention. In principle, any complex expression can be deconstructed in this way, and moreover, one
can change its subexpressions.

� 1.1.7 Levels of expressions and the Level command

It is also possible to get access to the branches (subexpressions) which are at the certain distance (level)
from the "stem". This is achieved by using a built-in Level command. Consider an example:

Clear@aD;
a = z*Sin@x +yD +z1*Cos@x1 +y1D
z1 Cos@x1 +y1D +z Sin@x +yD

Here is its full form :

FullForm@aD
Plus@Times@z1, Cos@Plus@x1, y1DDD, Times@z, Sin@Plus@x, yDDDD

Here is its tree form :

28

TreeForm@aD
Plus

Times

z1 Cos

Plus

x1 y1

Times

z Sin

Plus

x y

And these are the levels of the tree :

Level@a, 80<D
Level@a, 81<D
Level@a, 82<D
Level@a, 83<D
Level@a, 84<D
8z1 Cos@x1 +y1D +z Sin@x +yD<
8z1 Cos@x1 +y1D, z Sin@x +yD<
8z1, Cos@x1 +y1D, z, Sin@x +yD<
8x1 +y1, x +y<
8x1, y1, x, y<

Level[a, {n}] gives all branches (or leaves) which have a distance of n levels down from the "stem". If
however we need all branches that have n levels of sub - branches (or leaves), then we use a negative level
Level[a, {-n}] :

Level@a, 8-1<D
Level@a, 8-2<D
Level@a, 8-3<D
Level@a, 8-4<D
8z1, x1, y1, z, x, y<
8x1 +y1, x +y<
8Cos@x1 +y1D, Sin@x +yD<
8z1 Cos@x1 +y1D, z Sin@x +yD<

Notice that negative levels generally can not be reduced to positive levels - they are giving in general
different types of information. What we have just described is called the Standard Level Specification in
Mathematica. Many more built - in commands accept level specification as one of the arguments (often an
optional one).

 29

Notice that negative levels generally can not be reduced to positive levels - they are giving in general
different types of information. What we have just described is called the Standard Level Specification in
Mathematica. Many more built - in commands accept level specification as one of the arguments (often an
optional one).

Any function can be used also in its literal equivalent form. For instance :

8Plus@1, 2, 3, 4D, Times@1, 2, 3, 4D<
810, 24<

� 1.2 Second principle: pattern-matching and rule substitution

Another fundamental principle is so - called pattern - matching, which is a system to match rules and
expressions - without it Mathematica would not know when to apply which rule. It is based on syntactic
rather than semantic comparison of expressions. The main notions here are those of rules and patterns.

� 1.2.1 Rewrite Rules

Clear@a, b, c, d, eD;
A typical rule looks like

a ® b

where in general < a > and < b > are some Mathematica expressions. The rule just says: whenever <a> is
encountered, replace it by . For example:

8a, c, d, c< �. a ® b

8b, c, d, c<
(the < /. > symbol is a rule replacement command, to be covered later).

A pattern is essentially any expression with some part of it replaced by "blank" (Blank[]), which is a
placeholder for any expression - that is, instead of that part there can be anything (this is somewhat oversim-
plified). The literal equivalent for Blank[] is the single underscore ("_") symbol. For instance, f[x_] means
f[anything].

� 1.2.2 An example of a simple pattern-defined function

Clear@fD;
f@x_D := x^2;

8f@2D, f@"word"D, f@NewtonD<
94, word2, Newton2=

In this example, the result is as shown because the definition of the function < f > is really just a substitu-
tion rule f[anything] -> (anything)^2.

30

� 1.2.3 Functions are really rules : DownValues command.

To see the internal form of this rule - how it is stored in the rule base - one can use the built-in DownVal-
ues command. With its help we see:

DownValues@fD

9HoldPattern@f@x_DD ¦ x2=
We will talk later about the meaning of the HoldPattern function. The pattern x_ is the most simple pat-
tern. There can be more complex patterns, both syntactically and also because patterns may have condi-
tions attached to them, which ensure that the pattern will match only if the condition is satisfied
(conditional patterns). We will cover them in detail later.

� 1.2.4 Example of a function based on a restricted pattern

Now let us give an example: we will restrict our function <f> to operate only on integers.

Clear@fD;
f@x_IntegerD := x^2;

8f@2D, f@PiD, f@"word"D, f@NewtonD<
84, f@ΠD, f@wordD, f@NewtonD<

In this case, we introduced a more complex pattern x_Integer.

� 1.2.5 A bit about evaluation

On this example we see that if there is no rule whose pattern (left hand side of the rule) matches a given
expression, Mathematica returns the expression unchanged. This is at the heart of its evaluation method:
to any entered expression, all rules which are in the global rule base at the moment of evaluation, are
applied iteratively. Whenever some rule applies, an expression is rewritten and the process starts over.
At some point, the expression becomes such that no rule can be applied to it, and this expression is the
result. Since the rule base contains both system and user-defined rules (with the latter having higher
priority), it gives great flexibility in manipulation of expressions.

� 1.2.6 Patterns allow for multiple definitions of the same function

As another starting example, let us define a function which is linear on even numbers, quadratic on odd
numbers and is a Sin function for all other inputs:

Clear@fD;
f@x_ ?EvenQD := x;

f@x_ ?OddQD := x^2;

f@x_D := Sin@xD;
Here is an example of its execution on various inputs :

 31

8f@1D, f@2D, f@3D, f@4D, f@3�2D, f@NewtonD, f@PiD<

:1, 2, 9, 4, SinB3
2

F, Sin@NewtonD, 0>
For the record, built - in functions OddQ and EvenQ are predicates which return True if the number is odd
(even) and False otherwise :

8EvenQ@2D, EvenQ@3D, OddQ@2D, OddQ@3D<
8True, False, False, True<

If nothing is known about the object, they give False :

8EvenQ@NewtonD, OddQ@NewtonD<
8False, False<

� 1.2.7 Non - commutativity of rules substitution

Let us look at the last of the 3 definitions of < f > in the above example. It implies that any input object
has to be replaced by its Sine. Naively, this would mean that we should have obtained Sine-s of all our
expressions, but this did not happen. The point is that the sequential rule application is non-commutative:
first of all, the way rules are applied is such that once the first rule that applies is found, only this rule is
applied, and other possibly matching rules are not tried on a given (sub)expression, in a single "run" of the
rule application. Second, if several rules match an expression, the first applied rule rewrites it so that
(some) of other rules don’t match it any more. Therefore, the result depends on the order in which the
rules are applied. Mathematica applies rules to expressions sequentially. Since the rule with the Sine
function was defined last, it should mean that it has a chance to apply only to inputs whose form did not
match patterns in the first two rules.

� 1.2.8 Automatic rule reordering

What is less trivial is that in this example we would get similar behavior even if we defined this rule first:

Clear@fD;
f@x_D := Sin@xD;
f@x_ ?EvenQD := x;

f@x_ ?OddQD := x^2;

8f@1D, f@2D, f@3D, f@4D, f@3�2D, f@NewtonD<
:1, 2, 9, 4, SinB3

2
F, Sin@NewtonD>

To see the order in which the rules are kept, we again use DownValues :

DownValues@fD
9HoldPattern@f@x_ ?EvenQDD ¦ x,

HoldPattern@f@x_ ?OddQDD ¦ x2, HoldPattern@f@x_DD ¦ Sin@xD=
We see that the rule with Sine again is at the end, despite having been defined first. The reason is that
Mathematica pattern-matching engine has a built-in rule analyzer which sorts the rules such that more
general rules come after more specific ones, when it can determine it. This is not always possible to do
automatically (and not always possible to unambiguously do at all), so in general the programmer should
take care of it. But in practice, it is seldom needed to manipulate the rules by hand.

32

We see that the rule with Sine again is at the end, despite having been defined first. The reason is that
Mathematica pattern-matching engine has a built-in rule analyzer which sorts the rules such that more
general rules come after more specific ones, when it can determine it. This is not always possible to do
automatically (and not always possible to unambiguously do at all), so in general the programmer should
take care of it. But in practice, it is seldom needed to manipulate the rules by hand.

� 1.3 Third principle: expression evaluation

The last example brings us to the third principle: the principle of expression evaluation and the rewrite
rules (global rule base). It tells the following: when Mathematica encounters an arbitrary expression, it
checks its global base of rewrite rules for rule(s) which correspond to a given expression (or, it is said,
match the expression). A typical rewrite rule looks like object1 -> object2. If such a rule is found, for
expression or any of the subexpressions (actually, normally in reverse order), the (sub) expression is
rewritten, and the process starts over. This process goes on until no further rule in the global rule base is
found which matches the expression or any of its parts. When the expression stops changing, it is returned
as the answer. Please bear in mind that the picture just described is a great oversimplification, and the real
evaluation process is much more subtle, although the main idea is this.

The global rule base contains both rules built in the kernel and rules defined by the user. User-defined
rules usually take precedence over the system rules, which makes it possible to redefine the behavior of
almost any built-in function if necessary. In fact, all assignments to all variables and all function defini-
tions are stored as some type of global rules, in the rule base. In this sense, there is no fundamental differ-
ence between functions and variables (although there are technical differences).

As a result of this behavior, we get for instance such result:

FullForm@Sin@Pi +PiDD
0

The reason is that inside the kernel there are rules like Plus[x,x]->2 x, Sin[2*Pi]->0, and because the
evaluation process by default starts with the innermost sub-expressions (leaves), i.e., from inside out, it
produces 0 before the FullForm has any chance to "look" at the expression. The internal evaluation dynam-
ics can be monitored with the Trace command:

Trace@FullForm@Sin@Pi +PiDDD
888Π +Π, 2 Π<, Sin@2 ΠD, 0<, 0<

� Summary

To summarize, we have described briefly the main principles of Mathematica and along the way gave
examples of use of the following built-in functions: AtomQ, Head, FullForm, TreeForm, Level, Plus,
Times, Trace, DownValues, OddQ, EvenQ.

 33

II. Elementary operations

� 2.1 Introduction

In this chapter we will discuss some basic operations with variables such as assignments, and also some
procedural control flow structures, such as conditionals and loops.

� 2.2 Symbols and variables

In Mathematica , variables are (possibly composite) symbols that can store some definitions. More pre-
cisely, as variables can be used expressions which can be the l.h.s. of global rules not containing patterns
(consider this as our definition of variables. What it means is explained below).

� 2.2.1 Legitimate symbol names

An immediate comment on legal symbol names is due here. Any name which has a head Symbol and is
not a name used by the system, is legal to associate some rules (global definitions) with - in other words, a
legal name for a variable or a function. It can not start with a number, but can contain numbers. It can
contain both capital and small letters, and Mathematica is case-sensitive, so names like <totalsum> and
<totalSum> are considered different. There are several special symbols that should not be used in symbol
names, such as @,#,$,%,^,&,*,!,~,‘. What may be surprising for C programmers is that the underscore
<_> should not be used either - it has a different purpose in Mathematica.

If you are in doubt whether your symbol is legitimate, you can always use the Head[-
Unevaluated[yoursymbol]] command to check its head: if it is <Symbol>, you are in business. The
reasons why you need <Unevaluated> are a bit involved to discuss now, but basically it guarantees that the
Head function tests the head of your original symbol rather than what it may evaluate to. For instance, you
decide to use <a&&True> symbol. This is the result of using Head:

Head@a && TrueD
Symbol

We happily try to assign something to it :

a && True = b

Set::write : Tag And in a && True is Protected. �

b

and get an error message.

What happens is that our symbol is really a logical And of <a> and True, and it evaluates to <a> when we
try to use Head function - so the head seems to be Symbol. But in the assignment, the original symbol is
used, and its head is And. For reasons which will become clear soon, this leads to an error. Using Head[-
Unevaluated[symbol]] reveals that our symbol is bad:

Head@Unevaluated@a && TrueDD
And

This behavior will become clear after we cover more material.

34

a && True = 1

Set::write : Tag And in a && True is Protected. �

1

It is also a good habit to start the name of any symbol you use (variable or function) with a small letter,
since then there is no chance of colliding with a built-in symbol - all built-in symbols in Mathematica start
with a capital letter or a special symbol such as $.

� 2.2.2 Getting information about symbols

For every symbol with the head Symbol (as tested by Head[Unevaluated[symb]] command, see above), it
is possible to display the information that the system has on that symbol currently. This includes possible
rules (definitions) associated with the symbol, some other properties possibly attached to the symbol, such
as Attributes, and for system symbols brief explanations of their purpose and use.

To display the global rules associated with the symbol, one uses either the question sign in front of the
symbol for a brief info, or either a double question sign or the Information command, for more details.
For example, here we define a global variable <a>:

a = 3;

This is how we inspect < a > :

?a

Global‘a

Or, which is the same in this case,

?? a

Global‘a

If we inspect a symbol which has not been introduced to the system yet (it is said not to be in the symbol
table), we get a message :

?c

Information::notfound : Symbol c not found. �

If we inspect some built - in symbols, we usually get a quick summary of their functionality :

? Map

Map@ f , exprD or f �� expr applies f to each element on the first level in expr.

Map@ f , expr, levelspecD applies f to parts of expr specified by levelspec. �

We get more here by using ?? (or, Information[]):

?? Map

 35

Map@ f , exprD or f �� expr applies f to each element on the first level in expr.

Map@ f , expr, levelspecD applies f to parts of expr specified by levelspec. �

Attributes@MapD = 8Protected<
Options@MapD = 8Heads ® False<

� 2.2.3 "Proper" variables and OwnValues

By "proper" variables we will mean variables with names being symbols (in the sense described above,
with the head Symbol), which are used to store values. Due to symbolic nature of Mathematica, these
values can be of any type, either atoms or normal expressions (there is no notion of "type" in Mathematica
as such - see below).

The built - in function which reflects the possible assignment made to a "proper" variable is called Own-
Values. For example :

a = 3;

OwnValues@aD
8HoldPattern@aD ¦ 3<

The equal sign here represents an assignment operator, which we will cover shortly.
Another way to characterize the "proper" variables is that their definitions are stored in OwnValues. One
particular property of OwnValues is that for a given symbol there can be either no global rule or just one
global rule (but not more) stored in OwnValues, and OwnValues only store rules associated with real
symbols (with the head Symbol). This is another reason why I call this type of variables "proper".

� 2.2.4 Indexed variables and DownValues

In addition to these, there are other objects which can also store values and sometimes be interpreted as
variables. In particular, consider the following assignments :

b@1D = 1;

b@2D = 4;

b@3D = 9;

This looks like array indexing, but it is not (see section 2.9.4). We can check whether or not these defini-
tions are stored as OwnValues :

OwnValues@bD
8<

They are not. Instead, they happen to be stored as DownValues (another type of global rules) :

DownValues@bD
8HoldPattern@b@1DD ¦ 1, HoldPattern@b@2DD ¦ 4, HoldPattern@b@3DD ¦ 9<

We see that there can be many global rules stored in DownValues and associated with the same symbol
(here). In general, DownValues are used to store the function definitions. Thus, one way to interpret
the above assignment is that we defined a function < b > on 3 specific values of the argument. Sometimes,
however, it is more convenient to interpret b[i] as a set of "indexed variables" - particularly when there is
no general pattern - based definition for < b > (if this is somewhat unclear now, wait until chapter IV on
functions). Thus, in some cases we will interpret these composite objects (notice, their head is not <Sym-
bol> - in this case it is) as "indexed variables".

36

We see that there can be many global rules stored in DownValues and associated with the same symbol
(here). In general, DownValues are used to store the function definitions. Thus, one way to interpret
the above assignment is that we defined a function < b > on 3 specific values of the argument. Sometimes,
however, it is more convenient to interpret b[i] as a set of "indexed variables" - particularly when there is
no general pattern - based definition for < b > (if this is somewhat unclear now, wait until chapter IV on
functions). Thus, in some cases we will interpret these composite objects (notice, their head is not <Sym-
bol> - in this case it is) as "indexed variables".

Indexed variables are quite useful in many circumstances. The indices for them can be any Mathematica
expressions (not necessarily numbers, like in this example), and therefore one possible use of them is to
implement data structures such as Python dictionaries. Internally, hash tables are used to make indexed
variables efficient, and thus, while there is no direct support for hash-tables in Mathematica (in version 6
there is a Hash built-in function though), one can actually use the internal hash tables just as well through
indexed variables.

� 2.2.5 Composite variables and SubValues

Finally, there can be cases like the following :

Clear@a, b, c, x, y, zD;
a@bD@1D = x;

a@bD@2D = y;

a@cD@1D = z;

Such definition is legal (the Clear command is used to clear variables and will be covered in a moment).
However, you can check that this definition is stored neither in OwnValues nor in DownValues of < a > or
< b > . Note also that the head of such a "variable" is a composite object itself:

Head@Unevaluated@a@bD@1DDD
a@bD

The definitions like above are stored as yet another type of a global rule, called a SubValue (SubValues
command) :

SubValues@aD
8HoldPattern@a@bD@1DD ¦ x,

HoldPattern@a@bD@2DD ¦ y, HoldPattern@a@cD@1DD ¦ z<
We see that there can be more than one global rule stored in SubValues, similarly to DownValues. Note
that SubValues associate these definitions with <a>, and in general with the outermost head of the compos -
ite head of an expression (this is called "symbolic head"). While this can also be considered as a variable in
the sense that it can store values, it is rather uncommon (especially when used as a variable) and I would
discourage the use of such "variables" except very special circumstances (such as, for example, to imple-
ment nested hash - tables).

� 2.2.6 Clearing variables

Since the rules for variables and functions are stored in the global rule base, it is essential for a "clean"
work to make sure that we work with "clean" variables. This is achieved by using the Clear[var] com-
mand. In particular, this command removes all the definitions associated with a variable and stored as
OwnValues, DownValues, SubValues or other types of global rules (there are only 3 more - UpValues,
NValues and FormatValues, but these types of rules are more advanced and we will not talk about them at
this time). It is a good habit to clear any symbols you use right before they are defined. Many examples of
using Clear will follow. For now, just a simple example:

 37

These are the current definitions associated with a symbol < b > :

? b

Global‘b

b@1D = 1

b@2D = 4

b@3D = 9

We now Clear < b > :

Clear@bD;
? b

Global‘b

We see that the definitions were cleared, however the symbol remained in the symbol table.

One moment to mention here is that only symbols (with the head Symbol) or strings can be arguments of
Clear (if you are interested when and why strings can be used, consult the Mathematica Help or Mathemat-
ica Book). In particular, an attempt to clear our composite variable in this way will fail :

Clear@a@bDD
Clear::ssym : a@bD is not a symbol or a string. �

One has to be more selective in this case, because many different variables are associated with the symbol
< a > . In such cases, built - in Unset is used, or its short - hand notation equal - dot < =. >

a@bD@1D =.

?a

Global‘a

a@bD@2D = y

a@cD@1D = z

We see that we removed the definition for the a[b][1] variable.

The Clear command removes the rules associated with a symbol, but not some other symbol properties,
such as Options or Attributes. Consider the following code :

Options@bD = 8Heads ® True<;
Attributes@bD = HoldAll;

We have assigned some properties to a symbol < b > . Now we Clear it :

Clear@bD;
? b

38

Global‘b

Attributes@bD = 8HoldAll<
Options@bD = 8Heads ® True<
To clear all properties associated with the symbol, use ClearAll :

ClearAll@bD;
? b

Global‘b

ClearAll, however, does not remove the symbol from the symbol table either. Sometimes it is desirable to
remove the symbol completely, so that it will also be removed from the symbol table. This is done by the
Remove command:

Remove@bD;
? b

Information::notfound : Symbol b not found. �

� 2.2.7 Does a variable have a value? ValueQ

In Mathematica , it is quite legal for a variable (symbol or expression) not to have any value, or, put
differently, not to be a l.h.s. of any global rule present currently in a system. For example :

b

b

Since < b > here has no value yet, it is returned back (it is said to evaluate to itself).

For any given variable, or expression in general, one may ask whether or not it has a value, or in other
words, whether or not it is a l.h.s. of some global rule present in the system. Of course, on way would be
to check all the ... Values, but there exists a better way : use a built - in ValueQ predicate. For instance :

8ValueQ@a@bD@1DD, ValueQ@a@bDD<
8True, False<

Notice that while a[b][1] has a value, this does not mean that a[b] necessarily has one, as ValueQ indi-
cates. In this particular case, a[b] has to be treated as a composite name of an indexed variable.

� 2.2.8 Assignments attach rules to Symbol-s

From this discussion it may seem that there are a lot of different cases to learn about variable definitions.
But at the end of the day, in all cases described above, assignments attach global rules to symbols with the
head Symbol. For OwnValues, this is just the variable itself, for DownValues this is a head of an indexed
variable, and for SubValues this is a symbolic head of the composite head of the variable. So, for example,
to clear any particular definition, one has to locate the symbol to which this definition is attached, and
either Clear this symbol or use Unset if one needs to be selective, rather than trying to call Clear on compos -
ite expressions like in our failed attempt above.

� 2.2.9 Summary

 39

�

2.2.9 Summary

The variables in Mathematica can be either symbols or normal expressions and can store any Mathemat-
ica expressions. The names of symbols can contain letters and numbers, but can not start with a number
or contain certain special characters, underscore included. One can use Head[Unevaluated[symb]] com-
mand to check whether or not the symbol is legitimate (has a head Symbol). One should not use variables
with names coinciding with some of the many system symbols. Starting a symbol name with a small letter
will ensure no conflicts with the system symbols.

There are several commands in Mathematica which display the information about the variables, such as <
?> and <Information>.

All variable definitions are global rules. Normally, variable names are just symbols (head Symbol). The
definitions for such variables are rules called OwnValues and stored in OwnValues[symbol]. The second
(rather rarely used) type of variables are indexed variables. They have head being another simple symbol
(like a[1] has a head < a >), rather than Symbol, and are stored in DownValues attached to their head. In
some rare cases one can also introduce variables with composite heads. These are stored in SubValues
attached to their symbolic head. The latter two types of variables are usually used in more special circum-
stances, since DownValues and SubValues are normally associated with functions rather than variable
definitions.

You will be better off not using DownValues or SubValues - based variables until you understand exactly
when and for which purpose they are beneficial.

Once the global definition is given to a variable, it remains there until another definition of the same type is
entered to replace it, or until it is cleared.

To clear the "normal" (OwnValue) variable definition, the Clear command is used. To clear also all other
properties possibly associated with the variable, use ClearAll. If you also need the symbol (name of the
variable) to be removed from the symbol table, use Remove. All these commands can not be used on
composite variables (DownValue-based or SubValue-based). To clear such variables, use Unset.

� 2.3 Dynamic data typing

Mathematica is a dynamically typed language, which means that the type of the variable is inferred when
it is defined, and a single variable may be used as a placeholder for different types of data during the same
Mathematica session (although this is not a best thing to do). In fact, there is no notion of type similar to
other languages - it is replaced by notion of atoms and normal expressions as explained in the previous
chapter.

Any newly entered object is considered as a symbolic entity. Whenever it is entered, the symbol table is
searched for it. If it is there, a new reference to it is created. If not, a new entry in the symbol table is
created. If the object is new, or such that no rules immediately apply to it, it is returned:

Clear@aD;
a

a

40

Sin@aD
Sin@aD

In the last example, Sin is a built-in function, however no rules are associated with Sin[a] or <a>, so the
expression returns.

� 2.4 Assignments

� 2.4.1 Immediate and delayed assignments: Set and SetDelayed

There are two assignment commands in Mathematica: immediate and delayed assignment.

The immediate assignment is performed with the equal sign (=), say x = y, which means "assign to x the
value that y has right now". This command has a literal equivalent Set: we could equivalently write
Set[x,y]. For delayed assignment, one has to use (:=) (semicolon plus an equal sign), say x:=y. The literal
equivalent is the SetDelayed command, for instance SetDelayed[x,y]. This means "add to the global rule
base a rule, which will substitute x every time that x is encountered, by the value that y will have at that
moment". So, with this kind of assignment, the right hand side is not evaluated at the moment of assign-
ment, but is re-evaluated every time when the left-hand side appears somewhere in the program. This is
the main difference between the two assignment operators, since with Set, the l.h.s. is assigned the value
that the r.h.s. has at the moment of assignment, "once and for all".

� 2.4.2 The difference between Set and SetDelayed : an example

Here is an example:

Clear@a, bD;
a = Random@Integer, 81, 10<D;
Do@Print@aD, 85<D

2

2

2

2

2

b := Random@Integer, 81, 10<D;
Do@Print@bD, 85<D

2

6

6

10

2

In both cases, an object (a or b) is assigned a random integer in the range 1 -10. But in the former case, it
is computed at the moment of assignment and then is attached to <a>, while in the latter case it is recom-
puted afresh every time that b is called. We have also used one of the looping constructs Do, which we
will cover shortly.

 41

In both cases, an object (a or b) is assigned a random integer in the range 1 -10. But in the former case, it
is computed at the moment of assignment and then is attached to <a>, while in the latter case it is recom-
puted afresh every time that b is called. We have also used one of the looping constructs Do, which we
will cover shortly.

� 2.4.3 Chain assignments

Chain assignments are possible for both Set and SetDelayed, but while the meaning of the former is the
same as in C, the meaning of the latter is really different. Let me illustrate this point.

Here we assign the variables a,b and c the value 2:

Clear@a, b, cD;
a = b = c = 2;

8a, b, c<
82, 2, 2<

Let us try the same with SetDelayed:

Clear@a, b, cD;
a := b := c := 2;

8a, b, c<
8Null, Null, 2<

The Null output means "no output". This is because while the Set operator is actually an expression in the
C sense and returns the value - that of the r.h.s, SetDelayed is an operator but a statement rather than an
expression in the C sense, so it does not return a value. But what is important here is that neither <a> nor
 received a "value" in the normal sense as variables (formally they did, according to our discussion of
variable above, but what they received I would not call a "value"). Rather, they are triggers which trigger
certain assignments. When <a> is called, this means "associate with b the rule that whenever b is called,
the value of the r.h.s. of this rule as it is at this moment is returned". But the r.h.s of the rule for is an
assignment (of 2) to <c>, which means that after <a> is called just once, the values of 2 will be assigned to
<c> every time that b is called. We can watch this once again to check the above statements:

Clear@a, b, cD;
a := b := c := 2;

?a

Global‘a

a := b := c := 2

? b

Global‘b

?c

Global‘c

We now call a:

a

The new definitions:

? b

42

Global‘b

b := c := 2

?c

Global‘c

Now we call b:

b

The new definitions:

? b

Global‘b

b := c := 2

?c

Global‘c

c := 2

So, it is not clear where this construction may effectively be used, but it is clearly very different from what
one may naively expect.

� 2.4.4 Don’ t use SetDelayed with more than two arguments

Notice by the way, that although SetDelayed in a literal form can also accept more than 2 arguments, the
result will not be what one would probably expect. Namely, SetDelayed[a,b,c] is not the same as a:=b:=c.
Rather, it attaches to a the rule that a be replaced by a sequence of b and c:

Clear@a, b, cD;
SetDelayed@a, b, cD;
?a

Global‘a

a := Sequence@b, cD
The head Sequence is a rather special head in Mathematica, and is used to represent "no head". It is
needed since according to one of the main principles, everything is an expression, and as such must have
some head or be an atom (atoms also have heads but those are fixed by convention rather than deter -
mined from syntax). However, the head Sequence is special since normally it "disappears" inside other
heads:

Clear@f, a, b, cD;
f@Sequence@a, b, cDD
f@a, b, cD

The reason it did not disappear inside SetDelayed is that SetDelayed is one of the exceptions (it has to do
with more general issue of function attributes and will be covered later).

So, the final conclusion: don’t use the chain assignment with SetDelayed, unless this is indeed what you
want to do - chances are that the result will be very different from what you expect.

� 2.4.5 Set and SetDelayed : when which one is used

 43

�

2.4.5 Set and SetDelayed : when which one is used

Normally one uses Set (=) to define variables, and SetDelayed (:=) - to define functions, for which the
recomputation of the r.h.s. on a changed argument is a natural operation. However, in this respect Mathe-
matica differs from other programming environments in that the distinction between functions and vari-
ables is achieved not on the level of keywords such as <function>, or specific forms of functions declara-
tion, but essentially by the assignment operator that have been used to define the symbol (this is somewhat
oversimplified), and also to some extent by a type of global rule associated with the symbol (but again, it
is decided based on the syntactic form of the symbol, but at the moment of assignment). This allows to
work with functions and variables on equal grounds. This lack of fundamental distinction between func-
tions and variables is at the heart of the functional style of programming, which is one of the most efficient
programming styles in Mathematica and which we will use a lot in the later chapters.

� 2.5 Equality checks

There are two operators in Mathematica which can be used to perform equality checks. They perform
checks on semantic equality (equality by value) and syntactic equality (equality by syntactic form of expres-
sion).

� 2.5.1 Equal

The first operator has a short-hand notation as double equal sign (like in C): <==>, for instance x == y,
and a literal equivalent Equal[x,y]. It is associative so that it is legitimate to write say x==y==z. This is
different from C, where the above will not work as desired since y==z would evaluate to 1 or 0, and
therefore x will be then compared to the result of comparison of y and z rather than to y or to z (which will
probably be a bug). The literal equivalent of the last example would be Equal[x,y,z]. We can see that
Equal can take many arguments, which is often handy. For example:

Clear@a, b, cD;
a = b = c = 2;

d = 3;

8a � b, b � d, a � b � c, Equal@a, b, cD, Equal@a, b, c, dD<
8True, False, True, True, False<

� 2.5.2 Beware: Equal may return "unevaluated"

Equal works on any Mathematica expression, atom or a normal expression. However, in general, for
arbitrary l.h.s. and r.h.s, Equal evaluates to itself because Mathematica can not determine whether or not
the expressions have the same value. For example:

Sin@xD^2 +Cos@xD^2 � 1

Cos@xD2 +Sin@xD2 � 1

This does not mean that Mathematica can not simplify the l.h.s. :

Simplify@Sin@xD^2 +Cos@xD^2D
1

It just means that by default it will not do so, unless instructed explicitly. In such cases, Equal returns
unevaluated (not in the sense that it has not been evaluated at all, but in the sense that evaluation resulted
in the original expression). This makes a lot of sense in a symbolic environment such as Mathematica,
since at some point, new rules may be added, then expression will change and perhaps then Equal will
evaluate. For instance:

44

It just means that by default it will not do so, unless instructed explicitly. In such cases, Equal returns
unevaluated (not in the sense that it has not been evaluated at all, but in the sense that evaluation resulted
in the original expression). This makes a lot of sense in a symbolic environment such as Mathematica,
since at some point, new rules may be added, then expression will change and perhaps then Equal will
evaluate. For instance:

Simplify@Sin@xD^2 +Cos@xD^2 � 1D
True

� 2.5.3 Equal is used by built-in solvers to build equations

The above behavior of Equal - the fact that it evaluates to itself whenever equality can not be determined
(on different symbolic expressions on different sides), is exploited in various built - in functions which
receive equations as their arguments, such as Solve, DSolve, etc. The equation is written as for instance
x^2 - 3 x + 2 == 0:

Solve@x^2 -3 x +2 � 0, xD
88x ® 1<, 8x ® 2<<

� 2.5.4 Assigning the result of Equal to a variable, and more on evaluation

Since Equal[a, b], as everything else, is a Mathematica expression, we can assign some variable the value
of this expression. As an example, consider the following statement :

Clear@x, testD;
test = Sin@xD � 0

Sin@xD � 0

Let us now give < x > a value :

x = Pi;

test

True

We see that initially test was unevaluated, but once x received a global value, test evaluated to True. What
may look surprising however, is that internally < test > still has the previous definition, rather than < True
> :

?test

Global‘test

test = Sin@xD � 0

In particular, if we now Clear our < x > variable, the result will again be a symbolic expression :

Clear@xD;
test

Sin@xD � 0

This means that the variable < test > in fact behaves like a function of x (although this is not a proper way
to define functions). But more importantly, this explains to us part of the evaluation mechanics. First of
all, the definition of <test> represents a rule in the global rule base. This can be seen by using the OwnVal-
ues function, which describes the definitions of variables (atoms):

 45

This means that the variable < test > in fact behaves like a function of x (although this is not a proper way
to define functions). But more importantly, this explains to us part of the evaluation mechanics. First of
all, the definition of <test> represents a rule in the global rule base. This can be seen by using the OwnVal-
ues function, which describes the definitions of variables (atoms):

OwnValues@testD
8HoldPattern@testD ¦ Sin@xD � 0<

Secondly, the way any global rule obtained by using the Set command is added, is that the r.h.s. is evalu-
ated at the moment of definition, and the result added to the rule base. If some variables (x in this case)
did not have a value at the moment of assignment, they will be added in their symbolic form. But once the
rule has been added to the global rule base, it will not change in any way (unless it is removed or manipu-
lated by hand later), regardless of possible changes in the variables used in the r.h.s., which happened after
the rule has been added. That’s why in our example the definition of <test> remained unchanged despite
changes in the value of <x>.

It is very important to realize that rules in the global rule base exist completely independently of the global
state of the system, in the sense that they can be only added or removed from the rule base, but do not
change regardless of changes of the global state. If we think about it, this is the only way it can be, since
the global state is itself determined by the state of the rule base. So, what we have just discussed may be
rephrased like this: different rules added to the global rule base do not interact with each other during their
"stay" in the rule base, but only during the evaluation of some expression. Had this not been so, and we
would have no way to predict the outcome of the evaluation, since some rules would change other rules
and the result would be different depending on the order in which they are applied.

� 2.5.5 The role of side effects

The symbolic nature of Mathematica may make one think that if any symbolic expression entered is the
same on the l.h.s. and r.h.s. of the comparison operator, one would always get True. But this is not always
so, in particular when the expression has side effects such as assignments. As an example, consider a
function which increments its argument (ignore the code, we will cover it later).

Clear@a, incD;
a = 5;

inc@x_D := x = x +1;

Attributes@incD = 8HoldAll<;
Now, check this :

inc@aD � inc@aD
False

� 2.5.6 A digression: standard and non-standard evaluation

What happened is very easy to see by using Trace command :

a = 5;

Trace@inc@aD � inc@aDD
88inc@aD, a = a +1, 88a, 5<, 5 +1, 6<, a = 6, 6<,8inc@aD, a = a +1, 88a, 6<, 6 +1, 7<, a = 7, 7<, 6 � 7, False<

We see that first, inc[a] on the left evaluated, which resulted in the value 6 but also incremented a as a side
effect. Next, the r.h.s. evaluated, resulting in a value 7 and once again incrementing a. Thus, when Equal
actually tested the expression, it looked like 6==7 which of course resulted in False (in fact, this example
is not unique to Mathemtica. Similar situation would also occur in C in the same setting (change inc to
++), and there we would not even know which side of the comparison will evaluate first - this is up to a
compiler).

46

We see that first, inc[a] on the left evaluated, which resulted in the value 6 but also incremented a as a side
effect. Next, the r.h.s. evaluated, resulting in a value 7 and once again incrementing a. Thus, when Equal
actually tested the expression, it looked like 6==7 which of course resulted in False (in fact, this example
is not unique to Mathematica. Similar situation would also occur in C in the same setting (change inc to
++), and there we would not even know which side of the comparison will evaluate first - this is up to a
compiler).

I used this example to illustrate several points. First, we saw that subexpressions inc[a] evaluated before
the expression containing them (Equal in this case) evaluated. This is a general rule of Mathematica
evaluation - it normally starts from leaves and goes from inside out to branches and then to root. This is
called standard evaluation. However, you may have noticed the inconsistency: by the same logic, <a>
should have been evaluated first, and thus the function < inc > should have had no chance of changing the
value of < a > whatsoever. This is because it had to always get a number (current value of <a>), since
<a> is a leaf for < inc >, and thus had to be evaluated before < inc[a] > . And you will be absolutely
correct - normally this does not happen, and this behavior (when rules associated with expressions are
applied before rules associated with sub-expressions) is called non-standard evaluation and in this case
was induced by the second line in the definition of <inc> (HoldAll attribute - to be discussed later).

Both standard and non-standard evaluation are equally important for the functioning of Mathematica.
Most built-in functions evaluate their arguments in the standard way, but many crucial built-in functions
evaluate their argument in the non-standard way. This topic is too advanced for us now, but we will return
to it later and consider it in more detail.

� 2.5.7 Pass by reference semantics - possible to imitate

Another point that this example illustrated is that we may arrange a function to change a value of the input
variable such that these changes will remain valid after the function returns. This looks like a pass-by-
reference semantics (although this is not entirely true since there are no pointers in Mathematica). But in
general, such things are rather rarely used in Mathematica programming, since usually functions operate
on a copy of the variable and the initial variable or expression remains unchanged. Since Mathematica
functions may return any Mathematica expression (including lists containing many results) and memory is
allocated dynamically (even variables don’t need to be declared), it is rarely necessary to simulate a pass-
by-reference semantics.

� 2.5.8 SameQ

The above behavior of the Equal operator, and in particular the fact that it may return unevaluated, may
sometimes be unsatisfactory. This is so when one needs a definite yes - or - no answer. For this purpose,
there exists another comparison operator (but see the caveat below).

The second operator has a short-hand notation as a triple equal sign <===> , for instance x===y, and a
literal equivalent SameQ, for instance SameQ[x,y]. Its purpose is to compare expression by their syntactic
form rather than value. It gives True when expression are literally the same and False otherwise. In particu-
lar, consider the input of our previous example:

Clear@xD;
Sin@xD^2 +Cos@xD^2 === 1

False

It is interesting that one can also construct examples when Equal gives True while SameQ gives False. For
instance, consider this :

 47

It is interesting that one can also construct examples when Equal gives True while SameQ gives False. For
instance, consider this :

Pi�2 � Pi�2.
True

Pi�2 === Pi�2.
False

What happens here is that while the value of both sides is the same, syntactically they are different :

8Pi�2, Pi�2.<
: Π

2
, 1.5708>

However, the inverse is true : if SameQ gives True, then Equal will also give True.

� 2.5.9 TrueQ

Caveat: the above example also indicates that sometimes the use of SameQ may be unsatisfactory either,
since it may produce False where Equal would eventually produce True. For instance, in the following
situation:

Clear@a, b, c, dD;
a := Equal@c, dD;
b := SameQ@c, dD;
8a, b<
8c � d, False<
c = Pi�2; d = Pi�2.;
8a, b<
8True, False<

This means that the purpose of SameQ may in some cases be subtly different from just a replacement for
Equal (SameQ, unlike Equal, always evaluates to True or False). For such cases, another operator comes
handy: TrueQ. This function gives False whenever its argument does not evaluate to True. So, in the case
above (unless we really are interested in aspects in which Pi/2 and Pi/2. are different), the proper thing to
do is the following:

Clear@a, b, c, dD;
a := TrueQ@Equal@c, dDD;

Check:

a

False

c = Pi�2; d = Pi�2.;
a

True

48

Clear@a, b, c, dD;
Chain comparisons are also possible, and used every now and then (we will consider a few non-trivial
examples of them in later chapters).

As you may have guessed, there are also operators which test whether the sides are unequal rather than
equal, or unsame rather than same. You can guess the name of the operators as well - Unequal and
UnsameQ, of course. The short - hand notation for Unequal is <!=> , and for UnsameQ - <=!=>. They
work in the same way as Equal and SameQ, but of course with opposite results.

� 2.6 Logical operators

As many other languages, Mathematica has several built-in logical operators. We will consider logical
AND : short-hand &&, literal equivalent And[], logical OR: short-hand ||, literal equivalent Or[], and the
negation NOT (short-hand <!>, literal equivalent Not[]). As you can see, the short-hand notation is the
same as in C.

These operators return True or False, but also they may return unchanged if the value of a logical expres-
sion can not be determined:

And@a, bD
a && b

This is perhaps the main difference between these operators in Mathematica and other programming
languages, of course due to the symbolic nature of Mathematica. The situation here is similar to that with
If (see below). In case when the definite result is needed, TrueQ can be used:

TrueQ@And@a, bDD
False

Another difference is that both And and Or can take multiple arguments :

And@a, b, cD
a && b && c

Or@a, b, cD
a ÈÈ b ÈÈ c

Operators And and Or have the same "short-circuit" behavior as their analogs in C : And stops evaluating
its arguments and returns False when the first argument which evaluates to False is encountered, and Or
stops evaluating its arguments and returns True when the first argument which evaluates to True is encoun-
tered. Since normally arguments are evaluated before the function, we immediately conclude that both
And and Or use non-standard evaluation.

 49

� 2.7 Conditionals

� 2.7.1 The If operator

The If operator has the following syntax :

 If[test, oper1, oper2].

 Here < test > is a condition being tested. The condition < test > should in principle evaluate to True or
False, in order for If to make a choice. If it evaluates to True, the first operator oper1 is evaluated, other-
wise a second one. The second operator may be absent, in which case nothing is done for the False out-
come (Null is returned).

Since normally the arguments of the function are evaluated before the function itself, while in the case of
If the operator which corresponds to True of False branch should only be evaluated after the condition is
checked, we conclude that If uses non-standard evaluation.

� 2.7.2 If may return "unevaluated"

In Mathematica, there is a third possibility - that the condition <test> will not evaluate to either True or
False. In this case, this is not considered an error, but the whole operator If will return "itself" - a symbolic
expression as the answer.

Clear@a, b, cD;
If@a, b, cD
If@a, b, cD

In case when this is unsatisfactory, one can either use the TrueQ to ensure evaluation, or use an extended
version of If with a fourth argument, which will be evaluated when the condition does not evaluate to
either True or False :

If@a, b, c, dD
d

� 2.7.3 If returns a value

Another difference with other programming languages is that the whole operator If returns a value. In this
sense, it is like a "question" operator in C : a?b : c. Thus, the following is meaningful:

Clear@a, b, x, yD;
a := If@EvenQ@bD, x, yD;

We check now :

a

y

The result is such since by default the predicate EvenQ evaluates to False on an unknown object (see
section 1.2.6). Let us change < b > :

50

b = 2;

a

x

And once again :

b = 3;

a

y

Notice that < a > gets recomputed every time since it has been defined with SetDelayed (:=). Another
example :

Clear@a, x, y, testD;
a := If@test, x, yD;
test := HSin@xD � Cos@xDL;
a

If@Sin@xD � Cos@xD, x, yD
Now :

x = Pi�2;
a

y

x = Pi�4;
a

Π

4

In these cases, the condition < test > evaluated to False and True respectively, which led to the above
values of < a > .

� 2.7.4 Operators Which and Switch

These operators generalize If to situations where we have to switch between several possibilities. Which is
essentially a replacement for nested If statements. Switch in Mathematica resembles Switch in C, but
differs from it significantly. First, it has a different (extended in a sense) functionality since it works on
patterns (patterns are extremely important. We will cover them later). Also, Break[] operator is unneces-
sary here, and so the fall-through behavior of C Switch is not possible (patterns sort of compensate for
this). Finally, in C Switch can be used in more sophisticated ways to put some entry points in the block of
code - this is not possible here. Both Which and Switch are well-explained in Mathematica Help, and we
refer to it for further details regarding them.

 51

� 2.8 Loops

These constructs are quite analogous to the ones in C, with the exception that the roles of comma and
semicolon are interchanged with respect to C. In general, loops are not very efficient in Mathematica, and
in particular, the most effective in Mathematica functional style of programming does not involve loops at
all. We will give just a few examples for completeness.

Let us print numbers from 1 to 5 :

� 2.8.1 For loop

For@i = 1, i £ 5, i ++, Print@iDD;
1

2

3

4

5

If one needs to place several operators in the body of the loop, one can do so by just separating them with
a semicolon. The same comment applies to the While loop.

� 2.8.2 While loop

Or, the same with While :

i = 1;

While@i £ 5, HPrint@iD; i ++LD
1

2

3

4

5

� 2.8.3 Do loop

And now with Do :

Do@Print@iD, 8i, 5<D
1

2

3

4

5

� 2.8.4 Side effects induced by loops

52

�

2.8.4 Side effects induced by loops

In general, most Mathematica built - in functions do not introduce side effects, since they operate on a
copy of the given expression. In For and While loops however, the index variables (like < i > above) will
keep the final value that they had when the loop terminated, as a global value. It is a good practice to
localize all loop variables inside one of the scoping constructs available in Mathematica (see section 4.8).

On the other hand, the Do loop is a scoping construct by itself, so it localizes the iteration variable. How-
ever, the way it does it may be not what one expects (since it effectively uses a Block scoping construct) -
it localizes in time rather than in space. I will have more to say about it later (see section 4.8), but
"normally" in the following situation:

a := i^2;

Do@Print@aD, 8i, 1, 5<D
1

4

9

16

25

we could expect a symbol < a[i] > printed 5 times (since the definition of < a > uses a global < i > and Do
is supposed to localize < i >) . On the other hand, the global < i > does not have any value after < Do >
finishes, so <Do> is a scoping construct.

i

i

For clarification of these issues, see section 4.8.

� 2.8.5 Blocks of operators - the CompoundExpression command

The parentheses in this example actually represent a composite operator, which is legitimate everywhere
where the single operator is. Its literal form is CompoundExpression[oper1; ...; opern]. The operators
have to be separated by semicolons. The value returned by CompoundExpression is the value of the last
statement opern. In particular, if we insert a semicolon after < opern > as well, there will be no return
value (more precisely, the return value will be Null).

Notice also that the loop Do is not a version of Do - While in C, but just a faster version of For or While,
where no condition is checked but one has to know exactly how many iterations are needed.

� 2.8.6 Local goto statements: Break , Continue, Return

There are statements to realize local Goto within the loop - Break[] and Continue[]. They work in the
same way as they work in C. For example, here we will break from the Do loop after 4 iterations :

i = 1;

Do@HPrint@"*"D; If@i ++ > 3, Break@DDL, 850<D

 53

*

*

*

*

The Return[] statement can also be used to break from the loops, but it acts differently. We did not cover
it yet, but there are three scoping constructs used in Mathematica to localize variables - Module, Block
and With. If we have a For or While loop inside one of these constructs, then the Break[] statement will
break from the loop only, and the code right after the loop (but inside the scoping construct) will start to
execute. If we use Return[] however, we will also break from the entire localizing construct which
encloses the loop (if there are nested localizing constructs, we break from the innermost one only). Not so
for < Do > loop though : it is a localizing construct by itself, so using Return[] we will break out of Do but
will remain in whatever localizing construct encloses Do. These comments will become more clear once
you get familiar with Module, Block and With (end of chapter IV).

� 2.8.7 Programs using loops are often inefficient in Mathematica

It turns out that programs that use loops are often inefficient in Mathematica. This is not so much due to
loops themselves being slow in Mathematica, as to the fact that certain common programming practices
associated with loops are efficient in other languages but not in Mathematica.

Let me illustrate this on a simple example. We will compute a sum of the first 100000 natural numbers.
We will first do this with a loop, and then show a program written in a functional programming style.

Here is the loop version :

Timing@sm = 0;

Do@sm = sm +i, 8i, 100000<D; smD
80.581, 5000050000<

And this is a functional realization :

Timing@Apply@Plus, Range@100000DDD
80.16, 5000050000<

We see that it is several times faster. The reasons why this is so, as well as when the procedural program -
ming style (based on loops, conditionals, etc) is and is not appropriate, we will discuss at length in the next
chapters. The Timing command that we used gives an elapsed time together with the result of evaluation
for a given expression.

To rehabilitate the loops somewhat, let me mention that they can be quite efficient in cases when it is
possible to use the internal compilation :

Compile@8x, 8n, _Integer<<,
Module@8sm = x<, Do@sm = sm +i, 8i, n<D; smDD@0, 100000D �� Timing

90.03, 5.00005´109=
The numbers returned by compiled functions can however be only machine - size numbers. Also, the
compiler can not handle programs which operate on generic objects.

54

The numbers returned by compiled functions can however be only machine - size numbers. Also, the
compiler can not handle programs which operate on generic objects.

� 2.9 Four types of brackets in Mathematica

Mathematica utilizes four different types of brackets: parentheses, single square brackets, double square
brackets and the curly braces. Each type of brackets has a different meaning and purpose.

� 2.9.1 Parentheses ()

Parentheses are used to change the priority or precedence of different operations, like in other program -
ming languages.

There is another use of parentheses - to group together a block of operators which we want to be consid-
ered as a single composite operator (in C curly braces are used for this purpose) - in this case, parentheses
are the short hand notation for a CompoundExpression command.

There is no confusion between these two uses of parentheses, since inside the block the operators have to
be separated by semicolons, as we already discussed.

� 2.9.2 Curly braces {}

Curly braces always mean a list. They are equivalent to a literal command List:

Clear@a, b, cD;
8a, b, c< === List@a, b, cD
True

Lists represent collections of objects, possibly of different type, and are very important building blocks of
Mathematica programs, since any complex data structure can be built out of them. We will cover them in
a separate chapter devoted entirely to them.

Some built-in functions use lists of one, two, three or four numbers as interators. One such function - the
loop Do - we already encountered.

� 2.9.3 Single square brackets []

Single square brackets are used as building blocks for normal expressions in Mathematica. They are used
to represent an arbitrary Mathematica expression as a nested tree-like structure, as we already discussed.
This is their only (but very important) purpose in Mathematica.

You may object that another purpose of them is to be used in function calls, like:

Sin@PiD
0

However, the truth is that the notion of function is secondary in Mathematica, the primary ones being
notions of rules and patterns. Thus, all function calls are at the end (syntactically) just special cases of
normal Mathematica expressions. The reason that the functions are computed is related to evaluation
process and the presence in the global rule base of certain rules associated with the name of the function,
but not to some special syntax of function calls (there is no such). For example, the following expression
evaluates to itself:

 55

However, the truth is that the notion of function is secondary in Mathematica, the primary ones being
notions of rules and patterns. Thus, all function calls are at the end (syntactically) just special cases of
normal Mathematica expressions. The reason that the functions are computed is related to evaluation
process and the presence in the global rule base of certain rules associated with the name of the function,
but not to some special syntax of function calls (there is no such). For example, the following expression
evaluates to itself:

Sin@5D
Sin@5D

just because there is no rule in the global rule base associated with Sin[5].

� 2.9.4 Double square brackets [[]]

Finally, double square brackets are used as a shorthand notation for a Part command, which is used to
deconstruct an expression and index into sub-expressions, extracting them. We have already seen an
example of how this can be done.

Warning: a common mistake

It is a very frequent mistake when single square brackets are used in order to extract elements of an array
(list) or a matrix (list of lists), for example:

Clear@lstD;
lst = 81, 2, 3, 4, 5<;
lst@1D

81, 2, 3, 4, 5<@1D
Here is the correct syntax:

lst@@1DD
1

The problem is made worse by the fact that the wrong syntax above does not result in an error - this is a
legitimate Mathematica expression. It just has nothing to do with the intended operation.

Clear@lstD;

56

� Summary

We have considered the most elementary operations with variables, such as assignments and comparisons,
and also the control structures such as conditionals and loops, which are similar to those found in other
procedural languages such as C. The reason that our exposition was rather brief is partly because many of
these constructs are rarely used in serious Mathematica programming, being substituted by more powerful
idioms which we will cover at length in the later chapters.

I also used a few examples to illustrate some more subtle issues related to the rule-based nature of Mathe-
matica. These issues are important to understand to get a "feel" of the differences between Mathematica
and more traditional computing environments.

Along the way, we saw some examples of use of the following built-in functions: Clear, Set, SetDelayed,
Equal, SameQ, If, Do, For, While, Apply, Range, Timing.

 57

III. Lists

3.1 Introduction

Lists are the main data structure in Mathematica, and also in functional programming languages such as
LISP. Any complex data structure can be represented as some (perhaps, complex and nested) list. For
example, N-dimensional array is represented as a list with depth N. Any tree can also be represented as a
list.

Lists can be generated dynamically during the process of program execution, and the correctly written
functions work on lists of arbitrary length without taking the length of the list as an explicit parameter.
This results in a quite "clean" code, which is at the same time easy to write. Another advantage of lists is
that it is usually easy to debug functions that work on them - we will see many examples of these features.
In this chapter we will cover several built-in functions which are used to generate and process lists.

3.2 The main rule of thumb when working with lists in Mathematica

When we work with lists in Mathematica, especially large ones, it makes sense to stick to the following
main rule: any list we have to treat as a single unit, and avoid operations that break it into pieces, such as
array indexing. In other words, the best programming style is to try writing the programs such that the
operations are applied to the list as a whole. This approach is especially important in the functional pro-
gramming style, and leads to significant increase of code efficiency. We will illustrate this issue on many
examples, particularly in the chapter V on functional programming.

3.3 The content of lists

Lists are not required to contain only elements of the same type - they can contain any Mathematica
expressions mixed in an arbitrary way. These expressions may themselves be lists or more general Mathe-
matica expressions, of any size and depth. Essentially, a list is a particular case of a general Mathematica
expression, characterized by having the head List:

Clear@xD;
List@Sin@xD, Cos@xD, Tan@xDD
8Sin@xD, Cos@xD, Tan@xD<

3.4 Generation of lists

There are many ways to generate a list

� 3.4.1 Generating a list by hand

First of all, it is of course possible to generate a list by hand. That is, some fixed lists in the programs are
just defined by the programmer. For instance:

58

Clear@testlist, a, b, c, d, eD;
testlist = 8a, b, c, d, e<
Clear@testlistD;
8a, b, c, d, e<

� 3.4.2 Generation of lists of equidistant numbers by the Range command

In practice it is very often necessary to generate lists of equidistant numbers. This is especially true in the
functional approach since there functions on such lists replace loops. Such lists can be generated by using
the built-in Range command. Examples:

Range@5D
Range@2, 10D
Range@2, 11, 3D
Range@0, 1, 0.1D
81, 2, 3, 4, 5<
82, 3, 4, 5, 6, 7, 8, 9, 10<
82, 5, 8, 11<
80, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.<

� 3.4.3 Generation of lists with the Table command

In cases when we need lists of more general nature, often they can be generated by the Table command.
Examples:

Table@1, 8i, 1, 10<D
Table@i^2, 8i, 1, 10<D
Table@i*j, 8i, 1, 3<, 8j, 1, 3<D
Table@i +j, 8i, 1, 4<, 8j, 1, i<D
Table@i +j +k, 8i, 1, 2<, 8j, 1, 3<, 8k, 1, 3<D
Table@Sin@iD, 8i, 1, 10<D

81, 1, 1, 1, 1, 1, 1, 1, 1, 1<
81, 4, 9, 16, 25, 36, 49, 64, 81, 100<
881, 2, 3<, 82, 4, 6<, 83, 6, 9<<
882<, 83, 4<, 84, 5, 6<, 85, 6, 7, 8<<
8883, 4, 5<, 84, 5, 6<, 85, 6, 7<<, 884, 5, 6<, 85, 6, 7<, 86, 7, 8<<<
8Sin@1D, Sin@2D, Sin@3D, Sin@4D,
Sin@5D, Sin@6D, Sin@7D, Sin@8D, Sin@9D, Sin@10D<

As these examples show, Table accepts one or more lists which indicate the iteration bounds, but we can
fill the lists with some functions computed on the counters being iterated. In cases when we have more
than one iterator, we create a nested list where the innermost iterators correspond to the outemost lists.
As we see, the bounds of the more outermost iterators may depend on the variables of more innermost
ones, in which case the lists will have sublists of different lengths. This is where we start seeing that lists
are more general than (multidimensional) arrays since the sublists are not bound to have the same dimen-
sions. Also, notice that lists created by Table are not bound to be lists of numbers - they can be lists of
functions:

 59

As these examples show, Table accepts one or more lists which indicate the iteration bounds, but we can
fill the lists with some functions computed on the counters being iterated. In cases when we have more
than one iterator, we create a nested list where the innermost iterators correspond to the outermost lists.
As we see, the bounds of the more outermost iterators may depend on the variables of more innermost
ones, in which case the lists will have sublists of different lengths. This is where we start seeing that lists
are more general than (multidimensional) arrays since the sublists are not bound to have the same dimen-
sions. Also, notice that lists created by Table are not bound to be lists of numbers - they can be lists of
functions:

Clear@i, xD;
Table@x^i, 8i, 1, 10<D

9x, x2, x3, x4, x5, x6, x7, x8, x9, x10=
Here, for example, we created a 3x3 matrix of monomials:

Clear@i, j, xD;
Table@x^Hi +jL, 8i, 1, 3<, 8j, 1, 3<D
99x2, x3, x4=, 9x3, x4, x5=, 9x4, x5, x6==

One more comment about Table is that it is a scoping construct in the sense that it localizes its iterator
variables. It effectively uses Block[] scoping construct in doing so, with all the consequences which
normally accompany the use of Block[] (see section 4.8). In particular, naively we expect < f[i] > symbol
printed 5 times in the following example, since the definition of < f > used the global < i >

Clear@f, iD;
f := i^2;

Table@f, 8i, 5<D
81, 4, 9, 16, 25<

The global < i > however did not receive any value :

i

i

The final comment about Table is that while it is a scoping construct, Return[] command can not be used
to break out of it, unlike some other scoping constructs we will encounter :

Table@If@i > 3, Return@D, iD, 8i, 10<D
81, 2, 3, Return@D, Return@D, Return@D,
Return@D, Return@D, Return@D, Return@D<

� 3.4.4 A comment on universality of Range

As far as the first and the second examples are concerned, we can get the same result also with the Range
command. Observe:

60

Range@10D^0
Range@10D^2
81, 1, 1, 1, 1, 1, 1, 1, 1, 1<
81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

All other examples can also be done with Range and a small amount of functional programming:

HRange@3D * ðL & �� Range@3D
881, 2, 3<, 82, 4, 6<, 83, 6, 9<<

Range@ð +1, 2* ðD & �� Range@4D
882<, 83, 4<, 84, 5, 6<, 85, 6, 7, 8<<

Nest@Partition@ð, 3, 1D &, Range@3, 8D, 2D
8883, 4, 5<, 84, 5, 6<, 85, 6, 7<<, 884, 5, 6<, 85, 6, 7<, 86, 7, 8<<<
Map@Sin, Range@10DD
8Sin@1D, Sin@2D, Sin@3D, Sin@4D,
Sin@5D, Sin@6D, Sin@7D, Sin@8D, Sin@9D, Sin@10D<

Clear@xD;
x^Range@10D

9x, x2, x3, x4, x5, x6, x7, x8, x9, x10=
The above examples may look unclear now. We give them here just to show that one can go a long way
with just the Range command, and to clarify the role of Table. In fact, Table can be thought of as an
optimized loop - it is usually (much) more efficient to create lists with Table rather than to do that in a
loop such as Do, For or While. But in the functional programming, Table is not so often used, unlike
Range, and now you can see why - we can always get the same effect, and moreover, very often do it
faster.

 61

� 3.4.5 Generation of lists inside loops

� 3.4.5.1 List generation with Append or Prepend

Such loop generation is possible and resembles most closely what we usually have in procedural lan-
guages. In Mathematica usually this is one of the least efficient ways to do this. Also, the Table command
is actually a loop, but optimized for list generation and fast. The direct list generation inside a loop
requires the commands Append, Prepend, AppendTo or PrependTo, starting with an empty list. Append
adds one element at the end of the list, and for reasons which we will explain later is very inefficient in
Mathematica for large lists. Let us instead illustrate this with an example. Here is a simple list generated
with Append:

For@testlist = 8<; i = 1, i £ 10,

i ++, testlist = Append@testlist, Sin@iDDD;
testlist

8Sin@1D, Sin@2D, Sin@3D, Sin@4D,
Sin@5D, Sin@6D, Sin@7D, Sin@8D, Sin@9D, Sin@10D<

This is how we do it with Range:

Sin@Range@10DD
8Sin@1D, Sin@2D, Sin@3D, Sin@4D,
Sin@5D, Sin@6D, Sin@7D, Sin@8D, Sin@9D, Sin@10D<

� 3.4.5.2 A digression: <myTiming> : a useful function to measure small execution times

Here I introduce a (user - defined) utility function < myTiming >, which I will use heavily in various
performance measurements throughout the book :

62

Clear@myTimingD;
myTiming@x_D := Module@8z = 0, y = 0, timelim = 0.1,

p, q, iterlist = HPower@10, ðD & �� Range@0, 10DL,
nm =

If@ToExpression@StringTake@$Version, 1DD < 6, 2, 1

D<,
Catch@
If@Hz = Nest@

First, Timing@Hy ++; Do@x, 8ð<DL;D, nmDL > timelim,

Throw@8z, y<
D

D & �� iterlistD �. 8p_, q_< ¦ p�iterlist@@qDD
D;

Attributes@myTimingD = 8HoldAll<;
The code is a bit involved to explain now, but after reading through the book it may be a good idea to
revisit it, since it illustrates many points. Anyway, for now we are just users.

� 3.4.5.3 Efficiency pitfall: constructing a list with Append

Let us compare the elapsed time of such list generation with that of Range, using the function myTiming :

Check now:

myTiming@For@testlist = 8<; i = 1,

i < 1000, i ++, testlist = Append@testlist, Sin@iDDD;D
0.19

myTiming@Sin@Range@1000DD;D
0.0013

We see that constructing a list of (symbolic) values of Sin on a thousand first natural numbers is hundred
times slower with Append than with Range. But the truth is that the computational complexities are
different and the larger is the list, the more overhead is induced by using Append. We can also see how
Table will perform:

myTiming@Table@Sin@iD, 8i, 1000<D;D
0.0023

We see that it is a little slower than Range.

In addition to being slower, the generation with the loop introduced a global side effect - the variable
<testlist>. So, to make the code clean, one will have in this approach to wrap the loop in an additional
modularization construct and thus make it even clumsier.

So, in conclusion, I would thoroughly discourage the reader from straightforward list generation inside a
loop. First, there are almost always better design solutions which avoid this problem altogether. Second,
there exist workarounds to get a linear time performance in doing it, such as using linked lists (to be
discussed below), or indexed variables. Finally, starting with version 5, there are special commands Reap
and Sow introduced specifically for efficient generation and collection of intermediate results in computa -
tions - we will have an entire chapter in the part II devoted to these commands.

 63

So, in conclusion, I would thoroughly discourage the reader from straightforward list generation inside a
loop. First, there are almost always better design solutions which avoid this problem altogether. Second,
there exist workarounds to get a linear time performance in doing it, such as using linked lists (to be
discussed below), or indexed variables. Finally, starting with version 5, there are special commands Reap
and Sow introduced specifically for efficient generation and collection of intermediate results in computa -
tions - we will have an entire chapter in the part II devoted to these commands.

3.5 Internal (full) form of lists

Let me emphasize once again that internal form of lists satisfies the general requirement of how normal
expressions are built in Mathematica (see chapter I). For example, here are simple and nested lists:

Clear@testlist, complextestlistD;
testlist = Range@10D
complextestlist = Range �� Range@5D
81, 2, 3, 4, 5, 6, 7, 8, 9, 10<
881<, 81, 2<, 81, 2, 3<, 81, 2, 3, 4<, 81, 2, 3, 4, 5<<

And here are their full forms:

FullForm@testlistD
List@1, 2, 3, 4, 5, 6, 7, 8, 9, 10D
FullForm@complextestlistD
List@List@1D, List@1, 2D, List@1, 2, 3D, List@1, 2, 3, 4D, List@1, 2, 3, 4, 5DD

This shows in particular that list indexing can be performed in the same way as indexing of more general
normal Mathematica expressions, outlined in chapter I. We will use this fact in the next subsection.

Clear@testlist, complextestlistD;

3.6 Working with lists and their parts

� 3.6.1 List indexing and element extraction with the Part command

� 3.6.1.1 Simple lists

Consider a simple list:

Clear@testlistD;
testlist = Range@1, 20, 3D
81, 4, 7, 10, 13, 16, 19<

Say we need to extract its first element. This is accomplished as follows:

testlist@@3DD
7

Or, which is the same, like this:

64

Part@testlist, 3D
7

Now, let us say we need to extract second, fourth and fifth elements. This is how:

testlist@@82, 4, 5<DD
84, 10, 13<

Or, which is the same:

Part@testlist, 82, 4, 5<D
84, 10, 13<

List elements can be also counted from the end of the list. In this case, their positions are negative by
convention:

testlist@@-1DD
19

� 3.6.1.2 Working with nested lists

Consider now a more complex list:

complextestlist = Range@5* ð, 5* ð +4D & �� Range@5D
885, 6, 7, 8, 9<, 810, 11, 12, 13, 14<,

815, 16, 17, 18, 19<, 820, 21, 22, 23, 24<, 825, 26, 27, 28, 29<<
Its elements of level one (we remind that level is the "distance from the stem", see section 1.1.7) are its
sublists:

complextestlist@@2DD
810, 11, 12, 13, 14<
complextestlist@@81, 4, 5<DD
885, 6, 7, 8, 9<, 820, 21, 22, 23, 24<, 825, 26, 27, 28, 29<<

To get to the numbers, we need in this case a 2-number indexing (since all sublists have a depth 1. Should
they have depth N, we would need N+1 indexes, and should the depth be different for different sublists,
the number of necessary indices would accordingly be different)

complextestlist@@1, 1DD
5

which means "first element of the first element" (we can view this list as a 2-dimensional array). Notice
that the syntax complextestlist[[{1,1}]] will be interpreted as a twice repeated first element of the original
list, i.e. twice repeated first sublist:

complextestlist@@81, 1<DD
885, 6, 7, 8, 9<, 85, 6, 7, 8, 9<<

Everything that was true for simple lists, is also true here:

 65

complextestlist@@-1DD
complextestlist@@-1, -1DD
825, 26, 27, 28, 29<
29

Clear@testlist, complextestlistD;
� 3.6.2 Extract

This operator is analogous to the Part operator, with some extra functionality which is sometimes very
useful but of no interest for us at the moment. What is important now, is that it can extract several ele-
ments at different levels at the same time (Part can also extract several elements, but they have to be at the
same level). Also, Extract has a different syntax - to extract an element on the level deeper than the first
(and also, every time when we extract more than one element), the address of the element being extracted
should be entered as a list of indices:

testlist = Range@1, 20, 3D;
complextestlist = Range@5* ð, 5* ð +4D & �� Range@5D
885, 6, 7, 8, 9<, 810, 11, 12, 13, 14<,

815, 16, 17, 18, 19<, 820, 21, 22, 23, 24<, 825, 26, 27, 28, 29<<

Extract@testlist, 1D
Extract@complextestlist, 1D
Extract@complextestlist, 81, 2<D
1

85, 6, 7, 8, 9<
6

Extract@complextestlist, 881, 2<, 83<, 84, 5<<D
86, 815, 16, 17, 18, 19<, 24<

� 3.6.3 Take and Drop

These commands are used to take or drop from a list several elements in a row. For example, here are
again our lists:

testlist = Range@1, 20, 3D
complextestlist = Range@5* ð, 5* ð +4D & �� Range@5D
81, 4, 7, 10, 13, 16, 19<
885, 6, 7, 8, 9<, 810, 11, 12, 13, 14<,

815, 16, 17, 18, 19<, 820, 21, 22, 23, 24<, 825, 26, 27, 28, 29<<
And these are examples of how Take and Drop work

66

Take@testlist, 3D
81, 4, 7<

Take@testlist, 82, 4<D
84, 7, 10<

Take@testlist, -3D
813, 16, 19<

Take@testlist, 8-4, -3<D
810, 13<

Drop@testlist, 3D
810, 13, 16, 19<

Drop@testlist, 82, 4<D
81, 13, 16, 19<

Drop@testlist, -3D
81, 4, 7, 10<

Drop@testlist, 8-4, -3<D
81, 4, 7, 16, 19<

Both Take and Drop also have some extended functionality to automate structural operations performed
on nested lists, such as extraction of submatrices from matrices. We don’t cover them here, but they are
described in Mathematica Help.

� 3.6.4 First, Rest, Last and Most

This commands are is in principle redundant, since First[list] is exactly equivalent to list[[1]], Rest[list] is
equivalent to Drop[list,1], Last[list] is equivalent to list[[-1]], and Most[list] is equivalent to Drop[list,-1].
However, they can be used for better code readability.

� 3.6.5 Length

This command returns the length of the list. For instance:

 67

testlist = Range@1, 20, 3D
complextestlist = Range@5* ð, 5* ð +4D & �� Range@5D
81, 4, 7, 10, 13, 16, 19<
885, 6, 7, 8, 9<, 810, 11, 12, 13, 14<,

815, 16, 17, 18, 19<, 820, 21, 22, 23, 24<, 825, 26, 27, 28, 29<<
8Length@testlistD, Length@complextestlistD<
87, 5<

If we want to compute the lengths of sublists in <complextestlist>, this can be done as follows:

Table@Length@complextestlist@@iDDD, 8i, 1, Length@complextestlistD<D
85, 5, 5, 5, 5<

Here, obviously, the index <i> is used to index the sublists, and thus it runs from 1 to the length of the
main list, while the Part operation [[i]] extracts the sublists.

� 3.6.6 Modification of list elements by direct indexing (using Part)

� 3.6.6.1 Simple uses of Part

If it is necessary to replace some element of the list with a known address with some new expression or
value (say, symbol <a>), this can be done directly. Here are our lists:

Clear@aD;
testlist = Range@1, 20, 3D
complextestlist = Range@5* ð, 5* ð +4D & �� Range@5D
81, 4, 7, 10, 13, 16, 19<
885, 6, 7, 8, 9<, 810, 11, 12, 13, 14<,

815, 16, 17, 18, 19<, 820, 21, 22, 23, 24<, 825, 26, 27, 28, 29<<
Say, we now want to replace the element with the address {5} with <a>:

testlist@@5DD = a;

testlist

81, 4, 7, 10, a, 16, 19<
Now, let us now in our list <complextestlist> replace a random element in every sublist with <a>:

For@i = 1, i £ Length@complextestlistD, i ++,

complextestlist@@i, Random@Integer, 81, 5<DDD = aD;
complextestlist

885, 6, 7, 8, a<, 810, 11, a, 13, 14<,
815, 16, 17, 18, a<, 820, 21, a, 23, 24<, 825, 26, 27, a, 29<<

Notice that such modifications as described above are only possible if lists are stored in some variable (in
C we would say, that it is an L-value). In particular, this input is a mistake:

68

Range@10D@@3DD = a

Set::setps : Range@10D in the part assignment is not a symbol. �

a

Essentially, in all the above examples the Part command ([[]]) was used for modification of expressions.

Note also that the modification of lists with Part introduces side effect, since it is the original variable
where the list is stored that is modified, not the copy of the list.

� 3.6.6.2 Use Part to efficiently modify large structures

One more thing I would like to mention here is that Part has a very powerful extended functionality which
allows to change many elements at the same time. For example, if I want to change second element in
each sublist of < complextestlist > to < b > and fourth to < c >, I can do this in the following way :

Part@complextestlist, All, 2D = 8b, c, d, e, f<;
complextestlist

885, b, 7, 8, a<, 810, c, a, 13, 14<,
815, d, 17, 18, a<, 820, e, a, 23, 24<, 825, f, 27, a, 29<<

This turns out to be very handy in cases when many elements have to be changed at once. This is however
limited to cases when these parts form some rather regular structures like sub-matrices etc. For more
details, see Mathematica Help and Mathematica Book, also the description on the web site of Ted Ersek
(see Appendices for the URL).

� 3.6.7 ReplacePart

There is another built-in command used to modify list elements - ReplacePart. But there is a big difference
between direct modifications by subscripting (Part) used above, and the functionality of the ReplacePart
command. Notice that as a result of our manipulations with Part, the original lists has been modified.
However, more often in Mathematica programs we would modify a list which is not the original list but a
copy, so that the original list remains unchanged. This style of programming is arguably cleaner but
requires more memory since the original object is copied. Most built-in functions act in this manner. In
particular, this is the case with ReplacePart:

Clear@aD;
testlist = Range@1, 20, 3D
81, 4, 7, 10, 13, 16, 19<
ReplacePart@testlist, a, 5D
81, 4, 7, 10, a, 16, 19<

But the original list:

testlist

81, 4, 7, 10, 13, 16, 19<
remained unchanged. This also means that ReplacePart does not require L-value to operate on an
expression:

 69

ReplacePart@Range@10D, a, 5D
81, 2, 3, 4, a, 6, 7, 8, 9, 10<

No error in this case - since it did not attempt to change the original list but rather changed the copy of it.

The ReplacePart can be used to change more than a single element at a time, also elements on different
levels of expression. For example:

ReplacePart@Range@10D, a, 882<, 85<, 88<<D
81, a, 3, 4, a, 6, 7, a, 9, 10<

Note that the syntax regarding the list of positions is the same as for the Extract command. ReplacePart is
described in detail in Mathematica Help.

I have to mention however, that ReplacePart can become quite slow if one wants to change many parts of
a large expression at the same time. For a detailed discussion, please see Appendix C.

Neither do I recommend to use ReplacePart in such cases by changing elements one by one (say, inside a
loop) rather than all at once. The reason is that since it effectively copies the entire list and then performs
changes on the copy, it will in such a sequential approach copy the entire list as many times as is the total
number of replacements. This will be terribly inefficient, just as with Append and Prepend operators. In
some of these cases one can efficiently use Part to change many elements at once - one such example we
will consider in chapter VI (see section 6.5.5.1).

� 3.6.8 Position

The Position command is used to determine the positions of elements in a list (or more general Mathemat-
ica expression) which match a given expression, either exactly, or through patterns.

� 3.6.8.1 Basic uses of Position

 In the simplest form, Position has the following format: Position[list,element] . Let us give a few
examples:

First we initialize our lists:

testlist = Range@1, 20, 3D
complextestlist = Range@5* ð, 5* ð +4D & �� Range@5D
81, 4, 7, 10, 13, 16, 19<
885, 6, 7, 8, 9<, 810, 11, 12, 13, 14<,

815, 16, 17, 18, 19<, 820, 21, 22, 23, 24<, 825, 26, 27, 28, 29<<
We will now use the simplest version of Position (without patterns) to obtain all positions where the
number <4> is found in a list:

Position@testlist, 4D
882<<

This means that number 4 is the second element in <testlist>

70

Position@complextestlist, 12D
882, 3<<

This means that number 12 is the third element of the second element (sublist) of the list
<complextestlist>.

The Position command can be used together with the Extract command, since they use the same position
specifications:

Extract@complextestlist, Position@complextestlist, 10DD
810<

� 3.6.8.2 On less trivial uses of Position

This does not look like a big deal, but we may for example wish to extract the entire sublist containing 10.
All we have to do is to construct a new position list, with the last element (index) dropped:

Map@Most, Position@complextestlist, 10DD
882<<

The functionality of Map will be discussed much later, but essentially here it will ensure that if the position
list contains several positions, the last index will be dropped from all of them. For example, here we
define another nested list in which some numbers are found more than once:

complextestlist1 = Range �� Range@6D
881<, 81, 2<, 81, 2, 3<, 81, 2, 3, 4<, 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5, 6<<

These are all the positions where number 4 is found:

plist = Position@complextestlist1, 4D
884, 4<, 85, 4<, 86, 4<<

If we use these positions in Extract, we just get number 4 extracted 3 times:

Extract@complextestlist1, plistD
84, 4, 4<

However, if we want to extract all the sublists containing 4, we need one more step. To obtain the posi-
tions of sublists only, we have to delete the last index from each of the sublists in <plist>:

Map@Most, plistD
884<, 85<, 86<<

Now we can extract sublists:

Extract@complextestlist1, Map@Most, plistDD
881, 2, 3, 4<, 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5, 6<<

� 3.6.8.3 Example: extracting sublists containing given element

Now we will write our first "serious" function: it will extract those sublists from a list, which contain a
given element.

 71

Clear@sublistsWithElementD;
sublistsWithElement@main_List, elem_D :=

Extract@main, Map@Most, Position@main, elemDDD;
For example, these are the sublists of <complextestlist1> which contain number 5:

sublistsWithElement@complextestlist1, 5D
881, 2, 3, 4, 5<, 81, 2, 3, 4, 5, 6<<

I used this opportunity to illustrate several common features of user-defined functions in Mathematica.
First, the development of the function: it is usually best to start with some simple test example, develop
the code in steps like above, and then package everything into a function. Second, we saw that the parame-
ters in the function definition on the l.h.s. contain an underscore. This is a sign that patterns are used in the
definition. For now, I will just briefly mention that pattern like <x_> means "any expression" and automati-
cally makes <x> local for the r.h.s., if SetDelayed (:=)was used in the definition (which is normally the
case for functions). The pattern x_h means "anything with the head <h>". Thus, the pattern <main_List>
above will match on any list, but not on a more general expression whose head is not List. This constitutes
a simple type-check.

The other comment about Position function is due here: it is important to remember that while this is an
optimized and fast built-in function, it is still a general-purpose one. In particular, if you have a list sorted
with respect to some criteria, it will be typically much faster for large lists to search for an element with a
version of a binary search, which you can implement in Mathematica (and which has a logarithmic com-
plexity) than with the Position function (which has a linear complexity).

� 3.6.8.4 More complicated example - sublists with odd number of odd elements

The problem

We will now illustrate the use of Position with patterns on a somewhat less trivial example. Please ignore
the pieces of syntax you are not yet familiar with but rather concentrate on the conceptual part and con-
sider this as an illustration. The problem will be to extract from <complextestlist1> all sublists which have
an odd number of odd elements. Our solution will go in steps.

complextestlist1 = Range �� Range@6D
881<, 81, 2<, 81, 2, 3<, 81, 2, 3, 4<, 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5, 6<<

Developing a solution

Step1: Find all positions of all odd numbers:

step1list = Position@complextestlist1, _ ?OddQD
881, 1<, 82, 1<, 83, 1<, 83, 3<, 84, 1<,

84, 3<, 85, 1<, 85, 3<, 85, 5<, 86, 1<, 86, 3<, 86, 5<<
In each of the small sublists, as we already know, the first index gives the number of sublist in
<compextestlist1>, and the second one gives the index of the given odd element in this sublist.

Step 2: We combine together the addresses which correspond to the same sublist - they have the same first
element:

72

step2list = Split@step1list, First@ð1D � First@ð2D &D
8881, 1<<, 882, 1<<, 883, 1<, 83, 3<<, 884, 1<, 84, 3<<,

885, 1<, 85, 3<, 85, 5<<, 886, 1<, 86, 3<, 86, 5<<<
The Split is another built-in command which we will cover shortly and whose purpose is to split a list into
sublists of the "same" elements, where the notion of "same" can be defined by the user. In particular, in
this case we tell Split to consider sublists of indices "same" if they have the same first element. Notice
that now they are combined in extra lists.

Step 3: Leave in the lists only the first elements:

step3list = Map@First, step2list, 82<D
881<, 82<, 83, 3<, 84, 4<, 85, 5, 5<, 86, 6, 6<<

Step4: In the above lists, leave only the sublists with odd length (the length of these sublists corresponds to
the number of odd elements in the sublists of our original list, with addresses equal to numbers repeated in
the sublists above).

step4list = Cases@step3list, x_List �; OddQ@Length@xDDD
881<, 82<, 85, 5, 5<, 86, 6, 6<<

<Cases> is the command used to find the list of all occurrences of some expression or pattern in a larger
expression. We will cover it later.

Step5: Replace all sublists by their first elements:

step5list = Union@Flatten@step4listDD
81, 2, 5, 6<

<Flatten> makes any list flat, and <Union> removes duplicate elements and sorts the resulting list.

Step 6: Extracting the sublists:

complextestlist1@@step5listDD
881<, 81, 2<, 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5, 6<<

Assembling the code into a function

We can compress all the steps into a single function:

Clear@oddSublistsD;
oddSublists@x_ListD :=

Part@x, Union@Flatten@Cases@Map@First, Split@Position@x, _ ?OddQD,
First@ð1D � First@ð2D &D, 82<D, y_List �; OddQ@Length@yDDDDDD

Check:

 73

oddSublists@complextestlist1D
881<, 81, 2<, 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5, 6<<

An alternative functional implementation

There is a much simpler but less obvious way to do the same thing by using the mixed rule-based and
functional programming style. I will give here the code just for an illustration:

Clear@oddSublistsNewD;
oddSublistsNew@x_ListD :=

Map@If@EvenQ@Count@ð, _ ?OddQDD, ð �. ð ® Sequence@D, ðD &, xD;
Check:

oddSublistsNew@complextestlist1D
881<, 81, 2<, 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5, 6<<

While the first realization became significantly complex to question the advantage of this programming
style compared to a traditional procedural programming based on nested loops, my primary goal here was
to illustrate the use of Position command, and perhaps give a flavor of a few others.

However, the second realization is clearly shorter. This kind of programs can be written very quickly and
are typically very short.

A procedural version

It is also less bug-prone than the possible procedural implementation based on 2 nested loops:

Clear@oddSublistsProcD;
oddSublistsProc@x_ListD := Module@8pos = 8<, ctr, i, j<,

For@i = 1, i £ Length@xD, i ++,

For@j = 1; ctr = 0, j £ Length@x@@iDDD,
j ++, If@OddQ@x@@i, jDDD, ctr ++D;D;
If@OddQ@ctrD, AppendTo@pos, iDD;D;
Return@x@@posDDDD;

Check:

oddSublistsProc@complextestlist1D
881<, 81, 2<, 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5, 6<<

Apart from being clumsier, this code also uses AppendTo to append elements to a list, which will make it
inefficient for large lists, just as in the examples we considered before.

Clear@complextestlist1, step1list, step2list, step3list, step4list,

step5list, oddSublists, oddSublistsNew, oddSublistsProcD;

74

3.7 Adding elements to the list and removing them from the list

� 3.7.1 Append, Prepend, AppendTo and PrependTo

Some of these commands we have already encountered before. They add an element to the end or to the
beginning of the list. For example:

Clear@aD;
testlist = Range@5D
81, 2, 3, 4, 5<
Append@testlist, aD
81, 2, 3, 4, 5, a<
Prepend@testlist, aD
8a, 1, 2, 3, 4, 5<
testlist

81, 2, 3, 4, 5<
The last output shows that the list <testlist> did not change. As we discussed, the absence of side-effects is
typical for Mathematica built-in functions. In this case, Append and Prepend forged a copy of <testlist>
and modified this copy. If we want an original list to be modified, we have either to write:

testlist = Append@testlist, aD;
testlist

81, 2, 3, 4, 5, a<
or, which is equivalent, to use the function AppendTo, which does exactly this:

testlist = Range@5D
81, 2, 3, 4, 5<
AppendTo@testlist, aD;
testlist

81, 2, 3, 4, 5, a<
The situation with Prepend and PrependTo is completely analogous. And also, recalling the previous
discussions, we may suspect that the application of AppendTo or PrependTo to a list which is not assigned
to any variable (not an L-value) is a mistake, and we will be correct:

Append@Range@5D, aD
81, 2, 3, 4, 5, a<

 75

AppendTo@Range@5D, aD
Set::write : Tag Range in Range@5D is Protected. More¼

81, 2, 3, 4, 5, a<
As we already discussed, it is best to avoid using these functions (Append etc) for modifying large lists.
Later we will consider several more efficient alternatives.

Clear@testlistD;
� 3.7.2 Insert and Delete

As is clear from their names, these functions are used to insert an element to or delete it from the list, or
more general Mathematica expression. These operations are well described in Mathematica Help. We
will give just a few examples of their use. The format of Insert is Insert[list,new,pos] - this will insert the
new element <new> in the position <pos> in the list <list>. Delete has a similar syntax Delete[list,pos]
and respectively deletes from the list <list> an element at position <pos>. For example:

Clear@aD;
testlist = Range@3, 15, 2D
83, 5, 7, 9, 11, 13, 15<
Delete@testlist, 4D
83, 5, 7, 11, 13, 15<
Insert@testlist, a, 5D
83, 5, 7, 9, a, 11, 13, 15<

Notice that once again, both of these commands work on the copy of the original list that they create, so
that the original list remains unchanged:

testlist

83, 5, 7, 9, 11, 13, 15<
Both of these commands can work on nested lists (or more general expressions), and then the position will
be a list of indexes. Also, they may also receive a list of positions rather than a single position - in this
case, an element will be inserted or deleted in many places at once.

However, in the case of Insert, it may become quite slow if a large number of parts have to be inserted at
the same time. For a more detailed discussion, please see the Appendix C.

76

3.8 Working with nested lists

It is often necessary to work with nested lists, that is - lists whose elements themselves are lists. We have
seen simple examples of such lists already. Let me emphasize that in general such lists are not identical to
multidimensional arrays but in fact much more general, because the lengths of sublists at each level can be
different. The only thing we can say about the general nested list is that it represents some tree.

Here we will consider several special-purpose commands which were designed for efficient processing of
some special types of such nested lists.

� 3.8.1 Partition

This command is used to "cut" or "slice" some list into (possibly overlapping) pieces. In its simplest form,
it has a format Partition[list, size, shift]. It cuts the list into pieces with the length <size>, and shifted one
with respect to another by <shift>. If the <shift> parameter is not given, the list is cut into non-overlapping
pieces. For example:

� 3.8.1.1 A simple example

testlist = Table@Sqrt@iD, 8i, 1, 10<D
:1, 2 , 3 , 2, 5 , 6 , 7 , 2 2 , 3, 10 >
Partition@testlist, 3D
::1, 2 , 3 >, :2, 5 , 6 >, : 7 , 2 2 , 3>>
Partition@testlist, 7D
::1, 2 , 3 , 2, 5 , 6 , 7 >>

In the last example, the remaining piece had a size smaller than 7, so it was "eaten up". Now we will
partition with overlaps:

Partition@testlist, 7, 1D
::1, 2 , 3 , 2, 5 , 6 , 7 >, : 2 , 3 , 2, 5 , 6 , 7 , 2 2 >,
: 3 , 2, 5 , 6 , 7 , 2 2 , 3>, :2, 5 , 6 , 7 , 2 2 , 3, 10 >>

� 3.8.1.2 An example of practical use: computation of the moving average in a list.

This example is based on a similar discussion in Wagner’ 96.

The problem

The m-moving average for a list is an average which is obtained by averaging every element in a list with
<m> neighbors to the right and to the left (which means that this quantity is only defined for points
(elements) having at least m neighbours both to the left and to the right). Thus, moving average is actually
a list of such averages, of the length <len>-2m, where <len> is a length of an initial list.

 77

The m-moving average for a list is an average which is obtained by averaging every element in a list with
<m> neighbors to the right and to the left (which means that this quantity is only defined for points
(elements) having at least m neighbors both to the left and to the right). Thus, moving average is actually
a list of such averages, of the length <len>-2m, where <len> is a length of an initial list.

Developing a solution

To solve our problem, we will first define an auxiliary function which will count the average of a list of
numbers. However, it will turn out that our function will also work on a list of lists of numbers, this time
summing entire lists (with the same number of elements) together, which we will use. So:

Clear@listAverageD;
listAverage@x_ListD := Apply@Plus, xD �Length@xD;

The expression Apply[Plus,x] computes the sum of elements in the list and its meaning will be explained
in chapter V.

Now we will define another auxiliary function:

Clear@neighborListsD;
neighborLists@x_List, m_IntegerD :=

Partition@x, Length@xD -2* m, 1D;
For example:

neighborLists@testlist, 1D
::1, 2 , 3 , 2, 5 , 6 , 7 , 2 2 >,
: 2 , 3 , 2, 5 , 6 , 7 , 2 2 , 3>,
: 3 , 2, 5 , 6 , 7 , 2 2 , 3, 10 >>

Let us now realize that the middle list represents a list of "middle points", and the first and the last list
represent here lists of closest "neighbors" for these middle points. Thus, the only thing left to do is to use
listAverage on this result:

listAverage@neighborLists@testlist, 1DD
:1
3

J1 + 2 + 3 N, 1

3
J2 + 2 + 3 N,

1

3
J2 + 3 + 5 N, 1

3
J2 + 5 + 6 N, 1

3
J 5 + 6 + 7 N,

1

3
J2 2 + 6 + 7 N, 1

3
J3 +2 2 + 7 N, 1

3
J3 +2 2 + 10 N>

Packaging code to a function

Thus, our final function <movingAverage>will look like:

78

Clear@movingAverage, neighborLists, listAverageD;
neighborLists@x_List, m_IntegerD :=

Partition@x, Length@xD -2* m, 1D;
listAverage@x_ListD := Apply@Plus, xD �Length@xD;
movingAverage@x_List, m_IntegerD :=

listAverage@neighborLists@x, mDD;
For example, here we find the moving average with two neighbors on each side:

movingAverage@testlist, 2D

:1
5

J3 + 2 + 3 + 5 N, 1

5
J2 + 2 + 3 + 5 + 6 N,

1

5
J2 + 3 + 5 + 6 + 7 N, 1

5
J2 +2 2 + 5 + 6 + 7 N,

1

5
J3 +2 2 + 5 + 6 + 7 N, 1

5
J3 +2 2 + 6 + 7 + 10 N>

Using functional programming to eliminate auxiliary functions

With the help of the functional programming syntax, we can write this as a single function and eliminate
the need in auxiliary functions altogether:

Clear@movingAverageD;
movingAverage@x_List, m_IntegerD :=

HPlus �� ðL �Length@ðD &�Partition@x, Length@xD -2* m, 1D;
Check:

movingAverage@testlist, 2D
:1
5

J3 + 2 + 3 + 5 N, 1

5
J2 + 2 + 3 + 5 + 6 N,

1

5
J2 + 3 + 5 + 6 + 7 N, 1

5
J2 +2 2 + 5 + 6 + 7 N,

1

5
J3 +2 2 + 5 + 6 + 7 N, 1

5
J3 +2 2 + 6 + 7 + 10 N>

A procedural version

Here is the procedural implementation of the same thing:

 79

movingAverageProc@x_List, m_IntegerD :=

Module@8i, j, ln = Length@xD, aver, sum<,
aver = Table@0, 8ln -2* m<D;
For@i = m +1, i <= ln -m, i ++,

sum = 0;

For@j = i -m, j £ i +m, j ++,

sum = sum +x@@jDDD;
aver@@i -mDD = sum � H2* m +1LD;
averD;

Check:

movingAverageProc@testlist, 2D
:1
5

J3 + 2 + 3 + 5 N, 1

5
J2 + 2 + 3 + 5 + 6 N,

1

5
J2 + 3 + 5 + 6 + 7 N, 1

5
J2 +2 2 + 5 + 6 + 7 N,

1

5
J3 +2 2 + 5 + 6 + 7 N, 1

5
J3 +2 2 + 6 + 7 + 10 N>

Efficiency comparison

The problem with the procedural version is not just that the code is longer, but also that it is more error
prone (array bounds, initialization of variables etc). On top of that, it turns out to be far less efficient. Let
us compare the efficiency on large lists:

Timing@movingAverage@Range@10000D, 10D;D
80.016 Second, Null<
Timing@movingAverageProc@Range@10000D, 10D;D
81.172 Second, Null<

Here we have a 100 times difference (for this length of the list)! And moreover, this is not a constant
factor, but the difference will increase further with the length of the list. Of course, in procedural lan-
guages such as C the latter implementation is natural and fast. Not so in Mathematica. However, one can
still obtain the code which will be concise, fast and elegant at the same time, with the use of functional
programming methods.

Clear@testlistD;

80

� 3.8.2 Transpose

This is one of the most useful commands. It has this name since for matrices, which are represented as 2-
dimensional lists of lists, it performs the transposition operation. However, we are not forced to always
interpret the two-dimensional array as a matrix, especially if it is combined from elements of different
types. Then it turns out that the number of useful things one can do with Transpose is much larger. But let
us start with the numeric lists: say we have a given list of lists of some elements (they may be lists them-
selves, but this does not matter for us):

� 3.8.2.1 Simple example: transposing a simple matrix

testlist = Table@i +j, 8i, 1, 2<, 8j, 1, 3<D
882, 3, 4<, 83, 4, 5<<

Then,

Transpose@testlistD
882, 3<, 83, 4<, 84, 5<<

� 3.8.2.2 Example: transposing a matrix of lists

Another example:

testlist = Table@8i, j<, 8i, 1, 2<, 8j, 1, 3<D
8881, 1<, 81, 2<, 81, 3<<, 882, 1<, 82, 2<, 82, 3<<<

This is a 2-dimensional array of lists.

Transpose@testlistD
8881, 1<, 82, 1<<, 881, 2<, 82, 2<<, 881, 3<, 82, 3<<<

� 3.8.2.3 Example: combining names with grades

Another example: we have results of some exam - the scores - as a first list, and last names of the students
as another one. We want to make a single list of entries like {{student1,score1},...}.

Clear@names, scoresD;
names = 8"Smith", "Johnson", "Peterson"<;
scores = 870, 90, 50<;

Then we do this:

Transpose@8names, scores<D
88Smith, 70<, 8Johnson, 90<, 8Peterson, 50<<

But we will get most out of Transpose when we get to functional programming, since Transpose is very
frequently used there for efficient structure rearrangements. We will see many examples of its use in the
chapters that follow.

� 3.8.3 Flatten

 81

�

 3.8.3 Flatten

This command is used to destroy the structure of nested lists, since it removes all internal curly braces and
transforms any complicated nested list into a flat one. For example:

� 3.8.3.1 Simple example: flattening a nested list

testlist = Table@8i, j<, 8i, 1, 2<, 8j, 1, 3<D
8881, 1<, 81, 2<, 81, 3<<, 882, 1<, 82, 2<, 82, 3<<<
Flatten@testlistD
81, 1, 1, 2, 1, 3, 2, 1, 2, 2, 2, 3<

� 3.8.3.2 Flattening down to a given level

One can make Flatten more "merciful" and selective by instructing it to destroy only braces up to (or,
more precisely, down to) a certain level in an expression. The level up to which the "destruction" has to be
performed is given to Flatten as an optional second parameter. For instance:

Flatten@testlist, 1D
881, 1<, 81, 2<, 81, 3<, 82, 1<, 82, 2<, 82, 3<<

Example: flattening a nested list level by level

Another example:

testlist = Table@8i, j, k<, 8i, 1, 2<, 8j, 1, 2<, 8k, 1, 3<D
88881, 1, 1<, 81, 1, 2<, 81, 1, 3<<, 881, 2, 1<, 81, 2, 2<, 81, 2, 3<<<,

8882, 1, 1<, 82, 1, 2<, 82, 1, 3<<, 882, 2, 1<, 82, 2, 2<, 82, 2, 3<<<<
Flatten@testlist, 1D
8881, 1, 1<, 81, 1, 2<, 81, 1, 3<<, 881, 2, 1<, 81, 2, 2<, 81, 2, 3<<,

882, 1, 1<, 82, 1, 2<, 82, 1, 3<<, 882, 2, 1<, 82, 2, 2<, 82, 2, 3<<<
Flatten@testlist, 2D
881, 1, 1<, 81, 1, 2<, 81, 1, 3<, 81, 2, 1<, 81, 2, 2<, 81, 2, 3<,

82, 1, 1<, 82, 1, 2<, 82, 1, 3<, 82, 2, 1<, 82, 2, 2<, 82, 2, 3<<
Flatten@testlist, 3D
81, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 1, 2,

3, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 3<
In practice, most frequently one uses either Flatten[expr] to get a completely flat list, or Flatten[expr,1]
to remove some internal curly braces which were needed at some intermediate steps but not anymore.

� 3.8.3.3 Application: a computation of quadratic norm of a tensor of arbitrary rank (vector, matrix
etc).

82

�

3.8.3.3 Application: a computation of quadratic norm of a tensor of arbitrary rank (vector, matrix
etc).

The problem and the solution

Here we will show how the use of Flatten can dramatically simplify the computation of the norm of a
tensor of arbitrary rank. What may be surprising is that we will not need the rank of the tensor as a sepa-
rate parameter. So, we wil start with the code:

Clear@tensorNormD;
tensorNorm@x_ListD := Sqrt@Plus �� Flatten@x^2DD;

It turns out that this tiny code is all what is needed to solve the problem in all generality.

Code dissection

 Let us use an example to show how it works. This will be our test matrix:

testmatr = Table@i +j, 8i, 1, 3<, 8j, 1, 3<D
882, 3, 4<, 83, 4, 5<, 84, 5, 6<<

The norm is the square root of sum of the squares of all matrix elements. First, we will use the fact that
arithmetic operations such as raising to some power, can be used on entire lists, because they are automati-
cally threaded over the elements of the list (functions which have this property are said to be Listable).
Thus, we first square all the elements:

testmatr^2

884, 9, 16<, 89, 16, 25<, 816, 25, 36<<
Since we don’t care which elements are where but just need to sum them all, we will use Flatten to remove
the internal curly braces:

Flatten@testmatr^2D
84, 9, 16, 9, 16, 25, 16, 25, 36<

Now we have to some all the elements, and as we saw already this can be done for instance with Plus@@
construction:

Plus �� Flatten@testmatr^2D
156

Finally, we have to take a square root:

Sqrt@Plus �� Flatten@testmatr^2DD
2 39

And we arrive at the code of our function. We see that the function works well on a tensor of any rank
without modifications! It would be hard to do this without Flatten, and in particular, in languages like C
we would need nested loops to accomplish this (in C, there is also a technique called flattening an array,
which consists in exploiting the row-major order in which it is stored in memory and going through the
multidimensional array with just a pointer to an integer (or whatever is the type of the smallest array
element). Although it usually works, it will be illegal if one wants to strictly adhere to the C standard).

 83

And we arrive at the code of our function. We see that the function works well on a tensor of any rank
without modifications! It would be hard to do this without Flatten, and in particular, in languages like C
we would need nested loops to accomplish this (in C, there is also a technique called flattening an array,
which consists in exploiting the row-major order in which it is stored in memory and going through the
multidimensional array with just a pointer to an integer (or whatever is the type of the smallest array
element). Although it usually works, it will be illegal if one wants to strictly adhere to the C standard).

Clear@tensorNorm, testmatrD;
� 3.8.3.4 Application - (relatively) fast list generation with Flatten

As we already mentioned, generating lists straightforwardly in loops is perhaps the worst way to do it, in
terms of efficiency. One can use Flatten to speed-up this process considerable. Say, we want to generate a
list from 1 to 10 (which is easiest to do, of course, by just using Range[10]). We can do it in the following
fashion:

Step 1. We generate a nested list (this type of lists are also called linked lists in Mathematica):

For@testlist = 8<; i = 1, i £ 10, i ++, testlist = 8testlist, i<D;
testlist

88888888888<, 1<, 2<, 3<, 4<, 5<, 6<, 7<, 8<, 9<, 10<
Step 2. We use Flatten:

Flatten@testlistD
81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

Let us compare the execution time with the realization with Append described previously:

For@testlist = 8<; i = 1, i < 5000, i ++, AppendTo@testlist, iDD; ��
Timing

80.25 Second, Null<
Now, with our new method:

HFor@testlist = 8<; i = 1, i < 5000, i ++, testlist = 8testlist, i<D;
Flatten@testlistD;L �� Timing

80.016 Second, Null<
We see that the difference is about an order of magnitude at least. While even this method by itself is not
the most efficient, we will later see how linked lists can be used in certain problems to dramatically
improve efficiency.

Clear@testlistD;

3.9 Working with several lists

 It is often necessary to obtain unions, intersections, and complements of two or more lists, and also to
remove duplicate elements from a list. This is done by such built-in commands as Join, Intersection,
Complement and Union.

84

� 3.9.1 The Join command

The Join command joins together two or several lists. The format of it is Join[list1,...,listn], where
<list1,..., listn> are lists, not necessarily of the same depth or structure. If the lists contain identical ele-
ments, the elements are not deleted - i.e., the lists are joined together as is, with no further modification of
their internal structure. Examples:

Clear@a, b, c, d, e, fD;
Join@8a, b, c<, 8d, e, f<D
8a, b, c, d, e, f<
Join@88a, b<, 8c, d<<, 8e, f<D
88a, b<, 8c, d<, e, f<

Join connects lists together from left to right, as they are, without any sorting or permuting the elements.

� 3.9.2 The Intersection command

The Intersection command finds the intersection of two or more lists, that is a set of all elements which
belong to all of the intersected lists. The format of the command : Intersection[list1, ..., listn]. Examples:

Clear@a, b, c, d, e, fD;
Intersection@8a, b, c<, 8b, c, d, e<D
8b, c<
Intersection@8a, b, c, d, e, f<, 8a, b, c<, 8c, d, e<D
8c<
Intersection@8a, b, c<, 8d, e, f<D
8<

In the latter case we got an empty list, because the intersection of the latter two lists is empty.

The Intersection command has an option SameTest which can be used to provide a custom "sameness"
function - this way we can define our notion of "same" different from the default one. Please see the
Union command for an example of use of this option. Also, with this option, Intersection may be slower or
much slower than in its "pure" form. For a more detailed discussion, please see Appendix C.

� 3.9.3 The Complement command

The command Complement[listAll,list1,...,listn] gives a complement of the list <listAll> with respect to
the union of all other lists <list1,...,listn>. In other words, it returns all the elements of <listAll> which are
not in any of <listk>. Note that Complement sorts the resulting list. Examples:

 85

Complement@8a, b, c, d, e, f<, 8b, c, e<D
8a, d, f<
Complement@8a, b, c, d, e, f<, 8b, c, e<, 8d, e, f<D
8a<
Complement@8a, b, c, d, e, f<, 8b, c, e<, 8d, e, f<, 8a, b, c<D
8<

The Complement command, like Intersection, has the option SameTest, which allows us to define our
own notion of "sameness" of objects. All the comments I made for Intersection with this option, also apply
here.

3.10 Functions related to list sorting

Here we will discuss three very useful built-in functions related to list sorting. Sort function sorts the list.
Union function removes duplicate elements from the list and also sorts the result. Split function splits the
list into sublists of same adjacent elements. For all three functions, one can define the notion of
"sameness" different from the default one. Below we give more details and examples of use for every of
these functions.

� 3.10.1 The Sort command

� 3.10.1.1 Basic Sort

This function is used for list sorting. For example :

Clear@a, b, c, d, e, f, g, tD;
Sort@8a, d, e, b, g, t, f, d, a, b, f, c<D
8a, a, b, b, c, d, d, e, f, f, g, t<
Sort@85, 7, 2, 4, 3, 1<D
81, 2, 3, 4, 5, 7<

Sort will sort a list of arbitrary Mathematica expressions. By default, the sorting is performed lexicographi-
cally for symbols, in ascending order for numbers, by the first elements for lists. In general, this is called a
canonical sorting order in Mathematica - consult Mathematica Help for more information.

 For example, here we will sort a nested list of integers:

nested =

Table@Random@Integer, 81, 15<D, 85<, 8Random@Integer, 83, 10<D<D
8813, 3, 11, 7<, 815, 15, 14, 11, 15, 14<,

811, 10, 2<, 811, 12, 9, 11, 1, 4<, 87, 4, 15, 11, 9<<

86

Sort@nestedD
884, 13, 3<, 811, 1, 9, 10, 7<, 813, 6, 15, 10, 12, 7<,

815, 8, 9, 1, 6, 2<, 813, 10, 9, 4, 7, 3, 15, 14, 8<<
We see that the sorting is performed by the first element of the sublists.

� 3.10.1.2 Sort with a user-defined sorting function

As an optional second argument, Sort accepts the comparison function to be used instead of the default
one. For example:

Sort@85, 7, 2, 4, 3, 1<, GreaterD
87, 5, 4, 3, 2, 1<

We can for instance sort our nested list by the length of a sublist. We first define a sorting function:

Clear@sortFunctionD;
sortFunction@x_List, y_ListD := Length@xD < Length@yD;

And now sort:

Sort@nested, sortFunctionD
884, 13, 3<, 811, 1, 9, 10, 7<, 813, 6, 15, 10, 12, 7<,

815, 8, 9, 1, 6, 2<, 813, 10, 9, 4, 7, 3, 15, 14, 8<<
� 3.10.1.3 A first look at pure functions

Mathematica provides a mechanism to construct and use functions without giving them names or sepa-
rate definitions, the so called "pure functions" (they are called lambda functions in some other languages).
We will cover them systematically later, but this is how the previous sorting would look should we use a
pure function:

Sort@nested, Length@ð1D < Length@ð2D &D
884, 13, 3<, 811, 1, 9, 10, 7<, 813, 6, 15, 10, 12, 7<,

815, 8, 9, 1, 6, 2<, 813, 10, 9, 4, 7, 3, 15, 14, 8<<
Any function of two variables which always returns True or False, can be a sorting function. It is assumed
that it gives True or False depending on which element is considered "larger".

I have to mention also that using Sort with a user - defined sorting function may considerably slow down
the Sort function. For a more detailed discussion, please see Appendix C.

� 3.10.1.4 The Ordering command

This command gives a permutation of indices needed to sort an input list. It also exists in both "pure" form
and with a user - defined comparison function. It gives more information than just Sort, but in particular
one can also sort a list using a combination of Ordering and Part.

 87

For example, here is a list we considered before :

listtosort = 8a, d, e, b, g, t, f, d, a, b, f, c<
8a, d, e, b, g, t, f, d, a, b, f, c<
Ordering@listtosortD
81, 9, 4, 10, 12, 2, 8, 3, 7, 11, 5, 6<
listtosort@@Ordering@listtosortDDD
8a, a, b, b, c, d, d, e, f, f, g, t<

Ordering is a very useful command, exactly because it provides more information than just Sort, while
being as efficient as Sort itself. We will see an example of its use in chapter VI.

� 3.10.2 The Union command

The command Union[list] returns a canonically sorted list of all distinct elements of < list > .

� 3.10.2.1 Basic Union

In its basic form, Union takes a list as a single argument, and returns sorted unique elements in a list. The
sorting is done by a default sorting function in Mathematica (this is lexicographic for symbolic expres-
sions, in increasing order for numeric ones, by first element for lists etc). Examples :

Union@8a, d, e, b, g, t, f, d, a, b, f, c<D
8a, b, c, d, e, f, g, t<
testlist = Table@Random@Integer, 81, 10<D, 815<D
89, 7, 4, 3, 1, 1, 8, 2, 2, 10, 7, 4, 9, 1, 4<

Union@testlistD
81, 2, 3, 4, 7, 8, 9, 10<

The fact that the Union command sorts the resulting list, is intrinsically related with the algorithm that
Union uses. If the elements should not be sorted, one can write a custom union function (we will consider
a couple of implementations later, see section 5.2.6.2.5), which however will certainly be slower than the
built-in Union.

� 3.10.2.2 Union with the SameTest option

The Union command has an option SameTest, which allows us to give it our own definition of which
elements have to be considered same. For example, we may consider elements the same if they are the
same modulo 3:

Union@testlist, SameTest ® HMod@ð1 -ð2, 3D � 0 &LD
81, 2, 3<

It should be noted that Union with the SameTest function may perform slower or much slower than the
"pure" Union. For more details and discussion, please see the Appendix C.

88

It should be noted that Union with the SameTest function may perform slower or much slower than the
"pure" Union. For more details and discussion, please see the Appendix C.

� 3.10.3 The Split command

This command is used to split the list into several sublists, so that elements in each sublist are the same.
This function can accept the "sameness" function as an optional second argument. It goes through the list
and compares adjacent elements, using either the default sameness function, which is SameQ, or the
sameness function provided to it. Whenever two adjacent elements are not the same, it groups the just
passed group of same elements in a sublist and starts a new sublist.

� 3.10.3.1 Basic Split

In its basic form, Split takes a list to split, as a single argument, and uses the SameQ predicate for element
comparison. For example, here we introduce a list and its sorted version:

testlist = Table@Random@Integer, 81, 15<D, 820<D
sorted = Sort@testlistD
88, 12, 10, 3, 13, 15, 13, 6, 6, 2, 4, 9, 5, 11, 6, 10, 7, 4, 15, 5<
82, 3, 4, 4, 5, 5, 6, 6, 6, 7, 8, 9, 10, 10, 11, 12, 13, 13, 15, 15<

Because in general the adjacent elements in an unsorted list are different, we see that most sublists here
will contain a single element:

Split@testlistD
888<, 812<, 810<, 83<, 813<, 815<, 813<, 86, 6<,

82<, 84<, 89<, 85<, 811<, 86<, 810<, 87<, 84<, 815<, 85<<
Not so for a sorted list:

Split@sortedD
882<, 83<, 84, 4<, 85, 5<, 86, 6, 6<, 87<,

88<, 89<, 810, 10<, 811<, 812<, 813, 13<, 815, 15<<
� 3.10.3.2 Split with a user-defined sameness function

We can now define two elements the same if, for example, they have the same remainder under the divi-
sion by 3. However, before using Split to group such elements together, we will have to sort the list with a
different sorting function, so that elements which are the same modulo 3 will be adjacent to each other in a
sorted list:

mod3sorted = Sort@testlist, Mod@ð1, 3D < Mod@ð2, 3D &D
815, 6, 9, 6, 6, 15, 3, 12, 4, 7, 10, 4, 13, 13, 10, 5, 11, 5, 2, 8<

Now we can split this list:

Split@mod3sorted, Mod@ð1, 3D � Mod@ð2, 3D &D
8815, 6, 9, 6, 6, 15, 3, 12<, 84, 7, 10, 4, 13, 13, 10<, 85, 11, 5, 2, 8<<

Split is a very useful function. Since it performs a single run through the list and only compares adjacent
elements, its complexity is linear. Also, because the number of comparisons is equal to the length of the
list (minus one), it does not suffer so severely from the performance penalties associated with the use of
user-defined sameness functions, which we discussed for the Sort and Union functions.

 89

Split is a very useful function. Since it performs a single run through the list and only compares adjacent
elements, its complexity is linear. Also, because the number of comparisons is equal to the length of the
list (minus one), it does not suffer so severely from the performance penalties associated with the use of
user-defined sameness functions, which we discussed for the Sort and Union functions.

� 3.10.3.3 Example: run-length encoding

One standard application of Split is a run-length encoding. Given a list of possibly repetitive numbers, this
encoding consists of replacing this list with a list of elements like {{num1,freq1},...}, where <freqk> gives
the total number of consecutive copies of <numk>. For instance, take the result of our first example: all
we need to do is to change each sublist to the form just described, which can be done for example like this:

Clear@runEncodeSplitD;
runEncodeSplit@spl_ListD :=

Table@8spl@@i, 1DD, Length@spl@@iDDD<, 8i, Length@splD<D;
Clear@runEncodeD;
runEncode@x_ListD := runEncodeSplit@Split@xDD;

Check:

runEncode@sortedD
882, 1<, 83, 2<, 84, 3<, 85, 1<, 86, 2<,

88, 2<, 89, 1<, 811, 4<, 812, 2<, 814, 1<, 815, 1<<
With the functional programming, we can eliminate the need of an auxiliary function runEncodeSplit:

Clear@runEncodeFPD;
runEncodeFP@x_ListD := Map@8First@ðD, Length@ðD< &, Split@xDD;

Check:

runEncodeFP@testlistD
881, 1<, 82, 3<, 83, 1<, 84, 2<,

88, 3<, 89, 3<, 810, 4<, 813, 1<, 815, 2<<
� 3.10.3.4 Example: computing frequencies of identical list elements

As another related application of Split, we will use it in conjunction with Sort to implement a function
which will count frequencies of the identical elements in a list. This is extremely easy to do if we notice
that we just have to Sort the original list and the use the <runEncode> function on a sorted list:

Clear@frequenciesD;
frequencies@x_ListD := runEncode@Sort@xDD;

Check:

frequencies@testlistD
882, 1<, 83, 2<, 84, 3<, 85, 1<, 86, 2<,

88, 2<, 89, 1<, 811, 4<, 812, 2<, 814, 1<, 815, 1<<
In fact, in essentially the same way the function Frequencies is implemented in the ‘Statistics‘DataManip-
ulation add-on package.

90

In fact, in essentially the same way the function Frequencies is implemented in the ‘Statistics‘DataManip-
ulation add-on package.

There are many other situations where Split is quite useful - we will give further examples of its use in the
subsequent chapters.

Clear@testlist, sorted, mod3sorted, listDivide,

frequencies, runEncodeSplit, runEncode, runEncodeFPD;

Summary

In this chapter we introduced lists - the main building blocks of data structures in Mathematica. We
considered various operations on lists such as list generation, element extraction, addition, replacement
and deletion, locating elements with certain properties in the list, and also several specialized commands
for fast structural operations on one or several lists, as well as those related to sorting of lists. The follow-
ing built-in functions were considered in detail: Range,Table,Part, Extract, Take, Drop, First, Rest, Most,
Last, Position, Length, Append, Prepend, AppendTo, PrependTo, Partition, Transpose, Flatten, Join,
Union, Intersection, Complement, Sort, Split.

Armed with these functions, we can already go a long way in solving various problems. However, we
need another major component for serious program building - an understanding of functions in Mathemat-
ica: what they are, how to define them, etc. This is a topic of the next chapter.

 91

IV. Rules, patterns and functions

4.1 Introduction

In this chapter we will introduce the notion of functions in Mathematica, and also consider numerous
examples of functions. Since the Mathematica programming language is to a large extent a functional
programming language, functions are the central objects here. Also, since lists are used as universal
building blocks for data structures, and any complex data structure can be built with lists and modified
"on the fly", the emphasis is shifted more towards functions, as compared say to OO programming lan-
guages.

Another important aspect of functions and functional programming in Mathematica is that this "layer" of
programming is built upon a (in my view, more fundamental in Mathematica) rule-based engine. This
results in the notion of function which is wider than, and also significantly different from that in most
other programming languages. Thus, one will not have a complete grasp of functions in Mathematica
without the understanding of rules and rule-based programming techniques. We will discuss them here as
well.

4.2 Rules and patterns

To better understand functions in Mathematica, we need a good understanding of patterns and rule substi-
tution. These two topics are just two facets of a single one, since it is the form of the pattern which deter -
mines when (on which class of objects) the associated rule will apply.

� 4.2.1 Rule, RuleDelayed, Replace and ReplaceAll commands

� 4.2.1.1 Basic rules and the Rule head (function)

It is very easy to organize a rewrite rule in Mathematica. For example, the following rule will replace a to b

Clear@a, b, ourruleD;
ourrule = a ® b

a ® b

The literal equivalent to the arrow (which represents the rule) is the Rule command. If we look at the
FullForm of < ourrule > variable, we see that Rule is used :

FullForm@ourruleD
Rule@a, bD

92

� 4.2.1.2 How to make the rule apply: ReplaceAll function

By itself, any rule that we define does not do anything useful. The command Rule by itself is just a named
container of the left and right hand sides of the rule. It becomes useful when combined with another
command, which actually performs the rule substitution in an expression. This command has a format
ReplaceAll[expr, rules], and a shorthand notation: <expr/.rules>. There can be more than one rule being
applied, in which case they should normally be placed into a simple (not nested) list - we will see such
examples later . If the rules are placed in a nested list, Mathematica interprets them differently - see
Mathematica Help for details, and also below.

This is, for instance, how our rule will work on some test expression :

Clear@f, a, bD;
f@aD �. ourrule
f@bD

or, which is the same,

f@aD �. a ® b

f@bD
If we have a more complicated expression, where < a > happens more than once, it will be replaced in all
places (when we use /., or ReplaceAll command):

Clear@f, g, hD;
f@a, g@a, h@aDDD �. a ® b

f@b, g@b, h@bDDD
� 4.2.1.3 The order in which ReplaceAll tries rules on parts of expressions

Although this is not immediately obvious, often the rule application starts from the larger expression, and
if it matches as a whole, then the subexpressions are not checked for further matches. This is so when the
pattern (see discussion on patterns below) looks like h[x_] or similar. For example, in this case:

Clear@a, qD;
888a<<< �. 8x_< :> q@xD
q@88a<<D

we will need to apply the rule several times to replace all the list braces with <q> - s :

888a<<< �. 8x_< :> q@xD �. 8x_< :> q@xD
q@q@8a<DD
888a<<< �. 8x_< :> q@xD �. 8x_< :> q@xD �. 8x_< :> q@xD
q@q@q@aDDD

But not in this case - here the pattern is just a symbol List :

 93

888a<<< �. List ® q

q@q@q@aDDD
This behavior is rather logical, but in cases when a different order of rule substitution is desired, tech-
niques are available to change it. We will discuss them
 later (see section 5.2.4.2).

� 4.2.1.4 Associativity of rules

As the previous example may have suggested, the application of rules is left - associative, meaning that in
the expression < expr /. rule1 /. rule2 > is legitimate, and first the rule (or rules if this is a list of rules, see
below) < rule1 > will be applied to < expr >, and then the rule (s) < rule2 > will be applied to the result.

� 4.2.1.5 Locality of rules

It is very important that the rules like the one above are local. This means that when the rule rewrites an
object to which it applies into something else, it changes the copy of it, while the initial object remains
unchanged. In particular, in the above example, an expression f[a] taken separately, did not change :

f@aD
f@aD

This is the main difference between the rule and the function which performs a similar transformation - in
the latter case a similar rule is defined globally (which means that it will be automatically tried by the
kernel on any expression entered interactively or being otherwise evaluated). Essentially, this is the only
fundamental difference between functions and lists of rules in Mathematica. For example, we can easily
simulate the squaring function by a local rule:

Clear@fD;
8f@xD, f@yD, f@elephantD, f@3D< �. f@z_D :> z^2

9x2, y2, elephant2, 9=
� 4.2.1.6 Delayed rules - the RuleDelayed function

I used this example to introduce two new ideas. First, we now have patterns on the left hand side of the
rule - they are used to widen the class of objects to which the rule will apply. Second, we have used a new
kind of rule (there are only two, and one we already considered before) - the one which uses the :> (colon
- greater) sign instead of -> one. The literal equivalent of this is RuleDelayed[lhs,rhs] command:

RuleDelayed@a, bD
a ¦ b

 As we can guess by the name, this corresponds to a delayed rule substitution - that is, the r.h.s. of the rule
is evaluated only after the rule substitution takes place. Later we will consider cases where Rule or RuleDe-
layed are more appropriate, in more detail, but in general the situation here is similar with the one with Set
and SetDelayed assignment operators. This similarity is not accidental, but once again reflects the fact the
assignment operators in Mathematica are just operators which create global rules.

� 4.2.1.7 The difference between Rule and RuleDelayed

94

�

4.2.1.7 The difference between Rule and RuleDelayed

To illustrate a difference between Rule and RuleDelayed on one particular example, consider a model
problem : given a list of elements, substitute every occurrence of the symbol < a > by a random number.
Here is our sample list

Clear@sample, a, b, c, d, e, f, g, hD;
sample = 8d, e, a, c, a, b, f, a, a, e, g, a<
8d, e, a, c, a, b, f, a, a, e, g, a<

Now, here is the rule - based solution using Rule :

sample �. a ® Random@D
8d, e, 0.177741, c, 0.177741, b, f, 0.177741, 0.177741, e, g, 0.177741<

And here is the same using RuleDelayed :

sample �. a :> Random@D
8d, e, 0.655171, c, 0.432888, b, f, 0.564996, 0.30648, e, g, 0.872856<

We see that the numbers are the same in the first case and different in the second. This is because, in the
first case, the r.h.s. of the rule has been evaluated before it was applied, once and for all. In the second
case, the r.h.s. of the rule was re - evaluated every time the rule was applied. As a variation on the theme,
suppose we want to substitute each <a> in the list by a list {a,num}, where <num> will be counting the
occurrences of <a> in the list. Here is our attempt with Rule:

n = 1;

sample �. a ® 8a, n ++<
8d, e, 8a, 1<, c, 8a, 1<, b, f, 8a, 1<, 8a, 1<, e, g, 8a, 1<<

Obviously this did not work as intended. And now with RuleDelayed :

n = 1;

sample �. a :> 8a, n ++<
8d, e, 8a, 1<, c, 8a, 2<, b, f, 8a, 3<, 8a, 4<, e, g, 8a, 5<<
Clear@sample, nD;

� 4.2.2 Rule substitution is not commutative

� 4.2.2.1 Lists of rules

When we have more than just one rule to be tried on an expression, we place the rules in a list. For
example:

8a, b, c, d< �. 8a ® 1, b ® 2, d ® 4<
81, 2, c, 4<

For all the rules to be tried on an expression, the list of rules has to be a flat list, that is, all the list elements
should have a head Rule or RuleDelayed. Supplying a nested list of rules to Replace or ReplaceAll is not
an error, but is interpreted as if we want to try all the sublists of rules separately on several copies of our
original expression:

 95

For all the rules to be tried on an expression, the list of rules has to be a flat list, that is, all the list elements
should have a head Rule or RuleDelayed. Supplying a nested list of rules to Replace or ReplaceAll is not
an error, but is interpreted as if we want to try all the sublists of rules separately on several copies of our
original expression:

8a, b, c, d< �. 88a ® 1, b ® 2<, 8c ® 3, d ® 4<<
8881, 2, c, d<, 8a, b, 3, 4<<<

As a side note, there is nothing special about lists of rules with respect to lists of other Mathematica
objects:

FullForm@8a ® 5, a ® 6<D
List@Rule@a, 5D, Rule@a, 6DD

� 4.2.2.1 Non-commutativity

The result of the rule substitution depends in general on the order in which the rules are stored in the list,
as the following example illustrates.

Clear@a, fD;
f@aD �. 8a ® 5, a ® 6<
f@aD �. 8a ® 6, a ® 5<
f@5D
f@6D

The reason for this is that once some rule has been applied to a given part of an expression, ReplaceAll
goes to the next part of an expression and tries the rules on that next part. But even if we run ReplaceAll
several times (there is a special command ReplaceRepeated related to this, which we will discuss shortly),
the results will still be generally different for different orderings of rules in a list. This is because once a
rule applies to a (part of) expression, this part is generally rewritten so that (some of) the rules in our list
of rules which applied before will no longer apply, and vice versa.

In any case, our final conclusion is that the rule application is not commutative, and the order of rules in
the rule list does matter in general. For an extreme example of this, we will soon consider a rule-based
factorial function, where different rule ordering will result in infinite iteration.

� 4.2.3 An interplay between rules and evaluation process

When working in Mathematica, it is important to remember that we never actually start from scratch, but
always with a large built-in system of rules which connect together the built-in functions. This gives great
flexibility in using these functions, since these system rules can be manipulated or overridden with the user-
defined ones. On the other hand, one has to be more careful, because the rules (or function definitions
and variable assignments, which are global rules) newly defined by the user, immediately start to interact
with the built-in ones. The mentioned above non-commutativity of rules can make this interaction quite
non-trivial. This often results in some unexpected or "erroneous" behavior, which many Mathematica
users immediately proclaim as bugs, but which can be avoided just by getting a better understanding of
how the system works.

96

� 4.2.3.1 When the rule applies, expression is evaluated

As one example, consider a gamma-function of the symbolic argument:

Clear@aD;
Gamma@aD
Gamma@aD

Since the system does not know what < a > is, no one of the rules associated with the gamma - function
applies, and the input is just returned back. Let us now use the following rewrite rule :

Gamma@aD �. a ® 5

24

We see that as soon as the numerical (integer) value has been substituted, one of the built - in rules
applied, producing the result. At the same time, for a number Π (for instance), there is no rule which
forces Mathematica to compute the numerical value, and thus we have :

Gamma@aD �. a ® Pi

Gamma@ΠD
If we want to compute a numerical value in this case, we can either do this :

Gamma@aD �. a ® N@PiD
2.28804

Or, which is equivalent (with some tiny differences unimportant now), this :

N@Gamma@aD �. a ® PiD
2.28804

(the N function computes a numerical value of its argument). What I want to stress is that the decision
whether to keep say Gamma[5] as it is here or to substitute it by its numerical (well, integer) value is
rather arbitrary in the sense that it is defined by certain (very sensible) Mathematica conventions but there
is no first principle which tells which form of the answer is advantageous. In fact, in some cases I may
wish to keep a Gamma[5] function in its unevaluated form. More generally, the whole advantage in using
rule-based approach is that we don’t need a first principle to add rules for a new situation that we want to
describe.

This means not that Mathematica is unpredictable, but that the programs we write should not depend on
features that are defined purely by conventions. In particular, in Mathematica one should always assume
that all expressions may evaluate to something else. Thus, if some expression has to be kept unevaluated
for some time, the programmer has to take care of it. On the other hand, if some expression must be
evaluated completely (say, to a numerical value), once again the programmer has to ensure it.

 97

� 4.2.3.2 Evaluation affects applicability of rules

Consider now a different example:

8f@PiD, Sin@PiD, Pi^2<
8f@PiD, Sin@PiD, Pi^2< �. Pi ® a

9f@ΠD, 0, Π2=
9f@aD, 0, a2=

Note that in the second input in the list, we will naively expect Sin[a] instead of 0 as an output, in the case
when we apply the rule Pi -> a. The reason for this result being as it is can be understood easily, once we
recall that the sign /. is just an abbreviation, and equivalently we can write the last input as

ReplaceAll@8f@PiD, Sin@PiD, Pi^2<, Pi ® aD

9f@aD, 0, a2=
Now we recall the general evaluation strategy in Mathematica, where the subexpressions are normally
evaluated before the expression itself. This means that once the evaluation process reached ReplaceAll
command, our expression has been already transformed to the same form as the output of the first input
(without rule substitution). Sin[Pi] evaluated to 0, and since 0 does not contain < Pi > any more and thus
does not match the rule, no further substitution took place for this part of our expression. Once again, we
can see the evaluation dynamics by using the Trace command:

Trace@8f@PiD, Sin@PiD, Pi^2< �. Pi ® aD

998Sin@ΠD, 0<, 9f@ΠD, 0, Π2==, 9f@ΠD, 0, Π2= �. Π ® a, 9f@aD, 0, a2==
These examples may give an impression that Mathematica is unstable with respect to bugs related to rule
orderings. While it is true that many non-trivial bugs in the Mathematica programs are related to this
issue, there are also ways to avoid them. As long as the rule or list of rules are always correct in the sense
that either they represent exact identities (say, mathematical identities), or one can otherwise be sure that
in no actual situation they, taken separately, will lead to an incorrect result, it should be fine.

Bugs happen when rules considered "correct" give incorrect results in certain unforeseen situations, but this
is also true for programs written within more traditional programming paradigms. Perhaps, the real differ-
ence is that for more traditional programming techniques it is usually easier to restrict the program to
"stay" in those "corners" of the problem parameter space where correct performance can be predicted or
sometimes proven. I personally view the complications arising due to rule orderings as a (possibly inevita-
ble) price to pay for having a very general approach to evaluation available.

� 4.2.4 Rules and simple (unrestricted) patterns

Let us give some examples of how rules work with the simplest patterns.

� 4.2.4.1 A simplest pattern and general pattern-matching strategy

98

�

4.2.4.1 A simplest pattern and general pattern-matching strategy

 The simplest pattern of all, which we have already seen before, is just a single underscore <_>, and has a
literal representation Blank[]:

Blank@D
_

This pattern represents any Mathematica expression. Let us take some sample Mathematica expression:

x^y *Sin@zD
Now we will use our simplest pattern to replace any element by, say, a symbol < a >:

Clear@a, x, y, z, g, hD;
8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �. _ ® a

a

This is not very exciting. What happened is that our entire expression (list) matched this pattern and then
got replaced by < a > . Before we move forward, let me explain a bit how patterns work and why the
substitution based on patterns is possible. The main ingredient for this is the uniform representation of
Mathematica expressions by symbolic trees. Basically, when we try to match some (however complex)
pattern with some expression, we are matching two trees. The tree that represents the pattern is also a
legal Mathematica expression (patterns are as good Mathematica expressions as anything else), but with
some branches or leaves replaced by special symbols like Blank[] (the underscore). For example:

FullForm@H_^_L *Sin@_DD
Times@Power@Blank@D, Blank@DD, Sin@Blank@DDD

This pattern tree (or, just pattern) will match some expression < expr > if they are identical modulo some
parts of < expr > which can be "fit" in the placeholders such as Blank[], present in this pattern. In particu-
lar, the pattern above will match any expression which is a product of something to a power of something
else, and a Sine of something.

� 4.2.4.2 Does the pattern match? The MatchQ function

There is a very useful command that allows one to check whether or not there is a match between a given
expression and a given pattern: MatchQ. It takes as arguments an expression and a pattern and returns
True when pattern matches and False otherwise. For example:

MatchQ@x^y *Sin@zD, H_^_L *Sin@_DD
True

MatchQ@Exp@-x^2D^2*Sin@Cos@x -yD^2D, H_^_L *Sin@_DD
True

MatchQ@x*Sin@zD, H_^_L *Sin@_DD
False

It is important to understand that the pattern - matching (for simple, or unrestricted, patterns) is based
completely on syntax, and not semantics, of the expressions being matched.

 99

It is important to understand that the pattern - matching (for simple, or unrestricted, patterns) is based
completely on syntax, and not semantics, of the expressions being matched.

� 4.2.4.3 Pattern tags(names) and expression destructuring

Now, while there is some value in just establishing the fact that some expression matches certain pattern, it
becomes much more useful when we get access to the parts of this expression which match certain parts
of the pattern, so that we can further process these parts. This is called expression destructuring, and is a
very powerful pattern - related capability. For instance, in the above example we may wish to know which
expressions were the base, the power and the argument of Sine. But to be able to do such destructuring,
we need to somehow label the parts of the pattern. This is possible through the mechanism of pattern tags
(or names) : we attach some symbol to the pattern part, and then this symbol stores the corresponding part
of the actual expression matched, ready for further processing. This is how, for example, we can insert
tags in our pattern:

Hbase_^pwr_L *Sin@sinarg_D
The pattern tags can not be composite expressions - only true symbols (with the head Symbol).

The presence of pattern tags does not change the matching in any way, it just gives us additional informa-
tion. We will not obtain this information through MatchQ, however, since MatchQ just establishes the fact
of the match. We will need a real rule application for that, since the rule will tell us what to do with these
matched (sub) expressions. For example, here we will simply collect them in a list :

8x^y *Sin@zD, Exp@-x^2D^2*Sin@Cos@x -yD^2D< �.
Hbase_^pwr_L *Sin@sinarg_D ® 8base, pwr, sinarg<

98x, y, z<, 9ã, -2 x2, Cos@x -yD2==
What we just did is exactly a special case of destructuring. The parts that we tagged are now available for
whatever operations we would like to perform.

So, to summarize: whenever a pattern contains a part which is a special symbol like Blank[] (there are a
few more like it, we will cover them shortly), possibly with a pattern tag attached, this means that the
actual expression matched can contain in this place a rather arbitrary subexpression (how arbitrary,
depends on the particular special symbol used). However, the parts which do not contain these symbols
(multiplication, Power and Sin in our example above), have to be present in exactly the same way in both
pattern and the expression, for them to match.

One more important point about pattern tags is that the two identical pattern tags (symbols) in different
parts of a pattern can not stand for different corresponding subexpressions in the expression we try to
match. For example :

MatchQ@a^a, b_^b_D
True

MatchQ@a^c, b_^b_D
False

100

� 4.2.4.4 Example: any function of a single fixed argument

The following pattern will work on every function, but of the argument which has to literally be <x>:

Clear@f, xD;
f_@xD

It can be used for instance when we need to substitute the literal < x > by some value (say, 10) at every
place where it appears as a single argument of some function. Consider now some list of expressions
which we will use throughout this section to illustrate the construction of various patterns :

Clear@x, y, z, g, h, aD;
8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD<
9x, Sin@xD, x2, x y, x +y, g@y, xD, h@x, y, zD, Cos@yD=

We now use our pattern :

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
8f_@xD ® f@10D<

9x, Sin@10D, x2, x y, x +y, g@y, xD, h@x, y, zD, Cos@yD=
The replacement happened only in the second element of the list. To understand this, we have to recall the
tree - like nature of Mathematica expressions and also that the rules application is based on expression
syntax rather than semantics. Let us look at the FullForm of these expressions:

FullForm@8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD<D
List@x, Sin@xD, Power@x, 2D, Times@x, yD, Plus@x, yD, g@y, xD, h@x, y, zD, Cos@yDD

We see that only the second list element contains < x > as a single argument, the next four have 2 argu-
ments (and thus the pattern does not match), the next one has 3 arguments, and the last one has a single
argument, but < y > instead of < x > .

� 4.2.4.5 Any function of 2 arguments, but with the first fixed

 Let us now develop other rules which will work selectively on different groups of these elements. First,
let us build a rule which will work on elements with 2 arguments - this is easy :

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
8f_@x, z_D ® f@10, zD<

8x, Sin@xD, 100, 10 y, 10 +y, g@y, xD, h@x, y, zD, Cos@yD<
We see that a new pattern is f_[x, z_], which means any function of two arguments, with an arbitrary
second argument, but the first argument fixed to literal < x > . Notice that no substitution was performed
for g[y,x], since here <x> is the second argument, while in the pattern it is the first one. In general, for
simple patterns, the way to determine whether or not a given pattern will match a given expression is to
consider the FullForm of both the pattern and the expression, and see whether the pattern expression has
blanks in all places where it is different from the expression it has to match. The FullForm of the above
pattern is

 101

We see that a new pattern is f_[x, z_], which means any function of two arguments, with an arbitrary
second argument, but the first argument fixed to literal < x > . Notice that no substitution was performed
for g[y,x], since here <x> is the second argument, while in the pattern it is the first one. In general, for
simple patterns, the way to determine whether or not a given pattern will match a given expression is to
consider the FullForm of both the pattern and the expression, and see whether the pattern expression has
blanks in all places where it is different from the expression it has to match. The FullForm of the above
pattern is

FullForm@f_@x, z_DD
Pattern@f, Blank@DD@x, Pattern@z, Blank@DDD

To get a better idea of how the above pattern matched the expressions in our list, we may construct a
different rule, which will show us which parts were matched :

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, Cos@yD< �.
8f_@x, z_D ® 88"f now", f<, 8"z now", z<<<

8x, Sin@xD, 88f now, Power<, 8z now, 2<<, 88f now, Times<, 8z now, y<<,
88f now, Plus<, 8z now, y<<, g@y, xD, Cos@yD<

Returning to our previous rule for functions of 2 arguments, let us first fix the problem with the g[y, x]
term so that it also matches. Our solution will be to add another rule, thus making a list of replacement
rules :

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
8f_@x, z_D ® f@10, zD, f_@z_, xD ® f@z, 10D<

8x, Sin@xD, 100, 10 y, 10 +y, g@y, 10D, h@x, y, zD, Cos@yD<
� 4.2.4.6 Combining 1, 2 and 3-argument cases together

Now, let us change our rules such that in the Sin[x] the replacement will also take place - that is, now we
want < x > to be replaced in functions of either one or two arguments. For this, we combine our very first
rule with the last two:

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
8f_@xD ¦ f@10D, f_@x, y_D ¦ f@10, yD, f_@z_, xD ® f@z, 10D<

8x, Sin@10D, 100, 10 y, 10 +y, g@y, 10D, h@x, y, zD, Cos@yD<
Finally, we would like to add a rule to include a function of 3 variables :

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
8f_@xD ® f@10D, f_@x, y_D ® f@10, yD,
f_@z_, xD ® f@z, 10D, f_@x, y_, z_D ® f@10, y, zD<

8x, Sin@10D, 100, 10 y, 10 +y, g@y, 10D, h@10, y, zD, Cos@yD<
� 4.2.4.7 New pattern - building block - BlankSequence - and a caution

Let me now introduce another pattern - building block similar to Blank[], which simplifies the construc-
tion of many patterns. The literal command for this new pattern object is BlankSequence[]. Its literal
equivalent is a double underscore sign < __ > :

102

BlankSequence@D
__

This pattern element is used to represent a sequence of one or more elements in an expression. For exam-
ple :

8g@x, y, zD, g@p, qD, h@x, yD< �. g@t__D ® 8t<
88x, y, z<, 8p, q<, h@x, yD<

However, since this pattern - building block allows one to create patterns which match a much wider class
of expressions, sometimes we get not what we would like to. Here, for instance, we want to add a literal
<a> as an extra argument to all the functions in the list:

8g@x, y, zD, h@x, yD< �. f_@t__D -> f@t, aD
8g@x, y, zD, h@x, yD, a<

Instead, < a > was added to the list itself. Why this happened is easy to see from the FullForm of our list :

FullForm@8g@x, y, zD, h@x, yD<D
List@g@x, y, zD, h@x, yDD

We see that the head List matches < f_ > (which means any head), and t__ is matched by the interior of
the list, since it is indeed a sequence of 2 elements - functions < g > and < h > . Thus, < a > has been
added as a last argument to our list of functions, instead of being added to each function in the list. We see
that our rule applied 1 level higher than we wanted - to the entire expression rather than parts. This is a
common situation when ReplaceAll is used. In this case, the rules are first tried on the larger expressions,
and if they match, the rules are applied to them, while subexpressions are not tried any more. There are
several ways to change this behavior. One way is to create restricted patterns to make them more selective.
Another way is to use the Replace command, which performs rule substitution in a different order.

� 4.2.4.8 First look at conditional (restricted) patterns

If we choose the first way, we have to modify our pattern such that the head List will not match. The thing
we would like to do is to impose a condition that < f > in the pattern < f > is not the same as List. This is
how it is done (more details on restricted patterns later) :

8g@x, y, zD, h@x, yD< �. f_@t__D �; f =!= List -> f@t, aD
8g@x, y, z, aD, h@x, y, aD<

Now we see that it works as intended.

� 4.2.4.9 Using Replace instead of ReplaceAll

If we choose to use the Replace command, here is a way to do the same :

Replace@8g@x, y, zD, h@x, yD<, f_@t__D -> f@t, aD, 1D
8g@x, y, z, aD, h@x, y, aD<

The difference between Replace and ReplaceAll is that the former allows us to specify, in which level of
expression the rules have to be applied. This gives a more detailed control over the application of rules.
Here, for instance, we required that the rules be applied only at level 1, which means the level of list
subexpressions - functions < g > and < h > .

 103

The difference between Replace and ReplaceAll is that the former allows us to specify, in which level of
expression the rules have to be applied. This gives a more detailed control over the application of rules.
Here, for instance, we required that the rules be applied only at level 1, which means the level of list
subexpressions - functions < g > and < h > .

Another difference is that even when we indicate that the rules have to be applied to the whole expression,
which we can do by using Replace[expr, rules, Infinity], the order in which the rules will be applied is
different from that of ReplaceAll : now the rules will be applied in the depth - first manner, from the
smallest (inner) subexpressions to larger (outer) ones. This behavior is often preferred, and then one has to
use Replace. We will use this observation in later chapters.

� 4.2.4.10 Rule within a rule, and a better catchall solution for our example

Considering our initial problem, it is rather inconvenient to have so many rules for describing essentially
some particular cases of a general situation : whenever literal < x > is an argument of some function,
change it to < 10 > in that function. Let us see if we can write a more concise and general solution for this
problem. The one that I suggest requires BlankSequence.

Illustrating expression deconstruction

To illustrate how it works here, we will now create a rule which will "deconstruct" our expressions accord-
ing to this pattern :

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
f_@t__D �; f =!= List ® 88"function", f<, 8"args", 8t<<<

8x, 88function, Sin<, 8args, 8x<<<,
88function, Power<, 8args, 8x, 2<<<,
88function, Times<, 8args, 8x, y<<<,
88function, Plus<, 8args, 8x, y<<<, 88function, g<, 8args, 8y, x<<<,
88function, h<, 8args, 8x, y, z<<<, 88function, Cos<, 8args, 8y<<<<

The reason that I used a restricted pattern with a condition f =!= List is that otherwise the whole list will
match, since its elements match the pattern __ :

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
f_@t__D ® 88"function", f<, 8"args", 8t<<<

98function, List<,
9args, 9x, Sin@xD, x2, x y, x +y, g@y, xD, h@x, y, zD, Cos@yD===

Restricted patterns we will cover later, for now just think of it as a pattern with a certain condition
attached. At the same time, this example by itself shows that one has to be careful when defining patterns
since the can match in more cases than we expect.

The solution to our problem

Returning to our initial problem, here is a solution:

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
f_@t__D �; f =!= List :> Hf@tD �. x ® 10L

8x, Sin@10D, 100, 10 y, 10 +y, g@y, 10D, h@10, y, zD, Cos@yD<
Explanation

1. Use parantheses to impose the correct precedance

104

1. Use parentheses to impose the correct precedence

This solution is remarkable in several aspects. First of all, we have used a rule within a rule, and the inner
rule we used in parentheses. The meaning of this is : once we found anything that matches the pattern of
the "first" (or "outer") rule, make a replacement in this expression according to the "second", or "inner"
rule. The first ("outer") rule acts here essentially as a filter for a second ("inner") one. Should we omit the
parentheses, and we would not get the desired result :

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
f_@t__D �; f =!= List :> f@tD �. x ® 10

810, Sin@10D, 100, 10 y, 10 +y, g@y, 10D, h@10, y, zD, Cos@yD<
The reason this happened is that the rule application is left - associative. Thus, the first rule applied first,
and was essentially idle, because it says by itself just f_[t__] /; f =!= List :> f[t], that is, replace an expres-
sion of this form by itself :

step1 = 8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
f_@t__D �; f =!= List :> f@tD

9x, Sin@xD, x2, x y, x +y, g@y, xD, h@x, y, zD, Cos@yD=
The second rule then applied to < step1 >, and it says : replace < x > by < 10 > whenever < x > occurs.
Thus, for example, the first element of the list, which is just < x > and is not an argument of any function,
also got replaced.

step1 �. x ® 10

810, Sin@10D, 100, 10 y, 10 +y, g@y, 10D, h@10, y, zD, Cos@yD<
However, if we use the parentheses, we ensure that the second rule is actually applied to the results
"filtered" by the first rule.

2. Use RuleDelayed to supply correct arguments to the inner rule

The second subtlety here is that we used RuleDelayed instead of Rule for the first (outer) rule. It is easy to
see that if we don’ t , we will not get a desired result :

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
f_@t__D �; f =!= List -> Hf@tD �. x ® 10L

9x, Sin@xD, x2, x y, x +y, g@y, xD, h@x, y, zD, Cos@yD=
The reason is that in the case of Rule, the r.h.s. of the rule is evaluated before the rule is substituted.
Recalling the general strategy of Mathematica evaluation, the inner rule will be evaluated before the outer
one (this is what parentheses ensure). But by that time, the literal < t > in the outer rule has yet no relation
to the matched parts of the list whatsoever, and just remains the literal < t > . Thus, the rule < f[t] /. x ->
10 > is completely idle and evaluates to f[t]. This results then in just the first rule f_[t__] /; f =!= List
->f[t], which again is idle.

3. Confirmation : use Trace command

This description can be confirmed with the Trace command:

 105

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
f_@t__D �; f =!= List -> Hf@tD �. x ® 10L �� Trace

988f@tD �. x ® 10, f@tD<,
f_@t__D �; f =!= List ® f@tD, f_@t__D �; f =!= List ® f@tD<,

9x, Sin@xD, x2, x y, x +y, g@y, xD, h@x, y, zD, Cos@yD= �.
f_@t__D �; f =!= List ® f@tD, 8List =!= List, False<,8Sin =!= List, True<, 8Power =!= List, True<,8Times =!= List, True<, 8Plus =!= List, True<,8g =!= List, True<, 8h =!= List, True<, 8Cos =!= List, True<,

9x, Sin@xD, x2, x y, x +y, g@y, xD, h@x, y, zD, Cos@yD==
If we use RuleDelayed however, the r.h.s of the outer rule (which includes the inner rule) will not be
evaluated until some match has been found for the outer rule. This will allow the inner rule to operate on
expressions matched by the outer rule.

� 4.2.4.11 Rule vs. RuleDelayed - when which one is appropriate

When RuleDelayed is better

In general, it is usually safer to use RuleDelayed in cases when the r.h.s. of the rule is not constant. For
instance, all our replacements just discussed would have been totally spoiled had the parts of the pattern
definition tags (such as f in f_, t in t__, etc) have any global values. This is, for instance, one of the rules
we used above, but with some pattern tags having some global values before the application of rule:

f = "Global function";

t = "global value";

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
f_@t__D �; f =!= List ® 88"function", f<, 8"args", 8t<<<

8x, 88function, Global function<, 8args, 8global value<<<,
88function, Global function<, 8args, 8global value<<<,
88function, Global function<, 8args, 8global value<<<,
88function, Global function<, 8args, 8global value<<<,
88function, Global function<, 8args, 8global value<<<,
88function, Global function<, 8args, 8global value<<<,
88function, Global function<, 8args, 8global value<<<<

Once again, this is because the r.h.s. of the rule has been evaluated before any match could have taken
place. To be safe, use RuleDelayed :

106

f = "Global function";

t = "global value";

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
f_@t__D �; f =!= List :> 88"function", f<, 8"args", 8t<<<

8x, 88function, Sin<, 8args, 8x<<<,
88function, Power<, 8args, 8x, 2<<<,
88function, Times<, 8args, 8x, y<<<,
88function, Plus<, 8args, 8x, y<<<, 88function, g<, 8args, 8y, x<<<,
88function, h<, 8args, 8x, y, z<<<, 88function, Cos<, 8args, 8y<<<<
Clear@f, tD;

When Rule is better

There are of course cases when Rule has to be used instead - this is when the r.h.s. of the rule is a con-
stant. For example, say we want to substitute every even number in a list by the value of the integral of
the gaussian over the half-line. This is how long it takes with Rule (for this size of the list)

Range@50D �. _ ?EvenQ ® Integrate@Exp@-x^2D, 8x, 0, Infinity<D ��
Short �� Timing

:0.101, :1, Π

2
, 3, �44�,

Π

2
, 49,

Π

2
>>

And now with RuleDelayed :

Range@50D �. _ ?EvenQ :> Integrate@Exp@-x^2D, 8x, 0, Infinity<D ��
Short �� Timing

:2.113, :1, Π

2
, 3, �44�,

Π

2
, 49,

Π

2
>>

What happens here is that in one case, the integral is computed exactly once, while in the other it is recom-
puted over and over again. Once again, the situation here is very similar to the one with immediate and
delayed assignments Set and SetDelayed.

� 4.2.4.12 Patterns testing heads of expressions

Let us again return to our original list of expressions. We can also construct more stringent rules which
will operate only on certain functions, for example :

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
f_Sin ¦ Hf �. x ® 10L

9x, Sin@10D, x2, x y, x +y, g@y, xD, h@x, y, zD, Cos@yD=
8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
f_Plus ¦ Hf �. x ® 10L

9x, Sin@xD, x2, x y, 10 +y, g@y, xD, h@x, y, zD, Cos@yD=

 107

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
f_Power ¦ Hf �. x ® 10L

8x, Sin@xD, 100, x y, x +y, g@y, xD, h@x, y, zD, Cos@yD<
We have introduced another useful part of the pattern - the part which checks the Head. Although strictly
speaking such patterns should be already considered restricted patterns and this topic we did not cover yet,
this construction is purely syntactic and thus still appropriate for our present discussion. The idea is that
the pattern x_head will match any single expression with the Head < head > .

� 4.2.4.13 On one pitfall of pattern - building

In the first case, by writing the pattern as above, we did not save much:

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
Sin@xD ¦ Sin@10D;

9x, Sin@10D, x2, x y, x +y, g@y, xD, h@x, y, zD, Cos@yD=
But in the second case, we have avoided one of the pitfalls associated with the pattern - building :

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
Plus@t__D ¦ HPlus@tD �. x ® 10L

810, Sin@10D, 100, 10 y, 10 +y, g@y, 10D, h@10, y, zD, Cos@yD<
What happened? This kind of behavior creates nightmares for those starting to fool around with rules and
patterns. This is generally beyond the scope of the present discussion, but what happened here is that
pattern itself evaluated before it had any chance to match in its original form:

Plus@t__D
t__

The real pattern that was matched then was not Plus[t__] but just t__, with the above result (RuleDelayed
does not evaluate the r.h.s. of the rule, but it of course does evaluate the l.h.s). The solution in such cases
is to use the HoldPattern command:

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
HoldPattern@Plus@t__DD ¦ HPlus@tD �. x ® 10L

9x, Sin@xD, x2, x y, 10 +y, g@y, xD, h@x, y, zD, Cos@yD=
Now it works as intended. The same problem is with the Power function, which also evaluates to its
argument given a single argument:

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
Power@t__D ¦ HPower@tD �. x ® 10L

810, Sin@10D, 100, 10 y, 10 +y, g@y, 10D, h@10, y, zD, Cos@yD<
The correct way :

108

8x, Sin@xD, x^2, x*y, x +y, g@y, xD, h@x, y, zD, Cos@yD< �.
HoldPattern@Power@t__DD ¦ HPower@tD �. x ® 10L

8x, Sin@xD, 100, x y, x +y, g@y, xD, h@x, y, zD, Cos@yD<
The uses of HoldPattern and related things will be covered systematically later. Returning to our current
topic, we see that the forms x_head and head[x__] are similar but not entirely equivalent.

� 4.2.4.14 Matching expressions with any number of elements - BlankNullSequence

The other source of inequivalence between these two forms can be seen on the following example :

8f@xD, g@xD, f@x, yD, Sin@x +yD, f@D, f@x, y, zD< �. f@t__D :> a*f@tD
8a f@xD, g@xD, a f@x, yD, Sin@x +yD, f@D, a f@x, y, zD<

Here, we multiplied by < a > all expressions with head < f > . However, the one with no arguments was
missed. This does not happen for the <x_f> variant below - here all occurrences of <f> are incorporated,
with or without arguments.

8f@xD, g@xD, f@x, yD, Sin@x +yD, f@D, f@x, y, zD< �. x_f :> a*x

8a f@xD, g@xD, a f@x, yD, Sin@x +yD, a f@D, a f@x, y, zD<
Notice by the way that the < x > in the pattern <x_f> has nothing to do with the global <x> (present for
example in the expressions in the list), but rather has to be treated as a local variable whose scope is
limited to the rule. Other pattern tags are usually local for RuleDelayed but global for Rule, as we already
discussed.

To make a structural pattern f[t__] "catch up" with the <x_f> one, we need to introduce another (last in
this category) pattern-building block: <BlankNullSequence>, which has a triple underscore as
abbreviation:

BlankNullSequence@D

Its purpose is to match a sequence of zero or more expressions. Check now :

8f@xD, g@xD, f@x, yD, Sin@x +yD, f@D, f@x, y, zD< �. f@t___D :> a*f@tD
8a f@xD, g@xD, a f@x, yD, Sin@x +yD, a f@D, a f@x, y, zD<

Now the results of the rule substitutions for this input are the same.

� 4.2.4.15 A bit more useful example

To conclude this section, let us consider a bit more useful example of rule application : we will consider
some polynomial of a single variable < x >, break it into a list of terms, and then replace all even powers
of < x > by some object, say a literal < a > . Consider for example :

Clear@testexpr, x, aD;
testexpr = Expand@H1 +xL^10D
1 +10 x +45 x2 +120 x3 +210 x4 +252 x5 +210 x6 +120 x7 +45 x8 +10 x9 +x10

It is very easy to get a list of individual terms - let us look at the FullForm of this expression :

 109

FullForm@testexprD
Plus@1, Times@10, xD, Times@45, Power@x, 2DD, Times@120, Power@x, 3DD,
Times@210, Power@x, 4DD, Times@252, Power@x, 5DD, Times@210, Power@x, 6DD,
Times@120, Power@x, 7DD, Times@45, Power@x, 8DD, Times@10, Power@x, 9DD, Power@x, 10DD

All that is needed in this particular case (but keep in mind that this is not a general solution, since it
exploits the absence of any sums inside the terms) is to Replace the head Plus by head List :

testexpr �. Plus ® List

91, 10 x, 45 x2, 120 x3, 210 x4, 252 x5, 210 x6, 120 x7, 45 x8, 10 x9, x10=
Now we replace all even powers of < x > by < a > . Here we will go a little ahead of time and use a
restricted pattern x^_?EvenQ. For now, let me just say that the pattern x^_ would mean any power of x
(except perhaps just x, as it is represented differently), and x^_?EvenQ means any even power.

testexpr �. Plus ® List �. x^H_ ?EvenQL -> a

91, 10 x, 45 a, 120 x3, 210 a, 252 x5, 210 a, 120 x7, 45 a, 10 x9, a=
We can also, for instance, apply some function < f > to these even powers :

Clear@f, x, yD;
testexpr �. x^Hy_ ?EvenQL :> f@x^yD

1 +10 x +120 x3 +252 x5 +120 x7 +10 x9

+45 fAx2E +210 fAx4E +210 fAx6E +45 fAx8E +fAx10E
The zero - th power (which is, the x - independent term) was missed. To account for it is not completely
trivial. Here is the solution for this particular case - it contains too many details not covered yet so I will
postpone the explanation.

Clear@f, x, y, a, b, newexprD;
newexpr = Replace@testexpr,

8Ha : _ : 1L *x^Hy_ ?EvenQL ¦ a*f@x^yD, a_ �; FreeQ@a, xD ¦ f@aD<, 1D
10 x +120 x3 +252 x5 +120 x7 +10 x9 +f@1D

+45 fAx2E +210 fAx4E +210 fAx6E +45 fAx8E +fAx10E
The function < f > can of course be anything. For instance, we may consider a shift by a constant < b > :

newexpr �. 8f@z_^k_D ¦ Hz -bL^k, f@1D ® 1<

1 +10 x +120 x3 +252 x5 +120 x7 +10 x9 +45 H-b +xL2

+210 H-b +xL4 +210 H-b +xL6 +45 H-b +xL8 +H-b +xL10
Clear@testexpr, newexprD;

110

� 4.2.5 Applying rules repeatedly - the ReplaceRepeated function

Since any given rule or a list of rules are normally tried on any element of expression just once, they don’ t
"keep track" of changes in an expression caused by their own actions. One may create more interesting
constructs by repeatedly applying a rule or list of rules to an expression until it stops changing. By doing
so, one in fact can imitate locally (and in a very oversimplified manner) the global evaluation process that
Mathematica goes through in evaluating expressions. There exists a special built-in function performing
such repeated rule application - ReplaceRepeated. Its symbolic equivalent is //. (slash-slash-dot). Let us
give some examples:

� 4.2.5.1 Example: sorting a list of numbers

Let us generate some list of random integer numbers :

Clear@testlistD;
testlist = Table@Random@Integer, 81, 20<D, 815<D
89, 1, 15, 18, 6, 18, 4, 10, 10, 11, 9, 8, 19, 18, 13<

This is the rule we need :

sortrule = 8x___, y_, z_, t___< �; y > z ¦ 8x, z, y, t<
8x___, y_, z_, t___< �; y > z ¦ 8x, z, y, t<

What it does is clear from its form: it exchanges adjacent elements if the one to the right is smaller. Let us
apply it:

testlist �. sortrule
81, 9, 15, 18, 6, 18, 4, 10, 10, 11, 9, 8, 19, 18, 13<
testlist �. sortrule �. sortrule
81, 9, 15, 6, 18, 18, 4, 10, 10, 11, 9, 8, 19, 18, 13<

It is clear that this is a case for ReplaceRepeated :

testlist ��. sortrule
81, 4, 6, 8, 9, 9, 10, 10, 11, 13, 15, 18, 18, 18, 19<

We have just obtained a rule-based realization of the exchange sort.

� 4.2.5.2 Example: deleting duplicate elements

Let us again generate a list:

 111

Clear@testlistD;
testlist = Table@Random@Integer, 81, 5<D, 815<D
85, 4, 5, 5, 5, 4, 1, 5, 3, 2, 2, 4, 3, 4, 3<

Suppose that we have to delete duplicate elements. This is the rule we need:

delrule = 8x___, y_, z___, y_, t___< ¦ 8x, y, z, t<
8x___, y_, z___, y_, t___< ¦ 8x, y, z, t<

Let us run it a few times:

testlist �. delrule
85, 4, 5, 5, 4, 1, 5, 3, 2, 2, 4, 3, 4, 3<
testlist �. delrule �. delrule
85, 4, 5, 4, 1, 5, 3, 2, 2, 4, 3, 4, 3<

We see that it works so far. We now use ReplaceRepeated

testlist ��. delrule
85, 4, 1, 3, 2<

� 4.2.5.3 Example - a rule-based factorial

Here we will have the following rules:

Clear@factD;
frules = 8fact@1D ® 1, fact@n_IntegerD ¦ n*fact@n -1D<;

Let us check:

fact@5D �. frules
5 fact@4D
fact@5D �. frules �. frules
20 fact@3D

Finally,

fact@5D ��. frules
120

Note that the rules are local. In particular, the expression fact[5] by itself does not have any value neither
before, not after the application of rules:

fact@5D
fact@5D

Note also that had we placed the rules in a different order, and we would have entered an infinite loop,
since the first rule would always apply and thus the second (fact[1]->1) would have no chance to apply.
You can try this if you wish, but be sure to save your session and be ready to rerun the kernel.

112

Note also that had we placed the rules in a different order, and we would have entered an infinite loop,
since the first rule would always apply and thus the second (fact[1]->1) would have no chance to apply.
You can try this if you wish, but be sure to save your session and be ready to rerun the kernel.

Clear@frulesD;
� 4.2.5.4 Efficiency issues

There are many other non-trivial examples of this technique. However, often it turns out to be not the
most efficient one, since it is quite easy to build inefficient rules and patterns. For instance, our first exam-
ple with list sorting has a terrible performance and is completely impractical for any realistic sizes of a list,
since the pattern-matcher needs roughly linear (in the list size) time to find a first match for exchange, and
then it only does a single exchange and starts all over! The number of exchanges needed is of the order of
the square of the list size, and thus we conclude that our realization has roughly cubic complexity.

Let us do some performance measurements:

Clear@testlistD;
testlist = Table@Random@Integer, 81, 500<D, 825<D;

This is the rule we need :

testlist ��. sortrule; �� Timing

80.01, Null<
testlist = Table@Random@Integer, 81, 500<D, 850<D;
testlist ��. sortrule; �� Timing

80.11, Null<
testlist = Table@Random@Integer, 81, 500<D, 8100<D;
testlist ��. sortrule; �� Timing

80.841, Null<
These timing results confirm our expectations. While this shows that our rule - based realization is com-
pletely inefficient since it adds another power of the list size to the standard complexity of the exchange
sort algorithm, it is a good news that we can understand why this happens. Because it turns out that in
many cases, the structures on which patterns are tried plus patterns themselves can be organized in such a
way that the pattern is usually matched very soon after the beginning. In fact, as was demonstrated for
instance by David Wagner in his book [7] in the context of the mergesort algorithm, this technique allows
to make the rule-based solution the most efficient of all.

So, to put it simple: organize your data such as to ensure that the pattern matcher wastes as little time on a-
priory doomed matching attempts as possible, and you will get an efficient rule-based solution.

 113

� 4.2.6 Conditional (restricted) patterns

All simple patterns are completely syntax - based. In many cases, we would like to make a decision -
whether or not for the pattern to match - not just on the basis of its syntax but also checking certain condi-
tions that the matched (sub) expressions must satisfy. This is when restricted or conditional patterns come
handy.

Conditional patterns are just normal patterns, but with some condition attached to them. There are three
main forms of conditional patterns - patterns of the form <x_f> which check the head of expression (we
have already encountered those), patterns of the form x_?Predicate and patterns of the form
x/;condition. We will now consider each type in more detail.

� 4.2.6.1 Patterns which check the head of an expression

Since I already described these, let us just consider a few more examples.

è Example 1

Here is a list:

Clear@testlist, a, xD;
testlist = 8Pi, 1.5, 3�2, 10, y^2, ABC, Sin@xD, 15, Cos@Exp@Tan@2DDD<
:Π, 1.5,

3

2
, 10, y2, ABC, Sin@xD, 15, CosAãTan@2DE>

We will now replace all integer numbers here by some object < a > (this can be anything) :

testlist �. _Integer ¦ a

:Π, 1.5,
3

2
, a, ya, ABC, Sin@xD, a, CosAãTan@aDE>

Or, we can apply some function to these objects, but then we will need a tag for the pattern:

testlist �. x_Integer ¦ f@xD
:Π, 1.5,

3

2
, f@10D, yf@2D, ABC, Sin@xD, f@15D, CosAãTan@f@2DDE>

è Example 2

We want to create a rule which will reverse the string. There is a built-in StringReverse function, so our
first attempt is :

114

8x, 1, ABC, "never", Pi< �. s_ ¦ StringReverse@sD
StringReverse::string : String expected at position 1 in StringReverse@xD.
StringReverse::string : String expected at position 1 in StringReverse@1D.
StringReverse::string : String expected at position 1 in StringReverse@ABCD.

General::stop : Further output of StringReverse::string will be suppressed during this calculation. �

8StringReverse@xD, StringReverse@1D,
StringReverse@ABCD, reven, StringReverse@ΠD<

We see that we have to restrict the pattern to work only on real strings. We recall that all strings are atoms
and have a head String (see section 1.1.5). Thus, we write :

8x, 1, ABC, "never", Pi< �. s_String ¦ StringReverse@sD
8x, 1, ABC, reven, Π<
è Example 3

We now want to apply a Sine function to all expressions which are of the form <f[something]>, where f is
a fixed symbol. For example, for this list of expressions:

Clear@testlist, f, gD;
testlist = 8g@xD, x^2, f@xD, Cos@x*Tan@yDD,
f@x, y, zD, f@z*Tan@x +yDD, h@x, y, zD, f@ArcSin@x -yDD<

9g@xD, x2, f@xD, Cos@x Tan@yDD, f@x, y, zD,
f@z Tan@x +yDD, h@x, y, zD, f@ArcSin@x -yDD=

This may be done in many ways, but the simplest is just this :

testlist �. x_f ® Sin@xD

9g@xD, x2, Sin@f@xDD, Cos@x Tan@yDD, Sin@f@x, y, zDD,
Sin@f@z Tan@x +yDDD, h@x, y, zD, Sin@f@ArcSin@x -yDDD=

è Example 4

The last example on this topic: say we have a function <f>, which has to be defined so that any of its
powers is equal to itself: f[f[f[f[...f[x]]]]] = f[x]. This is the rule to do it:

f@x_fD ¦ x

This rule though has to be used with ReplaceRepeated (//.) rather than with ReplaceAll :

testlist = NestList@f, x, 5D
8x, f@xD, f@f@xDD, f@f@f@xDDD, f@f@f@f@xDDDD, f@f@f@f@f@xDDDDD<
testlist �. f@x_fD ¦ x

8x, f@xD, f@xD, f@f@xDD, f@f@f@xDDD, f@f@f@f@xDDDD<

 115

testlist �. f@x_fD ¦ x �. f@x_fD ¦ x

8x, f@xD, f@xD, f@xD, f@f@xDD, f@f@f@xDDD<
testlist ��. f@x_fD ¦ x

8x, f@xD, f@xD, f@xD, f@xD, f@xD<
Such properties are characteristic to say projectors, and by defining rules like this, we may eliminate a lot
of unnecessary work, in the case when these symbolic transformations are carried out before any specific
representation of a projector (say, a matrix or a kernel of an integral operator) is used.

The checks of this type (head checks) are most frequently used to implement type - checks in function
definitions, since they allow us to trivially narrow down the sets of objects on which this or that function
has to be defined (if these sets can be identified with a certain head). For example, a pattern <x_List> will
match only lists, <x_String> - only strings, etc. Moreover, one can define a new data type by considering a
"container" of the form < newdata[data definitions] > . Then, it is trivial to arrange that the functions
defined on this data type will only work on the proper object - one just has to use patterns like
<x_newdata>. And since this check is entirely syntactic, there is no performance overhead induced by this
procedure.

� 4.2.6.2 Patterns which check some condition - commands Condition and PatternTest

This is a more general type of patterns. If the simple pattern were <x_>, then the conditional pattern may
look like <x_?ftest> or <x_/;ftest[x]>. In both cases, <ftest> stands for a name of a predicate function
which checks certain condition and returns True or False. In the first case, the question mark is a short
hand notation for the built-in command PatternTest:

PatternTest@x_, ftestD
x_ ?ftest

In the second case, the combination < /; > (slash - semicolon) is a short - hand notation for the built - in
function Condition:

Condition@x_, ftest@xDD
x_ �; ftest@xD

We will see that the PatternTest is less general than Condition. In particular, when the pattern contains
more than one pattern tag, PatternTest usually can not be used, but Condition can, and we can impose
conditions which depend on several pattern tags.

One important point about conditional pattern - matching is that the "presumption of guiltiness" is in effect
here : if the condition (implemented either through Condition or PatternTest) evaluates to neither True
nor False, the pattern does not match (as if we were using TrueQ). This requires extra care in pattern
construction, especially in cases such as when the pattern is used to match elements which have to be
deleted from a list if pattern does not match. This property can also sometimes be used to one’s advantage.
One such non-trivial application of this behavior is found in implementing function’s error messages when
writing packages.

 Now consider some examples.

è Example 1

Here we will take a rather arbitrary list of numbers and raise all integer numbers in it to the cubic power.

116

Here we will take a rather arbitrary list of numbers and raise all integer numbers in it to the cubic power.

Clear@testlistD;
testlist = Table@Random@Integer, 8-10, 10<D �2, 815<D

:0, -3,
3

2
, -4, -5, 3,

5

2
, -3, 0,

1

2
, -4,

3

2
, 4,

1

2
, 4>

This is the solution:

testlist �. x_Integer ?Positive :> x^3

:0, -3,
3

2
, -4, -5, 27,

5

2
, -3, 0,

1

2
, -4,

3

2
, 64,

1

2
, 64>

Or :

testlist �. x_Integer �; Positive@xD :> x^3

:0, -3,
3

2
, -4, -5, 27,

5

2
, -3, 0,

1

2
, -4,

3

2
, 64,

1

2
, 64>

Or :

testlist �. x_ �; HIntegerQ@xD && Positive@xDL :> x^3

:0, -3,
3

2
, -4, -5, 27,

5

2
, -3, 0,

1

2
, -4,

3

2
, 64,

1

2
, 64>

Clear@testlistD;
è Example 2

Here we will choose from the list of integers only those numbers which are equal to 2 modulo 5, or,
rather, eliminate all other numbers from the list. Here we will go a little ahead of time and define our own
predicate function :

Clear@ourtestD;
ourtest@x_IntegerD := Mod@x, 5D =!= 2;

Now we generate a list :

Clear@testlist, a, xD;
testlist = Table@Random@Integer, 81, 20<D, 815<D
87, 15, 9, 12, 3, 16, 18, 2, 16, 17, 13, 5, 5, 20, 4<

With the tools we have now, we can do it with ReplaceRepeated and the following pattern :

testlist ��. 8x___, y_Integer �; ourtest@yD, z___< ¦ 8x, z<
87, 12, 2, 17<

However, this is terribly inefficient, since to delete a single element, the whole run of the pattern - matcher
through the list is required (in general, the match will happen somewhere in the middle of the list). There
is a better rule - based solution :

 117

testlist �. x_ �; ourtest@xD ¦ Sequence@D
87, 12, 2, 17<

Or, which is the same, but even more concise

testlist �. x_ ?ourtest ¦ Sequence@D
87, 12, 2, 17<

What happens here is that every element in a list is tried in a single run of the pattern-matcher, and if it has
to be eliminated, it is replaced by Sequence[]. The reason that we don’t see Sequence[] objects in our
resulting list is that the Sequence[] means "emptiness", or "absence of any elements", and it usually disap-
pears inside any other head.

We can package this into a function :

Clear@deleteIfD;
deleteIf@lst_List, test_D := lst �. x_ ?test ¦ Sequence@D;

Check :

deleteIf@testlist, ourtestD
87, 12, 2, 17<

A few comments: first, the pattern tag < x > above is considered a local variable since RuleDelayed is
used. Second, we have in fact written a higher - order function , that is, a function which takes another
function as one of its arguments. Notice that in Mathematica this is completely effortless and does not
require any particular syntax.

Efficiency analysis and a procedural version

The speed of the latter two realizations will be roughly the same(PatternTest may be slightly faster), but
very different from the first version:

testlist = Table@Random@Integer, 81, 20<D, 82000<D;
testlist ��. 8x___, y_Integer �; ourtest@yD, z___< ¦ 8x, z<; �� Timing

89.443, Null<
testlist �. x_ �; ourtest@xD ¦ Sequence@D; �� Timing

80.02, Null<
testlist �. x_ ?ourtest ¦ Sequence@D; �� Timing

80.01, Null<
This is by the way the analogous procedural code needed to get the same result.

118

Module@8i, j, newlist<,
For@i = j = 1; newlist = testlist,

i £ Length@testlistD, i ++, If@Not@ourtest@testlist@@iDDDD,
newlist@@j ++DD = testlist@@iDDDD;

newlist = Take@newlist, j -1D;
newlistD; �� Timing

80.07, Null<
 Not only it is much clumsier and needs an introduction of auxiliary variables, but it is also a factor of 5 -
7 slower than our best rule - based solution. I give here this comparison to show that the rule - based
programming is not necessarily slow, but may in fact be the fastest way to obtain a result.

So, the moral of this example is the following: in Mathematica, the rule-based approach has a potential to
outperform procedural approach by a wide margin, and also to be much more concise and intuitive. But it
also can be misused badly if inefficient patterns are used. The pattern is almost certainly inefficient if the
pattern-matcher is able to match and transform only one or few items in a large collection (list) of them, in
a single run through this list. For efficient programs, the patterns like {x___,a_,y___,b_,z___) in conjunc-
tion with ReplaceRepeated should be avoided.

In some sense, a statement like "rule-based programming is slow in Mathematica" does not make any
sense since all programming in Mathematica is rule - based to some extent.

è Example 3

Suppose we now want to perform some actions (say, take a square root) only on those elements in a list of
integers, which are the full squares. First thing that comes to mind is to try a pattern x_^2:

Clear@testlistD;
testlist = Range@30D
81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30<
testlist �. x_^2 -> Sqrt@xD
81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30<
Nothing happened. The reason is that even if a number is a full square, its internal form is not a^2. Since
the pattern - matching for simple patterns is based on syntax only, no matches occurred. This is what we
have to use instead :

testlist �. x_ �; IntegerQ@Sqrt@xDD ® 8Sqrt@xD<
881<, 2, 3, 82<, 5, 6, 7, 8, 83<, 10, 11, 12, 13, 14, 15,

84<, 17, 18, 19, 20, 21, 22, 23, 24, 85<, 26, 27, 28, 29, 30<
I placed the transformed numbers into extra list braces to make them visible.

è Example 4

There is a built-in predicate PrimeQ in Mathematica, which checks if a number is a prime. We can use it
to collect say all the primes in the first 1000 natural numbers:

 119

There is a built-in predicate PrimeQ in Mathematica, which checks if a number is a prime. We can use it
to collect say all the primes in the first 1000 natural numbers:

Range@1000D �. x_Integer �; Not@PrimeQ@xDD ¦ Sequence@D �� Short

82, 3, 5, 7, �161�, 983, 991, 997<
This is not the absolutely fastest way to do it (which perhaps will be using the Select function if we are
willing to sweep through every number and use PrimeQ), but not the worst either.

è Example 5

One can impose more complicated conditions, and on more complicated patterns. Let us now create a list
of lists of 2 random integers:

Clear@testlistD;
testlist = Partition@Table@Random@Integer, 81, 20<D, 820<D, 2D
884, 20<, 85, 11<, 819, 11<, 814, 20<,

89, 19<, 87, 3<, 814, 19<, 820, 19<, 89, 12<, 89, 4<<
Note that we used the Partition command. We could instead use Table with 2 iterators. Now, we would
like to exchange the numbers in any small sublist where the first number is even and the second is odd.
Here is the rule we need:

exchangerule = 8x_, y_< �; HEvenQ@xD && OddQ@yDL ¦ 8y, x<;
Check :

testlist

testlist �. exchangerule
884, 20<, 85, 11<, 819, 11<, 814, 20<,

89, 19<, 87, 3<, 814, 19<, 820, 19<, 89, 12<, 89, 4<<
884, 20<, 85, 11<, 819, 11<, 814, 20<,

89, 19<, 87, 3<, 819, 14<, 819, 20<, 89, 12<, 89, 4<<
Clear@testlist, delrule, exchangeruleD;

� 4.2.7 Alternative patterns

Often the same type of transformations have to be carried out with different expressions. This means, that
for expressions of different types, we would normally need several rules which are essentially different
only in their left hand side.

As an example, say we need to apply some rule to either integer or rational numbers, and let this transfor-
mation be to take a square root of these numbers. For the following test list of expressions:

8x, 2, Pi, 3�2, 2�5, 4, Sin@yD, 8, Cos@zD<
We could use conditional patterns to do this :

120

8x, 2, Pi, 3�2, 2�5, 4, Sin@yD, 8, Cos@zD< �.
x_ �; Head@xD === Integer ÈÈ Head@xD === Rational ¦ Sqrt@xD

:x, 2 , Π,
3

2
,

2

5
, 2, Sin@yD, 2 2 , Cos@zD>

However, this solution is not the most elegant and concise, and more importantly, not the most efficient.
Mathematica provides a mechanism to group different patterns together and form so called alternative
patterns. The built - in command which does this has a literal equivalent Alternatives and a short - hand
notation | :

Alternatives@a, bD
a È b

With it, we can solve our problem like this :

8x, 2, Pi, 3�2, 2�5, 4, Sin@yD, 8, Cos@zD< �.
x_Integer È x_Rational ¦ Sqrt@xD

:x, 2 , Π,
3

2
,

2

5
, 2, Sin@yD, 2 2 , Cos@zD>

Alternative patterns are quite often used. Some especially sleek applications of them usually employ a
mixture of rule-based and functional programming. We will see many examples of them in later chapters.

� 4.2.8. Giving names to entire patterns - the Pattern command

It is possible and often quite useful to give names to entire patterns. To do this, one should just use the
built - in Pattern command, which has a short - hand notation < :> (colon). This is how the previous
problem can be solved by using Pattern:

8x, 2, Pi, 3�2, 2�5, 4, Sin@yD, 8, Cos@zD< �.
x : H_Integer È _RationalL ¦ Sqrt@xD

:x, 2 , Π,
3

2
,

2

5
, 2, Sin@yD, 2 2 , Cos@zD>

We will frequently use this form in later chapters.

� 4.2.9 Optional patterns

The default pattern is a construction which allows to modify a given pattern to match not just what it
normally matches, but also certain expressions in which some parts of the pattern will be missing alto-
gether, but then the pattern "knows" what to substitute for them. This is often useful for defining functions
with some special cases (default values for some input parameters).

The default pattern is built with the Optional keyword, and with a colon as a short-hand notation. The
way it is used is <pattern:defvalue>, where the <defvalue> is substituted if this particular piece of the
pattern is absent in an expression, which otherwise matches the pattern.

Here, for example, we want to replace all sequences of arguments in < f > by their sum, and for a single
argument, add 1.

 121

Here, for example, we want to replace all sequences of arguments in < f > by their sum, and for a single
argument, add 1.

f@8a<, 8a, b<, 8a, b, c<D
We can do this by two separate rules :

f@8a<, 8a, b<, 8a, b, c<D �. 88x_< ¦ 8x +1<, 8x__< ¦ 8Plus@xD<<
f@81 +a<, 8a +b<, 8a +b +c<D

However, first, we needed 2 rules, and second, we would get a bug if we did not think of the right order of
the rules and interchange them, since the more general pattern also matches on a single argument :

f@8a<, 8a, b<, 8a, b, c<D �. 88x__< ¦ 8Plus@xD<, 8x_< ¦ 8x +1<<
f@8a<, 8a +b<, 8a +b +c<D

Here is the solution with an optional pattern :

f@8a<, 8a, b<, 8a, b, c<D �. 8x__, y_: 1< ¦ 8x +y<
f@81 +a<, 8a +b<, 8a +b +c<D

� 4.2.10 Repeated patterns

These patterns are useful in cases when we have to match a sequence of expressions each of which is
matched by a given pattern, but we don’t know how many terms there will be in a sequence.

Here we make a repeated pattern which matches any sequence of rational or integer numbers, mixed in
any way

f@3�5, 4, 5, 2�3D �. f@x : H_Integer È _RationalL ..D ¦ 8x<
:3
5
, 4, 5,

2

3
>

Here we convert to numbers all lists which represent binary digits - that is, all lists which contain any
number of ones and zeros mixed arbitrarily.

881, 0, 0<, 80, 1, 0<, 81, 1, 1<, 82, 0, 1<, 81, 0<, 81, 0, 3<< �.
x : 8H1 È 0L ..< ¦ FromDigits@x, 2D

84, 2, 7, 82, 0, 1<, 2, 81, 0, 3<<

122

4.3 Built-in functions that use patterns

Let us look at some highly useful built-in functions which take patterns as some of their arguments. One
such function - MatchQ - we already discussed.

� 4.3.1 Cases

This function is used for expression destructuring. More precisely, it is used to search for subexpressions
inside an expression, which match certain pattern. Cases[expr, pattern] returns all elements of <expr> on
the level 1, which match the pattern <pattern>. As an optional third argument Cases takes a level specifica-
tion, which can be an integer (positive or negative, including Infinity), an integer in list braces, or a pair of
integers in a list. In the first case, Cases performs search on all levels up to and including the indicated
number (from the top or from the bottom of the expression tree, depending on its sign), in the second case
it only searches on the indicated level only, and in the third case it searches in the range of levels given by
the two numbers in the list. As an optional fourth argument, it accepts an integer indicating how many
results have to be found until Cases stops. If it is not given, Cases will produce all the results on given
level(s) of expression.

Now some examples :

� 4.3.1.1 Example: choosing integers from the list

The simplest example: let us choose all integer numbers from a simple (1-dimensional) list:

Clear@testlistD;
testlist = 83�2, Pi, 3, 1.4142135, 10, 99.99, 15, 25<;
Cases@testlist, _IntegerD
83, 10, 15, 25<

Notice that here we don’t even need to attach a tag to the pattern, since we don’t need to perform any
transformations on the results.

� 4.3.1.2 Example: filtering data

Let us consider a bit more practical example : suppose we have a set of data and need to remove all the
data points with values smaller than a given cutoff < eps > "

eps = 0.3;

data = Table@Random@D, 810<D
80.558611, 0.087393, 0.699237, 0.393591, 0.815213,

0.251073, 0.756381, 0.383772, 0.24806, 0.721713<
This is how one does this with Cases :

 123

Cases@data, x_ �; x > epsD
80.558611, 0.699237, 0.393591,

0.815213, 0.756381, 0.383772, 0.721713<
� 4.3.1.3 Extended functionality

One more capability that Cases has is to immediately perform some transformation on the result found.
The syntax is Cases[expr, rule, levespec, n], with the last two arguments optional as before, and we see
that where we had a pattern now is a rule, with a pattern being its l.h.s. For example, now we want to
supply each found number with either True or False depending on whether or not a number is divisible by
5:

Cases@testlist, x_Integer ¦ 8x, Mod@x, 5D � 0<D
883, False<, 810, True<, 815, True<, 825, True<<

So, notice that Cases generates a list as a result of its execution. This kind of list generation we may call a
dynamic list generation rather than the "static" one we have described in the previous chapter.

Clear@testlistD;
� 4.3.1.4 Example : selecting positive numbers in a list

Let us now generate a list of positive and negative random integers:

Clear@testlistD;
testlist = Table@Random@Integer, 8-10, 10<D, 815<D
8-9, -4, 2, 4, -2, -7, 10, -6, -4, 6, -9, 3, -4, -4, 5<

Let us select only positive ones - the pattern we need is _?Positive

Cases@testlist, _ ?PositiveD
82, 4, 10, 6, 3, 5<

Now only those that are larger than 5:

Cases@testlist, x_ �; x > 5D
810, 6<

Or those which are divisible by 3:

Cases@testlist, x_ �; Mod@x, 3D � 0D
8-9, -6, 6, -9, 3<

In the last 2 cases we have used the conditional patterns.

� 4.3.1.5 Example: nested list

Let us now consider a more complex 2-level list:

124

Clear@testlistD;
testlist = Table@i +j, 8i, 1, 4<, 8j, 1, 3<D
882, 3, 4<, 83, 4, 5<, 84, 5, 6<, 85, 6, 7<<

Now say we would like to find all even numbers. Let us try:

Cases@testlist, x_ ?EvenQD
8<

It did not work ... This is because by default, Cases only looks at the first level of an expression, where
there are no numbers, just sublists.

FullForm@testlistD
List@List@2, 3, 4D, List@3, 4, 5D, List@4, 5, 6D, List@5, 6, 7DD

This is how we should search :

Cases@testlist, x_ ?EvenQ, 2D
82, 4, 4, 4, 6, 6<

The argument < 2 > here instructs Cases to search on all levels up to level 2 inclusive, on the first and
second levels in this case. Should we wish to search only on a level 2, we would have to place it in a curly
braces (list) :

Cases@testlist, x_ ?EvenQ, 82<D
82, 4, 4, 4, 6, 6<

In this case it did not matter, but say now we want to find not numbers but sublists. We could do it like
this :

Cases@testlist, _ListD
882, 3, 4<, 83, 4, 5<, 84, 5, 6<, 85, 6, 7<<

This looks just like the initial list, but really it is a list of found sublists, which in this case indeed coincides
with the initial list. This is easy to check by transforming the results:

Clear@foundD;
Cases@testlist, x_List ¦ found@xDD
8found@82, 3, 4<D, found@83, 4, 5<D,
found@84, 5, 6<D, found@85, 6, 7<D<

We can impose some conditions on the sublists - for example, to find only those which contain number 4 :

 125

Cases@testlist, x_List �; Cases@x, 4D =!= 8<D
882, 3, 4<, 83, 4, 5<, 84, 5, 6<<

This illustrates a possibility to use nested Cases like this (however, there are more efficient solutions for
the present case, such as using the MemberQ function - see below).

If we now restrict ourselves to search only on the level 2,

Cases@testlist, _List, 82<D
8<

then we find nothing, since there are no (sub)lists on level 2, just numbers.

� 4.3.1.6 Example: an elegant solution of the problem of odd sublists from chapter 3

As an example of combined use of Cases and conditional patterns, we can revisit a problem of extracting
from a list all sublists which contain odd number of odd elements. Before we considered procedural,
structural and functional implementations (see section 3.6.8.4). Our present solution will be completely
pattern-based.

Here is our list:

Clear@testlistD;
testlist = Range �� Range@6D
881<, 81, 2<, 81, 2, 3<, 81, 2, 3, 4<, 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5, 6<<

And here is the solution:

Cases@testlist, x_List �; OddQ@Count@x, _ ?OddQDDD
881<, 81, 2<, 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5, 6<<

In my opinion, this is the more elegant way to solve this problem. Also, it is very transparent what is being
done: in each list we count the number of odd elements with a command Count[x,_?OddQ] (the Count
command we will cover shortly), then we check whether or not the resulting number is odd. I remind that
/; symbol is a short - hand for Condition operator.

As a modification, we may do the same but for each found sublist return it together with the number of
even elements in it:

Cases@testlist,
x_List �; OddQ@Count@x, _ ?OddQDD ¦ 8Count@x, _ ?EvenQD, x<D

880, 81<<, 81, 81, 2<<, 82, 81, 2, 3, 4, 5<<, 83, 81, 2, 3, 4, 5, 6<<<
Clear@testlistD;

126

� 4.3.1.7 Example: first n prime numbers in a list

Say we want to get a first given number of primes in a list of numbers. This is our list:

testlist = Table@Random@Integer, 81, 100<D, 830<D
894, 27, 84, 57, 40, 12, 20, 76, 35, 47, 51, 62, 14, 71, 16,

87, 20, 29, 52, 46, 56, 20, 42, 18, 94, 71, 73, 86, 54, 99<
This will pick the first 3 primes :

Cases@testlist, _ ?PrimeQ, 1, 3D
847, 71, 29<

Notice that here we still had to provide the third argument (level specification), even though it is normally
unnecessary for simple lists (it is 1 by default). This is because otherwise the argument <3> would be
interpreted as a level specification, and as a result, we would get all primes (why?)

Cases@testlist, _ ?PrimeQ, 3D
847, 71, 29, 71, 73<

� 4.3.1.8 Why not use loops?

One may think that in all the examples given above using loops will give the same effect. But this is not so
at least for 3 reasons:

1. Cases is optimized in terms of generation of lists of results - this list is generated internally. As we have
seen in section 3.4.5.3, generating a list in a loop is quite inefficient.
2. Cases works on patterns, and selects elements based on pattern-matching rather than a simple compari-
son. Of course, in the case when we simply look for a fixed object (not containing a pattern), pattern-
matching reduced to the sameness comparison.
3. Cases works on general Mathematica expressions (trees), and we can specify on which levels of the
trees the search has to be performed. This would require nested loops in the procedural approach.

� 4.3.1.9 Example: collecting terms in a polynomial of 2 variables

We could have given many more examples. What is important to remember is that Cases is a universal
and versatile command, which works on general Mathematica expressions (trees), and on lists in particu-
lar. To illustrate the generality of Cases, let us now use it to select from the polynomial (1+x)^10
*(1+y)^10 all terms with an even power of <y> and odd power of <x>:

Clear@a, x, yD;
Cases@Expand@H1 +xL^10* H1 +yL^10D,
a_ *x^_ ?OddQ*y^_ ?EvenQ, InfinityD

95400 x3 y2, 11340 x5 y2, 5400 x7 y2, 450 x9 y2, 25 200 x3 y4,
52920 x5 y4, 25200 x7 y4, 2100 x9 y4, 25 200 x3 y6, 52 920 x5 y6,

25200 x7 y6, 2100 x9 y6, 5400 x3 y8, 11 340 x5 y8, 5400 x7 y8,

450 x9 y8, 120 x3 y10, 252 x5 y10, 120 x7 y10, 10 x9 y10=
The last argument set to Infinity means that all levels of an expression should be searched.

 127

The last argument set to Infinity means that all levels of an expression should be searched.

� 4.3.2 DeleteCases

As is it clear from the name of this function, it deletes from a list all the elements which match a given
pattern. Its syntax is similar to that of Cases. The main and important difference is that Cases returns a list
of found subexpressions, while DeleteCases returns the (copy of) original list with these subexpressions
removed.

� 4.3.2.1 Example: deleting odd numbers from a list

Here we will delete all odd numbers from a list.

testlist = Range@15D;
DeleteCases@Range@15D, _ ?OddQD
82, 4, 6, 8, 10, 12, 14<

We have just removed all odd numbers from the list. But this does not mean that <testlist> itself changed
in any way:

testlist

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15<
In this respect, DeleteCases works the same as the majority of Mathematica built - in commands, that is -
without side-effects : the copy of the input variable is created and modified. Should we wish to change the
content of <testlist>, we have to write:

testlist = DeleteCases@testlist, _ ?OddQD
82, 4, 6, 8, 10, 12, 14<

Let us perform a small timing measurement : measure the time it will take DeleteCases to remove from
the list of first 100000 natural numbers those whose remainder of division by 5 is smaller than 2 :

Timing@Short@DeleteCases@Range@100000D, x_ �; Mod@x, 5D £ 2DDD
80.531, 83, 4, �39996�, 99998, 99999<<

Here is a straightforward procedural realization :

Module@8i, j, result, starting<,
For@i = j = 1; starting = result = Range@100000D,
i £ 100000, i ++, If@Mod@starting@@iDD, 5D £ 2,

result@@j ++DD = starting@@iDDDD;
Take@result, j -1DD �� Short �� Timing

82.063, 81, 2, �59996�, 99997, 100000<<
It requires extra auxiliary variables that I had to localize with Module (will cover that later), is 5 times
longer and about as many times slower. This confirms once again the main rule of working with lists in
Mathematica - avoid breaking them into pieces.

� 4.3.2.2 Example: non-zero ineteger subsequences

128

�

4.3.2.2 Example: non-zero integer subsequences

Consider a following problem : we are given a list of integers, some of which can be zero. The task is to
extract from the list all subsequences of consecutive non - zero elements.

For example, this will be our test data set :

testdata = Table@Random@Integer, 80, 3<D, 820<D
83, 0, 3, 1, 3, 1, 0, 0, 3, 2, 1, 2, 1, 2, 1, 3, 1, 3, 2, 3<

The first step in solving this problem will be to use Split (see section 3.10.3) to split the elements into
sublists whenever zero is encountered :

step1 = Split@testdata, ð1 != 0 &D
883, 0<, 83, 1, 3, 1, 0<, 80<, 83, 2, 1, 2, 1, 2, 1, 3, 1, 3, 2, 3<<

We have however captured some zeros into our sublists, so we have to delete them (note the level specifi-
cation) :

step2 = DeleteCases@step1, 0, 82<D
883<, 83, 1, 3, 1<, 8<, 83, 2, 1, 2, 1, 2, 1, 3, 1, 3, 2, 3<<

Finally, the previous operation in general produces some number of empty lists from sublists containing a
single zero (there can not be sublists containing several zeros - why?). We have now to delete them as well:

step3 = DeleteCases@step2, 8<D
883<, 83, 1, 3, 1<, 83, 2, 1, 2, 1, 2, 1, 3, 1, 3, 2, 3<<

We now package all the steps into a function :

Clear@nonzeroSubsequencesD;
nonzeroSubsequences@x : 8__Integer<D :=

DeleteCases@DeleteCases@Split@x, ð1 != 0 &D, 0, 82<D, 8<D
Note the use of a named pattern and BlankSequence, to better restrict the argument. Check :

nonzeroSubsequences@testdataD
883<, 83, 1, 3, 1<, 83, 2, 1, 2, 1, 2, 1, 3, 1, 3, 2, 3<<

� 4.3.2.3 Cases and DeleteCases: similarities and differences

In terms of syntax, most operations with DeleteCases are very similar to those with Cases. Note however
that they are usually used in logically very different situations. Cases is used when we need to extract some
parts (subexpressions) from an expression, and we don’t really care "what will happen" to the expression
itself afterwards. DeleteCases, in contrast, is used to perform structural changes of the expression itself (I
remind that by expression itself I mean a copy of the input, created internally by DeleteCases - as usual in
Mathematica, it does not introduce side effects and the original input is not modified in any way), when
we don’t care what will happen with those pieces that we delete. In this sense, Cases and DeleteCases are
exact opposites of each other.

Clear@testlistD;
� 4.3.3 MemberQ

 129

�

4.3.3 MemberQ

This function finds out whether an object (in general, pattern) is a part of some expression. In the case of
pattern, it determines whether there are subexpressions matching this pattern. The format is

MemberQ[expr, pattern, levspec],

 where the third optional argument < levspec > determines, as usual, the level (s) on which to perform the
search. Examples :

� 4.3.3.1 Example: checking for presence of primes

MemberQ@84, 6, 8, 9, 10<, _ ?PrimeQD
False

Since there were no primes here, the result is False.

� 4.3.3.2 Example: testing membership in a symbolic list

Clear@a, b, c, d, eD;
MemberQ@8a, b, c, d, e<, aD
True

� 4.3.3.3 Example: testing membership in nested lists

Consider now an example we already looked at, the one with nested lists:

Clear@testlistD;
testlist = Range �� Range@6D
881<, 81, 2<, 81, 2, 3<, 81, 2, 3, 4<, 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5, 6<<
MemberQ@testlist, _IntegerD
False

This happened because by default only the first level is considered. However,

MemberQ@testlist, _ListD
True

since the elements of the first level are sublists. When we look at the second level :

8MemberQ@testlist, _Integer, 82<D, MemberQ@testlist, _List, 82<D<
8True, False<

the result is the opposite, since the second level is populated by numbers. If we look on both levels
though, then both checks will produce True :

130

8MemberQ@testlist, _Integer, 2D, MemberQ@testlist, _List, 2D<
8True, True<
Clear@testlistD;

� 4.3.3.4 Example: Unsorted Intersection

As we know, there exists a built - in Intersection command which finds an intersection (common part) of
two lists. However, it removes the duplicate elements and sorts the result, which is not always the desired
behavior. We can use a combination of Cases and MemberQ to write our version which will not sort the
result and will not delete identical entries. So, to put it simple : given the two lists, we have to keep in the
first list only those elements that are present also in the second one.

Here are our lists :

list1 = Table@Random@Integer, 81, 30<D, 820<D
list2 = Table@Random@Integer, 81, 30<D, 820<D
830, 13, 12, 15, 12, 1, 23, 26, 25, 26, 20, 5, 13, 30, 26, 12, 8, 6, 21, 6<
820, 5, 23, 17, 7, 7, 2, 8, 15, 7, 19, 6, 28, 3, 15, 14, 12, 11, 28, 18<

And this is a solution :

Cases@list1, x_ �; MemberQ@list2, xDD
812, 15, 12, 23, 20, 5, 12, 8, 6, 6<

Note that there exists and alternative version which does not involve MemberQ, but rather involves an
alternative pattern:

Cases@list1, Apply@Alternatives, list2DD
812, 15, 12, 23, 20, 5, 12, 8, 6, 6<

The meaning of the Apply operation will be explained in chapter V, but basically here it is used to create a
large alternative pattern from the list :

Apply@Alternatives, list2D
20 È 5 È 23 È 17 È 7 È 7 È 2 È 8 È 15 È 7 È 19 È 6 È 28 È 3 È 15 È 14 È 12 È 11 È 28 È 18

It turns out that the second solution is generally more efficient for large lists. Note however, that both of
them have in general the complexity L1*L2, where L1 and L2 are the lengths of lists. This fact may be
somewhat hidden because commands like Cases and MemberQ are optimized, and the above solutions are
certainly faster than a nested loop. They work well as "scripting" solutions for small lists, but for large
lists there are more efficient implementations. We will discuss this at length in chapter VI.

Clear@list1, list2D;

 131

� 4.3.4 Position - a second look

We have already discussed this command in the previous chapter on lists. However, since at the time we
did not cover patterns, our discussion there was rather limited. In fact, Position is a much more general
operation since it works on arbitrary patterns, and returns all the positions in expression where the pattern
matches. Let us consider a few examples.

� 4.3.4.1 Example: positions of numbers divisible by 3

Range@30D
Position@Range@30D, x_ �; Mod@x, 3D � 0D
81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30<
883<, 86<, 89<, 812<, 815<, 818<, 821<, 824<, 827<, 830<<

� 4.3.4.2 An example with symbolic expression

expr = Expand@H1 +xL^10D

1 +10 x +45 x2 +120 x3 +210 x4 +252 x5 +210 x6 +120 x7 +45 x8 +10 x9 +x10

FullForm@exprD
Plus@1, Times@10, xD, Times@45, Power@x, 2DD, Times@120, Power@x, 3DD,
Times@210, Power@x, 4DD, Times@252, Power@x, 5DD, Times@210, Power@x, 6DD,
Times@120, Power@x, 7DD, Times@45, Power@x, 8DD, Times@10, Power@x, 9DD, Power@x, 10DD
Position@expr, x^_ ?OddQD
884, 2<, 86, 2<, 88, 2<, 810, 2<<

Returned are the positions where odd powers of the variable <x> (excluding x itself) reside in an expres-
sion <expr>. We may use Extract to check this:

Extract@expr, Position@expr, x^_ ?OddQDD
9x3, x5, x7, x9=

Equivalently, we could use Cases :

Cases@expr, x^_ ?OddQ, InfinityD
9x3, x5, x7, x9=

With positions, however, we can do more. For instance, if we remove the last index from each position in
the position list, we extract expressions which include these powers as their parts :

132

Extract@expr,
Position@expr, x^_ ?OddQD �. 8y__Integer, z_Integer< ¦ 8y<D

9120 x3, 252 x5, 120 x7, 10 x9=
Be sure to understand what we just did. By the way, this code presents an example of an (alternative to the
pure pattern-based) mixed structural/pattern-based way to perform deconstruction of expressions.

The Position command will be also used in the more complicated example at the end of this section.

� 4.3.5. Count

The Count function Count[expr,pattern,levspec] counts occurrences of subexpressions in <expr> matching
the pattern <pattern>, with a level specification given by an optional third argument <levspec>. Examples:

� 4.3.5.1 A simple example

This is a number of numbers divisible by 6, among the first 30 natural numbers

Count@Range@30D, x_ �; Mod@x, 6D � 0D
5

� 4.3.5.2 Example: number of times a given letter is present in a sentence

A number of letters "s" in some phrase

chars = Characters@"she sells sea shells on the sea shore"D
8s, h, e, , s, e, l, l, s, , s, e, a, , s, h, e,

l, l, s, , o, n, , t, h, e, , s, e, a, , s, h, o, r, e<
Count@chars, "s"D
8

Here are the unique characters in this phrase together with their frequencies:

alphabet = Union@charsD;
freqchars = Table@8alphabet@@iDD, Count@chars, alphabet@@iDDD<,

8i, Length@alphabetD<D
88 , 7<, 8a, 2<, 8e, 7<, 8h, 4<,

8l, 4<, 8n, 1<, 8o, 2<, 8r, 1<, 8s, 8<, 8t, 1<<
We can sort this list in the order of increasing frequencies:

Sort@freqchars, ð1@@2DD < ð2@@2DD &D
88t, 1<, 8r, 1<, 8n, 1<, 8o, 2<,

8a, 2<, 8l, 4<, 8h, 4<, 8e, 7<, 8 , 7<, 8s, 8<<
Notice the use of the custom sorting functions, which compares second elements of the sublists
(frequencies). The pure function used here will be covered soon.

Clear@chars, freqchars, alphabetD;
Recall also that we used Count before, in a problem with odd sublist extraction (section 3.6.8.4).

 133

Recall also that we used Count before, in a problem with odd sublist extraction (section 3.6.8.4).

� 4.3.6 FreeQ

This command is used to test whether a given expression is completely free of some symbol or subexpres-
sion - that is, does not contain it as a subexpression. The format is FreeQ[expr,pattern]. As its name
suggests, FreeQ is a predicate returning True or False. It is quite useful in cases when new rules for some
object have to be defined - a classic example being the user-defined derivative function (see Mathematica
Help). One particular property of FreeQ is that it tests also heads of (sub)expressions, since it has an
option Heads set to True by default (see the note on Heads options below).

As an example, imagine that we would like to define our own data type called Matrix, and a multiplication
operation on it such that all the terms which do not contain < Matrix > head explicitly will be factored out,
and commutative standard multiplication can be used on them, and inside our new multiplication com-
mand only the < Matrix > objects will remain. This is how we could do it :

Clear@ourTimes, MatrixD;
ourTimes@a__, x__Matrix, b___D �; FreeQ@8a<, MatrixD :=

Times@a, ourTimes@x, bDD;
ourTimes@a___, x__Matrix, b__, c___D �; FreeQ@8b<, MatrixD :=

Times@b, ourTimes@a, x, cDD;
For instance :

ourTimes@a, Matrix@81, 2<, 83, 4<D, b, c,

Matrix@85, 6<, 87, 8<D, d, Matrix@89, 10<, 811, 12<DD
a b c d ourTimes@Matrix@81, 2<, 83, 4<D,
Matrix@85, 6<, 87, 8<D, Matrix@89, 10<, 811, 12<DD

� 4.3.7 A note on the Heads option

Many of the built - in Mathematica functions, and in particular all of the functions we just described, have
an option Heads, which can be set as either Heads -> True or Heads -> False. For most functions (Position
and FreeQ being exceptions), the default is Heads -> False. In this case, heads of expressions are
excluded from searches and manipulations - they become "transparent" for these functions. However, the
Heads -> True option makes them "visible" and then they are treated as any other expression. I will not go
into further detail here, but let me just say that there are cases where this is important. Some examples can
be found in Mathematica Help and Mathematica Book.

� 4.3.8 A more complicated example - finding subsequences

� 4.3.8.1 An example without an explicit pattern

Consider a following problem: we would like to know, if a combination <123> is encountered somewhere
within first 500 digits of Π. To solve this problem, we will resort to the RealDigits command. For example,
the first 20 digits of Π are given by

134

RealDigits@N@Pi, 20DD@@1DD
83, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4<

The solution to our problem then looks like this :

MemberQ@8RealDigits@N@Pi, 500DD@@1DD<, 8x___, 1, 2, 3, y___<D
False

How about the first thousand digits?

MemberQ@8RealDigits@N@Pi, 1000DD@@1DD<, 8x___, 1, 2, 3, y___<D
False

First two thousands?

MemberQ@8RealDigits@N@Pi, 2000DD@@1DD<, 8x___, 1, 2, 3, y___<D
True

The last answer is positive, but where exactly is this combination found? MemberQ does not answer this,
and we need a bit more work :

Position@Partition@RealDigits@N@Pi, 2000DD@@1DD, 3, 1D, 81, 2, 3<D
881925<<

To understand how it works, consider the following mini-example, cutting the list of digits to the first 20:

RealDigits@N@Pi, 20DD@@1DD
Partition@RealDigits@N@Pi, 20DD@@1DD, 3, 1D
83, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4<
883, 1, 4<, 81, 4, 1<, 84, 1, 5<, 81, 5, 9<, 85, 9, 2<, 89, 2, 6<,

82, 6, 5<, 86, 5, 3<, 85, 3, 5<, 83, 5, 8<, 85, 8, 9<, 88, 9, 7<,
89, 7, 9<, 87, 9, 3<, 89, 3, 2<, 83, 2, 3<, 82, 3, 8<, 83, 8, 4<<

We get a list of digits "sliced" in sublists of 3 with a shift of 1. Then, the Position command searches it for
an element which is {1, 2, 3}, and returns its position. Obviously, the same position also is the position of
< 1 > in 1, 2, 3 of the original list, since the "slicing" was done with just a unit shift (otherwise this would
not be so). We can check this directly with Take :

digits = RealDigits@N@Pi, 2000DD@@1DD;
pos = First@First@Position@Partition@digits, 3, 1D, 81, 2, 3<DDD
1925

Now we take the numbers starting at this position :

Take@digits, 8pos, pos +2<D
81, 2, 3<

Let me make a general comment. On this example, we just saw a typical way to write and test a function
in Mathematica: either before the function is written, or if the function has errors, the list with which it
works is cut to a few first elements, and everything is "worked out" on this smaller list. What makes this
non - trivial is that the list may be complex and nested (a tree) - this does not matter as long as the ele-
ments of the structure of the large real tree essential for the function operation are preserved in a small
"test" tree.

 135

Let me make a general comment. On this example, we just saw a typical way to write and test a function
in Mathematica: either before the function is written, or if the function has errors, the list with which it
works is cut to a few first elements, and everything is "worked out" on this smaller list. What makes this
non - trivial is that the list may be complex and nested (a tree) - this does not matter as long as the ele-
ments of the structure of the large real tree essential for the function operation are preserved in a small
"test" tree.

Consider now 10000 digits:

Position@Partition@RealDigits@N@Pi, 10000DD@@1DD, 3, 1D, 81, 2, 3<D ��
Timing

80.07, 881925<, 82939<, 82977<, 83893<, 86549<,
87146<, 88157<, 88773<, 88832<, 89451<, 89658<<<

These are all positions where < 123 > combination is encountered within a first 10000 digits of Π.

� 4.3.8.2 An analogous example with patterns

As another example, let us find among the first 1000 digits of Π all combinations of 3 digits which start
with < 1 > and end with < 9 >, but the middle digit can be any. The code is as follows :

digits = RealDigits@N@Pi, 1000DD@@1DD;
partdigits = Partition@digits, 3, 1D;
pos = Position@partdigits, 81, _, 9<D
Extract@partdigits, posD
884<, 841<, 8207<, 8439<, 8495<, 8500<, 8526<,

8548<, 8705<, 8713<, 8731<, 8923<, 8985<, 8998<<
881, 5, 9<, 81, 6, 9<, 81, 0, 9<, 81, 7, 9<,

81, 1, 9<, 81, 2, 9<, 81, 3, 9<, 81, 7, 9<, 81, 9, 9<,
81, 2, 9<, 81, 5, 9<, 81, 5, 9<, 81, 1, 9<, 81, 9, 9<<

Or

Cases@partdigits, 81, _, 9<D
881, 5, 9<, 81, 6, 9<, 81, 0, 9<, 81, 7, 9<,

81, 1, 9<, 81, 2, 9<, 81, 3, 9<, 81, 7, 9<, 81, 9, 9<,
81, 2, 9<, 81, 5, 9<, 81, 5, 9<, 81, 1, 9<, 81, 9, 9<<

It is more interesting to get all digit combinations together with their positions. The first thing that comes
to mind is to combine together a list of digits and a list of their positions and then Transpose :

indexedcombs = Transpose@8Extract@partdigits, posD, pos<D
8881, 5, 9<, 84<<, 881, 6, 9<, 841<<,

881, 0, 9<, 8207<<, 881, 7, 9<, 8439<<, 881, 1, 9<, 8495<<,
881, 2, 9<, 8500<<, 881, 3, 9<, 8526<<, 881, 7, 9<, 8548<<,
881, 9, 9<, 8705<<, 881, 2, 9<, 8713<<, 881, 5, 9<, 8731<<,
881, 5, 9<, 8923<<, 881, 1, 9<, 8985<<, 881, 9, 9<, 8998<<<

If one needs to remove the curly braces around the positions, this can be done with a simple rule:

136

indexedcombs �. 8x_Integer< ® x

8881, 5, 9<, 4<, 881, 6, 9<, 41<, 881, 0, 9<, 207<, 881, 7, 9<, 439<,
881, 1, 9<, 495<, 881, 2, 9<, 500<, 881, 3, 9<, 526<, 881, 7, 9<, 548<,
881, 9, 9<, 705<, 881, 2, 9<, 713<, 881, 5, 9<, 731<,
881, 5, 9<, 923<, 881, 1, 9<, 985<, 881, 9, 9<, 998<<

 137

4.4 Functions - starting examples and syntax

� 4.4.1 A definition and a simple example

By function we will mean a pair: any normal (non-atomic) Mathematica expression which contains pat-
terns, and a rule in a global rule base, reflected by the DownValues command, which tells what should
replace the first expression when it is encountered (we will ignore functions defined by SubValues, for the
time being).

For example, this defines a function:

Clear@f, xD;
f@x_D := x^3;

Here f[x_] is a normal expression (we see a Head <f> and single square brackets - the characteristics of
the normal expression), the pattern is <x_> (we can see that it is a pattern by the presence of the under -
score, which is one of the symbols that distinguish patterns; <x_> stands for exactly one argument), and
one can check the presence of the global rule in a rule base by checking the DownValues command on a
symbol <f> (see Chapter 1, section 1.2.3):

DownValues@fD
We can now make sure that the function works as intended :

8f@aD, f@PiD, f@EinsteinD<
9a3, Π3, Einstein3=

We see that the function as defined above works on any single expression.
By a single expression I mean single argument - for example <f> will not work in this situation:

f@a, bD
f@a, bD

This is not an error, but Mathematica simply does not know what to do with such an expression, and thus
returns it back, in accordance with its general evaluation strategy.

Notice by the way, that all the ingredients needed to define a function we have already encountered before
- patterns, assignment operator, etc. No new syntax is needed for function definitions - indeed because
they are just some type of global rules, similar to variables. The non - trivial part here is in the action of an
assignment operator (SetDelayed or sometimes Set): it decides whether or not the l.h.s. of the emerging
global rule is legitimate, and if so, what type of global rule the new rule will be. When the l.h.s. contains
patterns and the resulting global rule is stored in DownValues, we say that we have defined a function.

Often one needs to perform type or more general argument checks. They are very easy to implement in
Mathematica and we will discuss them in the section on conditional patterns.

Clear@fD;

138

� 4.4.2 More on function names and evaluation surprises

Consider a previous example:

Clear@fD;
f@x_D := x^3;

Note that the straightforward attempt to check the Head (name of the function in this case) will give not
what we would naively expect :

Head@f@tDD
Power

It is very easy to understand what happened by using the tracing command Trace:

Trace@Head@f@tDDD

99f@tD, t3=, HeadAt3E, Power=
We see that since the expression f[t] matches the pattern f[x_], the rule applied. Recall that the evaluation
process by default starts from the leaves of the nested expression (from inside out - see section 2.5.6).
Thus, when the Head command started to evaluate, its "content" has already changed from f[t] to t^3. The
full internal form of t^3 is:

FullForm@t^3D
Power@t, 3D

This explains the end result. Going ahead of time, let me mention that there is a way to force the evalua-
tion process to start in the opposite direction, from "branches" to "leaves" (non-standard evaluation ,
section 2.5.6), which will lead to the expected result for a function name:

Head@Unevaluated@f@tDDD
f

We have already discussed this construction in the section on variables (section 2.2.1).

Clear@fD;
� 4.4.3 On the necessity of patterns

So, the name of the function is its Head - the symbol outside the square brackets in its definition, which
contains a pattern. We may ask if it is possible to define a function without a pattern. The answer is that it
is possible but the object so defined will not be a function in the normal sense and will have a behavior
different from what we probably want. Here is an example:

Clear@fD;
f@xD := x^3;

This definition does not contain a pattern (no uderscore or other pattern ingredients). Let us check it:

 139

This definition does not contain a pattern (no underscore or other pattern ingredients). Let us check it:

8f@xD, f@yD<
9x3, f@yD=

Since we did not have a pattern, the class of expressions on which the corresponding rule will match has
been narrowed down to just literal f[x]. In particular, it will not work on any other parameters :

8f@1D, f@2D, f@PiD, f@xD<

9f@1D, f@2D, f@ΠD, x3=
Moreover, if we then define the global value for an < x > variable, it will not work on < x > either :

x = 5;

f@xD
f@5D

(We should already be able to understand the last result : x evaluated to 5 before f had any chance to
"look" at it).

The object f[x] here could be interpreted as an indexed variable (section 2.2.4) rather than a function, but
even in this interpretation, it is a very error - prone practice to use symbols as indices in indexed variables.
In any case, it has nothing to do with the behavior of the real function.

This behavior explains why we need patterns to define functions: patterns widen the class of expressions
on which the rule will match. In particular, when we write

Clear@f, xD;
f@x_D := x^3;

the pattern < x_ > means "any expression" and < x > here becomes a name attached to a placeholder
where the actual input parameter will be placed. When we later call the function, normally the input
parameters are evaluated first, and then the action of the function is to replace them with whatever the
action of the r.h.s. of the corresponding rule should be.

Clear@fD;
� 4.4.4 More on the correct syntax of the function calls

Calling a function by name without the square brackets, or with parentheses used instead, will not give a
desired result (and is a logical mistake in most cases):

8Sin, Sin HPiL<
8Sin, Π Sin<

In both cases, Sin was interpreted by Mathematica not as a function, but just as some symbolic object. In
the latter case, parentheses were interpreted as a multiplication, which is easy to see with the help of
FullForm :

140

FullForm@8Sin, Sin HPiL< D
List@Sin, Times@Pi, SinDD

As we mentioned already, function calls are syntactically just a special case of Mathematica normal
expressions, and thus have to obey the standard syntax rules. Thus, the single square brackets.

While just using a function name will not be a mistake in many languages (in C this will be a function
pointer), in (strongly) typed languages this will lead to a type conflict and will probably cause a compiler
warning or error message. Not so in Mathematica, which means that one has to be more careful. In ver-
sion 6, the red highlighting will usually warn that the syntax may be wrong.

� 4.4.5 On function definitions and assignment operators

� 4.4.5.1 Use SetDelayed to define a function in most cases

What will happen, if we use the Set (=) command instead of SetDelayed (:=), when defining a function?
This depends on the state of global variables present or defined in the system at the given moment. Here is
an example:

Clear@f, xD;
f@x_D = x^2;

8f@1D, f@2D, f@PiD, f@yD<
91, 4, Π2, y2=

The function works fine, but this is so only because by the moment of the definition, the variable < x > did
not have any global value (no global rule was associated with it), and thus the r.h.s. x^2 evaluated trivially
(to itself) and was recorded in the rule for function < f > in this way. This is what happens when < x > has
a value at the moment of assignment :

Clear@f, xD;
x = 5;

f@x_D = x^2;

8f@1D, f@2D, f@PiD, f@yD<
825, 25, 25, 25<

To understand it better, we can look at DownValues of < f >, which reflect the way the definitions (rules)
for < f > are stored in the system :

DownValues@fD
8HoldPattern@f@x_DD ¦ 25<
8HoldPattern@f@x_DD ¦ 25<

We see that now any input expression, regardless of its structure, will be replaced by 25. This behavior is
in full agreement with the principles of operation of Set (=) assignment operator. It allows the r.h.s. of
the definition to evaluate. This evaluation happens as usual, using the values for all global variables or
expressions which exist in the system at the moment of the definition. Then Set uses the result of this
evaluation as a r.h.s for the new global rule, associated with the l.h.s. of the assignment (See chapter 2
section 2.4.1). Since <x> had a global value 5, it was used in the calculation of the r.h.s, which then
became the r.h.s. of the global rule associated with function <f> (definition of f).

 141

We see that now any input expression, regardless of its structure, will be replaced by 25. This behavior is
in full agreement with the principles of operation of Set (=) assignment operator. It allows the r.h.s. of
the definition to evaluate. This evaluation happens as usual, using the values for all global variables or
expressions which exist in the system at the moment of the definition. Then Set uses the result of this
evaluation as a r.h.s for the new global rule, associated with the l.h.s. of the assignment (See chapter 2
section 2.4.1). Since <x> had a global value 5, it was used in the calculation of the r.h.s, which then
became the r.h.s. of the global rule associated with function <f> (definition of f).

So, the conclusion is that in the majority of cases functions must be defined with SetDelayed (:=) rather
than Set (=). Since SetDelayed does not evaluate the r.h.s of an assignment, we are safe in this case.

� 4.4.5.2 When Set is more appropriate

There are instances when Set operator is more appropriate do define a function however. In particular, this
happens when a function may be symbolically precomputed so that it is stored in a form which allows a
more efficient computation. Consider for instance a function defined as an indefinite integral, like the
following one :

Integrate@Sqrt@1 +z^2D, 8z, 0, x<D
1

2
Jx 1 +x2 +ArcSinh@xDN

Clear@gD;
g@x_D := Integrate@Sqrt@1 +z^2D, 8z, 0, x<D;

Let us compute it in a few points :

Table@g@iD, 8i, 10<D �� Timing

:7.791, :1
2

J 2 +ArcSinh@1DN, 5 +
ArcSinh@2D

2
,

1

2
J3 10 +ArcSinh@3DN, 1

2
J4 17 +ArcSinh@4DN,

1

2
J5 26 +ArcSinh@5DN, 1

2
J6 37 +ArcSinh@6DN, 1

2
J35 2 +ArcSinh@7DN,

1

2
J8 65 +ArcSinh@8DN, 1

2
J9 82 +ArcSinh@9DN, 5 101 +

ArcSinh@10D
2

>>
The point is, this integral can be computed in a closed form, and it absolutely makes sense to do it only
once and then store the already computed definition. But with SetDelayed (as above), it will be recom-
puted every time afresh, according to a general rule of delayed evaluation. This is the case to use Set :

Clear@x, g1D;
g1@x_D = Integrate@Sqrt@1 +z^2D, 8z, 0, x<D;

The result is almost instantaneous this time (I cheated a bit by not including the time it took to compute
the integral, but for a large number of function calls it will be in most cases negligible):

Table@g1@iD, 8i, 10<D �� Short@ð, 2D & �� Timing

:0., :1
2

J 2 +ArcSinh@1DN, �8�,
1

2
J10 101 +�1�N>>

However, notice that we had to be careful and Clear the variable < x > . To be completely on the safe side,
one can use one of the scoping constructs (discussed at the end of this chapter) to localize the variable :

142

Clear@g2D;
Module@8x<, g2@x_D = Integrate@Sqrt@1 +z^2D, 8z, 0, x<DD;
Table@g2@iD, 8i, 10<D �� Short@ð, 2D &

:1
2

J 2 +ArcSinh@1DN, �8�,
1

2
J10 101 +�1�N>

� 4.4.6 Assigning values to function symbols (names)

Since function symbols are just normal symbols, they can be used as variables and in particular can be
assigned values. When the function is called on some argument, these values are computed before any
other computation takes place. Consider an example:

Clear@fD;
f@x_D := x^2;

f = Sin;

f@5D
Sin@5D

Notice that this does not mean that the previous rule for < f > disappeared - it is still in the rule base, as
can be checked with DownValues :

DownValues@fD
9HoldPattern@f@x_DD ¦ x2=

It is just that < f > now has also OwnValue < Sin >, which is computed in this case before any arguments
are considered, and then the DownValue rule has no chance to apply :

OwnValues@fD
8HoldPattern@fD ¦ Sin<

We can see what happens, with the help of the Trace command :

Trace@f@5DD
88f, Sin<, Sin@5D<

To "restore" the function in this case, we obviously can not use Clear, since then also the DownValues of
< f > will be cleared. In such a case, use Unset (section 2.2.6) :

f =.;

f@5D
25

In general, the above behavior means that one has to be careful and make sure that the symbol which is
going to be used as a function name, does not have an OwnValue (unless this is what is desired, which is a
rare case) - otherwise the newly defined function will not work properly.

 143

� 4.4.7 Advanced topic: parameter passing

� 4.4.7.1 How parameters are passed

Let us look a bit closer at the way the parameters (which are the pattern tags and stand with blanks or
other patterns on the l.h.s, such as x_) are passed to functions. The three main questions to address are
these: what is the mechanism of parameter passing, is it possible to modify the passed parameters within a
function such that the actual expressions being passed are modified after the function returns (pass-by-
reference), and what are the rules for name collisions with the local variables. Since we did not systemati-
cally discuss the Mathematica scoping constructs yet, we will postpone the third question until such a
discussion (sections 4.8, 4.10), and deal with the first two.

So, how are the parameters passed to the function? It turns out that the rule is very simple: their values
(evaluated or not, depending on the presence of Hold attributes attached to the function) are textually
substituted into the r.h.s of the function (before or after evaluation of the function itself takes place, again
depending on the evaluation being standard or not). This happens somewhat similarly to the C preproces -
sor substitutions. What is important is that they never become local variables (in the sense of C), with the
consequences we will describe in a second. We could say that the arguments are always passed by value,
but the notion of value depends on whether or nor the function evaluates arguments in a standard way
(presence or absence of Hold attributes).

The next question is whether or not the passed parameters can be modified inside a function. This depends
on whether or not the passed object represents an L-value. The passed object will represent an L-value in
2 cases:

1. The evaluation order is standard, but what is passed evaluates (before being passed, according to the
standard evaluation strategy that arguments are evaluated first) to a global symbol (which can be used as
a variable in the sense described in section 2.2), with no assigned value.
2. What is passed is also a global symbol in the above sense, possibly with some global rule (definition)
assigned to it, but the order of evaluation is non-standard and this symbol is passed unevaluated.

If the global symbol above is composite, and its head does not carry the Protected attribute, then the result
of an assignment will be a DownValue or SubValue for the head.

In both of these cases it is possible to assign a value to a global symbol being passed to the function, from
within the function, and thus modify it. Modification of the symbol in the first case has no direct analogs in
languages such as C, just because it requires some symbol (which we pass) to hang around in a global
name space but not have any value at all, which is only possible in a symbolic environment. In the second
case, effectively the pass-by-reference semantics is simulated.

Finally, if what is passed does not represent an L - value, no assignments to it are possible. Again, this
reflects the fact that what really happens is a textual substitution in a body of a function rather than say
allocating variables on the stack. This textual substitution is similar to that performed by a scoping con-
struct With (section 4.8.3).

Also, this means that there is no way of changing the value of the parameter locally (without global parame -
ter modification) - either it represents an L-values and then is changed globally, or it does not and then no
changes are at all possible. If one needs to change a passed parameter locally, one may introduce a local
variable, initialize it with this parameter value, and then change a local variable instead (local variables
will be described later in this chapter).

144

Also, this means that there is no way of changing the value of the parameter locally (without global parame -
ter modification) - either it represents an L-values and then is changed globally, or it does not and then no
changes are at all possible. If one needs to change a passed parameter locally, one may introduce a local
variable, initialize it with this parameter value, and then change a local variable instead (local variables
will be described later in this chapter).

It is time now to illustrate the rather obscure statements I just made.

� 4.4.7.2 Illustration: standard evaluation

We start with the following function which attempts to assign a value to the parameter passed to it :

Clear@f, x, a, b, c, d, hD;
f@x_D := x = 5;

We start with a symbol which does not have a global value :

a

a

f@aD;
a

5

We see that it was modified. This corresponds to the case 1 above. Now consider:

b = c;

f@bD;
8b, c<
85, 5<

It may be not immediately obvious, but what happened really is that only < c > received the numerical
value, but not < b >, which has the same definition as before:

? b

Global‘b

b = c

In particular, if we now Clear[c], b will no longer evaluate to a number :

Clear@cD;
b

c

What happened at the moment of the function call is that first, < b > evaluated to < c >, and then < c >
was passed and subsequently modified, because it did not have any rule associated with it (if it had, then
the r.h.s of this rule would be passed to the function or be evaluated further). Let us now repeat the first
experiment again:

Clear@aD;
f@aD
5

 145

And call again :

f@aD
Set::setraw : Cannot assign to raw object 5. �

5

The point is that after the first call, the symbol < a > received a value < 5 >, to which it evaluated before
being passed to the function. The function then attempted to assign 5 to 5, which does not work since the
l.h.s. is not an L - value.

Consider now a different attempt :

Clear@aD;
f@2 aD
Set::write : Tag Times in 2 a is Protected. �

5

Here, the object passed is < 2 a >, which is not an L - value either despite the presence of symbolic quan-
tity < a > . It is easy to understand if we use the FullForm :

FullForm@2 aD
Times@2, aD

Therefore, what we really attempted to do was to define a rule for a built - in function Times, which is
protected against this (if it weren’t protected, the input would represent an L-Value, and the result of the
assignment would be a DownValue rule for the head of the input; more on Protected attribute in section
4.9.5).

If we return to the second experiment :

Clear@b, cD;
b = c;

f@bD;
now we try again :

f@bD
Set::setraw : Cannot assign to raw object 5. �

5

We have the same story. The symbol < b > really acts as a middleman which simply hands < c > to the
function. And the story with < c > is the same as what we had for < a > before.

Finally, let us consider the following input:

Clear@aD;
f@h@aDD;

Check :

h@aD
5

146

DownValues@hD
8HoldPattern@h@aDD ¦ 5<

Although we have created a DownValue for < h >, < h > did not really become a function in the normal
sense, since the l.h.s of the rule does not contain a pattern. Rather, we made a definition for a composite
symbol < h[a] >, much like in our discussion in section 4.4.3.

� 4.4.7.3 Illustration: non-standard evaluation

Now we will modify our function to have a Hold attribute, which will mean that it will receive whatever
argument we pass, in unevaluated form :

ClearAll@ffD;
SetAttributes@ff, HoldFirstD;
ff@x_D := x = 5;

We try now :

Clear@aD;
ff@aD;
a

5

And the second time :

ff@aD;
a

5

We can modify < a > and call again :

a = 10;

ff@aD;
a

5

So, the function really does modify the variable which has a global value. There is no mystery here: uneval-
uated simply means that the symbol < a >, rather than the r.h.s of the global rule associated with it, is
passed to the body of the function, and thus modified. The symbol <a> here resembles the pointer to a
variable in C.

How about our second experiment? We try:

Clear@b, cD;
b = c;

ff@bD;
8b, c<
85, c<

We see that the result is completely different. Now < b > was assigned a value, and not < c > . But this
had to be expected : unevaluated means in this case that the symbol < b >, rather than the r.h.s. of the rule
associated with it (< c >), was textually substituted in the body of the function and thus modified. In
particular, the previous definition < b = c > is lost now :

 147

We see that the result is completely different. Now < b > was assigned a value, and not < c > . But this
had to be expected : unevaluated means in this case that the symbol < b >, rather than the r.h.s. of the rule
associated with it (< c >), was textually substituted in the body of the function and thus modified. In
particular, the previous definition < b = c > is lost now :

? b

Global‘b

b = 5

And if we call ff[b] again, nothing will change. Finally, the calls with non-Lvalue objects will not work in
this case too:

ff@Sin@cDD
Set::write : Tag Sin in Sin@cD is Protected. �

5

Finally, let us return to our example with a composite object < h[a] > . It will turn out that in this case, the
result of action of < ff > will be not so innocent, since it may alter a definition of a real function. Let us
define a function:

Clear@h, aD;
h@x_D := x^3;

Now we perform our manipulations :

a = 5;

ff@h@aDD
5

Let us look at the definitions of < h > now :

?h

Global‘h

h@5D = 5

h@x_D := x3

We did not cover it yet, but a function in Mathematica can have multiple definitions. What happened in
this case is that a new specific definition has been added on the particular argument of < h> (5) , as a
result of action of < ff > . You may wonder how comes that < a > inside < h > evaluated to < 5 > when
we know that the argument is passed unevaluated to < ff > . In brief, < a > evaluated inside < h > before <
ff > had any chance to "look" at the argument, because the question of whether or not < a > should be
evaluated is decided by attributes of < h >, not < ff >. Had < h > have one of the Hold attributes, and < a >
would not evaluate.

?h

148

Global‘h

h@5D = 5

h@x_D := x3

Anyway, returning to the result, this is one good reason why it may become necessary to protect functions
- while not many people will explicitly introduce erroneous rules for a function definition, they may sneak
in as results of operations such as the one above. This is also one of the reasons why the programming
style based on assignments, side effects and in-place modifications is not the preferred one in Mathemat-
ica programming - in a complex system such as Mathematica, with many more ways of doing things, this
may result in all sorts of subtle bugs.

� 4.4.7.4 Summary

So, to summarize: parameter passing is always in effect done by value through textual substitution, but the
two circumstances make a variety of different behavior possible: first, symbols may be present in the
system without any value attached to them, and second, the function may evaluate the argument (s) in
standard or non - standard way. Whether or not the passed objects can be modified depends on whether
they represent L-values at the moment of textual substitution, and it is completely equivalent to "hard-
code" them in the form they have at this moment into the r.h.s and ask the same question for the resulting
code.

This material can be somewhat unclear because we did not yet discuss in enough detail matters such as
non-standard evaluation, Hold attributes and local variables. I recommend to revisit it after those topics
are understood. There is nothing overly complicated in the parameter passing in Mathematica really, and
on the other hand this topic is very important to understand.

ClearAll@f, ff, a, b, cD;
� 4.4.8 Function calls: prefix and postfix syntax

Apart from the standard way to apply a function to some expression, there exist two more short - hand
forms for a function of a single argument: prefix and postfix notation. In the prefix notation, the special
symbol < @> is used, while in the postfix notation, the double slash is used : < // > . For example :

Clear@fD;
f@x_D := x^2;

8f@7D, f�7, 7 �� f<
849, 49, 49<

The prefix form is convenient to remove extra square brackets when there is a piece of code with deeply
nested function calls, like here :

8f@f@f@f@2DDDD, f�f�f�f�2<
865536, 65536<

The postfix notation is convenient when we want to apply some operation which is conceptually less
important than the code it encloses, such as Timing measurements or rendering a matrix into a Matrix-
Form. In this way, it does not interfere with the main code when we read it:

 149

IdentityMatrix@3D �� MatrixForm

1 0 0
0 1 0
0 0 1

Another reason to use the postfix notation is that the order in which the function calls are appearing
corresponds to the order in which the transformations are applied to input, and this may make the code
more readable in some cases.

One has to be careful with both prefix and postfix forms due to precedence however, as the following
examples illustrate:

8f�x -y, f�x^y<
9x2 -y, Ix2My=

In these cases, the result is such because the precedence of the subtraction or even Power operator is
lower than that of the function call in the prefix notation. We have to use parentheses :

8f�Hx -yL, f�Hx^yL<
9Hx -yL2, x2 y=

Another example

matr = IdentityMatrix@3D �� MatrixForm

1 0 0
0 1 0
0 0 1

Det@matrD
DetB 1 0 0

0 1 0
0 0 1

F
The determinant has not been computed because the < matr > variable stores not just the matrix, but the
matrix wrapped in a MatrixForm. This can be verified by looking at the FullForm :

FullForm@matrD
MatrixForm@List@List@1, 0, 0D, List@0, 1, 0D, List@0, 0, 1DDD

Once again, the parentheses must be used :

Hmatr = IdentityMatrix@3DL �� MatrixForm

Det@matrD
1 0 0
0 1 0
0 0 1

1

Because of these precedence - related complications which often result in bugs, I would not recommend
using these forms if this does not bring obvious advantages such as much improved code readability etc.
Moreover, they are mostly used in interactive sessions and less so in complete stand-alone programs.

� 4.4.9 Function name conventions

150

�

4.4.9 Function name conventions

I don’ t have much more to say here. Most of the rules which apply for variable names (section 2.2.1) also
hold here. One difference worth mentioning is that a definition such as this:

Clear@gD;
g@1D@x_D := x^3

produces not the DownValue, but a SubValue for g :

8DownValues@gD, SubValues@gD<
98<, 9HoldPattern@g@1D@x_DD ¦ x3==

Whether or not to call this object a function is a matter of taste. In my definition above (and also below) I
restrict functions to DownValues, but mostly because I didn’ t want to cover the SubValue case - it is not
too often met in practice. On the other hand, I personally would consider the above defined < g > as good
a function as any other.

Perhaps, one more comment - a stylistic one: as I already mentioned, it is a good practice to start the
names of your symbols with a small letter, to avoid possible conflicts with the built - in symbols. But if the
name contains only small letters, it is rather natural to interpret it as a name of a variable. One possibility
to distinguish variables from functions is to use only lower - case letters for variables and a "camel nota-
tion" for functions - for example, the function to sum a list of numbers could be called < sumNumbers > .
This is by no means standard, but I personally find it convenient, and in particular this is the style that I
will use throughout the book.

4.5 Examples of functions of a single argument

All built-in functions (or commands) in Mathematica are functions in the sense described above: all of
them have a format fname[arg1,...,argn] (caveat: sometimes, the symbol <fname> here may be not a
symbol, but a normal expression itself, like for instance for an expression Derivative[1][f][x], which
represents a first derivative of the function <f> with respect to the variable <x>, the <fname> symbol will
actually be Derivative[1][f]. But such cases are not very frequent, and also represent no problems - they
result in definitions stored in SubValues rather than DownValues).

The rules associated with the built-in functions can not normally be read - they are "wired in" the kernel
(some of the externally-defined rules can be read, but they are also "hidden" by default). However, the
way built-in functions work can be significantly altered by the user, since it is possible to redefine them
and associate new rules with them, which will take precedence over the system-defined rules. All these
techniques are not normally needed, fairly advanced and assume high level of competence with Mathemat-
ica. I mention these possibilities here just to illustrate the consistency of the whole approach. In principle,
the built-in functions are not too different from the user-defined ones. They are just faster (being imple-
mented in lower-level language like C), and already interconnected by a large base of global rules built
into the system.

Let us now give some examples of functions of a single argument.

 151

� 4.5.1 Example: Integer part of a number

Such a function exists in Mathematica, but we may define our own :

Clear@fD;
f@x_D := IntegerPart@xD;

8f@PiD, f@3�2D, f@1D<
83, 1, 1<

� 4.5.2 What we will not call a function definition

There is an alternative way of doing so :

Clear@gD;
g = IntegerPart;

8f@PiD, f@3�2D, f@1D<
83, 1, 1<

The definitions such as a last one are not what we will call the definition of a function. Although the behav-
ior of <f> and <g> look the same, there are subtle differences in how they are evaluated, which matter
sometimes. For example, there are no DownValues associated with < g > :

DownValues@gD
8<

But rather, <g> has an OwnValue :

OwnValues@gD
8HoldPattern@gD ¦ IntegerPart<

Although is most cases you will get what you want also by the second method, my advice is to avoid it
until you get a good understanding of the evaluation process and the differences in evaluation induced by
the differences in these two methods.

As an example where in fact the second method is more appropriate than the straightforwardly imple-
mented first one, consider a built-in Increment function which has a side effect of incrementing a value of
the input variable by 1:

Clear@aD;
a = 5;

Increment@aD;
a

6

We now define our version of an increment function :

152

Clear@ourIncD;
ourInc@x_D := Increment@xD;

Everything seems fine before we try it :

ourInc@aD
Increment::rvalue : 6 is not a variable with a value, so its value cannot be changed. �

6 ++

But if we define our function as

Clear@ourInc1D;
ourInc1 = Increment;

Then :

ourInc1@aD;
a

7

It works fine. We will save the detailed discussion of these issues for later chapters. Despite this example,
in most cases the first method is the one to use, and in any case, the second one should not be really
thought of as a method for defining a function. The closest analog I can think of is to create one more
pointer to an already defined function in C - but this is not really a function definition. Let me just add that
the above functionality of the Increment function can be also achieved with the first method employed with
some modification (the code was actually given in Chapter 2, section 2.5.5).

We may now give a more formal distinction between what we will or will not consider a function defini-
tion (this is conventional) : we will say that the function with a name < f > is defined if the list of global
rules returned by the DownValues[f] command is not empty.

This definition is somewhat restrictive since it excludes for instance functions defined by SubValues and
UpValues, but if you have real reasons to be uncomfortable with it, you perhaps shouldn’t be reading this
book (it takes a lot of experience to appreciate the cases missed by this definition).

� 4.5.3 Example: some trigonometric function

Clear@fD;
f@x_D := Sin@Cos@Exp@xDDD;

8f@1D, f@1.D<
8Sin@Cos@ãDD, -0.790567<

� 4.5.4 Example: a function to reverse a string of symbols

Clear@fD;
f@x_StringD := StringReverse@xD;

 153

f@"madam I am Adam"D
madA ma I madam

� 4.5.5 Example: A function of function

Clear@f, gD;
f@g@x_DD := x*g@xD;

8f@Sin@xDD, f@g@yDD, f@g@elephantDD<
8f@Sin@5DD, y g@yD, elephant g@elephantD<

This example is rather interesting. Since we did not "attach" a pattern to < g >, the rule will match when
inside < f > we have literally < g > . However the argument of < g > can be anything, thanks to the pattern
"attached" to the parameter x : < x_ > (in expression < x_ >, it is probably more correct to say that the tag
< x > is attached to the pattern < _ >, since the presence and the form of the pattern plays a more funda-
mental role than the specific name of the input parameter). If we use a pattern (Blank[]) also with <g>,
then also the function inside <f> can be arbitrary:

Clear@f, g, xD;
f@g_@x_DD := x*g@xD;

8f@Sin@xDD, f@g@yDD, f@g@elephantDD<
8x Sin@xD, y g@yD, elephant g@elephantD<

The pattern g_[x_] used here will match any expression of the form a[b]. Consider a more complicated
example :

Clear@h, yD;
h@x_D := 1�x;

8f@h@yDD, f@Unevaluated@h@yDDD<
:fB1

y
F, 1>

The Unevaluated command will be described in later chapters, but generally it forces the expression to be
evaluated in a non - standard way (branches before leaves) at the particular point where Unevaluated is
inserted. So, in the first case the evaluation started with the more innermost function h[y], which evaluated
to 1/y, and it is this expression that the function < f > "saw". Since < f > does not have any rules associated
with an expression 1/something, we got f[1/y] as a result. In the second case, the Unevaluated command
forced the evaluation to start with <f>, and then the function <f> "saw" the expression h[y]. Since it has a
corresponding rule, h[y] was replaced by y*h[y]. Then, h[y] was evaluated to 1/y, and then the final result
was simplified to 1. All this evaluation dynamics that we just described can be seen by using the Trace
command:

154

Trace@8f@h@yDD, f@Unevaluated@h@yDDD<D
:::h@yD, 1

y
,
1

y
>, fB1

y
F>,

:f@h@yDD, y h@yD, :h@yD, 1

y
,
1

y
>, y

y
,
y

y
, 1>, :fB1

y
F, 1>>

Clear@f, g, h, x, yD;
� 4.5.6 Example: a function which exchanges another function and its argument

Consider another example: a function <f> will take another function <g> of argument <x>, g[x], and
return x[g]:

Clear@f, g, h, xD;
f@g_@x_DD := x@gD;

8f@g@hDD, f@f@g@hDDD, f@xD<
8h@gD, g@hD, f@xD<

We see that applied twice, it returns back the original expression in the above case, and also that since
there was no rule for <f> of an atomic argument, it returned just f[x]. However, the behavior may be
different if there are rules for <g> and <h>:

Clear@f, g, h, xD;
f@g_@x_DD := x@gD;
h@gD := "Changed";

8g@hD, f@g@hDD, f@f@g@hDDD, f@xD<
8g@hD, Changed, f@ChangedD, f@xD<

In this case, the < f > applied twice will not return the original expression, again because it has changed
before <f> had any chance to "see" its original form.

� 4.5.7 Example: a recursive factorial function

Recursive functions are easy to implement in Mathematica. Here is for example the recursive factorial
function:

Clear@factD;
fact@0D = 1;

fact@n_Integer ?PositiveD := n*fact@n -1D;
Check :

8fact@0D, fact@5D, fact@-2D<
81, 120, fact@-2D<

This example illustrates several points. First, it is possible for a function to have more than one definition
on different arguments . In this case we had a separate definition for the base of the recursion, which can
be checked also by looking at DownValues of < fact > :

 155

This example illustrates several points. First, it is possible for a function to have more than one definition
on different arguments . In this case we had a separate definition for the base of the recursion, which can
be checked also by looking at DownValues of < fact > :

DownValues@factD
8HoldPattern@fact@0DD ¦ 1,

HoldPattern@fact@n_Integer ?PositiveDD ¦ n fact@n -1D<
We see that two rules are present, not one.

Next, we see that by using a more complicated pattern (n_Integer?Positive in this case), we implemented a
type-check, since the potentially dangerous input fact[-2] did not evaluate.

In the next sections, we will consider both aspects in more details: the patterns and rules associated with
them, and functions with multiple definitions.

� 4.5.8 Infinite iteration and recursion traps

In fact, in the symbolic rule-based environment like Mathematica, it is very easy to fall into an infinite
recursion, for example like this (I have temporarily reduced the value of the system variable which con-
trols the maximal iteration length, to its lower limit, but I would not recommend to try this if you have any
unsaved results in your Mathematica session).

Clear@f, g, h, xD;
f@x_D := g@xD;
g@x_D := f@xD;
h@x_D := h@xD;

Now observe:

Block@8$IterationLimit = 20<,
f@xDD

$IterationLimit::itlim : Iteration limit of 20 exceeded. �

Hold@f@xDD
Block@8$IterationLimit = 20<,
h@xDD

$IterationLimit::itlim : Iteration limit of 20 exceeded. �

Hold@h@xDD
It is interesting that the above pathological function definitions result not in an infinite recursion (which
would be the case in more traditional languages), but in infinite iteration. While I don’t have an authoritative
answer for why this is so, my guess is that this is probably due to the tail recursion being optimized in
Mathematica (for tail-recursive functions, the recursion stack is not maintained since the result (recursive
call) is always the last thing computed in such functions).

The following example is much more dangerous, and I don’ t recommend to run it - just be aware of this
kind of pitfalls.

156

Clear@f, xD;
f@x_D := f@f@xDD;
Block@8$RecursionLimit = 20, $IterationLimit = 20<, f@xDD
$RecursionLimit::reclim : Recursion depth of 20 exceeded. �

$RecursionLimit::reclim : Recursion depth of 20 exceeded. �

$RecursionLimit::reclim : Recursion depth of 20 exceeded. �

General::stop : Further output of $RecursionLimit::reclim will be suppressed during this calculation. �

$IterationLimit::itlim : Iteration limit of 20 exceeded. �

$IterationLimit::itlim : Iteration limit of 20 exceeded. �

$IterationLimit::itlim : Iteration limit of 20 exceeded. �

General::stop : Further output of $IterationLimit::itlim will be suppressed during this calculation. �

$Aborted

Here I had to manually abort the execution. Notice that here both infinite recursion and iteration took
place, and even by limiting the corresponding "safety" system variables did not help much. In some of the
cases similar to this one, one may need to kill the kernel and thus may loose all the unsaved results in a
given Mathematica session.

� 4.5.9 An esoteric example: a self-destructive printing function

The following example will be rather extreme, and I am giving it to show that many things which are not
possible in the more traditional programming environments, are possible in Mathematica. This example is
a variation of the technique due to Michael Trott.

Clear@f, x, y, zD;
z = 5;

f@x_D := HClear@fD; Print@xDL;
We check now :

Print@DownValues@fDD;
f@zD

8HoldPattern@f@x_DD ¦ HClear@fD; Print@xDL<
5

And again :

Print@DownValues@fDD;
f@zD

8<
f@5D

What heppened is that, once called, the function printed its argument, but also destroyed its own definition
(deleted the rule associated with itself in the global rule base). When we called it second time, it did not
have any rules associated with it any more, and thus returned "unevaluated". This would not change had
we used it in a loop without user interruption:

 157

What happened is that, once called, the function printed its argument, but also destroyed its own definition
(deleted the rule associated with itself in the global rule base). When we called it second time, it did not
have any rules associated with it any more, and thus returned "unevaluated". This would not change had
we used it in a loop without user interruption:

Clear@f, x, y, zD;
f@x_D := HClear@fD; Print@xDL;
Do@f@iD, 8i, 5<D

1

Only the first value was printed, since the function’s definition disappeared after that.

This behavior is possible only because the delayed assignment (SetDelayed) was used in a function defini-
tion. This technique (or trick) can be quite useful is some cases, and also can be generalized, but this is
outside of the scope of our present discussion.

� 4.5.10 Mathematical functions and programming functions

The symbolic and rule - based nature of Mathematica removes the distinction between mathematical
functions and functions in the sense of programming - the logically complete blocks of functionality. This
may be quite confusing at the beginning, since we are used to the idea that these two types of functions are
very different. As an illustration, we will now consider a function which will be a function in both senses
at the same time :

Clear@fD;
f@x_D := Sin@Print@"This is a Sine function"D; xD

Now some examples :

f@5D
This is a Sine function

Sin@5D
f@PiD

This is a Sine function

0

D@f@xD, xD
This is a Sine function

Cos@xD
Solve@f@xD � 0, xD

This is a Sine function

Solve::ifun : Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

88x ® 0<<
So, the distinction is really in our head. For Mathematica, it does not matter - both mathematical and
programming functions at the end result just in some chains of rule applications.

158

So, the distinction is really in our head. For Mathematica, it does not matter - both mathematical and
programming functions at the end result just in some chains of rule applications.

4.6 Functions of several variables

So far, we considered in detail only functions of single argument. We will now consider functions of
several variables.

� 4.6.1 Starting examples and a definition

Since we can define functions to work on lists, one way to define a function of several arguments is to
define a function on a list of arguments. For example, if we need a function which raises one number to
the power given by another number, we can do it as follows :

Clear@f, x, yD;
f@x_ListD := Power@x@@1DD, x@@2DDD;

8f@82, 3<D, f@85, 2<D, f@810, 3<D, f@3, 4D<
88, 25, 1000, f@3, 4D<

In the last case the function did not evaluate, since its argument was not a list. This definition is however
unsatisfactory for many reasons. First of all, the list of arguments in such a definition is non - uniform,
since the first element gives the base while the second gives the power. This is not a good programming
style and often leads to bugs in more complicated cases (There is nothing wrong in mixing elements of
different types in a single list, but there should be more compelling reasons to do so). The second prob-
lem is that we have to impose an additional constraint that the length of the list is exactly two, otherwise
we will get either errors or unexpected results:

8f@81<D, f@82, 3, 4<D<
Part::partw : Part 2 of 81< does not exist. �

81, 8<
Let us redefine :

Clear@fD;
f@x_List �; Length@xD � 2D := Power@x@@1DD, x@@2DDD;

8f@81<D, f@83, 4<D, f@82, 3, 4<D<
8f@81<D, 81, f@82, 3, 4<D<

As a somewhat better alternative, we may define a function as follows:

Clear@fD;
f@8base_, power_<D := Power@base, powerD;

 159

8f@81<D, f@83, 4<D, f@82, 3, 4<D<
8f@81<D, 81, f@82, 3, 4<D<

This is not a bad way to do it, but then still there is no real necessity to combine arguments in a list.

Let us now make a definition : the basic way to define a function of two argument is given by a con-
struction f[x_, y_] := r.h.s.

For example :

Clear@fD;
f@x_, y_D := Power@x, yD;

Let us see :

8f@1D, f@2, 3D, f@5, 2D, f@1, 2, 3D, f@a, bD, f@1.5, 2.0D, f@E, PiD<
9f@1D, 8, 25, f@1, 2, 3D, ab, 2.25, ãΠ=

� 4.6.2 Putting constraints on the arguments

When defining functions, one can get much more from patterns by using constrained patterns (section
4.2.6). This allows to perform even rather complex argument checks as a part of the function definition on
the left - hand side, rather than relegate the argument checks to the body of the function. This in turn leads
to a much more readable and less error - prone code.

� 4.6.2.1 Constraints on separate arguments

We can impose some additional constraints on function arguments, using conditional patterns. For
instance, we may require that our function works only on integers:

Clear@fD;
f@x_Integer, y_IntegerD := Power@x, yD;

8f@1D, f@2, 3D, f@5, 2D, f@1, 2, 3D, f@a, bD, f@1.5, 2.0D, f@E, PiD<
8f@1D, 8, 25, f@1, 2, 3D, f@a, bD, f@1.5, 2.D, f@ã, ΠD<

We can make a weaker restriction and let our function work on any numbers :

Clear@fD;
f@x_ ? NumberQ, y_ ? NumberQD := Power@x, yD;

8f@1D, f@2, 3D, f@5, 2D, f@1, 2, 3D, f@a, bD, f@1.5, 2.0D, f@E, PiD<
8f@1D, 8, 25, f@1, 2, 3D, f@a, bD, 2.25, f@ã, ΠD<

We see that it did not evaluate on Π, e. This is because the predicate NumberQ gives True only on explicit
numbers. If we use a weaker yet predicate NumericQ (which gives True on any quantity on which the
application of N command produces a number), we get:

160

We see that it did not evaluate on Π, e. This is because the predicate NumberQ gives True only on explicit
numbers. If we use a weaker yet predicate NumericQ (which gives True on any quantity on which the
application of N command produces a number), we get:

Clear@fD;
f@x_ ? NumericQ, y_ ? NumericQD := Power@x, yD;

8f@1D, f@2, 3D, f@5, 2D, f@1, 2, 3D, f@a, bD, f@1.5, 2.0D, f@E, PiD<

9f@1D, 8, 25, f@1, 2, 3D, f@a, bD, 2.25, ãΠ=
Of course, the conditions imposed on the arguments can be different for each argument. We can, for
example, limit the base to be in the interval from 1 to 3:

Clear@fD;
f@x_ �; HNumericQ@xD && 1 £ x £ 3L, y_ ? NumericQD := Power@x, yD;

8f@1D, f@2, 3D, f@5, 2D, f@1, 2, 3D, f@a, bD, f@1.5, 2.0D, f@E, PiD<

9f@1D, 8, f@5, 2D, f@1, 2, 3D, f@a, bD, 2.25, ãΠ=
Now the function evaluated non-trivially on the second, next to last and last expressions in the list.

� 4.6.2.2 Constraints that mix the function arguments

One can also impose more general constraints which will depend on both arguments. But in this case, the
constraint has to be placed outside of the function parameters sequence, otherwise the function may not
perform correctly (because it may use global values instead of those passed to the function, for some
parameters. For a more detailed discussion of these issues, see Mathematica Help or Mathematica Book).
Let us, for instance, define a function of 2 arguments, which will subtract the second from the first, but
only if the first is equal to the square of the second:

Clear@g, a, bD;
g@x_, y_D �; Hx � y^2L := x -y;

8g@1, 2D, g@9, 3D, g@a, bD, g@a^2, aD<
9g@1, 2D, 6, g@a, bD, -a +a2=

If we want our function to work on numbers only, this can be done as before:

Clear@g, a, bD;
g@x_ ? NumberQ, y_ ? NumberQD �; Hx � y^2L := x -y;

8g@1, 2D, g@9, 3D, g@a, bD, g@a^2, aD<
9g@1, 2D, 6, g@a, bD, gAa2, aE=

 161

� 4.6.2.3 Using constraints to make functions safer

Here is another example: a function extracts a sublist of < n > elements from a list, but only if < n > is not
larger than the length of the list :

Clear@grabD;
grab@x_, n_D �; Hn £ Length@xDL := Take@x, nD;

8grab@81, 2, 3, 4, 5<, 3D, grab@81, 2, 3, 4, 5<, 6D<
881, 2, 3<, grab@81, 2, 3, 4, 5<, 6D<

If, for comparison, we just use Take, we get an error message in the second case :

8Take@81, 2, 3, 4, 5<, 3D, Take@81, 2, 3, 4, 5<, 6D<
Take::take : Cannot take positions 1 through 6 in 81, 2, 3, 4, 5<. �

881, 2, 3<, Take@81, 2, 3, 4, 5<, 6D<
However, our function is not completely foolproof, since the following call results in an error :

grab@81, 2, 3, 4, 5<, 2.5D
Take::seqs : Sequence specification H+n, -n, 8+n<,

8-n<, 8m, n<, or 8m, n, s<L expected at position 2 in Take@81, 2, 3, 4, 5<, 2.5D. �

Take@81, 2, 3, 4, 5<, 2.5D
It will be better to restrict our variables as follows :

Clear@grabD;
grab@x_List, n_IntegerD �; Hn £ Length@xDL := Take@x, nD;
grab@81, 2, 3, 4, 5<, 2D
grab@1, 5D
grab@81, 2, 3, 4, 5<, 2.5D
81, 2<
grab@1, 5D
grab@81, 2, 3, 4, 5<, 2.5D

Sometimes we may need some action to be performed in the case of incorrect input, for example some
catchall error message to be issued or the error input analyzed for the error type. In this case, we may use
a technique based on a possibility of Mathematica functions to have multiple definitions (to be discussed
in the next session in detail). What we have to do is just to give our function another more general defini-
tion, like this:

162

Clear@grabD;
grab@x_List, n_IntegerD �; Hn £ Length@xDL := Take@x, nD;
grab@x__D := Print@"Mistake in the typeHsL of arguments"D;
grab@81, 2, 3, 4, 5<, 4D
grab@1, 5D
grab@81, 2, 3, 4, 5<, 2.5D
81, 2, 3, 4<

Mistake in the typeHsL of arguments

Mistake in the typeHsL of arguments

In the last definition we used the pattern with a double underscore (BlankSequence), to account for a case
of 2 or more arguments, which is what we need here.

� 4.6.2.4 Warning: a subtle kind of mistakes

The matter of this subsection is likely to be obvious for many people, but it is important enough to be
mentioned. When we build our functions on top of the built - in ones, we count, perhaps unconsciously,
on the error - checking and warning messages of the built - in functions as a safety net. However, there
could be cases when the input which is erroneous for us will be interpreted fine by the built - in function
we use, but will perhaps mean something completely different from what we need. Consider the previous
example with the following input :

grab@81, 2, 3, 4, 5<, -3D
83, 4, 5<

It is clear what happened: the built - in Take interpreted our input as to take the arguments from the end of
the list. Did we really mean this functionality? May be, but may be not. To be absolutely safe, we had to
use the <n_Integer?NonNegative> pattern. In particular, the following input already will result in an error
message:

grab@81, 2, 3, 4, 5<, -10D
Take::take : Cannot take positions -10 through -1 in 81, 2, 3, 4, 5<. �

Take@81, 2, 3, 4, 5<, -10D
Generally, this means that extensive tests have to be performed on the code we write, since the absence of
error messages on some input does not necessarily mean the correct logic.

Clear@f, g, grabD;
� 4.6.3 Examples of functions of several variables (arguments)

Here I will give some examples of functions that take several arguments. Since I did not want to give built
- in functions as examples, and on the other hand we don’ t yet have the full functional machinery, some of
the code may be unclear. You have two choices then: either have a quick look at the next chapter when
this machinery is developed, or (recommended) just relax and consider it only an illustration of our
present discussion.

� 4.6.3.1 Example: words containing a given substring

 163

�

 4.6.3.1 Example: words containing a given substring

Here is a function which takes some list of words and returns all the words containing a given substring.

Clear@findWordsWithD;
findWordsWith@textwords_List, str_StringD :=

Pick@textwords,
Map@StringMatchQ@ð, "*" <> str <> "*"D &, textwordsDD;

This will be our list of words (taken from Mathematica book)

wlist = 8"Most", "of", "this", "Part", "assumes", "no",

"specific", "prior", "knowledge", "of", "computer", "science",

"Nevertheless", "some", "of", "it", "ventures", "into",

"some", "fairly", "complicated", "issues", "You", "can",

"probably", "ignore", "these", "issues", "unless", "they",

"specifically", "affect", "programs", "you", "are", "writing"<;
Some examples :

findWordsWith@wlist, "om"D
8computer, some, some, complicated<
findWordsWith@wlist, "ss"D
8assumes, Nevertheless, issues, issues, unless<
findWordsWith@wlist, "th"D
8this, Nevertheless, these, they<

In this example, we can make a function safer against bad inputs by checking that the incoming list is
indeed a list of strings. This can be done rather easily with patterns :

Clear@findWordsWithSaferD;
findWordsWithSafer@8textwords__String<, str_StringD :=

Pick@8textwords<,
Map@StringMatchQ@ð, "*" <> str <> "*"D &, 8textwords<DD;

Since the check is purely syntactic, we should not expect a large performance overhead for this check.
Notice that here we had to wrap <textwords> in a list inside the function since now it represents the
sequence of strings - the interior of the list.

Clear@testtext, words, findWordsWithD;
� 4.6.3.2 Example: transforming numbers to decimal from other bases

This function transforms a number given in an arbitrary base less than 10, into a decimal form.

164

Clear@convertToDecimalD;
convertToDecimal@x_Integer, base_Integer �; base < 10D :=

Fold@Hbase* ð1 +ð2L &, 0, IntegerDigits@xDD;
For example :

convertToDecimal@10001, 2D
17

convertToDecimal@10001, 3D
82

Let us map our function on entire list (Map is a functional programming construct described in chapter V) :

binarylist = 8100, 10, 1, 1011, 11101<;
convertToDecimal@ð, 2D & �� binarylist

84, 2, 1, 11, 29<
Clear@binarylist, convertToDecimalD;

� 4.6.3.3 Example: common digit subsequences of two numbers

Here we will be interested in finding common subsequences of digits of two integers. The function will
take 3 arguments - numbers x and y, and the length of the common subsequence. It will return all common
subsequences of this length, as a nested list.

Clear@commonSequencesD;
commonSequences@x_Integer, y_Integer, size_IntegerD :=

Intersection �� HPartition@IntegerDigits@ðD, size, 1D & �� 8x, y<L;
Some examples :

Here are the numbers :

nm1 = 12349086754356712345;

nm2 = 12378695435348712356;

Here are their common subsequences of length 3, 4, and 5 :

commonSequences@nm1, nm2, 3D
881, 2, 3<, 83, 5, 6<, 84, 3, 5<, 85, 4, 3<, 87, 1, 2<<
commonSequences@nm1, nm2, 4D
885, 4, 3, 5<, 87, 1, 2, 3<<
commonSequences@nm1, nm2, 5D
8<

More serious example : random numbers 500 digits each.

 165

Hnm3 = Random@Integer, 81, 10^500<DL �� Short

Hnm4 = Random@Integer, 81, 10^500<DL �� Short

271458083351 �474� 6872373986376

272528102705 �475� 0739006022299

Here are the common sequences :

commonSequences@nm3, nm4, 4D
880, 2, 4, 5<, 80, 2, 8, 9<, 81, 2, 8, 5<, 81, 4, 3, 6<,

81, 8, 1, 7<, 82, 0, 8, 6<, 82, 3, 0, 7<, 82, 3, 9, 3<,
82, 4, 0, 0<, 82, 5, 2, 8<, 83, 1, 0, 7<, 83, 5, 7, 9<, 84, 2, 7, 0<,
84, 5, 8, 0<, 85, 0, 2, 0<, 85, 6, 1, 4<, 85, 6, 9, 5<, 86, 8, 2, 4<,
86, 8, 6, 0<, 87, 0, 0, 2<, 87, 1, 8, 6<, 88, 1, 7, 1<, 88, 2, 4, 0<,
88, 8, 9, 0<, 88, 9, 0, 1<, 89, 4, 4, 6<, 89, 4, 4, 9<, 89, 7, 3, 3<<
commonSequences@nm3, nm4, 5D
881, 8, 1, 7, 1<, 86, 8, 2, 4, 0<, 88, 2, 4, 0, 0<, 88, 8, 9, 0, 1<<
commonSequences@nm3, nm4, 6D
886, 8, 2, 4, 0, 0<<
commonSequences@nm3, nm4, 7D
8<

Clear@nm1, nm2, nm3, nm4, commonSequencesD;
� 4.6.3.4* A longer example - numbers and intervals

This will be a more complicated example dealing with numbers and intervals. Please ignore the code in
the body of the functions below, and concentrate on the patterns and type checks used in the definitions
(l.h.s.) of these functions. If this example is still too hard, it can be skipped on the first reading.

Here are 20 random numbers in the range [1, 20] :

numbers = Table@Random@Integer, 81, 20<D, 820<D
818, 6, 12, 19, 7, 11, 8, 7, 17, 18, 11, 6, 13, 10, 16, 19, 13, 3, 6, 3<

Let us generate random (possibly overlapping) intervals :

nints = 6;

ints = Table@
8x = Random@Integer, 81, 19<D, x +Random@Integer, 81, 10<D<, 8nints<D

885, 7<, 82, 7<, 813, 20<, 810, 15<, 814, 24<, 817, 21<<
The following function takes a list of numbers and a list of intervals, and returns intervals together with all
the numbers which belong to them :

166

Clear@numsInIntervalsD;
numsInIntervals@nums_List, ints_ListD :=

MapAt@Sort, ð, 2D & ��

Reap@Function@8x<, Sow@x, Select@ints, ð@@1DD £ x £ ð@@2DD &DDD ��

nums, _, ListD@@2DD;
Let us check :

tst = numsInIntervals@numbers, intsD
88813, 20<, 813, 13, 16, 17, 18, 18, 19, 19<<,

8814, 24<, 816, 17, 18, 18, 19, 19<<,
8817, 21<, 817, 18, 18, 19, 19<<, 885, 7<, 86, 6, 6, 7, 7<<,
882, 7<, 83, 3, 6, 6, 6, 7, 7<<, 8810, 15<, 810, 11, 11, 12, 13, 13<<<

The following function returns for a given number all the intervals which contain this number :

Clear@intervalsForNums1D;
intervalsForNums1@nums_List, ints_ListD :=

Module@8x, y<,
Union �� ð & ��

HTranspose �� Outer@If@ð2@@1DD £ ð1 £ ð2@@2DD, 8ð1, ð2<,
8ð1, 8<<D &, Union@numsD, ints, 1DL �.

88x___, 8<, y___< ¦ 8x, y<, 8x_Integer< ¦ x<D
Let us check :

intervalsForNums1@numbers, intsD
883, 882, 7<<<, 86, 882, 7<, 85, 7<<<,

87, 882, 7<, 85, 7<<<, 88, 8<<, 810, 8810, 15<<<,
811, 8810, 15<<<, 812, 8810, 15<<<, 813, 8810, 15<, 813, 20<<<,
816, 8813, 20<, 814, 24<<<, 817, 8813, 20<, 814, 24<, 817, 21<<<,
818, 8813, 20<, 814, 24<, 817, 21<<<,
819, 8813, 20<, 814, 24<, 817, 21<<<<

Here is an alternative realization :

intervalsForNums2@nums_List, ints_ListD :=

Module@8y<,
y = Reap@

Sow@ð, Select@nums, Function@8x<, ð@@1DD £ x £ ð@@2DDDDD & ��

ints, _, ListD@@2DD;
y = Join@y, 8ð, 8<< & �� Complement@nums, Transpose@yD@@1DDDD;
Sort@yDD;

Check again :

 167

Check again :

intervalsForNums2@numbers, intsD
883, 882, 7<, 82, 7<<<,

86, 885, 7<, 85, 7<, 85, 7<, 82, 7<, 82, 7<, 82, 7<<<,
87, 885, 7<, 85, 7<, 82, 7<, 82, 7<<<, 88, 8<<,
810, 8810, 15<<<, 811, 8810, 15<, 810, 15<<<, 812, 8810, 15<<<,
813, 8813, 20<, 813, 20<, 810, 15<, 810, 15<<<,
816, 8813, 20<, 814, 24<<<, 817, 8813, 20<, 814, 24<, 817, 21<<<,
818, 8813, 20<, 813, 20<, 814, 24<, 814, 24<, 817, 21<, 817, 21<<<,
819, 8813, 20<, 813, 20<, 814, 24<, 814, 24<, 817, 21<, 817, 21<<<<

Both these functions can also serve as examples of code modularization (uses of Module construct) and
functional programming. So far we give them just as examples of how typical user - defined functions of
several arguments look like.

Type checking and function bulletproofing

For the last function, we can add conditions to check if the input is right. This will lead to a (small) perfor -
mance overhead, though.

Clear@intervalsForNumsWithCheckD;
intervalsForNumsWithCheck@nums_List, ints_ListD �;

And@And �� HNumericQ �� numsL, Union@Length �� intsD === 82<,
And �� HNumericQ �� Flatten@intsDLD :=

Module@8x, y<,
Union �� ð & ��

HTranspose �� Outer@If@ð2@@1DD £ ð1 £ ð2@@2DD, 8ð1, ð2<,
8ð1, 8<<D &, Union@numsD, ints, 1DL �.

88x___, 8<, y___< ¦ 8x, y<, 8x_Integer< ¦ x<D
An additional condition checks that the list < nums > indeed contains only numeric quantities, that all
sublists of the interval list < ints > have length 2 (that is, they indeed define intervals), and that all elements
in the interval sublists are also numerical quantities. These conditions are implemented rather compactly
using functional programming constructs. Note that we did not introduce any auxiliary functions which
check these conditions - these functions actually "live" inside the condition check itself. Of course in cases
when several large functions share the same condition checks, it may become advantageous to put these
checks in separate functions.

Now that we looked at the way how these type checks can be implemented using functional programming
constructs, we can consider a different way to implement them - based on patterns only :

168

Clear@intervalsForNumsWithCheckPatternD;
intervalsForNumsWithCheckPattern@nums : 8__ ? NumericQ<,
ints : 88_ ? NumericQ, _ ? NumericQ< ..<D :=

Module@8x, y<,
Union �� ð & ��

HTranspose �� Outer@If@ð2@@1DD £ ð1 £ ð2@@2DD, 8ð1, ð2<,
8ð1, 8<<D &, Union@numsD, ints, 1DL �.

88x___, 8<, y___< ¦ 8x, y<, 8x_Integer< ¦ x<D
We see that the pattern - based check is even more concise and elegant (and perhaps also faster in this
case). We used a variety of pattern building blocks here: names for entire patterns (section 4.2.8), double
underscore (BlankSequence, section 4.2.4.7), conditional patterns, repeated patterns (section 4.2.10).

Let us now check that our functions will not attempt to work on a wrong input.

intervalsForNumsWithCheck@
81, 2, 3, 4, 5, 6, 7<, 882, 6<, 83, 8<<D �� Short

881, 8<<, �5�, 87, 883, 8<<<<
intervalsForNumsWithCheckPattern@

81, 2, 3, 4, 5, 6, 7<, 882, 6<, 83, 8<<D �� Short

881, 8<<, �5�, 87, 883, 8<<<<
Now wrong inputs:

First attempt :

Clear@aD;
intervalsForNumsWithCheck@81, 2, 3, a, 5, 6, 7<, 882, 6<, 83, 8<<D
intervalsForNumsWithCheck@81, 2, 3, a, 5, 6, 7<, 882, 6<, 83, 8<<D
intervalsForNumsWithCheckPattern@

81, 2, 3, a, 5, 6, 7<, 882, 6<, 83, 8<<D
intervalsForNumsWithCheckPattern@

81, 2, 3, a, 5, 6, 7<, 882, 6<, 83, 8<<D
Without protection :

 169

intervalsForNums1@81, 2, 3, a, 5, 6, 7<, 882, 6<, 83, 8<<D
Transpose::nmtx : The first two levels of the one-dimensional

list 8If@2 £ a £ 6, 8a, 82, 6<<, 8a, 8<<D, If@�1�D< cannot be transposed. �

Transpose::nmtx : The first two levels of the one-dimensional

list 8If@2 £ a £ 6, 8a, 82, 6<<, 8a, 8<<D, If@�1�D< cannot be transposed. �

Transpose::nmtx : The first two levels of the one-dimensional

list 8If@2 £ a £ 6, 8a, 82, 6<<, 8a<D, If@3 £ a £ 8, �1�, 8a<D< cannot be transposed. �

General::stop : Further output of Transpose::nmtx will be suppressed during this calculation. �

881, 8<<, 82, 882, 6<<<, 83, 882, 6<, 83, 8<<<, 85, 882, 6<, 83, 8<<<,
86, 882, 6<, 83, 8<<<, 87, 883, 8<<<, Transpose@

8If@2 £ a £ 6, 8a, 82, 6<<, 8a<D, If@3 £ a £ 8, 8a, 83, 8<<, 8a<D<D<
Second attempt :

Clear@aD;
intervalsForNumsWithCheck@81, 2, 3, 4, 5, 6, 7<, 882, a<, 83, 8<<D
intervalsForNumsWithCheck@81, 2, 3, 4, 5, 6, 7<, 882, a<, 83, 8<<D
intervalsForNumsWithCheckPattern@

81, 2, 3, 4, 5, 6, 7<, 882, a<, 83, 8<<D
intervalsForNumsWithCheckPattern@

81, 2, 3, 4, 5, 6, 7<, 882, a<, 83, 8<<D
Without protection :

intervalsForNums1@81, 2, 3, 4, 5, 6, 7<, 882, a<, 83, 8<<D
Transpose::nmtx :

The first two levels of the one-dimensional list 8If@2 £ a, 82, 82, a<<, 82, 8<<D, 82, 8<<< cannot be transposed. �

Transpose::nmtx :

The first two levels of the one-dimensional list 8If@3 £ a, 83, 82, a<<, 83, 8<<D, 83, 83, 8<<< cannot be transposed. �

Transpose::nmtx :

The first two levels of the one-dimensional list 8If@4 £ a, 84, 82, a<<, 84, 8<<D, 84, 83, 8<<< cannot be transposed. �

General::stop : Further output of Transpose::nmtx will be suppressed during this calculation. �

881, 8<<, Transpose@8If@2 £ a, 82, 82, a<<, 82<D, 82<<D,
Transpose@8If@3 £ a, 83, 82, a<<, 83<D, 83, 83, 8<<<D,
Transpose@8If@4 £ a, 84, 82, a<<, 84<D, 84, 83, 8<<<D,
Transpose@8If@5 £ a, 85, 82, a<<, 85<D, 85, 83, 8<<<D,
Transpose@8If@6 £ a, 86, 82, a<<, 86<D, 86, 83, 8<<<D,
Transpose@8If@7 £ a, 87, 82, a<<, 87<D, 87, 83, 8<<<D<

Third attempt :

intervalsForNumsWithCheck@81, 2, 3, 4, 5, 6, 7<, 882, 6<, 83, 8<, 81<<D
intervalsForNumsWithCheck@81, 2, 3, 4, 5, 6, 7<, 882, 6<, 83, 8<, 81<<D

170

intervalsForNumsWithCheckPattern@
81, 2, 3, 4, 5, 6, 7<, 882, 6<, 83, 8<, 81<<D
intervalsForNumsWithCheckPattern@

81, 2, 3, 4, 5, 6, 7<, 882, 6<, 83, 8<, 81<<D
Without protection :

intervalsForNums1@81, 2, 3, 4, 5, 6, 7<, 882, 6<, 83, 8<, 81<<D
Part::partw : Part 2 of 81< does not exist. �

Part::partw : Part 2 of 81< does not exist. �

Part::partw : Part 2 of 81< does not exist. �

General::stop : Further output of Part::partw will be suppressed during this calculation. �

Transpose::nmtx : The first two levels of the one-dimensional

list 881, 8<<, 81, �1�<, If@1 £ 81<P2T, 81, 81<<, 81, 8<<D< cannot be transposed. �

8Transpose@8If@1 £ 1P2T, 81, 1<, 81<D, 81<<D,
Transpose@8If@2 £ 1P2T, 82, 1<, 82<D, 82<, 82, 82, 6<<<D,
Transpose@8If@3 £ 1P2T, 83, 1<, 83<D, 83, 82, 6<<, 83, 83, 8<<<D,
Transpose@8If@4 £ 1P2T, 84, 1<, 84<D, 84, 82, 6<<, 84, 83, 8<<<D,
Transpose@8If@5 £ 1P2T, 85, 1<, 85<D, 85, 82, 6<<, 85, 83, 8<<<D,
Transpose@8If@6 £ 1P2T, 86, 1<, 86<D, 86, 82, 6<<, 86, 83, 8<<<D,
Transpose@8If@7 £ 1P2T, 87, 1<, 87<D, 87<, 87, 83, 8<<<D<

It is usually a good idea to protect your function from the wrong input. Of course, chances are that the
wrong input uncaught by your code will trigger error messages of some built - in functions you are using,
but if you want to build on the functionality you are presently developing, it is best to make your own
functions acting as much like built - ins as possible. Once the quick-and-dirty solution is found and tested,
it is a good practice to add input checks (just make sure that they are not redundant).

� 4.6.4 Functions with variable number of arguments

Sometimes one may need to define a function whose number of arguments is not fixed, either because it
can change from one call to the other, or because there is no need to refer to the individual arguments, or
both. To do this, one may use BlankSequence (__) or BlankNullSequence (___), depending on whether
or not the zero arguments case has to be included. Several built - in functions are in fact defined on an
arbitrary number of arguments, examples being Plus, Times, Equal, Alternatives, SameQ and a few
others.

As an example, we will define our own version of Plus function :

Clear@ourPlusD;
ourPlus@x__D := Plus@xD;
8ourPlus@1D, ourPlus@1, 2D, ourPlus@1, 2, 3D<
81, 3, 6<

The built - in Plus is however defined also for zero arguments (through convention) :

 171

Plus@D
0

Since we used BlankSequence, the zero argument case is not included in our function definition :

ourPlus@D
ourPlus@D

If we want it to behave just as the built - in Plus in all cases, we have to use BlankNullSequence :

Clear@ourPlusD;
ourPlus@x___D := Plus@xD;

Check now :

ourPlus@D
0

Let us now define a function which will multiply its first argument by the sum of all others :

Clear@firstMultiplyD;
firstMultiply@x_, y___D := x*Plus@yD;

We have included the case when there is a single argument. Check :

8firstMultiply@1D, firstMultiply@1, 2D, firstMultiply@1, 2, 3D<
80, 2, 5<

There is no ambiguity in this case as to which arguments will be matched with < x_ > pattern and which
with < y___ >, since < x_ > states that there should be exactly one - the first one, and all the rest are
matched by < y___ > .

The other way to define the same function would be not to split arguments on the level of the definition
but to do that later, in the body of the function :

Clear@firstMultiplyAltD;
firstMultiplyAlt@x__D := First@8x<D * Apply@Plus, Rest@8x<DD;

This is exactly equivalent to the previous realization. The role of Apply here is to hand to Plus the interior
of the list Rest[{x}], rather than the list itself. :

8firstMultiplyAlt@1D,
firstMultiplyAlt@1, 2D, firstMultiplyAlt@1, 2, 3D<

80, 2, 5<
One has however to avoid ambiguous patterns like the following one :

Clear@fD;
f@x__, y__D := Plus@xD *Plus@yD;
8f@1, 2D, f@1, 2, 3D, f@1, 2, 3, 4D<
82, 5, 9<

This example is in fact useful to examine the way how the pattern - matcher works: it is obvious that it
starts from the left, and once it finds out that < 1 > matches < x__ >, then all the rest of the arguments
match < y__ > . However, one should not rely on a particular behavior of the pattern - matcher, and
neither should one use ambiguous patterns like the one above.

172

This example is in fact useful to examine the way how the pattern - matcher works: it is obvious that it
starts from the left, and once it finds out that < 1 > matches < x__ >, then all the rest of the arguments
match < y__ > . However, one should not rely on a particular behavior of the pattern - matcher, and
neither should one use ambiguous patterns like the one above.

The more general pattern we use in a function definition, the more dangerous it is in the sense that it may
match incorrectly in situations completely unforeseen by the developer. We already discussed this issue
when we considered patterns and rules separately (section 4.2.4.7), but this is as true for function defini-
tions as it was for local rules and patterns (since function definitions are just global rules). The less you
use these patterns the safer your functions will be - use them only when necessary.

4.7 Functions with multiple definitions

We have seen such functions many time in our examples already, but here we will treat them more system-
atically. So, In Mathematica a function can have more than one definition. More precisely, there can be
more than one rule associated with a function symbol, with different rules applying on different forms of
arguments. In particular, one and the same function can be defined differently on different number and
types of arguments. All this is possible because patterns are used for function definitions. To start with,
consider an example:

� 4.7.1 Example: a discontinuous function

Consider a function which is 1 on integer numbers and - 1 on those which are not integer (in the spirit of
the Dirichlet function - the latter is very different of course, being defined differently on rational and
irrational numbers) :

Clear@fD;
f@x_IntegerD := 1;

f@x_D := -1;

We check :

8f@1D, f@1.5D, f@2D, f@2.5D, f@4D, f@PiD, f@ED<
81, -1, 1, -1, 1, -1, -1<

Notice that in the second part of our definition in this case we don’ t necessarily need to use a pattern that
is exact opposite of the first one, which would look like f[x_ /; Not[IntegerQ[x]]]. This is so because
when the first pattern does not match, the second will match automatically, since it matches any single
expression.

It is interesting that if we plot this function, the values on the integers (1) are not visible. One may think
that this is because the probability that the sample point in the Plot procedure becomes exactly integer is
very small (integers represent a set of measure 0). However, the truth is simpler: the numerical values for
the sample points will never match the _Integer pattern just syntactically.

Plot@f@xD, 8x, 0, 10<D

 173

2 4 6 8 10

-2.0

-1.5

-1.0

-0.5

� 4.7.2 Adding more definitions

Let us now add another definition to our function, so that it will give 2 on every even number :

f@x_Integer ?EvenQD := 2;

Check now :

8f@1D, f@1.5D, f@2D, f@2.5D, f@4D, f@PiD, f@ED<
81, -1, 1, -1, 1, -1, -1<

We see that nothing changed - it does not work (It is interesting that the result is correct in version 6). The
reason can be seen by looking at function definitions:

?f

Global‘f

f@x_IntegerD := 1

f@x_Integer?EvenQD := 2

f@x_D := -1

By the way, the question mark in this context means the Information command, and returns the informa-
tion contained in the global rule base on a given symbol (section 2.2.2).

We see that the reason for the above behavior is that Mathematica was able to figure out that the pattern
f[x_Integer?EvenQ] is more specific than the pattern f[x_], but unable to figure out that it is also more
specific than f[x_Integer] (this refers to versions prior to 6.0. In 6.0, the pattern-matcher does figure out
the latter fact as well). The simplest thing one can do is to redefine the function, by placing definitions in a
different order:

Clear@fD;
f@x_Integer ?EvenQD := 2;

f@x_IntegerD := 1;

f@x_D := -1;

Check now :

174

8f@1D, f@1.5D, f@2D, f@2.5D, f@4D, f@PiD, f@ED<
81, -1, 2, -1, 2, -1, -1<

� 4.7.3 Changing definitions selectively

The above pattern - based mechanism of function definitions allows them to be very flexible. In particular,
it is quite possible to change or delete a given definition corresponding to the specific pattern, without
introducing changes in other definitions associated with this function.

To change an already existing definition for some pattern, to a new one, one just needs to redefine a
function on this particular pattern with a new right hand side. For example, we want our first definition
for < f > from the previous example to return not 2, but 4 on even numbers. We simply redefine :

f@x_Integer ?EvenQD := 4;

Observe :

?f

Global‘f

f@x_Integer?EvenQD := 4

f@x_IntegerD := 1

f@x_D := -1

It is not required that the pattern tags (names) in a new pattern are literally the same as those for the old
one (but otherwise the patterns have to be the same if we want to replace old definition with the new one) :

f@y_Integer ?EvenQD := 6;

Check now :

?f

Global‘f

f@y_Integer?EvenQD := 6

f@x_IntegerD := 1

f@x_D := -1

As we see, the old definition still got replaced by a new one, since the pattern essentially did not change,
and Mathematica can see that (this wasn’t the case in some early versions).

 175

� 4.7.4 Warning: a common mistake

It is quite common during the development of some function to change the patterns for the function’ s
arguments. However, if one does not remove the old definition, it will remain in the rule base and may
lead to errors when testing the function. Always make sure that you clear old definitions when you change
a definition (argument patterns) of the function you are developing. One way to automate this is to always
start with a line Clear[f] before any definition for < f > is entered - this is the practice I usually adhere to.

� 4.7.5 Selective removal of the definitions

If we would like to remove the definition of the function < f > associated with some pattern < pattern >,
there is a special built - in command tailor - made for this : Unset. Its short - hand notation is <= .> (equal
dot). Thus, we have to use either f[pattern] =., or Unset[f[pattern]]. This will remove a given definition.

Let us for instance remove a first definition of the above function < f > . This is done as follows:

f@y_Integer ?EvenQD =.

We now check :

?f

Global‘f

f@x_IntegerD := 1

f@x_D := -1

As a side remark, it is interesting that the above possibilities of selective changes and/or removals of
function definitions can be used in quite an unusual way : the function itself may (temporarily, for
instance) change part of its own definitions during its execution. One reason why this may be useful is that
sometimes it is a possible workaround to avoid an infinite recursion.

� 4.7.6 Case study: changing the weights of words

� The problem

Consider some set of words, on pairs of which we will define a model "mutual attraction" function which
will be equal to the number of common letters in the given pair of words. As a model set of words we will
take the one we have used already :

wlist = ToLowerCase �� 8"Most", "of", "this", "Part", "assumes", "no",

"specific", "prior", "knowledge", "of", "computer", "science",

"Nevertheless", "some", "of", "it", "ventures", "into",

"some", "fairly", "complicated", "issues", "You", "can",

"probably", "ignore", "these", "issues", "unless", "they",

"specifically", "affect", "programs", "you", "are", "writing"<;
(we have converted words letters to the lowercase).

� The solution

176

�

The solution

Our function will be a function of two strings - words. It is very easy to write - split words to characters,
and compute a length of the intersection of the character lists:

Clear@wordFunctionD;
wordFunction@x_String, y_StringD :=

Length@Intersection@Characters@xD, Characters@yDDD;
For example :

wordFunction@"word", "word"D
4

� Testing the solution

Let us now make a list of our words together with the weights that these words have with respect to some
fixed word, say "computer" :

wlist1 = Table@8wlist@@iDD, wordFunction@"computer", wlist@@iDDD<,
8i, 1, Length@wlistD<D

88most, 3<, 8of, 1<, 8this, 1<, 8part, 3<, 8assumes, 3<, 8no, 1<,
8specific, 3<, 8prior, 3<, 8knowledge, 2<, 8of, 1<, 8computer, 8<,
8science, 2<, 8nevertheless, 3<, 8some, 3<, 8of, 1<, 8it, 1<,
8ventures, 4<, 8into, 2<, 8some, 3<, 8fairly, 1<, 8complicated, 6<,
8issues, 2<, 8you, 2<, 8can, 1<, 8probably, 3<, 8ignore, 3<,
8these, 2<, 8issues, 2<, 8unless, 2<, 8they, 2<, 8specifically, 3<,
8affect, 3<, 8programs, 4<, 8you, 2<, 8are, 2<, 8writing, 2<<

We can now sort the words according to the highest weight:

Sort@wlist1, ð1@@2DD > ð2@@2DD &D
88computer, 8<, 8complicated, 6<, 8programs, 4<, 8ventures, 4<,

8affect, 3<, 8specifically, 3<, 8ignore, 3<, 8probably, 3<,
8some, 3<, 8some, 3<, 8nevertheless, 3<, 8prior, 3<, 8specific, 3<,
8assumes, 3<, 8part, 3<, 8most, 3<, 8writing, 2<, 8are, 2<,
8you, 2<, 8they, 2<, 8unless, 2<, 8issues, 2<, 8these, 2<, 8you, 2<,
8issues, 2<, 8into, 2<, 8science, 2<, 8knowledge, 2<, 8can, 1<,
8fairly, 1<, 8it, 1<, 8of, 1<, 8of, 1<, 8no, 1<, 8this, 1<, 8of, 1<<

� Manipulating weights of individual words

Suppose now that we want to bring some words up in the list, that is, change the "strength function" of
these words with the word "computer" by hand. Such new definitions can be implemented according to
the above described scheme - we just have to add specific definitions of our weight function on specific
words. Let these words be "programs", "knowledge" and "science". Let us give them weights :

 177

wordFunction@"computer", "programs"D = 20;

wordFunction@"computer", "science"D = 15;

wordFunction@"computer", "knowledge"D = 10;

Now let us have a look on the new definitions of < wordFunction > :

?wordFunction

Global‘wordFunction

wordFunction@computer, knowledgeD = 10

wordFunction@computer, programsD = 20

wordFunction@computer, scienceD = 15

wordFunction@x_String, y_StringD := Length@HCharacters@xDL Ý HCharacters@yDLD
Let us note two things: first, in these latter definitions we used Set rather than SetDelayed (it does not
matter much for constant r.h.s.), and second, that these definitions are placed before the more general one
even though they were added later - Mathematica figured out their level of generality and positioned them
accordingly. This means that they will be applied before the more general one, and thus the general one
does not "threaten" the more specific ones. Let us check now :

Sort@Table@8wlist@@iDD, wordFunction@"computer", wlist@@iDDD<,
8i, Length@wlistD<D, ð1@@2DD > ð2@@2DD &D

88programs, 20<, 8science, 15<, 8knowledge, 10<, 8computer, 8<,
8complicated, 6<, 8ventures, 4<, 8affect, 3<, 8specifically, 3<,
8ignore, 3<, 8probably, 3<, 8some, 3<, 8some, 3<, 8nevertheless, 3<,
8prior, 3<, 8specific, 3<, 8assumes, 3<, 8part, 3<, 8most, 3<,
8writing, 2<, 8are, 2<, 8you, 2<, 8they, 2<, 8unless, 2<,
8issues, 2<, 8these, 2<, 8you, 2<, 8issues, 2<, 8into, 2<, 8can, 1<,
8fairly, 1<, 8it, 1<, 8of, 1<, 8of, 1<, 8no, 1<, 8this, 1<, 8of, 1<<

Now let us remove these definitions :

wordFunction@"computer", "programs"D =.;

wordFunction@"computer", "science"D =.;

wordFunction@"computer", "knowledge"D =.;

We check now :

?wordFunction

Global‘wordFunction

wordFunction@x_String, y_StringD := Length@HCharacters@xDL Ý HCharacters@yDLD
Only the general one remains.

178

� Automating the process (advanced)

It is interesting that the process of giving new definitions to some function can be automated by another
function. In particular, let us define :

Clear@giveDefinitionsD;
giveDefinitions@f_, args_List, values_ListD �;

Length@argsD � Length@valuesD :=

HMapThread@Set, 8Unevaluated@f@Sequence �� ðDD & �� args,

values<D;L;
This function is quite general (although one may write it more efficiently) : it takes the name of another
function, a list of arguments and a list of values, and creates the new definitions for the supplied function
accordingly. At the same time, any other definitions of this function will not be affected. This is our exam-
ple :

giveDefinitions@wordFunction, 88"computer", "programs"<,
8"computer", "science"<, 8"computer", "knowledge"<<, 820, 15, 10<D

We check now :

?wordFunction

Global‘wordFunction

wordFunction@computer, knowledgeD = 10

wordFunction@computer, programsD = 20

wordFunction@computer, scienceD = 15

wordFunction@x_String, y_StringD := Length@HCharacters@xDL Ý HCharacters@yDLD
The technique just illustrated allows some functions to manipulate the definitions of other functions, which
allows us to control the program execution in a very flexible way.

Functions like < giveDefinitions >, which in effect manipulate other functions, are called higher - order
functions. Their use is quite common in the functional programming style. We will cover a lot of built - in
higher - order functions in the chapter V.

Clear@wordFunction, wlist, wlist1D;

 179

4.8 Larger functions, local variables and the code modularization

In the majority of real situations, the code for a typical function is longer than one or two lines (in other
words, not every problem can be solved by one - liners). Also, it is often convenient to introduce intermedi-
ate variables, both to avoid redundant computations and to improve the code readability. Such variables
one has to localize, in order to avoid name conflicts with the global variables already defined in the sys-
tem, and in general not to "pollute" the global name space. On the scale of a single function or program,
there are 3 constructs in Mathematica which provide this functionality: Module, Block and With. These
constructs are explained in detail in Mathematica Book and Mathematica Help, so I will say just a few
words about them here. On the larger scale, this is supported through the system of packages - we will
consider them in part II.

� 4.8.1 Module

The goal of Module is to localize names of the variables, and avoid the name conflicts between the global
names (and by global I mean everything exterior to the body of the Module), and the local names used in
the code inside Module. What is important is that if this code calls some function which contains one of
the global symbols with the name coinciding with the name of some of the local variables, the global value
will be used. Put in another way, the variables are localized in space - only in the code inside Module, but
not in functions which may be called from within this Module. The way Module does it is to create tempo-
rary variables with names which can not possibly collide with any other name (but see Mathematica Book
for some subtleties). In fact, the workings of Module correspond most directly to standard variable scopes
in other languages such as C.

The format of Module is Module[{var1, var2, ...}, body], where var1, var2, ... are the variables we
localize, and < body > is the body of the function. The value returned by Module is the value returned by
the last operator in the <body> (unless an explicit Return[] statement is used within the body of Module.
In this case, the argument of Return[arg] is returned). In particular, if one places the semicolon after this
last operator, nothing (Null) is returned. As a variant, it is acceptable to initialize the local variables in the
place of the declaration, with some global values : Module[{var1 = value1, var2, ...}, body]. However,
one local variable (say, the one "just initialized" can not be used in the initialization of another local vari-
able inside the declaration list. The following would be a mistake : Module[{var1 = value1, var2 = var1,
...}, body] . Moreover, this will not result in an error, but just the global value for the symbol <var1>
would be used in this example for the <var2> initialization (this is even more dangerous since no error
message is generated and thus we don’t see the problem). In this case, it would be better to do initializa-
tion in steps: Module[{var1=value1,var2,...}, var2=var1;body] , that is, include the initialization of part of
the variables in the body of Module.

One can use Return[value] statement to return a value from anywhere within the Module. In this case, the
rest of the code (if any) inside Module is slipped, and the result <value> is returned.

One difference between Module and the localizing constructs in some other programming languages is
that Module allows to define not just local variables, but local functions (essentially, this is because in
Mathematica there is no strong distinction between the two). This opens new interesting possibilities, in
particular this is useful for implementing recursive functions. The same comment holds also for the Block
construct.

A simple example : here is a function which computes the sum of the first <n> natural numbers :

180

A simple example : here is a function which computes the sum of the first <n> natural numbers :

Clear@numberSumD;
numberSum@n_IntegerD :=

Module@8sum = 0, i<, For@i = 1, i £ n, i ++, sum = sum +iD; sumD;
numbersum@10D
numbersum@10D
8i, sum<
8i, sum<

� 4.8.2 Block

Turning to the Block construct, it is used to localize the values of variables rather than names, or, to
localize variables in time rather than in space. This means that in particular, if any function is called from
within the Block (not being a part of the code inside this Block), and it refers globally to some of the
variables with names matching those localized by Block, then the new (local) value for this variable will
be used (this is in sharp contrast with Module). Block can be used to make the system temporarily
"forget" the rules (definitions) associated with a given set of symbols.

The syntax of Block is similar to the one of Module. However, their uses are really different. While I will
not go into further detail here (we will revisit scoping constructs in the part II), the quick summary is that
it is usually more appropriate to use Module for localizing variables, and Block to temporarily change
certain values. In particular, using Block instead of Module may result in errors in some cases. In general,
if you use Block to localize a value of some variable, you have to make sure that no unforeseen variables
with accidentally the same name will be involved in entire computation happening inside this Block,
including possible (nested) calls of external functions which use these variables as global ones.

Here is some simple example with Block :

Clear@a, iD;
a := i^2;

i = 3;

a

Block@8i = 5<, aD
9

25

We see that the value of < a > changed inside block, even though < a > was defined with the global < i >
outside the Block, and no expilcit reference to < i > is present inside the Block.

It is worth mentioning that several built - in commands such as Do, Table, Sum and a few others, use
Block internally to localize their iterator variables. This means that the same caution is needed also when
one uses these commands as with the Block itself. We have already discussed this issue for Table (section
3.4.3) and Do (section 2.8.3).

� 4.8.3. With

 181

�

4.8.3. With

The last scoping construct is With, and it is very different from both Block and Module. It is used to
define local constants. With [{var1 = value1, ...}, body] is used to textually substitute the values < value1
> etc in every place in the < body > where < var1 >, etc occur. In some sense With is closer in spirit to
the C preprocessor macros. In particular, it is not possible to modify the values given to the "variables"
<var1> etc during the declaration, anywhere else inside With, since the occurrences of <var1> etc are
textually substituted with the values <val1> etc before any evaluation takes place. For example, the follow-
ing code:

With@8i = 2<, i = 3D
is just equivalent to a direct attempt of assigning the value 3 to 2 :

With@8i = 2<, i = 3D �� Trace

Set::setraw : Cannot assign to raw object 2. �

9With@8i = 2<, i = 3D, 2 = 3, 9Message@Set::setraw, 2D,
8Set::setraw, Cannot assign to raw object ‘1‘.<,
9MakeBoxesASet::setraw : Cannot assign to raw object 2. �,

StandardFormE, RowBox@8RowBox@8Set, ::, "setraw"<D, : ,

"Cannot assign to raw object \!\H2\L. \!\H*ButtonBox@\"�\",
ButtonStyle->\"Link\", ButtonFrame->None,
ButtonData:>\"paclet:ref�message�Set�setraw\",
ButtonNote -> \"Set::setraw\"D\L"<D=, Null=, 3=

The With construct is very useful in many circumstances, particularly when some symbols will have a
constant value throughout the execution of some piece of code. Since these values can not be changed
once initialized by With, it improves the code readability because it is easy to find the place where the
symbols are defined, and then we know that they will not change. There are also more advanced applica-
tions of With, some of which we will discuss later (for example, one such application is to embed parame-
ters into functions which are created at run-time).

The scoping constructs Block, Module and With can be nested arbitrarily deep one within another. Possi-
ble name conflicts are resolved typically in such a way that the more "internal" definitions have higher
priority. Mathematica Book contains a lucid discussion of the subtleties associated with name conflicts in
nested scoping constructs.

4.9 Function attributes

Apart from the definitions, functions can be assigned certain properties which affect the way they are
executed. These properties are called Attributes. There are many possible attributes which a function may
have, and we will only briefly discuss very few of them here. It is important that all possible attributes are
only those built in Mathematica, and one can not assign to a function a "home-made" attribute that Mathe-
matica does not know.

� 4.9.1 Listable attribute and SetAttributes command

182

�

4.9.1 Listable attribute and SetAttributes command

� 4.9.1.1. A simple example

This attribute is used when we want our function to be automatically threaded over any lists passed to it
as arguments. For example, let us define a function which will square its argument and will also work on
lists :

Clear@flstD;
flst@x_D := x^2;

SetAttributes@flst, ListableD;
Notice how we set the attributes: we use the SetAttributes built-in function. Let us check :

testlist = Range@10D
testlist1 = Range �� Range@5D
81, 2, 3, 4, 5, 6, 7, 8, 9, 10<
881<, 81, 2<, 81, 2, 3<, 81, 2, 3, 4<, 81, 2, 3, 4, 5<<
flst@testlistD
81, 4, 9, 16, 25, 36, 49, 64, 81, 100<
flst@testlist1D
881<, 81, 4<, 81, 4, 9<, 81, 4, 9, 16<, 81, 4, 9, 16, 25<<

� 4.9.1.2 Careful with the Listable attribute

As we can see, listability leads to function working also on nested lists. In fact, this is not always the
desired behavior. For example, here we have a function that takes an interval and computes its length:

Clear@intervalLengthD;
intervalLength@8start_, end_<D := end -start;

We now want it to work on a list of intervals and add the Listable attribute :

SetAttributes@intervalLength, ListableD;
Now we use it on a list of intervals :

intervalLength@881, 4<, 82, 7<, 85, 10<<D
88intervalLength@1D, intervalLength@4D<,

8intervalLength@2D, intervalLength@7D<,
8intervalLength@5D, intervalLength@10D<<

We see that listability made our function go all the way to the elements which are not lists - but this is not
we want. So, if you attach a listable attribute to a function, make sure that its normal arguments are not
lists.

 183

� 4.9.1.3 A way out in some cases

As another example of the similar kind, consider a following one: we are given some function , say < f >,
and two lists , say {1, 2} and {3, 4, 5}, and wish the output be a list : {f[1, {3, 4, 5}], f[2, {3, 4, 5}]} -
that is, to thread < f > over the first list but not the second. For the same reason as above, the straightfor-
ward attempt to assign a listable attribute to < f > will fail :

ClearAll@fD;
SetAttributes@f, ListableD;
f@81, 2<, 83, 4, 5<D
Thread::tdlen : Objects of unequal length in f@81, 2<, 83, 4, 5<D cannot be combined. �

f@81, 2<, 83, 4, 5<D
I can’ t help showing here a hack which solves this sort of problems and which is related to the use of
Listable SubValues, although it is perhaps a bit too advanced at this point.The idea is that we will create a
higher - order function which will take < f >, and both of our lists as parameters. Here is the code :

ClearAll@listThreadD;
listThread@f_, x_, y_D := Module@8auxf<,

Attributes@auxfD = 8Listable<;
auxf@t_D@z_D := f@t, zD;
Through@auxf@xD@yDDD;

Check :

ClearAll@fD;
listThread@f, 81, 2<, 83, 4, 5<D
8f@1, 83, 4, 5<D, f@2, 83, 4, 5<D<

What happens here is that an auxiliary function is defined inside Module, but if you look carefully at its
definition you will realize that it corresponds to global rules stored in SubValues rather than DownValues
(section 2.2.5), because the function <auxf[x]>, considered as a function of <y>, has a composite (non-
atomic) head. Setting the Listable attribute to < auxf > will then only affect the "first" argument < x >, but
not < y > . Note also that neither <t> nor <z> needs to be localized since SetDelayed is used in the defini-
tion, and thus they are local to the auxiliary function scope automatically. The Through operator is needed
here as well - it is covered at the end of chapter V.

This trick is trivial to generalize to the total <n> number of arguments, out of which you need your func-
tion to be Listable on <k>: just place these <k> first - in the place of our <t>, and the rest - in the place of
<z>: auxf[arg1...argk][arg(k+1)...argn].

� 4.1.9.4 Be aware of Listable built - in functions.

There are at least two good reasons to check for a Listable attribute of a built - in function you wish to
use.

184

First - to avoid errors of the type described above, which result from the assumption that the function is
not Listable when in fact it is. A classic example here would be an attempt to sum two nested lists of the
same length, but where lengths of sublists in the two lists are different:

881, 2<, 83, 4, 5<, 86<< +881<, 82, 3<, 84, 5, 6<<
Thread::tdlen : Objects of unequal length in 81, 2< + 81< cannot be combined. �

Thread::tdlen : Objects of unequal length in 83, 4, 5< + 82, 3< cannot be combined. �

Thread::tdlen : Objects of unequal length in 86< + 84, 5, 6< cannot be combined. �

General::stop : Further output of Thread::tdlen will be suppressed during this calculation. �

881< +81, 2<, 82, 3< +83, 4, 5<, 86< +84, 5, 6<<
This result is such (error messages) because summation operator Plus is Listable. For the record, Listable
attributes, among others, can be removed or temporarily disabled to avoid problems like this, for both
user-defined and built-in functions. We will see such an example in chapter V.

The second reason to be aware of Listable attributes for built-ins is to be able to write more efficient code.
If some built - in function is Listable and one has to thread it over a list, it will almost certainly be faster to
feed it an entire list rather than to thread (map) it by hand with commands such as Table or Map. This is
so just because more operations will then be "pushed" into the kernel. For user - defined functions how-
ever there will be no significant difference in most cases, so this comment refers to built - ins.

As an example, consider computing some function numerically on a list of first 50000 natural numbers.
Here is implementation using Table :

Table@N@Exp@Sin@iD^3DD, 8i, 1, 50000<D �� Short@ð, 3D & �� Timing

80.07, 81.81452, �49998�, 0.368056<<
Here we use Listability of all the functions (Sin, Exp, Power) to compute the result on entire list. We win a
factor of 7 - 10 (an order of magnitude) in performance.

Exp@Sin@N@Range@50000DDD^3D �� Short@ð, 3D & �� Timing

80.01, 81.81452, �49998�, 0.368056<<
� 4.9.2 Clearing Attributes - the ClearAll command

Now suppose we would like to give our function < flst > from the previous example another definition,
and also no longer want it to have a Listable attribute (in fact, we want to remove all attributes attached to
the symbol < flst >). First thing we may try is just to use Clear command, as we usually do :

Clear@flstD;
flst@81, 2, 3, 4, 5<D
8flst@1D, flst@2D, flst@3D, flst@4D, flst@5D<

We see that while the definition of < flst > has been cleared, the Listable attribute remains. To remove
both the definitions and the attributes attached to a given symbol, use ClearAll instead of Clear :

 185

ClearAll@flstD;
flst@81, 2, 3, 4, 5<D
flst@81, 2, 3, 4, 5<D

Let me stress that ClearAll serves to clear all definitions (including attributes) for a given symbol (or
symbols), and not to clear definitions of all global symbols in the system (it is a common mistake to mix
these two things).

� 4.9.3 Orderless attribute

This attribute states that the result of evaluation of a given function should not depend on the order of its
arguments, which is commutativity. The presence of this attribute does change the evaluation of the
function, because then the argument list is sorted (by default Mathematica sorting function) before the
actual evaluation process for this function starts. Many built-in functions such as Plus or Times (or, in
general, commutative functions) have this attribute. As an example, we can arrange sorting of a list (with
the default sorting criteria) by just defining a "container function" with such an attribute:

ClearAll@fsortD;
SetAttributes@fsort, OrderlessD;
testlist = Table@Random@Integer, 81, 15<D, 820<D
813, 13, 15, 11, 10, 6, 5, 13, 3, 5, 14, 8, 8, 14, 7, 14, 10, 10, 1, 11<
Apply@fsort, testlistD
fsort@1, 3, 5, 5, 6, 7, 8, 8, 10,

10, 10, 11, 11, 13, 13, 13, 14, 14, 14, 15D
The meaning of Apply will be clarified in the chapter V. Its role here is to "eat up" the List head so that the
< fsort > receives a sequence of arguments rather than a list.

� 4.9.4 Flat attribute

This attribute is used to implement associativity. This means that for example expression like
f[a,b,f[c,d,e,f[f[g,h]]],i,f[f[j]]] will be automatically simplified to f[a,b,c,d,e,f,g,h,i,j] if the symbol <f> has
a Flat attribute. Previously we considered a rule-based way to mimic this functionality in a very special
case when the function has a property that f[f[f[...f[x]]]]] = f[x]. With a Flat attribute this is trivial since the
system does all the work. For instance:

ClearAll@f, xD;
testlist = NestList@f, x, 5D
8x, f@xD, f@f@xDD, f@f@f@xDDD, f@f@f@f@xDDDD, f@f@f@f@f@xDDDDD<

Now we set the Flat attribute to the function < f > :

SetAttributes@f, FlatD;

186

testlist

8x, f@xD, f@xD, f@xD, f@xD, f@xD<
And our first example :

Clear@a, b, c, d, e, g, h, i, jD;
f@a, b, f@c, d, e, f@f@g, hDDD, i, f@f@jDDD
f@a, b, c, d, e, g, h, i, jD

By the way, setting the attributes is largely independent from giving definitions to a function. The non-
trivial dependencies arise in some cases, and generally one has to set up attributes before any definitions
are given to the function. However, often there is no need to satisfy such strict requirements (but you have
to know precisely what you are doing, of course). In particular, some attributes may be set when the
function has already been defined for a while and perhaps used, attributes may also be set temporarily, or
selectively removed. In fact, as an extreme case, a function may be programmed in such a way that it itself
temporarily removes, changes or restores its own attributes (this is however a really exotic example).To
remove a given attribute, one has to use ClearAttributes. The current list of attributes can be monitored
with the Attributes built - in command :

Attributes@PlusD
8Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected<

� 4.9.5 Protected attribute

This attribute is needed if we want to protect a given function or symbol against changes that the user or
some user program may wish to apply to it. Most system functions have the Protected attribute. For
example, when we try something like this assignment:

a +b = c

Set::write : Tag Plus in a + b is Protected. �

c

The FullForm Plus[a, b] = c tells us that we are trying to make a new rule (definition) for the built - in
Plus command, which is protected. Of course , our assignment fails.

It is possible to make a symbol Protected by using the built - in command Protect and to unprotect the
symbol by using the built - in command Unprotect. This is often handy. Protecting your own symbols is a
standard practice when writing packages (which are system extensions to some domain), while unprotect-
ing is used usually with built - in commands when we need to add some new rule to the definition of this
or that built - in command. As an example, we may Unprotect Plus command so that the above assign-
ment will work :

Clear@a, b, cD;
Unprotect@PlusD;
Plus@a, bD = c;

Protect@PlusD;
We can check now :

 187

a +b

c

The reason we can redefine the behavior of system functions is that the user - defined rules have higher
priority than the system ones. But what we just did was in this case not motivated by any serious need and
thus represents an act of vandalism. Besides, even in cases when the workings of the built-in functions
have to be modified, modifying their DownValues (adding rules as above) is really a last resort. There are
softer ways of getting what one needs, such as using UpValues for the symbol you define. I will have more
to say about this later. For now, then, let us remove our definition :

Unprotect@PlusD;
Clear@PlusD;
Protect@PlusD;
a +b

a +b

� 4.9.6 Attributes are properties of symbols

I would like to stress that while we may interpret many attributes to be properties of functions, they are
really properties of symbols (function names for functions). Function definitions are rules associated also
with symbols (function heads or names). There is no fundamental distinction between rules describing
functions and just some symbolic rewritings, as we have already discussed a few times. The technical
distinction is that say rules for symbols are kept as OwnValues and rules for functions in DownValues
(and UpValues and SubValues which we did not cover yet), but the main point is the same: there are
symbols and associated with them global rules and properties. Whether we interpret these symbols as
function names or something else is up to us.

� 4.9.7 Attributes HoldFirst, HoldRest and HoldAll

� 4.9.7.1 The meaning of argument holding

These attributes are used when some of the function arguments have to be evaluated only after the rules
associated with the function name have been applied. This means that these attributes change the evalua-
tion order from standard evaluation (depth-first, subexpressions before expressions) to a non-standard
one (expressions before subexpressions). One usually needs to change the evaluation order to do some-
thing non-trivial. In particular, as we have seen already on the example of the increment function <inc[x]>
(sections 2.5.5, 4.5.2), Hold attributes can be used to mimic the pass-by-reference semantics. This allows
functions to modify the variables which are passed to them. Other cases when one needs to hold some
arguments unevaluated arise when only some of the arguments have to be evaluated at all, and which ones
have to be evaluated is decided by say a condition on the part of arguments that are evaluated (this is
exactly the situation with conditional operators such as If).

The attribute HoldFirst instructs a function to hold (in unevaluated form) the first argument. HoldRest
instructs to hold all but the first argument, and HoldAll instructs to hold all arguments. The fact that the
argument is held unevaluated does not necessarily mean that it is never evaluated in a function (which
may also happen if it is discarded before it is evaluated) - it simply means that it is evaluated after all the
transformations of this argument by the function <f> (according to the definition of <f>) are performed.
As a simple example, consider a squaring function:

188

The attribute HoldFirst instructs a function to hold (in unevaluated form) the first argument. HoldRest
instructs to hold all but the first argument, and HoldAll instructs to hold all arguments. The fact that the
argument is held unevaluated does not necessarily mean that it is never evaluated in a function (which
may also happen if it is discarded before it is evaluated) - it simply means that it is evaluated after all the
transformations of this argument by the function <f> (according to the definition of <f>) are performed.
As a simple example, consider a squaring function:

ClearAll@fD;
f@x_D := x^2;

Let us Trace its evaluation on some number :

Clear@aD;
a = 5;

f@aD �� Trace

98a, 5<, f@5D, 52, 25=
We see that < a > was evaluated before < f > . Now let us attach the HoldFirst attribute to < f > :

SetAttributes@f, HoldFirstD;
Now :

f@aD �� Trace

9f@aD, a2, 8a, 5<, 52, 25=
We see that now the evaluation order has changed : first the function < f > was evaluated, and then the
value of < a > was substituted. In this simple example, the end result was the same regardless of the
evaluation order, but in less trivial cases the evaluation order becomes important.

It is fairly easy to give an example of held arguments being discarded and thus not evaluated at all - take
any operators on the False branch of some If operator.

� 4.9.7.2 Advanced topic: Hold attributes and pattern-matching

While the general topic of Hold attributes is a bit too advanced for us now (since it requires a much more
thorough discussion of the evaluation process), let me mention one important point. This is, Hold attri-
butes affect pattern-matching. Consider the following function.

ClearAll@fD;
f@x_SinD := x^2;

f@x_D := "Not sine"

 It is supposed to square any expression of the form Sin[anything], and issue a message for all other
inputs. We can try it:

Clear@a, bD;
8f@Sin@aDD, f@aD, f@Sin@PiDD<
9Sin@aD2, Not sine, Not sine=

In the last input, Sin[Pi] was evaluated first, leading to f[0], which led to a "Not sine" message. Let us
now add the attribute:

 189

SetAttributes@f, HoldFirstD;
And test the same input again:

Clear@a, bD;
8f@Sin@aDD, f@aD, f@Sin@PiDD<
9Sin@aD2, Not sine, 0=

What happened with the last output is that the presence of Hold attribute made a function to evaluate
"branches before leaves", and then it had a chance to "see" Sin[Pi] before it evaluated to 0, and thus the
first definition applied.

All right, this is all known stuff, we discussed the non-standard evaluation before. But now, let us do it a
bit differently :

Clear@a, bD;
a = Sin@bD;
8a, f@aD<
8Sin@bD, Not sine<

For us, it is obvious that <a> is Sin[b], so this behavior looks like a bug. It isn’ t however: Hold attribute
means that the argument is held unevaluated before the rules associated with the function apply. If we
supply the direct Sin[something], then, while Sin[something] is not evaluated, the function can test the
head of the argument (which is Sin) and thus the first definition (associated with Sin[something]) applies.
If however the value of the expression is stored in another variable, then by the time the pattern-matching
takes place, there is no way for the function to test the head of an expression Sin[b] - all it has is a symbol
<a> (again because <a> this time is held unevaluated) . This behavior may lead to rather subtle bugs in
user-defined functions which use Hold attributes. One way out in this case would be to redefine the func-
tion as follows:

ClearAll@fD;
f@x_D �; Head@Evaluate@xDD === Sin := x^2;

f@x_D := "Not sine";

SetAttributes@f, HoldFirstD;
Here, by using Evaluate, we override the Hold attribute in that particular place and instruct the argument
inside Head command to be evaluated. Now :

Clear@a, bD;
a = Sin@bD;
8a, f@aD<
9Sin@bD, Sin@bD2=

The case with a Sin[Pi] is lost however :

f@Sin@PiDD
Not sine

If we think of it, this is still a more logical behavior, since it is more logical (or should I say more robust)
to test the head of fully evaluated expression than the one which will evaluate to something else. If one
wants to catch both cases (something that was Sin[expr] or something that will become Sin[expr]), this is
also possible:

190

If we think of it, this is still a more logical behavior, since it is more logical (or should I say more robust)
to test the head of fully evaluated expression than the one which will evaluate to something else. If one
wants to catch both cases (something that was Sin[expr] or something that will become Sin[expr]), this is
also possible:

ClearAll@fD;
f@x_D �; Head@Evaluate@xDD === Sin := x^2;

f@x_SinD := x^2;

f@x_D := "Not sine";

SetAttributes@f, HoldFirstD;
8f@aD, f@Sin@PiDD<
9Sin@bD2, 0=

One may ask when in practice do such situations occur. More often than one may think, in fact. As a
simple example, an expression may be assigned to a local variable in one function, which then passes this
variable (with the "pass-by-reference" semantics) to another function which is supposed to both do a type-
check and subsequently modify this variable. Such cases are relatively rare just because pass-by-reference
semantics and in-place modifications are rarely used in "usual" Mathematica programming, but once you
choose to program in this style (which occasionally is a good option), these sorts of problems will pop up
much more often.

� 4.9.7.3 Hold attributes and built-in functions

Many built - in commands have Hold attributes. For instance, the Set command has a HoldFirst attribute,
since otherwise its l.h.s. would evaluate before Set will have a chance to assign anything to it (in case
when the variable in the l.h.s. has a global value). SetDelayed has attribute HoldAll, since it does not
evaluate also the r.h.s. of an assignment. Constructs such as Module, Block and With also have the Hold-
All attribute, since they have to hold the code they enclose unevaluated until the naming conflicts are
resolved. We could go on with this list, but let us just say once again that these attributes are very
important.

� 4.9.8 Attributes and the evaluation process

As we have discussed before, the evaluation process can be roughly represented by a repeated application
of all available global rules to an expression and all of its parts, until the result no longer changes. We also
mentioned that this is a very oversimplified picture. Now we can at least outline some other ingredients
which make the evaluation process more complex.

One of such ingredients is the existence of attributes. You can not assign attributes in the form of local
rules - they are essentially global properties of symbols. The presence or absence of attributes for a given
symbol affects the way the expression involving this symbol is evaluated.

Another ingredient is the interplay of standard and non - standard evaluation. This is partly related to
attributes through Hold attributes, but there are other ways to switch between standard and non - standard
evaluation, such as using commands like Evaluate, Unevaluated, Hold, HoldPattern, etc.

Yet another distinction is that there are many more types of global rules than there are local ones. While
local rules are basically either immediate (Rule) or delayed (RuleDelayed), global rules are additionally
categorized by being OwnValues, DownValues, SubValues, UpValues, NValues ot FormatValues (the
latter three we did not have a chance to discuss yet). The category to which the global rule belongs, deter-
mines the way and order in which it is applied.

 191

Yet another distinction is that there are many more types of global rules than there are local ones. While
local rules are basically either immediate (Rule) or delayed (RuleDelayed), global rules are additionally
categorized by being OwnValues, DownValues, SubValues, UpValues, NValues or FormatValues (the
latter three we did not have a chance to discuss yet). The category to which the global rule belongs, deter-
mines the way and order in which it is applied.

So, while the evaluation process generally is the repeated rule application, we can now see a bit better
more of the ingredients that make it different and perhaps somewhat more complex than just a repeated
application of all global rules.

� 4.10 Advanced topic: parameter passing and local variables

In this section we will have a brief discussion on the interplay of parameter - passing and localization of
variables with scoping constructs Module, Block and With and Function, which we promised in the sec-
tion on the parameter passing (4.4.7).

It turns out that the situation is very similar for all these constructs, so we will discuss the Module case
only. The main question is what happens if the name of some of the formal parameters coincides with a
name of one of the local variables. Let me say straight away that this is a really bad practice which should
be avoided since it brings nothing except bugs into the programs. Let us consider a simple example:

Clear@fM, aD;
a = 5;

fM@x_D := Module@8x = 10<, Print@xDD;
Here we set up a function < fM > with conflicting names of the parameter and a local variable, and just a
global variable < a > assigned some value. Now we try a couple of inputs :

fM@5D
Module::lvset : Local variable specification 85 = 10< contains

5 = 10, which is an assignment to 5; only assignments to symbols are allowed. �

Module@85 = 10<, Print@5DD
We see what happened: the value for a formal parameter < x > (5 in this case) was textually substituted in
all places where the literal < x > appears on the r.h.s., before any other evaluation (and name conflict
resolution in Module in particular) took place. This is in full agreement with the general parameter -
passing mechanism described earlier (section 4.4.7). But then, by the time Module actually started execut-
ing, we see what was inside - in particular, instead of the local variable initialization, we had in the vari-
able declaration block a statement 5 = 10, which triggered an error message and resulted in Module
returning unevaluated.

Conclusion: it is an error to make a name of a local variable coincide with the name of any of the
function parameters .

We now try to call our function on a variable rather than a raw expression :

192

fM@aD
Module::lvset : Local variable specification 85 = 10< contains

5 = 10, which is an assignment to 5; only assignments to symbols are allowed. �

Module@85 = 10<, Print@5DD
The results are identical, because < a > evaluated to < 5 > before the function was essentially called (recall
the standard evaluation mechanism).

Next, let us see what happens when a function has a Hold attribute for the parameter in question. We
modify our code accordingly :

Clear@fMHoldD;
Attributes@fMHoldD = 8HoldAll<;
fMHold@x_D :=

Module@8x = 10<, Print@x, " ", a, " ", Unevaluated@aDDD;
Here, we have included additional objects to be printed - in a second you’ ll see why. Now let us test :

fMHold@5D
Module::lvset : Local variable specification 85 = 10< contains

5 = 10, which is an assignment to 5; only assignments to symbols are allowed. �

Module@85 = 10<, Print@5, , a, , Unevaluated@aDDD
The result here is essentially the same as before, because < 5 > is a raw object. Now let us see what hap-
pens if we call our function on a variable :

fMHold@aD
10 10 a$165

This output is quite interesting. The last output gives us a name that was internally associated with <a> in
our code inside Module. It tells us that in this case, the local variable was initialized, and has shadowed the
global parameter being passed. It is instructive to see exactly how this happened:

Step 1 : The symbol <a> in unevaluated form (due to a Hold attribute) is textually substituted everywhere
where <x> stands inside the Module (r.h.s. of the function definition). At this point we have the code:

Module@8a = 10<, Print@a, " ", a, Unevaluated@aDDD
Step 2 : A local variable < a > with a special name is initialized, and all occurrences of the symbol < a > in
the code of Module are then associated with this local variable - just as if we had entered the above code
from the keyboard.

Step 3: It is only at this point that the function would try to evaluate the passed parameter (since it was
held unevaluated so far), but by this time all occurrences of <a> already correspond to the initialized local
variable, which thus completely shadows the passed parameter value.

Step 4: The code is executed in the above form, with the results we just saw.

The conclusion is that if a given parameter is held by the function and if the passed object happened to be
a global symbol with the head Symbol, then the parameter being passed is shadowed by a local variable.

This behavior looks more mild than the one before, but in fact it is worse. Because really, colliding names
in this fashion is a bad mistake in both cases, but here it may go unnoticed, since it does not result in an
explicit error.

 193

This behavior looks more mild than the one before, but in fact it is worse. Because really, colliding names
in this fashion is a bad mistake in both cases, but here it may go unnoticed, since it does not result in an
explicit error.

If the passed held parameter is a composite expression, Module will at least generate an error message and
return unevaluated, since it is illegal to name local variables in such way) .

fMHold@a@bDD
Module::lvset : Local variable specification 8a@bD = 10< contains

a@bD = 10, which is an assignment to a@bD; only assignments to symbols are allowed. �

Module@8a@bD = 10<, Print@a@bD, , a, , Unevaluated@aDDD
The final conclusions are these :

 1. There is no mystery in what happens in parameter and local variable name collisions - all the out-
comes can be easily explained by the core parameter - passing mechanism based on textual substitution.
 2. It is always an error to collide the names like this, but there are cases when this error may go
unnoticed, and the parameter value be shadowed by a local variable.

A good news is that in version 6 such name collisions are usually detected and highlighted in red by the
front - end.

The final comment here: this situation is not too specific to Mathematica. In C, for instance, it is also an
error to name a local variable after one of the function formal parameters, and will result in an undefined
behavior (at least, here it is not undefined). It is a different matter that the passed parameters themselves
may serve in C as local variables, unlike in Mathematica (see a discussion in 4.4.7).

4.11 Pure functions

The notion of a pure function comes from the Λ - calculus, and is widely used in functional programming
languages, Mathematica in particular. From the practical viewpoint, the idea is that often we need some
intermediate functions which we have to use just once, and we don’ t want to give them separate names.
Pure functions allow to use them without assigning them names, storing them in the global rule base etc.
Another application of them is that while they can be assigned to some symbols, they exist independently
of their arguments and can be called just by name with the arguments being supplied separately, so that
the "assembly" to the working function happens already at the place where the function is used. Finally,
these functions may be dynamically changed and modified during the program’ s execution.

In Mathematica, the pure function can be defined in two (in principle, equivalent modulo some subtleties
which we will discuss) ways: through the built-in function <Function> and through the so-called #-&
notation (anonymous pure functions).

194

� 4.11.1 The # - & notation

We will first discuss the latter method. The idea behind it is to allow one to create functions which have
no names and also no named arguments - completely anonymous pure functions. In this notation, the
parameters of the function are denoted by sharp (#) plus the parameter index, like #1, #2, etc. If there is a
single parameter, the index can be suppressed and we can just use #. The function ends with an amper -
sand <&>. It is recommended although not always required to put the entire function definition in parenthe-
ses (including the &), to avoid precedence- related bugs. This is because the ampersand & has a very low
precedence and often a larger piece of code is interpreted as a part of the function definition, than meant
by developer. This leads to bugs. One typical case where parenthesizing is absolutely necessary is when
we provide a pure function as a sameness test in the SameTest option for the Union, Intersection or Com-
plement commands.

Let us give some examples of pure functions.

� 4.11.1.1 Example: the squaring pure function

8Hð^2 &L@1D, Hð^2 &L@2D, Hð^2 &L@PiD, Hð^2 &L@10D<

91, 4, Π2, 100=
The same can be done as follows :

ClearAll@fD;
f = Hð^2 &L;

8f@1D, f@2D, f@PiD, f@10D<

91, 4, Π2, 100=
To understand, how a given pure function expressed in such a notation will work, one has to get used to it
a little. In the beginning it often helps to substitute the real values of the arguments for parameters #.

Let us note that the internal representation of < f > is different from the one we had for functions which
were defined with the help of patterns. In particular, there are no DownValues associated with f (which
means, no rules associated with the form f[something]) :

DownValues@fD
8<

Also, with this form of function definition, we can not associate several different definitions with the
symbol f :

?f

Global‘f

f = ð12 &

We give a new definition :

 195

We give a new definition :

f = ð^4 &;

?f

Global‘f

f = ð14 &

This was possible with patterns, because f[pattern1] and f[pattern2] are different symbols. In our present
case however, the best way to think about it is to think that the variable < f > received some value, which
turned out to be not a number or another variable, but a pure function. Such a "variable" interpretation is
also consistent with the fact that the rule for <f> is stored in OwnValues rather than DownValues.

� 4.11.1.2 Example: function which takes the first element from the list

Clear@takeFirstD;
takeFirst = ð@@1DD &;

We check :

takeFirst@Range@10DD
1

Pure functions defined in the # - & notation usually work faster than the pattern - defined ones (there is no
pattern - matching going on in this case), but they require more care. In particular, it is less easy to orga-
nize the argument checks for them (although also possible, of course). Let us, for example, apply our
function to a number instead of a list :

takeFirst@1D
Part::partd : Part specification 1P1T is longer than depth of object. �

1P1T
To add the argument check, we would have to write something like this :

takeFirst = If@AtomQ@ðD, ð, ð@@1DDD &;

That is, to return the argument itself if it is an atom, and its first element if it is not:

8takeFirst@5D, takeFirst@83, 4, 5, 6<D<
85, 3<

With the help of patterns, we could do the same as follows :

takeFirstP@x_ �; Not@AtomQ@xDDD := x@@1DD;

8takeFirstP@5D, takeFirstP@83, 4, 5, 6<D<
8takeFirstP@5D, 3<

Notice the difference in execution: when the pattern does not match, the function simply returns unevalu-
ated. This allows to use the trick with the "soft" generation of error messages by adding a general catchall
rule to catch all wrong arguments (see section 4.6.2.3 for an example). On the other hand, for pure func-
tions, all cases have to be explicitly taken into account - in this sense they are more "rigid" entities.

196

Notice the difference in execution: when the pattern does not match, the function simply returns unevalu-
ated. This allows to use the trick with the "soft" generation of error messages by adding a general catchall
rule to catch all wrong arguments (see section 4.6.2.3 for an example). On the other hand, for pure func-
tions, all cases have to be explicitly taken into account - in this sense they are more "rigid" entities.

Returning back to the previous example of the takeFirst function, we may indeed want it to remain unevalu-
ated for atomic objects, rather than returning them. In this case, we really need a pattern - defined function.

� 4.11.1.3 Example: a function of two variables

This function returns an intersection of two sets:

Intersection@ð1, ð2D &

ð1 è ð2 &

Let us use it:

Intersection@ð1, ð2D &@81, 2, 3, 4<, 83, 4, 5, 6<D
83, 4<

� 4.11.1.4 Example: building a matrix of rank 1 from two vectors

This function creates a matrix of rank 1 for the two given vectors :

Outer@Times, ð1, ð2D &

For example :

Clear@a, b, c, a1, b1, c1D;
Outer@Times, ð1, ð2D &@8a, b, c<, 8a1, b1, c1<D
88a a1, a b1, a c1<, 8a1 b, b b1, b c1<, 8a1 c, b1 c, c c1<<

� 4.11.1.5 Example: supplying a list with its length

This function supplies a list with its length :

8ð, Length@ðD< &

For example :

8ð, Length@ðD< &@85, 6, 7, 8, 9, 10<D
885, 6, 7, 8, 9, 10<, 6<

In all these examples, the same results would be obtained if the real values of the arguments were substi-
tuted, as is easy to check.

� 4.11.1.6 If we supply a wrong number of arguments

If the pure function is given more arguments than it needs, extra arguments are ignored :

 197

ð@@1DD &@81, 2<, 83, 4<D
1

This property has both advantages and disadvantages. The advantage is that if some other (higher - order)
built - in function takes a given pure function as an argument but supplies more arguments than needed, I
don’ t need to modify my code (one such example is NestWhile when we need an access to more than just
the most recent result - see chapter V).

The disadvantage is that one has to be extra careful. If the arguments were not supposed to be ignored, but
the pure function is erroneous, such error is hard to catch. For comparison, for a pattern - defined function
with the fixed number of arguments, for the wrong number of arguments the pattern simply won’t match
and the function will evaluate to itself (or, if one uses the trick with the catch-all pattern and error mes-
sages, the error message will be generated) - this situation is much better for debugging.

If, on the other hand, we supply less arguments than expected by the pure function, the error message will
be generated :

Hð1 +ð2L &@1D
Function::slotn : Slot number 2 in ð1 + ð2 & cannot be filled from Hð1 + ð2 &L@1D. �

1 +ð2

� 4.11.1.7 The Head and the FullForm of the pure function in #-& notation

The # - & form of a pure function is really just a convenient notation. The fundamental built - in function
(head) used to create pure functions is always Function, as can be seen easily :

Head@ð^2 &D
Function

This is how this pure function looks internally :

FullForm@ð^2 &D
Function@Power@Slot@1D, 2DD

� 4.11.1.8 SlotSequence and functions with variable number of arguments

It is sometimes needed to define a function of many variables, where their number is either not fixed or
when the variables are not needed to be referred to separately. In this case, one can use the SlotSequence,
which has an abbreviation ##. As an example, we may define our own Plus function as a pure function in
the following fashion :

Clear@ourPlusD;
ourPlus = Plus@ððD &;

We can check :

8ourPlus@1D, ourPlus@1, 2D, ourPlus@1, 2, 3D<
81, 3, 6<

It is less obvious, but one can also use SlotSequence even when one needs an access to individual vari-
ables. For example, we need a function which multiples its first argument by the sum of all the other ones,
as a pure function. This does not seem possible to do since ## gives all arguments but does not directly
allow to access the individual ones. This is not so however :

198

It is less obvious, but one can also use SlotSequence even when one needs an access to individual vari-
ables. For example, we need a function which multiples its first argument by the sum of all the other ones,
as a pure function. This does not seem possible to do since ## gives all arguments but does not directly
allow to access the individual ones. This is not so however :

firstTimesSumRest = H8ðð<@@1DD *Total@Drop@8ðð<, 1DD &L;
8firstTimesSumRest@1D, firstTimesSumRest@1, 2D,
firstTimesSumRest@1, 2, 3D, firstTimesSumRest@2, 3, 4, 5D<

80, 2, 5, 24<
This shows how to access individual variables with SlotSequence - place ## in a list and then index the
list. I deliberately ignored the variation of the SlotSequence which allows to supply first <n> arguments
separately and the rest with SlotSequence, to illustrate the general way of accessing individual variables.
With this variation, our function would be rewritten much more compactly as

firstTimesSumRest1 = Hð1*Plus@ðð2D &L;
With the same results of course :

8firstTimesSumRest1@1D, firstTimesSumRest1@1, 2D,
firstTimesSumRest1@1, 2, 3D, firstTimesSumRest1@2, 3, 4, 5D<

80, 2, 5, 24<
This form of the function is certainly shorter, but less general since I will not be able to access say the third
argument without the use of the trick with the list indexing shown above.

One important limitation of the # - & notation for the pure functions is that it is not possible to assign
attributes to them in this notation (unless some undocumented features are used). The advantage however
is that functions in this form are typically faster than in other forms (patter-defined or defined through the
Function construct with named arguments).

� 4.11.1.9 A comment on function names

You may have noticed that I sometimes store the pure function definition in some variable. However, this
is done purely for convenience in our examples, where I use these functions on several arguments, but
don’ t want to use any of the functional programming constructs which automate function application.
When we come to that point, you will see that we will never need names for pure functions.

� 4.11.1.10 Nesting pure functions in #-& notation

It often happens that inside one pure function there is another one, supplied to it as one of its arguments.
The question is then whether or not we face any difficulties or ambiguities due to the same abbreviation
for the function variables. As an example, consider a pure function which sorts its argument (list of lists is
assumed), in an ascending order in the first elements of the sublists. This is how it will look like in the # -
& notation :

 199

Clear@sortFirstElemD;
sortFirstElem = Sort@ð1, First@ð1D £ First@ð2D &D &;

We see that the pure functions are nested one within another, and that there are two instances of #1 vari-
able which have different meaning and, indeed, refer to different variables. Is it legal? The answer is yes,
as long as one pure function is entirely contained in another one (more precisely, if there are no expres-
sions such that for their evaluation, the variables of the nested functions have to be used together, simulta-
neously). Let us test it :

sortFirstElem@882, 3<, 81, 4<, 85, 7<, 83, 8<<D
881, 4<, 82, 3<, 83, 8<, 85, 7<<
Clear@sortFirstElemD;

� 4.11.1.11 Pure functions with zero arguments

This seems like a really weird construct, but it is in fact quite useful. Such functions are required basically
when we want to supply some number or expression to a function as one of the arguments, while instead a
function argument is expected. Then we need to "convert" our expression into an "idle" function, which
will simply produce this expression regardless if its argument.

As a simple example, say we need to produce a list of ones, of the length 10 : {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.
This can be done by Table, of course, but alternatively by an Array command (which is somewhat faster).
However, Array requires a function to be supplied, so the input like this:

Array@1, 810<D
81@1D, 1@2D, 1@3D, 1@4D, 1@5D, 1@6D, 1@7D, 1@8D, 1@9D, 1@10D<

does not work, as we can see. The solution is to "convert" the number < 1 > into a pure function with zero
arguments. This is extremely easy to do - just add an ampersand to the end :

Array@1 &, 810<D
81, 1, 1, 1, 1, 1, 1, 1, 1, 1<

So, to summarize: adding an ampersand to the end of some expression (not involving anonymous variables
- # symbols), converts this expression into a pure function with zero arguments, which is quite handy at
times.

� 4.11.1.12 Currying (partial application) with pure functions in # - & notation

Currying means the following: given a function of < n > arguments and passing to it the smaller number of
arguments < k > (k < n, and argument positions not necessarily consecutive), we insert these arguments
into their "argument slots" and create a new function of the remaining variables at run - time. Sometimes
this is also called partial application of the function. If, for instance, we have a function <f> of two vari-
ables <x> and <y> from the sets X,Y, producing some result <z> from the set Z, then f:X x Y -> Z,
while what currying does is <curried f>: X-> (Y -> Z). Thus, while initial function maps a cartesian
product of X and Y onto Z, takes two arguments and maps them to a result (expression), curried function
maps X onto a space of mappings (functions) Y->Z. The result of application of curried function is then
always another function.

This technique is not very useful in procedural programming, since there it is the programmer himself who
makes all the function calls. In the functional style however, we allow some functions to manipulate other
functions, call them, etc. In this paradigm, it is quite often that one function expects another function as
one of its arguments, and then frequently such a function does not exist and has to be created at run-time.

200

This technique is not very useful in procedural programming, since there it is the programmer himself who
makes all the function calls. In the functional style however, we allow some functions to manipulate other
functions, call them, etc. In this paradigm, it is quite often that one function expects another function as
one of its arguments, and then frequently such a function does not exist and has to be created at run-time.

In some languages such as Ocaml, all functions are curried automatically. There is no built - in support for
currying in Mathematica, but the compactness of the # - & notation makes it almost mindless to imple-
ment in each particular case. For example, say we have a function of two variables, to which we pass the
first argument and then need to create a resulting function of a single (second) argument:

ClearAll@fD;
f@x_, y_D := Sin@x*yD;

Say, the first argument is Pi. This is how we create such a function :

f@Pi, ðD &

f@Π, ð1D &

For example :

f@Pi, ðD &@1D
0

This technique trivially generalizes to more arguments. We will make real use of it in chapter V on func-
tional programming.

� 4.11.2 Pure functions defined with Function

Now, let us describe another way of defining pure functions - through the Function construct. It has the
format: Function[{vars},body]. If there is a single variable, then the list braces are optional. Let us show
how some of the previous examples would look in this notation:

The squaring function :

ClearAll@fD;
f = Function@x, x^2D;

8f@1D, f@2D, f@PiD, f@10D<
91, 4, Π2, 100=

The function which take the first element :

Clear@takeFirstD;
takeFirst = Function@x, If@AtomQ@xD, x, First@xDDD;

8takeFirst@aD, takeFirst@81, 2, 3<D<
8a, 1<

Intersection of two sets (lists) :

 201

Clear@intSetsD;
intSets = Function@8x, y<, Intersection@x, yDD;

8intSets@81, 2, 3<, 82, 3, 4<D, intSets@81, 2, 3<, 84, 5, 6<D<
882, 3<, 8<<

Matrix of rank 1, built out of 2 vectors :

Clear@extMultiply, a, b, c, d, e, fD;
extMultiply = Function@8x, y<, Outer@Times, x, yDD;
extMultiply@8a, b, c<, 8d, e, f<D
88a d, a e, a f<, 8b d, b e, b f<, 8c d, c e, c f<<

� 4.11.3 Differences between pure functions defined with Function and with # - & notation

It is important to note that there is no fundamental difference between functions defined with the # - &
notation and functions defined with the Function command, in the sense that both definitions produce pure
functions. There are however several technical differences that need to be mentioned.

The first one is that the Function[{vars},body] is a scoping construct, similar to Module, Block, With etc.
This means in particular that the <vars> in the function body are localized to the body of the function, and
have nothing to do with the global variables with same names, so we don’t need to worry about name
conflicts when defining pure functions with Function. This also means that, should we wish to nest the
Function constructs one inside another, the possible name conflicts will automatically be resolved by the
system (but I would recommend to read the corresponding sections of Mathematica Book and Mathemat-
ica Help to see precisely how they are resolved). Also, with Function we may nest functions in more
general way than with #-& notation, which is illustrated on the following example:

� 4.11.3.1 Example: currying

This is a function which takes an argument and produces another function. That function takes another
argument and returns the sum of these two arguments

Clear@nestedFD;
nestedF = Function@x, Function@y, x +yDD
Function@x, Function@y, x +yDD

For example, we may "forge" a function which adds 3 to its argument, like this :

add3 = nestedF@3D
Function@y$, 3 +y$D
8add3@1D, add3@5D, add3@7D<
84, 8, 10<

This is somewhat similar to a technique called currying in some languages. As this example illustrates,
currying can be easily implemented in Mathematica through nested Function constructs, even though
Mathematica does not support it directly.

202

This is somewhat similar to a technique called currying in some languages. As this example illustrates,
currying can be easily implemented in Mathematica through nested Function constructs, even though
Mathematica does not support it directly.

We can of course use our function directly on the 2 arguments

nestedF@3D@1D
4

This should not be considered a function of two arguments however, since the first number defines the
function which then takes the second number as a single argument. In particular, the evaluation of this
function will be different from the evaluation of the more standard function of two arguments that we
described before.

Returning to our original question of comparison of the # - & style and the style with Function, it is not
possible (to my knowledge) to implement the above functionality with the # - & style, since here we have
nested pure functions with one not entirely contained in the other one (in the sense described above - we
needed the variables of both internal and external function simultaneously to do the computation). Thus,
defining a pure function with Function is more general in this sense.

�

The other limitation of # - & approach, which we mentioned already, is that attributes can not be assigned
to a pure function defined in this way (well, at least if one does not use undocumented features - see the
section Attributes of Pure Functions in the Maeder’s book). This is not the case with Function : it takes an
attribute or a list of attributes as an optional third argument, which is a powerful capability.

� 4.11.3.2 Example: an accumulator problem

To illustrate it, we will consider a model problem which Paul Graham used to argue in favor of functional
languages (LISP).[13] : write a function, which takes an (integer) number <n>, and returns another func-
tion that takes any number and increments it by <n>. He emphasized 2 things: 1. returns a function, 2. this
function not simply adds n to its argument, but increments it by n (that is, produces a side effects and
changes a global value of the variable passed to it). Here is our solution:

Clear@incrementByND;
incrementByN@n_IntegerD := Function@x, x += n, HoldFirstD;

The conciseness of this solution arguably rivals the one in LISP. This was possible only because we could
specify the HoldFirst attribute, which will actually allow the increment to be performed on the original
variable rather than on what it would evaluate to. Let us now test it :

Clear@a, inc5D;
a = 10;

inc5 = incrementByN@5D;
inc5@aD;
a

15

 203

� 4.11.3.3 Example: the Listable SubValues hack revisited

In section 4.9.1.3, we considered a "hack" which solves the listability problem for a function in which not
all list arguments have to be threaded upon. It involved introduction of an auxiliary function defined
through SubValues. Here we consider an alternative (equivalent) implementation through the pure func-
tions, which will be more compact.

I remind that the problem was for example to get the following evaluation : f[{1, 2}, {3, 4, 5}] -> {f[1,
{3, 4, 5}], f[2, {3, 4, 5}]}. If we just give < f > Listable attribute, this won’ t work :

ClearAll@fD;
SetAttributes@f, ListableD;
f@81, 2<, 83, 4, 5<D
Thread::tdlen : Objects of unequal length in f@81, 2<, 83, 4, 5<D cannot be combined. �

f@81, 2<, 83, 4, 5<D
The code below does the trick.

Clear@halfListableD;
halfListable@f_, x_, y_D := Function@t, f@t, yD, 8Listable<D@xD

Check :

ClearAll@fD;
halfListable@f, 81, 2<, 83, 4, 5<D
8f@1, 83, 4, 5<D, f@2, 83, 4, 5<D<

What happens is that the parameter < y > (on which the function does not have to be Listable), is textually
substituted (recall parameter passing) into a pure function for which Listable attribute is given, at the
moment of the construction of this pure function. Then, the constructed pure function is computed at
argument < x > .

You can get even fancier and write a function which takes your given function name, but no arguments (x,
y), and creates a pure function with < f > being embedded, and with the above behavior.

Clear@makeHalfListableD;
makeHalfListable@f_D :=

Function@8x, y<, Function@t, f@t, yD, 8Listable<D@xDD
The advantage of this solution is that no specific arguments are involved whatsoever: you create a brand
new function from < f >, with the functionality you want, only once, and then can use it many times later.

newf = makeHalfListable@fD;
newf@81, 2<, 83, 4, 5<D
8f@1, 83, 4, 5<D, f@2, 83, 4, 5<D<
newf@81, 2, 3<, 84, 5<D
8f@1, 84, 5<D, f@2, 84, 5<D, f@3, 84, 5<D<

204

The possible disadvantage is the overhead induced by extra < Function > being a scoping construct.
However, this usually is a minor one.

�

To rehabilitate the # - & notation, the functions defined with it are usually faster than those defined with
the Function construct (my guess is that this has to do with the scoping overhead - Function with named
variables is a scoping construct). They are also more compact.

The functions defined in the # - & notation can be nested with those defined with Function. We will see
several examples of such mixed constructs later.

To conclude our section on pure functions, let me emphasize once again that there is no natural mecha-
nism for them to perform arguments checks, such as (restricted) patterns in the pattern - defined functions.
Pure functions really play a different role and are used in different settings. One can get the most out of the
pure functions when they are used within a functional programming style, very often as arguments of other
(higher-order) functions. When we come to the next chapter which describes it, their usefulness will
become much more apparent.

4.12 Functions with defaults and options

It is often needed that part of the arguments are optional in the sense that some of the "argument slots"
may be either used or not, and the function has to do meaningful things in both cases. In Mathematica, like
in many other modern languages (Python comes to mind), there are two mechanisms to provide this
functionality: default values (for positional arguments), and Options (this corresponds to "named argu-
ments").

What is perhaps unusual and specific to Mathematica is that neither of these mechanisms require some
new special syntax in the sense that it has to be added externally into the system. Rather, both of them
exploit some features already present in the system, such as optional patterns (see section 4.2.9) or non -
commutativity of the rule substitutions (see section 4.2.2.).

� 4.12.1 Functions with defaults

Default arguments are those which we can leave out when calling a function, in which case there are some
default values that the function will use for these arguments. The matching between missed arguments and
values is based on the positions of the arguments in this case. In Mathematica, this mechanism is realized
through optional patterns (section 4.2.9). We will give just a few simple examples of such functions

Here we define a function which sums all its arguments, and has the last two arguments optional, with
default values being 1 and 2 :

ClearAll@fD;
f@x_, y_: 1, z_: 2D := x +y +z

Check :

8f@1D, f@1, 3D, f@1, 3, 5D<
84, 6, 9<

The dafault patterns may be interspersed with the patterns for fixed arguments. The rule how the argu-
ments are filled in is more complicated in this case: the pattern - matcher first determines how many
optional arguments can be filled (from left to right), and then fills all the arguments from left to right, fixed
and optional at the same time (not like fixed first, optional next). This is the consequence of the general
way of how the pattern - matcher works, but one conclusion is that it is best to move all optional (default)
arguments at the end of the argument list, to have a better idea of the order in which the arguments are
filled. Here is an illustration :

 205

The default patterns may be interspersed with the patterns for fixed arguments. The rule how the argu-
ments are filled in is more complicated in this case: the pattern - matcher first determines how many
optional arguments can be filled (from left to right), and then fills all the arguments from left to right, fixed
and optional at the same time (not like fixed first, optional next). This is the consequence of the general
way of how the pattern - matcher works, but one conclusion is that it is best to move all optional (default)
arguments at the end of the argument list, to have a better idea of the order in which the arguments are
filled. Here is an illustration :

Clear@gD;
g@x_, y_: 1, z_, t_: 2D := 8x, y, z, t<

Check :

8g@aD, g@a, bD, g@a, b, cD, g@a, b, c, dD<
8g@aD, 8a, 1, b, 2<, 8a, b, c, 2<, 8a, b, c, d<<

That’ s about all I will say for default arguments. The more complete treatment can be found elsewhere
[6,7,9].

� 4.12.2 Functions with options

Options are a mechanism to implement named arguments in Mathematica. They are especially convenient
for the "end" functions which interface with the user or programmer. A typical example of use of options
is to manipulate the format of data output on the screen, or to indicate the name of the particular method
or algorithm to be used in some numerical computation.

The options mechanism is an example of use of the non - commutativity of rules application. We will
illustrate this in detail on one particular model example.

� 4.12.2.1 Example : selecting and printing prime numbers

The problem and the solution

Our task here will be to select and print prime numbers contained in a given list of numbers. The option
will be responsible for the number of primes which have to be printed. But first, let us write a function
which will display all the numbers found:

Clear@findPrimesD;
findPrimes@x_ListD := Module@8res<,

res = Cases@x, _ ?PrimeQD;
Print@resD;
resD;

Note that this function not only returns a list of all the numbers found, but also prints this list.

findPrimes@Range@50DD
82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47<

82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47<
We can block the output with the semicolon, but the printing will of course still happen :

206

findPrimes@Range@50DD;
82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47<
Now, we want to include an option to print no more than the first < n > numbers, and say the default
option will be < n > = 10. This is how the code will look like :

Clear@findPrimes, DisplayND;
findPrimes@x_List, opts___ ?OptionQD :=

Module@8res, printnumber, printres<,
printnumber = DisplayN �. Flatten@8opts<D �. DisplayN ® 10;

res = Cases@x, _ ?PrimeQD;
printres =

If@Length@resD £ printnumber, res, Take@res, printnumberDD;
Print@printresD;
resD;

Let us first check that it works correctly, and then dissect the code to understand how it works. First, we
will not explicitly use an option:

findPrimes@Range@50DD
82, 3, 5, 7, 11, 13, 17, 19, 23, 29<

82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47<
We see that 10 numbers were printed. Note that the result of the function execution is still a list of all
primes found - our option only affects the printing. Let us now explicitly define an option - say we want to
output only the first 5 numbers :

findPrimes@Range@50D, DisplayN ® 5D;
82, 3, 5, 7, 11<
Code dissection

Now, let us dissect the code. The main line which is at the heart of the options mechanism, is this one :
printnumber = DisplayN /. Flatten[{opts}] /. DisplayN ® 10; What happens here is the following:

1. The name of the option itself - <DisplayN> - does not and should not have any value. It is important to
note here that all options are defined as some rule. In this case, the rule is: everywhere where the literal
<DisplayN> is encountered, replace it by some number, say 10 (or 5 or whatever).

2. The variable <opts> in the pattern is a pattern tag with the BlankNullSequence (triple underscore),
which means that the entire function pattern will work even if nothing will be entered for the second
argument - < opts > . This is why we call it options, and our function worked in the first of the two cases
above.

3. A built - in predicate OptionQ checks that < opts > is a rule or a list of rules, and not something else. In
particular, the following input will not evaluate :

 207

findPrimes@Range@50D, 5D
findPrimes@81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50<, 5D
4. The operation Flatten[{opts}] is needed because in more complicated cases options may represent
nested lists of rules. But the rule replacement command ReplaceAll (/.) works the way we want it here
only with simple (not nested) lists of rules. Thus, an additional list structure, if present, has to be
destroyed. Flatten is used to do this.

5. Now we come to the essence: suppose that among the options passed to our function through the
<opts> argument, is an option related to DisplayN literal. For example, in our case we used DisplayN->5.
Therefore, Flatten[{opts}] gives {DisplayN->5}. Then, in the expression DisplayN /. Flatten[{opts}] the
rule will apply, and as a result, this expression will be replaced by 5. Then, since the rules are applied from
the left to the right (left-associatively), the last rule in the chain will look like 5/.DisplayN->10. But since
the literal <DisplayN> is no longer present in our transformed object (5), the rule will not apply and then
the whole expression DisplayN /. Flatten[{opts}]/.DisplayN->10 will be equal to 5, and this number will
be assigned to the variable <printnumber>, which really controls the number of printed primes.

If, however, there will be no option with the DisplayN literal, then the literal DisplayN will "reach" the last
rule /.DisplayN->10 without change, so then this rule will apply and the variable <printnumber> will
receive the value 10.

� 4.12.2.2 Option names

If you decide to set up some options for a function you are writing, it may be a good idea to Protect the
associated option name. Because, as it is clear from the discussion above, the option mechanism will be
immediately broken if the option name accidentally gets some value. In fact, the bugs associated with this
are sometimes very hard to catch.

� 4.12.2.3 Passing options to other functions

If a function receives some options, and then calls another function which also uses options, then the
calling one can pass the options it received (or some of them) to the called one - this transfer does not
require any changes in the base mechanism of options. On the other hand, the possibility of options pass-
ing makes it possible to have a very flexible control over the program.

To illustrate option passing, let us reformulate our previous problem somewhat. We will now have two
options : one tells whether or not to print the result - call it < printOption >, and another one will instruct
how many primes to look for (previously we were collecting all) - call it <searchNumber>. Also, we will
now package the search as a separate function, which we will call findPrimes, and the main (calling)
function we will call showPrimes. The variable corresponding to the searchNumber option call
<snumber>.

208

Clear@findPrimes, printOption, showPrimesD;
findPrimes@x_List, opts___ ?OptionQD := Module@8snumber<,

snumber = searchNumber �. Flatten@8opts<D �. searchNumber ® 10;

Cases@x, _ ?PrimeQ, 1, snumberDD;
showPrimes@x_List, opts___ ?OptionQD := Module@8res, printq<,

printq = printOption �. Flatten@8opts<D �. printOption ® True;

res = findPrimes@x, optsD;
If@printq, Print@"This is the printed result: ", resDD;
resD;

Check now :

showPrimes@Range@50DD
This is the printed result: 82, 3, 5, 7, 11, 13, 17, 19, 23, 29<

82, 3, 5, 7, 11, 13, 17, 19, 23, 29<
showPrimes@Range@50D, searchNumber ® 5D

This is the printed result: 82, 3, 5, 7, 11<
82, 3, 5, 7, 11<
showPrimes@Range@50D, searchNumber ® 5, printOption ® FalseD
82, 3, 5, 7, 11<

We see that our function became very flexible. The point is that using options, we can alter the execution
of more than one function, and this happens automatically (when the program is written correctly). It is
easy to see what happens when we pass options in a "cascading" way. Even if every option can only be
True or False, we have the total number of possible scenarios equal to 2^(number of options). And
because the options are passed to auxiliary functions, we relegate the corresponding decisions to be made
inside those auxiliary functions rather than one big main function - dispatcher. Thus, we take this load off
the main function, which leads to a better program design.

� 4.12.2.4 Filtering options

To cleanly implement this procedure however, we need to ensure that each function only receives the
options that it understands (well, in principle nothing bad happens when the option is not understood by a
given function - it is then just ignored, since it does not trigger any rule, but it is considered a better pro-
gramming style not to send foreign options to functions. Besides, the built-in functions will issue error
messages and return unevaluated if some unknown options are passed to them). There is another mecha-
nism called filtering options, which is designed to do just that. This mechanism is beyond the scope of our
discussion, but is is described in many places [2,6,7,9]. Let me just mention that in the version 6 there are
several new functions such as FilterRules which are specially designed to simplify filtering options.

� 4.12.2.5 Advanced topic: globally defined defaults for options

 209

�

4.12.2.5 Advanced topic: globally defined defaults for options

As an alternative to explicitly indicating all default option values in the function itself ("hard-coding"
them), options for a function can be defined globally, with the help of Options built - in function. For
example, here we define an option Heads -> True, plus some other option, for some symbol (function) < f
> :

ClearAll@fD;
Options@fD = 8Heads ® True, anotherOption ® someValue<
8Heads ® True, anotherOption ® someValue<

The Options command can also be used to monitor which options are known to the system for a given
function, and their default values. Basically, Options[function] is a container to keep function’ s options
and their default settings:

Options@fD
8Heads ® True, anotherOption ® someValue<

If one needs to modify the default value of some of the known (to the system) options of a given function,
one can use SetOptions command. This way it is not necessary to retype all the options which do not
change:

SetOptions@f, anotherOption ® differentValueD;
Options@fD
8Heads ® True, anotherOption ® differentValue<

This however will not work if the option is not known to the system :

SetOptions@f, thirdOption ® itsValueD
SetOptions::optnf : thirdOption is not a known option for f. �

SetOptions@f, thirdOption ® itsValueD
The option has to be known to the system before SetOptions can be used with it.

For built - in functions, it is anyway a mistake to introduce unknown options, but for user - defined ones it
makes perfect sense - at the end, we have to define the global defaults (if we decide to use them) at some
point! When one decides to use the global defaults through Options (and this has advantages we will
discuss in a moment), then normally one sets all the option defaults at once with a single statement
Options[function] = {option1 -> default1, ..., optionk -> defaultk}. Adding new options at run - time is a
bad idea in most cases, and also not possible if the function gets Protect-ed.

So, why this mechanism is any better than the one where defaults are "hard-coded" into a body of the
function? Primarily, for a better code readability and maintenance. Usually, globally defined defaults are
used when writing packages, and then all the defaults for all options for package functions are usually
defined in the beginning of the package and can be easily inspected and changed later on. Also, it is often
convenient if the options of a given function (in their current state) have to be either inspected or passed to
another function (possibly after having been filtered). It is hard to imagine how one could do it without
this mechanism, given that the calling function which passes them may be not the one whose options are
being passed.

The possible danger of this mechanism is that one may redefine the default values for function’ s options at
some point in the program, and then this function used after that point will use the new defaults in all
places where it is called. I would not recommend resetting function’ s options (especially for built - ins)
globally if your program will be used by other people. It is always possible to just simply call the function
of interest with needed option values passed to it explicitly, or, if it has to be called many times or you
want to hide the implementation details, write a wrapper package where you can define your own func-
tion like this - this is safer.

210

The possible danger of this mechanism is that one may redefine the default values for function’ s options at
some point in the program, and then this function used after that point will use the new defaults in all
places where it is called. I would not recommend resetting function’ s options (especially for built - ins)
globally if your program will be used by other people. It is always possible to just simply call the function
of interest with needed option values passed to it explicitly, or, if it has to be called many times or you
want to hide the implementation details, write a wrapper package where you can define your own func-
tion like this - this is safer.

This has also implications for writing packages: for all (especially built - in) functions used, always pass
explicitly all the options they have with the values you need, even if these values are system defaults - the
user of your package may have redefined the defaults before loading your package.

Returning to the semantics of options, the above mechanism converts the idiom <optionvar = Option-
Name /. Flatten[{opts} /. OptionName -> DefValue> to <optionvar = OptionName /. Flatten[{opts}
/.Options[thisFunction]>. Because of this, if you still decide to change options globally, I would not
recommend assignments such as Option[function] = {list of options} (as those described above), for the
following reason: with this assignment (unlike when you use SetOptions), you have to be careful to list all
the options with their current defaults, not just those that you are currently changing. But if you miss some,
this may result in a "dangling" variable <optionvar> for the option(s) you miss: say you have a line of code
Module[{...,optionvar = ourOption /. Flatten[{opts} /.Options[thisFunction]}, body]. If you accidentally
delete the rule for <ourOption> as a result of manipulations with Options[yourfunction], and pass no
explicit value for this option through <opts> either, the <optionvar> variable will be initialized with a
literal <ourOption>, rather than the value. Using SetOptions is much safer.

In fact, if the symbol of your function is protected (has a protected attribute), the system will automatically
forbid assignments Options[function] = ... :

Clear@gD;
Options@gD = 8firstOption ® value1, secondOption ® value2<;
Protect@gD;

We try now :

Options@gD
8firstOption ® value1, secondOption ® value2<
Options@gD = 8thirdOption ® value3<
Set::write : Tag g in Options@gD is Protected. �

8thirdOption ® value3<
Options@gD
8firstOption ® value1, secondOption ® value2<

If you went so far as to define global option defaults for your function, it probably then makes sense to
Protect it, so that option changes will only be possible through the SetOptions route. I remind however
that the Attributes of protected functions can still be modified.

As we have noted before, Clear will not clear options associated with the symbol:

 211

Clear@fD;
Options@fD
8Heads ® True, anotherOption ® differentValue<

You have to use ClearAll to remove option defaults :

ClearAll@fD;
Options@fD
8<

To clear definitions associates with a Protected symbol, you have first to Unprotect it.

�

To summarize: functions with options enhance the flexibility and versatility of functions you are writing
(and built-ins as well, of course).

Clear@findPrimes, showPrimesD;

� Summary

In this rather long chapter we have looked at rules, patterns and functions. From the practical viewpoint,
and given that the most effective programming style in Mathematica is a functional one, we are more
interested in functions. However, in Mathematica function definitions really are rules, and thus we have
to understand how to deal with rules and patterns, in order to handle functions.

We have considered various types of patterns and rules. For patterns, we considered various building
blocks, as well as mechanisms to construct restricted, or conditional, patterns. We have also described
many built-in functions that take patterns as their arguments, such as Cases, Position, MemberQ, etc.

Then we saw many examples of functions of a single or multiple arguments, defined through patterns. We
also saw that a function may have simultaneously many definitions, corresponding to different patterns.
This is a very powerful capability, which allows to make the code both safer and easier to read.

Apart from the pattern - defined functions, we have considered another very important class of functions -
anonymous, or pure functions. We discussed how to define and use such functions.

Functions may have some properties which affect the way they are evaluated. These properties are called
attributes. We considered several important attributes : Listable, Flat, Orderless, Protected, and HoldFirst,
HoldRest and HoldAll attributes and illustrated their use and effect.

In many cases the code for a function is longer than just a single line, and also some intermediate variables
are needed to store temporary values. We discussed the scoping constructs that exist in Mathematica for
localizing such variables - Module, Block and With.

When it is desired to substitute default values for some of the arguments based on the argument positions,
one can implement functions with default values through the use of optional patterns. Alternatively, if a
function has many parameters which determine its behavior and which are typically set to some default
values, named arguments are preferred. This other possibility to provide the alternative values for these
arguments is realized in the mechanism of options. We introduced options and illustrated their use on a
simple example.

212

When it is desired to substitute default values for some of the arguments based on the argument positions,
one can implement functions with default values through the use of optional patterns. Alternatively, if a
function has many parameters which determine its behavior and which are typically set to some default
values, named arguments are preferred. This other possibility to provide the alternative values for these
arguments is realized in the mechanism of options. We introduced options and illustrated their use on a
simple example.

Now that we have understood both lists and functions, it is time to combine the two topics to get some-
thing really powerful: functional programming. This is a topic of the next chapter.

 213

V. Functions on lists and functional programming

5.1 Introduction

Functional programming is a programming paradigm in which the central role is played by application of
functions, to both data and other functions. Functions themselves are treated as data, and thus can be
arguments of other functions. Since any data structure can be represented as a (possibly nested) list,
functional programming then is about application of functions to lists.

There are important differences between functional programming in Mathematica and other functional
languages (LISP). One difference is that recursion on lists is inefficient in Mathematica since lists are
implemented here as arrays rather than linked lists. Another difference is induced by the rule - based
nature of Mathematica in the way it reflects itself in function definitions (in the case of pattern - defined
functions) and evaluation procedure (global rule base, expression rewriting etc).

Apart from being concise, the functional programming style is usually the most efficient in Mathematica.
Also, although we do not consider it in this chapter, in Mathematica it is possible to use functional pro-
gramming techniques on expressions more general than lists - basically, on general Mathematica expres-
sions. This is a very powerful capability.

A few words about the role of this chapter. Perhaps, it will not be an overestimation to say that this is the
most important chapter of all. Mainly, this is because it introduces certain new programming style and a
number of programming idioms, which will be heavily used in all later chapters and which together form a
different level of programming in Mathematica, not just as technical tricks, but as a new way of thinking
about the problems. Those who are familiar with functional programming languages may find some of the
material familiar. However even for them, there will be a lot of new information specific to Mathematica,
which must be used in order to program it most efficiently.

Examples in this chapter play an important role in the overall exposition of the material. Many of them are
used to illustrate some important concepts or subtleties, since I believe that any new idea is best under-
stood when illustrated by a few examples. To get a complete grasp of this chapter, it is recommended to
go through all examples, and pay attention to the annotations attached to them. Some of the examples use
admittedly rather artificial settings. This is because their primary goal is to illustrate a given language
idiom in a rather simple situation.

214

5.2 Core higher-order functions

� 5.2.1 Introduction

Roughly speaking, functional programming (FP) in Mathematica consists of application of functions to
Mathematica normal expressions. A very important special case is when the normal expression is a list
(i.e, it’s Head is List), and we will be mostly concerned with this one in this chapter. However, most of
what can be done with lists within functional programming paradigm, can also be done with general
normal expressions.

Two things make FP non-trivial:

 1. Functions can take other functions as their arguments (this has an analog of function pointers in C),
but also can create and/or return new functions at run-time, be that pure functions or pattern-based ones.
The latter capability has no direct analog in procedural languages, where the functions definitions are
determined at compile time.

 2. Lists can be made of arbitrary Mathematica expressions, be those atoms (numbers, strings or sym-
bols), or normal expressions. In particular, one may consider nested lists which can be used to implement
various data structures (lists, trees etc). This also means that a single list may contain objects of different
types.

There are a few characteristic features of the functional programming style which I would like to mention
here in order to give a flavor of it. One is that side effects (such as variable assignments) are (almost)
absent. Another is that loops are very rarely used if at all. In Mathematica, this is not an absolute restric-
tion however - it is just more natural to use other constructs, as we will see below.

Functions which take other functions as their arguments, are called higher order functions. On the concep-
tual level, there are just two most important built-in higher order functions in Mathematica - Map and
Apply. On the practical level, these two are still most frequently used functions, but some "less fundamen-
tal" operations are still needed so often that special built-in functions exist for them, and are also quite
handy.

We will now go through several most often used built-in higher order functions, illustrating their use with
examples. Since they serve as building blocks of most of functional programs, one can do quite a lot being
equipped with just these functions.

� 5.2.2 Map - simplest form

This is one of the two most fundamental built-in higher order functions, and by far the most frequently
used one. Very roughly, one may say that it is used to replace loops within the FP paradigm.

In it’s simplest form, Map takes two arguments: another function - let us call it <f> - of a single argument
(I hasten to comment that the function may have no name, if it is a pure function (see section 4.11)), and
an expression - let us call it <expr>, on which this function should by mapped. If <expr> is an atom, it is
returned back. If <expr> is a list (or other normal expression), then f is applied to every element of the list,
and the resulting list is returned.

 215

In it’s simplest form, Map takes two arguments: another function - let us call it <f> - of a single argument
(I hasten to comment that the function may have no name, if it is a pure function (see section 4.11)), and
an expression - let us call it <expr>, on which this function should by mapped. If <expr> is an atom, it is
returned back. If <expr> is a list (or other normal expression), then f is applied to every element of the list,
and the resulting list is returned.

� 5.2.2.1 Simple examples of use

 A few simple examples

Clear@fD;
Map@f, aD
a

Map@f, 8a, b, c<D
8f@aD, f@bD, f@cD<

In the above, the function <f> did not have any definition yet. Let us define it

f@x_D := x^2;

Now:

Map@f, 8a, b, c<D

9a2, b2, c2=
Map@f, aD
a

� 5.2.2.2 Map is a replacement for a loop

Now we can see how it replaces a loop: in a procedural version, we will need something like this

Module@8i, len, expr, newexpr<,
For@i = 1; expr = 8a, b, c<;
len = Length@exprD; newexpr = Table@0, 8len<D,
i £ len, i ++, newexpr@@iDD = f@expr@@iDDDD;
newexprD

9a2, b2, c2=
Notice that I deliberately packaged the code into a Module, to make variables like <i>, <expr>, etc local
and avoid global side effects.

So, even here we can already see what we win by using Map:

1. We don’t need to introduce auxiliary variables
2. We don’t need to know the length of the list beforehand
3. The code is much more concise.
4. It is not obvious at all, but in most cases the code is faster or much faster.

What really happens is that a copy of the original list is created, and then all the operations are performed
on the copy. The original list remains unchanged.

� 5.2.2.3 Using Map with a pure function

216

�

5.2.2.3 Using Map with a pure function

To see how to use a pure function inside Map, let us just reproduce the previous result:

Map@ð^2 &, 8a, b, c<D
9a2, b2, c2=

In this case, there is no need for a function name. Also, pure functions (especially when used in Map) may
be more efficient that the pattern-defined ones, because no pattern-matching is taking place. But this also
means less protection from the bad input, as we discussed before.

� 5.2.2.4 Shorthand notation and precedence

As for many common operations, there is a shorthand notation for Map - a symbol /@ (slash - at). The
usage is <(function/@expression)>. For example:

Hf �� 8a, b, c<L
9a2, b2, c2=
Hð^2 & �� 8a, b, c<L
9a2, b2, c2=

One may use either literal <Map>, or </@>. Their action is equivalent as long as one always keeps the
parentheses as shown above. In many cases, like above, they can be omitted:

f �� 8a, b, c<
9a2, b2, c2=
ð^2 & �� 8a, b, c<
9a2, b2, c2=

In general however they are needed to avoid precedence-related bugs. For instance, in the following
example: we want to first map <f> on the list, and then square the result. For the latter part , we use a pure
function in the prefix notation (function@expression). What we should get is {a^4,b^4,c^4}. Instead:

ð^2 &�f �� 8a, b, c<
9f2@aD, f2@bD, f2@cD=

What happens is that the function symbol is squared, and only then Mapped. Now:

ð^2 &�Hf �� 8a, b, c<L
9a4, b4, c4=

This sort of problem is impossible with the use of literal Map:

ð^2 &�Map@f, 8a, b, c<D
9a4, b4, c4=

Also, literal Map often makes a program easier to read. So my advice would be to use it until you become
experienced with it. In practice however, the </@> form is often more handy.

 217

Also, literal Map often makes a program easier to read. So my advice would be to use it until you become
experienced with it. In practice however, the </@> form is often more handy.

� 5.2.2.5 Associativity

Map operation is right-associative, which means that parentheses may be omitted in the following code:

g �� g �� 8a, b, c<
8g@g@aDD, g@g@bDD, g@g@cDD<
f �� f �� 8a, b, c<
9a4, b4, c4=

� 5.2.2.6 More examples

Let us now consider a few of the more interesting examples.

Here, by mapping Range on a list produced by another Range, we create a following list of depth 2.

Map@Range, Range@4DD
881<, 81, 2<, 81, 2, 3<, 81, 2, 3, 4<<

Or equivalently

Range �� Range@4D
881<, 81, 2<, 81, 2, 3<, 81, 2, 3, 4<<

This will take a list of lists and return a list of their first elements:

Map@First, 88a, b<, 8c, d<, 8e, f<, 8g, h<<D
8a, c, e, g<

or

First �� 88a, b<, 8c, d<, 8e, f<, 8g, h<<
8a, c, e, g<

This will take a list of lists, and return a list of lists of all subsets of initial lists:

Map@Subsets, 88a, b, c<, 8d, e<<D
888<, 8a<, 8b<, 8c<, 8a, b<, 8a, c<, 8b, c<, 8a, b, c<<,

88<, 8d<, 8e<, 8d, e<<<
You could have noticed already that all these examples essentially need a single loop which is replaced by
Map. While by itself this is not a big deal, the main profit is another layer of abstraction - we no longer
need variables and assignments, and thus don’t need to worry about them. For example, a problem of
checking the array bounds just does not exist in this approach, without any toll on performance (apart
from that generally induced by Mathematica’s symbolic engine). Another added advantage is that the list
of results is produced by Map internally, and thus efficiently, while in a procedural version we have to do
it by hand, which is inefficient in Mathematica as we already discussed before.

� 5.2.2.7 Mapping a function of several arguments, with all arguments but one fixed

218

�

5.2.2.7 Mapping a function of several arguments, with all arguments but one fixed

Let us consider another situation: what if we want to Map a function of more than one argument, but
where all arguments but one are fixed. For example:

Clear@f, aD;
f@x_, y_D := Sin@x +yD;

And we want to Map it on a list {1,2,3,4,5}, with the variable <y> fixed at value <a>.

Perhaps the best solution to this problem is obtained by using the built-in <Thread> command. But here,
for the sake of example, we will see how we can get it with Map. Later we will return to this example
again and show a solution using Thread.

One way is to define an auxiliary function g, as follows:

Clear@gD;
g@x_D := f@x, aD;

Now we can use Map:

Map@g, Range@5DD
8Sin@1 +aD, Sin@2 +aD, Sin@3 +aD, Sin@4 +aD, Sin@5 +aD<

If we need to solve just this problem, the disadvantage of the present solution is that we have to introduce
an auxiliary function, which we only need once. If, on the other hand, we want to perform this operation
more than once, the disadvantage is that we make a function <g> implicitly depend on the global variable
<a> - this is a recipe for disaster. The better solution would be to use a pure function:

Map@f@ð, aD &, Range@5DD
8Sin@1 +aD, Sin@2 +aD, Sin@3 +aD, Sin@4 +aD, Sin@5 +aD<

We have essentially created a curried function along the lines of section 4.11.1.12. In this case, the func-
tion is constructed on the spot, and no name or global definition is associated with it. This may be consid-
ered as one of the idioms, which is good to remember. However, keep in mind that in many cases one can
use another built-in function Thread (to be covered soon) which is specially designed for this sort of
situations and may be faster.

Clear@fD;
� 5.2.2.8 How to prevent Map from mapping on the entire list

I mentioned before that Map in its simplest form is a replacement for a loop. Since it is often useful in
procedural approach to exit the loop abnormally with a Break[] command, let us discuss its analog for
Map.

In the Mathematica model of computation, the best style of programming consists of operating on any
composite object as a whole, and avoid breaking it into pieces, whenever possible. The functionality of
Map is in full agreement with this principle - it Maps a given function on an entire list, whatever its length
is. If however we want it to stop abnormally, the only way to do it I am aware of is to throw an exception.
However, if the result one is interested in is a resulting list (up to the point where the exception was
thrown), then one has to either introduce auxilliary variables, or (much better), use a more sophisticated
technique based on Reap-Sow operators (only version 5 onward).The Reap - Sow technique will be
covered in detail in part II.

 219

In the Mathematica model of computation, the best style of programming consists of operating on any
composite object as a whole, and avoid breaking it into pieces, whenever possible. The functionality of
Map is in full agreement with this principle - it Maps a given function on an entire list, whatever its length
is. If however we want it to stop abnormally, the only way to do it I am aware of is to throw an exception.
However, if the result one is interested in is a resulting list (up to the point where the exception was
thrown), then one has to either introduce auxiliary variables, or (much better), use a more sophisticated
technique based on Reap-Sow operators (only version 5 onward).The Reap - Sow technique will be
covered in detail in part II.

Consider an example: we want to map a function squaring its argument on a list of random numbers, but
stop as soon as we encounter first non-positive number, and return the part of a list which has been
processed.

Here is a list:

testlist = Table@Random@Integer, 8-1, 10<D, 815<D
81, 2, 10, -1, 7, 9, 6, 5, 6, 4, 1, 0, 9, -1, 0<

This will be a solution

Module@8result = 8<<, Catch@
Map@If@ð > 0, AppendTo@result, ð^2D, Throw@resultDD &, testlistDDD

81, 4, 100<
While this solution is not ideal in many ways, and uses some operations (Catch - Throw) not covered yet,
my point here is to illustrate 2 things:

1. It is possible to prevent Map from going through an entire list even though Map is a built-in command
without such explicit capability (it sweeps through an entire list by default).

2. There is a significant price to pay in doing so. Here, we paid by:
a. Introducing a variable <result> (and then the Module construct to make it local)
b. Making a function to be Mapped more complicated (now it contains an If statement).
c. <result> is continuously appended in place - this will become inefficient for large lists. For this last
point, there are workarounds but they will make the code more complicated.
d. We loose the natural advantage that Map gives us: Map normally produces the resulting list for
us. Here we instead create our own resulting list (<result> variable), and inevitably do it inefficiently as
compared to a built-in Map. In fact, in this example the use of <Scan> command instead of Map would
be more appropriate, but we have not covered it yet.
 e. The code is less concise.

So, my suggestion would be to try designing a program such that this kind of interruption of Map is not
needed - it is possible to do this in most cases. If there is no other way - then use Throw and Catch as
above (avoid however appending large lists in place - there are better techniques of list creation to be
discussed later) . In fact, in many cases it may be more efficient to first Map the function on an entire list,
and then pick from that list only certain elements.

220

� 5.2.2.9 Interaction with the procedural code

It is possible to enhance somewhat the functionality of Map by embedding some procedural code
(essentially, side effects) inside the function being mapped. One can also view this as continuous run -
time redefinitions of the function being mapped. Whatever the interpretation, Mathematica allows for
such things, which is often handy. A few examples:

� 5.2.2.9.1 Example: partial sums

This will create a list of partial sums :

Module@8sum = 0<, sum += ð & �� Range@10DD
or, we can define a function

Clear@partSumD;
partSum@x_ListD := Module@8sum = 0<, sum += ð & �� xD;
partSum@Range@15DD
81, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120<

� 5.2.2.9.2 Example: simulating MapIndexed

Here we will mimic the action of the MapIndexed function (covered next) in its simplest form (when it is
used on a flat list) - it supplies the position of the element in a list as a second argument to the function
being mapped on the list.

Module@8pos = 1<, f@ð, 8pos ++<D & �� Range@10, 20DD
8f@10, 81<D, f@11, 82<D, f@12, 83<D,
f@13, 84<D, f@14, 85<D, f@15, 86<D, f@16, 87<D,
f@17, 88<D, f@18, 89<D, f@19, 810<D, f@20, 811<D<

We can again package this as a function :

Clear@myMapIndexedD;
myMapIndexed@f_, x_ListD :=

Module@8pos = 1<, f@ð, 8pos ++<D & �� xD;
� 5.2.2.9.3 Example: moving average revisited

We can implement a version of moving average function by constantly updating a "running" list of neigh-
bor points during mapping. Here we Map a function that does it, on a list of first 15 natural numbers, and
average each number with 2 neighboring numbers on each side :

Module@8avlist = 8<, result<, CompoundExpression@AppendTo@avlist, ðD;
If@Length@avlistD ³ 5, result = Total@avlistD �5;
avlist = Rest@avlistD; resultDD & �� Range@15DD

8Null, Null, Null, Null, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13<

 221

We have to delete the first 2 m results, since they will be Null. Here is the resulting function :

Clear@movAverageD;
movAverage@x_List, m_IntegerD �; Length@xD > 2 m :=

Drop@Module@8avlist = 8<, result<,
CompoundExpression@AppendTo@avlist, ðD; If@

Length@avlistD ³ 2 m +1, result = Total@avlistD � H2 m +1L;
avlist = Rest@avlistD; resultDD & �� xD, 2 mD;

Check :

Range@10D^2
81, 4, 9, 16, 25, 36, 49, 64, 81, 100<
movAverage@Range@10D^2, 1D
:14
3
,
29

3
,
50

3
,
77

3
,
110

3
,
149

3
,
194

3
,
245

3
>

This is another implementation where the idea of using side effects is pushed to the extreme :

Clear@movAverageAltD;
movAverageAlt@x_List, m_IntegerD �; Length@xD > 2 m :=

Module@8n = 1<,
Total@Take@x, 8n, 2 m +n ++<DD � H2 m +1L & �� Drop@x, 2 mDD;

Notice that here, it does not use any information from the list on which the function is mapped - this is a
pure function with zero arguments (see section 4.11.1.11), so we could just as well map on a list of zeros
or ones - it just needs to have the right length. C programmers may worry about the line {n,2m+n++},
since its value depends on which part of the list is evaluated first. But here this is system-independent,
since the standard evaluation procedure applied to a simple flat list prescribes that the parts of such list
will always be evaluated from left to right.

We can do some efficiency tests

movAverage@Range@10000D, 10D; �� Timing

80.641, Null<
movAverageAlt@Range@10000D, 10D; �� Timing

80.34, Null<
We notice that the second version is about twice faster. Let me mention that these implementations are not
very efficient, and the purpose of this example was to demonstrate the construction used here.

This is one of the most efficient implementations, which we covered before in section 3.8.1.2, for compari-
son :

222

Clear@movingAverageD;
movingAverage@x_List, m_IntegerD :=

HPlus �� ðL �Length@ðD &�Partition@x, Length@xD -2* m, 1D;
movingAverage@Range@10000D, 10D; �� Timing

80.02, Null<
Normally, you don’ t get a big penalty in efficiency if you use just one or two global variables for side
effects inside the mapped function. But manipulations with entire lists, like those done above, are costly
and should be avoided.

� 5.2.2.10 More general uses of Map - Mapping on a certain level in an expression

As a third optional argument, Map takes a level specification. This is the standard level specification (see
section 1.1.7) used in many Mathematica constructs - here it indicates the level(s) on which the function
should be mapped. Let me remind that a single integer gives the level up to which the function should be
mapped, integer in parentheses means that mapping should affect only that level, and a pair of integers in
parentheses indicate a range of levels affected by mapping.

� 5.2.2.10.1 Initial examples

Clear@f, testexprD;
This is our initial list

testexpr = Outer@List, Range@2D, Range@3DD
8881, 1<, 81, 2<, 81, 3<<, 882, 1<, 82, 2<, 82, 3<<<

First, let us use simple Map:

Map@f, testexprD
8f@881, 1<, 81, 2<, 81, 3<<D, f@882, 1<, 82, 2<, 82, 3<<D<

The way to think about Map-ping on higher levels is that we effectively "sneak" through some number of
curly braces, and then Map.

Now we Map on levels 1 and 2:

Map@f, testexpr, 2D
8f@8f@81, 1<D, f@81, 2<D, f@81, 3<D<D,
f@8f@82, 1<D, f@82, 2<D, f@82, 3<D<D<

The same can be achieved by

Map@f, testexpr, 81, 2<D
8f@8f@81, 1<D, f@81, 2<D, f@81, 3<D<D,
f@8f@82, 1<D, f@82, 2<D, f@82, 3<D<D<

Now we Map on levels 2 and 3:

 223

Map@f, testexpr, 82, 3<D
88f@8f@1D, f@1D<D, f@8f@1D, f@2D<D, f@8f@1D, f@3D<D<,

8f@8f@2D, f@1D<D, f@8f@2D, f@2D<D, f@8f@2D, f@3D<D<<
Now only on level 3:

Map@f, testexpr, 83<D
888f@1D, f@1D<, 8f@1D, f@2D<, 8f@1D, f@3D<<,

88f@2D, f@1D<, 8f@2D, f@2D<, 8f@2D, f@3D<<<
Negative levels can also be used. In this case negative 1 is equivalent to 3:

Map@f, testexpr, 8-1<D
888f@1D, f@1D<, 8f@1D, f@2D<, 8f@1D, f@3D<<,

88f@2D, f@1D<, 8f@2D, f@2D<, 8f@2D, f@3D<<<
Be aware however that for general expressions (trees, for example), there is no simple connection between
negative and positive level specifications. Specification {-n} means "all sub-expressions of depth n",
while {n} means all elements at the level <n>. Negative level specifications may look exotic, but in prac-
tice they are often quite useful. One particular example where Map-ping on negative levels is useful is
when one has to grow some tree in a breadth-first manner.

Specification <-n> without parentheses means "all subexpressions of depth at least n". For example,

Map@f, testexpr, -1D
8f@8f@8f@1D, f@1D<D, f@8f@1D, f@2D<D, f@8f@1D, f@3D<D<D,
f@8f@8f@2D, f@1D<D, f@8f@2D, f@2D<D, f@8f@2D, f@3D<D<D<
Map@f, testexpr, -2D
8f@8f@81, 1<D, f@81, 2<D, f@81, 3<D<D,
f@8f@82, 1<D, f@82, 2<D, f@82, 3<D<D<
Map@f, testexpr, -3D
8f@881, 1<, 81, 2<, 81, 3<<D, f@882, 1<, 82, 2<, 82, 3<<D<

Once again, for nested lists with the same dimensions of the sublists, we see the connection to positive
level specification, because on each level all elements have the same depth. In general, there is no such
connection.

� 5.2.2.10.2 Less trivial example - using Map to sort sublists in a nested list

Create a list (table) of depth 4, of random numbers

Clear@testexprD;
testexpr = Table@Random@Integer, 81, 10<D, 83<, 82<, 83<D
8881, 7, 9<, 83, 3, 3<<, 885, 10, 1<, 89, 5, 2<<, 883, 6, 10<, 88, 8, 3<<<

Now say we need to sort the sublists of numbers. The way to do it is to Map the Sort function on the level
{2}:

224

Map@Sort, testexpr, 82<D
8881, 7, 9<, 83, 3, 3<<, 881, 5, 10<, 82, 5, 9<<, 883, 6, 10<, 83, 8, 8<<<

If we want to sort in decreasing order, then:

Map@Sort@ð, ð1 ³ ð2 &D &, testexpr, 82<D
8889, 7, 1<, 83, 3, 3<<, 8810, 5, 1<, 89, 5, 2<<, 8810, 6, 3<, 88, 8, 3<<<

This example is a little tricky and requires some explanation: the point is that Sort itself is a higher order
function, which takes as a second optional argument the sorting criteria function. The criteria function
depends on 2 variables, and in this case is < #1³ #2&>. There is no confusion between the first argument
of Sort # and the argument #1 from the criteria function, because the latter is completely contained in the
former. To clarify this, let us do the same thing without the use of pure functions:

Clear@sortF, critFD;
critF@x_, y_D := x ³ y;

sortF@x_ListD := Sort@x, critFD;
Now we can Map sortF instead of Sort

Map@sortF, testexpr, 82<D
8889, 7, 1<, 83, 3, 3<<, 8810, 5, 1<, 89, 5, 2<<, 8810, 6, 3<, 88, 8, 3<<<

The price to pay here is that two auxiliary functions have to be introduced and given names. As it hap-
pens, we can use a built-in function GreaterEqual, instead of critF:

result = Map@Sort@ð, GreaterEqualD &, testexpr, 82<D
8889, 7, 1<, 83, 3, 3<<, 8810, 5, 1<, 89, 5, 2<<, 8810, 6, 3<, 88, 8, 3<<<

The previous two solutions were presented to show how to do things in the general case, when no built-in
criteria function is available. However, whenever the built-in function is available, it is always better to use
a built-in.

As a next step in this example, imagine that the sublists also have to be sorted, according to which sublist
has a smaller first element. For example, sorting the list {{3,1},{5,6,7},{2,8},{4,6}} should give
{{2,8},{3,1},{4,6},{5,6,7}}. The proper (pure) criteria function will be in this case #1[[1]]£ #2[[1]]&,
and we have to Map Sort on the first level now

result1 = Map@Sort@ð, ð1@@1DD £ ð2@@1DD &D &, resultD
8883, 3, 3<, 89, 7, 1<<, 889, 5, 2<, 810, 5, 1<<, 888, 8, 3<, 810, 6, 3<<<

Finally, we may want to reorder the largest sublists, according for instance to a total sum of the numbers
contained.

A sub-problem: sum all the numbers contained in a nested list

For example, in the first sublist:

sublist = result1@@1DD
883, 3, 3<, 89, 7, 1<<

The best way to sum all the numbers here is to first use Flatten, to remove internal curly braces and make
a list flat. Then use Total on the resulting list:

 225

The best way to sum all the numbers here is to first use Flatten, to remove internal curly braces and make
a list flat. Then use Total on the resulting list:

numsum = Total@Flatten@sublistDD
26

�

Now that we know how to sum all the numbers, we can convert this knowledge into a pure function
(sorting criteria): Total[Flatten[#1-#2]]³0& (here we use that the sublists have the same structure and can
thus be subtracted)

result2 = Sort@result1, Total@Flatten@ð1 -ð2DD ³ 0 &D
8888, 8, 3<, 810, 6, 3<<, 889, 5, 2<, 810, 5, 1<<, 883, 3, 3<, 89, 7, 1<<<

Notice that in this case there is no Map-ping, since we already operate on the level where we should just
simply use Sort.

Let me summarize the goal and the code once again: we are given a list of depth 4 of numbers (think of it
as a 3-dimensional grid), which we want to sort according to the following rules: the numbers inside the
smallest sublists are sorted in decreasing order. The smallest sublists inside next smallest are sorted such
that the sublist with the smallest first element comes first. Finally, the largest sublists are sorted by decreas -
ing total of all the elements in the sublist. The sorting has to be performed starting with the smallest
sublists (although in this particular example, the order is irrelevant). Here is the code packaged into a
function (variables made local):

Clear@sortNestedD;
sortNested@x_ListD := Module@8result, result1, result2<,
result = Map@Sort@ð, GreaterEqualD &, x, 82<D;
result1 = Map@Sort@ð, ð1@@1DD £ ð2@@1DD &D &, resultD;
result2 = Sort@result1, Total@Flatten@ð1 -ð2DD ³ 0 &DD

Check :

sortNested@testexprD
8888, 8, 3<, 810, 6, 3<<, 889, 5, 2<, 810, 5, 1<<, 883, 3, 3<, 89, 7, 1<<<

Notice that we could have avoided the introduction of auxiliary variables by nesting the code, but then it
would become much less readable:

Clear@sortNestedAltD;
sortNestedAlt@x_ListD := Sort@ Map@Sort@ð, ð1@@1DD £ ð2@@1DD &D &,

Map@Sort@ð, GreaterEqualD &, x, 82<DD,
Total@Flatten@ð1 -ð2DD ³ 0 &D;

sortNestedAlt@testexprD
8888, 8, 3<, 810, 6, 3<<, 889, 5, 2<, 810, 5, 1<<, 883, 3, 3<, 89, 7, 1<<<

The lesson here is that often the advantage of readability overweights extra code needed. Try to resist a
temptation of writing deeply nested functions like <sortNestedAlt>.

A general feature illustrated by this example is that pure functions, Map and a possibility to use higher-
order functions greatly reduce the size of the code, and increase its flexibility. Also, in Mathematica this
way of doing it will be among the most efficient ones.

226

A general feature illustrated by this example is that pure functions, Map and a possibility to use higher-
order functions greatly reduce the size of the code, and increase its flexibility. Also, in Mathematica this
way of doing it will be among the most efficient ones.

Many more examples of Map in action will follow - Map is truly ubiquitous in Mathematica
programming.

� 5.2.3 MapAt

If Map can be thought of as a machine gun, then MapAt is a precision rifle. It Maps the function to spe-
cific position(s) rather than on an entire list.

In the simplest form, MapAt takes 3 arguments: the function to be mapped, the expression, and the posi-
tion of the element of this expression on which to map. For mapping on the first-level elements of the list,
the position can be just the index of the element - a number. In general, the position has to be a list of
indices. MapAt uses the same position specifications as Position and Extract. One can also use MapAt to
map a function on several elements at once - in this case, a list of positions of these elements, rather than a
single position, has to be supplied. The elements corresponding to these positions, may be at different
levels in the expression. Thus, sublists representing elements’ positions can have different lengths.

� 5.2.3.1 Examples

Clear@ourlistD;
ourlist = 8a, b, c, d<
8a, b, c, d<

Say, we want to Map Sine function on the second element:

MapAt@Sin, ourlist, 2D
8a, Sin@bD, c, d<

If we want to Map on second and third elements:

MapAt@Sin, ourlist, 882<, 83<<D
8a, Sin@bD, Sin@cD, d<

Notice the internal curly braces. If we omit them, Mathematica will decide that we want to Map Sine on a
single element with the position {2,3}. Since there is no such element ({2,3} means third element of the
second element, but the second element is an atom), this will result in an error.

MapAt@Sin, ourlist, 82, 3<D
MapAt::partw : Part 82, 3< of 8a, b, c, d< does not exist. More¼

MapAt@Sin, 8a, b, c, d<, 82, 3<D
Let us now create a nested list:

Clear@testexpr, fD;
testexpr = Table@Random@Integer, 81, 10<D, 83<, 82<, 83<D
8883, 1, 7<, 83, 4, 10<<, 882, 7, 3<, 81, 4, 5<<, 883, 8, 2<, 81, 2, 3<<<

 227

It is useful to consider a few examples and try to understand why each output is as it is:

MapAt@f, testexpr, 2D
8883, 1, 7<, 83, 4, 10<<,
f@882, 7, 3<, 81, 4, 5<<D, 883, 8, 2<, 81, 2, 3<<<
MapAt@f, testexpr, 882<, 83<<D
8883, 1, 7<, 83, 4, 10<<,
f@882, 7, 3<, 81, 4, 5<<D, f@883, 8, 2<, 81, 2, 3<<D<
MapAt@f, testexpr, 83, 2<D
8883, 1, 7<, 83, 4, 10<<,

882, 7, 3<, 81, 4, 5<<, 883, 8, 2<, f@81, 2, 3<D<<
MapAt@f, testexpr, 882, 1<, 83, 2<<D
8883, 1, 7<, 83, 4, 10<<,

8f@82, 7, 3<D, 81, 4, 5<<, 883, 8, 2<, f@81, 2, 3<D<<
MapAt@f, testexpr, 882, 1, 1<, 83, 2, 3<<D
8883, 1, 7<, 83, 4, 10<<,

88f@2D, 7, 3<, 81, 4, 5<<, 883, 8, 2<, 81, 2, f@3D<<<
Basically, all you have to do to unravel the above examples is to carefully trace the position: for example,
{2,1,1} means: first element of the first element of the second element.

� 5.2.3.2 Use in conjunction with Map

MapAt is often used in conjunction with Map. For example, we want to Map <f> on the second element
(number) in each small sublist. The code is

Map@MapAt@f, ð, 2D &, testexpr, 82<D
8883, f@1D, 7<, 83, f@4D, 10<<,

882, f@7D, 3<, 81, f@4D, 5<<, 883, f@8D, 2<, 81, f@2D, 3<<<
To convince yourself that we needed to Map on the level {2}, think this way: we had to bypass 2 external
curly braces to use MapAt on the first sublist. Should we Map on the first level instead, we’ d get the
following:

Map@MapAt@f, ð, 2D &, testexprD
8883, 1, 7<, f@83, 4, 10<D<,

882, 7, 3<, f@81, 4, 5<D<, 883, 8, 2<, f@81, 2, 3<D<<
which is not what we want (do you see what happened and why?).Notice that we created the pure func-
tion out of MapAt along the lines of section 4.11.1.12.

228

� 5.2.3.3 Use in conjunction with Position

Also, MapAt is often used in conjunction with Position. The logic is this: say, we want to Map certain
function f on all elements of a given expression(possibly restricted to some levels), satisfying certain
criteria. This can be easily done in a rule-based approach. In FP approach, we use Position to find posi-
tions of all such elements, and then plug the result into MapAt.

 As an example, say we want to Map f on all even numbers in our list. The code is

MapAt@f, testexpr, Position@testexpr, _ ?EvenQDD
8883, 1, 7<, 83, f@4D, f@10D<<,

88f@2D, 7, 3<, 81, f@4D, 5<<, 883, f@8D, f@2D<, 81, f@2D, 3<<<
Or, on all multiples of 3

MapAt@f, testexpr, Position@testexpr, x_ �; Mod@x, 3D � 0DD
888f@3D, 1, 7<, 8f@3D, 4, 10<<,

882, 7, f@3D<, 81, 4, 5<<, 88f@3D, 8, 2<, 81, 2, f@3D<<<
Warning : performance pitfall

However, be aware of the performance pitfall associated with this technique: when you try to use MapAt
to map a function on a large number of elements at the same time (especially if all of them belong to a
single subexpression), MapAt can be very slow. Please see Appendix C for a detailed discussion. In some
cases, the performance of MapAt may be improved (or, rather, a more efficient implementation with a
basic MapAt functionality can be found) - see chapter VI for such an example.

� 5.2.3.4 Application : multiple random walks

We can use MapAt to implement co - evolving random walkers, for instance. Let us say that each walker
is updated with the same function, say

Clear@randomWalkD;
randomWalk@x_D := x +Random@Integer, 8-1, 1<D;

Let us say we have n = 5 random walkers, all starting at zero :

nwalkers = 5;

startpositions = Table@0, 8nwalkers<D
80, 0, 0, 0, 0<

We may either update them one by one, or in principle, update them at random. In the latter case, we will
generate an "update" list of numbers from 1 to n. Each number < k > means "update walker k".

totalupdates = 50;

updatelist = Table@Random@Integer, 81, nwalkers<D, 8totalupdates<D
81, 4, 5, 2, 3, 3, 1, 4, 4, 5, 2, 2, 2, 2, 2, 2, 1, 2, 4, 2, 3, 4, 3, 3, 2,

1, 4, 3, 3, 2, 1, 1, 1, 2, 2, 2, 1, 5, 5, 2, 4, 4, 1, 5, 3, 2, 3, 2, 1, 2<

 229

This gives the total evolution of all the walkers (FoldList will be covered shortly) :

Short@result = FoldList@
MapAt@randomWalk, ð1, ð2D &, startpositions, updatelistD, 10D

880, 0, 0, 0, 0<, 8-1, 0, 0, 0, 0<, 8-1, 0, 0, 0, 0<,8-1, 0, 0, 0, -1<, 8-1, -1, 0, 0, -1<, 8-1, -1, 1, 0, -1<,8-1, -1, 0, 0, -1<, �37�, 80, 1, 0, -1, -1<,80, 1, -1, -1, -1<, 80, 2, -1, -1, -1<, 80, 2, -2, -1, -1<,80, 3, -2, -1, -1<, 8-1, 3, -2, -1, -1<, 8-1, 4, -2, -1, -1<<
To get individual walker’ s trajectories, we may Transpose the result. We will us the < MultipleListPlot >
package to visualize the walks

Needs["Graphics‘MultipleListPlot‘"];

MultipleListPlot@Transpose@resultD, PlotJoined ® True,

PlotStyle ® 8RGBColor@1, 0, 0D, RGBColor@0, 1, 0D,
RGBColor@0, 0, 1D, RGBColor@1, 0, 1D, RGBColor@0, 1, 1D<,

SymbolShape ® PlotSymbol@Star, 1DD

10 20 30 40 50

-2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

� 5.2.3.5 Identical positions in the position list

When some of the positions in the position list in MapAt coincide, the function is mapped on that position
several times (nested). For instance :

Clear@gD;
MapAt@g, Range@5D, 881<, 82<, 84<, 82<, 84<, 84<<D
8g@1D, g@g@2DD, 3, g@g@g@4DDD, 5<

However, the order in which the function is mapped in this case does not correspond to the order of
positions in the list of positions. The nested function calls which correspond to the duplicate positions in
the position list, are grouped together before the function is evaluated. We can see that by introducing a
side - effect - the counter n, and trace whether the counter values correspond to the order in which map-
ping positions follow - they don’ t.

MapAt@g@ð, n ++D &, n = 0; Range@5D, 881<, 82<, 84<, 82<, 84<, 84<<D
8g@1, 0D, g@g@2, 1D, 2D, 3, g@g@g@4, 3D, 4D, 5D, 5<

This means, in particular, that in the previous example with random walkers we won’ t be able to obtain
the final state of the walkers by just feeding the list of update positions to MapAt, because it would apply
the random < randomWalk > function to the walkers in different order.

230

This means, in particular, that in the previous example with random walkers we won’ t be able to obtain
the final state of the walkers by just feeding the list of update positions to MapAt, because it would apply
the random < randomWalk > function to the walkers in different order.

� 5.2.3.6 The order of mapping

Whenever MapAt is used to map a function to a number of elements, we already saw that MapAt does not
map in the same order in which we supply the positions of the element. But what is the order in which
mapping happens? The answer is that the list of positions is first reordered such that they follow as they
would in a depth - first expression traversal. The reason is probably that this is the only order which is
unambiguous, given that the function being mapped may in principle do any transformation with the subex-
pression (sub - branch) on which it is mapped, even destroy it.

� 5.2.3.7 Example: imitating DeleteCases

One important specific case is when we want to actually delete elements subject to some criteria. Usually,
we use DeleteCases for that. For example, let us delete from all sublists of a nested list all elements that
are multiples of 3. This will be our test list:

Clear@testexprD;
testexpr = Table@Random@Integer, 81, 10<D, 83<, 82<, 83<D
8888, 6, 6<, 83, 7, 1<<, 883, 2, 5<, 87, 9, 8<<, 888, 10, 6<, 86, 5, 3<<<

We can imitate DeleteCases by Mapping a function #/.#¦Sequence[]&, which effectively deletes an
element from the list by replacing it by an "emptiness" (if you are feeling ambitious, try to see why we did
not use a simpler form for the function being mapped - just Sequence[]&).

MapAt@ð �. ð ¦ Sequence@D &, testexpr,

Position@testexpr, x_ �; Mod@x, 3D � 0DD
8888<, 87, 1<<, 882, 5<, 87, 8<<, 888, 10<, 85<<<

We can package this into a function :

Clear@myDeleteCasesD;
myDeleteCases@expr_, patt_D :=

MapAt@ð �. ð ¦ Sequence@D &, expr, Position@expr, pattDD;
Check again :

myDeleteCases@testexpr, x_ �; Mod@x, 3D � 0D
8888<, 87, 1<<, 882, 5<, 87, 8<<, 888, 10<, 85<<<

With DeleteCases, it will look like (Infinity means look at all levels)

DeleteCases@testexpr, x_ �; Mod@x, 3D � 0, InfinityD
8888<, 87, 1<<, 882, 5<, 87, 8<<, 888, 10<, 85<<<

 231

� 5.2.4 MapAll

This function is equivalent to Map[function,expression,{0,Infinity}] . The zero here is necessary to apply
the function also to entire expression, since this is what MapAll also does. We give just a single example

Clear@testexpr, fD;
testexpr = Table@Random@Integer, 81, 10<D, 83<, 82<, 83<D
8887, 4, 7<, 810, 7, 6<<, 889, 7, 6<, 81, 7, 4<<, 881, 7, 1<, 87, 7, 6<<<
MapAll@f, testexprD
f@8f@8f@8f@7D, f@4D, f@7D<D, f@8f@10D, f@7D, f@6D<D<D,
f@8f@8f@9D, f@7D, f@6D<D, f@8f@1D, f@7D, f@4D<D<D,
f@8f@8f@1D, f@7D, f@1D<D, f@8f@7D, f@7D, f@6D<D<D<D

� 5.2.4.1 MapAll works in a depth-first manner

 As is easy to demonstrate, MapAll performs the mapping on a general Mathematica expression (which,
as we recall, can always be represented as a tree), in a depth - first manner. To do this, consider the
following nested list (Fold operation will be covered shortly):

tst = Fold@List, 8<, 8a, b, c, d<D
88888<, a<, b<, c<, d<

This function prints the value of its argument and then returns the argument.

ShowIt@x_D := HPrint@xD; xL
Let us now map it to all levels of our expression :

MapAll@ShowIt, tstD
8<
a

88<, a<
b

888<, a<, b<
c

8888<, a<, b<, c<
d

88888<, a<, b<, c<, d<
88888<, a<, b<, c<, d<

This clearly demonstrates that Mapping is performed in a depth - first manner. In general, MapAll should
be used anytime when some function has to be applied to all levels of expression and in the depth-first
manner (or when the order in which the function is applied to different pieces of expression does not
matter). One example of such use follows.

� 5.2.4.2 Use in conjunction with ReplaceAll

232

�

5.2.4.2 Use in conjunction with ReplaceAll

MapAll is not very often used, but there is however at least one instance when it is very useful - in conjunc-
tion with rule application when rules have to be applied to the innermost parts of the expression first. This
is not what happens by default. Consider the following rule :

ourrule = 8x_, y_< ¦ 8x, y^2<;
Now, let us try :

tst �. ourrule
98888<, a<, b<, c<, d2=
tst �. ourrule �. ourrule
98888<, a<, b<, c<, d4=

We see that the rule is always being applied to the outermost expression, since it matches. One way to
proceed is of course to restrict the rule, so that, once applied, it won’t apply to the transformed expression
any more :

ournewrule = 8x_, y_ �; Not@MatchQ@y, Power@_, 2DDD< ¦ 8x, y^2<;
tst �. ournewrule
98888<, a<, b<, c<, d2=
tst �. ournewrule �. ournewrule
99888<, a<, b<, c2=, d2=
tst ��. ournewrule
99998<, a2=, b2=, c2=, d2=

In the above case, we had our rule applied to expression starting from the outermost level to the inner-
most. But this behavior is not always the desired one. We can use MapAll to change this : now we will do
the same by starting from the innermost piece, since MapAll maps the function in a depth - first manner.
We can monitor this by tracing the execution (we restrict the Trace command to show only the rule-
substitution pieces of the evaluation tree)

 233

Trace@MapAll@ð �. ourrule &, tstD, ReplaceAllD
9999999998< �. ourrule, 8< �. 8x_, y_< ¦ 9x, y2=, 8<=,

9a �. ourrule, a �. 8x_, y_< ¦ 9x, y2=, a==,
88<, a< �. ourrule, 88<, a< �. 8x_, y_< ¦ 9x, y2=, 98<, a2==,

9b �. ourrule, b �. 8x_, y_< ¦ 9x, y2=, b==, 998<, a2=, b= �. ourrule,
998<, a2=, b= �. 8x_, y_< ¦ 9x, y2=, 998<, a2=, b2==,

9c �. ourrule, c �. 8x_, y_< ¦ 9x, y2=, c==,
9998<, a2=, b2=, c= �. ourrule,
9998<, a2=, b2=, c= �. 8x_, y_< ¦ 9x, y2=,
9998<, a2=, b2=, c2==,

9d �. ourrule, d �. 8x_, y_< ¦ 9x, y2=, d==,
99998<, a2=, b2=, c2=, d= �.
ourrule,

99998<, a2=, b2=, c2=, d= �.
8x_, y_< ¦ 9x, y2=,

99998<, a2=, b2=, c2=, d2==
� A digression : performance improvements and the use of With

Trace also reveals that our computation is not entirely efficient since the rule definition is evaluated every
time afresh. To avoid this we will use < With > to embed the rule definition textually :

Trace@With@8rule = ourrule<, MapAll@ð �. rule &, tstDD, ReplaceAllD
9999999998< �. 8x_, y_< ¦ 9x, y2=, 8<=, 9a �. 8x_, y_< ¦ 9x, y2=, a==,

88<, a< �. 8x_, y_< ¦ 9x, y2=, 98<, a2==,
9b �. 8x_, y_< ¦ 9x, y2=, b==, 998<, a2=, b= �. 8x_, y_< ¦ 9x, y2=,

998<, a2=, b2==, 9c �. 8x_, y_< ¦ 9x, y2=, c==,
9998<, a2=, b2=, c= �. 8x_, y_< ¦ 9x, y2=, 9998<, a2=, b2=, c2==,

9d �. 8x_, y_< ¦ 9x, y2=, d==,
99998<, a2=, b2=, c2=, d= �.
8x_, y_< ¦ 9x, y2=,

99998<, a2=, b2=, c2=, d2==
Note that the use of Module or Block won’ t have the same effect, and won’ t help us here.

�

The same functionality can be achieved by using Replace rather than ReplaceAll, with the level specifica-
tion {0, Infinity} :

234

Trace@Replace@tst, ourrule, 80, Infinity<DD
98tst, 88888<, a<, b<, c<, d<<,
9ourrule, 8x_, y_< ¦ 9x, y2==, 88¥, ¥<, 80, ¥<<,
ReplaceA88888<, a<, b<, c<, d<, 8x_, y_< ¦ 9x, y2=, 80, ¥<E,
99998<, a2=, b2=, c2=, d2==

This is in fact a more efficient solution since more operations are done inside the kernel, but without the
previous discussion the apparent differences in the functionality of ReplaceAll[expr, rules] and
Replace[expr, rules, {0, Infinity}] may look like a mystery. In many cases the desired behavior is in fact
the one of the latter operation - that is, apply rules to the innermost expressions first.

Also, even in the case above, the use of the construct MapAll[#/.rules&,expr] may be advantageous since,
being essentially equivalent to Replace[expr, rules, {0, Infinity}], it allows for a more detailed tracing and
debugging. Once the code is tested (and possibly debugged), one can change it back to Replace[expr,
rules, {0, Infinity}].

Finally, it could be necessary that the rules at each level be repeatedly applied until the expression stops
changing. This is achieved by MapAll[ReplaceRepeated[#,rules]&,expr], but to my knowledge there is no
simple equivalent with Replace in this case.

� 5.2.5 Scan

Scan is a function similar to Map, but it does not return a list of values at the end. This means that using
Scan only makes sense if the function being scanned contains side effects such as assignments. The format
is :

Scan[f, expr, levspec],

where <f> is the function being scanned, <expr> is an expression on which we scan the function <f>, and
<levspec> is an optional level specification - the syntax is very similar to that for Map.

� 5.2.5.1 Simple examples

Let us, for example, scan a squaring function on a list :

Scan@ð^2 &, Range@10DD
We can see that no output has been produced (or, more precisely, Null has been produced). To get any-
thing useful, we need some side effects. Here, for instance, we will use Scan to compute the sum of
squares of the list elements:

Module@8sumsq = 0<, Scan@sumsq += ð^2 &, Range@10DD;
sumsqD

385

Since Scan does not produce a list of results, it is somewhat faster than Map. However, there is another
and perhaps more important difference between the two : Scan can be "stopped" at any moment by using a
Return statement inside a function being scanned. This is not true for Map - it can be stopped only by
throwing an exception. For example, we want to compute the sum of the squares but stop as the element
exceeds 6 :

 235

Since Scan does not produce a list of results, it is somewhat faster than Map. However, there is another
and perhaps more important difference between the two : Scan can be "stopped" at any moment by using a
Return statement inside a function being scanned. This is not true for Map - it can be stopped only by
throwing an exception. For example, we want to compute the sum of the squares but stop as the element
exceeds 6 :

Module@8sumsq = 0<,
Scan@If@ð £ 6, sumsq += ð^2, Return@sumsqDD &, Range@10DDD
91

The Return statement will break only from Scan, but not from any scoping construct possibly enclosing
Scan, such as Module above.

� 5.2.5.2 Example: conditional list splitting

Scan can also be thought of as a replacement for loops. Here, for example, we will use it to determine the
position where to split a given list in 2 parts (this will happen as soon as the condition < cond > will first
be satisfied).

Clear@splitWhenD;
splitWhen@x_List, cond_D := Module@8n = 0<,
Scan@If@cond@ðD, Return@D, n ++D &, xD; 8Take@x, nD, Drop@x, nD<D

Scan is a better device than just a single loop (or nested loops in most cases, for that matter), both because
it is optimized and because it is more general: it receives the standard level specification and works on
general symbolic trees (Mathematica expressions), not just simple lists . In particular, if asked, it traverses
an expression depth - first, computing whatever side effects we instruct it to.

� 5.2.6 MapIndexed

This is a truly useful function, which extends in some sense the capabilities of Map. There are situations in
which on one hand, a function like Map is needed, but on the other hand, which Map can not handle.
These are cases when the function being mapped has to "know" where in the list it is "currently". Let us
consider an example.

� 5.2.6.1 Starting example and syntax

Say, we have a simple list of numbers:

testlist = Table@Random@Integer, 80, 10<D, 815<D
87, 1, 7, 2, 6, 2, 2, 0, 2, 5, 8, 7, 8, 7, 7<

Now, say, we would like to Map on it a function (-1)^n*Sin[x], where <n> is a position of the number,
and <x> is a number. In this simple case we could use Map like this:

Module@8n = 0<,
Map@H-1L^Hn ++L Sin@ðD &, testlistDD

8Sin@7D, -Sin@1D, Sin@7D, -Sin@2D, Sin@6D, -Sin@2D, Sin@2D, 0,

Sin@2D, -Sin@5D, Sin@8D, -Sin@7D, Sin@8D, -Sin@7D, Sin@7D<
However, this is not an aesthetic solution. Also, it will not work for more complicated lists. What MapIn-
dexed does is to provide to a function being mapped the position of the current element as a second
argument. So, now the function being mapped is a function of two arguments. The rest of the syntax is the
same:

236

However, this is not an aesthetic solution. Also, it will not work for more complicated lists. What MapIn-
dexed does is to provide to a function being mapped the position of the current element as a second
argument. So, now the function being mapped is a function of two arguments. The rest of the syntax is the
same:

MapIndexed[function,expression,level]

As before, the level specification is an optional parameter - it is 1 by default. In this particular example,
we write

MapIndexed@H-1L^ð2@@1DD *Sin@ð1D &, testlistD
8-Sin@7D, Sin@1D, -Sin@7D, Sin@2D, -Sin@6D, Sin@2D, -Sin@2D, 0,

-Sin@2D, Sin@5D, -Sin@8D, Sin@7D, -Sin@8D, Sin@7D, -Sin@7D<
Notice that we again use here a pure function, but this time a pure function of the two arguments. Notice
also that we take a first part of the second argument #2[[1]]: this is because the position is always given as
a list of indexes, even for a simple list.

In principle, once again, we can use a pattern-defined function of two arguments here:

Clear@gD;
g@x_, 8n_Integer<D := H-1L^n*Sin@xD;
MapIndexed@g, testlistD

8-Sin@7D, Sin@1D, -Sin@7D, Sin@2D, -Sin@6D, Sin@2D, -Sin@2D, 0,

-Sin@2D, Sin@5D, -Sin@8D, Sin@7D, -Sin@8D, Sin@7D, -Sin@7D<
Another simple example: let us supply the numbers in the list with their positions

MapIndexed@List, testlistD
884, 81<<, 80, 82<<, 810, 83<<, 82, 84<<, 87, 85<<,

87, 86<<, 81, 87<<, 810, 88<<, 88, 89<<, 89, 810<<,
86, 811<<, 86, 812<<, 85, 813<<, 88, 814<<, 83, 815<<<

� 5.2.6.2 More examples

� 5.2.6.2.1 Example: creation of specific matrices

MapIndexed gets more non-trivial in what can be accomplished with it, as we go to nested lists and trees.
For example, let us build a matrix (list of lists), with elements Sin[i-j], where i and j are column and row
numbers (say,4x4)

Hresult = MapIndexed@Sin@ð2@@1DD -ð2@@2DDD &,

IdentityMatrix@4D, 82<DL �� MatrixForm

0 -Sin@1D -Sin@2D -Sin@3D
Sin@1D 0 -Sin@1D -Sin@2D
Sin@2D Sin@1D 0 -Sin@1D
Sin@3D Sin@2D Sin@1D 0

Notice that here we Map on the level {2}, which corresponds to numbers. Also, then, the argument #2 is
now a position of the matrix element and has 2 indices (i and j). It is really easy to veryfy that - create a
matrix where the elements will be just positions:

 237

Notice that here we Map on the level {2}, which corresponds to numbers. Also, then, the argument #2 is
now a position of the matrix element and has 2 indices (i and j). It is really easy to verify that - create a
matrix where the elements will be just positions:

MapIndexed@ð2 &, IdentityMatrix@4D, 82<D
8881, 1<, 81, 2<, 81, 3<, 81, 4<<, 882, 1<, 82, 2<, 82, 3<, 82, 4<<,

883, 1<, 83, 2<, 83, 3<, 83, 4<<, 884, 1<, 84, 2<, 84, 3<, 84, 4<<<
Now let us say we want to Map a value <a> on the two diagonals above and below the main diagonal.
Here is the code:

Hresult1 = MapIndexed@
If@Abs@ð2@@1DD -ð2@@2DDD � 1, a, ð1D &, result, 82<DL �� MatrixForm

0 a -Sin@2D -Sin@3D
a 0 a -Sin@2D

Sin@2D a 0 a

Sin@3D Sin@2D a 0

Not that in this particular case, MapIndexed - based solution is not very efficient, since since the majority
of matrix element tested by MapIndexed were a priori known not to be on the diagonals of interest. Later
in this chapter we will give a more efficient solution based on MapThread function.

Note also that in principle this example can be generalized to create any matrix we want. All we need is to
define a function which will compute a matrix element given its position in the matrix. This function will
then be used by MapIndexed. Also, note that we had to start with some matrix (here we used IdentityMa-
trix).

� 5.2.6.2.2 Example: creation and manipulation of matrices of functions

We can do more interesting things. In particular, we can construct a matrix where all elements will be
functions:

Hresult3 = MapIndexed@x^Total@ð2D &, IdentityMatrix@3D, 82<DL ��
MatrixForm

x2 x3 x4

x3 x4 x5

x4 x5 x6

We may compute the determinant symbolically:

Det@result3D
0

We can , say, differentiate the off-diagonal elements and integrate the diagonal elements:

238

Hresult4 = MapIndexed@
Simplify@If@ð2@@1DD � ð2@@2DD, Integrate@ð1, xD, D@ð1, xDDD &,

result3, 82<DL �� MatrixForm

x3
3

3 x2 4 x3

3 x2 x5
5

5 x4

4 x3 5 x4 x7
7

� 5.2.6.2.3 Example: imitating the Position command

One can imitate the Position operation with MapIndexed:

Clear@testexprD;
testexpr = Table@Random@Integer, 81, 10<D, 83<, 82<, 83<D
8885, 1, 3<, 85, 5, 1<<, 885, 3, 2<, 84, 8, 7<<, 883, 2, 4<, 88, 8, 2<<<

Let us find positions of all elements divisible by 3:

Flatten@MapIndexed@
If@Mod@ð1, 3D == 0, ð2, ð1 �. ð1 :> Sequence@DD &, testexpr, 83<D, 2D

881, 1, 3<, 82, 1, 2<, 83, 1, 1<<
Clear@g, result, result1, result2, result3, result4, testexprD;

� 5.2.6.2.4 Example: imitating a Partition command

Say we have a list of numbers, and would like to partition it into some sublists (without overlaps for
simplicity). This is normally done by a Partition command, but we may try to imitate it by MapIndexed.

Clear@testlistD;
testlist = Table@ Random@Integer, 81, 10<D, 815<D
81, 1, 4, 8, 9, 9, 10, 3, 8, 7, 1, 8, 10, 8, 9<

Say we want to partition this into a sublist of 4 elements each (the last 3 elements will be lost then). First,
create the proper list structure:

struct = Table@0, 8IntegerPart@15�4D<, 84<D
880, 0, 0, 0<, 80, 0, 0, 0<, 80, 0, 0, 0<<

Now use MapIndexed

MapIndexed@testlist@@ð2@@2DD +Hð2@@1DD -1L *4DD &, struct, 82<D
881, 1, 4, 8<, 89, 9, 10, 3<, 88, 7, 1, 8<<

We can now package this into a function:

 239

Clear@myPartitionD;
myPartition@lst_List, size_IntegerD :=

Module@8len = Length@lstD, struct<,
struct = Table@0, 8IntegerPart@len�sizeD<, 8size<D;
MapIndexed@lst@@ð2@@2DD +Hð2@@1DD -1L *sizeDD &, struct, 82<DD

Test:

myPartition@testlist, 4D
881, 1, 4, 8<, 89, 9, 10, 3<, 88, 7, 1, 8<<
myPartition@testlist, 3D
881, 1, 4<, 88, 9, 9<, 810, 3, 8<, 87, 1, 8<, 810, 8, 9<<
myPartition@Range@10D, 2D
881, 2<, 83, 4<, 85, 6<, 87, 8<, 89, 10<<

It is interesting to compare the performance of our version vs. the built-in:

myPartition@Range@400000D, 3D; �� Timing

85.398 Second, Null<
Partition@Range@400000D, 3D; �� Timing

80.04 Second, Null<
As expected, we are not even close (difference more than a hundred times on my machine), although there
are definitely ways to do it even much worse than we did. On the practical side, this once again confirms
the rule: use built-in functions whenever possible, and design the programs so.

� 5.2.6.2.5 Example: computing an unsorted union of a list

Here we will use MapIndexed to create a set of rules. The problem will be to compute an unsorted Union
of a list of objects. To remind, Union operation returns a sorted list of all distinct elements of an input list
(removes duplicates plus sorts, see section 3.10.2). For example:

Union@8b, c, a, d, c, d, a, c, b<D
8a, b, c, d<

 We now want our <unsortedUnion> function to also remove the duplicates but not to sort the resulting
list. For instance, for the previous input, the answer should be

8b, c, a, d<
Our present implementation will be based on application of rules. There is an elegant alternative implemen-
tation with the Reap-Sow technique, but this we will discuss later.

The idea here will be the following: we can first create a list of rules in the form {element1®position1,...}.
Then we will use the standard Union to get the sorted union of the input list. We will then apply the rules
to it, to get a list of positions where these elements are first present in the list (since in the case of a list of
rules, only the first rule that matches an element is applied, and then rules are applied to the next element)
. We will get then a list of positions. What remains is to Sort this list and then extract the corresponding
elements. So, let us now do this step by step:

240

Our present implementation will be based on application of rules. There is an elegant alternative implemen-
tation with the Reap-Sow technique, but this we will discuss later.

The idea here will be the following: we can first create a list of rules in the form {element1®position1,...}.
Then we will use the standard Union to get the sorted union of the input list. We will then apply the rules
to it, to get a list of positions where these elements are first present in the list (since in the case of a list of
rules, only the first rule that matches an element is applied, and then rules are applied to the next element)
. We will get then a list of positions. What remains is to Sort this list and then extract the corresponding
elements. So, let us now do this step by step:

This will be our test list:

testlist = Table@Random@Integer, 81, 10<D, 820<D
81, 4, 5, 8, 2, 5, 1, 3, 6, 3, 6, 3, 6, 2, 7, 2, 1, 7, 10, 2<

Now, we will use MapIndexed to create a set of rules:

rules = MapIndexed@Rule, testlistD
81 ® 81<, 4 ® 82<, 5 ® 83<, 8 ® 84<, 2 ® 85<, 5 ® 86<, 1 ® 87<,
3 ® 88<, 6 ® 89<, 3 ® 810<, 6 ® 811<, 3 ® 812<, 6 ® 813<, 2 ® 814<,
7 ® 815<, 2 ® 816<, 1 ® 817<, 7 ® 818<, 10 ® 819<, 2 ® 820<<

Let us now compute the Union and apply the rules:

un = Union@testlistD
81, 2, 3, 4, 5, 6, 7, 8, 10<
un �. rules
881<, 85<, 88<, 82<, 83<, 89<, 815<, 84<, 819<<

we now Sort this list:

Sort@un �. rulesD
881<, 82<, 83<, 84<, 85<, 88<, 89<, 815<, 819<<

All that remains is to Extract the elements:

Extract@testlist, Sort@un �. rulesDD
81, 4, 5, 8, 2, 3, 6, 7, 10<

We can now combine everything together:

Clear@unsortedUnionD;
unsortedUnion@x_ListD :=

Extract@x, Sort@Union@xD �. Dispatch@MapIndexed@Rule, xDDDD;
The Dispatch command will be covered later. For now, let me just say that this command makes the rule
application more efficient, by hashing together the rules which can not apply simultaneously. This is
particularly relevant for our present function, since all the rules for duplicate elements will be optimized
with Dispatch. Once we cover Dispatch, we will revisit this problem and make a performance test to see
how much we gain from using Dispatch. For now, let us just check that the function works correctly:

unsortedUnion@testlistD
81, 4, 5, 8, 2, 3, 6, 7, 10<
Clear@testlist, list, un, unsortedUnionD;

 241

� 5.2.6.2.6 Example: computing frequencies of objects in a list

The technique based on the combination of MapIndexed , Dispatch and Union, used in the previous
example, can be used also to compute frequencies of the objects in a list (I remark that in versions prior to
6.0 this function can be found in Statistics‘DataManipulation package and is implemented with the use of
Split command - we covered this implementation in section 3.10.3.4. In version 6.0, the function Tally
takes over this functionality, and then of course should be used since it is faster).

Let us develop the <frequencies> function. Here is our test list :

testlist = Table@Random@Integer, 81, 20<D, 840<D
811, 17, 16, 6, 8, 12, 17, 3, 18, 1, 13, 14, 2, 15, 19, 16, 19, 11, 4, 4,

8, 2, 19, 2, 8, 15, 6, 14, 12, 5, 18, 12, 14, 1, 16, 7, 12, 15, 17, 18<
The first step will be the same as before: create a set of rules <element -> position> for the Union of
elements in the list, and then use these rules to replace all the elements in the initial list with these posi-
tions:

Here is the (sorted) Union of our list

un = Union@testlistD
81, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 20<

Here is a set of rules

rules = MapIndexed@Rule@ð1, First@ð2DD &, unD
81 ® 1, 2 ® 2, 3 ® 3, 4 ® 4, 5 ® 5, 6 ® 6, 7 ® 7, 8 ® 8, 9 ® 9, 11 ® 10,

12 ® 11, 13 ® 12, 15 ® 13, 16 ® 14, 17 ® 15, 18 ® 16, 20 ® 17<
Here we have replaced all the elements by their positions, using the Dispatch - ed version of the rules.

replaced = ReplaceAll@testlist, Dispatch@rulesDD
810, 8, 3, 7, 6, 4, 16, 5, 11, 3, 8, 15, 14, 3, 2, 16, 7, 16, 12, 15, 7,

15, 1, 7, 16, 1, 2, 14, 7, 5, 13, 16, 1, 14, 12, 9, 5, 17, 11, 17<
Now, the idea is to create an array of counters

counters = Array@0 &, 8Length@unD<D
80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<

and Scan the increment of the counter with a given position onto the list we created in the previous step :

Scan@counters@@ðDD ++ &, replacedD
Now we have counted all the distinct objects :

counters

82, 2, 1, 4, 3, 6, 2, 3, 2, 5, 1, 2, 2, 1, 2, 1, 1<
All that is left is to group together the elements of the < un > and respective frequencies. This can be
easily accomplished by another MapIndexed, given that the frequency of a given element is contained in
the array < counters > at the same position as position of this element in < un >

242

MapIndexed@8ð1, counters@@ð2@@1DDDD< &, unD
882, 2<, 83, 2<, 84, 1<, 86, 4<, 87, 3<, 88, 6<, 89, 2<, 810, 3<, 811, 2<,

812, 5<, 813, 1<, 814, 2<, 815, 2<, 816, 1<, 817, 2<, 818, 1<, 819, 1<<
We now package everything into a function :

Clear@frequenciesD;
frequencies@x_ListD := With@8un = Union@xD<,

Module@8counters = Array@0 &, 8Length@unD<D<,
Scan@counters@@ðDD ++ &,

ReplaceAll@x,
Dispatch@MapIndexed@Rule@ð1, First@ð2DD &, unDDDD;

MapIndexed@8ð1, counters@@ð2@@1DDDD< &, unDDD;
Test :

frequencies@testlistD
882, 2<, 83, 2<, 84, 1<, 86, 4<, 87, 3<, 88, 6<, 89, 2<, 810, 3<, 811, 2<,

812, 5<, 813, 1<, 814, 2<, 815, 2<, 816, 1<, 817, 2<, 818, 1<, 819, 1<<
For comparison, here is the implementation of frequencies function from the Statistics‘DataManipulation‘
package.

Clear@frequenciesAltD;
frequenciesAlt@x_ListD :=

Map@8First@ðD, Length@ðD< &, Split@Sort@xDDD
Let us compare the performance :

testlist = Table@Random@Integer, 81, 200<D, 81000<D;
frequencies@testlistD; �� Timing

frequenciesAlt@testlistD; �� Timing

80.02, Null<
80.01, Null<
testlist = Table@Random@Integer, 81, 2000<D, 84000<D;
frequencies@testlistD; �� Timing

frequenciesAlt@testlistD; �� Timing

80.13, Null<
80.01, Null<

 243

testlist = Table@Random@Integer, 81, 20000<D, 815000<D;
frequencies@testlistD; �� Timing

frequenciesAlt@testlistD; �� Timing

80.591, Null<
80.07, Null<

We see that the version based on Sort and Split is several times faster. The reason that I have included the
above more complex and less efficient implementation of < frequencies > is twofold. First, it is still a good
illustration of how one can combine several programming techniques together (in this case, procedural
(side-effects), functional and rule-based). Second, to show once again that it is very hard to outperform
certain general functions such as Sort (this refers to "pure" Sort; Sort with a user-defined comparison
function can be outperformed in some cases), and it is usually advantageous to use them if the problem
can be reformulated in such a way that they can be used.

� 5.2.7 Apply

Apply is the second "fundamental" higher-order function in the FP programming paradigm. Its action is
different from that of Map or related functions. Apply takes a function <f> as its first argument, and an
expression <expr>as a second one. It changes the head of <expr> from what it was to <f>. Few simple
examples:

� 5.2.7.1 Simple examples

Clear@a, b, cD;
Apply@List, a +b +cD
8a, b, c<

To understand what has happened, recall the internal form of the sum above:

FullForm@a +b +cD
Plus@a, b, cD

So, the head Plus was changed to head List. Let us look at more examples like this:

Apply@Plus, a* b*cD
a +b +c

This time we changed head Times to head Plus. Now consider:

Range@10D
81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

This will give a sum of the first 10 natural numbers:

Apply@Plus, Range@10DD
55

And this will give 10!:

244

Apply@Times, Range@10DD
3628800

It is worth noting that this computation of the factorial is nearly as efficient as the built-in command:

Timing@Apply@Times, Range@10 000DD;D
80.05 Second, Null<
Timing@10000 !;D
80.04 Second, Null<

� 5.2.7.2 Shorthand notation

As for other common operations, there is a shorthand notation for Apply: <@@>. So, to Apply a function
<f> to expression <expr>, one uses

Hf �� exprL
Once again, parentheses can often be omitted, but are generally necessary to avoid precedence-related
bugs.

By now we saw enough examples to understand in which cases Apply is really needed: these are the cases
when some function needs the "interior" of some normal expression (i.e., comma-separated elements
inside the square brackets, but not the head). So, what Apply does is that the present head of an expression
gets "eaten up" by a new head, while all the comma-separated elements are "inherited" by a new head.

� 5.2.7.3 More examples:

� 5.2.7.3.1 Example: computing a quadratic norm of a tensor of arbitrary rank

This example we have already considered before (see section 3.8.3.3), but now we can fully understand it.
This function computes the quadratic norm of the tensor of arbitrary rank:

Clear@tensorNormD;
tensorNorm@tensor_ListD := Sqrt@Plus �� Flatten@tensor^2DD

It works as follows: first, the list is squared (many built-in functions, and Power in particular, are Listable
(section 4.9.1) and thus are automatically threaded over lists, so squaring a nested list of numbers is
equivalent to squaring each number). Then, we use Flatten to make the list flat, by removing all the nested
list structure (internal curly braces). Then we use Apply in the shorthand notation, to change the head from
List to Plus. Finally, we take a square root of the resulting number.

For example, for a vector (list):

tensorNorm@Range@10DD
385

for a 3x4 matrix:

 245

Hmatrix = Table@i +j, 8i, 1, 3<, 8j, 1, 4<DL �� MatrixForm

2 3 4 5
3 4 5 6
4 5 6 7

tensorNorm@matrixD
266

� 5.2.7.3.2 Example: conditional summing of even numbers in a list

As a next example, consider the following problem: we have to write a function which sums a list of
numbers, but it has to work only on a list with all numbers even. If this condition is not fulfilled, the
function should return unevaluated.

To solve a problem, first create a sample list:

numlist = Range@10D
81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

Summing it up is easy:

Plus �� numlist

55

we can now define a function which sums up arbitrary list (for the sake of example, we will ignore the
fact that the built-in Total does exactly that):

Clear@sumListD;
sumList@x_ListD := Plus �� x;

Check:

sumList@81, 2, 3, 4<D
10

Now we need to modify a function so that it checks our condition. Let us first work out the condition
separately. The built-in function <EvenQ> checks whether the number is even. We have to do it for every
number in our list, so we have to Map EvenQ on the list (again, for the sake of example we will ignore the
fact that EvenQ gets automatically threaded over the list, and will do it manually). For our list:

Map@EvenQ, numlistD
8False, True, False, True, False, True, False, True, False, True<

All that is left is to plug this list into the built-in <And> command. But <And> receives not a list of
expressions, but a sequence of (comma-separated) expressions, i.e, the interior of the list. Thus, the
<List> head has to be "eaten up" by the <And> head, which means that we have to use Apply:

Apply@And, Map@EvenQ, numlistDD
False

or, which is the same,

246

And �� Map@EvenQ, numlistD
False

The final step is to insert the condition into the pattern:

Clear@sumListEvenD;
sumListEven@x_ListD �; And �� Map@EvenQ, xD := Plus �� x;

Check now:

sumListEven@82, 4, 6, 8<D
20

sumListEven@82, 4, 6, 7, 8<D
sumListEven@82, 4, 6, 7, 8<D

Note the location of the condition pattern operator </;> - it is after the function parameter list, not inside.
This is usually a better practice since for functions of more than one argument it allows to put conditions
on several function parameters. Placing condition check inside a parameter list may force Mathematica to
take global values for the parameters (instead of those passed to the function) to check the condition,
which is probably not what you want. For more details on this, see [See also [*****]]

If we use the mentioned above Listable property of EvenQ (automatic threading over lists), the code will
be somewhat more concise, and, more importantly, much faster :

Clear@sumList1D;
sumList1@x_ListD �; And �� EvenQ@xD := Plus �� x;

Let us now add one more definition. For instance, for all numbers odd we want to multiply them all:

sumList1@x_ListD �; And �� OddQ@xD := Times �� x;

?sumList1

Global‘sumList1

sumList1@x_ListD �; And �� EvenQ@xD := Plus �� x

sumList1@x_ListD �; And �� OddQ@xD := Times�� x

The rule has been added and the old one remained, although naively each definition contains the same
pattern sumList1[x_List] . To resolve this paradox (see section 4.7.3), one has to realize that the condition
check here is a part of the pattern. Therefore, the patterns for the two definitions really are different. This
can also be seen very clearly with DownValues:

DownValues@sumList1D
8HoldPattern@sumList1@x_ListD �; And �� EvenQ@xDD ¦ Plus �� x,

HoldPattern@sumList1@x_ListD �; And �� OddQ@xDD ¦ Times �� x<

A final word of caution: the detailed argument checks like the one in this problem, may induce a signifi-
cant overhead in some cases. On the other hand, such checks are deceptively easy to write. In the present
case, we were forced to do this because that’s what is asked in the formulation of our model problem. If
you are solving a large problem, then the design (splitting it into sub-problems/functions) is your decision.
In this case, it is better not to supply each small function with condition checks like this (if possible), to
avoid redundant checks (that is, in cases when the passed aruments are known beforehand to be fine). In
terms of our "guiding principles for efficient programming", this refers to principle 4: "avoid complicated
patterns".

 247

A final word of caution: the detailed argument checks like the one in this problem, may induce a signifi-
cant overhead in some cases. On the other hand, such checks are deceptively easy to write. In the present
case, we were forced to do this because that’s what is asked in the formulation of our model problem. If
you are solving a large problem, then the design (splitting it into sub-problems/functions) is your decision.
In this case, it is better not to supply each small function with condition checks like this (if possible), to
avoid redundant checks (that is, in cases when the passed arguments are known beforehand to be fine). In
terms of our "guiding principles for efficient programming", this refers to principle 4: "avoid complicated
patterns".

Clear@numlist, sumList, sumList1, sumListEvenD;
� 5.2.7.3.3 Example: words containing given letters - realizing alternative patterns programmatically

For this example we again will need some list of words, like this one (taken from the Mathematica book)

wordlist = 8"Most", "of", "this", "Part",

"assumes", "no", "specific", "prior", "knowledge"

, "of", "computer", "science", "Nevertheless", "some",

"of", "it", "ventures", "into", "some", "fairly",

"complicated", "issues", "You", "can", "probably", "ignore",

"these", "issues", "unless", "they", "specifically",

"affect", "programs", "you", "are", "writing"<;
Now, the problem: we want to pick all the words containing any of the symbols given by some symbol list,
for instance {"a","n","k"}.

To solve it, let us start with a simple case when we have only one symbol, say "a". And, as a first step, let
us work out the code that will check for some single word (string), whether it contains the symbol. So, let
us pick some word:

ourword = "fairly"

fairly

Since I don’t want to use the string-matching functions here, the first thing we need is to split the word into
its letters. This is best done by using the built-in <Characters > command:

Characters@ourwordD
8f, a, i, r, l, y<

Now we need to test whether a given symbol ("a") belongs to this list. This is done best by the built-in
<MemberQ> command:

MemberQ@Characters@ourwordD, "a"D
True

Now we want to generalize to the case of several characters. One way would be to Map MemberQ on
their list, and then use the built-in <Or>. For instance, the second character is "k":

Map@MemberQ@Characters@ourwordD, ðD &, 8"a", "k"<D
8True, False<

248

We need to Apply <Or> now (head List has to be "eaten up" by Or)

Or �� Map@MemberQ@Characters@ourwordD, ðD &, 8"a", "k"<D
True

We are now ready to insert this condition, and use Cases command to find all the words containing either
"a" or "k" (or both)

Cases@wordlist,
x_String �; Or �� Map@MemberQ@Characters@xD, ðD &, 8"a", "k"<DD

8Part, assumes, knowledge, fairly, complicated,

can, probably, specifically, affect, programs, are<
Finally, we package everything into a function, which will take two arguments: a list of words and a list of
symbols to look for:

Clear@findWordsWithSymbolsD;
findWordsWithSymbols@wlist_List, symbols_ListD := Cases@wlist,

x_String �; Or �� Map@MemberQ@Characters@xD, ðD &, symbolsDD;
Note that we changed the specific symbol list by the function parameter <symbols>. To check it, let us
find all words containing say "e" or "r" letters :

findWordsWithSymbols@wordlist, 8"e", "r"<D
8Part, assumes, specific, prior, knowledge, computer,

science, Nevertheless, some, ventures, some, fairly,

complicated, issues, probably, ignore, these, issues,

unless, they, specifically, affect, programs, are, writing<
We solved the problem, but rather inefficiently. Even within what we already know, there are ways to
make it better. The main source of inefficiency which we can eliminate now is the Map-ping of < Member -
Q[Characters[x],#]&> on a list of symbols. We can do better if we recall that the second argument of
MemberQ is a pattern, and as such, it may be more complicated than just one symbol. In particular, we
can use alternative patterns like "r"|"e", or, which is the same, Alternatives["r","e"].

MemberQ@Characters@ourwordD, Alternatives@"a", "k"DD
True

Since again our letters are initially in a list, and Alternatives requires a sequence of elements, the head
<List> has to be eaten up by the head "Alternatives", and therefore, we have to use Apply:

MemberQ@Characters@ourwordD, Apply@Alternatives, 8"a", "k"<DD
True

or, which is the same,

MemberQ@Characters@ourwordD, Alternatives �� 8"a", "k"<D
True

we can now rewrite our function:

 249

Clear@findWordsWithSymbolsAltD;
findWordsWithSymbolsAlt@wlist_List, symbols_ListD := Cases@wlist,

x_String �; MemberQ@Characters@xD, Alternatives �� symbolsDD;
Check:

findWordsWithSymbolsAlt@wordlist, 8"n", "m"<D
8assumes, no, knowledge, computer, science, some, ventures, into,

some, complicated, can, ignore, unless, programs, writing<

The reason that the latter version is more efficient than the former one is the following: in the latter case,
the "decision" about any given word is made already on the level of the MemberQ function, while in the
former case, it is promoted to another function (Or). The rule of thumb is that one has to push as much
computation as possible inside the built-in function. Basically, MemberQ does not care (almost), whether
it checks a single character or an alternative pattern with many characters (for small numbers of characters
such as considered here). On the other hand, by Mapping MemberQ on each character, we force it to
check afresh for every character. Thus, roughly we expect that the difference in performance will be a
factor of the order of the length of the character list. We can check our expectations by measuring the
timing for a list of symbols being the entire alphabet. We will use the <myTiming> function which mea-
sures small execution times (section 3.4.5.2). Now:

alphabet = Characters@"abcdefghijklmnopqrstuvwxyz"D
8a, b, c, d, e, f, g, h, i, j, k,

l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<
myTiming@findWordsWithSymbols@wordlist, alphabetDD
0.014

myTiming@findWordsWithSymbolsAlt@wordlist, alphabetDD
0.000842

We see that we already gain more than an order of magnitude, for this example (the difference would be
less for smaller list of symbols). As a byproduct, our new function is not only more efficient, but also
more concise and transparent. In Mathematica programming this is very often the case. As one of our
guiding principles has it, "Shorter programs usually run faster" (although, of course, there are exceptions).

Later we will see how to make this function yet more efficient, for example with the help of the Reap-Sow
technique.

Clear@wordlist, findWordsWithSymbols,

ourword, alphabet, findWordsWithSymbolsAltD;

250

� 5.2.7.3.4 Example: extracting matrix diagonals

Here we will be concerned with the following problem: given a square matrix, we need to extract all of its
right diagonals (that is, diagonals going from top left to bottom right), and place them in a list. We will
consider this problem in detail later in chapter VI, where 3 different solutions of it (in more general form)
will be given. Now let us look at yet another one (not the most efficient), based on MapIndexed and using
Apply in few places. In fact, as we will see, this is a good example to show many of the techniques dis-
cussed so far, and in particular how several built-in functions work together.

This is our test matrix :

testmatr = Array@Random@Integer, 81, 20<D &, 85, 5<D;
testmatr �� MatrixForm

7 8 15 6 3
9 17 18 19 8
11 14 19 6 6
18 9 10 7 15
3 18 4 7 12

We first note that for any single right diagonal, the difference between its elements’ indices (which map
directly to the position indices in a nested list that we use to represent the matrix) is constant for all the
elements. This means that we can "tag" matrix elements by these differences and then collect together
those for which these "tags" will be the same. The only catch is that we have to ensure that the elements
of the diagonals collected this way will be in right order. For our case, fortunately, this will be so due to
the (depth - first) way how MapIndexed traverses the expressions.

So, let us start by "tagging" :

step1 = MapIndexed@8Subtract �� ð2, ð1< &, testmatr, 82<D
8880, 7<, 8-1, 8<, 8-2, 15<, 8-3, 6<, 8-4, 3<<,

881, 9<, 80, 17<, 8-1, 18<, 8-2, 19<, 8-3, 8<<,
882, 11<, 81, 14<, 80, 19<, 8-1, 6<, 8-2, 6<<,
883, 18<, 82, 9<, 81, 10<, 80, 7<, 8-1, 15<<,
884, 3<, 83, 18<, 82, 4<, 81, 7<, 80, 12<<<

We used Apply to give to Subtract the interior of the position list for each element - that is, a sequence of
vertical and horizontal positions rather than a list of them (which is the second argument that MapIndexed
supplies to the function being mapped). We also see that we have to map on level {2}, since this is the
level of individual matrix elements.

There are extra list brackets on level 1 which reflect the original separation of elements into rows, but
which we don’ t need any more. Thus, let us use Flatten on level 1 :

step2 = Flatten@step1, 1D
880, 7<, 8-1, 8<, 8-2, 15<, 8-3, 6<, 8-4, 3<, 81, 9<,

80, 17<, 8-1, 18<, 8-2, 19<, 8-3, 8<, 82, 11<, 81, 14<,
80, 19<, 8-1, 6<, 8-2, 6<, 83, 18<, 82, 9<, 81, 10<,
80, 7<, 8-1, 15<, 84, 3<, 83, 18<, 82, 4<, 81, 7<, 80, 12<<

We will now sort this list with respect to the "tag", to make the elements of the same diagonal be adjacent
to each other :

 251

We will now sort this list with respect to the "tag", to make the elements of the same diagonal be adjacent
to each other :

step3 = Sort@step2, First@ð1D > First@ð2D &D
884, 3<, 83, 18<, 83, 18<, 82, 4<, 82, 9<, 82, 11<,

81, 7<, 81, 10<, 81, 14<, 81, 9<, 80, 12<, 80, 7<, 80, 19<,
80, 17<, 80, 7<, 8-1, 15<, 8-1, 6<, 8-1, 18<, 8-1, 8<,
8-2, 6<, 8-2, 19<, 8-2, 15<, 8-3, 8<, 8-3, 6<, 8-4, 3<<

Notice the use of Sort with a user-defined pure sorting criteria (in this case, sorting according to the "tag"
which is a first element of each sublist).

This was actually a tricky step since here we are dependent on a particular way Sort works: there was no
guarantee in principle that in the process of sorting it will not change the order of elements with the same
value of the "tag". Fortunately for us, it works this way.

As a next step, we will use Split to group together the elements corresponding to the same diagonal :

step4 = Split@step3, First@ð1D � First@ð2D &D
8884, 3<<, 883, 18<, 83, 18<<,

882, 4<, 82, 9<, 82, 11<<, 881, 7<, 81, 10<, 81, 14<, 81, 9<<,
880, 12<, 80, 7<, 80, 19<, 80, 17<, 80, 7<<,
88-1, 15<, 8-1, 6<, 8-1, 18<, 8-1, 8<<,
88-2, 6<, 8-2, 19<, 8-2, 15<<, 88-3, 8<, 8-3, 6<<, 88-4, 3<<<

The next thing to do now is to extract the second element of each small sublist (which is the original
matrix element) while preserving the structure of larger sublists which form the diagonals. This can be
done by Map - ping the second element extraction on the level {2} of our nested list :

step5 = Map@ð@@2DD &, step4, 82<D
883<, 818, 18<, 84, 9, 11<, 87, 10, 14, 9<,

812, 7, 19, 17, 7<, 815, 6, 18, 8<, 86, 19, 15<, 88, 6<, 83<<
Another (and more efficient) way to do the same is to use Part with an extended functionality given by
using the All specification :

step51 = Part@step4, All, All, 2D
883<, 818, 18<, 84, 9, 11<, 87, 10, 14, 9<,

812, 7, 19, 17, 7<, 815, 6, 18, 8<, 86, 19, 15<, 88, 6<, 83<<
Since we are learning functional programming, I will keep the variant with Map in a final implementation,
but again, the last one is more efficient and in principle should be used instead (if we were ultimately for
efficiency, we should have chosen a different method in the first place - see chapter VI for details. Also,
the use of Sort with a user-defined sorting function like above is not optimal).

The resulting lists are pretty much the diagonals, as you can see, but the elements in them are in reverse
order (this is conventional. Our convention is that the diagonal starts at the top left corner). So, the last
thing we have to do is to Map the Reverse function on our diagonal list :

252

result = Reverse �� step5

883<, 818, 18<, 811, 9, 4<, 89, 14, 10, 7<,
87, 17, 19, 7, 12<, 88, 18, 6, 15<, 815, 19, 6<, 86, 8<, 83<<

Now we combine everything into a function :

Clear@matrixRightDiagsD;
matrixRightDiags@matr_ ? MatrixQD �; Equal �� Dimensions@matrD :=

Map@Reverse, Map@ð@@2DD &, Split@
Sort@Flatten@MapIndexed@8Subtract �� ð2, ð1< &, matr, 82<D, 1D,
First@ð1D > First@ð2D &D, First@ð1D � First@ð2D &D, 82<DD

Notice that we used the MatrixQ predicate to test that the input is a matrix, used a conditional pattern with
the condition that the matrix is a square matrix, inside the condition used a built - in Dimensions which
gives dimensions for a tensor, in a list, and used Apply another time to "eat up" the List head and give to
Equal the sequence of matrix dimensions rather than a list.

So, we check once again :

matrixRightDiags@testmatrD
883<, 818, 18<, 811, 9, 4<, 89, 14, 10, 7<,

87, 17, 19, 7, 12<, 88, 18, 6, 15<, 815, 19, 6<, 86, 8<, 83<<
This seems like a lot of work for something which can be in principle done with a doubly nested loop. But
believe it or not, in practice, and with some experience, it is quite fast to write functions like this. Also,
debugging is much easier than for a procedural version, because each line of code does a complete transfor-
mation and can be tested separately. Also (take it on faith for now, or have a look at chapter VI), for this
particular problem the loop version will be terribly slow in Mathematica, even compared with the present
one (not the most efficient). And in fact, if we think about it, MapIndexed used on level {2} represents
exactly a nested loop, but done internally by Mathematica. Finally, this is a nice example of the interplay
of different techniques (conditional patterns, mapping, level specification, Sort and Split with user -
defined functions, pure functions) that we discussed in separation before.

As an exercise, you may consider the case of left diagonals (that is, those which start at bottom left and go
to top right).

Clear@step1, step2, step3, step4, step5, step51, testmatr, resultD;
� 5.2.7.4 Supplying a sequence of arguments to functions

There is one more very common use of Apply, which we will discuss now. This is when we have a partial
list of arguments for some function stored in a separate list, and want to use that list in a function. As a
simple example, let us define a function of five variables, which simply sums them up:

Clear@addFive, x, y, z, t, s, a, bD;
addFive@x_, y_, z_, t_, s_D := x +y +z +t +s;

 253

Suppose that we want to keep the first and the last arguments fixed, say at <a> and . Now, say we
have a list of 3-number lists:

testlist = Table@Random@Integer, 81, 10<D, 810<, 83<D
881, 10, 6<, 89, 9, 2<, 89, 10, 10<, 87, 3, 6<, 82, 5, 7<,

88, 6, 3<, 82, 3, 6<, 83, 8, 3<, 82, 6, 7<, 83, 10, 7<<
We would like to use our function on each sub-list, so that the numbers in the sublist will fill the three
slots for the variables in the middle. In other words, we would like to Map our function on the list above,
but in a way somewhat different from what we discussed before. As in the previous discussion (section
5.2.2.7), one solution would be to define an auxiliary function, which takes a list of three numbers:

Clear@gD;
g@lst_ListD �; Length@lstD � 3 :=

addFive@a, lst@@1DD, lst@@2DD, lst@@3DD, bD;
Now we can Map <g>:

g �� testlist

817 +a +b, 20 +a +b, 29 +a +b, 16 +a +b, 14 +a +b,

17 +a +b, 11 +a +b, 14 +a +b, 15 +a +b, 20 +a +b<
The problems with this solution are the same as with its analog that we discussed before. Before, we
managed to find an alternative by using pure functions. Can we do the same here? To answer this, let us
make our first attempt:

Map@addFive@a, ð, bD &, testlistD
8addFive@a, 81, 10, 6<, bD, addFive@a, 89, 9, 2<, bD,
addFive@a, 89, 10, 10<, bD, addFive@a, 87, 3, 6<, bD,
addFive@a, 82, 5, 7<, bD, addFive@a, 88, 6, 3<, bD,
addFive@a, 82, 3, 6<, bD, addFive@a, 83, 8, 3<, bD,
addFive@a, 82, 6, 7<, bD, addFive@a, 83, 10, 7<, bD<

We see now that we are almost there. The only stumbling block is the presence of a List head (curly
braces) inside, which we would like to remove. We also know that Apply removes the head of an expres-
sion. But usually, it substitutes it by another (new) head, while here we would like none. It turns out that
there exists a special head in Mathematica, which means exactly "no head". It is <Sequence>. So, our
solution would be to Apply Sequence:

Map@addFive@a, Sequence �� ð, bD &, testlistD
817 +a +b, 20 +a +b, 29 +a +b, 16 +a +b, 14 +a +b,

17 +a +b, 11 +a +b, 14 +a +b, 15 +a +b, 20 +a +b<
Now it works and has the same advantages as the solution discussed before (section 5.2.2.7). I hasten to
comment though that if one needs to Map function on a long list like here (or much longer still), some-
times there are better solutions available, like the one using built-in Thread (to be discussed below).

Clear@addFive, g, testlistD;
� 5.2.7.5 Using Apply in conjunction with Map

254

�

5.2.7.5 Using Apply in conjunction with Map

Apply is often used in conjunction with Map. The typical situation is that we need the operation
Apply[function,expression] to be Mapped on some list.

As an example, consider the following problem: we have a list of lists of numbers. The sublists have
various length. We have to multiply all the numbers in each sublist. For example:

Clear@testlistD;
testlist =

Table@Random@Integer, 81, 10<D, 810<, 8Random@Integer, 82, 6<D<D
8810, 3, 3, 6, 8<, 89, 3, 7, 7<, 810, 2, 10<,

89, 3, 3, 5, 10, 3<, 87, 6, 2, 8, 5<, 81, 1, 2, 8, 2<,
85, 1, 9, 10<, 88, 8, 7, 7, 8, 4<, 84, 3, 2, 2, 7<, 83, 8, 6<<

To multiply numbers in a single list, we use Apply[Times,list]. Now we have to Map it:

Map@Apply@Times, ðD &, testlistD
84320, 1323, 200, 12150, 3360, 32, 450, 100352, 336, 144<

The same can be done using the extended syntax for Apply, and supplying level as a third argument :

Apply@Times, testlist, 1D
84320, 1323, 200, 12150, 3360, 32, 450, 100352, 336, 144<

This operation is so common that a special shorthand notation exists for it: Map[Apply[f,#]&,expr]�

Apply[f,expr,1]==(f@@@expr). In our case:

Times ��� testlist

84320, 1323, 200, 12150, 3360, 32, 450, 100352, 336, 144<
Once again, one should be careful with the precedence, and generally the parentheses around the whole
expression can not be dropped. For Mapping on the level(s) deeper than the first, there is no built-in
shorthand notation, and one has to use Map with a proper level specification, or Apply with a third argu-
ment (again with a proper level specification).

Clear@testlistD;
� 5.2.8 When short-hands let us down: the Heads option

For all the functions described above, just as for functions such as Cases, Position etc. described in the
previous chapter, there exists the Heads option. This option tells whether or not to make heads of expres-
sions visible for these commands. Let me illustrate this on a few examples :

With Map :

 255

Map@f, 881, 2, 3<, 84, 5, 6<<D
Map@f, 881, 2, 3<, 84, 5, 6<<, Heads ® TrueD
8f@81, 2, 3<D, f@84, 5, 6<D<
f@ListD@f@81, 2, 3<D, f@84, 5, 6<DD

With MapIndexed

MapIndexed@f, 881, 2, 3<, 84, 5, 6<<D
MapIndexed@f, 881, 2, 3<, 84, 5, 6<<, Heads ® TrueD
8f@81, 2, 3<, 81<D, f@84, 5, 6<, 82<D<
f@List, 80<D@f@81, 2, 3<, 81<D, f@84, 5, 6<, 82<DD

With Scan

parts = 8<;
Scan@AppendTo@parts, ðD &, 881<, 82<<, InfinityD;
parts

81, 81<, 2, 82<<
parts = 8<;
Scan@AppendTo@parts, ðD &, 881<, 82<<, Infinity, Heads ® TrueD;
parts

8List, List, 1, 81<, List, 2, 82<<
What these examples illustrate is that setting Heads -> True makes the heads of (sub) expressions visible
to Map, MapIndexed, Scan, MapAll or Apply (the latter with explicit levspec given).

Note that for the above function, the default is Heads -> False. It is not possible to set this option when
shorthands like /@, @@ , @@@ are used.

If you will be the only user of a particular program you are writing, it is perhaps less important to keep
track of this option settings since you can always correct things yourself. Besides, since the default is
Heads -> False, which in the overwhelming majority of cases is what is needed, there seems nothing to
worry about. However, if your program will be used by someone else, it is essential to indicate the Heads
-> False option explicitly (even though this is the default) every time that you use one of the above com-
mands. The point is that if you don’t, and the person who uses your function (perhaps, yourself a few
months later!) has set Heads -> True globally by SetOptions command (which is a bad practice by the
way), for Map or Apply etc, then your program will use that option instead, and consequently will proba-
bly not work correctly. This issue is especially important when writing packages - the custom extensions
of Mathematica to some domain. And for this reason, it is best to avoid short - hand notation for Map,
Apply etc in the final version of the code, since you can not set this option in the short - hand notation.

256

5.3 Generalizations

� 5.3.1 Thread

This function threads a function of several variables over the list in which first sublist gives all first argu-
ments, second gives second arguments, etc. For example:

� 5.3.1.1 Initial examples

Clear@fD;
Thread@f@Range@10D, Range@11, 20DDD
8f@1, 11D, f@2, 12D, f@3, 13D, f@4, 14D, f@5, 15D,
f@6, 16D, f@7, 17D, f@8, 18D, f@9, 19D, f@10, 20D<
Thread@f@Range@10D, Range@11, 20D, Range@21, 30DDD
8f@1, 11, 21D, f@2, 12, 22D, f@3, 13, 23D, f@4, 14, 24D, f@5, 15, 25D,
f@6, 16, 26D, f@7, 17, 27D, f@8, 18, 28D, f@9, 19, 29D, f@10, 20, 30D<

The lists of arguments need not be the same length, and this is in fact quite useful at times:

Thread@f@Range@10D, 1DD
8f@1, 1D, f@2, 1D, f@3, 1D, f@4, 1D, f@5, 1D,
f@6, 1D, f@7, 1D, f@8, 1D, f@9, 1D, f@10, 1D<

When used in cases like above, Thread may be thought of as a generalization of Map.

However, the input like this is ambiguous, and the system complains:

Thread@f@Range@10D, 81, 2<DD
Thread::tdlen : Objects of unequal length in

f@81, 2, 3, 4, 5, 6, 7, 8, 9, 10<, 81, 2<D cannot be combined. More¼

f@81, 2, 3, 4, 5, 6, 7, 8, 9, 10<, 81, 2<D
� 5.3.1.2 Example: imitating Thread

As an amusing exercise, we may imitate the workings of Thread in the first case above. This will also
clarify how it works in that case.

This will imitate Thread for the inputs with equal number of all arguments

Clear@myThreadD;
myThread@f_@x__ListDD �; Equal �� Map@Length, 8x<D :=

f ��� Transpose@8x<D;
myThread@x_ListD := x;

In the above, the pattern checks that all elements are lists, and the condition checks that all lengths of all
lists are the same (the second definition is needed to reproduce the behavior of the built-in Thread on
simple lists). We then Transpose the lists, for instance:

 257

Transpose@8Range@10D, Range@11, 20D, Range@21, 30D<D
881, 11, 21<, 82, 12, 22<, 83, 13, 23<, 84, 14, 24<, 85, 15, 25<,

86, 16, 26<, 87, 17, 27<, 88, 18, 28<, 89, 19, 29<, 810, 20, 30<<

 and we want to Map f on the resulting list of lists containing arguments. Since the List head in each sublist
has to be substituted by the head <f>, we actually Map the Apply[f,#]&, and then use the shorthand nota-
tion discussed before (see section 5.2.7.5).

myThread@f@Range@10D, Range@11, 20D, Range@21, 30DDD
8f@1, 11, 21D, f@2, 12, 22D, f@3, 13, 23D, f@4, 14, 24D, f@5, 15, 25D,
f@6, 16, 26D, f@7, 17, 27D, f@8, 18, 28D, f@9, 19, 29D, f@10, 20, 30D<

It is left as an exercise for the reader to imitate the behavior of Thread in other cases (like the one where
some of the arguments are not lists but atoms, like in the second example above).

Of course, we expect our function to be much slower than the built-in. Let us see how much slower:

myThread@f@Range@100D, Range@101, 200D, Range@201, 300DDD �� myTiming

0.000211

Thread@f@Range@100D, Range@101, 200D, Range@201, 300DDD �� myTiming

0.00015

In this case, the difference is about 50-100%, which should mean that we did not a bad job (however keep
in mind that we did not cover more complicated uses of Thread in our function - this is likely to increase
the gap in performance)

� 5.3.1.3 Performance study: redoing the Mapping-a-function-with-several-arguments example with
Thread

Let us return to the example

Thread@f@Range@10D, 1DD
8f@1, 1D, f@2, 1D, f@3, 1D, f@4, 1D, f@5, 1D,
f@6, 1D, f@7, 1D, f@8, 1D, f@9, 1D, f@10, 1D<

It shows that one of the cases when Thread is particularly useful is when one needs to supply a function
with some arguments which are the same (don’t change). We already discussed how to do this using Map
and Apply, and here is an alternative. We may now redo our previous examples using Thread:

In our first example (c.f. section 5.2.2.7) we have a function:

Clear@f, aD;
f@x_, y_D := Sin@x +yD;

And we want to Map it on a list {1,2,3,4,5}, with the variable <y> fixed at value <a>. This is how we
would do it with Thread:

258

Thread@f@Range@5D, aDD
8Sin@1 +aD, Sin@2 +aD, Sin@3 +aD, Sin@4 +aD, Sin@5 +aD<

Since this is a more direct use of the built-in commands, we should expect it to be more efficient than the
previous one with Map.

Map@f@ð, aD &, Range@5DD
8Sin@1 +aD, Sin@2 +aD, Sin@3 +aD, Sin@4 +aD, Sin@5 +aD<

We may now verify this:

Thread@f@Range@50D, aDD �� myTiming

0.00024

Map@f@ð, aD &, Range@50DD �� myTiming

0.000331

We see that we gain about 30-40% here, even though the method with Map is by far not the worst.

� 5.3.1.4 Performance study: redoing a supplying-function-arguments example with Thread

 Let us also redo the second example:

Clear@addFive, x, y, z, t, s, a, bD;
addFive@x_, y_, z_, t_, s_D := x +y +z +t +s;

We want to keep the first and the last arguments fixed, say at <a> and . Here is the list of other
arguments

testlist = Table@Random@Integer, 81, 10<D, 810<, 83<D
8810, 10, 2<, 85, 6, 6<, 88, 7, 3<, 810, 8, 10<, 82, 5, 5<,

81, 2, 8<, 85, 8, 5<, 83, 4, 5<, 83, 10, 6<, 87, 2, 4<<
Version with map and Apply:

Map@addFive@a, Sequence �� ð, bD &, testlistD
822 +a +b, 17 +a +b, 18 +a +b, 28 +a +b, 12 +a +b,

11 +a +b, 18 +a +b, 12 +a +b, 19 +a +b, 13 +a +b<
For the version with Thread:

Thread@addFive@a, Sequence �� Transpose@testlistD, bDD
822 +a +b, 17 +a +b, 18 +a +b, 28 +a +b, 12 +a +b,

11 +a +b, 18 +a +b, 12 +a +b, 19 +a +b, 13 +a +b<
To be able to use Thread, we had here to Transpose the list and then Apply Sequence, since the list was
already in the form where all arguments for each function application are grouped together, while Thread
normally works with them stored in a separate lists. We can now check the performance:

testlist = Table@Random@Integer, 81, 10<D, 850<, 83<D;

 259

Map@addFive@a, Sequence �� ð, bD &, testlistD �� myTiming

0.000871

Thread@addFive@a, Sequence �� Transpose@testlistD, bDD �� myTiming

0.000231

Notice that the difference is about 4 times, even given an additional command had to be executed inside
the Thread! So, here we gain an increase in performance by several times. Once again, this teaches us that
in Mathematica programming it is important to choose the right idiom. Here, for instance, the length of
the code is comparable in both cases, but the solution using Thread picked a better idiom for this particu-
lar problem. In order to understand this behavior, we should realize that in Thread, the parameters <a>
and are treated internally by Thread. Also, the substitution of the middle arguments to f is performed
case-by-case in the approach with Map, while done internally for all elements in the list by Thread. It
basically does the same thing that we do with the Map command, but does more of it internally, and thus
does it faster.

In this respect the Mathematica language is more like the natural language than one of the more standard
programming languages. Like in the natural language, there are plenty of ways to express the same thing.
And like in the natural language, using the most precise idiom is advantageous. It takes some time to
develop this skill but it pays off - after all, there are not so many fundamental commands in Mathematica.
Once you get to know how to use them, the rest will follow.

Clear@addFive, testlistD;

� 5.3.1.5 Example: simple encoding - using Thread to create a list of rules

One particular case when Thread is quite useful is when we have to create a set of rules. In this example
we will build a function which does simple encodings, by substituting each letter in a message by some
another letter.

To start, let us create an alphabet list:

alphabet = Characters@"abcdefghijklmnopqrstuvwxyz"D
8a, b, c, d, e, f, g, h, i, j, k,

l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<
Now, let us shift all the letters by, say,10:

shifted = RotateRight@alphabet, 10D
8q, r, s, t, u, v, w, x, y, z, a,

b, c, d, e, f, g, h, i, j, k, l, m, n, o, p<
Now we will create the encoding rules:

coderules = Thread@Rule@alphabet, shiftedDD
8a ® q, b ® r, c ® s, d ® t, e ® u, f ® v, g ® w, h ® x,

i ® y, j ® z, k ® a, l ® b, m ® c, n ® d, o ® e, p ® f, q ® g,

r ® h, s ® i, t ® j, u ® k, v ® l, w ® m, x ® n, y ® o, z ® p<
What happened was that the function Rule was threaded over the lists, producing a list of rules, in full
agreement with the general way the Thread works. It may help to look at the FullForm here:

260

What happened was that the function Rule was threaded over the lists, producing a list of rules, in full
agreement with the general way the Thread works. It may help to look at the FullForm here:

FullForm@coderulesD
List@Rule@"a", "q"D, Rule@"b", "r"D, Rule@"c", "s"D, Rule@"d", "t"D,
Rule@"e", "u"D, Rule@"f", "v"D, Rule@"g", "w"D, Rule@"h", "x"D,
Rule@"i", "y"D, Rule@"j", "z"D, Rule@"k", "a"D, Rule@"l", "b"D,
Rule@"m", "c"D, Rule@"n", "d"D, Rule@"o", "e"D, Rule@"p", "f"D,
Rule@"q", "g"D, Rule@"r", "h"D, Rule@"s", "i"D, Rule@"t", "j"D, Rule@"u", "k"D,
Rule@"v", "l"D, Rule@"w", "m"D, Rule@"x", "n"D, Rule@"y", "o"D, Rule@"z", "p"DD

To proceed, consider some test message, like

message = "never say never"

never say never

To apply the rules, we have to break the message into characters:

Characters@messageD
8n, e, v, e, r, , s, a, y, , n, e, v, e, r<

We now apply the rules:

Characters@messageD �. coderules
8d, u, l, u, h, , i, q, o, , d, u, l, u, h<

Finally, we have to assemble the encoded message back. For this, we will use the StringJoin built-in
function, and since the head List has to be eaten up, we use Apply:

Apply@StringJoin, Characters@messageD �. coderulesD
duluh iqo duluh

Now we can package these steps into an encoding function:

Clear@encodeD;
encode@mes_String, rules_ListD :=

Apply@StringJoin, Characters@mesD �. rulesD;
Check:

coded = encode@message, coderulesD
duluh iqo duluh

To decode the message back, we don’t need another function. All we need to do is to reverse the rules.
These are the rules:

coderules

8a ® q, b ® r, c ® s, d ® t, e ® u, f ® v, g ® w, h ® x,

i ® y, j ® z, k ® a, l ® b, m ® c, n ® d, o ® e, p ® f, q ® g,

r ® h, s ® i, t ® j, u ® k, v ® l, w ® m, x ® n, y ® o, z ® p<
If you look now at the FullForm (above), it is clear that we have to reverse the order of letters inside each
Rule. There is a built-in function Reverse. Let us check on a single Rule that it will work:

 261

Clear@aD;
Reverse@"a" ® "q"D
q ® a

All we have to do now is to Map it on our list of rules:

revrules = Reverse �� coderules

8q ® a, r ® b, s ® c, t ® d, u ® e, v ® f, w ® g, x ® h,

y ® i, z ® j, a ® k, b ® l, c ® m, d ® n, e ® o, f ® p, g ® q,

h ® r, i ® s, j ® t, k ® u, l ® v, m ® w, n ® x, o ® y, p ® z<
Now we can decode the message back:

decoded = encode@coded, revrulesD
never say never

This is a simple example where you can see a nice coexistence and complementarity of rule-based and
functional programming styles.

Clear@alphabet, coderules,

encode, revrules, message, decoded, codedD;
� 5.3.1.6 Example: unsorted union problem revisited

One of the past examples for the <MapIndexed> function was to create an unsorted union of elements for
some list. In particular, a set of rules for elements to their positions was constructed using MapIndexed.
The code for the <unsortedUnion> function looked like:

Clear@unsortedUnionD;
unsortedUnion@x_ListD :=

Extract@x, Sort@Union@xD �. Dispatch@MapIndexed@Rule, xDDDD;
The same rules can be created using Thread, which we will do now. This will be our test list:

testlist = Table@Random@Integer, 81, 10<D, 820<D
82, 3, 7, 7, 9, 10, 10, 1, 1, 5, 8, 10, 5, 8, 6, 3, 5, 4, 4, 3<

This will create a set of rules similar to the one we have previously created by MapIndexed:

Thread@Rule@testlist, Range@Length@testlistDDDD
82 ® 1, 3 ® 2, 7 ® 3, 7 ® 4, 9 ® 5, 10 ® 6,

10 ® 7, 1 ® 8, 1 ® 9, 5 ® 10, 8 ® 11, 10 ® 12, 5 ® 13,

8 ® 14, 6 ® 15, 3 ® 16, 5 ® 17, 4 ® 18, 4 ® 19, 3 ® 20<
The only difference is that the positions are not wrapped in curly braces (lists), as they were for
MapIndexed:

262

MapIndexed@Rule, testlistD
82 ® 81<, 3 ® 82<, 7 ® 83<, 7 ® 84<, 9 ® 85<, 10 ® 86<, 10 ® 87<,
1 ® 88<, 1 ® 89<, 5 ® 810<, 8 ® 811<, 10 ® 812<, 5 ® 813<, 8 ® 814<,
6 ® 815<, 3 ® 816<, 5 ® 817<, 4 ® 818<, 4 ® 819<, 3 ® 820<<

We could Map List on the result in our Thread-based realization, like this:

Thread@Rule@testlist, List �� Range@Length@testlistDDDD
82 ® 81<, 3 ® 82<, 7 ® 83<, 7 ® 84<, 9 ® 85<, 10 ® 86<, 10 ® 87<,
1 ® 88<, 1 ® 89<, 5 ® 810<, 8 ® 811<, 10 ® 812<, 5 ® 813<, 8 ® 814<,
6 ® 815<, 3 ® 816<, 5 ® 817<, 4 ® 818<, 4 ® 819<, 3 ® 820<<

However, there is a more efficient realization - to keep the list as it is, but use Part instead of Extract (Part
has a somewhat different syntax and in particular accepts a simple list of positions like the one generated
by Thread). So, this is the final version:

Clear@unsortedUnionNewD;
unsortedUnionNew@x_ListD := Part@x,

Sort@Union@xD �. Dispatch@Thread@Rule@x, Range@Length@xDDDDDDD;
Check:

unsortedUnionNew@testlistD
82, 3, 7, 9, 10, 1, 5, 8, 6, 4<

We can now compare performance on some large list:

testlist = Table@Random@Integer, 81, 1000<D, 84000<D;
unsortedUnion@testlistD �� myTiming

0.0261

unsortedUnionNew@testlistD �� myTiming

0.025

The performance is roughly the same.

Clear@testlist, unsortedUnion, unsortedUnionNewD;

There are more capabilities of the Thread command. Some of them are discussed in Mathematica Help.
We will eventually discuss them as we get to examples where they are useful.

� 5.3.2 MapThread

MapThread is a close cousin of Thread, with several important differences. First, the format of the com-
mand is somewhat different:

MapThread@function, 8arglist1, arglist2, ...<D
For MapThread, unlike Thread, the lists of arguments <arglist1,...> should all be of the same length.

 263

For MapThread, unlike Thread, the lists of arguments <arglist1,...> should all be of the same length.

� 5.3.2.1 Simple examples

Threading

This does the same as Thread, for a generic head (function) <f>:

Clear@fD;
MapThread@f, 8Range@10D, Range@11, 20D<D
8f@1, 11D, f@2, 12D, f@3, 13D, f@4, 14D, f@5, 15D,
f@6, 16D, f@7, 17D, f@8, 18D, f@9, 19D, f@10, 20D<

Multiplying numbers pairwise in two lists

Here we use a concrete function Times to multiply the numbers in the two lists pairwise.

MapThread@Times, 8Range@10D, Range@11, 20D<D
811, 24, 39, 56, 75, 96, 119, 144, 171, 200<

Notice that this operation is done easier by just multiplying two lists (this is possible because Times is a
Listable operation):

Range@10D *Range@11, 20D
811, 24, 39, 56, 75, 96, 119, 144, 171, 200<

As it became a habit, let us digress to measure relative performance:

MapThread@Times, 8Range@100D, Range@101, 200D<D �� myTiming

0.000211

Range@100D *Range@101, 200D �� myTiming

0.000017

Here we find a 15-20 times difference! In fact, by trying smaller and larger lists you can convince yourself
that this factor is not constant. Instead, the performance gap increases even more as the lists get longer.
The reason is that the operations like list multiplication (also dot product etc) are highly optimized in
Mathematica, while MapThread is a good, but general purpose command.

For the record, in this particular case, and for machine - size numbers, a cheap way to speed - up Map-
Thread is to compile the code:

Hcomp = Compile@88x, _Integer, 1<, 8y, _Integer, 1<<,
MapThread@Times, 8x, y<DDL �� myTiming

0.000311

comp@Range@100D, Range@101, 200DD �� myTiming

0.0000541

As is clear from these timings, this will pay off (as compared to the uncompiled version) if many opera -
tions such as this are needed, since compilation also takes some time. And also, even the compiled version
is about 3 times slower than the one based on Times being Listable.

� 5.3.2.2 Thread and MapThread: important difference in evaluation

264

�

5.3.2.2 Thread and MapThread: important difference in evaluation

There is one more important difference between Thread and MapThread which I would like to illustrate
now. For this purpose, let us measure also the performance of Thread on the same problem:

Thread@Times@Range@100D, Range@101, 200DDD �� myTiming

0.0000281

It looks like Thread performs here an order of magnitude faster than MapThread. But this is an illu-
sion.To see what really happens, let us Trace the execution for small lists:

Thread@Times@Range@10D, Range@11, 20DDD �� Trace

888Range@10D, 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<<,8Range@11, 20D, 811, 12, 13, 14, 15, 16, 17, 18, 19, 20<<,81, 2, 3, 4, 5, 6, 7, 8, 9, 10< 811, 12, 13, 14, 15, 16, 17, 18, 19, 20<,811, 24, 39, 56, 75, 96, 119, 144, 171, 200<<,
Thread@811, 24, 39, 56, 75, 96, 119, 144, 171, 200<D,811, 24, 39, 56, 75, 96, 119, 144, 171, 200<<

What we see is that the Times command is evaluated, producing the final list, before Thread has any
chance to execute. Thus, the role of Thread here is just to stay idle. This is why the performance is so
close to the one given by direct multiplication - the main work is again done by the Times command. In
fact, what happened was to be expected: the standard evaluation procedure consists in evaluating inner
expressions before the outer ones. So, Thread evaluates its arguments in the standard way.

While MapThread also evaluates arguments in a standard way, it has a different syntax where the function
to be threaded is a separate argument of MapThread. Thus, the above behavior can not happen here. This
constitutes one important difference between Thread and MapThread functionality.

� 5.3.2.3 Case study: checking lists for equality

Checking lists for equality

One could use MapThread for element-by-element comparison of several lists:

MapThread@Equal, 881, 2, 3, 4, 5<, 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5<<D
8True, True, True, True, True<

Now,

MapThread@Equal, 881, 2, 10, 4, 5<, 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5<<D
8True, True, False, True, True<

We need to Apply And to get a final result:

And ��

MapThread@Equal, 881, 2, 10, 4, 5<, 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5<<D
False

Making a listEqualQ function

We can now make a function:

 265

Clear@listsEqualQD;
listsEqualQ@lists__ListD �; Equal �� Map@Length, 8lists<D :=

And �� MapThread@Equal, 8lists<D;
listsEqualQ@lists__ListD := False;

I have used this opportunity to illustrate several issues. First, the pattern <lists__List> immediately
ensures that the function is defined on any non-zero number of lists, and only lists - otherwise the pattern
will not match. Next, we attach a condition that all lists are of equal length. If this is not so, the conditional
pattern in the first line will not match, but the pattern in the second definition is more general and will
match - we will get False then, since we consider the lists of different lengths to be always different. At
the same time, this condition-checking ensures that MapThread on the r.h.s will always receive lists of
equal length, which is a pre-requisite for MapThread.

Check:

listsEqualQ@81, 2, 3<, 81, 2, 3<D
True

listsEqualQ@81, 2, 3<, 81, 2, 4<D
False

listsEqualQ@81, 2, 3<, 81, 2<D
False

listsEqualQ@81, 2, 3<, a, 81, 2, 3<D
listsEqualQ@81, 2, 3<, a, 81, 2, 3<D

Notice the last case: the function remained unevaluated rather than giving False. This behavior is consis-
tent with the general Mathematica ideology that whenever the system can not decide, the expression
should return unevaluated. In particular, we may consider the following code:

Clear@aD;
answer = listsEqualQ@81, 2, 3<, a, 81, 2, 3<D;
a = 81, 2, 3<;
answer

True

At the time when <answer> was computed, the value of <a> was such that there was no definite result
(<a> had no value). Later <a> received a value, which enabled <answer> to evaluate do a definite value
(True in this case). I don’t want to encourage this style of programming (dependence on global variables in
this fashion), but just to illustrate that our function <listsEqualQ> has a standard behavior, expected
normally from Mathematica built-in functions. Had we used as a second definition something like <lists-
EqualQ[x_]:=False>, this would produce False on any input not matching the pattern of the first defini-
tion, and the behavior would be different. In general, it is a good practice to try make your own functions
behave as much as built-in ones, as possible.

266

Performance analysis

Let us look now at the performance of our function. An immediate comment here is that the built-in Equal
works on lists, which means that our function will almost certainly be slower or much slower. Let us see
how much slower:

listsEqualQ@Range@1000D, Range@1000D, Range@1000DD �� myTiming

0.0031

Equal@Range@1000D, Range@1000D, Range@1000DD �� myTiming

0.0000301

I get about 100 times difference on my machine, for the length of the lists equal 1000. In fact, this coeffi-
cient is not constant but depends on the size of the lists and will increase with it - here we have different
computational complexities. Let us see how much faster we can go if we drop the equal-length condition
and pattern-matching:

And �� MapThread@Equal, 8Range@1000D, Range@1000D, Range@1000D<D ��
myTiming

0.0019

We see that we get about 1.5 increase in performance by doing so, but are still miles away from the built-
in function Equal. In the particular case of the present problem, there exists another way of doing this with
performance roughly equivalent to our previous implementation:

Apply@And, Equal ��� Transpose@8Range@10D, Range@10D, Range@10D<DD
True

Apply@And, Equal ���

Transpose@8Range@1000D, Range@1000D, Range@1000D<DD �� myTiming

0.003

Do you understand the way the code works in this case?

A faster implementation

 To complete this story, let me display a solution which is more tricky, still much slower than the built-in
Equal, but can give a factor of 4-5 increase in performance as compared to the above (in fact, the differ-
ence is more in Mathematica 5.. versions than in Mathematica 6, where the code below seems to work
about twice slower for some reason):

Clear@listsEqualQNewD;
listsEqualQNew@lists__ListD �; Equal �� Map@Length, 8lists<D :=

Plus �� Flatten@Abs@
Apply@Subtract, 8lists<@@ðDDD & ��

Partition@Range@Length@8lists<DD, 2, 1DDD === 0;

listsEqualQNew@lists__ListD := False;

The idea is that we pairwise subtract the lists, using a high-performance Subtract operation which also
works on lists of the same length. Then we take an absolute values of the results and sum them all. The
result has to be zero if all lists are equal, otherwise it will be non-zero. To account for symbolic expres-
sions, the <SameQ> (===) operator is used. <Partition > operator is used to create a list of pairs of
positions, and <{lists}[[#]]&> function extracts from the list {lists} the pair of lists corresponding to those
positions. It is a good exercise to take some small lists and dissect this function, to understand each step.
We check now:

 267

The idea is that we pairwise subtract the lists, using a high-performance Subtract operation which also
works on lists of the same length. Then we take an absolute values of the results and sum them all. The
result has to be zero if all lists are equal, otherwise it will be non-zero. To account for symbolic expres-
sions, the <SameQ> (===) operator is used. <Partition > operator is used to create a list of pairs of
positions, and <{lists}[[#]]&> function extracts from the list {lists} the pair of lists corresponding to those
positions. It is a good exercise to take some small lists and dissect this function, to understand each step.
We check now:

listsEqualQNew@81, 2, 3<, 81, 2, 3<, 81, 2, 3<D
True

listsEqualQNew@81, 2, 3<, 81, 2, 4<, 81, 2, 3<D
False

listsEqualQNew@Range@1000D, Range@1000D, Range@1000DD �� myTiming

0.0012

Equal@Range@1000D, Range@1000D, Range@1000DD �� myTiming

0.000033

A tricky point, and more on attributes

Notice however, that there is one instance in which the latter implementation will not work correctly :
when the tested lists contain sublists of different lengths (well, it sort of works, but generates error
messages):

listsEqualQNew@881, 2<, 83, 4<<, 881, 2, 3<, 81<<D
Thread::tdlen : Objects of unequal length in 81, 2< - 81, 2, 3< cannot be combined. �

Thread::tdlen : Objects of unequal length in 83, 4< - 81< cannot be combined. �

False

This is because the addition and subtraction is defined on lists, but of the same length (this is what Listable
attribute does). We can get rid of this by temporarily removing the Listable attribute for Subtract function
- this is the first tricky point. The second is that we also have to do the same for Plus function (this may
not be obvious, but Subtract is really more like a wrapper, the real work being done by Plus). Our new
function will look like:

Clear@listsEqualQNew1D;
listsEqualQNew1@lists__ListD �; Equal �� Map@Length, 8lists<D :=

Module@8result<,
ClearAttributes@8Plus, Subtract<, ListableD;
result = HPlus �� Flatten@Abs@

Apply@Subtract, 8lists<@@ðDDD & ��

Partition@Range@Length@8lists<DD, 2, 1DDD === 0L;
AppendTo@Attributes@PlusD, ListableD;
AppendTo@Attributes@SubtractD, ListableD;
Return@resultDD;

listsEqualQNew@lists__ListD := False;

Notice that we remove the attributes first, with the help of another useful command: ClearAttributes.
Then we compute the function result proper, and then restore the attributes. Notice that we did not use the
SetAttributes function to change attributes in this example. In fact, if we try to use SetAttributes on Plus,
it does not work:

268

Notice that we remove the attributes first, with the help of another useful command: ClearAttributes.
Then we compute the function result proper, and then restore the attributes. Notice that we did not use the
SetAttributes function to change attributes in this example. In fact, if we try to use SetAttributes on Plus,
it does not work:

SetAttributes@Plus, DeleteCases@Attributes@PlusD, ListableDD;
Attributes@PlusD
8Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected<

We see that when we attempt to do it in this way, Listable attribute remains.

Note also that neither did we Unprotect Plus. The idiom Attributes[command] = {attribute list} is then
rather dangerous because one can easily change the behavior of the built - in functions with it, and no
warning message will be generated. The protection of functions by Protected attribute protects the func-
tion symbol, but not the function attributes.

Anyway, let us check our function :

listsEqualQNew1@881, 2<, 83, 4<<, 881, 2, 3<, 81<<D
False

It works fine now. The above modification leads to a slight decrease in performance however:

listsEqualQNew1@Range@1000D, Range@1000D, Range@1000DD �� myTiming

0.0017

Again, for some reason this function works 2 - 3 times faster in version 5.2 (where it is then 5-6 times
faster than our previous less sophisticated implementation), than in version 6.

We see that our best implementation is still way slower than a built-in. Note however that in cases where
you need not only a final answer about equality, but for example the information about which elements in
the list break that equality, you will need something like what we implemented above, since the built-in
Equal does not give you such details.

� 5.3.2.4 More examples

� 5.3.2.4.1 Example: replacing the main diagonal in the square matrix

Consider the following problem: we are given a square matrix of dimension <n> (say,5), and a list of the
same length. We want to replace the main diagonal of the matrix by this list.

Say, this is our matrix:

Hmatrix = Table@Random@Integer, 81, 10<D, 85<, 85<DL �� MatrixForm

10 3 6 9 4
4 8 2 2 6
5 9 5 5 2
4 3 6 9 3
5 7 2 3 7

And this is our replacement list:

 269

Clear@a, b, c, d, eD;
replist = 8a, b, c, d, e<
8a, b, c, d, e<

To solve the problem, we will use the built-in function ReplacePart, in the form in which it takes 3 argu-
ments: the expression, the new value of the element, and its position in the expression. For instance,

ReplacePart@81, 2, 3, 4, 5<, a, 3D
81, 2, a, 4, 5<

Then, this is the code to solve our problem:

result = MapThread@ReplacePart, 8matrix, replist, Range@5D<D
88a, 3, 6, 9, 4<, 84, b, 2, 2, 6<,

85, 9, c, 5, 2<, 84, 3, 6, d, 3<, 85, 7, 2, 3, e<<
Be sure to understand how this code works. To display the result in the form of the matrix, we use
MatrixForm:

MatrixForm@resultD
a 3 6 9 4
4 b 2 2 6
5 9 c 5 2
4 3 6 d 3
5 7 2 3 e

The other way to perform the same operation is using MapIndexed:

MapIndexed@If@Equal �� ð2, replist@@ð2@@1DDDD, ð1D &, matrix, 82<D
88a, 3, 6, 9, 4<, 84, b, 2, 2, 6<,

85, 9, c, 5, 2<, 84, 3, 6, d, 3<, 85, 7, 2, 3, e<<
What this does it to Map on every element of the matrix a function which changes the element to a corre-
sponding element of the replacement list, if the element is on the diagonal, and returns the element back if
it is not. However, here we know a priori that this implementation will be inefficient compared to the
previous one, since its complexity is quadratic with the matrix size while it is linear for the previous one
(in the former case, it sweeps through all matrix elements, not just the diagonal ones).

Finally we package our solution into a function:

Clear@replaceDiagonalD;
replaceDiagonal@matrix_ ? MatrixQ, replist_ListD �; Equal@

Length@replistD, Sequence �� Dimensions@matrixDD := MapThread@
ReplacePart, 8matrix, replist, Range@Length@replistDD<D;

I used this opportunity to introduce another two built-in functions: <Dimensions>, which gives a list of
dimensions of a nested list (a matrix in this case), and the predicate <MatrixQ> which determines
whether or not an object is a matrix. I also used the idiom Apply[Sequence,expression] once again
(section 5.2.7.5).

Basically, the attached condition checks that both matrix dimensions are the same and equal to the length
of the replacement list. Let us check now:

270

Basically, the attached condition checks that both matrix dimensions are the same and equal to the length
of the replacement list. Let us check now:

replaceDiagonal@matrix, Range@5D^3D �� MatrixForm

1 3 6 9 4
4 8 2 2 6
5 9 27 5 2
4 3 6 64 3
5 7 2 3 125

replaceDiagonal@881, 2<, 83, 4<<, 80, 0<D �� MatrixForm

J 0 2
3 0

N
replaceDiagonal@881, 2<, 83, 4<<, 80, 0, 1<D
replaceDiagonal@881, 2<, 83, 4<<, 80, 0, 1<D
replaceDiagonal@881, 2, 5<, 83, 4, 6<<, 80, 0<D
replaceDiagonal@881, 2, 5<, 83, 4, 6<<, 80, 0<D

It is left as an exercise to the reader to package an alternative solution with MapIndexed into another
function, test it and then study the relative performance of the two functions on matrices of various sizes,
to confirm our expectations of linear vs quadratic complexity of the two solutions.

Clear@replaceDiagonal, matrix, replist, resultD;
� 5.3.2.4.2 Example: appending sublists of a nested list

Here we are concerned with the following problem. Given a nested list of numbers (with sublists of gener-
ally different length), and a list of separate list of numbers of the same length as the nested list, append
each number of the simple list to the end of the corresponding sublist of the nested list.

This is our nested list

Clear@testlistD;
testlist =

Table@Random@Integer, 81, 10<D, 810<, 8Random@Integer, 82, 6<D<D
8810, 7<, 89, 7, 2<, 83, 9, 8, 2, 3<, 84, 6, 6, 4<, 89, 2, 5, 6, 3, 3<,

81, 1<, 81, 2, 5<, 83, 10, 3, 1, 5, 5<, 88, 10<, 86, 10, 7<<
This is our simple list

addlist = Table@Random@Integer, 81, 10<D, 810<D
84, 10, 6, 6, 1, 8, 5, 7, 1, 6<

This is the code that solves the problem

 271

result = MapThread@Append, 8testlist, addlist<D
8810, 7, 4<, 89, 7, 2, 10<, 83, 9, 8, 2, 3, 6<,

84, 6, 6, 4, 6<, 89, 2, 5, 6, 3, 3, 1<, 81, 1, 8<, 81, 2, 5, 5<,
83, 10, 3, 1, 5, 5, 7<, 88, 10, 1<, 86, 10, 7, 6<<

This is how the resulting function will look like :

Clear@appendSublistsD;
appendSublists@x_List, newelems_ListD �;

Length@xD � Length@newelemsD :=

MapThread@Append, 8x, newelems<D;
� 5.3.2.4.3 Example: deleting from each sublist of a nested list given number of elements at the

beginning:

The problem to solve here is the following: given a list of lists, delete from the beginning of each sublist a
number of elements given by the element of another (single) list.

 To prepare the "delete" list, we first find a list of sublists lengths:

lengths = Length �� result

83, 4, 6, 5, 7, 3, 4, 7, 3, 4<
Then we randomly generate a number of elements to be deleted for each list, not exceeding the number of
elements in it:

dellist = Map@Min@Random@Integer, 81, 4<D, ðD &, lengthsD
83, 2, 2, 2, 3, 3, 2, 1, 3, 4<

This is the code which does the job:

MapThread@Drop, 8result, dellist<D
88<, 82, 10<, 88, 2, 3, 6<, 86, 4, 6<,

86, 3, 3, 1<, 8<, 85, 5<, 810, 3, 1, 5, 5, 7<, 8<, 8<<
This is how the function will look :

Clear@dropFromSublistsD;
dropFromSublists@8sublists__List<, dellengths_ListD �;

Length@8sublists<D � Length@dellengthsD :=

MapThread@If@Length@ð1D < ð2, 8<, Drop@ð1, ð2DD &,

88sublists<, dellengths<D;
Check :

dropFromSublists@result, dellistD
88<, 82, 10<, 88, 2, 3, 6<, 86, 4, 6<,

86, 3, 3, 1<, 8<, 85, 5<, 810, 3, 1, 5, 5, 7<, 8<, 8<<
Note the pattern used in a function : it guarantees that all the elements of the nested list are lists them-
selves, and the attached condition checks that the list of lengths of element sequences to be dropped has
the same length as a nested list. Also, the function inside MapThread has been modified to account for
cases when the instructed number of elements to be dropped is larger than the length of the sublist - in this
case all elements are dropped, and an empty list is returned.

272

Note the pattern used in a function : it guarantees that all the elements of the nested list are lists them-
selves, and the attached condition checks that the list of lengths of element sequences to be dropped has
the same length as a nested list. Also, the function inside MapThread has been modified to account for
cases when the instructed number of elements to be dropped is larger than the length of the sublist - in this
case all elements are dropped, and an empty list is returned.

� 5.3.2.4.4 A digression : stricter error - checking

If this convention is unsatisfactory, and one needs a stricter condition which would issue an error message
in such an event, then it is best to relegate this to patterns by modifying them appropriately :

Clear@dropFromSublistsStrictD;
dropFromSublistsStrict@8sublists__List<, dellengths_ListD :=

MapThread@Drop, 88sublists<, dellengths<D �;
And@Length@8sublists<D � Length@dellengthsD, Sequence ��

Map@NonNegative, Map@Length, 8sublists<D -dellengthsDD;
dropFromSublistsStrict@8sublists__List<, dellengths_ListD �;

Length@8sublists<D � Length@dellengthsD :=

"Some of the element numbers to delete larger

than the corresponding sublist length";

dropFromSublistsStrict@8sublists__List<, dellengths_ListD :=

"The nested list and delete lengths

list should be of the same length";

Note that the other possibility would be to again use the If statement inside the MapThread, which should
then take the proper action when an erroneous input is encountered. But this solution is typically worse
for several reasons : a) Some part of the evaluation would typically have happened. This may be undesir-
able both because time has been wasted and because side effects may have been introduced. b) Map-
Thread, like many other functional constructs, can not be normally "stopped" - thus, one will have to
throw an exception. c) A minor one: presence of If slows the function down a bit.

This sort of solution can be used when the error condition can not be determined solely by input data, but
instead depends on the results already obtained in the course of execution of a given function. However,
such behavior is not typical for programs designed within the functional programming paradigm (at least,
in Mathematica), mainly because it is usually caused by side-effects such as run-time assignments or in-
place data modifications.

Returning to the code above, I used the opportunity to illustrate another possible way to attach a condition
to the function definition: instead of attaching it right after the "declaration" part, we can attach it at the
end, after the right hand side of the definition. Also, notice once again that we have exploited the way in
which Mathematica applies definitions (rules, associated with a function) - more specific before more
general, to implement error-checking.

Be sure to understand the use of Map , Apply and Sequence in the first definition above code. Check :

 273

dropFromSublistsStrict@881, 2, 3<, 84, 5, 6<, 87, 8, 9<<, 81, 2, 3<D
882, 3<, 86<, 8<<
dropFromSublistsStrict@881, 2, 3<, 84, 5, 6<, 87, 8, 9<<, 81, 2, 4<D
Some of the element numbers to delete

larger than the corresponding sublist length

dropFromSublistsStrict@881, 2, 3<, 84, 5, 6<, 87, 8, 9<<, 81, 2, 3, 4<D
The nested list and delete

lengths list should be of the same length

Of course, instead of printing error messages, any other desired action can be taken. In fact, returning
error messages in the above fashion (or, worse yet, printing them with the Print command) may be ok for
quick-and-dirty functions you write for yourself (say, in the exploratory stage), but not when you place
your functions into packages. There exists a much better mechanism of Messages one should use in
package writing. This topic is generally beyond the scope of our present discussion, so consult the books
of Maeder and Wagner, as well as Mathematica Help and Mathematica Book, for details.

The additional error - checking overhead due to the pattern - matching is usually not too considerable if
the patterns are mostly syntactic in nature (such as {__Integer}), or when they do some simple things like
checking the list sizes. Of course, error - checking has to be done in any case if one wants to have a robust
functionality. Sometimes, however, the user of the function knows for sure that the supplied data are
correct (for instance, they come as a result of another function), in which case error - checking may be
redundant. One possibility is to provide an option (say, with the name ArgTest) which will tell whether or
not to perform the error checking :

fun@args__, opts___ ?OptionQD �;
If@ArgTest �. Flatten@8opts<D �. ArgTest ® True,

code -to -check -arguments, TrueD := r.h.s

This is however not completely safe in general, since this assumes a high level of competence (with this
particular functionality) from the user. This sort of solution can be used in functions that are used only by
a developer to build something on top of them.

A safer alternative would be to place several related functions in a package, so that the auxiliary ones may
exchange information without redundant type checks, and the interface ones which are exported to the end
user do the type checks, but only once.

� 5.3.2.4.5 Example: rotating each sublist in a nested list differently

This is our final example of the same logic as the previous ones. Here we want to rotate the individual
sublists (say, to the right) according to the list of rotations. This is our nested list

274

Clear@testlistD;
testlist =

Table@Random@Integer, 81, 10<D, 810<, 8Random@Integer, 82, 6<D<D
888, 4<, 83, 8<, 86, 8, 7, 4<, 89, 9, 2<,

89, 8, 9, 3, 1, 3<, 87, 2, 4, 7, 4, 9<, 82, 5, 7<,
810, 5, 9<, 84, 2, 2, 2<, 85, 10, 8, 10, 1, 6<<

Here is the list of rotations

rotatelist = Table@Random@Integer, 82, 6<D, 8Length@testlistD<D
86, 4, 4, 2, 5, 2, 5, 3, 6, 3<

This code does the job

MapThread@RotateRight, 8testlist, rotatelist<D
888, 4<, 83, 8<, 86, 8, 7, 4<, 89, 2, 9<,

88, 9, 3, 1, 3, 9<, 84, 9, 7, 2, 4, 7<, 85, 7, 2<,
810, 5, 9<, 82, 2, 4, 2<, 810, 1, 6, 5, 10, 8<<

The function will look like

Clear@rotateSublistsD;
rotateSublists@8sublists__List<, 8rotatenums__Integer<D �;

Length@8sublists<D � Length@8rotatenums<D :=

MapThread@RotateRight, 88sublists<, 8rotatenums<<D;
As we will see in chapter VI, for the problem of fast extraction of all matrix diagonals, the most efficient
solution will be based on this example.

�

All of the three examples above can be also done using Map and Apply, and pure functions, along the
lines outlined above. We leave it as an exercise to the reader to implement these versions. The point
however is that, as we also already discussed, doing it with Thread or MapThread may be several times
more efficient. In fact, this should be precisely the reason why these operations were implemented as
separate commands - in practice they are needed quite frequently, and using Map in such situations in the
symbolic environment of Mathematica may induce significant overhead.

� 5.3.2.4.6 Example: imitating Transpose

Consider the following example:

MapThread@List, 8Range@10D, Range@11, 20D<D
881, 11<, 82, 12<, 83, 13<, 84, 14<, 85, 15<,

86, 16<, 87, 17<, 88, 18<, 89, 19<, 810, 20<<
If we look carefully at the result, we realize that what we obtained is a list Transposed with respect to the
original input. Indeed:

 275

Transpose@8Range@10D, Range@11, 20D<D
881, 11<, 82, 12<, 83, 13<, 84, 14<, 85, 15<,

86, 16<, 87, 17<, 88, 18<, 89, 19<, 810, 20<<
Thus, we may imitate the action of the Transpose command:

Clear@myTransposeD;
myTranspose@x_ListD := MapThread@List, xD;

We can now compare the performance

perftest = Table@i +j, 8i, 20<, 8j, 30<D;
myTranspose@perftestD �� myTiming

0.00016

Transpose@perftestD �� myTiming

0.0000201

We come to the usual conclusion that the built-in operations are favored. However, there is more to it in
this particular example. What we compare here is not just two realizations - ours vs built-in, but two styles
of programming: functional vs. structure operations. The typical commands of the latter style are: Trans-
pose, Partition, Flatten, perhaps also Inner , Outer (although we cover them in this chapter) , RotateRight,
RotateLeft, and some others. All these commands are extremely fast and efficient. So, if any of these can
be used, they are usually favored with respect to a functional realization, which, in terms of efficiency,
comes next. The rule-based realization usually comes after functional, and the procedural realization is
very often the last in our performance winners list.

Heuristically, this can be understood as follows. Structural operations are the most precise, in the sense
that the structures they operate on are rather specific (for instance, Transpose requires sublists of the same
length, etc). Also, their role is mostly in rearranging the existing structure, but not transforming the pieces.
Functional style is still quite precise (since one needs to have a clear idea of the structure of an expression
before using Map and Apply), but somewhat less restrictive. Also, here we can transform pieces by Map-
ping and Applying functions to them. The rule-based approach is less precise in the sense that we don’t
need to know beforehand where in the expression the rule applies - if we construct the rule correctly, it
will apply to all places where needed. The overhead induced here is mostly due to the pattern-matcher
which has to determine for us the correct places where to apply the rules. I hastily comment that there are
cases when rule-based approach is extremely efficient, but this usually means that rules and patterns are
very well matched to expressions they operate on, by a programmer who has a very good and precise idea
of how these rules will be applied (so that the pattern-matcher "wastes" as little time as possible on false
matches). Finally, in procedural approach we don’t use the natural advantage of many Mathematica’s
functions which work with whole expressions, but break them into pieces (e.g. array indexing), which
means that we are going in directions entirely orthogonal to those for which the system has been opti-
mized.

Clear@myTranspose, perftestD;

276

� 5.3.3 Inner

As it is nicely stated in Mathematica Help, Inner is a generalization of an inner product. The format of the
command is

Inner@f, list1, list2, gD
The lists <list1> and <list2> have to be of the same length. The function f plays a role of multiplication,
and g - of addition.

� 5.3.3.1 Simple examples

Inner@f, 8a, b, c<, 8d, e, f<, gD
g@f@a, dD, f@b, eD, f@c, fDD

We can get back a standard inner product for a vector:

Inner@Times, 8a, b, c<, 8d, e, f<, PlusD
a d +b e +c f

� 5.3.3.2 Example: Imitating Inner

We can imitate the workings of Inner with MapThread and Apply in the following manner:

Inner[f,list1,list2,g]�Apply[g,MapThread[f,{list1,list2}]]

where the equality sign means "acts similarly". For instance:

g �� MapThread@f, 88a, b, c<, 8d, e, f<<D
g@f@a, dD, f@b, eD, f@c, fDD

Alternatively,

Inner[f,list1,list2,g]�Apply[g,f@@@Transpose[{list1,list2}]]

Apply@g, f ��� Transpose@88a, b, c<, 8d, e, f<<DD
g@f@a, dD, f@b, eD, f@c, fDD

It is good to realize that Inner is in some sense a more specialized function, than say Thread or MapThread
(it takes only two lists, for instance, and they have to have the same length). This means that in certain
situations, we can expect it to give a better performance.

� 5.3.3.3 Example: Creating a list of rules

Here, for example, we can use Inner to create a list of rules:

Inner@Rule, Range@10D, Range@11, 20D, ListD
81 ® 11, 2 ® 12, 3 ® 13, 4 ® 14,

5 ® 15, 6 ® 16, 7 ® 17, 8 ® 18, 9 ® 19, 10 ® 20<
The function will look like

 277

Clear@createRulesD;
createRules@lhs_List, rhs_ListD �; Length@lhsD � Length@rhsD :=

Inner@Rule, lhs, rhs, ListD
We can compare its performance with that of Thread:

Inner@Rule, Range@100D, Range@101, 200D, ListD �� myTiming

0.00023

MapThread@Rule, 8Range@100D, Range@101, 200D<D �� myTiming

0.000341

By using Inner in this case, we get about 30% increase in performance.

� 5.3.3.4 Example: Comparing two lists

As another example, here we use Inner to compare two lists and return positions where the elements of
the two lists are different:

Inner@Equal, 81, 2, 3, 4, 5, 6<,
81, 2, 1, 4, 2, 6<, Position@8ðð<, FalseD &D

883<, 85<<
we can express this as a function:

Clear@compareListsD;
compareLists@list1_List, list2_ListD �;
Length@list1D � Length@list2D :=

Inner@SameQ, list1, list2, Position@8ðð<, FalseD &D
check:

compareLists@81, 2, 3, 4, 5, 6<, 81, 2, 1, 4, 2, 6<D
883<, 85<<

As an alternative, we may consider such an implementation:

compareListsAlt@list1_List, list2_ListD �;
Length@list1D � Length@list2D :=

Position@Abs@list1 -list2D, _ ?PositiveD
check:

compareListsAlt@81, 2, 3, 4, 5, 6<, 81, 2, 1, 4, 2, 6<D
883<, 85<<

The last one is based on exploiting the fast Subtract operation which operates on entire lists. We can
compare the performance:

278

compareLists@Range@1000D, Range@1000DD �� myTiming

0.0015

compareListsAlt@Range@1000D, Range@1000DD �� myTiming

0.00231

The result is interesting. In the Inner-based implementation, the most expensive operation is to thread
Equal on a list of pairs of elements of our original lists (that’s what it does internally). In the implementa-
tion based on subtraction, the most expensive is Position with the <_?Positive> pattern, and it turns out to
be slower. In addition to this, the Subtract - based implementation is less general since it will work cor-
rectly only on numeric lists - otherwise the <_?Positive> pattern will not match.

� 5.3.3.5 Example: reconstructing a number from its factorized form

Say, we are given some number, like for instance:

num = 3628800

3628800

Let us factorize it, using the built-in command FactorInteger:

factored = FactorInteger@numD
882, 8<, 83, 4<, 85, 2<, 87, 1<<

In each sublist, the first number is a base, and the second - an exponent (the power). Now, we want to
perform the opposite operation: reconstruct the number back from its factorized form. It is clear that the
idiom of Inner matches this problem in principle. What we have to do though is to Transpose the initial
list, and then Apply Sequence to it:

Inner[Power,Sequence@@Transpose[factored],Times]

3628800

We can now write a function:

Clear@multiplyFactoredD
multiplyFactored@fact_ListD :=

Inner@Power, Sequence �� Transpose@factD, TimesD;
I leave it as an exercise to the reader to add the condition to check that the input list contains sublists of
the same length. We now check:

multiplyFactored@FactorInteger@100DD
100

For this problem, there exists an alternative solution in terms of core functions Map and Apply:

Clear@multiplyFactoredAltD;
multiplyFactoredAlt@fact_ListD := Apply@Times, Power ��� factD;

 279

Make sure you understand the code. This solution is more concise, and we may expect that it has some-
what better performance. We can check it:

First check that it works:

multiplyFactoredAlt@factoredD
3628800

This will be our test factorized number (50!)

testfact = FactorInteger@50 !D
882, 47<, 83, 22<, 85, 12<, 87, 8<, 811, 4<, 813, 3<, 817, 2<, 819, 2<,

823, 2<, 829, 1<, 831, 1<, 837, 1<, 841, 1<, 843, 1<, 847, 1<<
We now test:

multiplyFactored@testfactD �� myTiming

0.0000731

multiplyFactoredAlt@testfactD �� myTiming

0.0000501

This shows that sometimes the core functions give a more direct solution, which make us once again
appreciate their usefulness and versatility.

Clear@num, factored, testfact,

multiplyFactored, multiplyFactoredAltD;
� 5.3.4 Outer

This is another very useful and widely used function. It takes several lists and basically creates all possible
combinations of the elements of different input lists (Cartesian product). Then it can apply some function
to these combinations. The format of the command in the simplest form is:

Outer@function, list1, list2, ...D
� 5.3.4.1 Simple examples

Outer@List, 8a, b<, 8c, d<D
888a, c<, 8a, d<<, 88b, c<, 8b, d<<<
Outer@List, 8a, b<, 8c, d<, 8e, f<D
8888a, c, e<, 8a, c, f<<, 88a, d, e<, 8a, d, f<<<,

888b, c, e<, 8b, c, f<<, 88b, d, e<, 8b, d, f<<<<
As you can see, the result is a nested list where innermost sublists correspond to sweeping through the
rightmost of the input lists, and so on.The lists are not necessarily of the same length:

Outer@f, 8a, b<, 8c, d, e<D
88f@a, cD, f@a, dD, f@a, eD<, 8f@b, cD, f@b, dD, f@b, eD<<

We can use Outer for construction of certain matrices

280

Outer@f, 81, 2, 3<, 84, 5<D �� MatrixForm

f@1, 4D f@1, 5D
f@2, 4D f@2, 5D
f@3, 4D f@3, 5D

� 5.3.4.2 Example: natural numbers

This creates first 100 natural numbers (if we count 0 as one)

Flatten@Outer@ð1*10 +ð2 &, Range@0, 9D, Range@0, 9DDD
80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,

52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,

84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99<
� 5.3.4.3 Example: binary numbers

This gives binary forms of numbers 0-31. Note the Flatten operator - it is a frequent companion of Outer.

Flatten@Outer@List, Sequence �� Table@80, 1<, 85<DD, 4D
880, 0, 0, 0, 0<, 80, 0, 0, 0, 1<, 80, 0, 0, 1, 0<, 80, 0, 0, 1, 1<,

80, 0, 1, 0, 0<, 80, 0, 1, 0, 1<, 80, 0, 1, 1, 0<, 80, 0, 1, 1, 1<,
80, 1, 0, 0, 0<, 80, 1, 0, 0, 1<, 80, 1, 0, 1, 0<, 80, 1, 0, 1, 1<,
80, 1, 1, 0, 0<, 80, 1, 1, 0, 1<, 80, 1, 1, 1, 0<, 80, 1, 1, 1, 1<,
81, 0, 0, 0, 0<, 81, 0, 0, 0, 1<, 81, 0, 0, 1, 0<, 81, 0, 0, 1, 1<,
81, 0, 1, 0, 0<, 81, 0, 1, 0, 1<, 81, 0, 1, 1, 0<, 81, 0, 1, 1, 1<,
81, 1, 0, 0, 0<, 81, 1, 0, 0, 1<, 81, 1, 0, 1, 0<, 81, 1, 0, 1, 1<,
81, 1, 1, 0, 0<, 81, 1, 1, 0, 1<, 81, 1, 1, 1, 0<, 81, 1, 1, 1, 1<<

� 5.3.4.4 Example: table of values for trigonometric functions

Here we will use Outer to create a table of values of the main 4 trigonometric functions for various typical
values of the argument. Here are our functions:

functions = 8Sin, Cos, Tan, Cot<
8Sin, Cos, Tan, Cot<

And the values of the angle:

args = 80, Pi�6, Pi�4, Pi�2<
:0, Π

6
,

Π

4
,

Π

2
>

Here is a table of values:

 281

values = Outer@ð2@ð1D &, args, functionsD
:80, 1, 0, ComplexInfinity<, :1

2
,

3

2
,

1

3
, 3 >,

: 1

2
,

1

2
, 1, 1>, 81, 0, ComplexInfinity, 0<>

Now we will add names of functions and values of the argument, for displaying purposes.

info = Transpose@Prepend@
Transpose@Prepend@values, functionsDD, Join@8"\\"<, argsDDD

:8\, Sin, Cos, Tan, Cot<,
80, 0, 1, 0, ComplexInfinity<, : Π

6
,
1

2
,

3

2
,

1

3
, 3 >,

: Π

4
,

1

2
,

1

2
, 1, 1>, : Π

2
, 1, 0, ComplexInfinity, 0>>

Finally, we display the table

TableForm@infoD �. ComplexInfinity ® ¥ �� TraditionalForm

\ Sin Cos Tan Cot
0 0 1 0 ¥

Π
6

1
2

3
2

1

3
3

Π
4

1

2

1

2
1 1

Π
2

1 0 ¥ 0

� 5.3.4.5 Example: creating interpolations for functions of several variables

Say, we have a function of two variables, for instance

Clear@fD;
f@x_, y_D := Sin@2 Sqrt@x^4 +y^4DD

We want to get an interpolation of this function on a rectangular grid 0£ x£2,0£y£2, with a step 0.4 in x
direction and 0.5 in y direction. We first create one-dimensional grids:

xgrid = Range@0., 2., 0.4D
80., 0.4, 0.8, 1.2, 1.6, 2.<
ygrid = Range@0., 2., 0.5D
80., 0.5, 1., 1.5, 2.<

Now we use Outer to construct the values of the function on all possible combinations of the points in
these two grids:

282

Now we use Outer to construct the values of the function on all possible combinations of the points in
these two grids:

Hvals = Outer@8ð1, ð2, f@ð1, ð2D< &, xgrid, ygridDL �� Short@ð, 7D &

8880., 0., 0.<, 80., 0.5, 0.479426<, 80., 1., 0.909297<,80., 1.5, -0.97753<, 80., 2., 0.989358<<, �4�, 8�1�<<
We used here the pure function {#1,#2,f[#1,#2]}&, since we also need the coordinates of the point on the
2D grid, in addition to the value of the function. We now have to use Flatten, to remove one layer of
internal curly (list) braces:

Flatten@vals, 1D �� Short@ð, 5D &

880., 0., 0.<, 80., 0.5, 0.479426<,
�26�, 82., 1.5, 0.243524<, 82., 2., -0.949821<<

Now we can use the Interpolation command on these values:

intfun = Interpolation@Flatten@vals, 1DD
InterpolatingFunction@880., 2.<, 80., 2.<<, <>D

We can use Plot3D to visualize our function:

Plot3D@intfun@x, yD, 8x, 0, 2<, 8y, 0, 2<D
0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

-1.0

-0.5

0.0

0.5

1.0

We obviously considered a grid too coarse to grasp all important details in the behavior of our function.
Let us now create a function which will take a name of the function to be interpolated, the list of
{start,end,step} for each direction, and return an interpolated function:

Clear@giveInterpolatedD;
giveInterpolated@fn_Symbol, xpars_List, ypars_ListD :=

Interpolation@Flatten@Outer@8ð1, ð2, fn@ð1, ð2D< &,

Apply@Sequence, Range ��� 8xpars, ypars<DD, 1DD;
Here we need to Apply Sequence since Outer receives a sequence of lists. Range@@@{xpars,ypars}
creates a list of two grids.

And now let us use more points:

 283

And now let us use more points:

newintfun = giveInterpolated@f, 80., 2., 0.1<, 80., 2., 0.1<D
InterpolatingFunction@880., 2.<, 80., 2.<<, <>D
Plot3D@newintfun@x, yD, 8x, 0, 2<, 8y, 0, 2<D

0.0

0.5

1.0

1.5

2.0
0.0

0.5

1.0

1.5

2.0

-1.0

-0.5

0.0

0.5

1.0

We can see how well our interpolation approximates the original function

Plot3D@newintfun@x, yD -f@x, yD, 8x, 0, 2<, 8y, 0, 2<D

0.0

0.5

1.0

1.5

2.0
0.0

0.5

1.0

1.5

2.0

-0.004

-0.002

0.000

0.002

0.004

Notice that here we created our own higher-order function, since it takes a name of another function as
one of its arguments.
 The same method will work for functions with more variables. The only real change will be that we
will have to Flatten the list of values to more depth.

Clear@f, xgrid, ygrid, intfun, newintfun, giveInterpolatedD;

284

� 5.3.4.6 Example: imitating Outer

In this example, we will try to imitate Outer in the case when we have only two lists, with the functions
that we already know. Let us start with a sub-problem: given a list of elements and an object, form all the
pairs of this object with the elements of the list. For example, our list will be {a,b,c}, and our stand-alone
element will be d. Then the solution will be:

Clear@a, b, c, d, e, fD;
Thread@List@8a, b, c<, dDD
88a, d<, 8b, d<, 8c, d<<

To create all possible combinations of elements of the two lists, say {a,b,c} and {d,e,f}, we have to repeat
this operation with the same list {a,b,c} but different elements (d,e, and f). This means that we have to do
something like this:

Map@Thread@List@8a, b, c<, ðDD &, 8d, e, f<D
888a, d<, 8b, d<, 8c, d<<,

88a, e<, 8b, e<, 8c, e<<, 88a, f<, 8b, f<, 8c, f<<<
Finally, we have to generalize to any head, which amounts to substituting List in the code by that head
(this is why I used here the literal head List instead of {} from the beginning - to make this transition
natural):

Map@Thread@g@8a, b, c<, ðDD &, 8d, e, f<D
88g@a, dD, g@b, dD, g@c, dD<,

8g@a, eD, g@b, eD, g@c, eD<, 8g@a, fD, g@b, fD, g@c, fD<<
Thus, our final function will look like:

Clear@myOuterD;
myOuter@g_, list1_List, list2_ListD :=

Map@Thread@g@ð, list2DD &, list1D;
I have interchanged list1 and list2, and also the order of arguments inside g, to get exactly the same output
that Outer gives, where the innermost sublists in the output list correspond to the sweeping through the
rightmost input list.

Check:

myOuter@g, 8a, b, c<, 8d, e, f<D
88g@a, dD, g@a, eD, g@a, fD<,

8g@b, dD, g@b, eD, g@b, fD<, 8g@c, dD, g@c, eD, g@c, fD<<
Outer@g, 8a, b, c<, 8d, e, f<D
88g@a, dD, g@a, eD, g@a, fD<,

8g@b, dD, g@b, eD, g@b, fD<, 8g@c, dD, g@c, eD, g@c, fD<<
Let us check the performance:

 285

myOuter@List, Range@15D, Range@20DD �� myTiming

0.000271

Outer@List, Range@15D, Range@20DD �� myTiming

0.00018

We are actually fairly close (at least for these lists), given that Outer is a built-in function.

For completeness, let me mention that there exists (at least one more) solution with comparable (slightly
worse) performance. This solution may be obtained along the lines discussed above, where we noticed
that whenever a function is Mapped onto a list with some arguments fixed, this can be rewritten using
MapThread. Here is the solution:

Clear@myOuter1D;
myOuter1@g_, list1_List, list2_ListD := MapThread@

Thread@g@ððDD &, 8list1, Table@list2, 8Length@list1D<D<D;
I leave it as an exercise to the reader to figure out precisely how it works. For now, let us check:

myOuter1@g, 8a, b<, 8d, e, f<D
88g@a, dD, g@a, eD, g@a, fD<, 8g@b, dD, g@b, eD, g@b, fD<<
myOuter1@List, Range@15D, Range@20DD �� myTiming

0.000311

Clear@myOuter, myOuter1D;
� 5.3.4.7 Case study: creating ordered subsets for a given set

Creating ordered pairs

We can use Outer to create all possible pairs of elements in a given list. For example:

pairs = Flatten@Outer@List, 8a, b, c<, 8a, b, c<D, 1D
88a, a<, 8a, b<, 8a, c<, 8b, a<, 8b, b<, 8b, c<, 8c, a<, 8c, b<, 8c, c<<

This is almost the same as all ordered subsets of length 2 - the difference is that we have also lists of
identical elements. The latter may easily be eliminated in this case:

DeleteCases@pairs, 8z_, z_<D
88a, b<, 8a, c<, 8b, a<, 8b, c<, 8c, a<, 8c, b<<

 Let us now write a general function which will create all ordered subsets for a given set (list) of distinct
elements. As a first step, we will re-package our code into a function (for ordered pairs)

Clear@orderedPairsD;
orderedPairs@set_ListD :=

DeleteCases@Flatten@Outer@List, set, setD, 1D, 8z_, z_<D
check:

286

orderedPairs@8a<D
8<
orderedPairs@8a, b<D
88a, b<, 8b, a<<
orderedPairs@8a, b, c, d<D
88a, b<, 8a, c<, 8a, d<, 8b, a<, 8b, c<,

8b, d<, 8c, a<, 8c, b<, 8c, d<, 8d, a<, 8d, b<, 8d, c<<
Generalizing to ordered subsets

To generalize to higher tuples, we need to duplicate <set> in Outer several times, to Flatten to a deeper
level, and to use a more complicated pattern:

Clear@orderedSubsetsD;
orderedSubsets@set_List, order_IntegerD :=

DeleteCases@Flatten@Outer@List, Sequence �� Table@set, 8order<DD,
order -1D, 8x___, t_, y___, t_, z___<D

Check now:

orderedSubsets@8a, b, c, d<, 2D
88a, b<, 8a, c<, 8a, d<, 8b, a<, 8b, c<,

8b, d<, 8c, a<, 8c, b<, 8c, d<, 8d, a<, 8d, b<, 8d, c<<
orderedSubsets@8a, b, c, d<, 3D
88a, b, c<, 8a, b, d<, 8a, c, b<, 8a, c, d<, 8a, d, b<, 8a, d, c<,

8b, a, c<, 8b, a, d<, 8b, c, a<, 8b, c, d<, 8b, d, a<, 8b, d, c<,
8c, a, b<, 8c, a, d<, 8c, b, a<, 8c, b, d<, 8c, d, a<, 8c, d, b<,
8d, a, b<, 8d, a, c<, 8d, b, a<, 8d, b, c<, 8d, c, a<, 8d, c, b<<
orderedSubsets@8a, b, c, d<, 4D
88a, b, c, d<, 8a, b, d, c<, 8a, c, b, d<, 8a, c, d, b<,

8a, d, b, c<, 8a, d, c, b<, 8b, a, c, d<, 8b, a, d, c<, 8b, c, a, d<,
8b, c, d, a<, 8b, d, a, c<, 8b, d, c, a<, 8c, a, b, d<, 8c, a, d, b<,
8c, b, a, d<, 8c, b, d, a<, 8c, d, a, b<, 8c, d, b, a<, 8d, a, b, c<,
8d, a, c, b<, 8d, b, a, c<, 8d, b, c, a<, 8d, c, a, b<, 8d, c, b, a<<
orderedSubsets@8a, b, c, d<, 5D
8<

In the last case, the result is an empty list due to the pigeonhole principle: we have only 4 distinct elements
and are trying to create subsets of length 5, which means that in any such subset at least two elements will
be the same, and it is then eliminated by DeleteCases.

Efficiency analysis

 287

 Even though our code works correctly, it does not work efficiently. For instance:

orderedSubsets@8a, b, c, d<, 7D �� Timing

80.31 Second, 8<<
This is because, a huge list is created first to be completely eliminated later. We will be better off by
adding an explicit condition:

Clear@orderedSubsetsD;
orderedSubsets@set_List, order_IntegerD �; order £ Length@setD :=

DeleteCases@Flatten@Outer@List, Sequence �� Table@set, 8order<DD,
order -1D, 8x___, t_, y___, t_, z___<D;

orderedSubsets@set_List, order_IntegerD �; order > Length@setD = 8<;
As usual, we may ask is how efficient is our implementation.The main source of inefficiency here is that
many of the combinations generated will have identical elements and will then be deleted later. It would
be better if they were not generated from the beginning. Thus, in terms of this factor, our implementation
is rather efficient for ordered pairs and large <set>, but completely inefficient for subsets of length compa-
rable to the length of initial set itself.

Improving orderedPairs

Another suspected source of inefficiency is the pattern-matching in DeleteCases. For ordered pairs, we
can eliminate the pattern-matching stage the help of MapThread:

Clear@orderedPairsNewD;
orderedPairsNew@set_ListD := Flatten@MapThread@Drop,

8Outer@List, set, setD, Map@List, Range@Length@setDDD<D, 1D;
What happens is that first, second, etc elements are dropped from first, second, etc sublists of a list gener-
ated by Outer. These are exactly the elements containing duplicates. Make sure you understand how the
code works. Check:

orderedPairsNew@8a, b, c, d<D
88a, b<, 8a, c<, 8a, d<, 8b, a<, 8b, c<,

8b, d<, 8c, a<, 8c, b<, 8c, d<, 8d, a<, 8d, b<, 8d, c<<
We can now check how much did we gain if at all:

orderedPairs@Range@70DD �� myTiming

0.013

orderedPairsNew@Range@70DD �� myTiming

0.0032

We see that we get a 2-3 times difference which is substantial (this factor is not constant. It will be less for
smaller sets and larger for larger sets). Thus, this is currently our best implementation of the ordered
pairs.

288

We see that we get a 2-3 times difference which is substantial (this factor is not constant. It will be less for
smaller sets and larger for larger sets). Thus, this is currently our best implementation of the ordered
pairs.

For the case of general subsets, there is no point in checking, since we already did the analysis and found
that our implementation is inefficient. Can we find a better one?

A better overall implementation

Let us try to find an alternative implementation for the ordered subsets function. One possibility is the
following: there is a built-in function Subsets, which generates all distinct subsets of a given size. All that
remains is to create all permutations for any of the subsets generated. Another built-in command Permuta-
tions will help us with this. So, let us start with the test set, for instance

Clear@a, b, c, dD;
testset = 8a, b, c, d<
8a, b, c, d<

Now, let us find say all subsets of length 3:

Subsets@testset, 83<D
88a, b, c<, 8a, b, d<, 8a, c, d<, 8b, c, d<<

Let us pick one of them, say a first one. To make all the permutations, we use the Permutations command:

Permutations@8a, b, c<D
88a, b, c<, 8a, c, b<, 8b, a, c<, 8b, c, a<, 8c, a, b<, 8c, b, a<<

All that remains to be done is to Map Permutations on the list generated by Subsets, and then Flatten the
latter

Flatten@Permutations �� Subsets@testset, 83<D, 1D
88a, b, c<, 8a, c, b<, 8b, a, c<, 8b, c, a<, 8c, a, b<, 8c, b, a<,

8a, b, d<, 8a, d, b<, 8b, a, d<, 8b, d, a<, 8d, a, b<, 8d, b, a<,
8a, c, d<, 8a, d, c<, 8c, a, d<, 8c, d, a<, 8d, a, c<, 8d, c, a<,
8b, c, d<, 8b, d, c<, 8c, b, d<, 8c, d, b<, 8d, b, c<, 8d, c, b<<

We expect this implementation to be vastly superior to the previous one, due to a more direct use of built-
in commands, but most of all, the fact that we avoided creation of large number of elements which then
have to be deleted. Let us package this solution into a function:

Clear@orderedSubsetsNewD;
orderedSubsetsNew@set_List, order_IntegerD :=

Flatten@Map@Permutations, Subsets@set, 8order<D, 1DD;
Let me remark that there is also some notion of beauty or aesthetics which we can assign to the implemen-
tations in Mathematica. This implementation is certainly more beautiful than the previous one (at least, in
my taste).

Let us compare the performance in the case where our solution is not that bad - for ordered pairs:

 289

orderedSubsetsNew@Range@70D, 2D �� myTiming

0.00491

orderedPairsNew@Range@70DD �� myTiming

0.0039

We observe that for ordered pairs, our specialized solution based on Outer is slightly better than an imple-
mentation based on Subsets-Permutations pair. However, already for 3-tuples our general <orderedSub -
sets> function is hopelessly slower:

orderedSubsets@Range@70D, 3D �� myTiming

2.944

orderedSubsetsNew@Range@70D, 3D �� myTiming

0.241

This looks like quite a long execution time even for the better solution. But let us see how many combina-
tions (3-tuples) have been produced:

orderedSubsetsNew@Range@70D, 3D �� Length

985320

We see that for the general case (not just ordered pairs), the Outer-based solution is miles away from the
Subsets-Permutations based one. The main reason is of course that while the Outer was a possible choice,
it was not exactly the right idiom in this case. It produces a lot of combinations that have to be eliminated
later, which means that this is just a bad algorithm for general tuples (but reasonable for pairs).

Clear@orderedPairs, orderedPairsNew, orderedSubsets, pairs, testsetD;
� 5.3.4.8 Using Outer in more complicated cases: a caution

Outer may be used in more general setting, in particular when the input lists are not simple, but nested
lists. There is one specific instance of that case which I would like to discuss now.

Clear@fD;
Consider the following situation:

Outer@f, 881, 2<, 83, 4<<, 885, 6<, 87, 8<<D
8888f@1, 5D, f@1, 6D<, 8f@1, 7D, f@1, 8D<<,

88f@2, 5D, f@2, 6D<, 8f@2, 7D, f@2, 8D<<<,
888f@3, 5D, f@3, 6D<, 8f@3, 7D, f@3, 8D<<,

88f@4, 5D, f@4, 6D<, 8f@4, 7D, f@4, 8D<<<<
This output is not what one would immediately expect. What if I want to get my function <f> applied to
the sublists, like {{f[{1,2},{5,6}],...}}. To achieve this, we have to tell Outer that it should treat sublists as
individual elements. This is done by specifying elements on which level of the input lists (first in this case)
should be treated as individual elements:

290

Outer@f, 881, 2<, 83, 4<<, 885, 6<, 87, 8<<, 1D
88f@81, 2<, 85, 6<D, f@81, 2<, 87, 8<D<,

8f@83, 4<, 85, 6<D, f@83, 4<, 87, 8<D<<
Now we get what we wanted. In this particular case, another possibility to get it is to use Distribute:

Distribute@f@881, 2<, 83, 4<<, 885, 6<, 87, 8<<D, ListD
8f@81, 2<, 85, 6<D, f@81, 2<, 87, 8<D,
f@83, 4<, 85, 6<D, f@83, 4<, 87, 8<D<

For more details on Distribute, consult Mathematica Help and Mathematica Book.

 291

5.4 Nest Family

� 5.4.1 Nest and NestList

This function is used to repeatedly apply the same function on an expression. The format is :

Nest@function, expression, nD,
where <n > should be an integer giving the number of times that the function has to be applied. For
example:

� 5.4.1.1 Simple examples

ClearAll@f, xD;
Nest@f, x, 5D
f@f@f@f@f@xDDDDD

Consider, for instance,

f@x_D := x^2;

Nest@f, 2, 3D
256

� 5.4.1.2 NestList

The function NestList is really the same as Nest but it gives more information, since its output is a list of
all intermediate steps of the application of Nest. For the above example:

NestList@f, 2, 3D
82, 4, 16, 256<
NestList@f, x, 3D
9x, x2, x4, x8=

We also see that the first element in the NestList is always the original expression, which corresponds to
the function <f> applied zero times.

It is important that NestList is as efficient as Nest - there is no penalty for getting all the intermediate
results. Indeed, the function still has to apply in stages - once, twice, etc - so the intermediate results are in
principle internally available to the system. Simple Nest just does not collect them.

� 5.4.1.3 Pure functions

Both Nest and NestList work with pure functions as well:

NestList@ð^2 &, 2, 3D
82, 4, 16, 256<

292

� 5.4.1.4 Example: imitating Nest

It is not at all difficult to write our own version of Nest. And this is perhaps one of the rare cases where
the procedural programming style is quite good:

myNest@f_, x_, n_IntegerD :=

Module@8var = x<, Do@var = f@varD, 8n<D; varD;
Let us check:

Clear@fD;
myNest@f, x, 5D
f@f@f@f@f@xDDDDD

Our function will also work with pure functions:

myNest@ð^2 &, x, 4D
x16

Let us compare the performance with that of a built-in one:

myNest@ð^1.001 &, 2, 100D
2.15116

Nest@ð^1.001 &, 2, 100D
2.15116

myNest@ð^1.001 &, 2, 100D �� myTiming

0.000511

Nest@ð^1.001 &, 2, 100D �� myTiming

0.0000701

We still have several times difference in this example.

The reason that I insert the rather boring performance comparisons in so many places is to point out one
single thing: try to avoid writing your own functions if you can find a better idiom to solve your problem,
which matches some of the built-in ones. The fact that we can rewrite most of the built-in functions and
imitate their behavior shows once again that in some sense Mathematica’s language is overcomplete. Why,
then, all these extra functions were written? The answer is simple: to give better performance in certain
cases. Also, note that while the functions like Nest and others considered in this chapter are in some sense
specific, they are on the other hand quite abstract and then can handle a lot of different problems. The
trick is to learn to translate your given problem into a right Mathematica idiom.

One can argue that in other languages like C one can always start from scratch, write any such "derivative"
function with very few initial building blocks, and be sure that it will give a reasonable performance. But
this is just not so given a real level of abstraction that functions like Nest, Thread, Outer, etc can handle -
they can work on essentially any objects without any modification. And this leads to another important
consequence: the well-written Mathematica code is usually very concise, more so than in most other
programming languages. But as Paul Graham has put it, "succinctness is power" [14].

� 5.4.1.5 Example: approximating the square root of a number

 293

�

5.4.1.5 Example: approximating the square root of a number

Nest is well-suited to be used with recursive functions (in the mathematical sense). For example, for the
approximate computation of the square root of some number A, one may use a sequence :

tn+1 = 1 � 2 Htn + A � tnL
We can define a function which will do this transformation. Let us start with some fixed number, say 3.
Then we can use a pure function:

NestList@Hð +3� ðL �2 &, 5., 5D
85., 2.8, 1.93571, 1.74276, 1.73208, 1.73205<

Here our starting number was 5, and we used 5 iterations altogether. The list of intermediate results
shows that this method converges quite fast. If we are interested in final result only, then we use Nest:

result = Nest@Hð +3� ðL �2 &, 5., 5D
1.73205

We can see how close we are:

result^2 -3

1.08461´10-9

Now, we would like to be able to indicate the number <A> from the beginning. One way is to make a
function like this:

Clear@mySquareRootD;
mySquareRoot@number_ ? NumericQ, iternum_Integer ?PositiveD :=

Nest@Hð +number� ðL �2 &, 1., iternumD;
Here we adopt a convention that our approximate solution always starts from 1. By using a more elaborate
starting point which will depend on the number A, one may reduce somewhat the number of iterations
needed, but the convergence is quite fast anyway.

There are two interesting details in the above code. The first is that the parameter passed to the function
through the pattern-defined definition gets then embedded into a pure function inside Nest. This possibility
is very often useful.

The second is the use of <NumericQ> predicate. It gives true on any object on which the application of
Mathematica <N> command results in a number. For instance,

NumericQ@PiD
True

There is another predicate of the similar type - <NumberQ>. This one however is restricted to numbers
only:

NumberQ �� 8Pi, 2<
8False, True<

Let us now check our function, by Mapping it on a list of numbers:

294

Let us now check our function, by Mapping it on a list of numbers:

reslist = mySquareRoot@ð, 5D & �� Range@10D
81., 1.41421, 1.73205, 2., 2.23607,

2.44949, 2.64575, 2.82843, 3., 3.16228<
reslist^2

81., 2., 3., 4., 5., 6., 7., 8., 9., 10.<
There is another solution to the problem above - to write a function that will automatically embed the
number <A> into a pure function, and then use this function in Nest. But then, we have to write a func-
tion that returns a pure function. Is this possible? Well, why not:

Clear@iterFunD;
iterFun@number_ ? NumericQD := Hð +number� ðL �2 &;

We now rewrite our square root function:

Clear@mySquareRootNewD;
mySquareRootNew@number_ ? NumericQ, iternum_Integer ?PositiveD :=

Nest@iterFun@numberD, 1., iternumD;
Let us test again:

mySquareRootNew@2, 5D
1.41421

It is interesting that if I want to call the <iterFun> function on a particular number (which is a current
approximation to the square root), I need a rather unusual syntax:

iterFun@2D@1.4D
1.41429

It is actually not difficult do understand: iterFun[2] gives you a pure function

iterFun@2D
1

2
Kð1 +

2

ð1
O &

So, think of this composite (normal) expression as of a function head.What is really nice is that Mathemati-
ca’s syntax allows such expressions.

To complete the story: it is not necessary for < iterFun > to return a pure function. We can define it also
through SubValues, and this allows us to add an argument - check :

Clear@iterFunSVD;
iterFunSV@number_ ? NumericQD@x_ ? NumericQD := Hx +number�xL �2;

It is easy to check that this function also works when we use it in Nest.

Keep in mind that Functions < iterFunSV > and < iterFun > differ in certain subtle aspects. Unimportant
here, they may become important in different circumstances. For instance, < iterFun > called on a specific
number returns a pure function with this number embedded in it once and for all. We can then keep this
specific one in a variable and use (call on some arguments) any number of times (this is a simple example
of what is called a closure), for instance:

 295

Keep in mind that Functions < iterFunSV > and < iterFun > differ in certain subtle aspects. Unimportant
here, they may become important in different circumstances. For instance, < iterFun > called on a specific
number returns a pure function with this number embedded in it once and for all. We can then keep this
specific one in a variable and use (call on some arguments) any number of times (this is a simple example
of what is called a closure), for instance:

fn = iterFun@5D
1

2
Kð1 +

5

ð1
O &

Map@fn, Range@10DD
:3, 9

4
,
7

3
,
21

8
, 3,

41

12
,
27

7
,
69

16
,
43

9
,
21

4
>

In contrast, < iterFunSV > can not be called with only the first "argument" (a number to embed) - it needs
both arguments at the same time:

8iterFunSV@5D, iterFunSV@5D@3D<
:iterFunSV@5D, 7

3
>

In some cases this may be inefficient, but on the other hand, as we saw, we can use patterns for more
detailed type checks. The bottom line: these functions are different.

Clear@result, reslist, mySquareRoot, mySquareRootNew, iterFunD;
� 5.4.1.6 Example: generating Hermite polynomials

Here we will generate the n-th Hermite polynomial using the Rodriguez’s formula:

HoldForm@H-1L^n Exp@x^2D D@Exp@-x^2D, 8x, n<DD �� TraditionalForm

H-1Ln ãx2 ¶n ã-x2

¶xn

Here is the code:

Clear@ourHermiteHD;
ourHermiteH@n_Integer, x_D :=

Expand@H-1L^n*Exp@x^2D * Nest@D@ð, xD &, Exp@-x^2D, nDD
For the sake of example we ignored that the built-in D can take also higher-order derivatives. Here are a
few first polynomials:

ourHermiteH@ð, xD & �� Range@0, 3D
91, 2 x, -2 +4 x2, -12 x +8 x3=

We check with the built-in ones:

HermiteH@ð, xD & �� Range@0, 3D
91, 2 x, -2 +4 x2, -12 x +8 x3=

If we need a long list of polynomials, it would be more efficient to use NestList. And in this case, the use
of Nest (NestList) is justified even though there exists a built-in D[expr,{x,n}] which takes higher deriva-
tives.

296

If we need a long list of polynomials, it would be more efficient to use NestList. And in this case, the use
of Nest (NestList) is justified even though there exists a built-in D[expr,{x,n}] which takes higher deriva-
tives.

Clear@ourHermiteListD;
ourHermiteList@n_Integer, x_D :=

Expand@H-1L^n*Exp@x^2D * NestList@D@ð, xD &, Exp@-x^2D, nDD
Check:

ourHermiteList@5, xD
9-1, 2 x, 2 -4 x2, -12 x +8 x3, -12 +48 x2 -16 x4, 120 x -160 x3 +32 x5=

We can check how much we win by using NestList. This is the version using capabilities of D to take
higher derivatives (we produce first 25 polynomials)

Expand@H-1L^ð *Exp@x^2D *D@Exp@-x^2D, 8x, ð<DD & �� Range@0, 25D ��
myTiming

0.012

This is the same using our version with NestList

ourHermiteList@25, xD �� myTiming

0.00681

We get a speed-up of about factor of 2, which is substantial.

Clear@ourHermiteH, ourHermiteListD;
� 5.4.1.7 Case study: Sorting a list of numbers

The problem

Let us start with a list of numbers:

testlist = Table@Random@Integer, 82, 10<D, 810<D
83, 8, 4, 7, 7, 7, 4, 3, 8, 9<

We would like now to sort this list in the decreasing order according to the following algorithm: at any
given time, we maintain a list with two sublists: the first (initially empty) gives the numbers that are
already sorted, the second (initially coinciding with the original list) contains the numbers not yet sorted. A
single iteration consists of finding a maximal number in the unsorted part, deleting it from there and
appending it to the list of sorted numbers. The number of iterations needed to sort a list is obviously equal
to the length of the list.

The sketch of the solution

Here is a function which realizes a single iteration:

 297

Clear@iterSortD;
iterSort@8sorted_List, unsorted_List<D :=

Module@8max = Max@unsortedD, pos<,
pos = Position@unsorted, max, 1, 1D;
8Append@sorted, maxD, Delete@unsorted, posD<D

The code is more or less self-explanatory. We use several built-in functions, such as Max, Position,
Append, Delete. Let us use it now on our test list. This is how it looks at some intermediate sorting step:

Nest@iterSort, 88<, testlist<, 3D
889, 8, 8<, 83, 4, 7, 7, 7, 4, 3<<

To sort the list completely:

Nest@iterSort, 88<, testlist<, Length@testlistDD
889, 8, 8, 7, 7, 7, 4, 4, 3, 3<, 8<<

Possible bugs and automatic rule reordering

It is amusing to see what happens if we by mistake use one (or more) extra iteration

Nest@iterSort, 88<, testlist<, Length@testlistD +1D
889, 8, 8, 7, 7, 7, 4, 4, 3, 3, -¥<, 8<<

This is due to the following behavior (or convention):

Max@8<D
-¥

If we want to be on the safe side, we will add one more definition to our function <iterSort>:

Clear@iterSortD;
iterSort@8sorted_List, unsorted_List<D :=

Module@8max = Max@unsortedD, pos<,
pos = Position@unsorted, max, 1, 1D;
8Append@sorted, maxD, Delete@unsorted, posD<D;

iterSort@8sorted_List, 8<<D := 8sorted, 8<<;
This last definition is supposed to return back the list unchanged, once the <unsorted> part is empty. Also,
because it is more specific than the first, we expect Mathematica to attempt to use it before it attempts to
use the more general one (this is a standard rule of Mathematica pattern-matcher, see sections 1.2.8,
4.7.2, 4.7.3). Well, in this case we expect too much. Let us test the new function:

Nest@iterSort, 88<, testlist<, Length@testlistD +1D
889, 8, 8, 7, 7, 7, 4, 4, 3, 3, -¥<, 8<<

It does not seem to work. To see what happens, let us look at the new definition of iterSort:

?iterSort

298

Global‘iterSort

iterSort@8sorted_List, unsorted_List<D := Module@8max = Max@unsortedD, pos<,
pos = Position@unsorted, max, 1, 1D; 8Append@sorted, maxD, Delete@unsorted, posD<D

iterSort@8sorted_List, 8<<D := 8sorted, 8<<
We now see the reason: the newly added rule is placed after the main definition, and thus, has no chance
to apply. But this behavior contradicts our expectations! As we know (section 1.2.8), the more specific
rules are always placed by the Mathematica pattern-matcher before the more general ones, when it can
determine it. By more specific I mean the rule whose pattern is completely contained in another (more
general) rule’s pattern as a special case.

For us it is obvious that the pattern {sorted_List,{}} represents a specific case of {sorted_List, unsorted_-
List}. But not so for Mathematica! This kind of situations often result in some quite subtle bugs in the
programs that use functions with multiple definitions. Of course, we may blame the system, but it will be
more useful to understand why this happened. The point is that the way Mathematica’s pattern-matcher
determines which rule is more specific, is completely syntax-based, rather than semantics-based. The
pattern {} is syntactically different from <unsorted_List>, and determining that one is a special case of the
other is already a semantic operation. Here is what we had to add instead, had we wished Mathematica to
understand it:
iterSort[{sorted_List,unsorted_List}]/;unsorted==={}:={sorted,{}}.

 Let us check:

Clear@iterSortD;
iterSort@8sorted_List, unsorted_List<D :=

Module@8max = Max@unsortedD, pos<,
pos = Position@unsorted, max, 1, 1D;
8Append@sorted, maxD, Delete@unsorted, posD<D;

iterSort@8sorted_List, unsorted_List<D �; unsorted === 8< :=

8sorted, 8<<;
Check now:

?iterSort

Global‘iterSort

iterSort@8sorted_List, unsorted_List<D �; unsorted === 8< := 8sorted, 8<<
iterSort@8sorted_List, unsorted_List<D := Module@8max = Max@unsortedD, pos<,
pos = Position@unsorted, max, 1, 1D; 8Append@sorted, maxD, Delete@unsorted, posD<D

We see that the rules have been interchanged. Of course, on the practical side, to be completely sure one
can just enter the rules in the right order from the very beginning, but it is important to also understand
what is going on behind the scenes. Let us check our final variant now:

Nest@iterSort, 88<, testlist<, Length@testlistD +1D
889, 8, 8, 7, 7, 7, 4, 4, 3, 3<, 8<<

Now everything works.

Use NestList to see intermediate steps

 299

Use NestList to see intermediate steps

The existence of the NestList command allows us to see all of the intermediate steps of our sorting algo-
rithm without any extra cost - just change Nest to NestList:

NestList@iterSort, 88<, testlist<, Length@testlistD +1D
888<, 83, 8, 4, 7, 7, 7, 4, 3, 8, 9<<, 889<, 83, 8, 4, 7, 7, 7, 4, 3, 8<<,

889, 8<, 83, 4, 7, 7, 7, 4, 3, 8<<, 889, 8, 8<, 83, 4, 7, 7, 7, 4, 3<<,
889, 8, 8, 7<, 83, 4, 7, 7, 4, 3<<, 889, 8, 8, 7, 7<, 83, 4, 7, 4, 3<<,
889, 8, 8, 7, 7, 7<, 83, 4, 4, 3<<, 889, 8, 8, 7, 7, 7, 4<, 83, 4, 3<<,
889, 8, 8, 7, 7, 7, 4, 4<, 83, 3<<, 889, 8, 8, 7, 7, 7, 4, 4, 3<, 83<<,
889, 8, 8, 7, 7, 7, 4, 4, 3, 3<, 8<<, 889, 8, 8, 7, 7, 7, 4, 4, 3, 3<, 8<<<

This capability is often quite handy, in particular for debugging programs which use Nest.

Final solution

Finally, let us package our entire sort procedure into a function: first, here is our <iterSort> function once
again:

Clear@iterSortD;
iterSort@8sorted_List, unsorted_List<D :=

Module@8max = Max@unsortedD, pos<,
pos = Position@unsorted, max, 1, 1D;
8Append@sorted, maxD, Delete@unsorted, posD<D;

iterSort@8sorted_List, unsorted_List<D �; unsorted === 8< :=

8sorted, 8<<;
Now, the sorting function:

Clear@ourSortD;
ourSort@sortme_ListD :=

First@Nest@iterSort, 88<, sortme<, Length@sortmeDDD;
Test:

Range@10D
81, 2, 3, 4, 5, 6, 7, 8, 9, 10<
ourSort@Range@10DD
810, 9, 8, 7, 6, 5, 4, 3, 2, 1<
Clear@ourSort, iterSort, testlistD;

300

� 5.4.2 NestWhile and NestWhileList

These commands are used to organize a <While> loop around the Nest command. Basically, they are
used when Nest is appropriate but we don’t know in advance how many iterations are needed. The format
of the command in the simplest form is :

NestWhile@function, expr, testD
So, the last argument of Nest is replaced by the argument <test> here. The argument <test> has to be a
function (pure or pattern-defined), which applies to the result of the last iteration, and gives True or False
(i.e., a predicate). Once it no longer gives True (notice that this is not the same as giving explicit False),
the loop stops. Simple examples:

� 5.4.2.1 Simple examples

Deleting numbers from the list

Here is a list containing in general zeros, positive and negative integers.

Clear@testlistD;
testlist = Table@Random@Integer, 8-10, 10<D, 815<D
83, 2, -9, 0, 5, 3, -6, -1, -7, 0, -3, 0, -8, -7, -1<

This will drop the first element in the list repeatedly until it meets a first negative number:

NestWhile@Drop@ð, 1D &, testlist, NonNegative@First@ðDD &D
8-9, 0, 5, 3, -6, -1, -7, 0, -3, 0, -8, -7, -1<

Warning : efficiency pitfall

Note that this method in fact contains a rather unobvious efficiency pitfall which will cause problems for
large lists. We already discussed that it is inefficient to use Append and Prepend in creation of lists. This
was so because at every stage a whole list was copied to append a single element. But let us recall that
most functions in Mathematica work without side effects, which means that they create a copy and oper-
ate on this copy. Here we drop element by element, rather than append, and thus our first reaction is that
things are fine (really, the size of the list does not have to be increased). But this does not matter. What
matters is that Drop creates a copy of the list just as Append, and is no better in this sense. To illustrate,
consider deleting elements in a loop one by one. We will create a test function and measure timings for
various list sizes: 10,100,1000,10000 and 50000 elements.

Clear@testFunD;
testFun@n_IntegerD :=

Module@8m = 1<, NestWhile@Drop@ð, 1D &, Range@nD, m ++ < n &DD
Check :

Map@myTiming@testFun@ðDD &, 810, 100, 1000, 10000, 50000<D
80.00017, 0.0016, 0.0211, 0.3, 5.168<

The first several numbers look as if the timing was linear as a function of the list size, and this would
contradict our guess above, but this is an illusion. This simply means that for small lists, copying lists is
very efficient and the main time is spent on incrementing < m > and checking the terminating condition.
Indeed, this version does not involve NestWhile and condition checks:

 301

The first several numbers look as if the timing was linear as a function of the list size, and this would
contradict our guess above, but this is an illusion. This simply means that for small lists, copying lists is
very efficient and the main time is spent on incrementing < m > and checking the terminating condition.
Indeed, this version does not involve NestWhile and condition checks:

Clear@testFun1D;
testFun1@n_IntegerD := Module@8start = Range@nD<,

Do@start = Drop@start, 1D, 8n<D;
startD;

Check :

Map@myTiming@testFun1@ðDD &, 810, 100, 1000, 10000, 50000<D
80.00015, 0.000471, 0.01, 0.19, 4.216<

This reveals that the timing is not really linear in the list size even for smaller lists, although it is close to
linear up to rather large list sizes (1000), and even better than linear for small lists. But in any case, for
larger lists the timings confirm our guess above. Using a built-in NestWhile does not change the fact that
the copy of the list is created at every iteration - this is a property the function being nested (Drop in this
case).

The bottom line: avoid modifying large lists in place many times by small changes like deleting or append-
ing a single element at a time. Also, remember that most built-in functions work without side effects and
this means that they necessarily make copies of objects passed to them.

Imitating FromDigits

We are given a number, say 7423. We want to split it into a list of digits (this is done by the built-in From-
Digits command). Here is the almost complete code:

NestWhile@
8Prepend@ð@@1DD, Mod@ð@@2DD, 10DD, IntegerPart@ð@@2DD �10D< &,

88<, 7423<, ð@@2DD ¹ 0 &D
887, 4, 2, 3<, 0<

We see, that it remains to take the first part of the list. To see, what is going on, it would be handy to see
the intermediate steps. Here we recall that NestWhileList, which is related to NestWhile in the same way
as NestList is related to Nest, gives all intermediate results in a list. So:

NestWhileList@
8Prepend@ð@@1DD, Mod@ð@@2DD, 10DD, IntegerPart@ð@@2DD �10D< &,

88<, 7423<, ð@@2DD ¹ 0 &D
888<, 7423<, 883<, 742<, 882, 3<, 74<, 884, 2, 3<, 7<, 887, 4, 2, 3<, 0<<

So, we start with an empty first sublist and a number. Then, we place the remainders of division by 10
(i.e., digits) to the left sublist (notice the use of the Prepend command. Should we use append here, and
the numbers would be in reverse order), while replacing the number by an integer part of itself divided by
10. The loop stops when this integer part becomes zero. This procedure can be trivially generalized to any
base. So, our function would be

302

Clear@ourFromDigitsD;
ourFromDigits@num_Integer, base_IntegerD :=

First@NestWhile@8Prepend@ð@@1DD, Mod@ð@@2DD, baseDD,
IntegerPart@ð@@2DD � baseD< &, 88<, num<, ð@@2DD ¹ 0 ⅅ

Check:

ourFromDigits@10, 2D
81, 0, 1, 0<
ourFromDigits@120, 10D
81, 2, 0<
ourFromDigits@120, 2D
81, 1, 1, 1, 0, 0, 0<
Clear@ourFromDigitsD;

� 5.4.2.2 More general uses of NestWhile

There exist more complicated forms of NestWhile(List), which take as arguments for the test condition at
most the last <m> results. The syntax is

NestWhile@function, expr, test, mD
 This is potentially a very powerful capability. Let us now give a few more examples, some of which will
fully explore this general form.

� 5.4.2.3 Example: restricted random sequences

Suppose we want to generate random integers in the range {1,10} and stop when the sum of the last 3
generated numbers exceeds some number, say 20. Here is the code:

NestWhileList@Random@Integer, 81, 10<D &, 0, Plus@ððD < 20 &, 3D
80, 4, 3, 3, 6, 3, 4, 7, 2, 10, 2, 8<

Warning : a tricky bug

Note that here we used the SlotSequence (##) (section 4.11.1.8). Had we used the usual slot < # > (by
mistake), and only the first of the three numbers would be used in Plus. Here I construct an example
which explicitly shows this behavior:

Module@8n = 1, lst = Range@15, 25D<,
NestWhileList@lst@@n ++DD &, 0, Plus@ðD < 20 &, 3DD

80, 15, 16, 17, 18, 19, 20, 21, 22<
What is really important is that no error was generated in this case, due to the way pure functions treat
excessive variables passed to them (they silently ignore them, see section 4.11.1.6). This sorts of bugs are
hard to catch.

 303

� 5.4.2.4 Example: visualizing poker probabilities

Consider a simplified version of poker where we are interested in ranks of the cards, but not suits (this will
then exclude certain combinations). These are the ranks (or cards):

cards = 82, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A<;

We want to randomly deal the cards, until certain combinations occur - then we stop. The probability of
each combination can be related to the average length of the generated sequence of cards (if we generate
many sequences). Let us first write a function which will deal a random card:

Clear@randomCardD;
randomCard@_D := cards@@Random@Integer, 81, 13<DDD;

This definition seems fine, but it has two drawbacks. To see them, let us look at the resulting global
definition of this function:

?randomCard

Global‘randomCard

randomCard@_D := cardsPRandom@Integer, 81, 13<DT
We see that it contains <cards>. Thus, the first flaw is that the list <cards> will be recomputed every time
the function is called. The second flaw is even more important - we made a function implicitly depend on
a global variable <cards>. This is a pretty bad habit. It would be nicer if we could embed the current value
of the list <cards> straight into the function definition. Here is the code which does it:

Clear@randomCardD;
With@8ourcards = cards<,
randomCard@_D := ourcards@@Random@Integer, 81, 13<DDDD;

 We will cover this technique in full generality later. For now, just observe the result:

?randomCard

Global‘randomCard

randomCard@_D := 82, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A<PRandom@Integer, 81, 13<DT
Now we are fine - the function definition is now completely independent of the global variable <cards>
and thus insensitive to possible future changes of this variable.

Let us now check the function. For instance,

randomCard �� Range@5D
82, 9, A, 3, 3<

Now, let us say we are interested in only pairs, three-of -a-kind and two-pair combinations for the time
being. The way we will solve the problem is first to construct the patterns for these combinations:

Clear@pairPattern, twoPairPattern, threePattern, a, b, c, dD;

304

pairPattern = 8a_, a_, b_, c_, d_< È
8b_, a_, a_, c_, d_< È 8b_, c_, a_, a_, d_< È 8b_, c_, d_, a_, a_<;

twoPairPattern =

8a_, a_, b_, b_, c_< È 8c_, a_, a_, b_, b_< È 8a_, a_, c_, b_, b_<;
threePattern =

8a_, a_, a_, b_, c_< È 8b_, a_, a_, a_, c_< È 8b_, c_, a_, a_, a_<;

The reason that we need only those alternatives used above is that we are going to Sort the hands of cards,
and for sorted hands these alternatives exhaust all the possibilities.

Now, consider, for instance, pairs. Here is the code to generate the sequence of cards.

NestWhileList@randomCard, 8<,
Not@MatchQ@Sort@8ðð<D, pairPatternDD &, 5D

88<, K, 10, J, 7, 5, J<
Notice the way that the condition testing function is written. It takes 5 arguments, which is, 5 most recently
generated cards. To avoid writing explicitly every argument, we use SlotSequence (##) (section 4.11.1.8).
We combine the cards into a list, and then Sort it. Then, the sorted hand of cards is compared to the
pattern by MatchQ. If the pattern matches, the loop terminates. You can run it several times to get differ-
ent sequences.

The next step will be to write a function that takes the card pattern and generates the sequence of cards.

Clear@generateCardSequenceD;
generateCardSequence@cardpattern_D := Rest@NestWhileList@

randomCard, 8<, Not@MatchQ@Sort@8ðð<D, cardpatternDD &, 5DD;
We dropped the first element which is an empty list. Now we can check:

generateCardSequence@pairPatternD
87, 8, 4, A, Q, 7, 4<
generateCardSequence@twoPairPatternD
8J, A, 10, Q, 3, J, 4, 10, Q, 6, 6, 6, 8, 3, A, 3,

4, 5, 3, 3, 3, 10, K, 6, 8, 4, 6, 9, 5, 2, 3, 4, 5, 4, 5<
generateCardSequence@threePatternD
88, Q, Q, 10, 3, 6, 8, 9, J, 3, 7, 2, 5, 8, A, J, 6, 4, A,

Q, A, Q, K, 7, A, 5, J, 7, A, 3, 3, 6, 10, 2, A, 3, A, Q, 7,

9, 7, K, 6, K, 8, A, 2, 7, 5, 3, Q, 6, 4, Q, 10, 10, Q, 9, K,

K, 10, 4, 3, K, 10, J, 8, 3, A, 10, Q, 4, 7, 2, 9, 2, K, 2<

 305

It is interesting that a pattern can also serve as an argument of the function. This idea may seem somewhat
unusual since usually patterns are used to define functions (formal parameters), but not as actual argu-
ments passed to them. The pattern in the definition of <generateCardSequence> means "any single expres-
sion", in particular it may be another pattern.

The probability of the occurrence of a combination can be estimated by 5/<average length of the gener-
ated sequence> (one could alternatively average 5/length_i over <i>). We can define a function which will
generate the given number of sequences for a given pattern and compute this quantity:

First, define an auxiliary function listAverage:

Clear@listAverageD;
listAverage@x_ListD := N@Total@xD �Length@xDD;

Now the main function:

Clear@probEstimateD;
probEstimate@pattern_, numseqs_Integer ?PositiveD :=

5�listAverage@
Table@Length@generateCardSequence@patternDD, 8numseqs<DD;

Let us see. For a pair:

probEstimate@pairPattern, 400D
0.827815

For a three-of-a-kind:

probEstimate@threePattern, 400D
0.141293

For two pairs:

probEstimate@twoPairPattern, 400D
0.229938

One has to keep in mind that for smaller probabilities, one has to consider larger number of sequences, to
get a representative sample. Also, smaller probabilities mean that in general each sequence will be longer
(it will take on the average more trials to produce a less probable combination). These two circumstances
combined together mean that, as we go to higher-ranked combinations, our method will quickly become
inefficient.

Our implementation is perhaps not the fastest one, and probably also not the slowest one. The pattern-
matching here is purely syntactic and thus should be efficient enough. What I wanted to illustrate here is
the use of NestWhileList and patterns in a rather non-trivial setting, so that one can see that these two
seemingly disjoint programming styles may nicely coexist and complement each other.

We leave it as an exercise to the reader to create patterns for other combinations, and get estimates of their
probabilities (taking into account efficiency considerations discussed above, many of the combinations will
be in practice beyond the reach of the present method).

306

One has to keep in mind that for smaller probabilities, one has to consider larger number of sequences, to
get a representative sample. Also, smaller probabilities mean that in general each sequence will be longer
(it will take on the average more trials to produce a less probable combination). These two circumstances
combined together mean that, as we go to higher-ranked combinations, our method will quickly become
inefficient.

Our implementation is perhaps not the fastest one, and probably also not the slowest one. The pattern-
matching here is purely syntactic and thus should be efficient enough. What I wanted to illustrate here is
the use of NestWhileList and patterns in a rather non-trivial setting, so that one can see that these two
seemingly disjoint programming styles may nicely coexist and complement each other.

We leave it as an exercise to the reader to create patterns for other combinations, and get estimates of their
probabilities (taking into account efficiency considerations discussed above, many of the combinations will
be in practice beyond the reach of the present method).

Clear@probEstimate, listAverage, generateCardSequence,

pairPattern, twoPairPattern, threePattern, randomCardD;
� 5.4.2.5 Example: generating distinct random numbers

Here is the problem: we need to generate a given number of random integers, in the specified range, but
such that all generated numbers are different. The idea of the present solution would be to generate a
number, then check if it is already in the list, and if so - disregard it. If not, place it in the list, until the total
number of integers generated will match the requested quantity. Let me immediately comment that such
an algorithm is quite inefficient, but we will improve it along the way.

To solve this problem, we will reformulate it somewhat: instead of checking the presence of the number
and then decide whether or not it has to be included, we will always add it to the least, but then take a
Union operation which will eliminate redundant elements. Thus, the loop termination condition will be
that the length of the resulting list is equal to a requested quantity of random integers. Since the standard
Union operation sorts the numbers, we will need an alternative one which does not. Its form and use is
illustrated below (we use our implementation of this function developed in section 5.2.6.2.5). A good
alternative implementation can be obtained with the help of Reap and Sow commands - it is given as an
example in Mathematica Help).

Here is our test list:

Clear@testlistD;
testlist = Table@Random@Integer, 81, 10<D, 815<D
85, 6, 7, 10, 4, 9, 3, 2, 5, 4, 4, 4, 3, 1, 10<

This is the implementation:

Clear@unsortedUnionD;
unsortedUnion@x_ListD :=

Extract@x, Sort@Union@xD �. Dispatch@MapIndexed@Rule, xDDDD;
Observe:

unsortedUnion@testlistD
85, 6, 7, 10, 4, 9, 3, 2, 1<

Now, this is the code that solves the problem:

Clear@randomNumsD;
randomNums@numrange_List, n_IntegerD :=

NestWhile@unsortedUnion@Append@ð, Random@Integer, numrangeDDD &,

8<, Length@ðD < n &D
The code is self-explanatory. Let us test the function. For instance:

 307

randomNums@81, 15<, 10D
810, 4, 9, 6, 5, 7, 2, 15, 14, 12<
randomNums@81, 1000<, 20D
8780, 615, 505, 596, 51, 990, 791, 90, 347,

427, 321, 891, 419, 219, 823, 858, 163, 821, 353, 467<
This algorithm may be made much more efficient if we append more than one random number at a time,
so that we don’ t call Append and UnsortedUnion for every single number (since their use is the biggest
bottleneck). If the list at the end contains more numbers than needed, the extra ones can be dropped.

Clear@randomNumsBetterD;
randomNumsBetter@numrange_List,

n_Integer, updatenum_Integer: 100D := Take@
NestWhile@unsortedUnion@Join@ð, Table@Random@Integer, numrangeD,

8updatenum<DDD &, 8<, Length@ðD < n &D, nD
Note the use of optional pattern <updatenum_Integer: 100> to implement the defualt value for the
<update number> argument. Let us compare the performance :

randomNums@81, 1000<, 300D �� Short �� Timing

80.53, 8783, 57, 383, �294�, 314, 927, 928<<
randomNumsBetter@81, 1000<, 300D �� Short �� Timing

80.02, 8905, 514, 457, �294�, 35, 936, 358<<
By tuning the number of random integers generated at once in a single iteration, one can further improve
the performance :

randomNumsBetter@81, 1000<, 300, 500D �� Short �� Timing

80.01, 8548, 230, 977, �294�, 512, 45, 232<<
This is already more or less acceptable (speed - up 100 times w.r.t. naive version for the above parameters
on my machine).

If all that matters is a set of numbers but not the order in which they follow, one can further speed - up our
function by replacing UnsortedUnion by Union.

Clear@randomNumsOrderedD;
randomNumsOrdered@numrange_List, n_Integer,

updatenum_Integer: 100D := With@8range = numrange<,
Take@NestWhile@Union@Join@ð, Array@Random@Integer, rangeD &,

8updatenum<DDD &, 8<, Length@ðD < n &D, nDD;
Check :

randomNumsOrdered@81, 1000<, 300, 500D �� Short �� Timing

92.20102´10-14, 82, 3, 7, 8, �293�, 757, 758, 759<=
Here we make a power test by generating 30000 random numbers in the range 1 .. 1000000, and parame-
ter <updatenum> tuned to 7000 (roughly a quarter of the total number of integers needed).

308

Here we make a power test by generating 30000 random numbers in the range 1 .. 1000000, and parame-
ter <updatenum> tuned to 7000 (roughly a quarter of the total number of integers needed).

randomNumsOrdered@81, 1000000<, 30000, 7000D �� Short �� Timing

80.091, 870, 100, �29996�, 870393, 870399<<
Of course, a good question to ask would be what is the resulting distribution (probability density) for the
random numbers obtained in this way, and whether it is what we want, but that’ s another question.

Clear@testlist, randomNums, UnsortedUnionD
� 5.4.2.6 Example: the Collatz problem

Since the previous example may have left the reader with an impression that NestWhile is only good to
produce inefficient solutions, we will now consider an example where it is perhaps the most appropriate
command to use, both in the sense of elegance and efficiency.

The Collatz iteration is given by:

Clear@cD;
c@n_ ?OddQD := 3*n +1;

c@n_ ?EvenQD := n�2;
It has been noticed that, regardless of the starting number <n>, the sequence of numbers that result from
the repeated application of the function <c> will always eventually go to 1 (although this has not been
rigorously proven). The most interesting question is how the length of the Collatz sequence depends on
the starting number.

We will be interested in implementing the Collatz sequence. First, consider the implementation from the
"Computer science in Mathematica" by Roman Maeder.

Clear@collatzSequenceD;
collatzSequence@1D = 81<;
collatzSequence@n_D := Prepend@collatzSequence@c@nDD, nD;

Look carefully at this implementation. The idea behind is beautiful: we recursively define the sequence by
prepending a starting number to the sequence which starts with the transformed starting number. The
separate base case guarantees a proper termination of the recursion.

For example:

collatzSequence@99D
899, 298, 149, 448, 224, 112, 56, 28, 14, 7, 22,

11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<
Let us test the performance of this solution (I chose the powers of 2 since then the length of the Collatz
sequence is known in advance and is equal to the power of 2)

 309

Block@8$RecursionLimit = Infinity<,
Print@Timing@collatzSequence@2^99D;D,
Timing@collatzSequence@2^999D;D,
Timing@collatzSequence@2^2000D;D, Timing@
collatzSequence@2^5000D;D, Timing@collatzSequence@2^9999D;DD;D

80.01 Second, Null<80.05 Second, Null<80.14 Second, Null<81.102 Second, Null<811.226Second, Null<
We had to temporarily disable a limit on number of recursive calls (recursion depth) since we will need
the depth of recursion equal to the power of 2, in each case. The standard limit is 256. <Block> is used to
make this modification local to its interior. We use <Block> when we want some function or expression
to temporarily "forget" the associated external (global) rules.

The inefficiency is (c.f. Wagner’96) due to modifications of large lists in place at any iteration stage. This
is necessary in this method, since the length of the sequence is not known an advance. The complexity of
the program should be roughly proportional to N^3/2, where N is the length of the Collatz sequence.

Here is an alternative implementation using NestWhileList:

Clear@colSequenceD;
colSequence@q_IntegerD := NestWhileList@c, q, ð1 ¹ 1 &D;

Check:

colSequence@99D
899, 298, 149, 448, 224, 112, 56, 28, 14, 7, 22,

11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<
We now test the performance :

Block@8$RecursionLimit = Infinity<,
Print@Timing@colSequence@2^99D;D,
Timing@colSequence@2^999D;D, Timing@colSequence@2^2000D;D,
Timing@colSequence@2^5000D;D, Timing@colSequence@2^9999D;DD;D

80.01, Null<80.01, Null<80.05, Null<80.1, Null<80.211, Null<
This version does not communicate the idea and recursive nature of the Collatz sequence so clearly (which
was probably the main motivation of Maeder. Besides, NestWhileList did not exist at the time), but the
performance of this version is much better. This is because, the sequence (list) is created internally inside
NestWhileList, and we don’t have to modify large lists in place. The complexity of this program depends
on details of internal implementation of NestWhileList, but could be even linear or log-linear, if c[x] is
approximately constant-time (or log). We see that this problem is tailor-made for NestWhileList. It can be
also seen by the conciseness of the code. Note that should we have only NestWhile at our disposal, this
solution would not be possible - in this case we needed exactly NestWhileList.

Generally, many problems involving building large lists element by element and when the next element
depends on the previous element(s), can be reformulated such that they can be solved by NestWhileList.
This is advantageous in Mathematica programming, because one can think of NestWhileList as an effi-
cient cousin of the standard procedural loops (which are usually inefficient in Mathematica). In the next
case study of the Fibonacci numbers we will further dwell on this topic.

310

This version does not communicate the idea and recursive nature of the Collatz sequence so clearly (which
was probably the main motivation of Maeder. Besides, NestWhileList did not exist at the time), but the
performance of this version is much better. This is because, the sequence (list) is created internally inside
NestWhileList, and we don’t have to modify large lists in place. The complexity of this program depends
on details of internal implementation of NestWhileList, but could be even linear or log-linear, if c[x] is
approximately constant-time (or log). We see that this problem is tailor-made for NestWhileList. It can be
also seen by the conciseness of the code. Note that should we have only NestWhile at our disposal, this
solution would not be possible - in this case we needed exactly NestWhileList.

Generally, many problems involving building large lists element by element and when the next element
depends on the previous element(s), can be reformulated such that they can be solved by NestWhileList.
This is advantageous in Mathematica programming, because one can think of NestWhileList as an effi-
cient cousin of the standard procedural loops (which are usually inefficient in Mathematica). In the next
case study of the Fibonacci numbers we will further dwell on this topic.

Clear@c, collatzSequence, colSequenceD;
� 5.4.2.7 Case study: on automatic and programmatic construction of patterns - patterns for poker

combinations revisited (not NestWhile - related)

The problem

Many problems admit in Mathematica elegant and efficient solutions based on patterns and pattern -
matching. But often it may be desirable to also create the patterns programmatically, especially when a
pattern is combined from a large number of alternative patterns. We will illustrate the possibility of pro-
grammatic pattern construction on the just considered example of poker combinations. Here are the
patterns we had :

Clear@pairPattern, twoPairPattern, threePattern, a, b, c, dD;
pairPattern = 8a_, a_, b_, c_, d_< È

8b_, a_, a_, c_, d_< È 8b_, c_, a_, a_, d_< È 8b_, c_, d_, a_, a_<;
twoPairPattern =

8a_, a_, b_, b_, c_< È 8c_, a_, a_, b_, b_< È 8a_, a_, c_, b_, b_<;
threePattern =

8a_, a_, a_, b_, c_< È 8b_, a_, a_, a_, c_< È 8b_, c_, a_, a_, a_<;

First level of automation

Essentially the same patterns can be created in a more automatic fashion :

Alternatives ��

Map@RotateRight@8a_, a_, b_, c_, d_<, ðD &, Range@0, 3DD
8a_, a_, b_, c_, d_< È 8d_, a_, a_, b_, c_< È

8c_, d_, a_, a_, b_< È 8b_, c_, d_, a_, a_<
Alternatives ��

Map@RotateRight@8a_, a_, a_, c_, d_<, ðD &, Range@0, 2DD
8a_, a_, a_, c_, d_< È 8d_, a_, a_, a_, c_< È 8c_, d_, a_, a_, a_<
Alternatives ��

Map@RotateRight@8a_, a_, b_, b_, c_<, ðD &, Range@1, 5, 2DD
8c_, a_, a_, b_, b_< È 8b_, b_, c_, a_, a_< È 8a_, a_, b_, b_, c_<

Second level of automation : constructing patterns completely programmatically

If desired, one can achieve an even higher level of automation. Consider the following function (which we
will cover later in detail), which gives all distinct partitions for a given integer:

 311

Clear@distinctPartitionsD;
distinctPartitions@n_IntegerD := Block@8fn<,

fn@x_List, 0D := x;

fn@x_List, num_IntegerD := Map@fn@Flatten@8x, ð<D, num -ðD &,

Range@num, If@x === 8<, 1, x@@-1DDD, -1DD;
Sort@Cases@fn@8<, nD, 8__Integer<, InfinityD,
Length@ð1D < Length@ð2D &DD

Let us realize that the following partitions of 5 :

Rest@distinctPartitions@5DD
881, 4<, 82, 3<, 81, 1, 3<, 81, 2, 2<, 81, 1, 1, 2<, 81, 1, 1, 1, 1<<

realize poker combinations four-of-a-kind, full house, three - of - a- kind, two pairs, pair and just highest
rank card. The maximum number of distinct variables for patterns is clearly 5. Thus, we create 5 dummy
variables:

vars = Table@Unique@D, 85<D
8$11, $12, $13, $14, $15<

The function below will take a given partition, and a list of variables. It will return a combination of
variables where the multiplicity of each distinct variable corresponds to one of the numbers in the
partition.

Clear@patternVarsD;
patternVars@partition_List, vars_ListD :=

Flatten@Table@vars@@ðDD, 8partition@@ðDD<D & ��

Range@Length@partitionDDD;
For example :

patternVars@81, 1, 3<, varsD
8$11, $12, $13, $13, $13<

To create all pattern sequences at once, we will simply use Permutations :

patternVars@ð, varsD & �� Permutations@81, 1, 3<D
88$11, $12, $13, $13, $13<,

8$11, $12, $12, $12, $13<, 8$11, $11, $11, $12, $13<<
We see that the actual variable names are always different for the 3 identical cards, but for us now this is
not a problem. If in some case it is, one can rewrite functions appropriately to take this into account, so
that the variable names are also permuted accordingly.

The final thing is to convert this to real pattern, which we do with the code :

312

Clear@makePatternD;
makePattern@varcomb_ListD :=

With@8varc = varcomb<, Thread@Pattern@varc, Blank@DDDD;
The With construct was used to avoid the error message which appears when the r.h.s. of an assignment
contains the same pattern as used in the l.h.s. This situation looks so to Mathematica interpreter. Now
check :

makePattern@patternVars@81, 1, 3<, varsDD
8$11_, $12_, $13_, $13_, $13_<

Now all we have to do is to Map our makePattern on the prepared list of variable combinations :

Map@makePattern@patternVars@ð, varsDD &, Permutations@81, 1, 3<DD
88$11_, $12_, $13_, $13_, $13_<,

8$11_, $12_, $12_, $12_, $13_<, 8$11_, $11_, $11_, $12_, $13_<<
And finally Apply < Alternatives > :

Alternatives ��

Map@makePattern@patternVars@ð, varsDD &, Permutations@81, 1, 3<DD
8$11_, $12_, $13_, $13_, $13_< È

8$11_, $12_, $12_, $12_, $13_< È 8$11_, $11_, $11_, $12_, $13_<
So, our second function will be :

Clear@getTotalPatternD;
getTotalPattern@partition_ListD := Module@8vars<,
vars = Table@Unique@D, 8Length@partitionD<D;
Apply@If@Length@ðD � 1, Identity, AlternativesD, ðD &�Map@
makePattern@patternVars@ð, varsDD &, Permutations@partitionDDD

We also refined the Apply Alternatives part so that when there is a single pattern, Identity head is applied
(i.e., the same pattern is returned). For example :

getTotalPattern@81, 1, 3<D
8$62_, $63_, $64_, $64_, $64_< È

8$62_, $63_, $63_, $63_, $64_< È 8$62_, $62_, $62_, $63_, $64_<
Let us now create all the patterns for our combinations. We will just need to Map the < getTotalPattern >
function on a list of our combinations (partitions of 5) :

 313

Map@getTotalPattern, distinctPartitions@5DD
88$42_, $42_, $42_, $42_, $42_<,

8$43_, $44_, $44_, $44_, $44_< È 8$43_, $43_, $43_, $43_, $44_<,
8$45_, $45_, $46_, $46_, $46_< È 8$45_, $45_, $45_, $46_, $46_<,
8$47_, $48_, $49_, $49_, $49_< È 8$47_, $48_, $48_, $48_, $49_< È

8$47_, $47_, $47_, $48_, $49_<, 8$50_, $51_, $51_, $52_, $52_< È
8$50_, $50_, $51_, $52_, $52_< È 8$50_, $50_, $51_, $51_, $52_<,

8$53_, $54_, $55_, $56_, $56_< È 8$53_, $54_, $55_, $55_, $56_< È
8$53_, $54_, $54_, $55_, $56_< È 8$53_, $53_, $54_, $55_, $56_<,

8$57_, $58_, $59_, $60_, $61_<<
In this way, we constructed completely programmatically patterns for many poker combinations. Let us
collect all necessary functions together once again:

Clear@patternVarsD;
patternVars@partition_List, vars_ListD :=

Flatten@Table@vars@@ðDD, 8partition@@ðDD<D & ��

Range@Length@partitionDDD;
Clear@makePatternD;
makePattern@varcomb_ListD :=

With@8varc = varcomb<, Thread@Pattern@varc, Blank@DDDD;
Clear@getTotalPatternD;
getTotalPattern@partition_ListD := Module@8vars<,
vars = Table@Unique@D, 8Length@partitionD<D;
Apply@If@Length@ðD � 1, Identity, AlternativesD, ðD &�Map@
makePattern@patternVars@ð, varsDD &, Permutations@partitionDDD

� 5.4.2.8 Case study: Fibonacci numbers

The problem

Fibonacci numbers are defined as follows: fib(0)=fib(1) =1,fib(n) = fib(n-1)+fib(n-2), n³2. This is a
standard example to show that the use of recursion (which seems natural in this case) may lead to a huge
overhead (exponential in this case), due to the massive redundant recomputations of the same quantities.
We will be considering three somewhat different problems: produce a given Fibonacci number fib(n),
produce a list of first <n> Fibonacci numbers, and produce all Fibonacci numbers less than a given
number.

The standard recursive solution in Mathematica

Let me first briefly show the recursive solution to the first problem. For it, we have to transfer the defini-
tion to Mathematica code practically verbatim:

314

Clear@fibD;
fib@0D := 1;

fib@1D := 1;

fib@n_IntegerD := fib@n -1D +fib@n -2D;
Here are the first few numbers:

fib �� Range@0, 20D
81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946<
Efficiency analysis

Let us produce the first few numbers and measure the performance in each case:

8fib@3D, myTiming@fib@3DD<
83, 0.00002<
8fib@5D, myTiming@fib@5DD<
88, 0.000046<
8fib@10D, myTiming@fib@10DD<
889, 0.000581<
8fib@15D, myTiming@fib@15DD<
8987, 0.0101<
8fib@20D, myTiming@fib@20DD<
810946, 0.0771<

It is not difficult to check that the time needed to compute n-th number grows exponentially with n. The
reason for this inefficiency is that smaller Fibonacci numbers are used in the computation of all higher
numbers. Essentially, the recursion builds up a binary tree of function calls, of depth n, and each given m-
th number populates the m-th level of the tree, if we count from the bottom. Thus, smaller Fibonacci
numbers have to be computed exponentially many times (2^(n-m), very roughly).

To display a function call tree, we use two mutually recursive functions fib1 and fib2. Basically, fib2 is
just a wrapper to keep track of the function calls:

Clear@fib1, fib2D;
fib1@0D = fib2@0, 8<D;
fib1@1D = fib2@1, 8<D;
fib1@n_IntegerD �; n ³ 2 := fib2@n, 8fib1@n -1D, fib1@n -2D<D

Now, for example, the 7-th Fibonacci number:

 315

expr = fib1@7D
fib2@7, 8fib2@6,

8fib2@5, 8fib2@4, 8fib2@3, 8fib2@2, 8fib2@1, 8<D, fib2@0, 8<D<D,
fib2@1, 8<D<D, fib2@2, 8fib2@1, 8<D, fib2@0, 8<D<D<D,

fib2@3, 8fib2@2, 8fib2@1, 8<D, fib2@0, 8<D<D, fib2@1, 8<D<D<D,
fib2@4, 8fib2@3, 8fib2@2, 8fib2@1, 8<D, fib2@0, 8<D<D,

fib2@1, 8<D<D, fib2@2, 8fib2@1, 8<D, fib2@0, 8<D<D<D<D,
fib2@5, 8fib2@4, 8fib2@3, 8fib2@2, 8fib2@1, 8<D, fib2@0, 8<D<D,

fib2@1, 8<D<D, fib2@2, 8fib2@1, 8<D, fib2@0, 8<D<D<D,
fib2@3, 8fib2@2, 8fib2@1, 8<D, fib2@0, 8<D<D, fib2@1, 8<D<D<D<D

Here is a tree form of the above expression with extra wrappers <fib2> removed, which shows best the
picture of recursive function calls

TreeForm@
expr �. 8List ® Sequence< ��. 8fib2@x_, y__D :> x@yD, fib2@x_D ¦ x<D

7

6

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

4

3

2

1 0

1

2

1 0

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

We can count how many times each fib2 was called. First create a list of patterns:

patterns = fib2@ð, __D & �� Range@0, 7D
8fib2@0, __D, fib2@1, __D, fib2@2, __D, fib2@3, __D,
fib2@4, __D, fib2@5, __D, fib2@6, __D, fib2@7, __D<

Now Map the count function:

8ð �. fib2@a_, __D ¦ fib2@aD, Count@8expr<, ð, InfinityD< & �� patterns

88fib2@0D, 8<, 8fib2@1D, 13<, 8fib2@2D, 8<, 8fib2@3D, 5<,
8fib2@4D, 3<, 8fib2@5D, 2<, 8fib2@6D, 1<, 8fib2@7D, 1<<

The rule #/.fib2[a_,__]¦fib2[a] simply removes the pattern sign from fib2[number,__]. The funny thing is
that the numbers of function calls form the reversed Fibonacci sequence - we could have guessed that.

The standard iterative solution (procedural)

316

The standard iterative solution (procedural)

There exists an elegant way in Mathematica to get an efficient implementation for the Fibonacci numbers
using dynamic programming, and we will revisit this problem once we cover this topic. For now, let us
see if we can find a more efficient implementation using the functions and techniques we already know.

The first thing which comes to mind is a procedural iterative implementation:

Clear@fibProcD;
fibProc@n_IntegerD :=

Module@8prev, prprev, i, temp<, For@prev = prprev = i = 1, i < n,

i ++, temp = prprev; prprev = prev; prev = prev +temp;D;
prevD;

For instance:

fibProc@7D
21

Producing a sequence of first n Fibonacci numbers

This above solution is decent if all one wants is to compute a given Fibonacci number. But what if we
need a full sequence up to a given number? The better procedural solution then would be to create a list
of numbers inside the For loop:

Clear@fibProcListD;
fibProcList@n_IntegerD :=

Module@8prev, prprev, i, temp, reslist = Table@0, 8n<D<, For@
prev = prprev = reslist@@1DD = i = 1, i < n, i ++, temp = prprev;

prprev = reslist@@i +1DD = prev; prev = prev +temp;D;
reslistD;

For example:

fibProcList@30D
81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,

610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657,

46368, 75025, 121393, 196418, 317811, 514229, 832040<
fibProcList@30D �� myTiming

0.000521

The timing is quite good actually (for Mathematica implementation). For this particular formulation, the
procedural solution is among the best. Notice that the list to store the results is pre-allocated from the
beginning. Had we started with an empty list and then Append to it repeatedly, the performance would be
far worse. This leads us to appreciate another rule: pre-allocate large lists. But here, this was possible
because we knew from the beginning how many numbers we want.

Producing all Fibonacci numbers less than a given number

Consider now a different formulation: we want all Fibonacci numbers smaller than a given number. Here,
we don’t know a priori how large a list we will need. Of course, we can perform an analysis, make esti-
mates etc, then preallocate a list guaranteed to be large enough, and then delete extra (unused) slots in the
list at the end. But there could be similar problems for which such analysis is very difficult, and then one
may end up pre-allocating huge lists where much smaller ones are actually needed, and thus waste
resources.

On the other hand, Append-ing to a list repeatedly has efficiency problems well - known to us by now (this
is not an absolute restriction however. In cases when the body of the loop - the function which produces
the next result from the previous ones - is very computationally-demanding and takes most of the time,
and at the same time the length of the list of results is not too large, the cost of Append-ing the list may be
negligible w.r.t other operations. In such cases, using Append is certainly a possibility).

 317

Consider now a different formulation: we want all Fibonacci numbers smaller than a given number. Here,
we don’t know a priori how large a list we will need. Of course, we can perform an analysis, make esti-
mates etc, then preallocate a list guaranteed to be large enough, and then delete extra (unused) slots in the
list at the end. But there could be similar problems for which such analysis is very difficult, and then one
may end up pre-allocating huge lists where much smaller ones are actually needed, and thus waste
resources.

On the other hand, Append-ing to a list repeatedly has efficiency problems well - known to us by now (this
is not an absolute restriction however. In cases when the body of the loop - the function which produces
the next result from the previous ones - is very computationally-demanding and takes most of the time,
and at the same time the length of the list of results is not too large, the cost of Append-ing the list may be
negligible w.r.t other operations. In such cases, using Append is certainly a possibility).

Let us see if we can find another solution. What we would like to do is to make the system create a list of
results internally, but stop depending on some condition applied to the results. This sounds like a good
case for NestWhileList.

What is really important here is that NestWhileList has a formulation where it has access to a given num-
ber of the most recent results. On the other hand, a limitation of Nest or NestList is that a new function
output is based only on the last result - the nested function does not have access to any past results except
the last one. But for the Fibonacci numbers problem, we need to know the last 2 results. So, the main idea
of the solution is the following: given the use of NestWhileList in the form

 NestWhileList[f,expr,test,m] ,

(m gives a maximal number of the most recent results to be supplied to the test condition) we can use a
global variable to communicate the given number of most recent results from the <test> function to f:

Clear@fibListD;
fibList@max_IntegerD := Module@8a = 0<,

Drop@NestWhileList@a +ð &, 1, Ha = ð1L < max &, 2D, -2DD;
What happens here is that the test function contains a side effect - an assignment to a variable <a>. A
global variable <a> (well, we made it local with Module, but it is still "global" for the body of NestWhile-
List) is used to communicate to the function f (which is here a pure function that adds a "constant" <a> to
the previous input), the current value of <a>, which is, in terms of the procedural solution, a value of
<prprev> - the "previous previous" result. We have to Drop the last 2 results since they will be larger than
the limiting number. Check:

fibList@1000000D
81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,

610, 987, 1597, 2584, 4181, 6765, 10 946, 17 711, 28 657,

46368, 75025, 121393, 196418, 317811, 514229, 832040<
fibList@1000000D �� myTiming

0.000441

We see that this solution not only does solve our present problem, but also beats our best procedural
version for a previous fixed-n formulation! Also, the code is more concise and transparent, less variables
are introduced etc. If we look back at the code, what happens is rather non-trivial: at every stage, a differ-
ent value of <a> is embedded into a pure function, which is then used to produce a new number. In that
sense, at each stage we change a nesting function definition.

This technique should be applicable to other situations where we have to produce a list of results with the
number of them unknown beforehand, and when both every next result and the termination condition
depend on the results produced already.

318

We see that this solution not only does solve our present problem, but also beats our best procedural
version for a previous fixed-n formulation! Also, the code is more concise and transparent, less variables
are introduced etc. If we look back at the code, what happens is rather non-trivial: at every stage, a differ-
ent value of <a> is embedded into a pure function, which is then used to produce a new number. In that
sense, at each stage we change a nesting function definition.

This technique should be applicable to other situations where we have to produce a list of results with the
number of them unknown beforehand, and when both every next result and the termination condition
depend on the results produced already.

Clear@fib, fib1, fib2, fibProc, fibProcList, fibListD;

 319

5.5 Fold and FoldList

� 5.5.1 Fold: syntax and starting examples

Fold is a generalization of Nest, for the case when the nested function is a function of two variables, rather
than of a single variable. While the first supplied variable is again a result of the previous action of the
function itself, a second argument is supplied externally by Fold, from a list which is a parameter to Fold.
So, the syntax:

Fold@f, start, secarglistD
Simple example:

Clear@fD;
Fold@f, x, 8a, b, c<D
f@f@f@x, aD, bD, cD

Fold is a remarkably useful function. One may think of it as follows: if <f> can be thought of as a function
which realizes a transition between the states of some finite state machine each application of Fold is like
"rotating the crank" of this finite state machine, and we will rotate it until there are elements left in the
second argument list (this analogy belongs to David Wagner). The number of times that the function will
be nested, is equal to the length of the second argument list. The function FoldList is related to Fold in the
same way as NestList to Nest - it gives all intermediate results of "rotating the crank".

One very frequent use of Fold is recursion removal. This we will cover later in part II, chapter in recursion
and iteration.

� 5.5.2 More examples:

� 5.5.2.1 Example: partial sums

FoldList@Plus, 0, 8a, b, c, d, e, f<D
80, a, a +b, a +b +c, a +b +c +d, a +b +c +d +e, a +b +c +d +e +f<

Here, as compared to Fold, we get all the intermediate partial sums for free. At the same time, FoldList is
almost as efficient as Plus@@ for the final sum:

320

FoldList@Plus, 0, Range@100DD
80, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120,

136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378,

406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780,

820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275,

1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1830,

1891, 1953, 2016, 2080, 2145, 2211, 2278, 2346, 2415, 2485,

2556, 2628, 2701, 2775, 2850, 2926, 3003, 3081, 3160, 3240,

3321, 3403, 3486, 3570, 3655, 3741, 3828, 3916, 4005, 4095,

4186, 4278, 4371, 4465, 4560, 4656, 4753, 4851, 4950, 5050<
FoldList@Plus, 0, Range@100DD �� myTiming

0.0000431

Plus �� Range@100D �� myTiming

0.000037

The Total command is much faster on the small lists, however:

Total@Range@100DD �� myTiming

0.0000121

� 5.5.2.2 Example: position intervals for list splitting

Imagine that we are given a list of elements, and a list of partial lengths, which add to the length of the
element list. The problem is to generate the list of position intervals, corresponding to splitting of the
element list into sublists with the lengths given by the second list. It is not hard to convince oneself that the
solution is given by:

Clear@splitIntervalsD;
splitIntervals@x_List, 8lengths__Integer ? NonNegative<D �;

Total@8lengths<D � Length@xD :=

Transpose@8Most@ðD, Rest@ðD -1< &@FoldList@Plus, 1, 8lengths<DDD;
The main idea is to generate the list of start and end points of the intervals from the partial sums of
lengths, and then transpose them to get the intervals. For example :

splitIntervals@Range@10D, 82, 3, 5<D
881, 2<, 83, 5<, 86, 10<<

� 5.5.2.3 Application: splitting the list into sublists of specified lengths (generalized Take operation)

We can put the just developed function into a direct use to create a quite useful one: given a list and the
list of partial lengths, split the original list into sublists of these lengths. Here is the code :

 321

Clear@splitListD;
splitList@x_List, 8lengths__Integer ? NonNegative<D �;

Total@8lengths<D � Length@xD :=

Map@Take@x, ðD &, splitIntervals@x, 8lengths<DD;
Check :

splitList@Range@20D, 82, 1, 5, 6, 2, 4<D
881, 2<, 83<, 84, 5, 6, 7, 8<,

89, 10, 11, 12, 13, 14<, 815, 16<, 817, 18, 19, 20<<
The final comment here is that this is an example of redundant error - checking as discussed at the end of
section 5.2.7.3.2. To eliminate it in this case, it is best to embed the body of the < splitIntervals > function
inside the < splitList > function, since it is really short (if we would have to write several functions using <
splitIntervals >, we would perhaps be better off putting everything into a package and making < splitInter-
vals > a private (internal) function - then we can remove type checks):

Clear@splitListAltD;
splitListAlt@x_List, 8lengths__Integer ? NonNegative<D �;
Total@8lengths<D � Length@xD := Map@Take@x, ðD &,

Transpose@8Most@ðD, Rest@ðD -1< &@FoldList@Plus, 1, 8lengths<DDDD
To see how much overhead the redundant type - checks induce in this case, we can perform a power test :

splitList@Range@Total@Range@100DDD, Range@100DD �� myTiming

0.0014

splitListAlt@Range@Total@Range@100DDD, Range@100DD �� myTiming

0.00121

We see that both functions are quite fast (this is one of the fastest implementations of this function in
Mathematica that I know of), and the difference is of the order of 10 %. The difference would be more
considerable if the patterns used in error - checking were more semantic (here they are mostly syntactic).

� 5.5.2.4 Example: imitating a factorial function

This is a (admittedly, rather inefficient) simulation of the factorial function with Fold.

Clear@ourFactorialD;
ourFactorial@n_Integer ? NonNegativeD := Fold@Times, 1, Range@nDD;

For instance,

ourFactorial �� Range@10D
81, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800<

If, however, we have to generate a list of all consecutive factorials, then all we need to do is to change
Fold to FoldList, and in this case this solution will be among the most efficient ones in Mathematica.

� 5.5.2.5 Example: imitating FromDigits

322

�

5.5.2.5 Example: imitating FromDigits

Here we will use Fold to imitate the <FromDigits> command. We are given a list of digits of a number,
and the integer base. We have to reconstruct the number. If the base is not given, we should assume that
it is 10. For example:

FromDigits@82, 4, 5, 2, 3<D
24523

FromDigits@81, 0, 0, 1<, 2D
9

Here is the code using Fold:

Fold@ð1*10 +ð2 &, 0, 82, 4, 5, 2, 3<D
24523

Here, we feed the digits one by one to a function which multiplies the previous result by 10 and adds a new
digit at each step. It is clear how the code for the function will look like:

Clear@ourFromDigitsD;
ourFromDigits@digits_ListD := Fold@ð1*10 +ð2 &, 0, digitsD;
ourFromDigits@digits_List, base_Integer ?PositiveD :=

Fold@ð1* base +ð2 &, 0, digitsD;
Check:

ourFromDigits@82, 4, 5, 2, 3<D
24523

ourFromDigits@81, 0, 0, 1<, 2D
9

We can express this as a single function by using the default values mechanism (optional patterns):

Clear@ourFromDigitsAltD;
ourFromDigitsAlt@digits_List, base_Integer: 10D :=

Fold@ð1* base +ð2 &, 0, digitsD;
Check now :

ourFromDigitsAlt@82, 4, 5, 2, 3<D
24523

ourFromDigitsAlt@81, 0, 0, 1<, 2D
9

An interested reader may perform the efficiency analysis to see how close we get to the built-in FromDig-
its, for large numbers.

� 5.5.2.6 Example: powers of a differential operator

 323

�

5.5.2.6 Example: powers of a differential operator

Here we consider the following problem: given a differential operator <oper>, construct an operator
which will apply <oper> raised to some integer power, to a function <f>. However, we want to keep
everything in an operator form: no explicit variables should be involved. The operator <oper> has to take
a function <f>, and produce a pure function which corresponds to <oper>[f]. The new operator <oper-
Power> should take an operator <oper>, a function <f> , and an integer power <n>, and produce a pure
function <oper>^n[f]. Once any specific argument (say, <x> or <y> etc) is supplied, this has to evaluate to
a function of this argument.

To be specific, consider the following operator <oper>:

HoldForm@x*f +D@f, xDD �� TraditionalForm

f x +
¶ f

¶ x

This is the code for it:

Clear@operD;
oper@expr_D := Hð *expr +D@expr, ðDL &;

For instance, this is the result of the single application of an operator:

oper@Sin@xDD@xD
Cos@xD +x Sin@xD

What is important is that the action of an operator produces a function:

oper@Sin@yDD@yD
Cos@yD +y Sin@yD

Note that <oper> defined in this way is vulnerable to misuse:

oper@SinD@xD �� FullForm

Times@Sin, xD
oper@Sin@xDD@yD
y Sin@xD

In both cases above the output is not what we would like. We should then consider it an auxiliary func-
tion, an input to <operPower>. Only the <operPower> should be used, and in particular it will give back
the correct form of the operator <oper> if the power <n> =1.

Here is the code for operPower:

Clear@operPowerD;
operPower@oper_, f_, n_Integer ? NonNegativeD := Module@8x<,

Fold@oper@ð1D@ð2D &, f@xD, Table@x, 8n<DD �. x ® ðD &;

The code is somewhat tricky. The idea is that we use a local variable <x> and create a list like {x,x,...} of
the length n. At each step, we supply it to <oper[#1][#2]&> as a second argument. But let us realize, that
the result of the operation of <oper> at each step is a function, this is why we need to supply <x> to it as
an argument to get an expression, and the syntax contains two pairs of square brackets one after another.
After Fold has finished, we have an expression depending only on x. We then use a substitution rule to
convert the resulting expression depending on local <x> to a pure function, which is then the final result.

324

The code is somewhat tricky. The idea is that we use a local variable <x> and create a list like {x,x,...} of
the length n. At each step, we supply it to <oper[#1][#2]&> as a second argument. But let us realize, that
the result of the operation of <oper> at each step is a function, this is why we need to supply <x> to it as
an argument to get an expression, and the syntax contains two pairs of square brackets one after another.
After Fold has finished, we have an expression depending only on x. We then use a substitution rule to
convert the resulting expression depending on local <x> to a pure function, which is then the final result.

Check, for instance:

operPower@oper, Sin, 0D@xD
Sin@xD
operPower@oper, Sin, 1D@xD
Cos@xD +x Sin@xD
operPower@oper, Sin, 2D@xD
8Sin@xD, Cos@xD +x Sin@xD, x Cos@xD +x HCos@xD +x Sin@xDL<

The last case we may check also by hand:

x* Hx*Sin@xD +D@Sin@xD, xDL +D@x*Sin@xD +D@Sin@xD, xD, xD
x Cos@xD +x HCos@xD +x Sin@xDL

We can also use pure functions with <operPower>:

operPower@oper, ð^2 &, 3D@xD

8 x +x3 +x I2 +3 x2M +x I2 +3 x2 +x I2 x +x3MM
The advantage of this seemingly perverse solution is that we may separate functions from the arguments,
and effectively carry operations on functions (internally, the arguments are used, but the user of this
command does not need to know it).

Another comment: had we used FoldList instead of Fold, and we would get all the intermediate powers of
our differential operator for free.

Clear@oper, operpowerD;
� 5.5.2.7 Example: autocorrelated random walks

Consider a following problem: we have a random walker, who can make unit steps to the left and to the
right. Let the probability of step in each direction depend on the direction of the previous step. We may
introduce a parameter < p > which tells how (anti) correlated or uncorrelated is our random walk. If < p >
is close or equal to 0.5, the walk is almost or totally uncorrelated since the probability of a step to the
right or to the left is the same and equal to 0.5. If < p > is close or equal to 1, the walk is almost or totally
correlated since the next step will almost certainly be in a direction of the previous step. If < p > is close to
or equal to 0, then the walk is almost or totally anti - correlated since the next step will almost certainly be
in the direction opposite to the previous step.

 325

Clear@randomStepD;
randomStep@p_Real, previous : 1 È -1D �; 0 £ p £ 1 :=

If@previous � 1, ð, -ðD &�

Switch@p -Random@D, _ ? Negative, -1, _ ? NonNegative, 1D
Correlated situation

steps = NestList@randomStep@0.7, ðD &, 1, 40D
81, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1,

1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1<
We need FoldList to build a trajectory from the steps :

trajectory = FoldList@Plus, 0, stepsD
80, 1, 2, 3, 4, 3, 4, 3, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 0, 1, 2,

3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 3, 2, 1, 0, -1, 0, 1, 0, -1<
ListPlot@trajectory, PlotJoined ® TrueD

10 20 30 40

2

4

6

8

Anti - correlated situation

steps = NestList@randomStep@0.1, ðD &, 1, 40D
81, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1,

-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1<
trajectory = FoldList@Plus, 0, stepsD
80, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 0,

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1<

326

ListPlot@trajectory, PlotJoined ® TrueD

10 20 30 40

-1.0

-0.5

0.5

1.0

1.5

2.0

� 5.5.2.8 Example: linked lists and the fast accumulation of results

For many applications, one needs to be able to build up a list of some intermediate results obtained in
some computation. The easiest way to set up such a list is to use Append or Prepend (or perhaps,
AppendTo or PrependTo). However, for large lists this method is quite inefficient. The reason is that lists
in Mathematica are implemented as arrays, and thus every time we add an element, the entire list is copied.

We can use FoldList to illustrate the creation of a list in such manner :

testlist = Table@Random@Integer, 81, 15<D, 810<D
85, 11, 10, 14, 5, 12, 15, 10, 6, 12<
FoldList@Append, 8<, testlistD
88<, 85<, 85, 11<, 85, 11, 10<, 85, 11, 10, 14<,

85, 11, 10, 14, 5<, 85, 11, 10, 14, 5, 12<,
85, 11, 10, 14, 5, 12, 15<, 85, 11, 10, 14, 5, 12, 15, 10<,
85, 11, 10, 14, 5, 12, 15, 10, 6<, 85, 11, 10, 14, 5, 12, 15, 10, 6, 12<<

Now, let us do some performance tests :

Fold@Append, 8<, Range@100DD; �� Timing

80., Null<
Fold@Append, 8<, Range@500DD; �� Timing

80.01, Null<
Fold@Append, 8<, Range@2000DD; �� Timing

80.06, Null<
Fold@Append, 8<, Range@5000DD; �� Timing

80.41, Null<
Fold@Append, 8<, Range@20000DD; �� Timing

85.999, Null<
We see that the time used by this operation is quadratic in the size of the list. We of course would like a
linear time. One way to achieve this which is available starting with the Mathematica version 5.0 is to use
the Reap-Sow technique (to be described in Part II). Another (perhaps, slightly less efficient) way to get a
linear time is to use linked lists. We will follow the discussion in the book of David Wagner [7].

 327

We see that the time used by this operation is quadratic in the size of the list. We of course would like a
linear time. One way to achieve this which is available starting with the Mathematica version 5.0 is to use
the Reap-Sow technique (to be described in Part II). Another (perhaps, slightly less efficient) way to get a
linear time is to use linked lists. We will follow the discussion in the book of David Wagner [7].

Clear@a, b, c, dD;
A linked list in Mathematica is a structure of the type

8a, 8b, 8c, 8d, 8<<<<<
The advantage of this representation is that on every level, we have a list containing just 2 elements, which
is easy to copy. It will not work in this way for elements that are lists themselves, but then one can replace
a list by an arbitrary head <h>.

Clear@hD;
h@a, h@b, h@c, h@d, h@DDDDD

To avoid a possible conflict with some < h > already defined, we can use Module[{h}, ...] to make it local.

Using Fold is the most natural way to create such structures :

ll1 = Fold@8ð2, ð1< &, 8<, Reverse@8a, b, c, d<DD
8a, 8b, 8c, 8d, 8<<<<<
ll2 = Fold@h@ð2, ð1D &, h@D, Reverse@8a, b, c, d<DD
h@a, h@b, h@c, h@d, h@DDDDD

Converting them back to a normal list is just as easy with Flatten :

Flatten@ll1D
8a, b, c, d<
Flatten@ll2, Infinity, hD
h@a, b, c, dD

Notice that in the second case we used the fact that Flatten takes as an optional third argument the head
which has to be Flatten - ed, and then Flatten - s only subexpressions with this head. In any case, this is
another linear-time operation.

We can now write a function:

Clear@toLinkedListD;
toLinkedList@x_ListD := Fold@8ð2, ð1< &, 8<, Reverse@xDD;

Let us do some performance tests:

toLinkedList@Range@2000DD; �� Timing

80., Null<
toLinkedList@Range@5000DD; �� Timing

80.02, Null<

328

Hll3 = toLinkedList@Range@20000DDL; �� Timing

80.051, Null<
We see that the time is roughly linear in the list size, and for example, for a list of 20000 we get already a
speed - up of the order of 100 times! Flattening is even faster:

Flatten@ll3D; �� Timing

91.31145´10-14, Null=
Here we assumed that the list of results is accumulated immediately, just to separate this topic from the
other problem - specific part of a program. If the list is accumulated not immediately but some other
operations are performed in between (which is what usually happens), one just has to use the idiom list =
{newelement, list}, to achieve the same result.

� 5.5.2.9 Example: joining linked lists

Continuing with linked lists, consider another problem : how to efficiently join many linked lists into a
single one. For example :

ll1 = toLinkedList@Range@5DD
81, 82, 83, 84, 85, 8<<<<<<
ll2 = toLinkedList@Range@6, 10DD
86, 87, 88, 89, 810, 8<<<<<<
ll3 = toLinkedList@Range@11, 15DD
811, 812, 813, 814, 815, 8<<<<<<

We will now give a solution which works on lists of atoms. The key observation is that the empty list
inside a linked list is always at level {-2}, and in the case of atomic lists, nothing else is on that level :

Level@ll2, 8-2<D
88<<

This means that if we want to join linked lists < x > and < y >, we just have to Map the entire list < y > on
a level {-2} of the list < x > :

Map@ll2 &, ll1, 8-2<D
81, 82, 83, 84, 85, 86, 87, 88, 89, 810, 8<<<<<<<<<<<

If we want to join many lists, we can do it pairwise, and use Fold, to join the previously joined list with a
next list at every step. So, here is a final function :

Clear@lljoinD;
lljoin@x_List, y_ListD := Map@y &, x, 8-2<D;
lljoin@x__ListD := Fold@lljoin, 8<, 8x<D;

Check :

 329

lljoin@ll1, ll2, ll3D
81, 82, 83, 84,

85, 86, 87, 88, 89, 810, 811, 812, 813, 814, 815, 8<<<<<<<<<<<<<<<<
� 5.5.3 Restriction of Fold-ed function to two arguments is spurious

Since the function to be Fold-ed can accept as a second (supplied externally by Fold) argument any expres-
sion, in particular a list, this means that we can actually supply as many arguments as we want. To illus-
trate this, consider the following example:

� 5.5.3.1 Example: random changes in the list

Here we take a list of 10 random integers in the range {1,100}. We then change the element at random
position in this list by one of the symbols {a,b,c,d,e} (randomly chosen).

Clear@a, b, c, d, eD;
Here is our list:

testlist = Table@Random@Integer, 81, 100<D, 810<D
860, 14, 18, 99, 24, 25, 69, 80, 4, 41<
changeList = Table@88a, b, c, d, e<@@Random@Integer, 81, 5<DDD ,

Random@Integer, 81, 10<D<, 810<D
88c, 2<, 8b, 5<, 8c, 4<, 8c, 7<,

8c, 2<, 8b, 5<, 8d, 2<, 8c, 8<, 8c, 6<, 8a, 1<<
We will use a combination of ReplacePart and Fold:

FoldList@ReplacePart@ð1, Sequence �� ð2D &, testlist, changeListD
8860, 14, 18, 99, 24, 25, 69, 80, 4, 41<,

860, c, 18, 99, 24, 25, 69, 80, 4, 41<,
860, c, 18, 99, b, 25, 69, 80, 4, 41<,
860, c, 18, c, b, 25, 69, 80, 4, 41<, 860, c, 18, c, b, 25, c, 80, 4, 41<,
860, c, 18, c, b, 25, c, 80, 4, 41<, 860, c, 18, c, b, 25, c, 80, 4, 41<,
860, d, 18, c, b, 25, c, 80, 4, 41<, 860, d, 18, c, b, 25, c, c, 4, 41<,
860, d, 18, c, b, c, c, c, 4, 41<, 8a, d, 18, c, b, c, c, c, 4, 41<<

We see that ReplacePart accepts 3 variables, not 2. What we did was to package the two variables {symbol-
ToInsert,positionToReplace} into a list (single unit), and these lists were supplied to ReplacePart at every
step. Plus, we used Apply[Sequence,...] idiom, which means - when package arrived, we can strip the
wrapper to get the goodies.

Clear@testlist, changeListD;

330

� 5.5.3.2 Example: running standard deviation for an increasing or running list of data

Consider the following problem: given a data sample of N points, for which the mean < mean > and the
standard deviation < sigma > have been computed, we add one more data point. We would like to com-
pute the mean and the standard deviation of the modified sample using only the old values of < mean >
and < sigma >, the number of points < N > and the value of the new added data point. Obviously, if we do
this, we save a lot since we will not need to use all our points and recompute these quantities from scratch.
It is not difficult to show that this can be done according to the following formulas:

x�NEW =
N

N +1
 x�OLD +

1

N +1
 new

Σ
�
NEW =

1

N +1
 KN Σ

�
OLD

2
 +

N

N +1
 Ix�OLD -newM2O

Here are the implementations of the formula for the mean:

Clear@averIterD;
averIter@prevaver_, n_, newel_D :=

n� Hn +1L * prevaver +1� Hn +1L newel;

To check it, the code below computes the average of increasing list of natural numbers from {1} to {1, 2,
3, 4, 5} :

Module@8n = 0<, FoldList@averIter@ð1, n ++, ð2D &, 0, Range@5DDD
:0, 1, 3

2
, 2,

5

2
, 3>

Below is the function for a standard deviation. Notice that there are many ways of implementing it, but we
deliberately made it such that it accepts three arguments: the previous mean and previous sigma com-
bined together in a list, the previous number of elements and the new element, and returns a list of new
mean and new sigma.

Clear@sigmaIterD;
sigmaIter@8prevaver_, prevsigma_<, nold_Integer, newel_D :=

Module@8newaver, newsigma<,
newaver = averIter@prevaver, nold, newelD;
newsigma = Sqrt@1� Hnold +1L * HHnold * prevsigma^2L

+nold � Hnold +1L Hprevaver -newel L^2LD;
8newaver, newsigma<D;

This is how we would use FoldList to generate pairs of {mean, sigma} for an increasing list of values (we
use the same natural numbers as a test example) :

Module@8n = 0<,
Rest@FoldList@sigmaIter@ð1, n ++, ð2D &, 80, 0<, Range@5DDDD

:81, 0<, :3
2
,
1

2
>, :2, 2

3
>, :5

2
,

5

2
>, :3, 2 >>

Notice the use of n++ construct. This is a type of procedural code embedding which we already met
discussing the Map function (see section 5.2.2.9). It is easy to check that this gives the same result as if we
would use standard formulas:

 331

Notice the use of n++ construct. This is a type of procedural code embedding which we already met
discussing the Map function (see section 5.2.2.9). It is easy to check that this gives the same result as if we
would use standard formulas:

Clear@meanSt, sigmaStD;
meanSt@x_ListD := Total@xD �Length@xD;
sigmaSt@x_ListD := Sqrt@Total@Hx -meanSt@xDL^2D �Length@xDD

Note that in the part for <sigma> I used the vectorized nature (Listability) of Subtract and Power func-
tions. Check:

Map@8meanSt@ðD, sigmaSt@ðD< &, Range �� Range@5DD
:81, 0<, :3

2
,
1

2
>, :2, 2

3
>, :5

2
,

5

2
>, :3, 2 >>

We can now package this into a function:

Clear@meanAndSigmaAccumulativeD;
meanAndSigmaAccumulative@x_ListD := Module@8n = 0<,

Rest@FoldList@sigmaIter@ð1, n ++, ð2D &, 80, 0<, xDDD;
We can see how much we win on large lists:

Hms1 = Map@8meanSt@ðD, sigmaSt@ðD< &, Range �� Range@500DDL; ��
myTiming

0.461

Hms2 = meanAndSigmaAccumulative@Range@500DDL; �� myTiming

0.12

ms1 � ms2

True

The complexities are different so the difference will be larger for larger lists. Also, it is not as dramatic as
in other languages because the second (general) implementation is helped by the fact that operations such
as list subtraction or totalizing are Listable and highly optimized in Mathematica, whereas the one with
FoldList necessarily breaks the process into pieces and thus looses this advantage.

Another situation where this may be useful is when, while one point is added to the sample, some other
point is removed from it. This case can be treated in the same way (it is easy to derive the corresponding
formulas), and will correspond to what we can really call the "running" standard deviation. The implemen-
tation of it is left as an exercise to the reader.

332

� 5.5.4 Case study: Gram - Schmidt orthogonalization

� 5.5.4.1 A crash course on linear algebra and Gram-Schmidt procedure

We are given a number of vectors of dimension <n> (there can be at most <n> linearly independent).
Vectors will be represented as lists of length <n>. The dot product on these vectors is defined as a sum of
products of individual components (we assume flat Euclidean metric). For example:

vec1 = 8a1, b1, c1<
vec2 = 8a2, b2, c2<
8a1, b1, c1<
8a2, b2, c2<

Then, the dot product:

Dot@vec1, vec2D
a1 a2 +b1 b2 +c1 c2

where we used a built-in function Dot. Equivalently, we may write (dot is a shorthand notation for Dot)

vec1.vec2

a1 a2 +b1 b2 +c1 c2

A norm of the vector is defined as a square root of the dot product of vector with itself. For instance, the
norm of <vec1> will be

Sqrt@vec1.vec1D
a12 +b12 +c12

Geometrically the norm of the vector is its length. The above result may be considered as a generalization
of a Pythagorean theorem to n-dimensional space (n=3 in this case).
The vector is normalized when its norm is 1. Any vector can be normalized by dividing the vector by its
norm. For instance,

vec1�Sqrt@vec1.vec1D
: a1

a12 +b12 +c12
,

b1

a12 +b12 +c12
,

c1

a12 +b12 +c12
>

is normalized.

A linear combination of some number of vectors is a sum of these vectors multiplied by some coefficients
- it is another vector. For instance, vector <vec3>

vec3 = Α *vec1 +Β *vec2

8a1 Α +a2 Β, b1 Α +b2 Β, c1 Α +c2 Β<
is a linear combination of <vec1> and <vec2> (Α and Β are some parameters). One may consider linear
combinations of any number of vectors.

A set of vectors is said to be linearly independent if none of them can be represented as a linear combina-
tion of the others with some coefficients non-zero.

 333

A set of vectors is said to be linearly independent if none of them can be represented as a linear combina-
tion of the others with some coefficients non-zero.

Any linearly-independent set of vectors defines a basis in a linear space, which is said to be spanned on
these vectors. This means that any vector in this space can be written as a linear combination of the basis
vectors, and vice versa, any vector which is a linear combination of these, belongs to this space. The
dimension of this space is equal to a number of the vectors in the basis. To form a basis in the linear space
of dimension <n>, we then need <n> vectors.

Two vectors are orthogonal when their dot product vanishes. The problem of orthogonalization of a set
vectors consists of finding linear combinations of these vectors which are mutually orthogonal. Most of
the time, one is interested in finding an orthonormal basis in a given linear space. In other words, given a
number of (not necessarily orthogonal) linearly-independent vectors, we would like to find linear combina-
tions of these vectors which will be mutually orthogonal.

The Gram-Schmidt orthogonalization procedure consists of the following steps:

1. Pick any vector from the initial set, call it v1.
2. Pick some other vector, call it v2.
3. Construct a new vector as v2New = v2 - (v2.v1)/(v1.v1) *v1; this new vector will be orthogonal to v1,
as is easy to verify.
4. Pick another vector v3, and construct a new one as
 v3New = v3 - (v3.v1)/(v1.v1) *v1 - (v3.v2New)/(v2New.v2New)*v2New;
 this one will be orthogonal to both v1 and v2New (which is also easy to verify, remembering that v2New
is orthogonal to v1).
5. The procedure goes on, until all the resulting vectors are mutually orthogonal.

This description may suggest that depending on the sequence in which we orthogonalize the vectors, we
may get different sets of final orthogonal basis vectors. Although this is not obvious, all these sets will be
equivalent (after the vectors are normalized) up to relabeling which vector is the first, second etc.

We will now implement a one step of this procedure. Assume that we have some number <m> of orthogo-
nal vectors of length <n> already stored in the m x n matrix <vecmat>, and a new vector <vec> which we
want to make orthogonal to those in the <vecmat>.

� 5.5.4.2 Implementing a single step of the Gram-Schmidt procedure

Here is the code for a single step of the Gram-Schmidt procedure:

Clear@oneStepOrtogonalizeD;
oneStepOrtogonalize@vec_List, 8<D := vec;

oneStepOrtogonalize@vec_List, vecmat_ ? MatrixQD :=

Fold@Hð1 -Hvec.ð2L � Hð2.ð2L * ð2L &, vec, vecmatD;
The first rule is added to include the case of the first vector - then it has to be simply returned back.

As a simple example, consider the matrix of vectors being vecmat = {{1,0,0},{0,0,1}}, and the vector to
be made orthogonal to these, vec = {1,1,2}.

334

oneStepOrtogonalize@81, 1, 2<, 881, 0, 0<, 80, 0, 1<<D
80, 1, 0<

The result is as we would expect - the missing basis vector. The way the code works is that the vector
matrix is considered a list of second arguments to the function being Fold-ed . So, these second arguments
will be vectors in this matrix. At each step, the initial vector gets transformed to be orthogonal to the
vector supplied by Fold from the vector matrix at that step. When Fold is finished, the resulting vector is
orthogonal to all of the vectors in the matrix.

� 5.5.4.3 Orthogonalization - the complete solution

Now that we worked out a single step, we have to get a complete solution, which will orthogonalize a
given number of vectors.

Say, our initial vectors are

startVectors = 881, 2, 3<, 85, 2, 7<, 83, 5, 1<<
881, 2, 3<, 85, 2, 7<, 83, 5, 1<<

The solution is immediate with another Fold:

result =

Fold@Append@ð1, oneStepOrtogonalize@ð2, ð1DD &, 8<, startVectorsD

:81, 2, 3<, :20
7
, -

16

7
,
4

7
>, :7

3
,
7

3
, -

7

3
>>

What happens here is that a newly orthogonalized vector is appended to the current (initially empty) vector
matrix. The new vector matrix is then used for orthogonalization of the next vector, etc. We can check that
all the resulting vectors are mutually orthogonal:

Outer@Dot, result, result, 1D
:814, 0, 0<, :0, 96

7
, 0>, :0, 0, 49

3
>>

Notice the use of Outer here - we generated at once all the dot products. Since we wanted the vectors
inside the matrix <result> to be treated as single units (to be plugged into Dot), we used the more general
form of Outer (See section 5.3.4.8). The numbers on the diagonal are the norms squared of the three
vectors. All off-diagonal elements are zero as they should be for orthogonal vectors.

Now, we can package the code into a function:

Clear@GSOrthogonalizeD;
GSOrthogonalize@startvecs_ ? MatrixQD :=

Fold@Append@ð1, oneStepOrtogonalize@ð2, ð1DD &, 8<, startvecsD;
And for completeness, we present once again the code for oneStepOrtogonalize:

 335

Clear@oneStepOrtogonalizeD;
oneStepOrtogonalize@vec_List, 8<D := vec;

oneStepOrtogonalize@vec_List, vecmat_ ? MatrixQD :=

Fold@Hð1 -Hvec.ð2L � Hð2.ð2L * ð2L &, vec, vecmatD;
This is then our final implementation which solves the problem of Gram-Schmidt orthogonalization. It is
concise, transparent and efficient (well, the purists will insist on eliminating Append. However, for large
number of vectors, the cost of Append will be negligible w.r.t. the cost of <oneStepOrtogonalize>).

Note that the number of vectors to be orthogonalized may be smaller than the size of the vectors. But what
happens if we try to orthogonalize more vectors than the size of the vector (or, dimension of the linear
space)? For instance:

GSOrthogonalize@881, 2<, 85, 3<, 84, 7<<D
:81, 2<, :14

5
, -

7

5
>, 80, 0<>

We see that the last vector is zero. This is as it should be - there can not be more linearly independent
vectors than the length of the vector. Notice that this case was an automatic consequence of our procedure
and did not require any special treatment.

� 5.5.4.4 Adding normalization

Now we would like to make the resulting vectors not only orthogonal, but orthonormal (orthonormalize -
make them all be also normalized).

To do this, first define a function to normalize a vector:

Clear@normalizeD;
normalize@vec_ListD := vec�Sqrt@Dot@vec, vecDD;

And now define GSOrthoNormalize

Clear@GSOrthoNormalizeD;
GSOrthoNormalize@startvecs_ ? MatrixQD :=

Map@normalize, GSOrthogonalize@startvecsDD;
Now check:

newresult = GSOrthoNormalize@startVectorsD
:: 1

14
,

2

7
,

3

14
>, : 5

42
, -2

2

21
,

1

42
>, : 1

3
,

1

3
, -

1

3
>>

What we did is just to Map <normalize> on the resulting vectors once they are obtained. It is easy to
check that now all the vectors are orthonormal:

Outer@Dot, newresult, newresult, 1D �� Simplify

881, 0, 0<, 80, 1, 0<, 80, 0, 1<<
� 5.5.4.5 Application: generating random orthogonal matrices

336

�

5.5.4.5 Application: generating random orthogonal matrices

As an application of the Gram-Schmidt method, we may consider a generation of random orthogonal
matrices. The square matrix is called orthogonal if all the columns (rows) in it are normalized and mutu-
ally orthogonal. These matrices have important applications in various branches of science.

Basically, the procedure to generate a random orthogonal matrix is very simple: generate a plain random
matrix, check that it has a non-zero determinant (if this is not so, it means that one of the columns - or
rows - can be represented as a linear combination of the others. We will not consider such cases), and then
simply apply our GSOrthoNormalize function to it. The result will be a random orthogonal matrix (this is
of course an oversimplification. To unambiguously specify what we mean by a random matrix, we have to
specify the probability distributions for all its elements. So, what we will generate here will be <some>
random orthogonal matrix.
More specifically, the rows of this matrix are eigenvectors of the underlying one we start with, and for the
latter one we will use the uniform [0,1] distribution for all matrix elements).

So, let us start with the example:

First generate a 3x3 random matrix

matrix = Table@Random@D, 83<, 83<D
880.0647266, 0.478053, 0.613517<,

80.803177, 0.140758, 0.584748<, 80.417063, 0.290149, 0.183038<<
Check the determinant

Det@matrixD
0.143951

Apply our function (if the determinant is zero with your run, please rerun the above until it is nonzero):

GSOrthoNormalize@matrixD
880.0829333, 0.612522, 0.786091<,

80.946642, -0.294931, 0.129938<, 80.311432, 0.733371, -0.604299<<
Now we will package this into another function:

Clear@randomOrthogonalD;
randomOrthogonal@n_Integer ?PositiveD := GSOrthoNormalize@

NestWhile@Array@Random@D &, 8n, n<D &, 880<<, Det@ðD === 0 ⅅ
Here I used Array instead of Table, since it is slightly faster. But one could use Table as well. The use of
NestWhile guarantees that the result of it will have a non-zero determinant. Check:

randomOrthogonal@3D
880.241594, 0.34434, 0.907228<,

8-0.0046949, -0.934497, 0.35594<, 8-0.970366, 0.0902524, 0.224152<<

 337

randomOrthogonal@5D
880.345974, 0.451951, 0.450486, 0.366318, 0.582164<,

80.694379, -0.320171, 0.222314, 0.300302, -0.525094<,
80.0645491, 0.798033, 0.0566894, -0.270187, -0.531753<,
80.627364, 0.0304164, -0.521895, -0.485135, 0.312664<,
8-0.0196963, 0.235475, -0.687059, 0.683573, -0.0695739<<

� 5.5.4.6 Performance analysis

This is how much time it takes to generate 50x50 random orthogonal matrix with this method:

randomOrthogonal@50D; �� Timing

80.08 Second, Null<
Assuming that the dot product is optimized and is roughly constant time for small vector sizes,we expect
the complexity to be roughly quadratic with the matrix size for small matrices. This is because we have to
ensure the mutual orthogonality of all vectors, and the number of vector pairs grows quadratically with
the number of vectors. We can check our expectations:

randomOrthogonal@12D �� myTiming

0.011

randomOrthogonal@25D �� myTiming

0.0231

randomOrthogonal@50D �� myTiming

0.12

randomOrthogonal@100D �� myTiming

0.36

randomOrthogonal@400D �� myTiming

5.898

We see that we actually get even a slightly better situation, due most likely to an optimized nature of Fold.
One final comment: one can somewhat improve the performance by caching the norms of the vectors
computed during the Gram-Schmidt procedure - we recompute them every time afresh. This can give a
factor of 1.5~2 speed-up.

Clear@vec1, vec2, vec3, oneStepOrtogonalize, result, startVectors,

GSOrthogonalize, newresult, normalize, GSOrthoNormalizeD;
� 5.5.4.7 Appendix: the complete code for Gram-Schmidt orthogonalization

Here we just put the complete code (functions) into a single place:

Clear@oneStepOrtogonalize, GSOrthogonalize,

normalize, GSOrthoNormalize, randomOrthogonalD;

338

oneStepOrtogonalize@vec_List, 8<D := vec;

oneStepOrtogonalize@vec_List, vecmat_ ? MatrixQD :=

Fold@Hð1 -Hvec.ð2L � Hð2.ð2L * ð2L &, vec, vecmatD;
GSOrthogonalize@startvecs_ ? MatrixQD :=

Fold@Append@ð1, oneStepOrtogonalize@ð2, ð1DD &, 8<, startvecsD;
normalize@vec_ListD := vec�Sqrt@Dot@vec, vecDD;
GSOrthoNormalize@startvecs_ ? MatrixQD :=

Map@normalize, GSOrthogonalize@startvecsDD;
randomOrthogonal@n_Integer ?PositiveD := GSOrthoNormalize@

NestWhile@Array@Random@D &, 8n, n<D &, 880<<, Det@ðD === 0 ⅅ
We see that the code is concise and transparent. This is an example of how the typical solution to a given
problem looks in Mathematica.

� 5.5.5 Small case study: local maxima for a list

� 5.5.5.1 The problem

Sometimes, Fold (FoldList) allows for extremely concise and beautiful solutions. For example, here is the
problem: for a given list of numbers, produce list of all its elements that are larger than any element before
it, in this list (this is one of the favorite problems in many texts on Mathematica programming, so I
decided to continue the tradition).

Here is our test list:

lst = Table@Random@Integer, 81, 40<D, 825<D
812, 13, 33, 20, 22, 12, 10, 15, 1, 17, 31,

21, 38, 7, 36, 31, 35, 14, 1, 15, 20, 13, 25, 2, 1<
� 5.5.5.2 Procedural solution

It is fairly obvious how to write a procedural solution:

Clear@localMaxListProcD;
localMaxListProc@x_ListD :=

Module@8i, temp, len = Length@xD, reslist, solctr<,
For@reslist = Table@Null, 8len<D;
temp = 0; i = solctr = 1, i £ len, i ++,

If@temp < x@@iDD, reslist@@solctr ++DD = temp = x@@iDDD;D;
Drop@reslist, -Hlen -solctr +1LDD;

Here, we preallocate the list of results, since we know that its length can be at most equal to the length of
the initial list. As in cases before, this is done to avoid using Append and make a code more efficient.
Check:

 339

localMaxListProc@lstD
812, 13, 33, 38<

� 5.5.5.3 Functional solution with FoldList

This is essentially the same solution but expressed with FoldList:

Clear@localMaxListD;
localMaxList@x_ListD := Union@Rest@FoldList@Max, -Infinity, xDDD;

Check:

localMaxList@lstD
812, 13, 33, 38<

To see, what happens, we can dissect the function into pieces:

FoldList@Max, -Infinity, lstD
8-¥, 12, 13, 33, 33, 33, 33, 33, 33, 33, 33, 33,

33, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38<
Here, at every iteration the result of the previous application of Max is compared with the next number
from the list (we could have put Max[#1,#2]&), and the maximum of the two becomes the current result.
Thus,the next result will only be different from the previous if we get a number larger than all encountered
before. The value -¥ is used as a starting number, to guarantee that the starting number will be less than
any in the list (which may also contain negative numbers).

 At the next stage, we delete this number with the help of Rest:

Rest@FoldList@Max, -Infinity, lstDD
812, 13, 33, 33, 33, 33, 33, 33, 33, 33, 33,

33, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38<
Finally, we take the Union to eliminate duplicate elements. Union also sorts the results in an ascending
order, but in our case this is just fine.

Union@Rest@FoldList@Max, -Infinity, lstDDD
812, 13, 33, 38<

� 5.5.5.4 Performance analysis

We can now compare the performance:

testlst = Table@Random@Integer, 81, 20000<D, 85000<D;
localMaxListProc@testlstD; �� Timing

80.07, Null<
localMaxList@testlstD; �� Timing

80.02, Null<
We see that by using Fold, we gain a factor of 3-4 in this case (for this size of the test list), even though we
took care to make the procedural realization efficient, and indeed naively it looks more efficient since it
does not produce an entire list and then delete similar elements. However, what it does is to break an
object (list) into pieces by using array indexing. And according to one of our rules of thumb, this practice
should be avoided in Mathematica.

340

We see that by using Fold, we gain a factor of 3-4 in this case (for this size of the test list), even though we
took care to make the procedural realization efficient, and indeed naively it looks more efficient since it
does not produce an entire list and then delete similar elements. However, what it does is to break an
object (list) into pieces by using array indexing. And according to one of our rules of thumb, this practice
should be avoided in Mathematica.

Clear@lst, testlst, localMaxList, localMaxListProcD;

 341

5.6 FixedPoint and FixedPointList

� 5.6.1 The syntax and functionality

These functions are very similar to Nest and NestList. Instead of asking, how many times the function
should be nested, they nest the function until the result no longer changes. The format is

FixedPoint@f, exprD
In some cases, it is desirable to have a "safety net" - to stop nesting after certain maximal allowed number
of iterations regardless of whether or not the result has stabilized. To account for these cases, there is an
optional third argument <n> which gives a maximal number of iterations.

Since these functions are very similar to Nest/NestList except their termination condition, we will illustrate
them by revisiting certain examples considered before.

� 5.6.2 Example: the Collatz problem revisited

Here is the already discussed (section 5.4.2.6) Collatz iteration definition:

Clear@cD;
c@n_ ?OddQD := 3*n +1;

c@n_ ?EvenQD := n�2;
Previously we solved the problem of generation of the Collatz sequence by using NestWhileList. The
solution was:

Clear@colSequenceD;
colSequence@q_IntegerD := NestWhileList@c, q, ð1 ¹ 1 &D;

Imagine for a moment that it is unavailable (like it was in earlier versions of Mathematica). Can we find a
substitute? Here is the solution that uses FixedPointList:

Clear@colSequenceFPD;
colSequenceFP@q_IntegerD :=

Drop@FixedPointList@If@ð ¹ 1, c@ðD, 1D &, qD, -1D;
(here, FP stands for "FiexedPoint"). The idea is that after the result becomes one for the first time, it will
remain one due to the way the nested function is written. Then, after the next iteration, the last two results
will be both equal to 1 and to each other, and thus the process will stop. For instance

342

colSequence@233D
8233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890,

445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283,

850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079,

3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367,

4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732,

866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46,

23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1<
colSequenceFP@233D
8233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890,

445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283,

850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079,

3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367,

4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732,

866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46,

23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1<
The new solution is almost as efficient as the old one. The source of inefficiency here is that the condition
that the result is one, is checked as every iteration. Note by the way that both the implementation with
NestWhileList and FixedPointList (as well as these constructs themselves) are a kind of compromise,
appreciating that procedural style is sometimes more appropriate than functional (this is, when at every
time only very small and very "local" part of a given large structure (like list) is changed).

� 5.6.3 How to reformulate a problem for FixedPoint

Basically, every problem where one has to generate some list by repeated nesting of a function <f>, and
stop when certain condition <cond>is satisfied, can be reformulated as a problem for FixedPoint, in the
following way:

FixedPoint@If@cond@ðD, ð, f@ðDD &, exprD
The logic here is the same as for the Collatz problem just considered.

� 5.6.4 Example: deleting numbers from the list revisited

Here is a list containing in general zeros, positive and negative integers.

Clear@testlistD;
testlist = Table@Random@Integer, 8-5, 10<D, 815<D
87, 5, 4, 7, 6, -2, 2, -5, 0, 8, 6, -2, -4, 10, 10<

This will drop the first element in the list until it meets a first negative number - this is the solution we had
before:

NestWhile@Drop@ð, 1D &, testlist, NonNegative@First@ðDD &D
8-2, 2, -5, 0, 8, 6, -2, -4, 10, 10<

The solution with FixedPoint:

 343

The solution with FixedPoint:

FixedPoint@If@Negative@First@ðDD, ð, Drop@ð, 1DD &, testlistD
8-2, 2, -5, 0, 8, 6, -2, -4, 10, 10<

Note: the same performance pitfall which we discussed for the NestWhile - based solution of this prob-
lem (section 5.4.2.1), is also present here.

� 5.6.5 Example: approximating the square root of a number revisited

Here is the sequence that we implemented previously with Nest to get an approximation to a square root
of a number:

tn+1 = 1 � 2 Htn + A � tnL
This was our solution (we take a specific number 3, and a starting number 5., as before)

NestList@Hð +3� ðL �2 &, 5., 5D
85., 2.8, 1.93571, 1.74276, 1.73208, 1.73205<

Here our starting number was 5, and we used 5 iterations altogether. The list of intermediate results
shows that this method converges quite fast. If we are interested in final result only, then we use Nest:

result = Nest@Hð +3� ðL �2 &, 5., 5D
1.73205

Now, here is the solution with FixedPoint:

newresult = FixedPointList@Hð +3� ðL �2 &, 5.D
85., 2.8, 1.93571, 1.74276, 1.73208, 1.73205, 1.73205, 1.73205<

It is even simpler in this case - once the number stops changing , that’s it! This is a type of problem where
FixedPoint works most directly without modifications.

The rest of the discussion of that example can be trivially transferred to the version with FixedPoint.

� 5.6.6 FixedPoint dangers

When used without the "safety net", FixedPoint has an obvious danger of getting in a situation where it
will never stop, because the results may happen to always be different. But even in the seemingly clear
cases, this danger is not as far away as we may think. Let me use the same setting as in the previous
example: we want to estimate the square root of 3, starting with a number 5. I will alter it very slightly -
forget to put the dot after 5: use <5> instead of <5.>. And, let us use a safety net of 7 iterations maximum
- just in case...

344

FixedPointList@Hð +3� ðL �2 &, 5, 7D
:5, 14

5
,
271

140
,
132241

75880
,
34761005281

20068894160
,
2416609026561556205761

1395229871759180117920
,

11679998372406206859888818654055765884968321

6743450204443114328549416278518687526674240
,

272844723958823282612658628263013873237021400356408160879�

437661848300809304604412291841�
157526974824595756512861009809263458922744712800339912508�

216462467898433196289773502080>
This is an unpleasant surprise. The point is that the operations are now done with arbitrary precision
integer arithmetic, and the two consecutive results will never be the same. This tells us once again that we
have to ensure in every case, that "sameness" is defined the same (pun unintended) for us and for Mathe-
matica. If in doubt - put a maximum on the total number of iterations (although for final version of any
program, you will be better off using the final iteration number only if there are more compelling reasons
to do so, related to the structure of the problem. This comment does not apply for programs which imple-
ment certain functionality for further use, such as packages - in such cases it is always a good idea to
constrain the number of iterations by some maximum value).

� 5.6.7 Small case study: merging overlapping intervals - Functional vs. Rule-based

� 5.6.7.1 The problem and a rule-based solution

Consider the following problem: given a list of intervals, some of which may overlap (such that some
intervals may be entirely contained in others), write a function which will merge together those intervals
which overlap, and return a modified list of intervals. The input list of intervals must be ordered in the
sense that non-overlapping intervals closer to the origin should be on the left of those further from it.

Here is an elegant and concise rule-based solution shown in "Mastering Mathematica" by John Gray.

Clear@mergeIntervalsD;
mergeIntervals@ints_ListD := ints ��.

8e___, 8a_, b_<, 8c_, d_<, f___< �; c £ b ¦ 8e, 8a, Max@b, dD<, f<;
The code is almost self-explanatory. We saw already examples of this type of programming earlier - see
the section 4.2.5. The use of //. (ReplaceRepeated) ensures that the rule will be applied until all overlap-
ping intervals are merged. For instance:

mergeIntervals@881, 3<, 82, 4<, 85, 7<, 86, 8<, 87, 9<<D
881, 4<, 85, 9<<

� 5.6.7.2 A functional solution

The above solution is definitely beautiful and clear. However, it is not the most efficient one, as we will
see in a minute.

Let us see what we can do within the functional style. The first thing that comes to mind is to somehow
group together overlapping intervals, keeping in mind that there can be chains of more than two intervals
overlapping, like the last 3 intervals in the above example. The way to do it is to use a built-in <Split>
command. Split does the following: it groups together the "same" elements, and we can define what we
mean by "same", by providing to Split a comparison function. The limitation of Split is however that it can
only compare adjacent elements.

So, let us define two intervals to be "the same" (for Split), when the right end of the first interval is larger
than the left end of the second one:

 345

Let us see what we can do within the functional style. The first thing that comes to mind is to somehow
group together overlapping intervals, keeping in mind that there can be chains of more than two intervals
overlapping, like the last 3 intervals in the above example. The way to do it is to use a built-in <Split>
command. Split does the following: it groups together the "same" elements, and we can define what we
mean by "same", by providing to Split a comparison function. The limitation of Split is however that it can
only compare adjacent elements.

So, let us define two intervals to be "the same" (for Split), when the right end of the first interval is larger
than the left end of the second one:

step1 =

Split@881, 3<, 82, 4<, 85, 7<, 86, 8<, 87, 9<<, ð1@@2DD ³ ð2@@1DD &D
8881, 3<, 82, 4<<, 885, 7<, 86, 8<, 87, 9<<<

We see that the intervals have been correctly grouped. Now we need to extract the new borders correspond -
ing to the merged intervals. To do this, I suggest that we Flatten each group first (which means we have to
Map Flatten on our list):

step2 = Flatten �� step1

881, 3, 2, 4<, 85, 7, 6, 8, 7, 9<<
Now we can Sort each Flattened sublist:

step3 = Sort �� step2

881, 2, 3, 4<, 85, 6, 7, 7, 8, 9<<
It now remains to take the first and last element of each sublist -since they are sorted, these will be the new
borders:

step4 = ð@@81, -1<DD & �� step3

881, 4<, 85, 9<<
This is the result in this case. We can now put all the operations together:

Sort@Flatten@ðDD@@81, -1<DD & ��

Split@881, 3<, 82, 4<, 85, 7<, 86, 8<, 87, 9<<, ð1@@2DD ³ ð2@@1DD &D
881, 4<, 85, 9<<

This seems to solve the problem, but there is one subtle point. Consider the intervals:
{{5,9},{6,7},{8,10}}. Let us see what we get:

Sort@Flatten@ðDD@@81, -1<DD & ��

Split@885, 9<, 86, 7<, 88, 10<<, ð1@@2DD ³ ð2@@1DD &D
885, 9<, 88, 10<<

The problem is, that the resulting two intervals overlap and should have been combined into a single one,
but this did not happen. The reason is that at the time when Split was grouping elements, the intervals
{6,7} and {8,10} did not overlap - the overlap is induced by a previous interval {5,9} which entirely
contains {6,7}. But since Split is limited to compare only adjacent elements, there seems to be no way
out. Our solution then will be the following: use the code above as a "single step" transformation, and
apply it repeatedly to the list until the list stops changing. Here is the code for a single step merging:

346

Clear@mergeIntsOneStepD;
mergeIntsOneStep@ints_ListD :=

Map@Part@Sort@Flatten@ðDD, 81, -1<D &,

Split@ints, ð1@@2DD ³ ð2@@1DD ⅅ
And this is all we need to add to solve the problem:

Clear@mergeIntsD;
mergeInts@ints_ListD := FixedPoint@mergeIntsOneStep, intsD;

Check now:

mergeInts@881, 3<, 82, 4<, 85, 7<, 86, 8<, 87, 9<<D
881, 4<, 85, 9<<
mergeInts@885, 9<, 86, 7<, 88, 10<<D
885, 10<<

� 5.6.7.3 Comparing performance

Let us now compare the efficiency of the rule-based and procedural solutions, on interval lists of different
lengths. We will generate these lists randomly. The code to generate the lists is as follows:

Clear@randomIntervalsD;
randomIntervals@min_Integer, max_Integer,

maxrange_Integer ?Positive, intnum_Integer ?PositiveD :=

Module@8x<, Sort@Table@8x = Random@Integer, 8min, max<D,
x +Random@Integer, 81, maxrange<D<,

8intnum<D, ð1@@1DD < ð2@@1DD ⅅ
For instance, this will be a list of 10 intervals with borders from 1 to 100 and maximal length of an inter-
val 8:

testints = randomIntervals@1, 100, 8, 10D
883, 9<, 814, 16<, 817, 24<, 824, 28<, 827, 32<,

859, 65<, 876, 81<, 886, 90<, 897, 101<, 8100, 101<<
We now test the performance:

mergeIntervals@testintsD �� myTiming

0.000281

mergeInts@testintsD �� myTiming

0.00025

For this very small list, the performance is roughly the same. Let us increase the number of intervals:

 347

Htestints = randomIntervals@1, 1000, 15, 100DL �� Short

8810, 11<, �98�, 8990, 995<<
Now:

mergeIntervals@testintsD �� myTiming

0.017

mergeInts@testintsD �� myTiming

0.0025

Here we see that our functional version is already 5 times faster. Let us increase even more:

Htestints = randomIntervals@1, 4000, 25, 500DL �� Short

8813, 17<, �498�, 83997, 4012<<
mergeIntervals@testintsD �� myTiming

0.38

mergeInts@testintsD �� myTiming

0.00811

Here the difference is more than an order of magnitude. What happens is that these solutions have differ-
ent computational complexities. The reason is that the functional solution is able to group more than two
overlapping intervals together in a single run through the list, while the rule-based solution can only group
two adjacent intervals at a time. Thus, it needs more runs through the list, and as the length of the list
increases, we pay for it more and more. In other words, the inefficiency is because it repeatedly checks
non-overlapping intervals for matching the overlap pattern. In terms of our rules of thumb, this is a case
for this one: "avoid inefficient patterns".

� 5.6.7.4 Concluding remarks

So, what should be our conclusion? Is the rule-based solution necessarily bad, should we avoid it always
and at all costs? I don’t think so. It is certainly easier to write and it communicates the idea more clearly.
What is important is to develop the skill to recognize inefficiency in the code, so that, if a given part of the
code turns out to be time-critical, you will be able to quickly spot the "bottleneck" and rewrite the code
more efficiently.

Clear@mergeIntervals, mergeIntsOneStep,

mergeInts, testints, randomIntervalsD;
� 5.6.8 Example: local (relative) maxima in a list revisited

Let us revisit a problem of finding a list of local maxima for a given list - that is, a list of all elements
which are larger than any element before it in the input list. We have given a solution using Fold (the best
we have) and a procedural solution, in the chapter on Fold. Now we will consider a solution based on
FixedPoint. It will not be as efficient, but it represents an interesting way of thinking in my view.

So, here is our test list :

348

tlist = Table@Random@Integer, 81, 40<D, 820<D
811, 6, 28, 21, 10, 9, 7, 22, 6, 37, 20, 5, 27, 30, 7, 3, 19, 35, 30, 8<

Consider a following transformation of this list : we will Split it into sublists of decreasing (non - increas-
ing) elements, and then only keep a maximum (the left - most element) of each sublist :

step1 = Split@tlist, GreaterEqualD
8811, 6<, 828, 21, 10, 9, 7<, 822, 6<,

837, 20, 5<, 827<, 830, 7, 3<, 819<, 835, 30, 8<<
step1 = Map@First, step1D
811, 28, 22, 37, 27, 30, 19, 35<

Or, we can combine this as :

step1 = Map@First, Split@ð, GreaterEqualDD &@tlistD
811, 28, 22, 37, 27, 30, 19, 35<

Now, we can iterate a few times :

step2 = Map@First, Split@ð, GreaterEqualDD &@step1D
811, 28, 37, 30, 35<
step3 = Map@First, Split@ð, GreaterEqualDD &@step2D
811, 28, 37, 35<

It is clear that this is a task for FixedPoint :

FixedPoint@Map@First, Split@ð, GreaterEqualDD &, tlistD
811, 28, 37<

So, our function will look like :

Clear@localMaxListD;
localMaxList@x_ListD :=

FixedPoint@Map@First, Split@ð, GreaterEqualDD &, xD;
Let me note once again that this solution is less efficient than those we considered before, since it needs
many iterations. However, it represents an interesting way of thinking which may be efficient in some
other situations.

 349

5.7 Operators on functions

� 5.7.1 Through

� 5.7.1.1 Syntax and functionality

This function is quite useful at times, although generally used less than those we discussed already. Actu-
ally, my feeling is that it is used less than it deserves to be. The format is

Through@p@f1, f2, ..., fnD@xDD
The result is

Clear@p, f, g, h, xD;
Through@p@f, g, hD@xDD
p@f@xD, g@xD, h@xDD

� 5.7.1.2 Initial examples

As I said, this can be quite useful. For instance:

Through@HSin*CosL@xDD
Cos@xD Sin@xD

Or, when we have a list of functions:

Through@8f1, f2, f3<@xDD
8f1@xD, f2@xD, f3@xD<

� 5.7.1.3 When it goes wrong

But be careful - this for example may be a surprise:

Through@HSin�CosL@xDD
1

Cos
@xD Sin@xD

The last output is such because division has been internally rewritten as a multiplication by the inverse, as
can be seen from the FullForm:

FullForm@Sin�CosD
Times@Power@Cos, -1D, SinD

There is an alternative (for this particular case) which will do what we failed to accomplish with Through:

Map@If@Head@ðD === Symbol, ð@xD, ðD &, Sin�Cos, 8-1<D
Tan@xD

The result has been simplified to Tan[x] immediately.

Let me now illustrate the use of Through in a less trivial setting, where it is really useful.

350

Let me now illustrate the use of Through in a less trivial setting, where it is really useful.

� 5.7.1.4 Better example: picking list elements randomly with prescribed probabilities

Here is a problem: given a list of elements, like for instance:

Clear@a, b, c, d, e, f, pl, rl, actionD;
rl = 8a, b, c, d, e, f<;

And a list of probabilities of picking these objects (which have to add to 1), like for instance

pl = 80.1, 0.2, 0.1, 0.15, 0.25, 0.2<;
Write a function which will randomly pick an object from the list according to these probabilities.

The idea of the solution will be the following: we will split the interval [0,1] of the real line according to
these probabilities. Then, we will generate a random number in the range [0,1], assuming the uniform
distribution of the numbers for the built-in pseudo-random generator. We will then analyze, in which
interval the generated number ends up being, and will pick the corresponding element of the list.

Let us first define an auxiliary function called <ineq>, which will take as two arguments two ends of the
interval and return a pure function that checks whether a number belongs to this interval (pay attention - it
returns a function)

Clear@ineqD;
ineq@x_, y_D := Hx < ð £ y &L

Check:

fn15 = ineq@1, 5D
1 < ð1 £ 5 &

fn15 �� 81, 3, 5<
8False, True, True<

Now, let us partition an interval [0,1] into several intervals, according to the probabilities. We will first
create a list of partial sums with FoldList:

margins = FoldList@Plus, 0, plD
80, 0.1, 0.3, 0.4, 0.55, 0.8, 1.<

These are the margins of our intervals. Now, let us use Partition to create the intervals:

intervals = Partition@margins, 2, 1D
880, 0.1<, 80.1, 0.3<, 80.3, 0.4<, 80.4, 0.55<, 80.55, 0.8<, 80.8, 1.<<

We now Map-Apply the <ineq> function to this list (we need Apply since it takes a sequence of 2 argu-
ments rather than a list)

funs = ineq ��� intervals

80 < ð1 £ 0.1 &, 0.1 < ð1 £ 0.3 &, 0.3 < ð1 £ 0.4 &,

0.4 < ð1 £ 0.55 &, 0.55 < ð1 £ 0.8 &, 0.8 < ð1 £ 1. &<
What we have here is a list of pure functions which check whether the argument belongs to a particular
interval. This is the time to generate a random number:

 351

What we have here is a list of pure functions which check whether the argument belongs to a particular
interval. This is the time to generate a random number:

rnd = Random@D
0.979687

Now, we use Through:

results = Through@funs@rndDD
8False, False, False, False, False, True<

We will now use Position to find the position of <True>

pos = Position@results, TrueD
886<<

Finally, we will use Extract to extract the corresponding element:

First@Extract@rl, posDD
f

We will now package everything into a function which we will call <pickObject>

Clear@pickObjectD;
pickObject@objs_List, probs_ListD �;

And@Length@objsD � Length@probsD, Plus �� probs � 1D :=

First@Extract@objs, Position@Through@Hineq ��� Partition@
FoldList@Plus, 0, probsD, 2, 1DL@Random@DDD, TrueDDD;

Let us check:

pickObject@rl, plD
c

Table@pickObject@rl, plD, 810<D
8e, d, b, b, b, a, e, f, e, f<

Let us gather some statistics:

stat = Table@pickObject@rl, plD, 81000<D;
These are the probabilities (to remind)

pl

80.1, 0.2, 0.1, 0.15, 0.25, 0.2<
We now count how many times each of the elements was picked:

Count@stat, ðD & �� 8a, b, c, d, e, f<
8102, 202, 96, 160, 252, 188<

We see that we are not too far from the prescribed probabilities.

352

Clear@ineq, pl, rl, margins, intervals,

funs, rnd, fn15, results, pos, stat, pickObjectD;
� 5.7.2 Operate

This is perhaps an even more exotic operation. Basically, Operate applies some function to the head of an
expression, using it as data:

Clear@f, g, x, yD;
Operate@f, g@x, yDD
f@gD@x, yD

So, <f> plays a role of a meta-function defined on <g>. For example:

f@SinD = Cos;

Operate@f, Sin@xDD
Cos@xD

This function may be useful for instance in the following situation: you have created several "containers"
for elements and given them some names (heads). Then you write a function which will perform different
operations on the objects depending on in which container they are. Then the function <f> in Operate may
serve as a dispatcher which will tell which operation to perform depending on the container name. But
this is a somewhat different style of programming, which will take more accent to data from functions.

Clear@fD;

 353

5.8 Summary

This chapter has been very important in many aspects. For one thing, we considered a large number of
examples which illustrated many subtle points of Mathematica programming.

Another good thing is that we covered in details most of important built-in higher-order functions, which
serve as building blocks of most Mathematica programs. We have now a toolbox ready to be used for
larger or more complicated problems.

Yet another important thing is that starting with this chapter, we systematically emphasized efficiency. I
tried to convey the style of programing where efficiency considerations are used from the very beginning
and all the way through solving the problem, but on the other hand not to hide the essence of the problem
by efficiency analysis.

Also, we went many times through typical stages of development process for Mathematica programs. It is
amazingly easy to develop a program in Mathematica: we start with a very simple test case, each step is
usually just one line, each step is easily tested, the final code is trivially combined from the steps of the
sample solution.

But most importantly, all the considerations of this chapter taken together hopefully illustrated the func-
tional style of programming as not just a number of clever tricks but as an entirely different way to think
about programming. This is the style that will be used most frequently and heavily in the chapters that
follow, so it is very important that this material is well-understood.

354

VI. Writing efficient programs: some techniques and applications

6.1 Introduction

This last chapter of this part serves to illustrate the relative efficiency of different programming styles in
Mathematica on several non - trivial applications. This chapter is somewhat different from the previous
ones in style - it is somewhat less pedagogical - I don’t explain every line of code in such detail as before
(I assume that the interested reader who made it that far will be able to understand the workings of the
code using my rather brief explanations as hints). But it shows real problems, wins and trade-offs that one
deals with in more serious Mathematica programming. Also, some of the techniques discussed here are
rather general and may be used in many other situations. Finally, the problems I discuss may be of interest
by themselves.

However, there is a lot more to performance tuning in Mathematica than what is discussed in this chapter.
I will have more to say about it in other parts of the tutorial. Excellent treatment of performance-tuning
techniques is given in the book of David Wagner.

6.2 Case study I: checking if a square matrix is diagonal

� 6.2.1 The problem

The formulation of the problem is extremely simple: given a square matrix of some size, return True if all
the off - diagonal elements are zero and False otherwise.

� 6.2.2 The test matrices

Here we will introduce relatively large test matrices : a random matrix which is almost certainly not
diagonal, and an identity matrix of the same size, which is of course diagonal. All our implementations of
DiagonalQ will be tested on these matrices.

testmatr = Array@Random@D &, 8400, 400<D;
testiden = IdentityMatrix@400D;

� 6.2.3 Procedural implementation

The procedural implementation is straightforward

Clear@diagonalQProcD;
diagonalQProc@m_ ? MatrixQD �; Equal �� Dimensions@mD :=

Module@8len = Length@mD, i, j<,
For@i = 1, i £ len, i ++,

For@j = 1, j £ len, j ++,

If@i � j, Continue@D, If@m@@i, jDD =!= 0, Return@FalseDDDDD;
Return@TrueDD;

We can now test the performance of this implementation :

 355

diagonalQProc@testmatrD �� Timing

diagonalQProc@testidenD �� Timing

95.34989´10-15, False=
82.263, True<

We see that it is very good on the matrix which is essentially non - diagonal, since with procedural
approach we have the greatest flexibility to stop at any moment when the condition is violated. However,
it is completely unsatisfactory for diagonal matrices, and we expect it to be also not great for very sparse
matrices close to diagonal. Can we find a better all-around solution?

� 6.2.4 Functional implementations

This is an implementation based on MapIndexed (taken with a minor modification from the book of
David Wagner. To avoid misunderstanding, let me add that he was not really interested in performance
aspects in this example) :

Clear@diagonalQD;
diagonalQ@m_ ? MatrixQD �; Equal �� Dimensions@mD :=

And �� Flatten@MapIndexed@ð1 � 0 ÈÈ Equal �� ð2 &, m, 82<DD;
Be sure to understand this code - it is a good warm-up. We now check the timing :

diagonalQ@testmatrD �� Timing

diagonalQ@testidenD �� Timing

81.602, False<
80.841, True<

We see that in general, it is even worse than the procedural version, because it is never fast. This is of
course because MapIndexed traverses the entire matrix in any case, even when the result has already been
established.

We can try to cure it by inserting Throw and Catch, so that the process stops right after the condition is
first violated:

Clear@diagonalQNewD;
diagonalQNew@m_ ? MatrixQD �; Equal �� Dimensions@mD :=

If@ð === False, ð, TrueD &@Catch@MapIndexed@
If@Not@ð1 � 0 ÈÈ Equal �� ð2D, Throw@FalseDD &, m, 82<DDD;

This helps somewhat in the first case, but even here not that much:

356

diagonalQNew@testmatrD �� Timing

diagonalQNew@testidenD �� Timing

80.471, False<
81.312, True<

� 6.2.5 Implementations based on structural operations

Now we will go a long way in trying to use certain functions optimized in Mathematica. The two main
ideas will be to flatten the matrix and work with a flat list, and to vectorize our problem and use highly
optimized vectorized operations.

The following implementation is a first step in this direction.

Clear@diagonalQ1D;
diagonalQ1@m_ ? MatrixQD �; Equal �� Dimensions@mD := Total@

Abs@Flatten@MapIndexed@Delete@ð1, First@ð2DD &, mDDDD === 0;

What happens here is that we use MapIndexed on level 1 to go through matrix rows and delete n - th
element (the diagonal one) from each row. We then flatten the resulting matrix and sum all elements. If
the matrix is diagonal, the sum should be zero.

diagonalQ1@testmatrD �� Timing

diagonalQ1@testidenD �� Timing

80.26, False<
80.06, True<

The results are certainly better than before.

The limitation of the approach based on summing all the elements is that the matrix elements can not be
lists of different lengths.

This is the next logical step: instead of deleting diagonal elements from each row, we rotate each row so
that the main diagonal becomes the first column, or the first row of the transposed matrix. Taking Rest of
this matrix, flattening it and summing all the elements, we have to get zero if the matrix is diagonal.

Clear@diagonalQ2D;
diagonalQ2@m_ ? MatrixQD �; Equal �� Dimensions@mD :=

Total@Abs@Flatten@Rest@Transpose@
MapIndexed@RotateLeft@ð1, ð2@@1DD -1D &, mDDDDDD === 0;

We now check the performance :

 357

diagonalQ2@testmatrD �� Timing

diagonalQ2@testidenD �� Timing

80.261, False<
80.07, True<

It is roughly the same as in our previous attempt. Can we get better?

Here we will delete the diagonal elements using MapThread, and then flatten the resulting matrix and
compare it to a flat array of zeros of an appropriate length, which in this approach we have to generate :

Clear@diagonalQNew1D;
diagonalQNew1@m_ ? MatrixQD �; Equal �� Dimensions@mD :=

Module@8len = Length@mD<,
Flatten@MapThread@Delete, 8m, Range@lenD<DD ===

Array@0 &, 8len* Hlen -1L<DD
The performance of this version

diagonalQNew1@testmatrD �� Timing

diagonalQNew1@testidenD �� Timing

80.17, False<
80.02, True<

is certainly better than before.

Now we will develop the above idea further. Let us combine the two approaches: we will delete a diago-
nal element from the row, but then compare the resulting vector to a vector of zeros, using the high -
performance Equal operator which is vectorized. We want to be able to stop after the first comparison
yields False. As a first version, we may use Scan with a Return statement:

Clear@diagonalQNew20D;
diagonalQNew20@m_ ? MatrixQD �; Equal �� Dimensions@mD :=

Module@8len = Length@mD, zeroarr<,
zeroarr = Array@0 &, 8len -1<D;
Scan@If@Delete �� ð =!= zeroarr, Return@FalseDD &,

Transpose@8m, Range@lenD<DD;
Return@TrueDD;

Check :

358

diagonalQNew20@testmatrD �� Timing

diagonalQNew20@testidenD �� Timing

80.01, True<
80.041, True<

Similar functionality can be achieved with the use Fold in combination with Catch and Throw. This
version seems a bit faster than the previous.

Clear@diagonalQNew21D;
diagonalQNew21@m_ ? MatrixQD �; Equal �� Dimensions@mD :=

Module@8len = Length@mD, zeroarr<,
zeroarr = Array@0 &, 8len -1<D;
Catch@Fold@If@Delete �� ð2 =!= zeroarr, Throw@FalseD, TrueD &,

False, Transpose@8m, Range@lenD<DDDD;
What we have done in both cases is to first prepare a list of rows (the original matrix) supplied by the
index of the diagonal element in every row, and then feed it to Scan or Fold. Let us check now :

diagonalQNew21@testmatrD �� Timing

diagonalQNew21@testidenD �� Timing

80.01, False<
80.02, True<

This is a quantum improvement. I have to say that this is more or less as good as it gets in terms of speed,
and perhaps the best solution overall (see the comments below).

As the next step, let us first flatten the matrix, and create a list of positions of diagonal elements in the new
flat list that our matrix became. Then, we use Delete to delete all these elements at once, and compare the
resulting array to an array of zeros of an appropriate length :

Clear@diagonalQNew3D;
diagonalQNew3@m_ ? MatrixQD �; Equal �� Dimensions@mD :=

Module@8len = Length@mD<,
Delete@Flatten@mD, List �� Plus@Range@0, len -1D * Hlen +1L,

1DD === Array@0 &, 8len* Hlen -1L<DD;
The performance here,

diagonalQNew3@testmatrD �� Timing

diagonalQNew3@testidenD �� Timing

80.01, False<
80.02, True<

is not bad, but slightly worse than in our version with Fold, Catch and Throw. Can we use the same idea,
but make it faster?

 359

is not bad, but slightly worse than in our version with Fold, Catch and Throw. Can we use the same idea,
but make it faster?

This is our last attempt. It is almost the same as before, but we don’ t generate the list of zeros. Rather, we
sum all the elements (absolute values) and compare to zero.

Clear@diagonalQNew4D;
diagonalQNew4@m_ ? MatrixQD �; Equal �� Dimensions@mD :=

Module@8len = Length@mD, poslist<,
poslist = List �� Plus@Range@0, len -1D * Hlen +1L, 1D;
Total@Abs@Delete@Flatten@mD, poslistDDD === 0D;

The performance now :

diagonalQNew4@testmatrD �� Timing

diagonalQNew4@testidenD �� Timing

80.01, False<
80.01, True<

The reason that this solution is faster than the previous one is that we need neither to generate a large array
(of zeros), nor to compare it with our array. In fact, this solution (when applicable) beats all our previous
ones, including the one with Fold, Catch and Throw (although not by a wide margin). Given the size of the
matrices used, and the timing, this solution is acceptable.

There is one problem with this solution however - it may not work well on matrices of lists of different
size, since Total can not add lists of different lengths, similarly to the situation with Plus and Subtract
operations in the case study of section 5.3.2.3. We can not however solve this problem similarly to that
case, without a loss in efficiency. This is because a lot of it has to do with our use of Total instead of
Apply[Plus,...].

Thus, our best solutions are: <diagonalQNew4> for matrices whose elements are not lists of different
lengths, and <diagonalQNew20> or <diagonalQNew21> in general case. Since their performance is
almost the same, one will be safer picking the latter ones, which are cleaner in some sense.

360

� 6.2.6 Conclusions

I used this problem to illustrate several points already discussed in the text. In total, we have considered
10 different implementations, and the efficiency of the best and the worst one are several hundred times
different. In implementing the solutions, we have used different programming styles and techniques. We
have seen that just simply using functional programming instead of procedural helped us very little in this
case - in fact, it made things worse. However, when we managed to combine functional programming
with the heavily optimized vectorized operations such as vector comparisons, flattening the list structure
or vector elements summing, the performance started to improve. The final solutions that we obtained are
perhaps not as fast as the procedural one for the very dense non-diagonal matrices, but are more balanced
and much better all-around. These final solutions are good enough to build any other application upon
them and be sure that they will not be the cause of performance loss, (almost) like built-in functions.

The question is of course how "accidental" are these solutions: was it more a matter of luck or guess to
obtain them, or were we "doomed" to get them at the end. My point is that it has nothing to do with luck.
Admittedly, it takes some experience to make right guesses for the directions in which it is most promis-
ing to go, and also when it is the end and we have to stop because we won’t do better. But the principles
are always the same - try to work with as much data at once as possible, and prefer structural operations to
anything else.

 361

6.3 Case study II: extracting matrix diagonals

� 6.3.1 The problem

Consider the following problem: we need to extract from the matrix some or all of its diagonals, either
right diagonals (going from top left to bottom right), or left diagonals (going from bottom left to top
right). We should provide a list of matrix element positions, and our function has to extract all right or left
(or both) diagonals which pass through these elements. And of course, we would like to do it as efficiently
as possible.

� 6.3.2 Test matrices

Htestmatr = Array@Random@Integer, 81, 15<D &, 84, 6<DL �� MatrixForm

6 7 14 1 8 6
11 13 15 6 12 11
12 4 5 11 7 4
10 8 10 8 14 11

powertestmatr = Array@Random@Integer, 81, 50<D &, 8500, 500<D;
� 6.3.3 Extract - based implementation

� 6.3.3.1 The implementation

The idea of this implementation is to generate a list of positions for elements on each diagonal that we
need to extract. Then, we can use the built - in Extract, which may accept a list of positions of elements to
be extracted.

Since we define a diagonal by any element through which it passes, we will need a number of auxiliary
functions.

 First, we will need a function which takes matrix dimensions and an address of a single element < elem >
in question, and determines the address of the "starting" element of (say, right) diagonal which passes
through < elem > . This is done by the following code :

Clear@diagRightStartD;
diagRightStart@8r_Integer ?Positive, c_Integer ?Positive<,

8rows_Integer ?Positive, columns_Integer ?Positive<D �;
r £ rows && c £ columns :=

Switch@r -c, _ ?Positive, 81 +Hr -cL, 1<,
_ ? Negative, 81, 1 +c -r<, 0, 81, 1<

D;
diagRightStart@x__D := 8<;

Here, < r > and < c > represent a row and column of the element in question, while < rows > and <
columns > represent matrix dimensions. For example :

362

diagRightStart@84, 3<, 85, 5<D
82, 1<

Next we will need a function which generalizes the above to a list of elements (positions). Basically, it has
to Map the previous function on a list of element positions. Here is the code :

Clear@startRightDiagPositionsD;
startRightDiagPositions@8rows_Integer ?Positive,

columns_Integer ?Positive<, 8elements__List<D :=

DeleteCases@Map@diagRightStart@ð, 8rows, columns<D &,

8elements<D, 8<D;
For example,

startRightDiagPositions@85, 5<, 882, 3<, 87, 8<, 83, 3<, 83, 4<<D
881, 2<, 81, 1<, 81, 2<<

We see that elements with indices out of range, are ignored (if this is not the desired behavior, this can be
easily changed). At the same time, for several elements on a same diagonal, its starting address is repeated
as many times as is the number of elements on this diagonal among the input elements (in other words, we
do not eliminate multiple references to the same diagonal, and in general it may be extracted more than
once).

We may need eventually to extract all right or all left diagonals (or may be, both). The two auxiliary
functions below provide the "starting" addresses of elements for these diagonals - we will use this later.

Clear@allRightDiagStartPositionsD;
allRightDiagStartPositions@

8rows_Integer ?Positive, columns_Integer ?Positive<D :=

Join@Thread@8Range@rows, 2, -1D, 1<D, 881, 1<<,
Thread@81, Range@2, columnsD<DD;

Clear@allLeftDiagStartPositionsD;
allLeftDiagStartPositions@

8rows_Integer ?Positive, columns_Integer ?Positive<D :=

Join@Thread@8Range@rowsD, 1<D,
Thread@8rows, Range@2, columnsD<DD;

For example :

allRightDiagStartPositions@85, 7<D
885, 1<, 84, 1<, 83, 1<, 82, 1<, 81, 1<,

81, 2<, 81, 3<, 81, 4<, 81, 5<, 81, 6<, 81, 7<<
allLeftDiagStartPositions@85, 7<D
881, 1<, 82, 1<, 83, 1<, 84, 1<, 85, 1<,

85, 2<, 85, 3<, 85, 4<, 85, 5<, 85, 6<, 85, 7<<
Once the "starting" positions of the diagonals are calculated, we need to generate full lists of positions of
diagonal elements, to be used in Extract. The following function will do it for a single right diagonal (we
don’t need a separate one for the left diagonal, as we will see):

 363

Once the "starting" positions of the diagonals are calculated, we need to generate full lists of positions of
diagonal elements, to be used in Extract. The following function will do it for a single right diagonal (we
don’t need a separate one for the left diagonal, as we will see):

Clear@rightDiagPositionsD;
rightDiagPositions@81, col_Integer ?Positive<,

8rows_Integer ?Positive, columns_Integer ?Positive<D :=

With@8len = Min@rows, columns -col +1D<,
Transpose@8Range@lenD, Range@col, col +len -1D<DD;

rightDiagPositions@8row_Integer ?Positive, 1<,
8rows_Integer ?Positive, columns_Integer ?Positive<D :=

With@8len = Min@columns, rows -row +1D<,
Transpose@8Range@row, row +len -1D, Range@lenD<DD;

It uses the fact that the right diagonal always starts with an element either in the first row or in the first
column (or both, for {1, 1} element). For example :

rightDiagPositions@82, 1<, 84, 6<D
882, 1<, 83, 2<, 84, 3<<
rightDiagPositions@81, 3<, 84, 6<D
881, 3<, 82, 4<, 83, 5<, 84, 6<<

Now we are ready to write our main function. It will take a matrix and a list of elements, process the
element positions by the above auxiliary functions, generate position lists for elements of the diagonals,
and then Map Extract on these position lists to extract the diagonals :

Clear@getSomeRightMatrixDiagonalsD;
getSomeRightMatrixDiagonals@

matr_ ? MatrixQ, els : H8elements__List< È AllLD :=

With@8dims = Dimensions@matrD<,
Module@8poslist<,
poslist =

If@els === All, allRightDiagStartPositions@dimsD,
startRightDiagPositions@dims, 8elements<D

D;
Map@Extract@matr,

rightDiagPositions@ð, dimsDD &, poslistD
D

D;
Notice the alternative pattern and named pattern used to incorporate the case where we need all of the
diagonals. The symbol < All > is a system symbol used in such cases as ours, so we don’ t need to invent a
new one. Notice that when we use All, a list of elements is generated by one of our auxiliary functions
<allRightDiagStartPositions>, discussed earlier. Examples:

364

testmatr �� MatrixForm

6 7 14 1 8 6
11 13 15 6 12 11
12 4 5 11 7 4
10 8 10 8 14 11

getSomeRightMatrixDiagonals@testmatr,
881, 1<, 81, 3<, 81, 4<, 83, 1<, 85, 1<, 83, 3<<D

886, 13, 5, 8<, 814, 6, 7, 11<, 81, 12, 4<, 812, 8<, 86, 13, 5, 8<<
getSomeRightMatrixDiagonals@testmatr, AllD
8810<, 812, 8<, 811, 4, 10<, 86, 13, 5, 8<,

87, 15, 11, 14<, 814, 6, 7, 11<, 81, 12, 4<, 88, 11<, 86<<
Notice that if there is more than one element belonging to the same diagonal, this diagonal is extracted
more than once. If this is not the desired behavior, one can introduce an option which will control it, by
effectively applying something like UnsortedUnion to the list of diagonal starting positions. This is left as
an exercise to the reader.

We only solved a problem for right diagonals. For the left diagonals, we in fact don’ t need to solve it
again, if we realize that by reversing the order of rows in our matrix, and manipulating the positions of the
elements in the element list accordingly, we can use our right - diagonal solution. Here is the code :

Clear@getSomeLeftMatrixDiagonalsD;
getSomeLeftMatrixDiagonals@matr_ ? MatrixQ,

els : H8elements__List< È AllLD := Module@8rows , columns, elems<,
8rows, columns< = Dimensions@matrD;
elems =

If@els === All,

allLeftDiagStartPositions@8rows, columns<D,
8elements<

D;
getSomeRightMatrixDiagonals@Reverse@matrD,
Transpose@MapAt@rows +1 -ð &, Transpose@elemsD, 1DDD

D;
The double Transpose on the element position list is needed to do the transformation only on the row -
component of each element’ s position. As before, if we use <All> rather than provide an explicit element
list, a list of elements for all the left diagonals is generated. Examples:

getSomeLeftMatrixDiagonals@testmatr,
881, 1<, 81, 3<, 81, 4<, 83, 1<, 85, 1<<D

886<, 812, 13, 14<, 810, 4, 15, 1<, 812, 13, 14<<
getSomeLeftMatrixDiagonals@testmatr, AllD
886<, 811, 7<, 812, 13, 14<, 810, 4, 15, 1<,

88, 5, 6, 8<, 810, 11, 12, 6<, 88, 7, 11<, 814, 4<, 811<<
Finally, we may get both right and left diagonals passing through each of the elements from our element
list. This is done by the following code :

 365

Finally, we may get both right and left diagonals passing through each of the elements from our element
list. This is done by the following code :

Clear@getSomeMatrixDiagonalsD;
getSomeMatrixDiagonals@

matr_ ? MatrixQ, els : H8elements__List< È AllLD :=

Transpose@8getSomeLeftMatrixDiagonals@matr, elsD,
getSomeRightMatrixDiagonals@matr, elsD<D;

The use of Transpose ensures that the diagonals are grouped in pairs, according to the elements. Examples:

getSomeMatrixDiagonals@testmatr,
881, 1<, 81, 3<, 81, 4<, 83, 1<, 85, 1<<D

8886<, 86, 13, 5, 8<<, 8812, 13, 14<, 814, 6, 7, 11<<,
8810, 4, 15, 1<, 81, 12, 4<<, 8812, 13, 14<, 812, 8<<<
getSomeMatrixDiagonals@testmatr, AllD
8886<, 810<<, 8811, 7<, 812, 8<<,

8812, 13, 14<, 811, 4, 10<<, 8810, 4, 15, 1<, 86, 13, 5, 8<<,
888, 5, 6, 8<, 87, 15, 11, 14<<, 8810, 11, 12, 6<, 814, 6, 7, 11<<,
888, 7, 11<, 81, 12, 4<<, 8814, 4<, 88, 11<<, 8811<, 86<<<

In the case when we use <All>, the grouping of diagonals does not have a direct meaning. If we Transpose
the result in this case, we will get a list of two sublists, containing left and right diagonals in the right
order.

� 6.3.3.2 Performance tests

This measures time needed to extract all left, all right, and left + right matrix diagonals.

getSomeRightMatrixDiagonals@powertestmatr, AllD �� myTiming

0.0792

getSomeLeftMatrixDiagonals@powertestmatr, AllD �� Short �� Timing

80.09, 884<, 820, 15<, �996�, 830<<<
getSomeMatrixDiagonals@powertestmatr, AllD �� Short �� Timing

80.19, 8884<, 85<<, �997�, �1�<<
The timings are not bad for this matrix size (500 x 500)

If we need just some diagonals, then the time needed will of course be much less. Here we extract 3 left
and 3 right diagonals, passing through the elements with the positions below:

getSomeMatrixDiagonals@powertestmatr,
881, 1<, 85, 10<, 83, 7<<D �� myTiming

0.0042

366

� 6.3.3.3 Appendix : the complete code of the Extract - based implementation

Here we simply assemble all the functions in one place

Clear@diagRightStartD;
diagRightStart@8r_Integer ?Positive, c_Integer ?Positive<,

8rows_Integer ?Positive, columns_Integer ?Positive<D �;
r £ rows && c £ columns :=

Switch@r -c,

_ ?Positive, 81 +Hr -cL, 1<,
_ ? Negative, 81, 1 +c -r<, 0, 81, 1<

D;
diagRightStart@x__D := 8<;

Clear@startRightDiagPositionsD;
startRightDiagPositions@8rows_Integer ?Positive,

columns_Integer ?Positive<, 8elements__List<D :=

DeleteCases@
Map@diagRightStart@ð, 8rows, columns<D &, 8elements<D, 8<

D;

Clear@allRightDiagStartPositionsD;
allRightDiagStartPositions@

8rows_Integer ?Positive, columns_Integer ?Positive<D :=

Join@Thread@8Range@rows, 2, -1D, 1<D, 881, 1<<,
Thread@81, Range@2, columnsD<DD;

Clear@allLeftDiagStartPositionsD;
allLeftDiagStartPositions@

8rows_Integer ?Positive, columns_Integer ?Positive<D :=

Join@Thread@8Range@rowsD, 1<D,
Thread@8rows, Range@2, columnsD<D

D;

 367

Clear@rightDiagPositionsD;
rightDiagPositions@81, col_Integer ?Positive<,

8rows_Integer ?Positive, columns_Integer ?Positive<D :=

With@8len = Min@rows, columns -col +1D<,
Transpose@8Range@lenD, Range@col, col +len -1D<D

D;

rightDiagPositions@8row_Integer ?Positive, 1<,
8rows_Integer ?Positive, columns_Integer ?Positive<D :=

With@8len = Min@columns, rows -row +1D<,
Transpose@8Range@row, row +len -1D, Range@lenD<D

D;

Clear@getSomeRightMatrixDiagonalsD;
getSomeRightMatrixDiagonals@

matr_ ? MatrixQ, els : H8elements__List< È AllLD :=

With@8dims = Dimensions@matrD<,
Module@8poslist<,
poslist =

If@els === All, allRightDiagStartPositions@dimsD,
startRightDiagPositions@dims, 8elements<D

D;
Map@Extract@matr, rightDiagPositions@ð, dimsDD &, poslistD

D
D;

Clear@getSomeLeftMatrixDiagonalsD;
getSomeLeftMatrixDiagonals@

matr_ ? MatrixQ, els : H8elements__List< È AllLD :=

Module@8rows , columns, elems<,
8rows, columns< = Dimensions@matrD;
elems =

If@els === All,

allLeftDiagStartPositions@8rows, columns<D, 8elements<
D;
getSomeRightMatrixDiagonals@Reverse@matrD,
Transpose@MapAt@rows +1 -ð &, Transpose@elemsD, 1DDD

D;

368

Clear@getSomeMatrixDiagonalsD;
getSomeMatrixDiagonals@

matr_ ? MatrixQ, els : H8elements__List< È AllLD :=

Transpose@8getSomeLeftMatrixDiagonals@matr, elsD,
getSomeRightMatrixDiagonals@matr, elsD<D;

� 6.3.4 Procedural implementation

� 6.3.4.1 The implementation

In fact, the only place where the procedural implementation will be different is the extraction of diagonals
proper. It will use several of the auxiliary functions that we have developed for the Extract - based
version. The idea will be to first process a list of element positions to get a list of starting positions for the
diagonals, and then extract the diagonals. In a procedural version, first we have to write a function which
extracts a single diagonal:

Clear@extractSingleRightDiagProcD;
extractSingleRightDiagProc@matr_ ? MatrixQ,

8row_Integer ?Positive, col_Integer ?Positive<D :=

Module@8rows, columns, i, j, k, startpos, result<,
8rows, columns< = Dimensions@matrD;
result = Array@0 &, 8Max@rows, columnsD<D;
If@Head@startpos =

diagRightStart@8row, col<, 8rows, columns<DD =!= List,

Return@8<D,
8i, j< = startpos

D;
For@k = 0, Hi +k £ rowsL && Hj +k £ columnsL, k ++,

result@@k +1DD = matr@@i +k, j +kDD;
D;
result = Take@result, kD

D;
For example :

testmatr �� MatrixForm

6 7 14 1 8 6
11 13 15 6 12 11
12 4 5 11 7 4
10 8 10 8 14 11

extractSingleRightDiagProc@testmatr, 81, 1<D
86, 13, 5, 8<
extractSingleRightDiagProc@testmatr, 84, 1<D
810<

Now we have to write a function which will extract many or all of the diagonals:

 369

Now we have to write a function which will extract many or all of the diagonals:

Clear@extractSomeRightDiagsProcD;
extractSomeRightDiagsProc@

matr_ ? MatrixQ, els : H8elements__List< È AllLD :=

With@8dims = Dimensions@matrD<,
Module@8poslist, i, len, result<,
poslist =

If@els === All, allRightDiagStartPositions@dimsD,
startRightDiagPositions@dims, 8elements<D

D;
len = Length@poslistD;
result = Table@0, 8len<D;
For@i = 1, i £ len, i ++,

result@@iDD = extractSingleRightDiagProc@matr, poslist@@iDDD
D;
result

D
D;

Check :

extractSomeRightDiagsProc@testmatr,
881, 1<, 81, 3<, 81, 4<, 83, 1<, 85, 1<, 83, 3<<D

886, 13, 5, 8<, 814, 6, 7, 11<, 81, 12, 4<, 812, 8<, 86, 13, 5, 8<<
extractSomeRightDiagsProc@testmatr, AllD
8810<, 812, 8<, 811, 4, 10<, 86, 13, 5, 8<,

87, 15, 11, 14<, 814, 6, 7, 11<, 81, 12, 4<, 88, 11<, 86<<
The functions to extract left diagonals and all diagonals are exactly the same as before, modulo changing
the name of the function which extracts right diagonals from < getSomeRightMatrixDiagonals > to <
extractSomeRightDiagsProc > .

� 6.3.4.2 Performance tests

extractSomeRightDiagsProc@powertestmatr,
881, 1<, 83, 7<, 85, 10<<D �� Short �� Timing

80.06, 8�1�<<
extractSomeRightDiagsProc@powertestmatr, AllD �� Short �� Timing

86.119, 885<, 847, 18<, �996�, 812<<<
As we can see, the procedural version is hopelessly slow, even though we did not use Append and
Prepend in list accumulation, and in fact used the same auxiliary functions for the preliminary steps. Thus,
the comparison is rather "clean" and fair. For the present example, the difference in performance is about
100 times! And pretty much this difference remains even when I only have to extract a few diagonals. Had
I replaced all the code in those auxiliary functions also by its purely procedural version, the difference
would have been even more dramatic.

370

As we can see, the procedural version is hopelessly slow, even though we did not use Append and
Prepend in list accumulation, and in fact used the same auxilliary functions for the preliminary steps. Thus,
the comparison is rather "clean" and fair. For the present example, the difference in performance is about
100 times! And pretty much this difference remains even when I only have to extract a few diagonals. Had
I replaced all the code in those auxilliary functions also by its purely procedural version, the difference
would have been even more dramatic.

� 6.3.5 The fastest version for all diagonal extraction, based on structural operations

� 6.3.5.1 Developing a solution

While the above Extract - based implementation is our best all - round one, we could win another factor
of 1.5~2 in performance in extracting all matrix diagonals (or, all left, all right ones) by using the structural
operations. Let me briefly demonstrate how such code may be developed.

testmatr �� MatrixForm

6 7 14 1 8 6
11 13 15 6 12 11
12 4 5 11 7 4
10 8 10 8 14 11

We first find number of rows and columns :

8testrows, testcolomns< = Dimensions@testmatrD
84, 6<

We will now use RotateLeft and MapThread to rotate individual rows differently (similar to one of the
examples on MapThread, section 5.3.2.4.5) :

step1 =

Transpose@MapThread@RotateLeft, 8testmatr, Range@0, testrows -1D<DD
886, 13, 5, 8<, 87, 15, 11, 14<, 814, 6, 7, 11<,

81, 12, 4, 10<, 88, 11, 12, 8<, 86, 11, 4, 10<<
If you look carefully at the sublists, you will see that they either represent full left diagonals (this will be so
for the first (columns - rows + 1) sublist), or they represent 2 right diagonals glued together. We have then
to "unglue" them. This is how it is done:

step2 = MapThread@8Drop@ð1, -ð2D, Take@ð1, -ð2D< &,

8step1, PadLeft@Range@0, testrows -1D, testcolomnsD<D
8886, 13, 5, 8<, 8<<, 887, 15, 11, 14<, 8<<, 8814, 6, 7, 11<, 8<<,

881, 12, 4<, 810<<, 888, 11<, 812, 8<<, 886<, 811, 4, 10<<<
We have used Padleft to account for the first several diagonals which are complete. In this case, we use
MapThread in a similar spirit as before, but this time with a {Drop[#1, -#2], Take[#1, -#2]} & function.

Now, we have in principle already obtained all right diagonals, but they are grouped unnaturally - they
are not in any simple logical order. We have to reorder them. This turns out to be easy to do:

step3 = Flatten@Reverse@Transpose@step2DD, 1D
88<, 8<, 8<, 810<, 812, 8<, 811, 4, 10<, 86, 13, 5, 8<,

87, 15, 11, 14<, 814, 6, 7, 11<, 81, 12, 4<, 88, 11<, 86<<
We now just have to delete the empty lists from the beginning. We know precisely how many there are :
(columns - rows + 1) of them, since they result from the complete diagonals. We have then to Drop them:

 371

result = Drop@step3, testcolomns -testrows +1D
8810<, 812, 8<, 811, 4, 10<, 86, 13, 5, 8<,

87, 15, 11, 14<, 814, 6, 7, 11<, 81, 12, 4<, 88, 11<, 86<<
These are the diagonals in the correct order - starting from the smallest (bottom - left) to larger ones and
again smaller (top - right). We can now combine the steps into a function:

Clear@matrixRightDiagonalsD
matrixRightDiagonals@matr_ ? MatrixQD �;

NonPositive@Subtract �� Dimensions@matrDD :=

Module@8rows, columns<,
8rows, columns< = Dimensions@matrD;
Drop@
Flatten@
Reverse@
Transpose@
MapThread@8Drop@ð1, -ð2D, Take@ð1, -ð2D< &,

8Transpose@
MapThread@RotateLeft,

8matr, Range@0, rows -1D<
D

D,
PadLeft@Range@0, rows -1D, columnsD

<
DH* MapThread *L

DH* Transpose *L
D, H* Reverse *L
1D, H* Flatten *L
columns -rows +1D H*Drop *L

D;
Check :

matrixRightDiagonals@testmatrD
8810<, 812, 8<, 811, 4, 10<, 86, 13, 5, 8<,

87, 15, 11, 14<, 814, 6, 7, 11<, 81, 12, 4<, 88, 11<, 86<<
For matrices with the number of rows larger than the number of columns, it is enough to consider the
Transpose - d matrix and then reverse the resulting list of diagonals :

matrixRightDiagonals@matr_ ? MatrixQD �;
Positive@Subtract �� Dimensions@matrDD :=

Reverse@matrixRightDiagonals@Transpose@matrDDD;
Check :

372

Transpose@testmatrD �� MatrixForm

6 11 12 10
7 13 4 8
14 15 5 10
1 6 11 8
8 12 7 14
6 11 4 11

matrixRightDiagonals@Transpose@testmatrDD
886<, 88, 11<, 81, 12, 4<, 814, 6, 7, 11<,

87, 15, 11, 14<, 86, 13, 5, 8<, 811, 4, 10<, 812, 8<, 810<<
For the left diagonals, as we already saw, it is enough to reverse the matrix and then consider the right
diagonals once again :

Clear@matrixLeftDiagonalsD;
matrixLeftDiagonals@matr_ ? MatrixQD :=

matrixRightDiagonals@Reverse@matrDD;
Check :

testmatr �� MatrixForm

6 7 14 1 8 6
11 13 15 6 12 11
12 4 5 11 7 4
10 8 10 8 14 11

matrixLeftDiagonals@testmatrD
886<, 811, 7<, 812, 13, 14<, 810, 4, 15, 1<,

88, 5, 6, 8<, 810, 11, 12, 6<, 88, 7, 11<, 814, 4<, 811<<
Finally, the function for all the diagonals is written straightforwardly :

Clear@getAllMatrixDiagonalsD;
getAllMatrixDiagonals@matr_ ? MatrixQD :=

Through@8matrixRightDiagonals, matrixLeftDiagonals<@matrDD;
Check :

getAllMatrixDiagonals@testmatrD
88810<, 812, 8<, 811, 4, 10<, 86, 13, 5, 8<,

87, 15, 11, 14<, 814, 6, 7, 11<, 81, 12, 4<, 88, 11<, 86<<,
886<, 811, 7<, 812, 13, 14<, 810, 4, 15, 1<, 88, 5, 6, 8<,

810, 11, 12, 6<, 88, 7, 11<, 814, 4<, 811<<<
� 6.3.5.2 Performance tests

We can now test the performance of new functions on our power example :

matrixRightDiagonals@powertestmatrD; �� myTiming

 373

0.0611

matrixLeftDiagonals@powertestmatrD; �� myTiming

0.0611

getAllMatrixDiagonals@powertestmatrD; �� myTiming

0.13

We see that we get a factor of 1.5-2 performance gain with respect to the Extract - based implementation,
but of course the present one is only limited to the case when we need all the diagonals. And because it
performs certain operations such as RotateLeft on the entire matrix, we can not hope for an easy optimiza-
tion of the present solution to the case of just a few matrix diagonals.

� 6.3.5.3 Appendix : the complete code for the structural solution

Clear@matrixRightDiagonalsD
matrixRightDiagonals@matr_ ? MatrixQD �;

NonPositive@Subtract �� Dimensions@matrDD :=

Module@8rows, columns<,
8rows, columns< = Dimensions@matrD;
Drop@Flatten@
Reverse@Transpose@MapThread@8Drop@ð1, -ð2D, Take@ð1, -ð2D< &,

8Transpose@MapThread@RotateLeft, 8matr, Range@0, rows -1D<DD,
PadLeft@Range@0, rows -1D,
columnsD<DDD, 1D, columns -rows +1DD;

matrixRightDiagonals@matr_ ? MatrixQD �;
Positive@Subtract �� Dimensions@matrDD :=

Reverse@matrixRightDiagonals@Transpose@matrDDD;
Clear@matrixLeftDiagonalsD;
matrixLeftDiagonals@matr_ ? MatrixQD :=

matrixRightDiagonals@Reverse@matrDD;
Clear@getAllMatrixDiagonalsD;
getAllMatrixDiagonals@matr_ ? MatrixQD :=

Through@8matrixRightDiagonals, matrixLeftDiagonals<@matrDD;

374

� 6.3.6 Conclusions

The problem in question is a good playground to see how different programming styles and techniques
compare to each other in terms of speed, flexibility etc. We have seen that the implementation based on
functional programming and Extract operator is a very fast, good all-round solution. We also saw that the
procedural solution is hopelessly slow, even though we were always careful to pre-allocate the result and
not use Append etc. Finally, we have seen that in case when we need all the diagonals, there exists
another solution based on structural operations, which is even faster than the Extract-based one, but
limited to the case of all diagonals only.

Another part of this problem which can be a good exercise and also would add a practical value to it, is to
efficiently modify or replace given matrix diagonals, not just extract them. It should be possible to tackle it
by a similar method, using ReplacePart rather than Extract (however, let us keep in mind that ReplacePart
has efficiency issues for large number of simultaneous replacements).

 375

6.4 Case study III: generating complex random Wishart matrices

� 6.4.1 The problem

Here we will consider a problem of generation of complex random Wishart matrices with the normally
distributed complex entries. Wishart matrices are block matrices of the form

880, W<, 8WH, 0<< �� MatrixForm

J 0 W
WH 0

N
where W is n x m complex matrix and WH is its hermitian conjugate. Thus, the total matrix is (m + n) x
(m + n). Random complex Wishart matrices with uncorrelated (other than due to WH being hermitian
conjugate of W) normally distributed entries of W, form the so-called chiral ensembles and are used, in
particular, for the low-energy description of Quantum ChromoDynamics. Of main interest usually are the
eigenvalue correlations, but here we will just consider a way to generate these matrices.

� 6.4.2 Preliminaries

We will need to load a package Statistics‘ContinuousDistributions :

<<Statistics‘ContinuousDistributions‘

The way to generate the gaussian numbers is as follows :

RandomArray@NormalDistribution@0, 1D, 810<D
8-0.284087, -0.364616, -0.0643195, -2.03162,

-1.03452, 1.74043, -0.13117, 2.22543, -3.16775, 1.32895<
Here we have generated 10 random numbers with zero mean and unit variance.

� 6.4.3 Procedural implementation

Here is the straightforward procedural implementation. This function generates a single Wishart matrix of
specified dimensions, mean and variance of the elements distribution.

376

Clear@buildMatrixProcD;
buildMatrixProc@m_Integer,

n_Integer, mu_ ? NumericQ, sigma_ ? NumericQD :=

Module@8source , nums, i, j, k = 1,

result = Array@0 &, 8m +n, m +n<D<,
source = RandomArray@NormalDistribution@mu, sigmaD, 82 m n<D;
nums = Take@source, n mD +I* Drop@source, m nD;
For @i = 1, i £ n, i ++,

For@j = n +1, j £ n +m, j ++,

result@@j, iDD =

Conjugate@
result@@i, jDD = nums@@k ++DD

D;
D

D;
result

D;
It does it by preallocating a matrix of (n + m) x (n + m) zeros, generating n*m complex numbers and then
using a nested loop to insert these numbers (or complex conjugate) into the place where W (WH) should
be. For example :

buildMatrixProc@1, 2, 0, 1D
880, 0, -1.21174 -0.0416826 ä<, 80, 0, 0.983883+0.387592 ä<,

8-1.21174 +0.0416826 ä, 0.983883-0.387592 ä, 0<<
Let us see how long it will take to produce 1000 matrices with n = m = 10 (that is, 20 x 20 matrices) :

Do@buildMatrixProc@10, 10, 0, 1D, 81000<D; �� Timing

86.96, Null<
� 6.4.4 Functional implementation

Let us try to improve performance by creating blocks W and WH with the use of Partition command, and
then just joining 4 blocks : 2 blocks of zeros, W and WH.

We will need an auxiliary function to join 4 submatrices into a matrix. For example, for the blocks :

MatrixForm �� 8881, 2<, 83, 4<<, 885, 6<, 87, 8<<,
889, 10<, 811, 12<<, 8813, 14<, 815, 16<<<

:J 1 2
3 4

N, J 5 6
7 8

N, J 9 10
11 12

N, J 13 14
15 16

N>
We have to get

 377

881, 2, 5, 6<, 83, 4, 7, 8<,
89, 10, 13, 14<, 811, 12, 15, 16<< �� MatrixForm

1 2 5 6
3 4 7 8
9 10 13 14
11 12 15 16

Here is the code :

Clear@join4BlocksD;
join4Blocks@matrA_List, matrB_List, matrC_List, matrD_ListD :=

Flatten@Map@Join ��� Transpose@ðD &,

88matrA, matrB<, 8matrC, matrD<<D, 1D;
Check :

join4Blocks@881, 2<, 83, 4<<, 885, 6<, 87, 8<<,
889, 10<, 811, 12<<, 8813, 14<, 815, 16<<D

881, 2, 5, 6<, 83, 4, 7, 8<, 89, 10, 13, 14<, 811, 12, 15, 16<<
I leave it as an exercise to the reader to figure out how this function works.

Now, we are ready to write our functional version for Wishart matrices generation :

Clear@buildWishartMatrixD;
buildWishartMatrix@n_Integer,

m_Integer, mu_ ? NumericQ, sigma_ ? NumericQD :=

Module@8source = RandomArray@NormalDistribution@mu, sigmaD,
82 m n<D, wmatrix, nums<,

nums = Take@source, n mD +I* Drop@source, m nD;
wmatrix = Partition@nums, mD;
join4Blocks@Array@0 &, 8n, n<D, wmatrix,

Conjugate@Transpose@wmatrixDD, Array@0 &, 8m, m<DD
D;

Its first part is the same as before. Then instead of using loops we use Partition to create the W matrix, and
then use the joining function above, to build the Wishart matrix.For example :

buildWishartMatrix@2, 1, 0, 1D
880, 0, -0.881925 +0.951021 ä<, 80, 0, 1.06796-1.08175 ä<,

8-0.881925 -0.951021 ä, 1.06796+1.08175 ä, 0<<
Let us see if we gained anything :

Do@buildWishartMatrix@10, 10, 0, 1D, 81000<D; �� Timing

84.156, Null<
We see that we get about 70 - 100 % increase in speed, with respect to the procedural solution.

� 6.4.5 Implementation based on structural operations

378

�

6.4.5 Implementation based on structural operations

Following our main rule of thumb, which states that we must use as large piece of data as possible at a
time, let us ask ourselves : is it possible to create all the matrices we need at once, without a separate
function which builds a single matrix? This sounds rather strange, but the answer is yes. Here is the
implementation:

Clear@recmatricesD;
recmatrices@vertsize_, horsize_, matnum_, data_D :=

Module@8initpartition, upper, lower<,
initpartition = Partition@data, horsizeD;
upper = Partition@Flatten@ð, 1D & ��

HJoin@8Partition@Array@0 &, 8vertsize^2* matnum<D,
vertsizeD<, 8initpartition<D �� TransposeL, vertsizeD;

lower = Partition@Flatten@ð, 1D & �� Transpose@Join@8Flatten@
Transpose �� Partition@initpartition, vertsizeD, 1D<,

8Partition@Array@0 &, 8horsize^2* matnum<D,
horsizeD<DD, horsizeD;

Flatten@ð, 1D & �� Transpose@Join@8upper<, 8Conjugate@lowerD<DD
D;

What it does is to build lower and upper parts of all matrices we need at once, by the liberal use of Parti-
tion and Transpose commands. The result is a list of matrices, but it is not prepared matrix by matrix.
Rather, the structural manipulations affect all matrices at once. It takes vertical size (n), horizontal size
(m), total number of matrices needed, and a list of data to fill the matrices with (complex random numbers
in our case).To illustrate the way it works, consider :

MatrixForm �� recmatrices@2, 3, 5, Range@30DD

:
0 0 1 2 3
0 0 4 5 6
1 4 0 0 0
2 5 0 0 0
3 6 0 0 0

,

0 0 7 8 9
0 0 10 11 12
7 10 0 0 0
8 11 0 0 0
9 12 0 0 0

,

0 0 13 14 15
0 0 16 17 18
13 16 0 0 0
14 17 0 0 0
15 18 0 0 0

,

0 0 19 20 21
0 0 22 23 24
19 22 0 0 0
20 23 0 0 0
21 24 0 0 0

,

0 0 25 26 27
0 0 28 29 30
25 28 0 0 0
26 29 0 0 0
27 30 0 0 0

>

Basically, it first prepares the upper part of all matrices at once, and then the lower one for all matrices at
once, in such way that the non - zero lower block WH is exactly the hermitian conjugate of W for each
matrix. It is not difficult to dissect the code and see what is going on.

For this version, we will need an external function to prepare a list of random complex numbers for us :

 379

Clear@prepareComplexNormalD;
prepareComplexNormal@

mu_ ? NumericQ, sigma_ ? NumericQ, n_IntegerD :=

Plus@Take@ð, Length@ðD �2D, I*Drop@ð, Length@ðD �2DD &@
RandomArray@NormalDistribution@mu, sigmaD, 82 n<DD;

Now we can test the performance :

ourmatrices = recmatrices@10, 10, 1000,

prepareComplexNormal@0, 1, 100000DD; �� Timing

81.201, Null<
We see that we get another factor of 3 improvement as compared to the functional version.

Let us see how long it takes the built - in Eigenvalues to diagonalize these matrices :

Eigenvalues �� ourmatrices; �� Timing

81.472, Null<
We see that it is about the same time as needed for their generation. While ideally we should be able to
generate the matrices much faster than to diagonalize them, this is marginally acceptable. The situation
with a procedural version where it takes 5 times longer to generate the matrix than to diagonalize it, is not.

� 6.4.6 Conclusions

This problem is just another example to illustrate the relative efficiency of different programming styles.
The performance difference between the fastest (structural) solution and the slowest (procedural) one is
not as dramatic here as in other examples in this chapter and is about 5 - 6 times, but it is nevertheless
substantial. It means for example that I can gather the same statistics with the structural solution in 1 hour
as with the procedural solution in 5 - 6 hours.

As before, we have seen that the procedural style is the least efficient, functional one is in between, and
the one based on the structural operations is the fastest by a wide margin. Admittedly, however, it requires
a rather counter-intuitive thinking, which may be considered a disadvantage in terms of program readabil-
ity and maintenance. However, if the gain is a 3-fold performance increase, it may be worth it.

380

6.5 Case study IV: sorting, mapping and membership tests

� 6.5.1 The problem

It is often needed in practice to do something to those elements of one list (set) which are also the mem-
bers of another list (set). Some examples of this kind we have considered before - the unsorted Intersec-
tion function (section 4.3.3.4), and unsorted Union function (section 5.2.6.2.5), but this is a rather general
formulation. Here we will consider a following problem: we need to Map some function <f> on these
elements. As usual, we will move from the easiest procedural solution to more efficient ones, and develop
some generally useful functionality along the way.

� 6.5.2 Test sets

These will be our simple test sets that we will use to develop our functions: a first list on which elements
we should Map f, and the second list membership in which we will test for the elements of the first one.

Clear@fD;
testlst = Table@Random@Integer, 81, 15<D, 820<D
81, 5, 3, 6, 7, 2, 4, 2, 8, 14, 12, 13, 4, 14, 2, 4, 4, 13, 9, 10<
memblist = Table@Random@Integer, 81, 15<D, 85<D
83, 13, 4, 9, 3<

These 2 lists will be our "power" test lists, which we will use to test the efficiency of our implementations:

powertestlst = Range@4000D;
powermemblist = Range@1000, 3000D;

� 6.5.3 Procedural solutions

We will start with a couple of straightforward procedural attempts to solve our problem.

� 6.5.3.1 The absolutely worst way to do it

Below is the absolutely worst possible solution for this problem.

 381

Clear@mapOnMembersProcBadD;
mapOnMembersProcBad@f_, x_List, y_ListD :=

Module@8i, j, result = 8<<,
For@i = 1, i £ Length@xD, i ++,

For@j = 1, j £ Length@yD, j ++,

If@SameQ@x@@iDD, y@@jDDD,
AppendTo@result, f@x@@iDDDD; Break@DD;

D;
If@j � Length@yD +1, AppendTo@result, x@@iDDDD

D;
Return@resultDD;

Check :

mapOnMembersProcBad@f, testlst , memblistD
81, 5, f@3D, 6, 7, 2, f@4D, 2, 8, 14, 12,

f@13D, f@4D, 14, 2, f@4D, f@4D, f@13D, f@9D, 10<
mapOnMembersProcBad@f, powertestlst , powermemblistD; �� Timing

860.859 Second, Null<
� 6.5.3.2 A marginally better procedural way

Here we will pre-allocate the list and get rid of Append operators, in the hope that this will help

Clear@mapOnMembersProcD;
mapOnMembersProc@f_, x_List, y_ListD := Module@8i, j, copy = x<,

For@i = 1, i £ Length@xD, i ++,

For@j = 1, j £ Length@yD, j ++,

If@SameQ@x@@iDD, y@@jDDD, copy@@iDD = f@x@@iDDD; Break@DD;DD;
Return@copyDD;

Check

mapOnMembersProc@f, testlst , memblistD
81, 5, f@3D, 6, 7, 2, f@4D, 2, 8, 14, 12,

f@13D, f@4D, 14, 2, f@4D, f@4D, f@13D, f@9D, 10<
mapOnMembersProc@f, powertestlst , powermemblistD; �� Timing

859.812 Second, Null<
There is almost no gain here, since the cost of Append turns out to be negligible w.r.t. cost of sweeping
through a double-loop.

382

� 6.5.3.3 A real improvement: version with a binary search

Of course, it would not be fair to end the procedural part with only the above implementations, since
everybody knows that there are better ways to test for membership. In particular, we could use binary
search instead of a linear one. It may seem that there could be a problem here since first, both lists < x >
and < y > have to be completely generic (this is our goal), second, the list < y > has to be sorted, and
third, the binary search has to use the same comparison function as the one used for sorting the list. Fortu-
nately for us, the built - in Sort is a generic function, and the built - in generic OrderedQ predicate gives
exactly the same results as the comparison function used internally by Sort (when no explicit comparison
function is applied to it). So, here is a generic version of binary search (this is a modified version of the
code from the book of Roman Maeder):

Clear@bsearchD;
bsearch@set_List, elem_D :=

Module@8n0 = 1, n1 = Length@setD, m, temp<,
While@n0 £ n1,

m = Floor@Hn0 +n1L �2D;
If@SameQ@temp = set@@mDD , elemD, Return@mDD;
If@OrderedQ@8temp, elem<D, n0 = m +1, n1 = m -1DD;
Return@0DD;

It will return a position of the (first entry of the) element if it is found, and 0 if not. Then, here is our
modified mapping function:

Clear@mapOnMembersProcBSD;
mapOnMembersProcBS@f_, x_List, y_ListD :=

Module@8i, copy = x, sortedy = Sort@yD<,
For@i = 1, i £ Length@xD, i ++,

If@bsearch@sortedy, x@@iDDD ¹ 0, copy@@iDD = f@x@@iDDD;DD;
Return@copyDD;

Check:

mapOnMembersProcBS@f, testlst , memblistD
81, 5, f@3D, 6, 7, 2, f@4D, 2, 8, 14, 12,

f@13D, f@4D, 14, 2, f@4D, f@4D, f@13D, f@9D, 10<
mapOnMembersProcBS@f, powertestlst , powermemblistD; �� Timing

81.362, Null<
The timing is quite decent, and this is perhaps where users coming from the procedural background
would stop.

� 6.5.3.4 Using MemberQ in a procedural version

It is interesting to see what we get if we use instead of binary search the built-in MemberQ predicate:

 383

Clear@mapOnMembersProcBetterD;
mapOnMembersProcBetter@f_, x_List, y_ListD :=

Module@8i, copy = x<,
For@i = 1, i £ Length@xD, i ++,

If@MemberQ@y, x@@iDDD, copy@@iDD = f@x@@iDDDDD;
Return@copyDD;

Check

mapOnMembersProcBetter@f, testlst , memblistD
81, 5, f@3D, 6, 7, 2, f@4D, 2, 8, 14, 12,

f@13D, f@4D, 14, 2, f@4D, f@4D, f@13D, f@9D, 10<
mapOnMembersProcBetter@f, powertestlst , powermemblistD; �� Timing

82.023, Null<
We can appreciate the power of the built-in function - we get a 30 times improvement straight away
(given that internally MemberQ is bound to perform a linear search, being a general-purpose operation)!
This is not so bad, but first, it still has a linear complexity in the size of the <y> list (rather than logarithmic
for binary search, and the cost of a single Sort command is negligible both because it is only done once
and because it is highly optimized). Second, it turns out that we can do a lot better.

� 6.5.4 Functional implementations

� 6.5.4.1 Using Map and MemberQ

We now turn to functional implementations. The simplest that comes to mind is to use the standard Map
for mapping, If to choose which function to Map, and MemberQ to test membership in the second list:

Clear@mapOnMembersFun1D;
mapOnMembersFun1@f_, x_List, y_ListD :=

Map@If@MemberQ@y, ðD, f@ðD, ðD &, xD;
Check:

mapOnMembersFun1@f, testlst , memblistD
81, 5, f@3D, 6, 7, 2, f@4D, 2, 8, 14, 12,

f@13D, f@4D, 14, 2, f@4D, f@4D, f@13D, f@9D, 10<
mapOnMembersFun1@f, powertestlst , powermemblistD; �� Timing

82.012, Null<
We see that this does not make a difference w.r.t. the previous improved procedural realization, which
tells us that the most expensive operation is now MemberQ.

384

� 6.5.4.2 Using Map and Alternatives

As another attempt of the similar kind, we can replace MemberQ by explicitly constructed from the
second list large alternative pattern, just like in example of section 4.3.3.4:

Clear@mapOnMembersFun2D;
mapOnMembersFun2@f_, x_List, y_ListD :=

With@8alts = Alternatives �� y<,
Map@If@MatchQ@ð, altsD, f@ðD, ðD &, xDD;

Check:

mapOnMembersFun2@f, testlst , memblistD
81, 5, f@3D, 6, 7, 2, f@4D, 2, 8, 14, 12,

f@13D, f@4D, 14, 2, f@4D, f@4D, f@13D, f@9D, 10<
mapOnMembersFun2@f, powertestlst , powermemblistD; �� Timing

83.185, Null<
We get about 50-70% of improvement this way, essentially because explicit pattern is more precise and
completely syntactic (this refers to the version 5.x. For version 6, we get for some reason the opposite
effect). Note that the same replacement could also be done in a procedural version with the same effect.

� 6.5.4.3 A functional version with a binary search

We can use binary search also in a functional implementation :

Clear@mapOnMembersFunBSD;
mapOnMembersFunBS@f_, x_List, y_ListD :=

With@8sortedy = Sort@yD<,
Map@If@bsearch@sortedy, ðD ¹ 0, f@ðD, ðD &, xDD;

Check:

mapOnMembersFunBS@f, testlst , memblistD
81, 5, f@3D, 6, 7, 2, f@4D, 2, 8, 14, 12,

f@13D, f@4D, 14, 2, f@4D, f@4D, f@13D, f@9D, 10<
mapOnMembersFunBS@f, powertestlst , powermemblistD; �� Timing

81.352, Null<
The performance is the same as in the procedural one, since however fast the binary search is, it is still the
most expensive operation and the overhead induced by list indexing in explicit loop is negligible.

There is nothing more we can do if we don’t get some new ideas. The bad thing in our present implementa-
tions is that the MemberQ operation is repeated afresh for every element in the first list. This leads to a
complexity which is proportional to the product of lengths of the two lists. This is because, however
good and optimized the MemberQ operation is, it is a general purpose function and thus it is bound to
have no better than a linear complexity in the length of the second list. The fact that it is a built-in does not
mean that it can do magic.

 385

There is nothing more we can do if we don’t get some new ideas. The bad thing in our present implementa-
tions is that the MemberQ operation is repeated afresh for every element in the first list. This leads to a
complexity which is proportional to the product of lengthes of the two lists. This is because, however
good and optimized the MemberQ operation is, it is a general purpose function and thus it is bound to
have no better than a linear complexity in the length of the second list. The fact that it is a built-in does not
mean that it can do magic.

� 6.5.4.4 Using Intersection, Position, MemberQ and MapAt

It would be nice if we could test the membership of all elements of the first list in the second list at once.
Once we start thinking in this direction, the first thing that comes to mind is to locate the set of all ele-
ments in the first list that are members also of the second list. This is very easy - we just need to use the
built-in Intersection command. Once this set of elements is located, we then have to find their positions in
the first list (this can be accomplished with Position), and then use more precise version of Map - MapAt,
to map the function on these positions only. This is the implementation:

Clear@mapOnMembersFun3D;
mapOnMembersFun3@f_, x_List, y_ListD :=

MapAt@f, x, Position@x, z_ �; MemberQ@Intersection@x, yD, zDDD;
Check:

mapOnMembersFun3@f, testlst , memblistD
81, 5, f@3D, 6, 7, 2, f@4D, 2, 8, 14, 12,

f@13D, f@4D, 14, 2, f@4D, f@4D, f@13D, f@9D, 10<
If you don’t see a problem in this code, think again. But the best judge is the performance test, of course:

mapOnMembersFun3@f, powertestlst , powermemblistD; �� Timing

85.237, Null<
This looks like we moved a few steps back. I used this opportunity to illustrate once again one of the very
common mistakes made when patterns are constructed: in the way it is coded, the Intersection command
will be recomputed every time the pattern is checked against a new list element. In fact, it is surprising that
it is so fast as to slow down our function less than one could expect. This is a proper way of doing this -
preallocate the result:

Clear@mapOnMembersFun4D;
mapOnMembersFun4@f_, x_List, y_ListD :=

With@8int = Intersection@x, yD<,
MapAt@f, x, Position@x, z_ �; MemberQ@int, zDDDD;

Check now:

mapOnMembersFun4@f, testlst , memblistD
81, 5, f@3D, 6, 7, 2, f@4D, 2, 8, 14, 12,

f@13D, f@4D, 14, 2, f@4D, f@4D, f@13D, f@9D, 10<
mapOnMembersFun4@f, powertestlst , powermemblistD; �� Timing

80.972, Null<

386

� 6.5.4.5 Using Intersection, Position, Alternatives and MapAt

As we have noticed, in our setting we can win some performance by using Alternatives instead of Mem-
berQ. We can try it here:

Clear@mapOnMembersFun5D;
mapOnMembersFun5@f_, x_List, y_ListD :=

MapAt@f, x, Position@x, Alternatives �� Intersection@x, yDDD;
Check now:

mapOnMembersFun5@f, testlst , memblistD
81, 5, f@3D, 6, 7, 2, f@4D, 2, 8, 14, 12,

f@13D, f@4D, 14, 2, f@4D, f@4D, f@13D, f@9D, 10<
mapOnMembersFun5@f, powertestlst , powermemblistD; �� Timing

80.761, Null<
Our new function is about twice more efficient than the previous one (the result depends somewhat on the
version - 5.x or 6). Also, note that in this case there was no need in pre-allocating the result of the Intersec-
tion operation. Do you understand why?

� 6.5.5 Yet faster implementations - read if you enjoy hacking

The last version of our function (or the version with a binary search, for larger lists) is where most users
(including myself) will normally stop. It is relatively efficient, and in fact (although I deliberately went
down this road starting from the worst procedural code for pedagogical purposes), with some experience
this will perhaps be the first or second thing which comes to mind. But now I suggest to explore a little bit
the "twilight zone of Mathematica hackery" and see what else we can do in principle.

� 6.5.5.1 Boosting MapAt

As a first step, let us recall that the MapAt function can be quite slow if it has to map on many positions in
a flat list at once (see section 5.2.3.3). We have so far no evidence of the extent to which this affected the
performance of our implementations, but there is only one way to find out. While for the general case,
improving MapAt from within Mathematica is a tough problem, improving it in the case of flat list is
relatively simple. We will use the capability of the Part function to change a large number of expression
elements in place (see section 3.6.6.2). Thus, what we have to do is the following: 1. extract from the
element list all elements with the positions in a position list, with the use of Part. 2. Map the function f on
a list of extracted elements 3. Use part to "place back" the elements with the function <f> already mapped
on them. Also, we will have to create a copy of the original list and modify a copy. So, here is the code:

Clear@fastMapAtSimpleListD;
fastMapAtSimpleList@f_, x_List, positions_ListD :=

Module@8copy = x<, copy@@positionsDD = Map@f, x@@positionsDDD;
Return@copyDD;

Notice that the list of positions has to be as the one used in Part rather than in Extract, Position or built-in
MapAt. Thus, the syntax of our version of MapAt is somewhat different. Check:

 387

Notice that the list of positions has to be as the one used in Part rather than in Extract, Position or built-in
MapAt. Thus, the syntax of our version of MapAt is somewhat different. Check:

fastMapAtSimpleList@f, Range@15D,
Flatten@Position@Range@15D, _ ?OddQDDD

8f@1D, 2, f@3D, 4, f@5D, 6, f@7D,
8, f@9D, 10, f@11D, 12, f@13D, 14, f@15D<

Ok, it works, but is it really faster than the built-in MapAt? Let us make a power test:

mapattestlist = Range@10000D;
posliststandard = Position@mapattestlist, _ ?OddQD;
poslist = Flatten@posliststandardD;

fastMapAtSimpleList@f, mapattestlist, poslistD �� Short �� Timing

80.01, 8f@1D, 2, �9996�, f@9999D, 10000<<
MapAt@f, mapattestlist, posliststandard D �� Short �� Timing

81.472, 8f@1D, 2, �9996�, f@9999D, 10000<<
The difference is more than a 100 times for this list size.

The final comments here are the following: first, our version of MapAt does not support the feature that
when identical positions are present in the list, the mapped function is nested several times on the element
with such at such a position. This can be implemented also, if needed, but will slow down the function
somewhat. Second, the order in which the function is mapped on the elements here, corresponds to the
original order of positions in the position list. For the built-in MapAt, however, the order is always depth-
first, which in a flat list corresponds to a left-to-right order. This difference may matter if the function
being mapped contains side effects. Again, if the latter behavior is needed, it can be easily implemented -
for a flat list it amounts to just sorting the position list with Sort before using it. Again, this will slow down
the function a bit. Also, note that if our version of MapAt is used in conjunction with Position command,
this is unnecessary altogether, since Position by itself produces a list of positions which corresponds to a
depth-first traversal of an expression (just because Position traverses expressions depth-first).

� 6.5.5.2 Using the boosted version of MapAt

We can now use our new function to see whether we get any improvements:

Clear@mapOnMembersFun6D;
mapOnMembersFun6@f_, x_List, y_ListD := fastMapAtSimpleList@f, x,

Flatten@Position@x, Alternatives �� Intersection@x, yDDDD;
Check now:

mapOnMembersFun6@f, testlst , memblistD
81, 5, f@3D, 6, 7, 2, f@4D, 2, 8, 14, 12,

f@13D, f@4D, 14, 2, f@4D, f@4D, f@13D, f@9D, 10<

388

mapOnMembersFun6@f, powertestlst , powermemblistD; �� Timing

80.521, Null<
We see about 30% improvement for this size of the list. In fact, one may check that this number will
remain mostly constant as we increase the list size, which means that the most expensive operation now is
the Position.

� 6.5.5.3 Positions of member elements - developing the memberPositions function

It looks like we have reached the full stop: Position is a built-in operation specially designed for finding
many positions at once, and we have supplied a large alternative pattern which speeds-up the pattern-
matching. However, we can do better. Let us think if we can write our own function that will find all the
positions of the member elements. To develop such a function, let us start once again with a simple mem-
ber list and test list

testlst

81, 5, 3, 6, 7, 2, 4, 2, 8, 14, 12, 13, 4, 14, 2, 4, 4, 13, 9, 10<
memblist

83, 13, 4, 9, 3<
As a first step, let us find an ordering permutation which is needed to sort <testlst>, using the standard
Ordering command:

ord = Ordering@testlstD
81, 6, 8, 15, 3, 7, 13, 16, 17, 2, 4, 5, 9, 19, 20, 11, 12, 18, 10, 14<

The numbers here indicate a sequence of positions, so that if we extract the elements at these positions in
this order, we get a sorted list:

sorted = testlst@@ordDD
81, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 7, 8, 9, 10, 12, 13, 13, 14, 14<

Here, I used the capability of Part to extract many elements at once.

By using a well-known for us by now combination of Split, Length, Transpose and Map (see section
3.10.3.4), we can obtain a list of unique (distinct) elements plus a list of their frequencies (which are given
just by lengths of the sublists of same elements which Split produces):

8distinct, freqs< = Transpose@8ð@@1DD, Length@ðD< & �� Split@sortedDD
881, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14<,

81, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2<<
Now we would like to know, to which intervals of positions in the original sorted list correspond the
sublists of identical elements produced by Split. Since the list of frequencies is at the same time the list of
lengths of these sublists, the general formulation of our sub-problem is to obtain a list of position inter-
vals given a partition of the length of the main list into lengths of sublists. For example, for a list
Range[10] and length partitioning {1,3,4,2}, we should get the following position list :
{{1,1},{2,4},{5,8},{9,10}}. The way to solve this problem is to construct partial sums of the length list
by using the FoldList. This will give the starting points of the intervals when we remove the last element,
and the endpoints when we subtract 1 from this list and remove the first element. Then we need to Trans-
pose the resulting two lists. So, here is the code:

 389

Now we would like to know, to which intervals of positions in the original sorted list correspond the
sublists of identical elements produced by Split. Since the list of frequencies is at the same time the list of
lengthes of these sublists, the general formulation of our sub-problem is to obtain a list of position inter-
vals given a partition of the length of the main list into lengths of sublists. For example, for a list
Range[10] and length partitioning {1,3,4,2}, we should get the following position list :
{{1,1},{2,4},{5,8},{9,10}}. The way to solve this problem is to construct partial sums of the length list
by using the FoldList. This will give the starting points of the intervals when we remove the last element,
and the endpoints when we subtract 1 from this list and remove the first element. Then we need to Trans-
pose the resulting two lists. So, here is the code:

posints =

Transpose@8Most@ðD, Rest@ðD -1< &@FoldList@Plus, 1, freqsDDD
881, 1<, 82, 4<, 85, 5<, 86, 9<, 810, 10<, 811, 11<, 812, 12<,

813, 13<, 814, 14<, 815, 15<, 816, 16<, 817, 18<, 819, 20<<
By using a pure function like this, we can avoid an introduction of an auxiliary variable to hold the result
of FoldList operation. This is a generally useful trick.

What we would like to do now is to create a set of rules, relating each distinct element in a list to an
interval of positions where this element (identical copies of it) is present in a sorted list. This is done in a
standard way using Thread (see section 5.3.1.5).

rules = Thread@Rule@distinct, posintsDD
81 ® 81, 1<, 2 ® 82, 4<, 3 ® 85, 5<, 4 ® 86, 9<, 5 ® 810, 10<,
6 ® 811, 11<, 7 ® 812, 12<, 8 ® 813, 13<, 9 ® 814, 14<,
10 ® 815, 15<, 12 ® 816, 16<, 13 ® 817, 18<, 14 ® 819, 20<<

The next and absolutely crucial step is to use Dispatch, to create a hashed version of our set of rules:

rules = Dispatch@rulesD
Dispatch@81 ® 81, 1<, 2 ® 82, 4<, 3 ® 85, 5<, 4 ® 86, 9<, 5 ® 810, 10<,
6 ® 811, 11<, 7 ® 812, 12<, 8 ® 813, 13<, 9 ® 814, 14<, 10 ® 815, 15<,
12 ® 816, 16<, 13 ® 817, 18<, 14 ® 819, 20<<, -DispatchTables -D

Now we can find members of the first list which are also members of the second list, as before, by using
Intersection:

members = Intersection@memblist, testlstD
83, 4, 9, 13<

The next step is to find intervals of positions in the sorted list which correspond to these elements. We use
our Dispatched rules for that:

ints = ReplaceAll@members, rulesD
885, 5<, 86, 9<, 814, 14<, 817, 18<<

Now we will use Range with the Map[Apply,..] (@@@, see section 5.2.7.5), to generate all the positions
from position intervals:

positions = Range ��� ints

885<, 86, 7, 8, 9<, 814<, 817, 18<<
We will also Flatten this list, since we no longer need the internal braces:

positions = Flatten@positionsD
85, 6, 7, 8, 9, 14, 17, 18<

To get a corresponding list of positions of these elements in the original unsorted list, we recall that we
have an access to an ordering permutation. All we have to do is just to extract from this permutation the
elements (positions in an unsorted list) which are at the positions we have just found. This is perhaps the
most logically non-trivial step in the whole procedure and may take a bit to digest. Anyway, here is the
result:

390

To get a corresponding list of positions of these elements in the original unsorted list, we recall that we
have an access to an ordering permutation. All we have to do is just to extract from this permutation the
elements (positions in an unsorted list) which are at the positions we have just found. This is perhaps the
most logically non-trivial step in the whole procedure and may take a bit to digest. Anyway, here is the
result:

mempositions = ord@@positionsDD
83, 7, 13, 16, 17, 19, 12, 18<

The final step is to Sort these positions:

result = Sort@mempositionsD
83, 7, 12, 13, 16, 17, 18, 19<

Let me display both lists again so that we can see that these positions indeed are the positions of he com-
mon members of the two lists, in the first list:

testlst

81, 5, 3, 6, 7, 2, 4, 2, 8, 14, 12, 13, 4, 14, 2, 4, 4, 13, 9, 10<
memblist

83, 13, 4, 9, 3<
This was a terribly long discussion (it actually took me several times less time to write this function than to
describe it), but let us now condense all the steps into a single function:

Clear@memberPositionsD;
memberPositions@x_List, y_ListD :=

Module@8order, xsorted, distinct, freqs,

rules, positionsInSorted, posintervals<,
xsorted = x@@order = Ordering@xDDD;
8distinct, freqs< =

Transpose@8ð@@1DD, Length@ðD< & �� Split@xsortedDD;
posintervals = Transpose@8Most@ðD, Rest@ðD -1< &@

FoldList@Plus, 1, freqsDDD;
rules = Dispatch@Thread@Rule@distinct, posintervalsDDD;
positionsInSorted =

Flatten@Range ��� ReplaceAll@Intersection@x, yD, rulesDD;
Return@Sort@order@@positionsInSortedDDDDD;

Let us check again that it gives the right thing:

testlst

81, 5, 3, 6, 7, 2, 4, 2, 8, 14, 12, 13, 4, 14, 2, 4, 4, 13, 9, 10<
memberPositions@testlst, memblistD
83, 7, 12, 13, 16, 17, 18, 19<
testlst@@memberPositions@testlst, memblistDDD
83, 4, 13, 4, 4, 4, 13, 9<

The function we have just developed represents some value by itself, but now we will use it in our
problem.

 391

The function we have just developed represents some value by itself, but now we will use it in our
problem.

� 6.5.5.4 Using memberPositions function

Now we can try to use our newly developed function. The new code will look like:

Clear@mapOnMembersFastD;
mapOnMembersFast@f_, x_List, y_ListD :=

fastMapAtSimpleList@f, x, memberPositions@x, yDD;
We now check it:

mapOnMembersFast@f, testlst , memblistD
81, 5, f@3D, 6, 7, 2, f@4D, 2, 8, 14, 12,

f@13D, f@4D, 14, 2, f@4D, f@4D, f@13D, f@9D, 10<
mapOnMembersFast@f, powertestlst , powermemblistD; �� Timing

80.08, Null<
We see that we have made a quantum improvement - our function is now 7-10 times faster than the best
of our previous implementations. I have to add that a lot of it is due to our use of Dispatch. You can try
removing it and you will see that the performance will greatly drop down. Notice by the way, that in this
example (and for the given size of the test list), the difference in performance between the present best
version and the worst procedural one in 2000 times (on my machine). Of course, this number is not really
a constant and will increase for large lists and decrease for smaller one. The real story is that we obtained
a solution with a different computational complexity. This means that we will benefit from this solution
even more if the intersection of the two large lists is large:

powertestlst1 = Range@10000D;
powermemblist1 = Range@5000, 20000D;
mapOnMembersFast@f, powertestlst1 , powermemblist1D �� Short �� Timing

mapOnMembersFun6@f, powertestlst1 , powermemblist1D �� Short �� Timing

mapOnMembersFun5@f, powertestlst1 , powermemblist1D �� Short �� Timing

mapOnMembersFun4@f, powertestlst1 , powermemblist1D �� Short �� Timing

mapOnMembersFun2@f, powertestlst1 , powermemblist1D �� Short �� Timing

mapOnMembersFun1@f, powertestlst1 , powermemblist1D �� Short �� Timing

80.2, 81, 2, �9996�, f@9999D, f@10000D<<
82.734, 81, 2, �9996�, f@9999D, f@10000D<<
85.318, 81, 2, �9996�, f@9999D, f@10000D<<
86.659, 81, 2, �9996�, f@9999D, f@10000D<<
871.623, 81, 2, �9996�, f@9999D, f@10000D<<
838.044, 81, 2, �9996�, f@9999D, f@10000D<<

This is a result of timings for version 6. In version 5.2, the fastest function is even much faster (about
twice), and the difference between slow and fast functions is even more dramatic

� 6.5.5.5 Another application of <memberPositions>: the <unsortedIntersection> function

392

�

6.5.5.5 Another application of <memberPositions>: the <unsortedIntersection> function

The memberPosition function that we have developed, is useful by itself, and can be used for other pur-
poses as well. For instance, in the section 4.3.3.4 we have considered an unsorted Intersection function
(that is, the function that returns all elements of the first list that are also members of the second one, but
in the same order in which they are present in the first list, and also it does not remove the duplicate
elements from the result). Our previous implementation was based on Cases and either MemberQ or
Alternatives, very similarly to our functional versions of <mapOnMembers>. And, like them, it also can
be sped up by using memberPositions. Here is the code:

Clear@unsortedIntersectionFastD;
unsortedIntersectionFast@x_List, y_ListD :=

x@@memberPositions@x, yDDD;
Basically, all it has to do it to extract the elements from the first list, given the list of positions computed
by <memberPositions>. Check:

unsortedIntersectionFast@Range@20, 1, -1D, Range@10DD
810, 9, 8, 7, 6, 5, 4, 3, 2, 1<

We could revisit our previous implementation and convince ourselves that this one is much superior in
terms of efficiency.

� 6.5.6 Conclusions

As I mention in the Preface, in my opinion Mathematica programming is divided in 3 layers in terms of
efficiency: scripting, intermediate and system layers. This section is a good illustration of this statement:
solutions in the first part (procedural) are "scripting" in the sense that they are completely straightforward.
Also, they are slow, and can practically be used only on very small lists.The unfortunate thing is that they
are also the ones which are most likely to first come to mind for people coming from the procedural
background. Solutions in the second part (functional, using Intersection, MemberQ or Alternatives)
represent an "intermediate" level and are generally not bad, and also easy to write for anybody with some
Mathematica programming experience. For many purposes they can be good enough.

The final solution which is based on boosted MapAt and memberPositions functions, represents a
"system" level (if there are further ways to speed up this code within Mathematica, I am not aware of
them), and can perhaps be packaged to make an extension of Mathematica language. While not as fast as
the analogous built-in probably would be, it should be fast enough for most purposes for which Mathemat-
ica is generally acceptable in terms of performance. In terms of development speed, it takes somewhat
longer to get the "system level" function done, mainly to figure out the idea of the implementation. Per-
haps, with experience it takes about couple of minutes to make any of the functional versions work (in
fact, faster than the procedural ones since the code is shorter) and about half an hour to get the structural
version done (well, at least in my experience. Perhaps it can be done much faster still). But given the level
of generality of the problem in question, I think this is acceptable.

Returning to the problem in question, the final comment is that in cases when the mapped function is very
computationally intensive (so that the computation of this function becomes the most expensive operation),
the difference in efficiency between the various solutions we have discussed will matter less or much less.
So, it makes sense to perform this kind of analysis before going say from the "intermediate" to "system"
levels in one’s implementations, because it may be just not worth it for a given problem.

 393

Returning to the problem in question, the final comment is that in cases when the mapped function is very
computationally intensive (so that thecomputation of this function becomes the most expensive operation),
the difference in efficiency between the various solutions we have discussed will matter less or much less.
So, it makes sense to perform this kind of analysis before going say from the "intemediate" to "system"
levels in one’s implementations, because it may be just not worth it for a given problem.

6.6 Summary

In this chapter we went through a lot of code of type common to see in real Mathematica programs. My
goal was to illustrate several things, such as the typically large number of ways to solve a given problem in
Mathematica, and the relative efficiency of these solutions. The rule of thumb is that the procedural
programming style is more likely to produce inefficient solutions, the functional programming style is
usually more efficient (when applied with some thought), and the programming based on the structural
operations is typically the most efficient style, which sometimes can improve performance by an order of
magnitude or lead to a solution of different computations complexity altogether.

Also, one could naively expect that the code size of the best solution should be larger than that of the
worst one (because the former has to be more sophisticated than the latter). This is generally not so. The
best solution is the one which achieves the closest correspondence between the structure of the problem
and the efficient structures and operations built in Mathematica. But due to a very high level of the lan-
guage, this does not necessarily imply longer code, and often in fact implies just the opposite.

We have also seen that many of our best solutions resulted from the complementary use of several differ-
ent programming styles, such as structural operations, functional programming, rule-based programming
(especially in combination with hashing through Dispatch). This is perhaps where the most interesting and
efficient solutions in Mathematica should be, since this possibility to mix different programming styles is
one of the unique features of Mathematica system.

394

Appendices

� Appendix A: what is so special about Mathematica (a personal evaluation)

Mathematica is distant from many other programming languages in many ways. One that seems most
important to me is that it is not a minimal language, in the sense I will explain. This leads to lots of ways of
how any given problem can be solved. Mathematica language supports all major programming styles -
procedural, rule-based, functional and object-oriented (OO is not directly supported but can be imple-
mented within Mathematica [3,4,1]) . This richness of the language is a great strength since it allows to
choose the programming style which is best suited for a particular problem - some people say that Mathe-
matica language is "problem-oriented".

It allows one to program and research at the same time, using in the research, in principle, all the power of
modern mathematics. The great advantage here is that it is very easy to switch the thinking mode from
programming to research and back, or do necessary (non-trivial) mathematical (or statistical, etc) checks
quickly without resorting to special libraries and interrupting the main programming workflow.

The problem (pun unintended) is however that all the different solutions possible for a given problem, are
inequivalent, primarily in terms of efficiency, but also in terms of the code readability, ease of mainten-
ance and debugging. These issues will probably be of no concern for a pure scientist who just needs to
plot a graph or two, simplify some formula etc. But this will certainly be a concern for people from the
software development community who may consider to use Mathematica as a tool for rapid prototyping,
for which, in my opinion, it has major advantages for complex software.

When I program in C, and say solve some problem in two different ways, it is not very likely that the
performance of the two implementations will be different more than a factor of 2 (unless I do something
stupid, or when the difference in solutions will be actually in algorithms of different complexity). In
Mathematica however, it is quite easy to get say 5 or 10 different solutions where the performance of the
most and least efficient may differ in several orders of magnitude or have different computational complex-
ity altogether. Of course, the reason is that, programming in Mathematica, we "sit" on top of a lot of
internal algorithms used to implement given built-in functions that we are using. But from the user view-
point, these performance differences are often completely unobvious, until one gets a better understanding
of how the system works.

Imagine now that we are building a system which has 4 stages of information processing, each one taking
as an input a result from the previous one. And then, on each stage we produce 2 different solutions which
differ in performance 10 times. At the end, we get one system working 10000 faster than the other. In
practice, this means that the "slow" system in most cases will be completely useless, given that there
anyway exists an overhead due to the symbolic nature of Mathematica and a very high level of its lan-
guage. If one wants to build something serious and interesting in Mathematica, one has to learn tech-
niques to program in it efficiently, or at the very least, be aware of certain performance pitfalls associated
with each programming style.

At the same time, the great advantages that Mathematica brings are the ease and speed of writing and
debugging the code, the extremely small code size, and the ability to stay on quite a high level of abstrac-
tion throughout the process of solving the problem, without going into unnecessary low-level details which
hide the essence of the problem. This allows a single person to manage substantial projects. Mathematica
is a great "thinking laboratory". Due to its highly interactive nature, it is also a great tool to design and
analyze algorithms. For me personally, this overweights the eventual complications arising from the above
performance issues, especailly because once you understand the system, you rarely get an unexpected
behavior or nasty performance surprises.

 395

At the same time, the great advantages that Mathematica brings are the ease and speed of writing and
debugging the code, the extremely small code size, and the ability to stay on quite a high level of abstrac-
tion throughout the process of solving the problem, without going into unnecessary low-level details which
hide the essence of the problem. This allows a single person to manage substantial projects. Mathematica
is a great "thinking laboratory". Due to its highly interactive nature, it is also a great tool to design and
analyze algorithms. For me personally, this overweights the eventual complications arising from the above
performance issues, especially because once you understand the system, you rarely get an unexpected
behavior or nasty performance surprises.

Let us forget for a while about the most well-known goal of Mathematica - to carry out mathematical
transformations and solve various mathematical problems (symbolically or numerically or both), and think
of it as a programming environment. The main questions then are: what are the main ingredients of this
environment, how are they different from their analogs in other languages, what sort of problems can be
solved better or easier, and which programming paradigms and ways of thinking are encouraged in Mathe-
matica.

If I was asked to describe Mathematica in one sentence, I would say that it represents a functional program-
ming language built on top of a rule-based engine, which operates on general symbolic trees (or, directed
acyclic graphs if you wish).

Mathematica mainly consists of the following blocks:

1. Powerful rule-based engine with pattern-matching and evaluator built around the general Mathematica
expressions - we can think of this as a programming environment defined on and optimized to work with
general symbolic trees.

2. Global rule base which allows the user to both define functions as global rules and make them interact
with the pre-built system rules in a non-trivial way. The former is a necessary ingredient for programming.
The latter can be used effectively in, for instance, carrying out mathematical transformations and simplifica-
tions, since the system already knows many identities and properties of functions and other mathematical
objects. However, it can be used in many more situations, basically every time when we want to define
new objects by new rules. Systems of rules are way more flexible than say classes in OO paradigm, since
they basically define grammars of small languages, and are not rigidly tied to specific data structures.

Function calls are then internally just a special instance of application of global rules. They are made
efficient by built-in hash tables used for global rules (among other things). Type checking (when needed)
is made almost trivial by the pattern-matcher. The functions can be "overloaded" in much more general
way than in more traditional OO languages.

3. Highly optimized and efficient structural operations on lists and arrays (Flatten,Transpose, Partition, all
numerical built-in functions, comparison operations, etc), which are similar to those in the APL language.

4. Support of the functional programming paradigm by both the possibility of defining pure (anonymous)
functions and by efficient built-in higher-order functions such as Apply, Map, Fold, etc. Due to the uni-
form representation of everything as Mathematica expression, these higher-order functions (and thus the
FP programming style) apply to general Mathematica expressions rather than just lists. This is a very
powerful capability.

The availability of the rule-based approach means basically that one can easily create a language describ-
ing any new object one wants, be it either a more formal language with a grammar or just a collection of
some objects and relations between them. What is important is that this can be completely syntax-based.
By adding new rules to some built-in functions ("overloading") one can make this new language immedi-
ately interact with rules that exist in Mathematica kernel and thus take advantage of those.

The rule-based approach also means that the language is very unrestrictive (or should I say powerful) - it
puts virtually no bounds on what types of manipulations can be done in principle. As some extreme exam-
ples, one can define functions that produce other functions, functions that change their own definitions at
run-time (for example, we may program a function that destroys itself after it is done with the work, and
even produce such "disposable" functions at run-time by other functions), functions that manipulate the
definitions of other functions at run-time, and many more seemingly wierd possibilities. Techniques like
dynamic programming, caching and memoization, lexical closures etc are a common practice in Mathemat-
ica programming and require little effort from the programmer. Also, if one feels that for a particular
problem a more "rigid" or restrictive framework (such as object orientation) is needed, it can be imple-
mented within Mathematica.

396

The rule-based approach also means that the language is very unrestrictive (or should I say powerful) - it
puts virtually no bounds on what types of manipulations can be done in principle. As some extreme exam-
ples, one can define functions that produce other functions, functions that change their own definitions at
run-time (for example, we may program a function that destroys itself after it is done with the work, and
even produce such "disposable" functions at run-time by other functions), functions that manipulate the
definitions of other functions at run-time, and many more seemingly weird possibilities. Techniques like
dynamic programming, caching and memoization, lexical closures etc are a common practice in Mathemat-
ica programming and require little effort from the programmer. Also, if one feels that for a particular
problem a more "rigid" or restrictive framework (such as object orientation) is needed, it can be imple-
mented within Mathematica.

The availability and effectiveness of functional programming style allows to both make the code more
concise and create data structures on the fly (since in this approach any complex data structure is repre-
sented by a possibly nested list). If however one wants to shift the accents more towards data structures,
this is also possible and easy thanks to the syntax-based pattern-matching and rule substitution. And
because in Mathematica functional programming can be performed on general Mathematica expressions
(more general than lists - this is made non-trivial by pattern-matching), one can also combine the two
programming styles to shift the relative roles of functions and data structures as to feel most comfortable.
It is typical in Mathematica programming to use functional programming in the more exploratory stage
and then create more rigid data types and structures after the design has shaped.

The large number of built-in functions has both advantages and disadvantages. To list just a few advan-
tages: you get a huge collection of (often very sophisticated) algorithms already implemented, tested etc.,
packaged in built-ins. Extended Help system and error messages allow to very quickly learn new function-
ality, write and debug programs. However, while the capabilities of Mathematica such as pattern-matching
and rules substitution are great, they are also expensive in terms of performance. As a result, many opera-
tions would be too slow if implemented directly in Mathematica language. Therefore, they are imple-
mented in a lower-level language such as C, and packed into the Mathematica kernel. This solves the
problem, but often makes the performance hard to understand (especially for inexperienced users), since
the performance of user-defined and built-in functions can be dramatically different.

All is not lost however. The general principles on which Mathematica is built give the language overall
consistency. This, plus a large number of quite generic and efficient built-in higher-order functions (that is,
functions that manipulate other functions) allow for efficient general Mathematica programming tech-
niques. These techniques are not too difficult to learn, and in some sense they split the entire Mathematica
language into a "scripting" (quick to write, but often slow to execute), "intermediate" (a bit more thinking
but faster code), and "system" (less intuitive thinking, but yet much faster code) language layers (please
bear in mind that this classification is my own and based on my personal experience, rather than a widely
accepted one).

The part of the difficulty of learning Mathematica programming is that there is no good formal distinction
between these layers. Typically, the first is characterized by heavy use of the procedural (or otherwise
straightforward) code, the second corresponds to use of functional programming and the third by heavy
use of optimized structural operations, but this is not an absolute criteria. One and the same operation can
play a "scripting" role in one context and "system" role in another.

For many problems (especially purely scientific), "scripting" layer is sufficient. This layer consists mainly
in using built-in commands or gluing them with a typically procedural code. A big part of the bad reputa-
tion that Mathematica used to have for its "slow performance" is related to the fact that most people are
only aware of this language layer, because it corresponds most directly to their programming experience in
other (procedural) languages.

 397

For many problems (especially purely scientific), "scripting" layer is sufficient. This layer consists mainly
in using built-in commands or gluing them with a typically procedural code. A big part of the bad reputa-
tion that Mathematica used to have for its "slow performance" is related to the fact that most people are
only aware of this language layer, because it corresponds most directly to their programming experience in
other (procedural) languages.

The other two layers serve several purposes, such as improving speed and quality of code design, gener-
ally improving performance, and removing certain performance bottlenecks within Mathematica, without
resorting to external code (although this is also possible through connecting technologies such as Math-
Link or J/Link). Also, and perhaps even more importantly, they provide a programmer with new ways of
thinking about the problems. Less important for some scientific applications, these layers are much more
important for software development and prototype design.

From the pragmatic point of view, the proper use of each of the above capabilities individually, and the
ability to choose the programming paradigm that best fits a given problem, can greatly improve one’s uses
of Mathematica (both in terms of speed of writing and debugging the program, and speed of the code
execution).

It probably does not make sense to master Mathematica on this level for someone who needs it just occa-
sionally, to compute an integral or two or plot a graph or two. However, for a person who needs to rou-
tinely perform lots of non-trivial checks and experiments (typical for computer modelling/simulations or
rapid prototyping), this level of use of Mathematica will be very valuable. The end result of learning these
techniques will be twofold: great reduction of time (both human and computer) and code size for most
problems, and the ability to push Mathematica a lot further in solving hard or computationally-intensive
problems, before switching to more efficient specialized software or programming language.

From the programmer’s point of view, the speed of writing and debugging the code combined with its
typically small size allows a single person to manage quite large projects. The mechanism of packages
provides a support for larger scale programming. In addition, by combining the above functionality in non-
trivial ways, one can develop different and possibly novel ways of both programming and thinking about
problems. The underlying rule-based nature of Mathematica makes it possible to remove many restric-
tions on what can be done in principle, typical for more traditional languages. The price to pay is often
efficiency issues. Getting familiar with Mathematica on a deeper level can help deal with them in many
cases.

For non-trivial and/or computationally demanding problems, containing many steps, it is rather dangerous
in my view to take the "receipe" approach and search in the Help etc for similar problems solved (this
certainly helps a great deal, but you have to understand the code). Even if the solution you find is optimal
for some other problem, there are many subtleties which may turn your even slightly modified code
wrong or inefficient. Learning these subtleties by trial and error may be faster for every given case, but
does not pay off at the end, if one has to frequently use Mathematica. On the other hand, learning a coher-
ent picture of Mathematica programming will ensure that you always pick the right idiom for the prob-
lem. Also, all the mentioned subtleties are then naturally understood within this framework, since on a
deeper level they simply reflect the way the system works.

398

� Appendix B Some of my favorite books on Mathematica - brief reviews

Here I would like to review some selected books. The choice of books to review is very personal. It is very
likely that there are some very good books missing here which I simply didn’t have a chance to look at.
Also, I left out all books which are field-specific - the books below are all focused on Mathematica pro-
gramming proper (although many of them contain lots of examples of how Mathematica can be applied to
solve problems in various fields). Also, one should not consider the reviews below as some advice to
prefer one book to another. All these books equally belong to the shelf of the Mathematica programmer,
and each has its unique strength and value, which I tried to briefly describe below.

� The Mathematica Book, by Stephen Wolfram

Written by the creator of Mathematica, this is the most authoritative and detailed account on Mathematica
in all its aspects. The book is written in a very clear way, and contains lots of examples. Essential for
understanding the Mathematica principles and language. Everyone serious about Mathematica program-
ming has to read it at least once. The limitation is that example problems are mostly limited to those
which can be solved with a very few lines of code (in Mathematica, this does not mean that they are
always trivial). Will not teach directly some specifics of writing larger programs.

� An introduction to programming with Mathematica, by Paul Wellin, Richard Gaylord and Samuel
Kamin

A great introductory textbook on Mathematica programming - probably the best in its class. Best place to
start learning Mathematica programming if you are a complete beginner. Even if you are not, you are still
likely to learn new things from it. Has a lot of overlap with the present tutorial. Covers wider range of
topics, in particular notebook, frontend and graphics programming. Contains lots of quite useful exercises.
Authors do not particularly emphasize efficiency (at least, not to a degree I tried to do it in this text), but
are pretty careful not to include inefficient implementations without saying it. Material is organized
somewhat differently though, more according to different programming styles. The authors focus more on
showing how certain problems from various branches of science can be solved in Mathematica, while I
focus more on the language features.

� Programming in Mathematica, by Roman Maeder

A classic text on Mathematica programming from one of the original designers of Mathematica. Very
elegantly written, contains lots of useful examples, particularly of larger Mathematica programs. Its goal is
not to be complete with all the small details, but to be essential. Is a harder read than the previous book,
but is readily recommended as a second one. The more one already knows about Mathematica program-
ming, the more one appreciates this book. Great reference for writing packages. Contains certain discus-
sions which are hard to find elsewhere.

 399

� Power programming in Mathematica - the Kernel, by David Wagner

Probably the best book on advanced Mathematica programming, devoted entirely to Mathematica lan-
guage. Written by a computer scientist, and from a computer science viewpoint. This book made a real
difference in my Mathematica education and opened my eyes on many things. Those familiar with it will
undoubtedly see its influence on the present tutorial. Explains many subtleties, tricks and techniques, and
also explains why, not just how. Emphasizes performance and teaches performance-tuning techniques.
This book can help make a quantum jump in one’s abilities as a Mathematica programmer. Readily
recommended to anyone willing to create non-trivial applications in Mathematica. While it covers version
3 only, this matters very little since almost everything it discusses remains true in newer versions. Unfortu-
nately, went out of print.

� Mastering Mathematica, by John Gray

Many non-trivial applications of Mathematica programming in this book. A big part of it is also devoted
to teach Mathematica programming, and is absolutely worth reading. Contains several large applications
such as object-oriented graph theory in Mathematica. One of the very few places (apart from Maeder’s
books) where the object-oriented extension to Mathematica, developed by R.Maeder, is explained in
detail and illustrated with non-trivial examples. A slight downside is that sometimes inefficient solutions
are presented without warnings, but this is a minor flaw - you anyway will have to develop your own
instincts for this if you enter serious Mathematica programming.

� Mathematica guidebooks, by Michael Trott

Written the Mathematica insider and expert, these amazing 4 volumes represent by far the most advanced
treatment of Mathematica programming in application to numerous problems of contemporary science
that I am aware of. Contains an overwhelming collection of non-trivial examples, and more small details
about Mathematica that you will ever want to know. These books show what is possible when one is
armed with the fullest power of Mathematica. Essential for advanced users.

400

� Appendix C Performance of some built-in functions in certain important special cases

� ReplacePart: efficiency pitfall for massive changes

ReplacePart may be very slow when replacing many elements with symbolic expressions at the same time
(by many I mean several thousands or more). There is a way to cure it in some cases, which we will
describe later in part II. For now, consider an example: we will change every second element of the large
list with 0:

ReplacePart@Range@15000D, 0, List �� Range@1, 15000, 2DD; �� myTiming

0.00234

Clear@aD;
ReplacePart@Range@15000D, a, List �� Range@1, 15000, 2DD; ��
myTiming

2.422

The difference in speed of replacing a number (0) and a symbol (a) is 1000 (!) times in this example (it
increases even more once we increase the list size and the number of replaced elements). I don’t want to
go into details here, but the reason has to do with the Mathematica packed arrays technology. For now,
just avoid such operations in the programs you are writing, if possible.

Clear@testlist, complextestlistD;
� Insert: efficiency pitfall for large number of insertions

Let me mention, that just as with ReplacePart, Insert can be quite slow if you ask it to insert many sym-
bolic expressions at once (by many I again mean at least few thousands). Once again, this can be cured,
and we will consider the ways to do it in later chapters. For now let me just illustrate the difference:

First, a small example: we insert zero in every third position in a small list:

Insert@Range@10D, 0, Map@List, Range@1, 10, 2DDD
80, 1, 2, 0, 3, 4, 0, 5, 6, 0, 7, 8, 0, 9, 10<

This is how long it takes to insert zero in every third position in a list of first 10000 natural numbers:

Clear@a, plistD;
plist = List �� Range@1, 10000, 2D;
Insert@Range@10000D, 0, plistD; �� myTiming

0.001016

And here we insert a symbol <a>:

Insert@Range@10000D, a, List �� Range@1, 10000, 2DD; �� Timing

81.328 Second, Null<
The difference is more than a 1000 (!) times for this list, which is even not too large. This is also related
to packed arrays. For now, once again, it is better to avoid such massive symbolic insertions. For smaller
lists,and also for lists of numbers, Insert works quite fast and does not have this behavior.

At the same time, the Delete function is fast regardless of the content of the list - whether it is symbolic or
numeric.

 401

At the same time, the Delete function is fast regardless of the content of the list - whether it is symbolic or
numeric.

� Union, Intersection and Complement: performance with a user-defined SameTest option

As we mentioned in the text, the operations Union, Intersection and Complement with the SameTest
option may perform slower or much slower than without it. We will only illustrate this for Union, but the
same is true also for the other two.

Consider some test list

testlist = Table@Random@Integer, 81, 10<D, 815<D
For example, we may consider elements the same if they are either equal or differ by 2:

Union@testlist, SameTest ® HSameQ@ð1, ð2D ÈÈ Abs@ð1 -ð2D � 2 &LD
81, 2, 5, 6, 10<

The topics of rules, options and pure functions, which syntax we just used, may have not been covered
yet, in which case ignore the syntax details for now.

The problem is the following. The Union operation based on the default sorting function is very fast, but it
may become a lot slower with a user-defined SameTest option. It shares this property with the Sort func-
tion (to be discussed next), essentially due to the way that Union operation is organized: it first sorts the
list and then the same elements will always be adjacent to each other and thus easier to eliminate. To
illustrate this point, consider a larger list:

Htestlist = Table@Random@Integer, 81, 1000<D, 81500<DL �� Short

8735, 280, 715, �1494�, 415, 650, 516<
Union@testlistD �� myTiming

0.000329

Union@testlist, SameTest ® HSameQ@ð1, ð2D ÈÈ Abs@ð1 -ð2D � 2 &LD; ��
myTiming

0.531

We see that it is more then a 1000(!) times slower with this non-trivial "sameness" function, for this size of
the list.

This illustrates several things. First of all, if we think of it, the specific problem and the notion of
"sameness" as formulated above is ill-posed, because depending on the order in which the Union opera -
tion is performed, we will get different results. For example, consider a list {2,4,6}: if <4> is eliminated
first, we get {2,6}, but if <6> is eliminated first, we get just {2}. Essentially the problem here is that our
notion of sameness is not transitive. Perhaps a more meaningful formulation in this case would be to
locate all chains of numbers with each one different by 2 from the next one in the chain. In any case, one
has to make sure that the problem is well-formulated, and the sameness function better be transitive.

However, ignoring this issue for the moment, the sameness function above illustrates another point well: it
is a stronger requirement to provide a sorting function (which we did not do, and also the syntax of Union
does not allow us to), than to provide the sameness function, because in the former case we have to define
not just the notion of same, but also notions of greater and smaller (actually, for sorting purposes, the
notion of same is less important than the latter two). However it is exactly the existence of the sorting
function (criteria) which allows to map our set (list) to say natural numbers and thus reduces the computa -
tion time from quadratic in the length of the list (that is, if we just compare all elements pairwise), to log-
linear. And just the fact that the built-in function Union takes the sameness function does not mean that it
translates it efficiently into a sorting function - this is not always possible at all, and in any case is a (non-
trivial in general) programmer’s task. Thus, we should not expect miracles, but rather should reformulate
the problem such that the proper sorting function is available (if possible, of course).

402

This illustrates several things. First of all, if we think of it, the specific problem and the notion of
"sameness" as formulated above is ill-posed, because depending on the order in which the Union opera -
tion is performed, we will get different results. For example, consider a list {2,4,6}: if <4> is eliminated
first, we get {2,6}, but if <6> is eliminated first, we get just {2}. Essentially the problem here is that our
notion of sameness is not transitive. Perhaps a more meaningful formulation in this case would be to
locate all chains of numbers with each one different by 2 from the next one in the chain. In any case, one
has to make sure that the problem is well-formulated, and the sameness function better be transitive.

However, ignoring this issue for the moment, the sameness function above illustrates another point well: it
is a stronger requirement to provide a sorting function (which we did not do, and also the syntax of Union
does not allow us to), than to provide the sameness function, because in the former case we have to define
not just the notion of same, but also notions of greater and smaller (actually, for sorting purposes, the
notion of same is less important than the latter two). However it is exactly the existence of the sorting
function (criteria) which allows to map our set (list) to say natural numbers and thus reduces the computa -
tion time from quadratic in the length of the list (that is, if we just compare all elements pairwise), to log-
linear. And just the fact that the built-in function Union takes the sameness function does not mean that it
translates it efficiently into a sorting function - this is not always possible at all, and in any case is a (non-
trivial in general) programmer’s task. Thus, we should not expect miracles, but rather should reformulate
the problem such that the proper sorting function is available (if possible, of course).

In fact, it is even better if we can reformulate a problem such that instead of the sorting function applied to
elements of our list, we can use some key function which computes a key (say, integer number) for each
element in the list, so that the majority of subsequent operations are performed with keys rather than the
original elements. In Mathematica such approach often gives a large speed advantage since many opera-
tions are much faster with numbers than with arbitrary symbolic expressions. In cases when such key
function is available, there are several techniques which can be efficiently used to replace Union. We will
exploit this technique many times later, but for now let us just consider another problem as an illustration
of these statements.

We will use the same large list as above, but define two numbers the same when they have the same
remainder of division by 60. Here is (without explanation) the better code to eliminate the duplicate
elements:

Reap@Sow@ð, Mod@ð, 60DD & �� Sort@testlistD, _, First@ð2D &D@@2DD ��
Short

81, 2, 3, 4, 6, �50�, 161, 166, 193, 196, 239<
This is how long it takes to do so:

Reap@Sow@ð, Mod@ð, 60DD & �� Sort@testlistD, _, First@ð2D &D@@2DD ��
myTiming

0.00578

For versions of Mathematica earlier than 5.0, where Reap-Sow operations were not yet available, one can
use the following code (slight extension of the technique used by Carl Woll), which takes about twice
longer to execute than the one above (once again, we provide it here for illustration and timing compari-
son, so please ignore the code for now - we will revisit it later):

Module@8md, g<,
g@x_D := False;

Map@If@g@md = Mod@ð, 60DD, Unevaluated@Sequence@DD,
Hg@Evaluate@mdDD = TrueL; ðD &, Sort@testlistDDD �� Short

81, 2, 3, 4, 6, �50�, 161, 166, 193, 196, 239<
And this is the result of Union with the SameTest option and its timing:

 403

Union@testlist, SameTest ® HMod@ð1, 60D � Mod@ð2, 60D &LD �� Short ��
Timing

80.125 Second, 81, 2, 3, 4, 6, �50�, 161, 166, 193, 196, 239<<
We get about 25 times speed-up with Reap-Sow method and about 10 times with the Woll’s technique,
with respect to the one using Union, for this size of the list. If we make a list larger, the difference will be
even more dramatic.

To conclude this rather long discussion, there can be a huge difference in performance of Union depend-
ing on whether it is used in its "pure" form or some "sameness" function is provided. In the latter case, and
if the list is any large, it is advisable to first analyze the problem, because there could be superior alterna-
tives. Also, this behavior is not entirely the fault of Union, but partly reflects the fact that there is no
general efficient solution for eliminating same elements from the list if all we have is just the sameness
function, but not a comparison function.

Clear@testlistD;

� Sort : performance with a user-defined comparison function

There is an issue with the use of sorting functions for sorting large lists which I would like to mention
here. The problem is that for large lists, sorting them with a custom (user-defined) comparison function
may be much slower than when the default comparison function is used. The reasons have to do mostly
with the way Mathematica is built, particularly with the fact that the larger number of consecutive opera-
tions we can "push" into the kernel (so that it does them without interruption or dialog with the higher-
level symbolic constructs that we operate with in our Mathematica session), the more efficient code we
will get. The main rule when working with lists, which we stated before, of not breaking them into pieces,
is just another manifestation of this situation. Now, when we sort with the default function, kernel does all
the sorting internally and just returns the result to us. But when we supply the higher-level sorting func-
tion, it has to constantly interrupt to apply this function to list elements, and it slows it down considerably.
Let us consider an example to illustrate this point - we will sort a large nested list by an increasing value of
the first element of the sublists:

Hlargenested = Table@Table@Random@Integer, 81, 15<D,
8Random@Integer, 83, 20<D<D, 85000<DL �� Short@ð, 5D &

888, 8, 3, 3, 1, 15, 12, 5, 5, 8, 6, 13, 7, 13, 11, 7, 9, 3, 1, 4<,813, 10, 8, 8<, �4997�, 811, 10, 11, 3, 2, 4<<
Now we use a default sort (which will be by first element of the sublists):

Hsorted1 = Sort@largenestedDL �� myTiming

0.0171

Here we also sort by the first element of the sublists, but this time using a built-in OrderedQ comparison
function (which produces the same results as the one used internally by the "pure" Sort):

Hsorted2 = Sort@largenested, OrderedQ@8ð1, ð2<D &DL �� myTiming

0.22

404

We can check that results are the same :

sorted1 === sorted2

True

We see that in this example, the difference in speed is about 10 times (for this length of the list), but for
more complicated sorting functions the difference will be even larger. Later we will see that in some cases
there exists a partial solution to this efficiency problem. For small lists and when the performance is not
an issue, this complication probably does not matter.

I would also like to emphasize, that I view this situation as not a result of some faults in Mathematica
design, but rather a price to pay for having the level of generality that these functions (Sort, and also such
functions as Union or Split - see below) provide - they work on lists of arbitrary Mathematica expressions.
In cases when such level of generality is not needed, techniques are available to significantly speed-up
these operations. We will discuss some of them in part II.

� MapAt : efficiency pitfall for massive mappings

One has to be aware that there is a rather strange (unexpected) performance pitfall associated with use of
Position - MapAt. Consider for example mapping some function < g > on every even element in the list :

MapAt@g, Range@50D, Position@Range@50D, _ ?EvenQDD
81, g@2D, 3, g@4D, 5, g@6D, 7, g@8D, 9, g@10D, 11, g@12D, 13, g@14D,
15, g@16D, 17, g@18D, 19, g@20D, 21, g@22D, 23, g@24D, 25, g@26D,
27, g@28D, 29, g@30D, 31, g@32D, 33, g@34D, 35, g@36D, 37, g@38D,
39, g@40D, 41, g@42D, 43, g@44D, 45, g@46D, 47, g@48D, 49, g@50D<

But let us consider a larger list :

MapAt@g, Range@1000D, Position@Range@1000D, _ ?EvenQDD; �� Timing

80.02, Null<
And yet larger one :

MapAt@g, Range@25000D, Position@Range@25 000D, _ ?EvenQDD; �� Timing

824.756, Null<
This behavior is rather strange and this is one of the rare cases where it looks like this has been overlooked
in the implementation of MapAt (however, this could be a deliberate decision or a result of some trade-off
between say the speed and the reliability of the underlying algorithm used in implementing MapAt). In this
case, the rule-based approach is clearly superior:

Range@25000D �. x_ ?EvenQ ¦ g@xD; �� Timing

80.071, Null<
Let me further comment on this behavior. A more detailed performance analysis shows that MapAt works
quite well in cases when all branches of the symbolic tree of the expression we are mapping on do not
contain too many nodes on which we have to Map. For example, it will work much better on say 10 - ary
tree than on a flat list containing the same end elements. As an explicit example, consider a list of natural
numbers of the length 4^7 ==2^14:

 405

testexpr = Range@16384D;
pslist = Position@testexpr, _ ?EvenQD; �� Timing

80.06, Null<
This is how long it takes for this flat list :

MapAt@g, testexpr, pslistD; �� Timing

88.592, Null<
Now we will partition this list into a 4 - ary tree of depth 7, containing the same numbers as its leaves :

Htestexpr = Nest@Partition@ð, 4D &, Range@16384D, 7D;
pslist = Position@testexpr, _ ?EvenQDL; �� Timing

80.28, Null<
Look at the timing now :

MapAt@g, testexpr, pslistD; �� Timing

80.09, Null<
We could accomplish the same task as before, by Flattening the result :

Flatten@MapAt@g, testexpr, pslistDD; �� Timing

80.08, Null<
The net speed - up in this example is 100 times, and about 30 times if we include the extra overhead of
Partition command and Position operation on a nested structure.

My main conclusion here is that MapAt is optimized to work with rather "vertical" trees. In particular, it
may become totally inefficient when mapping on a large list of positions, and also for mostly "flat" and
"horizontal" structures characterized by branches with large number of sub - branches/leaves. In the latter
situations my advice would be to switch from Mapping on certain positions to the rule-based approach, if
possible. A good possibility might be to first locate the position of such large sub-branch and then use
MapAt to map a rule-based substitution function on these sub-branches.

Clear@testexprD;

406

� Appendix D Some online Mathematica resources

Here I briefly mention some useful Mathematica resources

� Wolfram sites

Some of the greatest Mathematica resources live at several Wolfram sites:

www.wolfram.com - The main site of Wolfram Research Inc. Contains lots of information on Mathemat-
ica of all sorts. All other Wolfram sites link here.

MathWorld - http://mathworld.wolfram.com - An online encyclopedia of Mathematics maintained by
Eric Weisstein. A great resource for various Mathematical facts, such as formulas, theorems etc. What is
important is that whenever a translation of a given fact or formula to Mathematica is possible, it is there.

Functions site - http://functions.wolfram.com/ - contains reference information on a very large number of
elementary and special functions, together with visualizations and Mathematica notation for them.

Online documentation - http://reference.wolfram.com - The complete online documentation of all Mathe-
matica features. Contains plenty of examples. The ultimate place to look for correct syntax and detailed
explanations of workings of any specific function. Also has lots of small thematic tutorials.

The online repository http://library.wolfram.com/ - formerly MathSource - contains thousands on extra
materials including tutorials, application packages, technical notes and reports etc. A great resource to
learn more on Mathematica and Mathematica programming. Also, may contain the application you need,
already implemented completely or in part.

� Other resources

Mathematica newsgroup - comp.soft - sys.math.mathematica - is the place where you can post your
problem and get help from expert users or, sometimes, even developers, and also a huge repository of
topics already discussed and problems solved.

Ted Ersek’ s Mathematica tricks - www.verbeia.com/mathematica/tips/Tricks.html - one of the best
places to look for lots of unobvious details and subtleties about the workings of specific built-in com-
mands and Mathematica in general. Also, a great source of examples.

 407

http://www.wolfram.com
http://mathworld.wolfram.com
http://functions.wolfram.com
http://reference.wolfram.com
http://library.wolfram.com
http://groups.google.com/group/comp.soft-sys.math.mathematica/topics
http://www.verbeia.com/mathematica/tips/Tricks.html

The bibliography

� Books devoted mostly or entirely to Mathematica programming

1. John W.Gray, Mastering Mathematica, Second Edition: Programming Methods and Applications ,
Academic Press, 2 edition (1997)

2. Roman E.Maeder, Programming in Mathematica, Addison-Wesley Professional; 3 rd Edition. (1997)

3. Roman E.Maeder, Computer Science with Mathematica , Cambridge University Press (2000)

4. Roman E.Maeder, The Mathematica Programmer, Academic Press (1994)

5. Roman E.Maeder, The Mathematica Programmer II, Academic Press (1996)

6. Michael Trott, The Mathematica Guidebook for Programming , Springer (2004)
 The Mathematica Guidebook for Graphics, Springer (2004)
 The Mathematica Guidebook for Symbolics, Springer (2005)
 The Mathematica Guidebook for Numerics, Springer (2005)

7. David B.Wagner, Power Programming With Mathematica: The Kernel, Mcgraw-Hill (1996)

8. Paul R.Wellin, Richard J.Gaylord, and Samuel N.Kamin, An Introduction to Programming with Mathe-
matica, Third Edition, Cambridge University Press (2005)

9. Stephen Wolfram, The Mathematica Book, Wolfram Media, Fifth Edition (2003)

� Some general and introductory Mathematica books

10. Nancy Blachman and Colin Williams, Mathematica : A Practical Approach , Prentice Hall PTR; 2nd
Edition (1999)

11. Heikki Ruskeepaa, Mathematica Navigator: Mathematics, Statistics, and Graphics , Academic Press,
Second Edition (2004)

12. William T.Shaw and Jason Tigg, Applied Mathematica : Getting Started, Getting it Done, Addison -
Wesley Professional (1993)

� Mathematica - unrelated references

13. Paul Graham, ANSI Common Lisp, Prentice Hall (1995)

14. http : // paulgraham.com/power.html

408

		2009-02-04T11:30:22-0800
	Leonid Shifrin

