Astrophysics of gravitational wave sources
Lecture 13: GW170817 & “future” sources of GW

Ondrej Pejcha
UTF MFF UK



Binary neutron star merger

Radice et al.



Neutron star mergers

Jet—=ISM Shock (Afterglow)

Optical (hours—days)

Radio (weeks—years)

Ejecta=ISM Shock

Radio (years)

Kilonova . (V(\_/

Optical (t~ 1 day) "~

Merger Ejecta
Tidal Tail & Disk Wind

’ /\f 01-03c |
— @@ — § &

Metzger & Berger (2012)



GW170817

500 i
Rt LIGO - Virgo et P ESONTT
300 T 1~ : SOAR
T gl T N ESO-VLT
=200 = Bl e I
: 54
g g E
: e
v) e, 400

6 400 600 1000 2000
t-t. (s) wavelength (nm)

O —

LIGO, Virgo

y-ray @
Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Swift, AGILE, CALET, H.E.S.S., HAWC, Konus-Wind

I I niili i1 |1
X-ra ®

Swift, MAXI/GSC, NuSTAR, Chandra, INTEGRAL

uv o—o—

Swift, HST

Optlcal
wope, DECam, DLT40, REM-ROS2, HST, Las Cumbres, SkyMapper, VISTA, MASTER, Magellan, Subaru, Pan-S
HCT TZAC, LSGT, T17, Gemini-South, NTT, GROND, SOAR, ESO-VLT, KMTNet, ESO-VST, VIRT, SALT, CHILES TOROS
BOOTES-5, Zadko, iTelescope.Net, AAT, Pi of the Sky, AST3-2, ATLAS, Danish Tel, DFN, T80S, EABA I I l ' ll I " l l] I” I l I

REM-ROS2, VISTA, Gemini-South, 2MASS, Spitzer, NTT, GROND, SOAR, NOT, ESO-VI anata Telescope, HST

}\Il IIIIIIIIIIIII il

Radio
ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR, LW, A, OVRO, EVN, e-MERLIN, MeerKAT, Parkes, SRT, Effelsberg /’ |

-100 -50 50 102 10" 0° 10|
2 (s) t-t. (days) / \

1M2H Swope Chandra

10.86h A[12an  vik| od Xertoy

MASTER Las Cumbres J VLA

iz/[11.57h w| [16.4d Radio

Abott et al. (2017)



20

25

Apparent mag (AB) + offset

30

Rest frame time from merger (days)

15

Observations of GW170817
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gives a brighter and briefer kilonova.
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Figure 2 | Models of kilonovae demonstrating the observable signatures of r-process

abundances. All models have an ejecta mass M = 0.05M_ and velocity v = 0.2¢, but

different mass fractions of lanthanides Xj,,. a, Model bolometric light curves. If the ejecta

is composed primarily of heavier r-process material (X > 107°) the opacity is higher,

resulting in a longer diffusion times and longer duration bolometric light curves. b,

Model spectra as observed 4.5 d after the mergers. The higher lanthanide opacities of the

heavy r-process materials obscure the optical bands and shift the emission primarily to Kasen et al. 2017

the infrared.



What can we learn from a spectrum of kilonova?
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Figure 3 | Models of kilonovae demonstrating the spectral diagnostics of the ejecta
velocity. The models all have ejecta mass M = 0.03M,. a, Spectra of models composed
of light r-process material (Xi., = 10" observed 1.5 d after the merger. Modest ejecta
velocities (v = 0.03¢, typical of supernovae) produce conspicuous absorption spectral
features. At higher velocities (v = 0.1¢—0.2¢) the features are broadened and blended,
while for v = 0.3¢ the spectra are essentially featureless. The optical spectra of

AT 2017gfo were featureless, implying a high-velocity, approximately 0.3¢ component
of light r-process ejecta. b, Spectra of models composed of heavy r-process material

(Xian = 107%) observed 3.5 d after the merger. The infrared spectra of AT 2017gfo showed

broad peaks, implying a lower-velocity, approximately 0.1¢ component of heavy r-

process ejecta. Kasen et al. (2017)



What can we learn from a spectrum of kilonova?
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Figure 4 | Models demonstrating how kilonova spectral features probe the

abundance of individual r-process elements. The spectral peaks in the models are

blends of many lines, primarily those of the complex lanthanide species. The default

model shown (parameters M = 0.04M_, v = 0.15¢, Xian = 107"%) uses a solar distribution

of lanthanides, and has spectral peaks near 1.1 um, 1.5 pm and 2.0 pm (marked with

dashed lines). These features are mainly attributable to neodymium (Z = 60) given that

reducing or removing this species changes the feature locations. However, other

lanthanides such as cerium (Z = 58) also affect the blended peaks. Uncertainties in the

current atomic line data sources limit hinder spectral analysis, but with improved atomic Kasen et al. (20 17)

inputs a more detailed compositional breakdown is within reach.
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Over the 380-ms duration of the simulation, we find
that a fraction =20% of the initial torus mass is
unbound in powerful outflows with asymptotic
velocities v = 0.1c and electron fractions Y.= 0.1-0.25.

Siegel & Metzger (2017)
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Binary objects

Binary neutron stars / black holes
White dwarfs

EMRIs = Extreme Mass-ratio Inspirals
Supermassive black holes
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GW also from accreting NS and
other surface processes on NS
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Figure 5. Time—frequency content of the GW signal for the 25 M., progenitor.
The white dots denote the eigenfrequencies associated with the quadrupolar f-
and low-order, n = 1, 2, g-modes of the PNS as computed from linear
perturbation theory. This progenitor is the only one in our set showing a clear
signature of the SASI at low frequency. The presence of a higher-frequency
component associated with PNS oscillations is instead universal.

Radice et al. (2019)



Stochastic GW background

Unresolved sources of cosmological and astrophysical origin,
redshifted accordingly to their emission epoch
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FIG. 3. Presented, here, are constraints on the background in PI form [59], as well as some representative models, across many decades
in frequency. We compare the limits from ground-based interferometers from the final science run of Initial LIGO-Virgo, the colocated
detectors at Hanford (HI-H2), Advanced LIGO (aLIGO) O1, and the projected design sensitivity of the advanced detector network
assuming two years of coincident data, with constraints from other measurements: CMB measurements at low multipole moments [60],
indirect limits from the cosmic microwave background (CMB) and big bang nucleosynthesis [61,62], pulsar timing [62], and from the
ringing of Earth’s normal modes [63]. We also show projected limits from a space-based detector such as LISA [59,64.65], following
the assumptions of [59]. We extend the BNS and BBH distributions using an %3 power-law down to low frequencies, with a low-
frequency cutoff imposed where the inspiral time scale is of the order of the Hubble scale. In Fig. 5, we show the region in the black box
in more detail.

Abott et al. (2017)
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Masses in the Stellar Graveyard

in Solar Masses
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The Origin of the Solar System Elements
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Very radioactive isotopes; nothing left from stars
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