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Abstract

We explore the evolution of a select grid of solar metallicity stellar models from their pre-main-sequence phase to
near their final fates in a neutrino Hertzsprung—Russell diagram, where the neutrino luminosity replaces the
traditional photon luminosity. Using a calibrated MESZ solar model for the solar neutrino luminosity
(Lie =0.02398 - L . = 9.1795 x 10°" erg s™') as a normalization, we identify ~0.3 MeV electron neutrino

emission from helium burning during the helium flash (peak L, ,fL,,,«_:;_ ~ 104, flux ®, pe fash = 170 (10 pe/ d)*
ecm > s ' for a star located at a distance of d parsec, timescale ~3 days) and the thermal pulse (peak
L,,/’L,,,;_; ~ 107, flux &, 1p ~ 1.7 x 107 (10 pc/d)z em 2 s !, timescale ~0.1 yr) phases of evolution in low-mass
stars as potential probes for stellar neutrino astronomy. We also delineate the contribution of neutrinos from
nuclear reactions and thermal processes to the total neutrino loss along the stellar tracks in a neutrino Hertzsprung—
Russell diagram. We find, broadly but with exceptions, that neutrinos from nuclear reactions dominate whenever

hydrogen and helium burn, and that neutrinos from thermal processes dominate otherwise.
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Fig. 2 Pair-driven pulsations cause rapid variations in the central temperature (10° K) near the
time of death for helium cores of 32. 36. 40, 44, 48, 52 (on two different time scales) and 56 M,
(left to right: top to bottom). The log base 10 of the time scales (s) in each panel are respectively
4.4.5.5.6.8,7.and 10. The last rise to high temperature marks the collapse of the iron core to a
compact object. More massive cores have fewer, less frequent. but more energetic pulses. All plots
begin at central carbon depletion.

Woosley & Heger (2015)
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Figure 2. Mass of final BH as a function of the CO core mass for different metallicities. Circles denote models that underwent at least one pulse, pluses evolved
directly to CC, and crosses undergo a PISN. The left (blue) region denotes where models undergo CC, the middle (green) region denotes PPISNe, while the right
(yellow) region denotes PISNe, as determined by stars with Z = 1077, Points in the right panel show the current median mass estimates for the double compact objects
detected by LIGO /VIRGO with their 90% confidence intervals (Abbott et al. 2019a). Dashed horizontal lines emphasize the maximum spread in the locations for the
edge of the BH mass gap, or in other words the spread in the maximum BH mass below the PISN BH mass gap.

Farmer et al. (2019)



