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Abstract

We investigate higher dimensional Robinson–Trautman spacetimes with an electromagnetic field
aligned with the hypersurface orthogonal, non-shearing, expanding geodesic null congruence. After
integrating the system of Einstein–Maxwell equations with an arbitrary cosmological constant, we
present the complete family of solutions. In odd spacetime dimensions they represent (generalized)
Reissner–Nordström–de Sitter black holes. The event horizon (more generically, the transverse
space) may be any Einstein space, and the full metric is specified by three independent parameters
related to mass, electric charge and cosmological constant. These solutions also exhaust the class
of Robinson–Trautman spacetimes with an aligned Maxwell–Chern–Simons field (the CS term must
vanish because of the alignment assumption and of the Einstein equations). In even dimensions an
additional magnetic “monopole-like” parameter is also allowed provided now the transverse space is
an (almost-)Kähler Einstein manifold. The Weyl tensor of all such solutions is of algebraic type D.
We also consider the possible inclusion of aligned pure radiation.

PACS 04.50.+h, 04.20.Jb, 04.40.Nr

1 Introduction

In General Relativity, the study of ray optics has played a major role in the construction, in-
tepretation and invariant classification of exact solutions (see, e.g., [1] for a review and for original
references). This applies in particular to solutions representing gravitational radiation. During the
Golden Age of theoretical studies of exact radiative spacetimes, Robinson and Trautman introduced
and investigated D = 4 dimensional Lorentzian geometries that admit a geodesic, non-twisting, non-
shearing, expanding null congruence [2,3]. The Robinson–Trautman family is by now one of the fun-
damental classes of exact solutions to Einstein’s field equations in vacuum and with principal matter
fields such as pure radiation or an electromagnetic field [1]. It includes a number of well-known space-
times ranging from static black holes and the Vaidya solution to the C-metric and other radiative
solutions. Noticeably, the Goldberg–Sachs theorem [1] implies that Robinson–Trautman geometries
are algebraically special (at least in vacuum and with “sufficiently aligned” matter fields), since they
are non-shearing. In fact, explicit vacuum solutions of all special Petrov types are known [1–3].

The geometric optics approach was naturally developed in the framework of D = 4 General
Relativity. On the other hand, in recent years string theory and specific extra-dimension scenarios
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have stimulated the investigation of gravity in more than four spacetime dimensions. It is thus now
interesting to consider possible extensions of the above concepts to arbitrary (higher) dimensions,
and their relation to the D > 4 classification of the Weyl tensor [4]. In [5–9], various general aspects
of geometric optics in D > 4 dimensions (which evades the standard D = 4 Goldberg–Sachs theorem
in many ways) have been analyzed. In [10], the Robinson–Trautman family of solutions has been
extended to higher dimensions in the case of empty space possibly with a cosmological constant and in
the case of aligned pure radiation. The authors pointed out important differences with respect to the
D = 4 case for vacuum spacetimes (see also [9,11]). However, from a higher dimensional perspective
one would also be interested in theories that incorporate electromagnetic fields. It is thus the purpose
of this paper to study Robinson–Trautman spacetimes in the higher dimensional Einstein–Maxwell
theory (for any value of the cosmological constant). For simplicity, we will focus on aligned fields.
In D ≥ 5 odd dimensions, we shall also consider the inclusion of an additional Chern–Simons term,
which gives rise, e.g., to the bosonic sector of five-dimensional minimal (gauged) supergravity.

The paper is organized as follows. In section 2 we present the line element of generic Robinson–
Trautman spacetimes [10] and we study purely algebraic properties of an aligned Maxwell field. In
section 3 we proceed by integrating systematically the full set of Einstein–Maxwell equations within
such a setting. We summarize the obtained spacetimes and we discuss some special cases in section 4.
Concluding remarks are in given section 5. Throughout the paper we focus on D > 4 dimensions,
and well-known results in the special case D = 4 are summarized in the Appendix.

2 Robinson–Trautman geometry and aligned Maxwell fields

As shown in [10], the general line element for any D-dimensional spacetime which admits a non-
twisting, non-shearing but expanding congruence [5, 6] generated by the geodesic null vector field k
can be written as

ds2 = gij

(
dxi + gridu

) (
dxj + grjdu

)
− 2 dudr − grrdu2. (1)

Here, u =const are the null hypersurfaces to which k is normal, r is the affine parameter along
the geodesics generated by k = ∂r, and x ≡ (xi) ≡ (x1, x2, . . . , xD−2) are spatial coordinates on a
“transverse” (D − 2)-dimensional Riemannian manifold M(D−2). The metric functions

gri = gijguj , grr = −guu + gijguiguj , and gui = grjgij , (2)

may depend arbitrarily on (x, u, r), while the spatial components gij have the factorized form gij =
p−2(x, u, r)hij(x, u), and grr = 0 = gri (note that det gij = −det gαβ). The expansion of k is given
by θ ≡ kα

;α/(D − 2) = −(ln p),r, which we assume non-vanishing. The above metric is invariant
under the coordinate transformations

xi = xi(x̃, ũ), u = u(ũ), r = r0(x̃, ũ) + r̃/u̇(ũ). (3)

The next step is to impose Einstein’s equations with a suitable energy-momentum tensor in the
above Robinson–Trautman class. In the present paper we concentrate on spacetimes with Maxwell
fields aligned with the geometrically privileged null vector field k, characterized by

Fαβk
β = N kα, (4)

where N is an arbitrary funtion. In the coordinate system introduced above this means

Fri = 0 = Fui, Fru = N = Fur, (5)

with components Fij , Fui (or F ij = gikgjlFkl, F ir = −N gri + gijFuj − grkgijFkj) still arbitrary.
Consequently,

Fu
r = Fu

i = F i
r = 0 = Fr

u = Fr
i = Fi

u,

F r
r = −Fu

u = N = −Fr
r = Fu

u, (6)

with F r
u, F

r
i, F

i
u, F

i
j , and Fi

r, Fi
j , Fu

r, Fu
i generally non-trivial.
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For the corresponding energy-momentum tensor of the electromagnetic field

Tαβ =
1
4π

(
FαµFβ

µ − 1
4
gαβFµνF

µν

)
, (7)

we find
Trr = Tri = 0, (8)

with the remaining components Tij , Tur, Tui, Tuu in principle non-trivial and specified below. Notice
that the trace

T µ
µ =

4−D
16π

FµνF
µν =

4−D
16π

(FijF
ij − 2N 2) (9)

is generally non-zero unless D = 4.
The field equations Rαβ− 1

2Rgαβ +Λgαβ = 8πTαβ including an arbitrary cosmological constant Λ
thus take the form

Rαβ =
2

D − 2
Λgαβ + 8πTαβ +

1
2
D − 4
D − 2

gαβFµνF
µν , (10)

which will now be solved together with source-free Maxwell equations F[αβ;γ] = 0 and Fµν
;ν = 0,

and their Chern–Simons modification in odd dimensions.

3 Integration of the Einstein–Maxwell field equations

3.1 Equations Rrr = 0 and Rri = 0

Due to (8) and (1), the Einstein equations (10) for Rrr and Rri are exactly the same as in the
vacuum case [10]. Consequently, for the Robinson–Trautman class of spacetimes, we obtain p = r−1

(up to a trivial rescaling of hij by a function of (x, u)) [10], i.e.

gij = r2hij(x, u), (11)

and
gri = ei(x, u) + r1−Df i(x, u), (12)

where hij , which is the transverse spatial part of the metric, and ei, f i are arbitrary functions of x
and u. The r-dependence of the metric functions gij , g

ri is now completely fixed.
Also, thanks to (11), we can write

−det gαβ = r2(D−2)h, (13)

where
h = h(x, u) ≡ dethij(x, u). (14)

We further note that the expansion of the congruence k is now given by θ = 1/r.

3.2 Maxwell equations (step one)

To determine the r-dependence of the components Fµν , we now employ Maxwell’s equations. With
eq. (5), the “geometrical” equations F[αβ;γ] = 0, equivalent to Fαβ,γ + Fβγ,α + Fγα,β = 0, imply

Fij,r = 0, (15)
Fui,r = −N,i, (16)
Fij,u = Fuj,i − Fui,j , (17)
F[ij,k] = 0. (18)

In view of (13), the “dynamical” equations Fµν
;ν = (−det gαβ)−

1
2
(
(−det gαβ)

1
2Fµν

)
,ν

= 0 are

(rD−2N ),r = 0, (19)
√
h (rD−2 F ir),r = −rD−2 (

√
h F ij),j , (20)

(
√
h F ir),i = −(

√
h N ),u. (21)
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From (15) we observe that the components Fij are independent of r,

Fij = Fij(x, u). (22)

Using (19), we find
Fru = N = r2−DQ(x, u), (23)

with Q(x, u) arbitrary. Using this result and (16), we obtain

Fui = r3−D Q,i

D − 3
− ξi(x, u), (24)

with ξi(x, u) being some functions of x and u. Thus we found the r-dependence of all electromagnetic
field components. In particular, the invariant FµνF

µν of the Maxwell field is

FµνF
µν = r−4F 2 − r2(2−D) 2Q2, (25)

where we have defined
F 2(x, u) ≡ FikFjlh

ijhkl, (26)

and (from now on) hij denotes the inverse of hij . We always have F 2 ≥ 0 (with F 2 = 0⇔ Fij = 0)
because, in an orthonormal frame, F 2 =

∑
i,j F

2
(i)(j).

Substituting (24) into (17), we get

Fij,u = ξi,j − ξj,i , (27)

while equation (18) is unchanged. Finally, if expanded in the powers of r using the previous results,
the remaining Maxwell equations (20) and (21) yield the following set of relations in D > 4:

Qf i = 0, (28)
Fjkf

k = 0, (29)
Q,j = 0, (30)

ξj − Fjke
k = 0, (31)

(
√
hhikhjlFkl),j = 0, (32)

(
√
hQ),u − (

√
hQei),i = 0. (33)

Relations (27)–(33) and (18) place restrictions on the admissible electromagnetic fields (22)–(24)
in Robinson–Trautman spacetimes. We shall return to the implications of these constraints after
we employ the following Einstein equation in subsection 3.4. For the special case D = 4, see the
Appendix.

The above results have already an important consequence. Namely, one of the necessary con-
ditions for having a null Maxwell field reads FµνF

µν = 0. In view of the r-dependence specified
by (25), one finds immediately that for D > 4 this requires Fij = 0 = Q and thus Fru = 0. Sub-
stituting into (20) this gives also Fui = 0, that is, a vanishing electromagnetic field. Hence higher
dimensional Robinson–Trautman spacetimes do not admit aligned null Maxwell fields, as opposed to
the D = 4 case [1, 3]. This is an explicit example of the result of [11] that higher dimensional null
Maxwell fields can not have expanding rays with vanishing shear.

3.3 Chern–Simons term

In theories which include a Chern–Simons term, formulated in odd spacetime dimensions (D = 2n+ 1),
the set of geometrical equations (15)–(18) is unchanged (dF = 0). On the other hand, the dynamical
set contains now an additional term on the r.h.s. (cf., e.g., [12])

(
√
−det gαβ F

µν),ν = −λ εµγδ...στ Fγδ . . . Fστ︸ ︷︷ ︸
n times

, (34)

where λ is a coupling constant. Note that Fri = 0 thanks to the alignment condition (5), so that
the Chern–Simons term does not affect eq. (34) with µ = u, which thus takes again the form (19).
In fact, this is the only dynamical equation we used in the discussion above, so that eqs. (22)–(27)
apply also in the Chern–Simons case. Moreover, if one assumes that also Fij = 0 (no “magnetic”
field), the Chern–Simons term then vanishes identically for any odd D. In particular, null fields are
thus ruled out again. Further analysis will be simpler after looking at the next Einstein equation.
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3.4 Equation Rij = 2
D−2

Λgij + 8πTij + 1
2

D−4
D−2

gijFµνF
µν

The Ricci tensor component Rij for the metric (1) was calculated in [10]. With (11), (12) this reads

Rij = Rij − r4−D
(
rD−3grr

)
,r
hij − r2(2−D) (D − 1)2

2
hikhjlf

kf l

− r
[
D − 2

2

(
2hk(ie

k
,j) + ekhij,k − hij,u

)
+

(
ek

,k + ek(ln
√
h),k − (ln

√
h),u

)
hij

]
+ r2−D

[
1
2

(
2hk(if

k
,j) + fkhij,k

)
−

(
fk

,k + fk(ln
√
h),k

)
hij

]
, (35)

where Rij is the Ricci tensor associated with the spatial metric hij , and indices in small round
brackets are symmetrized. The corresponding component of the energy-momentum tensor is

Tij =
1
8π
r2(3−D)Q2hij + r−2 1

4π

(
FikFjlh

kl − 1
4
F 2hij

)
. (36)

Using (22) and (25), one can separate terms in the field equation with different r-dependence. By
contracting with hij , we obtain a differential equation for grr which can be integrated immediately.
For D > 5 this yields

grr = c1 + c2r + c3r
2 + c4r

2−D + c5r
2(2−D) + c6r

3−D + c7r
−2 + c8r

2(3−D), (37)

where c1, . . . , c8 are functions of (x, u) as follows

c1 =
R

(D − 2)(D − 3)
, c2 =

2
D − 2

[
(ln
√
h),u − ek

,k − ek(ln
√
h),k

]
,

c3 = − 2Λ
(D − 1)(D − 2)

, c4 =
D − 3
D − 2

[
fk

,k + fk(ln
√
h),k

]
,

c5 =
1
2
D − 1
D − 2

hklf
kf l , c6 arbitrary , (38)

c7 = − F 2

(D − 2)(D − 5)
, c8 =

2Q2

(D − 2)(D − 3)
,

where R = hijRij . For D = 5 the only difference is that in (37) one should replace c7r−2 with
the term − 1

3F
2r−2 ln(c7r) where c7 is an arbitrary function of (x, u) with the dimension of an

inverse length. Next, substituting the above expressions back into the Einstein equation for Rij , we
determine for any D > 4 the following constraints on the metric hij and the functions ei and f i:

Rij =
R

D − 2
hij , (39)

2hk(ie
k

,j) + ekhij,k − hij,u =
2

D − 2

[
ek

,k + ek(ln
√
h),k − (ln

√
h),u

]
hij , (40)

2hk(if
k

,j) + fkhij,k =
2

D − 2

[
fk

,k + fk(ln
√
h),k

]
hij , (41)

(hklf
kf l)hij = (D − 2)(hikf

k)(hjlf
l), (42)

hijF
2 = (D − 2)FikFjlh

kl. (43)

As we notice, (42) is identical to the vacuum case discussed in [10] and it requires

f i = 0. (44)

In analogy to [10], we also use the coordinate freedom (3) to achieve

ei = 0, (45)

so that gri = 0 = gui and eqs. (41) and (42) are now satisfied identically.
In addition, constraint (43) requires F 2 = 0 for any odd D. Indeed, taking the determinant of

(43), we obtain (F 2)D−2h2 = (2−D)D−2(detFij)2, but detFij = 0 for any antisymmetric matrix Fij
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and odd dimensionD−2 since detFij = det(−Fij) = (−1)D−2 detFij . Consequently, the logarithmic
term in D = 5 is zero, and in the following we need not treat the D = 5 case separately.

The Robinson–Trautman metric is thus simplified considerably and reads

ds2 = r2hij dxidxj − 2 dudr − grrdu2, (46)

where, using eqs. (37) and (38), the coefficient grr is explicitly given by

grr =
R

(D − 2)(D − 3)
+

2(ln
√
h),u

D − 2
r − 2Λ

(D − 2)(D − 1)
r2 − µ

rD−3

+
2Q2

(D − 2)(D − 3)
1

r2(D−3)
− F 2

(D − 2)(D − 5)
1
r2
, (47)

with
F 2 = 0 for any odd D = 5, 7, 9, . . . . (48)

The function µ(x, u), which renames c6, is arbitrary.
The (D − 2)-dimensional spatial metric hij is constrained by (39) and (40), now with ei = 0:

Rij =
R

D − 2
hij , (49)

hij,u =
2

D − 2
hij(ln

√
h),u. (50)

As in [10], relation (49) tells us that at any given u = u0 =const, the spatial metric hij(x, u0) must
describe an Einstein space (M(D−2), hij). For D > 4 this implies [10] that the spatial Ricci scalar
R can only depend on the coordinate u (and that in the particular case D = 5 the metric hij(x, u0)
corresponds to a 3-space of constant curvature). Equation (50) “controls” the parametric dependence
of hij(x, u) on u, and can easily be integrated to obtain hij = h1/(D−2) γij(x). Consequently,
h ≡ dethij = hdet γij , so that the matrix γij must be unimodular. Considering eq. (14) we can
write

hij =
γij(x)
P 2(x, u)

where det γij = 1, P−2 = h1/(D−2). (51)

The spatial metric hij(x, u) can thus depend on the coordinate u only via the conformal factor P−2.

3.5 Maxwell equations (step two)

Let us now return to the Maxwell equations. As noticed above, for any odd D we have F 2 = 0, i.e.

Fij = 0 (D = 2n+ 1 odd). (52)

Thanks to this significant simplification in odd dimensions, the Chern–Simons term in eq. (34)
vanishes identically (cf. the discussion in subsection 3.3), and from now on we can thus study both
Maxwell and Maxwell–Chern–Simons theories in a unified way.

Since now ei = 0 = f i (cf. (44), (45)), the dynamical Maxwell equations (28)–(31) simplify to
Q,j = 0, ξj = 0. In view of (24), (23), and (27), we see that for D > 4

Fui = 0, Fru =
Q(u)
rD−2

, Fij = Fij(x). (53)

The only remaining Maxwell equations (18), (32) and (33) read

F[ij,k] = 0, (54)

(
√
hhikhjlFkl),j = 0, (55)

(
√
hQ),u = 0. (56)

Notice that in even dimensions (cf. (52)) relations (54) and (55) are effective source-free Maxwell
equations for the (D − 2)-dimensional “spatial” (magnetic) field Fij in the Riemannian geometry
of hij . That is, the 2-form

F̃ ≡ 1
2Fij(x) dxi ∧ dxj (57)
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must be closed (dF̃ = 0) and coclosed (d∗F̃ = 0) in (M(D−2), hij). However, F̃ must also obey
the extra constraint (43), that is the last remnant of the Einstein equation for Rij . Recalling
the block-diagonal canonical form F̃ = c12 m(1) ∧m(2) + c34 m(3) ∧m(4) + . . . of a generic even-
dimensional antisymmetric matrix in an adapted orthonormal coframe (m(1), . . . ,m(D−2)) of hij ,
the condition (43) requires that in such a coframe one has in fact

F̃ =
F√
D − 2

(
m(1) ∧m(2) + m(3) ∧m(4) + . . .+ m(D−3) ∧m(D−2)

)
(D = 2n+ 2 even).

(58)
This special form of F̃ implies

∗F̃ =
(2n)(n−2)/2

(n− 1)!
F−(n−2) F̃ ∧ F̃ ∧ . . . ∧ F̃︸ ︷︷ ︸

(n − 1) times

, (59)

where the ∗-duality and ∧-product are (in this paragraph only) those of (M(D−2), hij). Hence, for
n > 2 (D > 6) imposing that the 2-form F̃ is simultaneosly closed and coclosed requires F,i = 0.
For n = 2 (D = 6), instead, F̃ is self-dual, therefore if it is closed it is also automatically coclosed,
without any restriction on F . We will recover the same results explicitly also below using the Einstein
equations, cf. eq. (65).

Note also that if F̃ is supposed to be regular and non-zero on M(D−2), then eq. (43) requires
that the Einstein space (M(D−2), hij) is an almost-Hermitian (possibly, Hermitian) manifold [13]
with the almost-complex structure J i

j = |F |−1(D − 2)1/2F i
j . In view of the previous comments,

for D = 2n + 2 > 6 the Maxwell equations imply that the 2-form Jij = hikJ
k
j associated with the

almost-complex structure is closed, so that the transverse space is not only almost-Hermitian but
actually almost-Kähler (possibly, Kähler).

3.6 Equation Rur = − 2
D−2

Λ + 8πTur − 1
2

D−4
D−2

FµνF
µν

The Ricci tensor component Rur for the metric (46) reads Rur = 1
2r

2−D
(
rD−2grr

,r

)
,r
−r−1(ln

√
h),u,

see [10]. By substituting the expression (47) we obtain

Rur = − 2Λ
D − 2

+ r2(2−D)D − 3
D − 2

2Q2 + r−4 1
D − 2

F 2 . (60)

Using (25) and

Tur =
1

16π
FµνF

µν +
1
4π
r2(2−D)Q2, (61)

we observe that the corresponding field equation is automatically satisfied in any dimension.

3.7 Equation Rui = 8πTui

For the energy-momentum tensor, using (7) and (53), we find Tui = 0. The Ricci tensor component
Rui for the metric (46) and (47), using Q,i = 0 and relation (50), is

Rui = r−1
(D − 4)R,i

2(D − 2)(D − 3)
+ r2−D µ,i

2
− r−3 (D − 6)(F 2),i

2(D − 2)(D − 5)
. (62)

Comparing the coefficients of different powers of r, we obtain immediately the following conditions

(D − 4)R,i = 0, (63)
µ,i = 0, (64)

(D − 6)(F 2),i = 0. (65)

Therefore, (for D > 4) the functions R and µ must be independent of the spatial coordinates,

R = R(u), µ = µ(u), (66)

and we further find
F 2 = F 2(u) for D 6= 6, even, (67)
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with F 2 = 0 in any odd D. For D = 6, eq. (65) is satisfied identically, with F 2 remaining a function
of both x and u. In D = 4, corresponding to the standard General Relativity, equation (63) is an
identity, so that one can have a much more general function R(x, u); eqs. (64) and (65) are also
modified, cf. the Appendix.

3.8 Equation Ruu = 2
D−2

Λguu + 8πTuu + 1
2

D−4
D−2

FµνF
µνguu

Finally, we evaluate the Ricci tensor component Ruu. Using the general expression (31) of [10],
relation (47) for grr = −guu, equations (50), (51) implying

√
h = P 2−D, and (66), we obtain

Ruu =
2

D − 2
Λguu −

(
r−4 F 2

D − 2
+ r2(2−D)D − 3

D − 2
2Q2

)
guu

+ r2−DD − 2
2

[(D − 1)µ(lnP ),u − µ,u]− r5−2D 2Q
D − 3

[(D − 2)Q(lnP ),u −Q,u]

+
r−3

2(D − 5)
[
4(F 2)(lnP ),u − (F 2),u

]
− r−4∆(F 2)

2(D − 2)(D − 5)
. (68)

where ∆ is the covariant Laplace operator with respect to the spatial metric hij , i.e. ∆(F 2) ≡
(F 2)‖j

‖j =
[
(F 2),ih

ij
]
,j

+(2−D)hij(F 2),i(lnP ),j . Note that we also dropped the term proportional
to r−1, which vanishes identically, see [10] (eqs. (33) and (B.4) therein).

Now, the coefficient of the r5−2D term vanishes provided the Maxwell equation (56) is satisfied,
and the coefficient of r−3 is zero thanks to Fij = Fij(x) and eqs. (26) and (51) — indeed these
conditions can be reexpressed as

Q,u = (D − 2)(lnP ),u Q , (69)
(F 2),u = 4(lnP ),u (F 2) . (70)

Moreover, using (25) and (53), we have

8πTuu +
1
2
D − 4
D − 2

FµνF
µνguu = −

(
r−4 F 2

D − 2
+ r2(2−D)D − 3

D − 2
2Q2

)
guu. (71)

We thus now only need to make sure that in (68) the coefficients of r2−D and of the last term in
r−4 vanish. Note that, by (67), (F 2),i = 0 for D 6= 6 so that the latter is automatically zero. On
the other hand, in the special case D = 6 both terms are non-zero and they combine in a single
expression. The field equations thus require

µ,u = (D − 1)(lnP ),u µ (D 6= 4, 6), (72)

or
µ,u = 5(lnP ),u µ− 1

16∆(F 2) (D = 6), (73)

in the two distinct cases D 6= 6 and D = 6, which we analyze separately in the next section.

4 Summary and discussion

Starting from the general Robinson–Trautman geometric ansatz (1), in the preceding section we
have imposed all the constraints coming from the Einstein–Maxwell equations. The resulting metric
takes a simplified form (46), which is fully specified by the single function grr in eq. (47), along
with the transverse Einstein geometry (M(D−2), hij), as determined by (49). The specific form of
the parameters and functions entering eq. (47) and possible constraints on the Einstein metrics hij

depend on the number of spacetime dimensions, as we will now discuss in the following.

4.1 Even dimensions: the generic case (D 6= 6)

For an arbitrary even D > 4 such that D 6= 6, by differentiating any of eqs. (69), (70), (72) with
respect to the spatial coordinates, we obtain (recall that Q = Q(u), F = F (u), µ = µ(u))

(lnP ),ui = 0, (74)
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unless µ = 0 and Q = 0 = F 2, which is the exceptional vacuum spacetime discussed in [10, 11],
and [9]. Eq. (74) can be integrated immediately, yielding the factorized form P (x, u) = P (x)U(u),
where P and U are arbitrary functions. Without loss of generality, we can set U = 1 by a suitable
coordinate transformation of the form u = u(ũ), r = r̃/u̇(ũ), under which the form of the metric
(46), (47) is invariant and the individual metric functions are reparameterized as follows

P̃ = P u̇ , R̃ = R u̇2 , µ̃ = µ u̇D−1 , F̃ 2 = F 2 u̇4 , Q̃ = Q u̇D−2. (75)

Choosing u̇ = 1/U and dropping tildas, we obviously achieve

P (x, u) = P (x), (76)

and considering eqs. (69), (70), and (72), we thus have

µ = const, Q = const, F 2 = const. (77)

Considering (66) and the fact that R is the Ricci scalar associated with the spatial metric hij =
hij(x) = P−2(x)γij(x), cf. (51), which now does not involve u, we conclude

R = const. (78)

In addition, we can now always set the constant term K ≡ R/(D − 2)(D − 3) in the metric (47) to
K = ±1, 0 using the remaining scaling freedom (75), namely u→ Cu, r → r/C, xi → C1/(D−2)xi.

To summarize, the explicit form of even dimensional (D 6= 6) Robinson–Trautman spacetimes
with an aligned electromagnetic field and possibly a cosmological constant is

ds2 = r2 hij(x) dxidxj − 2 dudr − 2H(r) du2. (79)

The function 2H ≡ grr = −guu and the Maxwell field are given by

2H = K − 2Λ
(D − 2)(D − 1)

r2 − µ

rD−3
+

2Q2

(D − 2)(D − 3)
1

r2(D−3)
− F 2

(D − 2)(D − 5)
1
r2
, (80)

F =
Q

rD−2
dr ∧ du+ 1

2Fij(x) dxi ∧ dxj (D 6= 6, even), (81)

where K = ±1, 0, and µ,Q, F are constants.1 The transverse manifold (M(D−2), hij) is a Rieman-
nian Einstein space, see (49), with the Ricci scalar normalized as R = K(D − 2)(D − 3). If this is
taken to be compact, these solutions admit a black hole interpretation, with a static exterior region
at 2H > 0. Obviously, Λ is the cosmological constant, µ parametrizes the mass, and Q is the electric
charge. If the magnetic term Fij is non-zero, (M(D−2), hij , J

i
j) must be an almost-Kähler Einstein

manifold (cf. subsection 3.5). The almost-complex structure gives Fij (up to a constant factor),
which thus satisfies the “effective” (D − 2)-dimensional Maxwell equations (54) and (55).

Note that, when F is non-zero and D > 4, (M(D−2), hij) can not be a sphere of constant cur-
vature,2 as one would require, e.g., for an asymptotically flat spacetime. By constrast, sperically
symmetric magnetic monopole solutions of the Einstein–Yang–Mills equations have been recently
found in [19]. The line element given in [19] coincides with our eqs. (79), (80) in the special subcase
K = 1, Q = 0, except that (M(D−2), hij) is a round sphere there. Note, however, that even in
that case the large-r behaviour of the F term in (80) does spoil the standard “good properties” of
an asymptotically simple spacetime [19]. We refer to [19] for a discussion of the horizon structure
(cf. also [20] for the case F = 0).

1In the special case D = 4 (see also the Appendix) the electric and magnetic monopole terms in Q and F become
indistinguishable in the metric. This corresponds to the well-known fact that in D = 4 Einstein–Maxwell gravity all
solutions are determined only up to a costant duality rotation of the electromagnetic field.

2More generally, it is an old result that Kähler manifolds of constant (Riemannian) curvature must be flat in 2n > 2
real dimensions [14]. It has been demonstrated more recently that this applies also to almost-Kähler manifolds (see [15]
and references therein). In this context, it is also worth mentioning that the celebrated conjecture of [16] that almost-
Kähler, Einstein, compact manifolds must be Kähler has been proven in the case of non-negative scalar curvature [17].
See, e.g., [15,18] for some more general properties of almost-Kähler Einstein manifolds and for more references.
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From the above form (81) of the Maxwell field, it is clear that it is of type D [21] with principal
null directions given by

k = ∂r, l = ∂u −H∂r . (82)

In addition, in view of (77) the line element (79) and (80) is a warped product of (M(D−2), hij)
with a two-dimensional Lorentzian factor. For such type of warped spacetimes, the Weyl tensor is
necessarily of type D, unless zero (type O) [9]. However, the latter case can not occur here since,
e.g., the Weyl component Cruru reads

Cruru = −(D − 2)(D − 3)
µ

2rD−1
+

(2D − 5)
(D − 1)

2Q2

r2(D−2)
− (D − 3)

(D − 1)(D − 2)(D − 5)
6F 2

r4
. (83)

The above Robinson–Trautman spacetimes in D > 4 are thus of type D with WANDs given again by
(82) (cf. [9]). Conformal flatness requires µ = 0 andQ = 0 = F , in particular vacuum spacetimes [10],
so that the only possible conformally flat metrics are of constant curvature.

Note finally that when Fij = 0 (i.e., F = 0), these solutions are electrically charged black holes. In
the simplest case when (M(D−2), hij) is a round sphere, one obtains the well-known asymptotically
flat/(A)dS spacetimes of [22]. However, (M(D−2), hij) can now be any Einstein space (cf. also [23],
and see, e.g., [24, 25] for related discussions in the vacuum case Q = 0 = F ). Stability properties of
these black holes have been studied in [20].

4.1.1 An explicit example

For the sake of definiteness, as a simple example with F 6= 0 we can consider (M(D−2), hij) as
the Riemannian analog of Nariai-like solutions with geometries S2 × S2 × . . . or H2 ×H2 × . . .,
namely

hij dxidxj =
n∑

I=1

[(
1− ερ

2
I

a2

)
dψ2

I +
(

1− ερ
2
I

a2

)−1

dρ2
I

]
,

1
2Fij dxi ∧ dxj =

F√
D − 2

n∑
I=1

dψI ∧ dρI , (D = 2n+ 2) (84)

where ε = +1 or ε = −1 (or ε = 0, which gives a flat hij), a and F are constants, the scalar curvature
is given by K = εa−2(2n− 1)−1 (normalizable to K = ε if desired) and D = 2n+ 2 is the number
of spacetime dimensions. Note that Fij is convariantly constant in (M(D−2), hij).

4.2 Odd dimensions

For odd D, as above one can reduce the line element to the form (79), (80). Since in odd dimensions
F = 0 identically (i.e. F̃ = 0, see (57)), a complete solution of the Maxwell equations is now simply
given by a purely electric “radial” field

F =
Q

rD−2
dr ∧ du (D odd). (85)

As in even D with F = 0, these are again a generalization of the familiar Reissner–Nordström–
de Sitter spacetimes [22,23]: the standard Schwarzschild-type form

ds2 = −2H(r) dt2 +
dr2

2H(r)
+ r2 hij(x) dxidxj , F =

Q

rD−2
dr ∧ dt, (86)

is achieved via the transformation3 du = dt− dr/2H. Recall also that these represent the only
Robinson–Trautman solutions with an aligned electromagnetic field which obeys either the Maxwell
or the Maxwell–Chern–Simons equations.

3This transformation (which also applies in the even dimensional case with F 6= 0) explicitly shows that the two
WANDs (82) are related by “time reflexion”, as observed for arbitrary algebraically special static spacetimes in [9]. This
also implies that the two WANDs must have equivalent optical properties (e.g., geodeticity). Note, in particular, that
while k is a principal null direction of the Maxwell 2-form by construction, it turned out that also l shares this property.
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4.3 The special case D = 6

The even dimensional D = 6 case is special in that F 2 may depend also on the spatial x coordi-
nates, see eq. (65). This fact has two consequences. First, one has to solve the more complicate
eq. (73). In addition, when Q = 0, one can not conclude now that P (x, u) takes the factorized form
P (x, u) = P (x)U(u). Let us discuss the two possible cases separately.

4.3.1 Factorized P (x, u) (generic transverse space)

Because of eqs. (69), this corresponds to the generic situation with Q 6= 0. In such a case we can
arrive again at (76) so that hij = hij(x), and eqs. (69) and (70) lead to

Q = const, F 2 = F 2(x). (87)

In addition, eq. (73) simplifies to µ,u(u) = − 1
16∆(F 2)(x) which requires both terms to be constant.

By integration we obtain µ(u) = µ0 + c0u and ∆(F 2)(x) = −16c0, where µ0, c0 are constants.
If we restrict to the case when (M(4), hij) is compact, as for black hole solutions, by standard

results (cf., e.g., [26], and [13] on p. 338) the only regular solution is

µ = const, F 2 = const, (88)

as in theD > 6 even dimensional case. Therefore the results of subsection 4.1 apply, and (M(4), hij , J
i
j)

is again (almost-)Kähler Einstein (e.g. flat, or S2 × S2, etc.).

4.3.2 Non-factorized P (x, u) (transverse space of constant curvature)

From (69) we observe that this case is possible only forQ = 0, so that we can assume F 6= 0 (otherwise
the Maxwell field would be identically zero). When P (x, u) is non-factorized, as in [11] one can argue
that the Riemannian metric hij(x, u) describes a family of conformal 4-dimensional Einstein spaces
parametrized by u. It is well known that four-dimensional Riemannian Einstein spaces which admit
a conformal (non-homothetic) map on Einstein spaces must be of constant curvature [27]. Since
hij = P−2(x, u)γij(x), this means that we can always find suitable x coordinates such that

hij = P−2δij , P = a(u) + bi(u)xi + c(u) δijxixj . (89)

Here i, j = 1, . . . , 4, and a(u), bi(u), c(u) are arbitrary functions of u related to the constant curvature
K by K = 4ac−

∑4
i=1 b

2
i [10]. Recall also that (M(4), hij , J

i
j) must be almost-Hermitian. The self-

dual “spatial” Maxwell field (cf. (59) with n = 2) is proportional to the almost-complex structure
and must satisy the Maxwell equations (54) (or, now equivalently, (55)). In addition, there is the
constraint (73).

Using (26), the (analogue of the) Ricci identity applied to the 2-form Fij , the effective Maxwell
equations (54), (55), and the constant curvature equation Rijkl = K(hikhjl − hilhjk), we can write
(cf., e.g. [26], for detailed calculations) ∆(F 2) = 2(4KF 2 + hmihnjhpkFij||kFmn||p) or, by (26) and
(89),

∆(F 2) = 2P 4
(
4K

4∑
i,j=1

FijFij + P 2
4∑

i,j,k=1

Fij||kFij||k

)
. (90)

The right hand side of eq. (90) is non-negative for K ≥ 0. Therefore, if we again restrict to the
case of a compact (M(4), hij), for K ≥ 0 standard results [13, 26] imply that F 2 does not depend
on the x coordinates, and that Fij||k = 0. In particular, the case K > 0 requires also F 2 = 0, i.e.
Fij = 0 and there is no electromagnetic field (we had already Q = 0). For K = 0, as in subsection 4.1
thanks to F = F (u) we can achieve P = P (x) (and F = const, µ = const). But now one can rescale
and shift the spatial coordinates to fix P = 1, i.e. hij = δij is manifestly flat and Fij||k = 0 becomes
Fij,k = 0 (this is the solution of subsubsection 4.1.1 with ε = 0, D = 6).

The exceptional case F 2 = F 2(x, u), P = P (x, u) (non-factorized) can thus possibly arise only
when the transverse space (M(4), hij) is non-compact, or of constant negative curvature K = −1 (in
which case eq. (90) does not prevent it from being compact, in principle, provided now Fij||k 6= 0).
We do not investigate further this very special case here. Let us only observe that ∂u is no longer a
Killing vector field since the metric depends on u.
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4.4 Inclusion of pure radiation

It is not difficult to generalize these results to include a pure radiation field aligned with the null
vector k. In that case, the total energy-momentum tensor to insert into the Einstein equations is
given by the sum of the electromagnetic energy-momentum tensor (7) and the pure radiation contri-
bution T̃αβ = Φ2kαkβ . In the coordinate system introduced above this means that only the T̃uu = Φ2

component is non-vanishing. Moreover, since the covariant divergence of the electromagnetic energy-
momentum tensor (7) vanishes, the Bianchi identities imply T̃αβ

;β = 0. For the Robinson–Trautman
family of spacetimes this leads to (cf. [10])

Φ2 = r2−Dn2(x, u) , (91)

where n is an arbitrary function of x and u.
This additional term modifies the field equation of subsection 3.8. Instead of (72), in the generic

case we obtain the equation

(D − 1)µ (lnP ),u − µ,u =
16π n2

D − 2
(D 6= 6) . (92)

It is thus possible to prescribe the “mass function” µ(u), and the relation (92) then uniquely deter-
mines the corresponding null matter profile n2(x, u), provided its left hand side is positive. In the
exceptional case D = 6 the equation (73) becomes

5µ (lnP ),u − µ,u − 1
16∆(F 2) = 4π n2 (D = 6). (93)

Again, when the left hand side is positive, this may be considered as the definition of the function n.
We do not study further details of pure radiation spacetimes here. Let us just observe that purely
electric solutions (such that F = 0) contain generalized charged Vaidya spacetimes, cf. [28].

5 Conclusions

We have derived systematically all higher dimensional spacetimes that contain a hypersurface or-
thogonal, non-shearing and expanding congruence of null geodesics, together with an aligned electro-
magnetic field. These are solutions of the coupled Maxwell(–Chern–Simons) and Einstein equations
(for any value of the cosmological constant). As already noticed in the vacuum case [10], there
appear important differences with respect to the standard D = 4 family of Robinson–Trautman so-
lutions [1–3]. In particular, forD > 4 there is no analogue of radiative spacetimes such as the charged
C-metric, and aligned null Maxwell field are not permitted. After integrating the full set of equa-
tions, one is essentially left only with (a variety of) static black holes (exceptional subcases possibly
arise in D = 6). These are characterized by mass, electric charge and cosmological constant, and
by the topology and geometry of the horizon, which must be an Einstein space. In even spacetime
dimensions an additional magnetic parameter is permitted provided the horizon is not only Einstein
but also (almost-)Kähler. Some of the presented solutions were already known (see the references
mentioned above), but we have obtained them systematically as elements of the Robinson–Trautman
class, which was the purpose of our work.

Our contribution also makes contact with recent studies of the algebraic classification of the Weyl
tensor and of geometric optics in higher dimensions. For instance, it has been recently shown [9] that
arbitrary D > 4 static spacetimes can be only of the algebraic types G, Ii, D or O. Using another
result of [9], we have demonstrated that our specific static solutions are restricted to the type D,
and we have also given the corresponding WANDs with no need to compute the Weyl tensor. In
addition, along with various previous results [5,6,8–10], the new features pointed out above for D > 4
indicate that in some cases the shear-free assumption might be too strong for expanding solutions in
higher dimensions. In future work it would thus be worth investigating spacetimes with shear and
expansion, at least with some alternative simplifying assumptions.
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Appendix. The special case of D = 4

For comparison, we will present here a summary of the results in the familiar case D = 4 [1,3]. We
first note that the trace (9) of the energy-momentum tensor of the electromagnetic field is now zero,
T µ

µ = 0. Maxwell’s equations still imply (22)–(24), which now read

Fij = Fij(x, u), Fru = r−2Q(x, u), Fui = r−1Q,i − ξi(x, u), (A1)

where i, j = 1, 2, so that F12 is the only independent Fij component. The invariants of the Maxwell
field are thus

FµνF
µν = r−4(F 2 − 2Q2), Fµν

∗Fµν = 4r−4P 2F12Q, (A2)

so that there can be null Maxwell fields when Q = 0 = F (i.e., Fru = 0 = Fij while Fui = −ξi).
The source-free equation (18) is now an identity. We further have the relation (27). Finally, the
remaining Maxwell equations (20), (21), when expanded in powers of r using previous results, yield
the following set of relations:

Fjkf
k = Qhjkf

k, (A3)
√
hhij Q,j = (

√
hhikhjlFkl),j , (A4)

(
√
hQ),u − (

√
hQei),i =

(√
hhij(ξj − Fjke

k)
)

,i
. (A5)

Note that the remaining condition (
√
hhij Q,j),i = 0 is satisfied identically as a consequence of (A4)

and the antisymmetry of Fkl.
Applying now the field equation for Rij , we observe that the powers of r in (37) coincide in the

terms corresponding to c4, c7, and c8. The expansion of grr then only contains the first of these
terms, yet (42) remains unchanged so we obtain f i = 0, and we can again set ei = 0. The expression
for c4 is thus modified to c4 = Q2 + F 2/2. We further find that (39) and (43) remain unchanged.
However, for D = 4, they are both identically satisfied so they do not provide additional constraints
on hij and on the electromagnetic field. Thus the expansion of grr is the same as in (47) but the
last two terms are combined (cf. also footnote 1).

Let us also emphasize that in the D = 4 case the spatial metric hij is 2-dimensional, so that it can
always be written in the conformally flat form hij = P−2(x, u) δij , with

√
h = P−2. In fact, forD = 4

we can achieve this by a transformation xi = xi(x̃) involving only the spatial coordinates x, since the
u-dependence is factorized out as in eq. (51). Consequently,R = 2∆ lnP = 2P 2[(lnP ),11 + (lnP ),22].

We can thus summarize that the Robinson–Trautman metric in D = 4 can be cast in the form

ds2 = r2P−2(x, u)
(
(dx1)2 + (dx2)2

)
− 2 dudr − 2Hdu2, (A6)

and the aligned electromagnetic field is given by

F =
Q

r2
dr ∧ du+

(
Q,1

r
− ξ1

)
du ∧ dx1 +

(
Q,2

r
− ξ2

)
du ∧ dx2 + F12 dx1 ∧ dx2. (A7)

The various functions and parameters above are constrained by the conditions

2H =
R
2
− 2 r(lnP ),u −

Λ
3
r2 − µ

r
+
Q2 + 1

2F
2

r2
, (A8)

where µ = µ(x, u), 1√
2
F = P 2F12, and (from (A4), (A5) and (27))

Q,1 = ( 1√
2
F ),2 , Q,2 = −( 1√

2
F ),1 , (A9)

(QP−2),u = ξ1,1 + ξ2,2 , ( 1√
2
F P−2),u = ξ1,2 − ξ2,1 . (A10)

Unlike in higher dimensions (cf. eqs. (30) and (31)), in D = 4 we have Q(x, u) depending on the
spatial coordinates x, and ξi(x, u) 6= 0.
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The field equation for Rur in now satisfied. Also the equation (63) for Rui is satisfied identically,
so that one can have a much more general function R(x, u). Using (A9), Rui yields only two
remaining equations

µ,1 = 4(Qξ1 − 1√
2
F ξ2) , µ,2 = 4(Qξ2 + 1√

2
F ξ1) . (A11)

Finally, the field equation Ruu gives(
Q2 + 1

2F
2
)
,11

+
(
Q2 + 1

2F
2
)
,22

= 4(Q2
,1 +Q2

,2) , (A12)

P 2(µ,11 + µ,22) + 8(lnP ),u

(
Q2 + 1

2F
2
)
− 2

(
Q2 + 1

2F
2
)
,u

= 8P 2(Q,1ξ1 +Q,2ξ1) , (A13)

and
∆R+ 12µ(lnP ),u − 4µ,u = 4P 2(ξ21 + ξ22) , (A14)

where ∆ is the covariant Laplace operator on a 2-space with metric hij , i.e. ∆R = P 2(R,11 +R,22).
We have thus recovered the well-known results summarized in Theorems 28.3 and 28.7 of [1]

with the identification ζ = 1√
2
(x1 + ix2), h(ζ, ζ̄, u) = 1√

2
(ξ1 + i ξ2), and the complex function Q(ζ, u)

related to Q(x, u) and 1√
2
F (x, u) as its real and imaginary parts, respectively. Indeed, (A9) are the

Cauchy–Riemann conditions so that Q(ζ, u) must be analytic in ζ. Consequently, Q,11 +Q,22 = 0 =
F,11 + F,22, and (A12) is an identity. Equations (A10) and (A11) correspond to equations (28.37e)
in reference [1], (A13) leads to (28.37d), and (A14) is exactly the equation (28.37c) in [1].

Recall that for D = 4 electrovacuum Robinson-Trautman solutions can be of the Petrov types
II, D or III [1].
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dimensions, Class. Quantum Grav. 21 (2004) L35–L41.
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