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Abstract

We investigate a general metric of the Kundt class of spacetimes in higher dimensions.
Geometrically, it admits a non-twisting, non-shearing and non-expanding geodesic null con-
gruence. We calculate all components of the curvature and Ricci tensors, without assuming
any specific matter content, and discuss algebraic types and main geometric constraints
imposed by general Einstein’s field equations. We explicitly derive Einstein–Maxwell equa-
tions, including an arbitrary cosmological constant, in the case of vacuum or possibly an
aligned electromagnetic field. Finally, we introduce canonical subclasses of the Kundt family
and we identify the most important special cases, namely generalised pp-waves, VSI or CSI
spacetimes, and gyratons.

PACS 04.20.Jb, 04.50.+h

1 Introduction

Studies of various aspects of gravity in higher dimensions are now an active research area. In
fact, there are already many indications that gravitation in D > 4 exhibits some qualitatively
different and even unexpected properties. These can be demonstrated and investigated ana-
lytically using exact solutions to Einstein’s equations of higher-dimensional general relativity.
Such explicit solutions not only illustrate specific physical properties of idealised situations,
but may help us to understand rigorously some of the more general features of the theory.

In standard D = 4 general relativity, there exist many families of spacetimes, as recently
summarised in the comprehensive review book [1]. Some of them have already been extended
to higher dimensions, and great a number of specific exact solutions has been found. However,
a more systematic investigation of other interesting families is still desirable.

For example, in our recent works [2,3] we systematically analysed a large class of Robinson–
Trautman spacetimes in any dimension, see also [4]. We found some rather surprising results,
in particular that this family is, in a sense, not as rich as in four dimensions. Many types
of exact solutions, such as exact gravitational waves of an algebraic type N, III or II are
completely missing, and even some type D solutions are absent, e.g., a generalisation of the
C-metric that would describe accelerating black holes in higher dimensions.

Geometrically, the Robinson–Trautman class in any dimension D is defined by admitting
a geodesic, shear-free, twist-free but expanding null congruence. This invariant definition is
based on the optical properties of null geodesic congruences in higher-dimensional spacetimes
[5, 6] (for a review, see [7]). A natural counterpart of the Robinson–Trautman family is the
Kundt class of spacetimes, which admits a geodesic, shear-free, twist-free and non-expanding
null congruence.

In fact, the Kundt class is one of the fundamental classes of exact solutions to Einstein’s
field equations in D = 4 (see chapter 31 in [1]). This large group of algebraically special
spacetimes contains many particular vacuum solutions. It also admits a cosmological con-
stant, electromagnetic field, pure radiation or other matter fields.
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Several important subclasses of Kundt’s family in higher dimensions have already been
recognised and studied thoroughly. The best-known of these are the pp-waves, see [7–13] and
references therein, which admit a covariantly constant null vector field. There are also VSI
and CSI spacetimes [7,9,11–15], for which all polynomial scalar invariants constructed from
the Riemann tensor and its derivatives vanish and are constant, respectively, and relativistic
gyratons [16–22], representing the field of a localised spinning source that propagates with the
speed of light. Recently, some properties of a more general family of vacuum solutions with
a non-twisting multiple WAND, which also includes the Kundt spacetimes, were presented
in [23]. The importance of higher-dimensional Kundt spacetimes in the context of string
theory, namely the supersymmetric solutions of supergravity, were summarised in [24].

It is the purpose of the present paper to systematically derive the D > 4 Kundt class of
solutions and to discuss its main features. Therefore, in section 2, we start with a completely
general Kundt metric (4) without assuming any specific matter content. In section 3 we
present all components of the curvature and Ricci tensors for such a general Kundt metric,
and in section 4 we discuss some properties of the Kundt spacetimes when general Einstein’s
field equations are applied. In particular, we investigate the constraints imposed on the
matter content by the Kundt geometry and we determine its generic algebraic type.

Starting from section 5, we confine ourselves to the most important case of vacuum Kundt
spacetimes, with a possible cosmological constant Λ, and we also allow for the presence of
an aligned Maxwell field. We derive the explicit form of all Einstein(–Maxwell) equations
within such a setting. Our results are summarised in section 6 where we also discuss the
remaining coordinate freedom and we define canonical subclasses. In section 7 we briefly
describe the most important subfamilies of these Kundt spacetimes, and we give references
to previous works.

2 Geometry of the Kundt spacetimes

The Kundt family of spacetimes in an arbitrary dimension D is defined geometrically by
admitting a geodesic, twist-free, shear-free and non-expanding congruence generated by the
null vector field, say k. There exist suitable coordinates in which such a metric can be
written in the form

ds2 = gij

(
dxi + gridu

) (
dxj + grjdu

)− 2 dudr − grrdu2 . (1)

Indeed, considering a family of null hypersurfaces u = const. whose normal (and tangent)
is kα = −u,α = −δu

α everywhere, the congruence of integral curves of the null vector field
kα = gαβkβ is then geodesic and affinely parametrised . Taking the corresponding affine
parameter r along such null congruence as the next coordinate, k = ∂r, and introducing
D − 2 “transverse” spatial coordinates (x1, x2, . . . , xD−2) to label the distinct null geodesics
of this congruence, we obtain gur = −1 and guu = 0 = gui. The remaining specific metric
functions in (1), which depend on the coordinates (x, u, r), are to be determined below.1

Because the generating null vector field k is hypersurface-orthogonal, the congruence is
non-twisting . Writing the spatial part of the metric as

gij = p−2 γij where det γij = 1 , (2)

the optical scalars corresponding to shear and expansion, see [5, 6], are given by

σ2 ≡ k(α;β)k
α;β − 1

D − 2
(kα

;α)2 =
1
4
γliγkjγki,rγlj,r ,

θ ≡ 1
D − 2

kα
;α = −(ln p),r , (3)

respectively. Now, imposing the condition that the congruence is shear-free (σ2 = 0) leads
to γij,r = 0 since there always exists a frame in which γij is diagonal, with strictly positive
eingenvalues. Requiring that the congruence is non-expanding (θ = 0) leads to p,r = 0. It
thus follows that the spatial part of the Kundt metric gij has to be independent of the
coordinate r.

1Here x stands for all the transverse coordinates xi and latin indices i, j, k, l, m range from 1 to D − 2.
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The relations between the covariant and contravariant metric coefficients of (1) are2

gri = gijguj and grr = −guu + gijguiguj , or inversely gui = gij grj , guu = −grr + gij grigrj ,
grr = 0 = gri. We can thus conclude that any Kundt spacetime in an arbitrary dimension D
can be written in the form

ds2 = gij(x, u) dxidxj + 2 gui(x, u, r) dxidu− 2 dudr + guu(x, u, r) du2 , (4)

see also [2, 7, 9, 14].

3 Curvature tensor for a general Kundt metric

A straightforward calculation gives the following non-trivial Christoffel symbols for the Kundt
metric (4):

Γu
uu = 1

2guu,r , (5)
Γu

ui = 1
2gui,r , (6)

Γi
ur = 1

2gijguj,r , (7)

Γi
uu = gijguj,u − 1

2gijguu,j − 1
2girguu,r , (8)

Γi
uj = 1

2gik (gjk,u + guk,j − guj,k)− 1
2girguj,r , (9)

Γi
jk = sΓi

jk , (10)

Γr
ur = 1

2grigui,r − 1
2guu,r , (11)

Γr
uu = − 1

2grrguu,r − 1
2guu,u + grigui,u − 1

2griguu,i , (12)

Γr
ui = − 1

2grrgui,r − 1
2guu,i + 1

2grj (gij,u + guj,i − gui,j) , (13)
Γr

ri = − 1
2gui,r = − Γu

ui , (14)

Γr
ij = 1

2 (gij,u − gui,j − guj,i) + 1
2grk (gik,j + gjk,i − gij,k) , (15)

where sΓi
jk is calculated using the spatial metric gij only. Further useful relations are

Γα
rα = 0 , (16)

Γα
uα = ( ln

√
g ),u , (17)

Γα
iα = Γj

ij = ( ln
√

g ),i , (18)

in which we introduced a function

g = g(x, u) ≡ det gij = − det gαβ . (19)

Using these results, a somewhat lengthy calculation then leads to the following components
of the Ricci tensor for a general Kundt metric (4):

Rrr = 0 , (20)
Rri = − 1

2gui,rr , (21)

Rru = − 1
2guu,rr + 1

2 (gijguj,r),i + 1
4gij(gui guj),rr + 1

2gij( ln
√

g ),i guj,r , (22)

Rij = sRij − 1
2 ( gui,r guj,r + gui,rj + guj,ri) + sΓk

ij guk,r , (23)

Ruu = 1
2 ( guu,rr − gklguk,r gul,r)( guu − gijgui guj)

− 1
2 guu,r

[
(gijguj),i + (gijguj)(ln

√
g),i − (ln

√
g),u

]− 1
2

(
gij gui,r guj

)2

+ 1
2 gijguj,r

[
guu,i + 2gklguk(gui,l − gul,i)

]
+ gijguj(gui,ru − guu,ri) (24)

− 1
2 (gijguu,j),i − 1

2 (gijguu,j)(ln
√

g),i − 1
2 gijgklguj,l(guk,i − gui,k)

+(gijguj,u),i + (gijguj,u)(ln
√

g),i − 1
4 gijgklgik,u gjl,u − (ln

√
g),uu ,

Rui = 1
2 gjkguk ( guj,ri − gui,rj − gui,r guj,r)− 1

2 guu,ri + 1
2 gjkguk,r guj,i

+ 1
2

[
gjk( gij,u + guj,i − gui,j − gui,r guj)

]
,k

+ 1
2

[
gjk( gij,u + guj,i − gui,j − gui,r guj)

]
(ln
√

g),k (25)

+ 1
2 gjkglmgim,k [(gul,j − guj,l) + (gul,r guj − guj,r gul) ]

+ 1
2 gui,ru + 1

2 gui,r(ln
√

g),u − (ln
√

g),ui − 1
4 gjkglmgkm,i gjl,u ,

2As usual, gij denotes the inverse of gij .
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where sRij is calculated using the spatial metric gij only. The Ricci scalar is thus given by

R = sR + guu,rr − (gijguj,r),i − 1
2gij(gui guj),rr − gij( ln

√
g ),i guj,r

−gijgui guj,rr − 1
2gij( gui,r guj,r + gui,rj + guj,ri) + sΓk

ij gijguk,r . (26)

For completeness, we also present all (independent) components of the curvature tensor:

Rrirj = 0 , (27)
Rrijk = 0 , (28)
Rriru = − 1

2gui,rr , (29)

Rriuj = 1
2gui,rj − 1

2guk,r
sΓk

ij + 1
4gui,rguj,r , (30)

Rruru = 1
4gijgui,rguj,r − 1

2guu,rr , (31)
Rruij = 1

2 ( gui,rj − guj,ri) , (32)

Rruui = 1
2guu,ri − 1

2gui,ru − 1
4guj,r

[
gjk (gik,u + guk,i − gui,k)− gjrgui,r

]
, (33)

Rijkl = sRijkl , (34)
Ruijk = 1

2 ( guk,ij + gij,uk − guj,ik − gik,uj)− Γu
ukΓr

ij + Γu
ujΓ

r
ik

+glm

(
Γl

ukΓm
ij − Γl

ujΓ
m
ik

)
+ glu

(
Γu

ukΓl
ij − Γu

ujΓ
l
ik

)
, (35)

Ruiuj = 1
2 ( gui,uj + guj,ui − guu,ij − gij,uu)− Γr

uiΓ
u
uj − Γr

ujΓ
u
ui + Γr

ijΓ
u
uu

+gkl

(
Γk

uiΓ
l
uj − Γk

ijΓ
l
uu

)
+ guk

(
Γu

uiΓ
k
uj + Γu

ujΓ
k
ui − Γu

uuΓk
ij

)
+ guuΓu

uiΓ
u
uj . (36)

4 General field equations and algebraic type

To determine the specific form of the metric functions in the general line element (4) for
the Kundt class of spacetimes, it is now necessary to impose the Einstein field equations
Rαβ − 1

2Rgαβ + Λgαβ = 8πTαβ with a suitable energy-momentum tensor Tαβ . These equa-
tions are explicitly rather complicated but, considering the above components of the curva-
ture and metric tensors, some general observations can be made immediately.

First, it follows from equation (20) and grr = 0 that Einstein’s field equations for the
Kundt class can only be satisfied provided Trr ≡ Tαβkαkβ = 0. This imposes a restriction on
the admissible matter content of the spacetime.

If, in addition, Tri = 0 then the field equation corresponding to the component (21)
reduces to a simple relation gui,rr = 0, which can be directly integrated. In such a case the
metric component gui must be at most linear in the coordinate r.

From the Einstein equation for (22), using gru = −1 and (26), it then follows that
Tru must be independent of r. Substituting for R from traced-out Einstein equations
(D − 2)R = 2DΛ− 16π T µ

µ , we can thus determine the r-dependence of the metric func-
tion guu. If, for example, the trace T µ

µ of the energy-momentum tensor is independent of r,
then guu is at most quadratic in r.

Subsequently, the remaining field equations corresponding to the components (23)–(25)
have to be used to fix the undetermined integration functions of x and u (or to rule out a
solution due to an inconsistency).

It can also be observed that all higher-dimensional Kundt spacetimes must necessarily
be algebraically special. They are always at least of principal type I, with k = ∂r being the
Weyl aligned null direction (WAND). If Tri = 0 then they are at least of principal type II.

Indeed, using (20)–(36), the coordinate components of the Weyl tensor are

Crirj = 0 , (37)

Crijk =
1

2(D − 2)
( gik guj,rr − gij guk,rr) , (38)

Criru = − D − 3
2(D − 2)

gui,rr , (39)

together with much more complicated non-trivial components Criuj , Cruru, Cruij , Cruui,
Cijkl, Cuijk and Cuiuj .
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Let us introduce a natural null frame

m(0) = k = ∂r ,

l =
1
2
grr ∂r − ∂u + gir ∂i , (40)

m(i) = p ∂i ,

for which gαβkαlβ = 1 and gαβ mα
(i) mβ

(j) = γij , with all other scalar products vanishing. (Of
course, using a spatial rotation m′

(i) = Xi
jm(j) where Xi

j is a suitable orthogonal matrix
the spatial metric γij can always be diagonalised to δij .) Then we obtain the following frame
components of the Weyl tensor:

C(0)(i)(0)(j) = 0 , (41)

C(0)(i)(j)(k) =
p3

2(D − 2)
( gik guj,rr − gij guk,rr) . (42)

According to the classification, reviewed in [7], the Kundt spacetimes are thus necessarily of
algebraic type I, or more special. In the case when gij guk,rr = gik guj,rr, the spacetimes are of
type II (or more special). This occurs, in particular, when Tri = 0 because the corresponding
field equations then imply gui,rr = 0 (see also propositions 1 and 2 of [25]).

5 The Einstein–Maxwell equations

In the remaining part of this paper we will restrict our attention to spacetimes that are either
vacuum (Tαβ = 0), possibly with a cosmological constant Λ, or those that include a Maxwell
field aligned with the geometrically privileged null vector k such that

Fαβkβ = Q kα, (43)

where Q is an arbitrary function. The corresponding energy-momentum tensor of the elec-
tromagnetic field is

4π Tαβ = FαµFβ
µ − 1

4gαβFµνFµν . (44)

In the coordinate system introduced in (4), for k = ∂r there is

Fri = 0 = Fui, Fru = Q = Fur, (45)

with components Fij and Fui (or F ij = gikgjlFkl, F ir = −Qgri + gijFuj − grkgijFkj) still
arbitrary. Consequently, Fr

u = Fr
i = Fi

u = 0 and Fu
u = −Fr

r = Q, other components are
generally non-trivial. In particular, it follows that Trr = 0 = Tri : such spacetimes are of alge-
braic type II or more special, see end of section 4. Notice that the trace T µ

µ = −D−4
16π FµνFµν ,

which is equal to D−4
16π (2Q2 − FijF

ij), is generally non-zero unless D = 4.
The Einstein field equations, re-written as Rαβ = 2

D−2 Λ gαβ + 8πTαβ − 8π
D−2 gαβ T µ

µ , can
thus be expressed in the explicit form

Rαβ =
2

D − 2
Λ gαβ + 2 FαµFβ

µ − 1
D − 2

gαβFµνFµν . (46)

These will now be calculated for vacuum or electrovacuum, together with the source-free
Maxwell equations F[αβ;γ] = 0, Fµν

;ν = 0. The first set of the Maxwell equations is equivalent
to Fαβ,γ + Fβγ,α + Fγα,β = 0, while the second one to

√
g Fµν

;ν ≡
(√

g Fµν
)
,ν

= 0. These
yield

Fij,r = 0 , (47)
Fui,r = −Q,i , (48)
Fij,u = Fuj,i − Fui,j , (49)

F[ij,k] = 0 , (50)

and

Q,r = 0 , (51)√
g F ir

,r = − (
√

g F ij),j , (52)
(
√

g F ir),i = −(
√

g Q),u . (53)
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From (47) we observe that the components Fij are independent of r,

Fij = Fij(x, u). (54)

Using (51), we also find
Fru = Q(x, u), (55)

with Q(x, u) arbitrary. Using this result and (48), we obtain

Fui = −r Q,i − ξi(x, u), (56)

with ξi(x, u) arbitrary functions of x and u. Substituting now (56) into (49), we obtain

Fij,u = ξi,j − ξj,i . (57)

In particular, taking Fij ≡ Aj,i −Ai,j with Ai = − ∫
ξi du, both (50) and (57) are satisfied

identically.
Thus we found the r-dependence of all electromagnetic field components. In particular,

the invariant FµνFµν of the Maxwell field is independent of r, and

FµνFµν = F 2 − 2Q2, (58)

where we defined
F 2(x, u) ≡ Fik Fjl gijgkl. (59)

We always have F 2 ≥ 0 (with F 2 = 0 if, and only if, Fij = 0) because, in an orthonormal
frame, F 2 =

∑
î,ĵ F 2

îĵ
.

Geometry of the Kundt class determines fully the r-dependence of the Maxwell field. The
non-trivial components of Fµν are explicitly given by (54), (55) and (56), with the remaining
constraints (52) and (53).

5.1 Equations Rrr = 0 and Rri = 0

It easily follows from the metric structure (4) and expressions (45) that two of the Einstein
field equations (46) are very simple, namely Rrr = 0 and Rri = 0. The former is, in fact,
satisfied identically. In view of (21), the latter reduces to gui,rr = 0 . This can immediately
be integrated yielding

gui = ei(x, u) + fi(x, u) r, (60)

where ei and fi are arbitrary functions of x and u. The r-dependence of the metric functions
gui is now determined: interestingly, for any (aligned electro)vacuum Kundt spacetime in an
arbitrary dimension these functions are at most linear in the affine parameter r. In view of
(42), these spacetimes are thus algebraically special (at least of type II). Consequently, the
related contravariant metric components are

gri = ei(x, u) + f i(x, u) r, (61)

where ei ≡ gijej and f i ≡ gijfj .

5.2 Equation for Rur

The Ricci tensor component Rur for the metric (4) is given by (22). Using the result obtained
above, 2FuµFr

µ + 1
D−2 FµνFµν = 1

D−2 F 2 + 2D−3
D−2 Q2 . In view of (60), the corresponding

field equation (46) thus explicitly reads

−1
2
guu,rr + ϕ = − 2Λ

D − 2
+

F 2 + 2(D − 3)Q2

D − 2
, (62)

where
ϕ = ϕ(x, u) ≡ 1

2

(
f ifi + f i

,i + f i(ln
√

g ),i

)
. (63)

By a simple integration, the component guu of the metric is thus determined as

guu = a(x, u) r2 + b(x, u) r + c(x, u) , (64)

where

a(x, u) ≡ ϕ +
2Λ

D − 2
− F 2 + 2(D − 3)Q2

D − 2
, (65)

and b(x, u), c(x, u) are (so far) arbitrary integration functions of x and u.
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5.3 Equation for Rij

Since 2 FiµFj
µ − 1

D−2 gijFµνFµν = − 1
D−2 (F 2 − 2Q2) gij + 2FikFjl g

kl and the Ricci tensor
component Rij is given by (23), using (60) the corresponding field equation (46) becomes

sRij =
2Λ

D − 2
gij − F 2 − 2Q2

D − 2
gij + 2FikFjl g

kl + 1
2 ( fifj + fi,j + fj,i)− sΓk

ij fk , (66)

where sRij and sΓk
ij are the Ricci tensor and the Christoffel symbols of the spatial metric

gij , respectively.3 Equations (66) are independent of r. Notice that their trace gives

sR = 2Λ + F 2 + 2Q2 + 1
2f ifi + f i

,i + f i(ln
√

g ),i , (67)

where sR is the spatial Ricci scalar. This relation enables us to re-express the function ϕ as

2 ϕ = 1
2f ifi + sR− 2Λ− (F 2 + 2Q2) , (68)

and the function a as

a = 1
4f ifi + 1

2
sR− D − 4

D − 2
Λ− D(F 2 + 2Q2) + 4(D − 4)Q2

2(D − 2)
. (69)

Consequently, the quadratic term in the metric coefficient guu can be written in the form
that does not explicitly contain derivatives of either the functions f i or the determinant of
the metric g.

5.4 Equation for Ruu

Using (55), (56) and (58), the right-hand side of the uu component of Einstein’s equations
(46) becomes

2Λ
D − 2

guu + 2 FuµFu
µ − 1

D − 2
guuFµνFµν =

[
a(a− ϕ) + 2 gij(Q,i + Qfi)(Q,j + Qfj)

]
r2

+
[
a(b− ϕ) + 4 (Q,i + Qfi)(ξi + Qei)

]
r +

[
a(c− ϕ) + 2 (ξi + Q ei)(ξi + Q ei)

]
. (70)

The general form of the Ricci tensor component Ruu is given by (24). By substituting from
(60), (64) and comparing the coefficients of different powers of r, we obtain the following
three equations, namely

1
2 (gija,j)||i + 3

2f ia,i + a(ϕ + 1
2f ifi) (71)

− 1
2gijgklfj,l(fi,k − fk,i) = −2 gij(Q,i + Qfi)(Q,j + Qfj)

for r2,

− 1
2 (gijb,j)||i + 1

2f ib,i − 2 eia,i − a
(
ei
||i + 2 eifi − (ln

√
g ),u

)
(72)

+f iej(fi,j − fj,i) + gijgklej,l(fi,k − fk,i)
+(gijfj,u)||i + f i(fi,u − b,i) = 4(Q,i + Qfi)(ξi + Qei)

for r1, and

− 1
2 (gijc,j)||i + 1

2f ic,i + 1
2f i

||i c− a eiei − 1
2b

(
ei
||i − (ln

√
g ),u

)
(73)

+ 1
2 (f ifi)(ejej)− 1

2 (f iei)2 + f iej(ei,j − ej,i) + 1
2gijgklej,l(ei,k − ek,i)

+(gijej,u)||i + ei(fi,u − b,i)− 1
4gijgklgik,u gjl,u − (ln

√
g ),uu = 2(ξi + Qei)(ξi + Qei)

for r0, respectively. Here, we used the abbreviation

ψi
||i ≡ ψi

,i + ψi (ln
√

g ),i (74)

for the covariant spatial divergence of any quantity ψi.

3In fact, the last three terms in (66) correspond to (half of) the Lie derivative of the spatial metric gij with
respect to f i, while the last two terms in (63) can be re-written as the divergence of f i with respect to gij , cf.
expression (74) below.
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5.5 Equation for Rui

Finally, the general form of the Ricci tensor component Rui for the metric (4) is (25).
Substituting from (60), (64) and comparing the coefficients of different powers of r with the
corresponding terms on the right-hand side of the Einstein equations (46), the following two
relations are obtained:

1
2f j(2fj,i − fi,j − fifj)− ϕ,i − (F 2),i + 2(D − 3)(Q2),i

D − 2
+ 1

2

[
gjk(fj,i − fi,j − fifj)

]
,k

+ 1
2

[
gjk(fj,i − fi,j − fifj)

]
(ln
√

g ),k (75)

+ 1
2gjkglmgim,k(fl,j − fj,l) =

(
2Λ

D − 2
− F 2 − 2Q2

D − 2

)
fi + 2QQ,i − 2Fij(Qf j + gjkQ,k)

for r1, and

1
2

[
gjk(gij,u + ej,i − ei,j − fiej)

]
,k

+ 1
2

[
gjk(gij,u + ej,i − ei,j − fiej)

]
(ln
√

g ),k

+ 1
2ej(fj,i − fi,j − fifj)− 1

2b,i + 1
2f jej,i + 1

2gjkglmgim,k(el,j − ej,l + fl ej − fj el)
+ 1

2fi,u + 1
2fi(ln

√
g ),u − (ln

√
g ),ui − 1

4gjkglmgkm,i gjl,u (76)

=
(

2Λ
D − 2

− F 2 − 2Q2

D − 2

)
ei + 2Qξi − 2Fij(Qej + gjkξk)

for r0.

6 Summary of the results

By applying the Einstein–Maxwell field equations, we have obtained above a complete family
of Kundt’s spacetimes in an arbitrary dimension D which are either vacuum or contain an
aligned electromagnetic field. A non-vanishing cosmological constant Λ is also allowed. All
such metrics can be written in the form

ds2 = gij dxidxj + 2 (ei + fi r) dxidu− 2 dudr + (a r2 + b r + c) du2, (77)

where gij , ei, fi, a, b and c are functions of x and u only — see equations (4), (60), (64)
and (69) or, equivalently, by (65), with the function ϕ given by (63) or (68). The spatial
coordinates x ≡ (x1, x2, . . . , xD−2) span the transverse space, u labels the family of null
surfaces, and r is the affine parameter along the geodesic, twist-free, shear-free and non-
expanding congruence generated by the null vector field k = ∂r, which is normal to u = const.
Such a vector represents a multiple WAND, and all these spacetimes are of type II, or more
special.

The functions gij , ei, fi, a, b and c in the metric (77) are constrained by the remain-
ing Einstein equations, namely (66), (71), (72), (73), (75) and (76). These equations also
contain the non-trivial Maxwell field variables Fµν , namely Fij , Q = Fru and ξi, such that
Fiu = r Q,i + ξi(x, u), which all depend only on x and u. The corresponding electromagnetic
field thus can be written as

F = Qdr ∧ du + (r Q,i + ξi) dxi ∧ du + 1
2Fij dxi ∧ dxj , (78)

Recall also that F 2(x, u) ≡ Fik Fjl g
ijgkl. The remaining Maxwell equations are (52) and

(53) which, if expanded in the powers of r using the previous results, in particular (61), yield
the following two equations in D > 4:

(
√

g Q),u =
[√

g
(
Qei − gijFjk ek + gijξj

) ]
,i

, (79)
(√

g gikgjlFkl

)
,j

=
√

g
(
Qf i − gijFjkfk + gijQ,j

)
. (80)

The relations (79), (80), together with the constraints (50), (57), which can be solved —
for example — by taking Fij = Aj,i −Ai,j where Ai = − ∫

ξi du, place restrictions on the
admissible electromagnetic fields (54)–(56) in the Kundt family of spacetimes.

Note that such electromagnetic fields can be null when F 2 = 2Q2, see the invariant (58).
This property is different from the case of higher-dimensional shear-free expanding space-
times, in particular of the Robinson–Trautman family, which do not admit aligned null
Maxwell fields [3].
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6.1 Coordinate and gauge freedom

The general Kundt metric (4) is left invariant under the coordinate transformations

xi = xi(x̃, ũ), u = u(ũ), r =
r̃

u̇(ũ)
+ ρ(x̃, ũ) , (81)

with u̇ denoting the derivative of u(ũ) (cf. [1], section 2 in [13], or section 4 in [14]). This
clearly does not change the foliation to a family of null hypersuperfaces u = const. nor the
affine character of the parameter r. In particular, the form of the metric (77) is invariant
under (81) with the metric functions changing as

g̃kl = gij
∂xi

∂x̃k

∂xj

∂x̃l
, (82)

ẽk = (ei + fi ρ) u̇
∂xi

∂x̃k
− u̇

∂ρ

∂x̃k
+ gij

∂xi

∂x̃k

∂xj

∂ũ
, (83)

f̃k = fi
∂xi

∂x̃k
, (84)

ã = a , (85)

b̃ = (b + 2aρ) u̇ + 2fi
∂xi

∂ũ
+ 2

ü

u̇
, (86)

c̃ = (c + bρ + aρ2) u̇2 − 2u̇
∂ρ

∂ũ
+ 2(ei + fi ρ) u̇

∂xi

∂ũ
+ gij

∂xi

∂ũ

∂xj

∂ũ
. (87)

The transformation (81) also induces a change in the electromagnetic field (78), namely

Q̃ = Q , (88)

Q̃,k̃ = Q,i
∂xi

∂x̃k
, (89)

ξ̃k =
(

ξi
∂xi

∂x̃k
+ Q

∂ρ

∂x̃k
+ ρQ,i

∂xi

∂x̃k

)
u̇ + Fij

∂xi

∂x̃k

∂xj

∂ũ
, (90)

F̃kl = Fij
∂xi

∂x̃k

∂xj

∂x̃l
, (91)

which implies F̃ 2 = F 2. Using this coordinate freedom, a simplification of the metric and/or
of the Maxwell field can be achieved. For example, it is (generally) possible to remove the
functions b and c, or to simplify the functions ei and fi. In particular:

• Provided a 6= 0, the function b can always be removed by choosing ρ = −b/2a in (81),
keeping x and u unchanged, see (86).

• Alternatively, in view of (87), it is possible to remove the function c if ρ is taken to be
a solution of the differential equation 2 ρ,ũ = aρ2 + bρ + c.

• We may set, at least locally, ei = 0 by the transformation xi(x̃, u) = − ∫
ei(x̃, u) du.

This is regular only when the determinant det J i
k of the Jacobi matrix J i

k ≡ ∂xi

∂x̃k is
non-vanishing. In the degenerate case det J i

k = 0, we may alternatively remove ei,
for example, by applying the transformation xi = − ∫

ei(x̃, u) du− λ x̃i. This is now
clearly regular provided λ 6= 0 is any real parameter different from the eigenvalues of
the matrix J i

k in the neighbourhood of a given point.

• Considering (84), the functions fi can also be simplified using the coordinate freedom
(81). For example, at any given point, it is always possible to apply a suitable “rotation”
to achieve (say) f1 6= 0 and fi = 0 for i = 2, 3, . . . , D − 2. However, to obtain such a
simplification in a local neighbourhood or even globally, additional conditions must be
satisfied.

• It is sometimes possible to remove the function ξi in the electromagnetic component
Fiu by transforming x so that Fij

∂xj

∂ũ = −ξi, with u = ũ and ρ = 0, see (90).

Of course, these transformations are not mutually independent. Moreover, the particular
use of the coordinate freedom is very different for specific subclasses of the Kundt spacetimes.
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6.2 Canonical subclasses

It also follows immediately from the coordinate freedom (81) discussed above that

f ifi ≡ gijfifj is an invariant , (92)

i.e., g̃klf̃kf̃l = gijfifj , see the transformation properties (82) and (84). Moreover, due to the
positivity of the spatial metric gij , the expression f ifi can not be negative. This fact can
conveniently be used for a natural canonical classification of a general family of the Kundt
spacetimes in any dimension.

Namely, it is possible to distinguish two separate cases: f ifi = 0 and f ifi > 0 . In the
first case, it follows that fi = 0 for all i = 1, 2, . . . , D − 2, see section 6.2.1 below. In the
second case it is sometimes possible to employ the coordinate freedom (84) to obtain a
specific simpler form of the functions fi, see section 6.2.2.

Note also that the functions fi are directly related to the coefficients

τi ≡ kα;β mα
(i) lβ (93)

(which are higher-dimensional analogues of the real and imaginary parts of the Newmann–
Penrose spin coefficient τ) with respect to the frame (40) that is naturally adapted to the
coordinates of the Kundt metric (77). In [6, 7, 13] such coefficients are denoted Li1 = L1i.
Using the fact that kα;β = 1

2gαβ,r, it can easily be shown that

τi = − 1
2p fi . (94)

In the Kundt class of spacetimes these quantities are invariant under null rotations with
respect to a fixed WAND k, see [25] with Li0 = 0 = Lij , while under spatial rotations
m′

(i) = Xj
i m(j) (where Xj

i is an orthogonal matrix) they transform simply as τ ′i = Xj
i τj .

Note finally that the above invariant (92), which occurs (for example) in the explicit
expression for the metric function a in (69), reads

1
4f ifi = p−2gij τiτj = γij τiτj . (95)

In D = 4 this becomes simply τ τ̄ .

6.2.1 The case f ifi = 0

Clearly, the simplest subclass of the Kundt family of spacetimes is that for which all the
functions fi vanish , fi = 0 for all i. This occurs if, and only if, f ifi = 0 and the corre-
sponding metric and the field equations simplify considerably. Indeed, metric (77) reduces
to

ds2 = gij dxidxj + 2 ei dxidu− 2 dudr + (a r2 + b r + c) du2, (96)

where (since ϕ = 0)

a =
2Λ

D − 2
− F 2 + 2(D − 3)Q2

D − 2
, (97)

and the equations (66)–(76) become

sRij =
2Λ

D − 2
gij − F 2 − 2Q2

D − 2
gij + 2FikFjl g

kl , (98)

1
2 (gija,j)||i = −2 gijQ,iQ,j , (99)
1
2 (gijb,j)||i + 2 eia,i + a

(
ei
||i − (ln

√
g ),u

)
= −4Q,i(ξi + Q ei) , (100)

1
2 (gijc,j)||i + a eiei + 1

2b
(
ei
||i − (ln

√
g ),u

)− 1
2gijgklej,l(ei,k − ek,i)

−(gijej,u)||i + eib,i + 1
4gijgklgik,u gjl,u + (ln

√
g ),uu = −2(ξi + Q ei)(ξi + Qei) , (101)

(F 2),i + 2(D − 3)(Q2),i

D − 2
= −2QQ,i + 2Fijg

jkQ,k , (102)

1
2

[
gjk(gij,u + ej,i − ei,j)

]
,k

+ 1
2

[
gjk(gij,u + ej,i − ei,j)

]
(ln
√

g ),k

− 1
2b,i + 1

2gjkglmgim,k(el,j − ej,l)−(ln
√

g ),ui − 1
4gjkglmgkm,i gjl,u (103)

=
(

2Λ
D − 2

− F 2 − 2Q2

D − 2

)
ei + 2Qξi − 2Fij(Qej + gjkξk) .
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These equations are quite complex, but the coordinate freedom (81), implying (82)–(91), can
be used for some further simplification. For example, when a 6= 0, the function b can always
be removed by choosing ρ = −b/2a. In view of (97), this is always possible if Λ < 0.

Notice also that the equation (99) for a can be re-written in the invariant form

4a = −4 |∇Q|2 ≤ 0 , (104)

where 4a ≡ a
||i
||i is the Laplacian on the Riemannian transverse space. Due to (104) and the

fact that gij is positive-definite, the function −a is subharmonic.
Specifically, by Bochner’s “maximum principle”, on a compact Riemannian manifold, a

subharmonic function is constant [26,27]. Therefore, a is independent of xi, and so is then Q.
From (102) it then follows that F 2 has the same property, too. Taking the trace of (98), we
conclude that sR is also independent of the transverse spatial coordinates x and the subspace
is of constant Ricci curvature, which can only depend on the variable u. Maxwell equation
(80) reduces to an effective Maxwell equation on the transverse space.

In the vacuum case it immediately follows from (98) and (97) that

sRij = a gij , where a =
2Λ

D − 2
, (105)

so that the Riemannian transverse space is an Einstein space.

6.2.2 The case f ifi > 0

When the invariant (92) does not vanish, some of the functions fi are non-zero. The Einstein–
Maxwell equations (66)–(76) to be solved are then, in general, much more involved. However,
it can be observed that a simplification occurs if fi,j − fj,i = 0 (i.e., f [i || j] = 0), so that fi

can locally be written as a gradient. Interestingly, this special case is physically important,
as it contains all the VSI spacetimes (see equation (22) in [13]). Let us now describe such a
particular subcase explicitly.

The subcase fi,j = fj,i

If fi,j = fj,i for all spatial indices i, j, the general field equations (66)–(76) reduce to

sRij =
2Λ

D − 2
gij − F 2 − 2Q2

D − 2
gij + 2FikFjl g

kl + 1
2fifj + fi,j − sΓk

ij fk , (106)

1
2 (gija,j)||i + 3

2f ia,i + a(ϕ + 1
2f ifi) = −2 gij(Q,i + Qfi)(Q,j + Qfj) , (107)

1
2 (gijb,j)||i − 1

2f ib,i + 2 eia,i + a
(
ei
||i + 2 eifi − (ln

√
g ),u

)

−(gijfj,u)||i − f i(fi,u − b,i) = −4(Q,i + Qfi)(ξi + Qei) , (108)
1
2 (gijc,j)||i − 1

2f ic,i − 1
2f i

||i c + a eiei + 1
2b

(
ei
||i − (ln

√
g ),u

)

− 1
2 (f ifi)(ejej) + 1

2 (f iei)2 − f iej(ei,j − ej,i)− 1
2gijgklej,l(ei,k − ek,i) (109)

−(gijej,u)||i − ei(fi,u − b,i) + 1
4gijgklgik,u gjl,u + (ln

√
g ),uu = −2(ξi + Qei)(ξi + Qei) ,

ϕ,i − 1
2f j(fj,i − fifj) + 1

2

(
fif

j
)
,j

+ 1
2

(
fif

j
)

(ln
√

g ),j +
(F 2),i + 2(D − 3)(Q2),i

D − 2

= −
(

2Λ
D − 2

− F 2 − 2Q2

D − 2

)
fi − 2QQ,i + 2Fij(Qf j + gjkQ,k) , (110)

1
2

[
gjk(gij,u + ej,i − ei,j − fiej)

]
,k

+ 1
2

[
gjk(gij,u + ej,i − ei,j − fiej)

]
(ln
√

g ),k

− 1
2fi ejfj − 1

2b,i + 1
2f jej,i + 1

2gjkglmgim,k(el,j − ej,l + fl ej − fj el)
+ 1

2fi,u + 1
2fi(ln

√
g ),u − (ln

√
g ),ui − 1

4gjkglmgkm,i gjl,u (111)

=
(

2Λ
D − 2

− F 2 − 2Q2

D − 2

)
ei + 2Qξi − 2Fij(Qej + gjkξk) .

Moreover, from the conditions fi,j − fj,i = 0 it follows that there exists (at least in some
neighbourhood) a “potential” function F(x, u) such that fi can be written as a gradient,

fi =
∂F
∂xi

. (112)
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It is possible to employ the coordinate freedom (84) to achieve (say) f1 6= 0 and fi = 0 for
all i 6= 1. Indeed, F itself can be taken as a new local coordinate x̃1 ≡ F(x, u), and relation
(84) thus implies f̃1 = 1 and f̃2 = f̃3 = . . . = 0. Therefore, without loss of generality, we can
(locally) assume

f1 = 1 , fi = 0 for i = 2, 3, . . . , D − 2 . (113)

This facilitates further simplification since, for example, any derivative of fi in (106)–(111)
vanishes identically.

7 Important subfamilies and relation to previous works

In this final section we will briefly mention some particular subclasses of the metric (77) and
list the related references.

7.1 pp-waves

One important subclass of Kundt spacetimes are pp-waves. These are defined geometrically
as admitting a covariantly constant null vector field k (and thus are sometimes denoted as
CCNV spacetimes). Since kα;β = 1

2gαβ,r, it follows that all the metric functions gαβ in (77)
must be independent of the coordinate r, so that fi = 0 for all i (implying τi = 0), and also
a = 0 = b. This is thus a special case of (96),

ds2 = gij dxidxj + 2 ei dxidu− 2 dudr + c du2, (114)

where, due to (97),
F 2 + 2(D − 3)Q2 = 2Λ ≥ 0 . (115)

Also, using the fact that Q,F and sR can only be functions of u, see (99), (102) and the
trace of (98), the field equations become

sRij =
2Λ

D − 2
gij − F 2 − 2Q2

D − 2
gij + 2FikFjl gkl , (116)

1
2 (gijc,j)||i − 1

2gijgklej,l(ei,k − ek,i)− (gijej,u)||i
+ 1

4gijgklgik,u gjl,u + (ln
√

g ),uu = −2(ξi + Qei)(ξi + Q ei) , (117)
1
2

[
gjk(gij,u + ej,i − ei,j)

]
,k

+ 1
2

[
gjk(gij,u + ej,i − ei,j)

]
(ln
√

g ),k

+ 1
2gjkglmgim,k(el,j − ej,l)−(ln

√
g ),ui − 1

4gjkglmgkm,i gjl,u (118)

=
(

2Λ
D − 2

− F 2 − 2Q2

D − 2

)
ei + 2Qξi − 2Fij(Qej + gjkξk) .

In vacuum, we have Fij = 0 = Q , so that F 2 = 0, and also ξi = 0. In view of (115), Λ = 0
and due to (116) the transverse Riemannian space must be Ricci flat,

sRij = 0 . (119)

Of course, the right-hand sides of equations (117) and (118) are also zero.
In the particular case when all the functions ei can be globally removed, i.e., fi = 0 = ei,

equations (117), (118) further reduce to a much simpler form

1
2 (gijc,j)||i + 1

4gijgklgik,u gjl,u + (ln
√

g ),uu = −2 ξi ξi , (120)
1
2

[
gjk(gij,u)

]
,k

+ 1
2

[
gjk(gij,u)

]
(ln
√

g ),k−(ln
√

g ),ui − 1
4gjkglmgkm,i gjl,u (121)

= 2Qξi − 2Fijg
jkξk .

The pp-wave spacetimes (114) in higher dimensions were introduced in the classic paper
[8] by Brinkmann, and since then they have been studied extensively, see for example [7, 9,
10,12,13] and references therein.
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7.2 VSI and CSI spacetimes

Higher-dimensional Lorentzian spacetimes with vanishing scalar curvature invariants of all
orders (the so-called VSI spacetimes) were explicitly presented in [13], see also [7,9,11,12,14].
It was found that all such spacetimes belong to the Kundt class and, in fact, can be written
in the canonical form

ds2 = δij dxidxj + 2 (ei + fi r) dxidu− 2 dudr + (a r2 + b r + c) du2 . (122)

This is a particular case of the metric (77) in which the transverse space is flat , i.e.

gij = δij . (123)

Such spacetimes have a Weyl tensor of algebraic type III, or more special. Two subclasses
can be distinguished, namely the case fi = 0 for all i = 1, 2, . . . , D − 2 (which occurs when
f ifi = 0 ) and the case f1 6= 0 with fi = 0 for i = 2, 3, . . . , D − 2 (when f ifi > 0 ). For more
details, see [13] with the notational identification r = −v, ei = W

(0)
i and fi = −W

(1)
i where

either f1 = 0 or f1 = 2/x1. Note that the special choice (113) in which f1 = 1 can be achieved
by a simple coordinate transformation x1 → exp(1

2x1) with redefinition ei = 1
2W

(0)
i exp( 1

2x1),
of course at the expense that the flat metric δij becomes diag ( 1

4 exp x1, 1, . . . , 1).
An important subclass of VSI spacetimes with fi = 0 for all i are pp-waves with a flat

spatial metric (123), as described above in section 7.1 (see also the following section 7.3).
A generalisation of the VSI spacetimes belonging to the Kundt class, such that all polyno-

mial scalar invariants constructed from the Riemann tensor and its derivatives are constant
(denoted CSI spacetimes), was introduced and studied in [7, 14,15].

7.3 Gyratons

Another physically interesting subclass of the Kundt family of non-expanding space-times are
the so-called gyratons. These describe the field of a localised spinning source that propagates
at the speed of light. Such a situation may be modelled by a spinning beam pulse of radiation
(or null matter) that has a finite duration in retarded time u and a negligible transverse
radius, so that the total energy and angular momentum remain finite. Exact spacetimes of
this type, represented by specific axially symmetric type III Kundt solutions in D = 4, were
introduced by Bonnor [16] (who called them “spinning nullicons”) and recently generalised
to higher dimensions [17–22], see also [7, 13].

The external gravitational field of the simplest gyraton with Λ = 0 is described by the
metric

ds2 = δij dxidxj + 2 ei dxidu− 2 du dr + c du2, (124)

see [18] with the identification ei = Ai, c = Φ. Obviously, this is a particular pp-wave
Brinkmann metric (114) with gij = δij , ei 6= 0, and also a special subfamily of VSI spacetimes
(122) with fi = 0 and a = 0 = b. The metric functions ei and c must satisfy vacuum field
equations (117) and (118) with vanishing right-hand sides. Interestingly, these are formally
equivalent to equations for the magnetic vector potential Ai and electric scalar potential Φ
in the transverse (D − 2)-dimensional flat space [17,18], and thus can be generally solved by
standard methods.

In order to obtain the complete spacetime, it is necessary to find also the corresponding
internal solution inside the gyraton, and match it to the vacuum exterior solution (124). It
must be emphasised that the “gyraton matter” is spinning, so that its energy-momentum
tensor has not only the familiar pure radiation (null fluid) component Tuu 6= 0 but also an
extra non-diagonal term Tui 6= 0 (other components, and thus the trace T µ

µ , are assumed
to be zero). In the natural frame (40), the only non-vanishing components of the Ricci
tensor, related to the gyraton, are thus Φ ≡ Rαβ lα lβ and Φi ≡ Rαβ lα mβ

(i), which in D = 4
correspond to the Newman–Penrose scalars Φ22 and Φ12, respectively. Within this internal
gyraton region, the spacetime is in general of algebraic type III.

As discussed in section 6.1, it is possible to remove all metric functions ei in the exterior
vacuum region, but only locally. In the presence of gyratonic matter, we can not set ei = 0
globally because the exterior pp-wave manifold (124) is not simply connected and even if
the spinning gyraton source is negligibly small, there remains a particular singularity along
(part of) the axis xi = 0.
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Further specific generalisations of the gyraton spacetime (124) have been presented re-
cently which admit a negative cosmological constant [19] or a charged source [20]. Gyraton
solutions in supergravity theories have been considered in [21,22].

All these gyratonic solutions belong to the Kundt family. Naturally, other types of
gyratons can be explicitly constructed and identified within the general family of higher-
dimensional Kundt spacetimes presented in this contribution. For example, in [13] the au-
thors mention the existence of both pp-wave gyratons (with no r-dependence) and the Kundt
gyratons (with r-dependence) which generalise a metric of the Kundt waves. Obviously, the
latter can be identified in the canonical subclass of spacetimes with f ifi > 0 , described in
section 6.2.2.

8 Conclusions

We presented and discussed the main features of the general Kundt family of higher-dimen-
sional spacetimes, which admit a hypersurface-orthogonal, non-shearing and non-expanding
congruence of null geodesics. In particular, without assuming any specific matter content,
we explicitly calculated all components of the curvature and Ricci tensors for the Kundt
metric. We also determined its algebraic type, together with constraints imposed by general
Einstein’s field equations.

Starting from section 5, we restricted our analysis to the most important case of vacuum
Kundt spacetimes with an arbitrary cosmological constant Λ, and possibly with an aligned
electromagnetic field. We derived the explicit form of all Einstein(–Maxwell) equations within
such a setting. The results are summarised in section 6 where we also discuss the remaining
coordinate freedom and define canonical subclasses.

We demonstrated above that the general form of such (electro)vacuum Kundt space-
times in any dimension D is simple, see the metric (77). In particular, the metric functions
gui are at most linear while guu is at most quadratic in the affine parameter r of the con-
gruence generated by the multiple WAND ∂r, which fully agrees with a form of vacuum
non-twisting metrics presented in [23]. However, the structure of the remaining Einstein(–
Maxwell) equations, which determine the explicit form of the metric functions, is rather
complicated. Obviously, these equations are not manageable in general. This is not, in fact,
surprising since even in the D = 4 case such solutions are mostly not known explicitly, see [1].
Nevertheless, various canonical and special subclasses of vacuum and electrovacuum Kundt
spacetimes, possibly with a non-vanishing cosmological constant Λ, can be identified and
studied. These include some previously found solutions in this family, namely generalised
pp-waves, VSI or CSI spacetimes, and gyratons, as described in section 7.

In contrast to the Robinson–Trautman family of expanding solutions, which in D > 4
contains only conformally flat and type D solutions [2,3], the non-expanding class of higher-
dimensional Kundt spacetimes is very rich. There are vacuum and electrovacuum solutions
of various algebraic types (i.e., of type II and more special), and the transverse (D − 2)-
dimensional Riemannian space admits many spatial metrics. This follows from the property
that Kundt’s spacetimes have a shear-free and non-expanding character and thus, in D > 4,
they are closer to their four-dimensional counterparts, see [14] and references therein.
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[23] Pravda V and Pravdová A 2008 The Newman–Penrose formalism in higher dimensions:
vacuum spacetimes with a non-twisting geodetic multiple Weyl aligned null direction
Class. Quantum Grav. 25 235008 (27pp)

[24] Brannlund J, Coley A and Hervik S 2008 Supersymmetry, holonomy and Kundt space-
times Class. Quantum Grav. 25 195007 (10pp)
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