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Abstract

A family of explicit exact solutions of Einstein’s equations in four and higher dimensions is
studied which describes the gravitational field of an object accelerating due to an anisotropic
emission of photons. It is possible to prescribe an arbitrary motion, so that the acceleration
of such photon rocket need not be uniform — both its magnitude and direction may vary
with time. Except at location of the rocket the spacetimes have no curvature singularities,
and topological defects like cosmic strings are also absent. Any value of a cosmological
constant is allowed. We investigate some particular examples of motion, namely a straight
flight and a circular trajectory, and we derive the corresponding radiation patterns and the
mass loss of the rockets. We also demonstrate the absence of “gravitational aberration” in
such spacetimes. This interesting member of the higher-dimensional Robinson–Trautman
class of pure radiation spacetimes of algebraic type D generalises the class of Kinnersley’s
solutions that has long been known in four-dimensional general relativity.

PACS 04.20.Jb, 04.50.-h, 04.40.Nr, 04.30.-w

1 Introduction

In 1969, Kinnersley [1] introduced and investigated a class of exact spacetimes that describe
a localised object which accelerates due to the back reaction of the emitted null radiation.
In the axially symmetric case the object moves along a straight line corresponding to the
axis, but more general solutions also exist in which the motion is completely arbitrary. They
may serve as interesting self-consistent exact models for the motion a photon rocket that
is propelled by a specific anisotropic emission of photons. Such solutions have attracted
considerable attention [2–10], in particular due to some unusual properties of the associated
gravitational radiation.

The Kinnersley solutions are of algebraic type D and belong to a large family of Robinson–
Trautman spacetimes [11–14] which is defined by the property that it admits a geodesic,
shear-free, twist-free but expanding null vector field. Interestingly, within the class of
Robinson–Trautman spacetimes there are other distinct type D solutions which also de-
scribe accelerated sources, namely the famous C-metric. This is a specific vacuum solution
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which represents a pair of black holes, uniformly accelerating under the influence of cosmic
strings or struts along the axis of symmetry [15] (for a recent review see [14]). In contrast
to the C-metric, the spacetimes describing Kinnersley’s photon rockets are non-vacuum (the
rockets emit pure radiation) and, apart from the location of the rocket, they are regular
everywhere.

It is desirable to find and study higher-dimensional extensions of such classes of exact
spacetimes which represent accelerated objects. There have been many attempts to generalise
the C-metric to higher dimensions, but it has not (yet) been found. Interestingly enough, an
exact class of pure radiation spacetimes which includes those of the Kinnersley rockets in an
arbitrary dimension has been recently discovered within the Kerr–Schild family [16,17] and
independently in the Robinson–Trautman family [18].

It is the purpose of this contribution to present and analyse such spacetimes. In sec-
tion 2 we briefly summarise the Kinnersley photon rockets in four dimensions. Subsequently,
in section 3 we introduce very useful Newman–Unti coordinates adapted to an arbitrarily
moving test particle in a flat space of dimension D. In section 4 we present a generali-
sation of the Kinnersley solution to higher dimensions, discussing the Kerr–Schild and the
Robinson–Trautman forms and a possible cosmological constant. Sections 5 and 6 concen-
trate on particular situations in which the rockets accelerate along a single spatial direction
or move along a circular trajectory. In both these cases we derive and plot the corresponding
radiation pattern and the mass loss formula. In the final section 7 we give the Christoffel
symbols necessary for study of geodesics in these spacetimes and we demonstrate the absence
of “gravitational aberration”.

2 Kinnersley photon rockets in D = 4

Kinnersley’s solution [1] belongs to the family of Robinson–Trautman space-times with an
aligned pure radiation. In four dimensions, the metric can thus be written in the standard
form [11–14]

ds2 = 2
r2

P 2
dζ dζ̄ − 2 dudr − 2H du2, (1)

where

2H = K − 2r( log P ),u − 2m(u)

r
− Λ

3
r2. (2)

Here Λ is the cosmological constant while P is an arbitrary function P (u, ζ, ζ̄). The func-
tion K(u, ζ, ζ̄) ≡ ∆ log P , where ∆ ≡ 2P 2∂ζ∂ζ̄ , determines the Gaussian curvature of the
2-surfaces spanned by the (complex) spatial coordinate ζ, on which r = 1 and u is any con-
stant.

The family of Kinnersley rockets is obtained when

P = A(u) + B(u) ζ + B̄(u) ζ̄ + C(u) ζζ̄ , (3)

in which A,B,C are functions of u (B may be complex), so that

K(u) = 2(AC − BB̄) . (4)

For K > 0, these solutions represent the gravitational field of an arbitrarily moving object
located at r = 0 whose velocity is encoded in the functions A,B,C (for the explicit relations
see equation (28) below; more details are given in section 3). Since the Gaussian curvature
K(u) is independent of the transverse spatial coordinates ζ, ζ̄, there are no poles over the
compact surfaces u = const. (at any r) which means that for r 6= 0 these spacetimes are
everywhere regular, free of curvature singularities and cosmic strings or struts. Indeed,
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using the natural null tetrad k = ∂r, l = ∂u − H∂r, m = (P/r) ∂ζ̄ the only component of the
curvature tensor for the metric (1) with (3) is

Ψ2 = −m(u)

r3
. (5)

The spacetimes are thus of algebraic type D, and there is a curvature singularity only at
r = 0 where Ψ2 diverges. Conformal infinity is located at r = ∞ where the space-times
asymptotically become conformally flat and also vacuum, i.e., Minkowski or (anti-)de Sitter,
according to the sign of Λ.

The spacetimes contain an aligned pure radiation field (that is flow of matter of zero
rest-mass, emitted from the source located at r = 0) with an energy-momentum tensor of
the form Tµν = ρ kµkν . The radiation density is

ρ =
n2(u, ζ, ζ̄)

r2
, (6)

where the function n2 is determined by Einstein’s equation as

4π n2 = −m,u + 3m( log P ),u . (7)

In the particular case when B = 0 and K = +1, the Kinnersley photon rocket moves
along a single axis. Performing a suitable transformation, the metric (1)–(3) then can be put
into the form

ds2 = −
(

1 − 2m

r
− Λ

3
r2 − 2α r cos ϑ − α2 r2 sin2 ϑ

)

du2

− 2 dudr + 2α r2 sin ϑ dudϑ + r2(dϑ2 + sin2 ϑ dφ2) , (8)

in which α(u) is an arbitrary “acceleration function” of the coordinate u, see [1,2,10] for more
details. This represents a singular source located at r = 0, of decreasing mass determined by
m(u), which emits pure radiation and accelerates in Minkowski, de Sitter or anti-de Sitter
space along a straight line (which is the axis of symmetry) due to the corresponding net back
reaction. It thus serves as a simple exact model of a rocket that is propelled by the anisotropic
emission of photons whose radiation field profile is determined by the field equation (7) as
n2(u, ϑ) = 1

4π [−m,u(u) + 3α(u)m(u) cos ϑ].

3 Arbitrarily accelerated coordinates in flat space

Before presenting a generalisation of the Kinnersley photon rockets solution to higher di-
mensions (in the following section 4), it will be important to introduce and summarise a
particularly useful coordinate system adapted to an arbitrarily moving test particle in a flat
space of dimension D. For D = 4 this was described already by Newman and Unti in their
classic work [19], and subsequently elsewhere.

Let us consider Minkowski space of dimension D with the standard metric

ds2 = ηαβ dZαdZβ = −(dZ0)
2
+ (dZ1)

2
+ · · · + (dZD−1)

2
, (9)

and any timelike worldline

zα(u) . (10)

This describes motion of a test particle in the flat space (9), and the parameter u is assumed
to be its proper time. The corresponding velocity is

u = żα ∂α , where żα(u) ≡ dzα

du
and ∂α ≡ ∂

∂Zα
. (11)
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At any event P ≡ {z0(u), . . . , zD−1(u)} on the trajectory (10) we now take the future null

cone and we label this hypersurface as u = const. which is exactly the value of the proper
time of the particle when it passes through the vertex point P, as shown in figure 1.

Figure 1: Construction of the coordinate system that is naturally adapted to an arbitrarily moving
test particle in D-dimensional flat space (spatial coordinates Z3, . . . , ZD−1 are suppressed). At
any event P of the particle’s worldline with velocity u, the future null cone is labeled as u and it
is assigned the value of the corresponding proper time. The coordinate r is an affine parameter
along null geodesics which connect P with any event Q on the cone. These are generated by
properly normalised null vectors k.

Each of such null cones is generated by a family of null vectors k = kα ∂α along the particle’s
trajectory. It is convenient to prescribe the normalisation condition k · u = −1, in addition
to those already mentioned, u · u = −1 and k · k = 0, i.e.:

ηαβ kαżβ = −1 , (12)

ηαβ żαżβ = −1 , (13)

ηαβ kαkβ = 0 . (14)

The background coordinates of any event Q ≡ {Z0, . . . , ZD−1} on the null cone u =const.
can obviously be expressed as Zα = zα(u) + r kα, where kα represents the generator of the
null geodesics connecting Q with P, and r is a new coordinate. In fact, r is the correspond-
ing affine parameter since ∂r = Zα

,r ∂α = kα∂α = k, and using the relation (12) this can be

explicitly expressed as r = −ηαβ(Zα − zα(u)) żβ . Now it only remains to parameterise the
null vectors k. In the natural frame of the background coordinates of (9), without loss of
generality all these vectors can be conveniently represented as

k =
1

p(u,n)

(

∂0 +
D−1
∑

i=1

ni ∂i

)

, (15)

i.e., k0 = p−1, ki = p−1ni. Here p(u,n) is some function, and the parameters ni can be
understood as components of a spatial unit vector n = ni∂i. Indeed,

D−1
∑

i,j=1

δij ninj = 1 (16)

guarantees that k · k = 0.
The natural geometrical construction described above thus introduces new convenient

set of D independent coordinates in the flat spacetime, namely u, r and ni. Recall that
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there are D − 1 spatial parameters ni, but since they are constrained by the normalisation
condition (16), only D − 2 of them are independent. These new coordinates are adapted
to an arbitrarily moving (accelerating) test particle which is always located at r = 0, the
vertex of all future-oriented null cones. They are labelled by the coordinate u which has the
meaning of a retarded time because it coincides with the proper time of the moving particle.

Now it is straightforward to express the Minkowski space (9) in terms of these new
coordinates {u, r, ni} using the relation

Zα = zα(u) + r kα(u,n) . (17)

Employing relations (12), (13), (14) and also the identities

2 ηαβ kαdkβ = d(ηαβ kαkβ) = 0 , (18)

ηαβ żαdkβ = ( log p),u du , (19)

ηαβ dkαdkβ =
1

p2

D−1
∑

i,j=1

δij dnidnj , (20)

we arrive at the following metric form

ds2 =
r2

p2

D−1
∑

i,j=1

δij dnidnj − 2 dudr −
(

1 − 2r( log p),u
)

du2, (21)

with the constraint (16). The function p(u,n) in (21) is not arbitrary since the condition
k · u = −1, i.e. (12), must be satisfied. It immediately follows from (12) and (15) that

p(u,n) = ż0(u) −
D−1
∑

i=1

niżi(u) , (22)

where żα(u) are components of the velocity (11) of an arbitrarily moving particle whose
worldline is zα(u).

3.1 Flat metric in accelerated spherical-like coordinates

The most natural explicit parametrisation of the components ni of the unit vector n, which
satisfies (16), is given by D − 2 spherical angles. In D = 4 the standard choice

n1 = cos θ , n2 = sin θ cos φ , n3 = sin θ sinφ , (23)

brings the metric (21) to the form

ds2 =
r2

p2
(dθ2 + sin2 θ dφ2) − 2 dudr −

(

1 − 2r( log p),u
)

du2, (24)

where, due to (22),

p(u, θ, φ) = ż0 − ż1 cos θ − ż2 sin θ cos φ − ż3 sin θ sin φ . (25)

This can further be rewritten in terms of the complex stereographic coordinate ζ ,

ζ =
√

2 tan
θ

2
eiφ , (26)

as

ds2 = 2
r2

P 2
dζ dζ̄ − 2 dudr −

(

1 − 2r( log P ),u
)

du2, (27)
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where the function P ≡ (1 + 1
2ζζ̄) p is given by

P (u, ζ, ζ̄) = (ż0 − ż1) − 1√
2
(ż2 − i ż3)ζ − 1√

2
(ż2 + i ż3)ζ̄ + 1

2(ż0 + ż1)ζζ̄ . (28)

This Robinson–Trautman form (1), (2) of the flat metric, which was presented e.g. in [8,19,
20], gives an explicit physical meaning to the mathematical coefficients A(u), B(u), C(u) in
the function (3). Notice also that K = 1 due to (13), as required by equation (4).

Spherical parametrisation of the components ni of a unit vector n by D − 2 angles θi can
be given in any dimension D. Let us consider

ni = cos θi

i−1
∏

j=1

sin θj , (29)

and define

θD−1 ≡ 0 ,
0
∏

j=1

sin θj ≡ 1 . (30)

Relation (16) is identically satisfied and the spatial part of the metric (21) becomes

D−1
∑

i,j=1

δij dnidnj =
D−2
∑

i=1

(

i−1
∏

j=1

sin2 θj

)

dθ2
i (31)

= dθ2
1 + sin2 θ1 dθ2

2 + sin2 θ1 sin2 θ2 dθ2
3 + · · · + sin2 θ1 . . . sin2 θD−3 dθ2

D−2 ,

where θ1, θ2, . . . , θD−3 ∈ [0, π], θD−2 ∈ [0, 2π). Clearly, it has the geometry of a sphere SD−2.
Flat space in arbitrarily accelerated coordinates thus takes the metric form

ds2 =
r2

p2

D−2
∑

i=1

(

i−1
∏

j=1

sin2 θj

)

dθ2
i − 2 dudr −

(

1 − 2r( log p),u
)

du2, (32)

in which

p(u, θi) = ż0(u) −
D−1
∑

i=1

żi(u) cos θi

i−1
∏

j=1

sin θj . (33)

Recall again that the functions ż0(u), ż1(u), . . . , żD−1(u) are components of the velocity (11)
of the test particle located at r = 0 which moves along an arbitrary worldline (10), and u is
its proper time.

3.2 Flat metric in accelerated Cartesian-like coordinates

Another important parametrisation of the general metric (21) is obtained in terms of Cartesian-
type coordinates. These are introduced by

ni =
xi

1 + 1
4δkl xkxl

, i, j, k, l = 1, 2, . . . ,D − 2 ,

nD−1 =
1 − 1

4δij xixj

1 + 1
4δkl xkxl

, (34)

(with the summation convention over i, j, k, l) in which the spatial part of the metric becomes
explicitly conformally flat. Indeed,

∑D−1
i,j=1 δijn

inj = 1 and

D−1
∑

i,j=1

δij dnidnj =
δij dxidxj

(1 + 1
4δkl xkxl)2

. (35)
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The metric (21) thus becomes

ds2 =
r2

P 2
δij dxidxj − 2 dudr −

(

1 − 2r( log P ),u
)

du2, (36)

in which the function
P ≡ (1 + 1

4δkl x
kxl) p (37)

with p given by (22) takes the form

P = (ż0 − żD−1) − (δij żj)xi + 1
4(ż0 + żD−1) δij xixj . (38)

This is exactly the canonical form of the D-dimensional Robinson–Trautman metric, as given
by equations (37), (38) of [18] in the flat-space case when Λ = 0 and µ = 0. In fact, it gives
an explicit physical meaning to general coefficients in the function (42) therein,

P = A(u) + Bi(u)xi + C(u) δij xixj , (39)

namely

A(u) ≡ ż0(u) − żD−1(u) ,

Bi(u) ≡ −żi(u) , (40)

C(u) ≡ 1
4 [ ż0(u) + żD−1(u) ] .

Consequently, the Ricci scalar R corresponding to the spatial metric hij ≡ P−2δij is

R(u)

(D − 2)(D − 3)
= 4AC −

D−2
∑

i=1

B2
i = −ηαβ żαżβ = 1 . (41)

The transverse (D−2)-dimensional space, covered by the coordinates xi, thus has a constant
positive curvature, i.e., it is a sphere SD−2 of radius r, as in (32).

In particular, when the test particle located at the origin r = 0 of the coordinates of (36) is
at rest with respect to the Minkowski background (9) then ż0(u) = 1, żi(u) = 0 = żD−1(u).
The metric function (39) thus reduces to P = 1 + 1

4 δij xixj, which gives exactly the well-
known form of the Schwarzschild–Tangherlini black hole spacetime in the limit when its
mass parameter vanishes.

The function (28) obviously equals (38) for D = 4 if we introduce the complex coordinate
ζ = 1√

2
(x1 + ix2) and relabel z1 → z3 → z2 → z1.

4 Photon rockets in higher dimensions

We will now present the class of non-flat solutions which generalise the Kinnersley spacetimes
from D = 4 to D > 4. These contain null radiation (representing the emission of photons)
and a possible cosmological constant Λ. Such solutions describe an arbitrarily moving photon
rocket in any dimension. To this end, the coordinate systems naturally adapted to general
worldlines of test particles in flat space, as described in previous section 3, will be employed
for the background.

4.1 The Kerr–Schild form

In fact, these exact solutions of Einstein’s field equations in higher dimensions have already
been found by several authors. In particular, Gürses and Sarıoğlu in [16, 17] presented an
accelerated metric which has the Kerr–Schild form

ds2 = ηαβ dZαdZβ + 2V kαkβ dZαdZβ, (42)

7



where the first part represents just Minkowski flat space (9), k is the null vector defined in
section 3, and the function 2V is

2V =
2m(u)

rD−3
+

2Λ

(D − 2)(D − 1)
r2. (43)

The function m(u) corresponds to the decreasing mass of the accelerating object located at
r = 0. The associated pure radiation field has the form

Tµν = ρ kµkν where ρ =
n2(u,n)

rD−2
, (44)

and
8π

D − 2
n2 = −m,u + (D − 1)m ( log P ),u . (45)

This is obviously a generalisation of expressions (6), (7) valid for D = 4.

4.2 The Robinson–Trautman form

The same class of exact solutions was independently rediscovered in the context of higher-
dimensional Robinson–Trautman spacetimes by Podolský and Ortaggio [18]. It was demon-
strated that in this class the only solutions with aligned pure radiation and Λ in any dimension
D > 4 are of algebraic type type D and have the form

ds2 =
r2

P 2
γij dxidxj − 2 dudr − 2H du2, (46)

where the function 2H is

2H =
R(u)

(D − 2)(D − 3)
− 2 r( log P ),u − 2m(u)

rD−3
− 2Λ

(D − 2)(D − 1)
r2. (47)

The unimodular metric γij(x
k) and the function P (u, xi) must satisfy the field equations

for the transverse spatial metric hij ≡ P−2γij , namely that at any section u = u0 =const.
the metric hij(u0, x

k) describes an Einstein space, Rij = 1
D−2Rhij , where Rij and R is the

corresponding spatial Ricci tensor and scalar, respectively.
The simplest family of such spacetimes arises when the metric hij is of constant curvature

and thus conformally flat (this is always true when D = 5 since hij is then three-dimensional).
In such a case, in suitable coordinates xi,

γij = δij , (48)

and, by integrating the remaining field equations, the function P (u, xi) must have the general
form (39), P = A(u) + Bi(u)xi + C(u) δij xixj. In the flat-space limit (m → 0, Λ → 0) the
functions A(u), Bi(u), C(u) are related to the components of the velocity u of a test particle
at r = 0, as given explicitly by expressions (40). Because this physical interpretation follows
from relation (22), which is the consequence of (12), (15), and since

gαβ kαżβ ≡ (ηαβ + 2V kαkβ) kαżβ = ηαβ kαżβ = −1, (49)

such an interpretation of the functions A(u), Bi(u), C(u) remains valid also in the general
(non-flat) case m 6= 0. Moreover, due to the coordinate freedom of the metric (46), (47) given
by u = u(ũ), r = r̃/u′(ũ), where u′ ≡ du

dũ , which implies P̃ = P u′, R̃ = Ru′2, m̃ = m u′D−1,

ñ2 = n2 u′D and thus Ã = Au′, B̃i = Bi u
′, C̃ = C u′, the corresponding (positive) Ricci

scalar term in (47) can always be set equal to 1, see (41). Therefore, the transverse space
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spanned by xi is a sphere SD−2 of constant positive curvature. The complete form of such
Robinson–Trautman pure radiation spacetimes (46)–(48), with m and Λ non-trivial, thus
reads

ds2 =
r2

P 2
δij dxidxj − 2 dudr

−
(

1 − 2 r( log P ),u − 2m(u)

rD−3
− 2Λ

(D − 2)(D − 1)
r2
)

du2, (50)

where the function P is explicitly given by (38),

P = (ż0 − żD−1) − (δij żj)xi + 1
4(ż0 + żD−1) δij xixj . (51)

Here ż0(u), ż1(u), . . . , żD−1(u) are components of the velocity (11) of an arbitrarily moving
photon rocket located at r = 0, whose worldline in the background space (9) is zα(u). In
particular, for an object at rest, P reduces to P = 1 + 1

4 δij xixj and metric (50) is the D > 4
counterpart of the well-known Vaidya–(anti-)de Sitter metric [13, 14]. Such spacetime is
spherically symmetric and radiation of photons is isotropic with n2(u) = −D−2

8π m,u. For
constant m we recover vacuum Schwarzschild–Kottler–Tangherlini black hole solution.

It may easily be observed that the metric (50) can naturally be decomposed into the flat-
space metric (36) in the Cartesian-like accelerated coordinates, and the Kerr–Schild term
2V du2, where the function 2V is given by (43). Indeed, for the null vector k = kα∂α = ∂r

in the metric (50) we obtain kα dZα = −du. This explicitly demonstrates the complete
equivalence of the Kerr–Schild form (42), (43) and the Robinson–Trautman form (50), (51)
of the metric a photon rocket moving arbitrarily in any dimension D ≥ 4.

Notice also that the replacement of the flat background metric ηαβ by the curved exact
metric gαβ = ηαβ + 2V kαkβ of the photon-rocket spacetime [(42) or (50)] preserves the nor-
malisations (12) and (14), namely k · u = gαβ kαżβ = −1 and k · k = gαβ kαkβ = 0. On the
other hand, the relation (13) changes to u · u = gαβ żαżβ = −(1 − 2V ), where the function
2V (r, u) is given by expression (43). The parameter u thus loses its direct physical mean-
ing as the proper time of an accelerating test particle located at r = 0. Of course, this is
not surprising since r = 0 in the complete metric gαβ corresponds to a curvature singular-

ity, and the redshift factor
√

1 − 2V =
√

1 − 2m r3−D − 2Λ
(D−2)(D−1) r2, which describes the

time dilation within a gravitational well of the massive photon rocket, also has to be taken
into account. In fact, similarly as in figure 1, the curved spacetime with the metric gαβ is
foliated by a family of null hypersurfaces u = const., but the coordinate u now plays the
role of the time measured by distant observers in asymptotically flat regions r → ∞ where
V → 0 (assuming Λ = 0; for the case Λ 6= 0 see the following subsection 4.3). This justifies
the physical interpretation of the functions żα(u) in (51) as components of the velocity u

of an accelerating rocket, measured with respect to the background flat space (associated
with the asymptotic regions far away from the rocket). Moreover, the same interpretation is
obtained in a weak-field limit when the mass of the rocket becomes negligible (m → 0).

Finally, it is possible to employ an alternative spherical-like representation of the ac-
celerated background coordinates, namely the flat-space metric form (32), (33) given in
subsection 3.1. The complete spacetime metric gαβ describing a rocket then becomes

ds2 =
r2

p2

D−2
∑

i=1

(

i−1
∏

j=1

sin2 θj

)

dθ2
i − 2 dudr

−
(

1 − 2 r( log p),u − 2m(u)

rD−3
− 2Λ

(D − 2)(D − 1)
r2
)

du2, (52)

where

p(u, θi) = ż0(u) −
D−1
∑

i=1

żi(u) cos θi

i−1
∏

j=1

sin θj , (53)
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which is fully equivalent to the Cartesian-like form (50), (51).

4.3 The inclusion of a cosmological constant

In the above metrics, the cosmological constant Λ may take an arbitrary value. Therefore,
the solutions represent a photon rocket moving not only in a D-dimensional (asymptoti-
cally) Minkowski space (when Λ = 0), but also in de Sitter (Λ > 0) or anti-de Sitter universe
(Λ < 0). These are the three maximally symmetric, conformally flat spacetimes of constant
curvature R = 2D

D−2Λ.

For Λ 6= 0, the functions ż0(u), ż1(u), . . . , żD−1(u) in (51) or (53) still retain their phys-
ical meaning as components of the velocity of the photon rocket with respect to the “back-
ground” frame ∂α corresponding to the coordinates Zα of (9). However, these now need to
be understood as coordinates of an “external” flat space of dimension D + 1, into which the
(anti-)de Sitter universe is embedded.

To be specific, it is well known that the de Sitter and anti-de Sitter spacetimes can be
represented as a D-dimensional hyperboloid

−(Z0)2 + (Z1)2 + · · · + (ZD−1)2 + ǫ (ZD)2 =
(D − 2)(D − 1)

2Λ
, (54)

embedded in a (D + 1)-dimensional flat space with the metric

ds2 = −(dZ0)
2
+ (dZ1)

2
+ · · · + (dZD−1)

2
+ ǫ (dZD)

2
, (55)

where ǫ ≡ sign Λ .
As in (10), we may now consider a timelike worldline zα(u) in this (D + 1)-dimensional

flat space. If we assume that the functions zα(u) satisfy the constraint

−[z0(u)]2 + [z1(u)]2 + · · · + [zD−1(u)]2 + ǫ [zD(u)]2 =
(D − 2)(D − 1)

2Λ
(56)

at any time u, the photon rocket (with a negligible mass m) during its motion will always
remain on the hyperboloid (54), i.e., in the D-dimensional (anti-)de Sitter universe. The
corresponding (D + 1)-velocity u = żα(u) ∂α is normalised to

−[ż0(u)]2 + [ż1(u)]2 + · · · + [żD−1(u)]2 + ǫ [żD(u)]2 = −1 , (57)

(for Λ < 0 we simply modify the metric ηαβ to diag(−1,+1, · · · ,+1,−1)). This constraint
may be considered as the relation which determines the value of the function żD(u) in terms
of the velocity components ż0(u), ż1(u), . . . , żD−1(u) which occur in the functions (51) or
(53). Effectively, it thus only remains to choose the trajectory of the rocket in such a way
that it satisfies the condition (56).

Notice finally that if the mass of the rocket vanishes, the metric (50) or (52) with m = 0
and Λ 6= 0 is just the de Sitter or anti-de Sitter D-dimensional space, expressed in coordinates
whose origin r = 0 is arbitrarily accelerating. An explicit representation of the corresponding
hyperboloids (54) in terms of these coordinates can be obtained using the transformations
(17) and (15) as

Z0 = z0(u) +
r

p(u,n)
,

Zi = zi(u) +
r

p(u,n)
ni , i = 1, . . . ,D , (58)

in which either (34) or (29) is employed to parameterise the components ni of the unit vector
n. For the case D = 4 such relations were recently discussed in detail in [10].
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5 Motion of the rocket in a single direction

Let us now concentrate on a particular case in which the photon rocket in D dimensions
accelerates always in the same spatial direction, i.e., without performing any manoeuvres.
It may only change its speed. In such a situation, without loss of generality it is possible to
rotate the spatial axes of the background flat space so that the timelike worldline (10) of the
rocket is

zα(u) = {z0(u), z1(u), 0, 0, . . . , 0} . (59)

The corresponding velocity (11) is u = {ż0, ż1, 0, 0, . . . , 0} and the condition (13) reduces to

(ż0)2 − (ż1)2 = 1 , (60)

The metric of the photon rocket, expressed in the spherical-like coordinates (52), (53), thus
becomes

ds2 =
r2

p2

D−2
∑

i=1

(

i−1
∏

j=1

sin2 θj

)

dθ2
i − 2 dudr

−
(

1 − 2 r( log p),u − 2m(u)

rD−3
− 2Λ

(D − 2)(D − 1)
r2
)

du2, (61)

where
p(u, θ1) = ż0(u) − ż1(u) cos θ1 . (62)

In the test-particle limit when the mass of the rocket is negligible (m → 0) and Λ = 0,
the background flat-space coordinates Zα are obtained by the transformation (17). Using
the relations (15) and (29) this explicitly becomes

Z0 = z0(u) +
r

p(u, θ1)
,

Z1 = z1(u) +
r

p(u, θ1)
cos θ1 , (63)

Z2 =
r

p(u, θ1)
sin θ1 cos θ2 ,

Zi =
r

p(u, θ1)
sin θ1

(

i−1
∏

j=2

sin θj

)

cos θi , i = 3, . . . ,D − 1 .

where, as in (30), we define θD−1 ≡ 0. Obviously, at any time the origin r = 0 of the accel-
erated coordinates of (61) coincides with the rocket.

It now appears to be convenient to introduce the following parametrisation of the com-
ponents of the velocity u:

ż0 = cosh (
∫

α(u) du) ,

ż1 = sinh (
∫

α(u) du) , (64)

which identically satisfies the condition (60). The acceleration vector a has the only nonva-
nishing components z̈ 0 = α(u) ż1, z̈ 1 = α(u) ż0, so that a · u = 0. Moreover, a · a = α2(u)
which means that the function α(u) is exactly the value of instantaneous acceleration of the

rocket at the time u. Using this parametrisation, the metric function (62) becomes

p(u, θ1) = cosh (
∫

α(u) du) − cos θ1 sinh (
∫

α(u) du) . (65)

Finally, it is possible to define a new angular coordinate ϑ as

sinϑ ≡ sin θ1

p(u, θ1)
. (66)

11



Straightforward calculation shows that (66) implies the following interesting identities:

sinϑ =
sin θ1

cosh (
∫

α(u) du) − cos θ1 sinh (
∫

α(u) du)
,

cos ϑ =
sinh (

∫

α(u) du) − cos θ1 cosh (
∫

α(u) du)

cosh (
∫

α(u) du) − cos θ1 sinh (
∫

α(u) du)
,

cot
θ1

2
= tan

ϑ

2
exp (

∫

α(u) du) , (67)

( log p),u = α(u) cos ϑ ,

p−1 = cosh (
∫

α(u) du) − cos ϑ sinh (
∫

α(u) du) ,

p−1 cos θ1 = sinh (
∫

α(u) du) − cos ϑ cosh (
∫

α(u) du) ,

p−2(dθ2
1 + sin2 θ1 dθ2

2) = (dϑ + α sinϑ du)2 + sin2 ϑ d θ2
2 .

With these relations, the parametrisation (63) of the Minkowski background (when m = 0 = Λ)
in terms of the accelerated coordinates becomes

Z0 = z0(u) + r [ cosh (
∫

α(u) du) − cos ϑ sinh (
∫

α(u) du) ] ,

Z1 = z1(u) + r [ sinh (
∫

α(u) du) − cos ϑ cosh (
∫

α(u) du) ] , (68)

Z2 = r sinϑ cos θ2 ,

Zi = r sinϑ
(

i−1
∏

j=2

sin θj

)

cos θi , i = 3, . . . ,D − 1 .

The complete metric (61) takes the form

ds2 = r2(dϑ + α(u) sin ϑ du)2 + r2 sin2 ϑ
(

d θ2
2 +

D−2
∑

i=3

(

i−1
∏

j=2

sin2 θj

)

dθ2
i

)

−2 dudr −
(

1 − 2 r α(u) cos ϑ − 2m(u)

rD−3
− 2Λ

(D − 2)(D − 1)
r2
)

du2, (69)

which can be rewritten as

ds2 = −
(

1 − 2m(u)

rD−3
− 2Λ

(D − 2)(D − 1)
r2 − 2α(u) r cos ϑ − α2(u) r2 sin2 ϑ

)

du2

−2 dudr + 2α(u) r2 sin ϑ dudϑ

+r2
(

dϑ2 + sin2 ϑ
(

d θ2
2 +

D−2
∑

i=3

(

i−1
∏

j=2

sin2 θj

)

dθ2
i

)

)

. (70)

This is a generalisation, to any D ≥ 4, of the standard metric form (8) of the Kinnersley
photon rocket [1,2,7,10] accelerating arbitrarily in a single spatial direction. In the absence of
acceleration, α(u) = 0, it reduces to the higher-dimensional Vaidya–(anti-)de Sitter solution
which describes a spherically symmetric fixed source at r = 0 with a varying mass determined
by m(u).

Alternatively, the metric for the photon rocket accelerating in a single spatial direction
(now ∂D−1) can be written in the Cartesian-like coordinates (50), (51) with P simplified to
P = (ż0 − żD−1) + 1

4 (ż0 + żD−1) δij xixj . Following (64), this becomes

P = exp (−
∫

α(u) du) + 1
4 exp (

∫

α(u) du) δij xixj . (71)
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6 Explicit examples of motion of a photon rocket

It will now be illustrative to investigate in more detail some particular examples which
describe accelerating or decelerating photon rockets along straight or curved trajectories. In
all the cases we will identify and study the particular situation in which the minimal amount
of radiation is emitted, i.e., the mass decrease of the rocket (its “energy consumption”) for
a given flight is minimised.

6.1 Straight flight

The simplest situation arises when the photon rocket moves in a single spatial direction. It
does not perform any manoeuvres, except for changing its speed. As described in section 5,
in such a case the timelike worldline zα(u) of the rocket is fully described by (59), i.e., by
the two functions z0(u) and z1(u). With the parametrisation of the corresponding velocity
u given by (64),

ż0(u) = cosh (
∫

α(u) du) , ż1(u) = sinh (
∫

α(u) du) , (72)

where α(u) is the acceleration of the rocket as a function of the time u, the metric takes the
form (70). It follows from relations (68) that the angle ϑ, introduced in (66), takes the value
ϑ = 0 behind the rocket while ϑ = π in front of the rocket (considering α > 0).

The associated field of emitted photons has the form (44) where the profile n is given by
(45). Using the relation ( log P ),u = ( log p),u = α(u) cos ϑ, see (37) and (67),

n2(u, ϑ) =
D − 2

8π
[ − m,u(u) + (D − 1)α(u)m(u) cos ϑ ]. (73)

Obviously, the maximum of radiation is emitted directly behind the rocket (for ϑ = 0) and
minimum in the direction in front of it (for ϑ = π). In fact, it is possible to rewrite the
expression (73) as

n2(u, ϑ) =
(D − 1)(D − 2)

8π
α m (1 + cos ϑ ) − D − 2

8π
[m,u + (D − 1)α m ]. (74)

The first term is always positive, and vanishes for ϑ = π. Therefore, the second term must
also be nonnegative. An optimised situation occurs when the second term vanishes: in such

a case the rocket emits no photons in the direction of its motion, it only emits “backwards”.
This condition yields the explicit relation

m(u) = m0 exp (−(D − 1)
∫

α(u) du). (75)

The mass of such photon rocket decreases exponentially from its initial value m0, and the
corresponding radiation pattern (74) is explicitly given as

n2(u, ϑ) =
D − 2

4π
( − m,u) cos2 ϑ

2
, (76)

where
−m,u(u) = (D − 1)m0 α(u) exp

(

−(D − 1)
∫

α(u) du
)

. (77)

At a given time u, the angular dependence of the photon field on ϑ and θi is plotted as a
spherical polar diagram in figure 2.

In particular, for a photon rocket which moves with a constant acceleration α = const.,
it is possible to calculate its motion and the total decrease of its mass explicitly. Integrating
(72) for the initial conditions z0(0) = 0 = z1(0) we obtain

z0(u) =
1

α
sinh(α u) , z1(u) =

1

α
[ cosh(α u) − 1] . (78)
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Figure 2: Section through the radiation pattern n2 of the photon field (76) emitted by the rocket
which accelerates along a straight line (moving here to the right), as described by the axisym-
metric metric (70). On the right we plot the same pattern with the trivial angular coordinates θi

(i = 2, . . . , D − 2) suppressed.

In view of the transformation (63), these two functions give exactly the time elapsed T ≡
Z0 = z0(u) and the distance L ≡ Z1 = z1(u) of the rocket (located at r = 0) with respect to
the background inertial frame connected to “the Earth”. Recall that u is related to the proper
time of the photon rocket. We have thus recovered the well-known relations for (integrated)
time dilation and length contraction which are valid for a uniformly accelerated objects in
special relativity. The corresponding total decrease of the mass of the rocket is given by

∆m ≡ m0 − m(u) = m0(1 − e−(D−1) α u), (79)

where, considering (78),

αu = arcsinh (α T ) = arccosh (1 + α L) . (80)

The plot of ∆m/m0 as a function of α T for D = 4 is shown in figure 3.

Figure 3: The function ∆m
m0

(α T ) shows the relative mass decrease of the rocket with the inertial
time measured “on the Earth”.

Asymptotically, for large values of u, T and L, the function (79) reduces to

∆m

m0
≈ 1 − (2α T )1−D ≈ 1 − (2α L)1−D , (81)

which demonstrates that the total loss of mass ∆m approaches the initial mass m0 as T p

and Lp, where p ≡ 1 − D < 0. For higher dimensions D, the mass decrease is faster, which
makes the travel of photon rockets in higher dimensions more demanding.
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It is also useful to express the mass function (79) of the rocket in terms of its actual
speed v with respect to the inertial frame, v = ż1/ż0 = tanh(α u) which implies eα u =
√

(1 + v)/(1 − v) :

m(v)

m0
=

(

1 − v

1 + v

)(D−1)/2

. (82)

This simple formula gives the mass m(v) of the photon rocket after it was uniformly accel-
erated from rest (v = 0) to the speed v.

Another explicitly solvable model of a photon rocket moving in a single direction arises if
the acceleration function takes the form α(u) = tanh u for u ≥ 0. In such a case, which may
describe specific initial phase of acceleration of the rocket, the relation (72) can be integrated
to

ż0(u) =
1

2

(

cosh u +
1

cosh u

)

, ż1(u) =
1

2

(

cosh u − 1

cosh u

)

, (83)

so that

T = z0(u) =
1

2
sinhu + arctan eu − π

4
,

L = z1(u) =
1

2
sinh u − arctan eu +

π

4
. (84)

Compared to the case of a uniform acceleration α = const., as described by (78), it follows
that for large values of the time u the inertial time T and the distance L traveled are
asymptotically half of those corresponding to α = 1. The total loss of mass of the rocket is
now

∆m = m0(1 − cosh1−Du), (85)

which has the same asymptotic behaviour as (81) for α = 1.

6.2 Circular trajectory

Let us also study special non-geodetic flight of the photon rocket, namely a circular motion.
We assume that the rocket in D dimensions moves along a circle of radius a with a constant
angular velocity ω,

z0(u) =
√

1 + a2ω2 u ,

z1(u) = . . . = zD−3(u) = 0 ,

zD−2(u) = a cos(ω u) ,

zD−1(u) = a sin(ω u) . (86)

Here ω is the angular velocity of a photon rocket with respect to the time u. Due to the
time dilation/length contraction, the constant speed v of the rocket on its circular motion,
measured with respect to the inertial background frame in the center, is not aω but

v =
aω√

1 + a2ω2
< 1 , i.e., aω =

v√
1 − v2

. (87)

The velocity parameter aω may thus take any value, and v → 1 as aω → ∞.
Explicit exact metric which describes such motion of the photon rocket is

ds2 =
r2

p2

D−2
∑

i=1

(

i−1
∏

j=1

sin2 θj

)

dθ2
i − 2 dudr

−
(

1 − 2 r( log p),u − 2m(u)

rD−3
− 2Λ

(D − 2)(D − 1)
r2
)

du2, (88)
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where

p(u, θj , φ) =
√

1 + a2ω2 − aω
(

D−3
∏

j=1

sin θj

)

sin(φ − ω u) , (89)

θ1, θ2, . . . , θD−3 ∈ [0, π] and φ ≡ θD−2 ∈ [0, 2π), see (52) and (53).
The corresponding radiation pattern of emitted photons is given by (45). Since ( log P ),u =

( log p),u , see (37), this becomes

n2(u, θj , φ) =
D − 2

8π
[ − m,u + (D − 1) aω2m f(u, θj, φ)], (90)

in which we introduced

f(u, θj, φ) ≡

(

∏D−3
j=1 sin θj

)

cos(φ − ω u)
√

1 + a2ω2 − aω
(

∏D−3
j=1 sin θj

)

sin(φ − ω u)
. (91)

In D = 4 this simplifies to
(

∏D−3
j=1 sin θj

)

= sin θ1 ≡ sin θ, and the angular part of the metric

(88) reduces to (dθ2 + sin2 θ dφ2).
The function f identically vanishes whenever θj = 0 and θj = π which, due to the def-

inition (29), describe directions perpendicular to the plane of the circular trajectory (86)
of the photon rocket. Also, f = 0 if φ − ω u = π

2 or φ − ω u = 3π
2 . For fixed φ and u, the

maximum of the function f occurs at θj = π
2 for all j = 1, . . . ,D − 3, that is in the plane

of motion. If θj = π
2 for all j, and u is fixed, the extremes of f are given by the condition

sin(φ − ω u) = aω/
√

1 + a2ω2 which implies tan(φ − ω u) = ±aω. For φ − ω u < π
2 the upper

sign applies and the corresponding direction gives the maximal value of f , namely f = +1.
Contrary, for φ − ω u > π

2 the lower sign gives the direction in which there is a minimal value,
f = −1, in the radiation pattern. A typical plot of the function f(u = 0, θj , φ) for several
constant values of θj is shown in figure 4.

Figure 4: The function f(u, θj, φ) for u = 0 and several constant values of θj between 0 and π
2
.

Here we set a = 1 = ω.

Since f(u, θj , φ) ∈ [−1,+1] and the minimal value f = −1 is attained, to satisfy the condition
n2(u, θj , φ) ≥ 0 everywhere, we rewrite (90) as

n2(u, θj , φ) =
(D − 1)(D − 2)

8π
aω2m[1 + f(u, θj, φ)] − D − 2

8π
[m,u + (D − 1) aω2m]. (92)

Similarly as in (74), the first term is nonnegative and vanishes at the minimum of f . An
optimised flight of the photon rocket, which minimises the mass decrease, thus occurs if the
second term in (92) vanishes, i.e., when

m(u) = m0 exp ( − (D − 1) aω2 u). (93)

The mass of the photon rocket then decreases exponentially. The coefficient aω2 is, in fact,
the classical centrifugal acceleration (notice the analogy with expression (75) for a straight
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trajectory, in particular when the acceleration α is constant). The corresponding radiation
pattern is

n2(u, θj , φ) =
D − 2

8π
( − m,u)[1 + f(u, θj, φ)]. (94)

As an illustration, assuming D = 4, the angular dependence of the emitted photon field
on θ and φ (for a given value of the time u) is plotted as a spherical polar diagram in figure 5.

Figure 5: Radiation pattern n2(θ, φ) of the photon field (94) emitted (at u = 0) by the rocket
moving in four dimensions along a circle of radius a = 1 with the angular velocity ω = 1 (left).
Equatorial section θ = π

2
through the diagram, where n2(θ, φ) reaches extreme values (right).

Figure 6: Radiation patterns n2(θ, φ) of the photon field emitted by the rockets which move in
four dimensions along circles of different radii a with the same proper angular velocity ω (here
ω = 1 and u = 0). For each a the curves plotted indicate the value of n2(θ = const., φ) in a polar
graph, with the outer curve corresponding to the equatorial section θ = π

2
(cf. figure 5 for the case

a = 1). The asymmetry of the patterns grows for large a and thus velocities v.

Let us recall that, according to (44), the radiation density ρ decreases as ρ = r2−Dn2(θj, φ),
where r is the distance from the rocket, namely an affine parameter along null geodesics on
u = const. generated by k = ∂r.
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In figure 6 we plot the radiation patterns (94) emitted at u = 0 by the rockets which
move along circles of different radii a, keeping their proper angular velocity ω fixed (ω = 1).
The curves shown correspond to θ = const., i.e., for a given a and θ the value of n2(θ, φ) is
plotted radially with φ being a standard polar angle. For larger a — and thus larger circular
velocity v given by (87) — the radiation patters become more distorted.

Due to the presence of the argument φ − ω u in (91) and subsequent expressions, it is
clear that the radiation pattern rotates along the circular trajectory (86) with the proper
angular velocity ω. This is shown in figure 7 for the choice aω = 1 and D = 4. Moreover, the
radiation of photons decreases exponentially with the factor exp(−3 aω2 u), see (94), (93). In
the proper scaling, the smallest pattern in figure 7 (on the left) should, in fact, be e3π-times
smaller than the largest one (on the right). Physically, since the mass of the rocket decreases
exponentially, an exponentially decreasing “reactive force” from the emission of photons is
sufficient to keep it on a circular motion with constant speed v.

Figure 7: Radiation pattern n2(θ, φ) of the photon field emitted by the rocket at several places
during its circular motion around the centre (aω = 1, D = 4). The dashed lines indicate directions
in which the radiation is maximal and minimal.

We can also evaluate the mass function (93) after the “U-turn” depicted in figure 7, using
(87) and the final time ω u = π, as

m(v)

m0
= exp

(

−(D − 1)π v√
1 − v2

)

. (95)

Let us now compare this expression, which gives the mass loss after the circular manoeuvre

during which the speed v of the photon rocket is kept constant while the direction of its
flight is reverted, with the analogous relation corresponding to a constant deceleration α,
followed by the same acceleration, along a straight line. Specifically, we employ the relation
(82) which gives the mass m(v) of the rocket after its uniform acceleration along a straight
line from v = 0 to the speed v. However, this has to be combined with the initial straight
flight during which the photon rocket decelerates from the velocity −v to zero. By extending
relations (78), (79) and (82) to negative values of u and v we obtain

m(v)

m(−v)
=

(

1 − v

1 + v

)D−1

. (96)
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Since

− π v√
1 − v2

< log

(

1 − v

1 + v

)

(97)

for any v ∈ (0, 1), the mass function (96) is greater than (95) — see also the plot of these
functions in figure 8. In particular, for a small speed v,

m(v)

m(−v)
≈ 1 − 2(D − 1) v , while

m(v)

m0
≈ 1 − π(D − 1) v . (98)

We can thus conclude that in any dimension D the deceleration from the velocity v to zero
and subsequent “backward” acceleration to the same velocity v in exactly opposite direction
along a straight line is more efficient than the circular U-turn of the rocket because the total
mass of the photons emitted (the “energy consumption”) is smaller.

Figure 8: Plot of the mass functions (96) and (95), assuming D = 4. The former is greater than
the latter for any speed v ∈ (0, 1).

7 On motion of test particles and absence of “grav-

itational aberration”

In this final section we will briefly comment on geodesics which describe motion of free test
particles in the exact spacetimes representing the gravitational field of an arbitrarily moving
photon rocket.

To investigate such geodesics we have to evaluate the Christoffel symbols Γα
βγ for the

metric (42). With respect to the Minkowski coordinates Zα, the metric reads

gαβ = ηαβ + 2V kαkβ, so that gαβ = ηαβ − 2V kαkβ , (99)

where V (r, u) is given by (43). Moreover, using (17) and (12)–(14), for the functions u(Zα)
and r(Zα) we obtain the relations

u,µ = −kµ ,

r,µ = (1 + rkσz̈σ) kµ − żµ , (100)

(rkα),µ = ηαµ + żα kµ ,

where żα ≡ ηαβ żβ. Straightforward but somewhat lengthy calculation then yields

Γα
βγ =

2V

r
kα ηβγ + V,r żαkβkγ + (2V V,r − V,u) kαkβkγ

+
(2V

r
− V,r

)

(kαżβkγ + kαżγkβ − (1 + rkσ z̈σ) kαkβkγ) . (101)
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Considering k0 = −k0 = p−1 , ki = ki = p−1ni where p is given by (22) and n = ni∂i is the
spatial unit vector (see section 3), all components of Γα

βγ can be written explicitly.

It is also convenient to introduce a spatial velocity vector v = vi∂i of the rocket with
respect to the Minkowski background frame by vi ≡ żi(u)/ż0(u). Consequently,

ż0(u) = γ , żi(u) = γ vi , where γ =
1√

1 − v · v (102)

is the standard Lorentz factor corresponding to the velocity v of the rocket at P (i.e., at its
proper time u), see figure 1. The function p then simplifies to

p = γ (1 − n · v) . (103)

Let us recall that n is the unit vector connecting the (spatial position of) events P and Q.
In fact, the spatial distance R between P ≡ {z0(u), . . . , zD−1(u)} and Q ≡ {Z0, . . . , ZD−1}
is R =

√

(Z1 − z1(u))2 + · · · + (ZD−1 − zD−1(u))2, which using (17), (14) becomes R = rk0.
It follows that

r = p R . (104)

From (101), (43) we thus obtain

Γi
00 = −

(

2m

RD−2pD−1
+

2ΛR

(D − 2)(D − 1)

)

(

1 +
(D − 3)m

RD−3pD−1
− 2ΛR2

(D − 2)(D − 1)

)

ni

+

(

(3 − D)m

RD−2pD−1
+

2ΛR

(D − 2)(D − 1)

)

γ vi

p

+

(

(D − 1)(2γp − 1)m

RD−2pD+1
− (D − 1)m kσ z̈σ + ṁ

RD−3pD

)

ni. (105)

Due to the geodesic equation, the coefficient −Γi
00 gives the “spatial acceleration” (in New-

tonian terminology) of a test particle which is at rest at a given point Q. Obviously, for
large distances R of the test particle from the photon rocket, the dominant contribution
to its acceleration arises from the cosmological constant Λ which represents global isotropic
expansion of the spacetime when Λ > 0. On the other hand, for small R the contribution of
the Λ-terms is negligible.

Setting Λ = 0 in (105) and employing relations (102), (103) we obtain

Γi
00 =

m

RD−2γD−1 (1 − n · v)D+1

[

(

(D − 3) − 2(D − 3)n · v − 2 (n · v)2

+(D − 1)v · v
)

ni − (D − 3)(1 − n · v) vi − 2(D − 3)m

RD−3γD−1(1 − n · v)D−3
ni
]

− (D − 1)m kσ z̈σ + ṁ

RD−3γD(1 − n · v)D
ni. (106)

The last term, proportional to the acceleration z̈σ and mass decrease ṁ of the rocket, rep-
resents the radiative part of the gravitational field which behaves as ∝ R3−D. Close to the
photon rocket this can be neglected with respect to the first “Newtonian force”-term ∝ R2−D.
Notice that such Newtonian-like gravitational acceleration is oriented along

(D − 3)[(ni − vi) − (2ni − vi)n · v + . . . ] , (107)

which is the spatial direction toward the “instantaneous” position of the rocket, extrapolated
from its “retarded” position given simply by ni. This demonstrates the absence of “gravita-

tional aberration” in such systems which are explicit exact solutions of Einstein’s equations
in any dimension D. For a thorough discussion of this issue in D = 4 see the Carlip work [9].
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8 Conclusions

We analysed in detail some properties of the class of exact spacetimes which represent Kin-
nersley’s photon rockets moving arbitrarily in any dimension D. These solutions contain
pure-radiation photon field and admit a cosmological constant Λ. They are of algebraic
type D and can be written either in the Kerr–Schild form (42), (43) or more explicitly in the
Robinson–Trautman forms (50), (51) and (52), (53).

In section 3 we first systematically reviewed general Newman–Unti [(21), (22)], spherical
[(24), (25), or (27), (28), or (32), (33)] and Cartesian-like [(36)–(38)] background coordinates
suitable for the description of an arbitrarily moving test source in flat Minkowski space of
dimension D.

The complete Kinnersley solution in various metric forms was presented and discussed
in subsequent section 4. A special case of photon rockets accelerating in a single spatial
direction is contained in section 5.

We discussed important particular trajectories of the rockets, namely a straight flight (in
subsection 6.1) and a circular motion (in subsection 6.2), including the corresponding radi-
ation patterns of the photon field and the mass loss formulae. For example, we showed that
the straight deceleration followed by the backward acceleration is a more efficient manoeuvre
then the circular U-turn since the total mass of the emitted photons (and thus the energy
consumption) is smaller in the former case.

In the final section 7 we derived the Christoffel symbols for general Kinnersley spacetimes
which are crucial for discussion of geodesics. In particular, we demonstrated that, in any
dimension D, there is no “gravitational aberration” effect.

To conclude, let us remark that in our contribution (as well as in previous works [2–10])
the Kinnersley solution has been used as an exact model of an accelerating photon rocket.
However, in D = 4, it may also be considered as a simple relativistic model of non-geodetically
moving astronomical object in the Solar System (such as a small particle or an asteroid)
which accelerates due to a specific anisotropic thermal absorption/emission of photons, i.e.,
to simulate the Poynting–Robertson effect [21] or the Yarkovsky effect [22].
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