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Geodesic deviation: useful tool for understanding
higher dimensional spacetimes

R. Švarc and J. Podolský

Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in
Prague, V Holešovičkách 2, 180 00 Prague 8, Czech Republic

Abstract. General method which is useful for investigation of geometrical and physical properties
of an arbitrarily dimensional spacetime is presented. This is based on the systematic analysis of
relative motion of free test particles described by equation of geodesic deviation which is rewritten
with respect to a natural orthonormal frame and then decomposed into a canonical set of trans-
verse, longitudinal and Newton-Coulomb-type components, isotropic influence of a cosmological
constant, and contributions arising from matter content of the universe. The utility of this method is
illustrated on the family of Kundt spacetimes in higher dimensions, in particular pp-waves.

Keywords: Higher dimensional gravity, geodesic deviation, algebraic classification of spacetimes.
PACS: 04.50.-h, 04.20.Jb, 04.30.-w, 04.30.Nk, 04.40.Nr, 98.80.Jk

EQUATION OF GEODESIC DEVIATION

Investigation of relative motion of free test particles reveals important informations
about geometry of the spacetime. Here, we generalise the classic work [1] to an arbitrary
number of dimensions, for more details and references see [2]. Relative motion of
closeby free test particles is described by the equation of geodesic deviation

D2Zμ

dτ2 = R
μ
αβν uαuβ Zν , (1)

where R
μ
αβν is the Riemann curvature tensor, uα are components of the velocity vector

of the reference particle, the parameter τ is a proper time of the observer’s timelike
geodesic, and Zμ are components of the separation vector which connects the reference
particle with another nearby test particle.

To obtain results independent of the choice of the coordinates we introduce or-
thonormal frame {ea}. The timelike vector is identified with the observer’s velocity
vector, e(0) = u, and remaining e(i) represent D− 1 perpendicular spacelike vectors,

ea · eb ≡ gαβ eα
a e

β
b = ηab. We also define a real null frame {k, l,mi} by the relations

k = 1√
2
(u+ e(1)) , l = 1√

2
(u− e(1)) , mi = e(i) for i = 2, . . . ,D−1 , (2)

where k and l are future oriented null vectors, and mi are D−2 spatial vectors orthogonal
to them, i.e., k · l = −1, mi ·m j = δi j, k ·k = 0 = l · l and k ·mi = 0 = l ·mi. Using this
definition, for the zeroth frame-component of the equation (1) we immediately obtain
d2Z(0)/dτ2 =−Rμαβν uμuαuβ Zν = 0. Therefore, we can set Z(0) = 0 which means that
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test particles stay in the same spacelike hypersurfaces synchronized by a proper time τ .
By projecting the geodesic deviation equation onto spatial frame vectors e(i) we get

Z̈(i) = R
(i)

(0)(0)(j)Z(j) , (3)

where Z̈(i) = e
(i)
μ

D2Zμ

dτ2 and R(i)(0)(0)(j) ≡ Rμαβν e
μ
(i)u

αuβ eν
(j), where i, j= 1,2, . . . ,D−1.

Next, it is natural to decompose the curvature tensor into the traceless Weyl part Cabcd

and specific combinations of the Ricci tensor Rab and Ricci scalar R . Using also the
Einstein equations we obtain

R(i)(0)(0)(j) =
2Λδij

(D−1)(D−2)
+C(i)(0)(0)(j)+

8π
D−2

[
T(i)(j)−δij

(
T(0)(0) +

2T

D−1

)]
. (4)

The components of the Weyl tensor in null frame {k, l,mi} are fully determined by the
following scalars (grouped by their boost weight),

Ψ0i j = Cabcd ka mb
i kc md

j ,

Ψ1i jk = Cabcd ka mb
i mc

j md
k , Ψ1T i =Cabcd ka lb kc md

i ,

Ψ2i jkl = Cabcd ma
i mb

j mc
k md

l , Ψ2S =Cabcd ka lb lc kd ,

Ψ2i j = Cabcd ka lb mc
i md

j , Ψ2T i j =Cabcd ka mb
i lc md

j , (5)

Ψ3i jk = Cabcd la mb
i mc

j md
k , Ψ3T i =Cabcd la kb lc md

i ,

Ψ4i j = Cabcd la mb
i lc md

j ,

where i, j,k, l = 2, . . . ,D−1. The scalars in the left column are independent, up to
the obvious constraints, while those in the right column can be expressed as their
contractions. All other frame components can be obtained using the symmetries of the
Weyl tensor. Our notation which uses ΨA... in any dimension is simply related to the
notations employed, e.g., in the works [3, 4], [5, 6] or [7], as summarized in Table 1.
Using the relations (2) and (5), a straightforward calculation leads to

C(1)(0)(0)( j) = 1√
2
(Ψ1T j −Ψ3T j) , C(i)(0)(0)(1) =

1√
2
(Ψ1T i−Ψ3T i) , (6)

C(1)(0)(0)(1) = Ψ2S , C(i)(0)(0)( j) =−1
2 (Ψ0i j +Ψ4i j)−Ψ2T (i j) .

Invariant general form of the equation of geodesic deviation (3) can thus be rewritten as

Z̈(1) = 2Λ
(D−1)(D−2) Z(1) +Ψ2S Z(1) + 1√

2
(Ψ1T j −Ψ3T j)Z( j)

+ 8π
D−2

[
T(1)(1)Z(1) +T(1)( j)Z( j)−

(
T(0)(0) +

2
D−1 T

)
Z(1)

]
, (7)

Z̈(i) = 2Λ
(D−1)(D−2) Z(i)−Ψ2T (i j) Z( j) + 1√

2
(Ψ1T i−Ψ3T i)Z(1)− 1

2 (Ψ0i j +Ψ4i j)Z( j)

+ 8π
D−2

[
T(i)(1)Z(1) +T(i)( j)Z( j)−

(
T(0)(0) +

2
D−1 T

)
Z(i)

]
.

In the vacuum case, i.e. Tab = 0, the effect of the gravitational field on particles consists
of cosmological constant Λ and the Weyl scalars Ψ0i j , Ψ1T i , Ψ2S , Ψ2T i j , Ψ3T i and Ψ4i j .
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TABLE 1. Equivalent notations used for the Weyl scalars.
Ψ2S Ψ2T i j Ψ1T j Ψ3T j Ψ0i j Ψ4i j

refs. [3, 4] −C0101 −C0i1 j −C010 j C101 j C0i0 j C1i1 j

refs. [5, 6] −Φ −Φi j Ψ j 2Ψi j

ref. [7] −Φ −Φi j −Ψ j Ψ′
j Ωi j Ω′i j

OUTLINE OF THE SPECIFIC EFFECTS

The presence of the cosmological constant Λ is encoded in the term
(

Z̈(1)

Z̈(i)

)
=

2Λ
(D−1)(D−2)

(
1 0
0 δi j

)(
Z(1)

Z( j)

)
. (8)

These isotropic relative motions of test particles are characteristic for spacetimes of
constant curvature, namely Minkowski space, de Sitter space and anti-de Sitter space.

The terms Ψ2S and Ψ2T (i j) represent Newton–Coulomb components of a gravitational
field and the motion of test particles is given by

(
Z̈(1)

Z̈(i)

)
=

(
Ψ2S 0
0 −Ψ2T (i j)

)(
Z(1)

Z( j)

)
, (9)

where Ψ2S = Ψ2T k
k . These terms are typically present in type D spacetimes.

Ψ3T i and Ψ1T i represent the longitudinal components of a gravitational field with
respect to directions +e(1) and −e(1), respectively. Such terms cause deformations

(
Z̈(1)

Z̈(i)

)
=− 1√

2

(
0 ΨAT j

ΨAT i 0

)(
Z(1)

Z( j)

)
, (10)

where ΨAT i represents Ψ3T i or −Ψ1T i which are equivalent under k↔ l. These D−2
scalars combine motion in the privileged spatial direction e(1) with motion in the trans-
verse directions e(i). Longitudinal effects given by Ψ3T i occur in spacetimes of type III.

The components Ψ4i j and Ψ0i j can be interpreted as a transverse gravitational waves
propagating in the direction+e(1) and−e(1). These parts of a gravitational field are fully
equivalent under k↔ l and influence the test particles as

(
Z̈(1)

Z̈(i)

)
=−1

2

(
0 0
0 ΨAi j

)(
Z(1)

Z( j)

)
, (11)

where ΨAi j represents Ψ4i j or Ψ0i j , and causes a purely transverse effect because there
is no acceleration in the privileged spatial direction e(1). The set of scalars ΨAi j forms
a symmetric and traceless matrix of dimension (D−2)× (D−2). Spacetimes of al-
gebraic type N can be thus interpreted as exact gravitational waves. The amplitude
matrix ΨAi j describing gravitational waves has N ≡ 1

2D(D−3) independent compo-
nents corresponding to polarization modes. Freedom in a choice of the frame is given
by spatial rotations m̃i = Φi

j m j with Φi
j Φk

l δ jl = δik (k̃ = k, l̃ = l), which has gen-
erally Nrot ≡ 1

2(D− 2)(D− 3) independent parameters representing the generators of
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SO(D−2). The number of physical degrees of freedom is thus N−Nrot = D−3 which
corresponds to number of independent eigenvalues of ΨAi j . With respect to the signum
of the eigenvalues there can be

(
D−2
2

)
= 1

2(D−2)(D−3) physically different cases.

EXAMPLE: HIGHER DIMENSIONAL VSI PP-WAVES

We assume a vacuum spacetime admitting a covariantly constant null vector field k
with all scalar invariants vanishing. It belongs to pp-waves subclass of the Kundt family,
see [8]. In natural coordinates the metric takes the form

ds2 = δi j(x
k,u)dxidx j +2ei(x

k,u)dxidu−2dudr+ c(xk,u)du2 . (12)

The interpretation frame adapted to an observer with the general velocity u is

k = 1√
2 u̇

∂r ,

l =
(√

2 ṙ− 1√
2 u̇

)
∂r +

√
2 u̇∂u +

√
2 ẋ2 ∂x2 + . . .+

√
2 ẋD−1∂xD−1 , (13)

mi =
1
u̇(eku̇+g jk ẋ j)mk

i ∂r +m2
i ∂x2 + . . .+mD−1

i ∂xD−1 ,

and the only nonvanishing Weyl component is Ψ4i j ,

Ψ4i j =
[
4e[k,m],l ẋmu̇+

(
2e(k,l),u− c,kl +2δ pqe[p,k] e[q,l]

)
u̇2]mk

(im
l
j) . (14)

If the functions ei can be globally removed, the frame (13) is paralelly transported
and (14) becomes simply Ψ4i j = −u̇2 c,i j. Einstein’s equation, δ i j c,i j = 0, guarantees
its tracelessness. Using m

j
i = δ j

i , the equations of geodesic deviation (7) thus reduces to

Z̈(1) = 0 , Z̈(i) = 1
2 u̇2 c,i j Z( j) . (15)

Detailed discussion and explicit solutions can be found in [2].
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