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Abstract. We investigate the Weyl tensor algebraic structure of a fully general
family of D-dimensional geometries that admit a non-twisting and shear-free
null vector field k. From the coordinate components of the curvature tensor
we explicitly derive all Weyl scalars of various boost weights. This enables us
to give a complete algebraic classification of the metrics in the case when the
optically privileged null direction k is a (multiple) Weyl aligned null direction
(WAND). No field equations are applied, so that the results are valid not only in
Einstein’s gravity, including its extension to higher dimensions, but also in any
metric gravitation theory that admits non-twisting and shear-free spacetimes.

We prove that all such geometries are of type I(b), or more special, and we
derive surprisingly simple necessary and sufficient conditions under which k is
a double, triple or quadruple WAND. All possible algebraically special types,
including the refinement to subtypes, are thus identified, namely II(a), II(b),
II(c), II(d), III(a), III(b), N, O, II;, III;, D, D(a), D(b), D(c), D(d), and their
combinations. Some conditions are identically satisfied in four dimensions.

We discuss both important subclasses, namely the Kundt family of geometries
with the vanishing expansion (© = 0) and the Robinson-Trautman family (© # 0,
and in particular © = 1/r). Finally, we apply Einstein’s field equations and
obtain a classification of all Robinson—Trautman vacuum spacetimes. This reveals
fundamental algebraic differences in the D >4 and D = 4 cases, namely that
in higher dimensions there only exist such spacetimes of types D(a)=D(abd),
D(c)=D(bcd) and O.
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1. Introduction

Exact spacetimes play a crucial role in understanding Einstein’s general relativity and
other metric theories of gravity. They enable us to investigate many mathematical and
physical aspects of fundamental models in cosmology, black hole physics and theory
of gravitational waves.

Among the most important of such classes of exact solutions there are Robinson—
Trautman [1,2] and Kundt [3,4] geometries. They were discovered almost simulta-
neously about half a century ago, shortly after the advent of new concepts and
techniques in general relativity, in particular geometrical optics of null congruences
and algebraic classification of the Weyl tensor. Since then, an enormous progress has
been made in investigation of their various properties.

From the geometrical point of view, both these classes belong to a large family
of geometries admitting a non-twisting shear-free congruence of geodesics, generated
by a null vector field k. The Kundt class is defined by having vanishing expansion
while the other case with non-vanishing expansion defines the Robinson—Trautman
class. The former includes the famous pp-waves (with a covariantly constant k),
more general non-expanding gravitational waves (including gyratons, non-vanishing
cosmological constant A, impulsive limits), VSI and CSI spacetimes (for which all
scalar invariants of curvature vanish and are constant, respectively), or the direct-
product spacetimes (Bertotti-Robinson, Nariai, Plebariski-Hacyan). In the Robinson—
Trautman class there are, e.g., some well-known black holes (Schwarzchild, Reissner—
Nordstrém, Schwarzchild—de Sitter, Vaidya), expanding spherical gravitational waves
(including A), the C-metric (representing the field of accelerated black holes) or
Kinnersley’s and Bonnor’s “photon rockets”. Details and a number of references can
be found in the monographs [5,6] (chapters 28, 31 and 19, 18, respectively).

In view of the growing interest to generalize Einstein’s theory and to extend
it to higher dimensions, it is a natural task to find and analyse specific properties
of such spacetimes. Assuming the validity of Einstein’s field equations (for vacuum
with A, aligned electromagnetic field, pure radiation, gyratonic matter), the explicit
Robinson—Trautman class in any dimension was studied in [7-9]. The complementary
Kundt class was also investigated, e.g., in [10,11]. The results were summarized in
the recent review [12] on algebraic properties of higher dimensional spacetimes.

In this paper we consider the fully general class of non-twisting and shear-free
geometries in an arbitrary dimension D > 4, without assuming any field equations.
Starting from the canonical form of the metric we derive all components of the
Riemann, Ricci and Weyl tensors, and the Weyl tensor is projected onto a suitable
null frame. It enables us to give a complete and explicit classification of the whole
class into the algebraic types and subtypes based on the WAND multiplicity of the
optically privileged null vector field k. Our new results thus considerably generalize
the study of algebraic structure of the non-expanding Kundt family of geometries [13]
and exemplify general conclusions of previous works [14-17].

We introduce the general metric in section 2. In section 3 the null frame
components of the Weyl tensor are employed for the algebraic classification. The
necessary and sufficient conditions for all principal and secondary alignment (sub)types
are discussed in sections 4 and 5. Results for the Kundt class are summarized in
section 6 while those for the Robinson—Trautman class are contained in section 7. In
section 8 we discuss a special case, namely the Robinson—Trautman vacuum spacetimes
in D-dim Einstein’s theory. Coordinate components of the Riemann, Ricci, and Weyl
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tensors for the generic non-twisting shear-free geometry are given in Appendix A.

2. Robinson—Trautman and Kundt geometries

The metric of the most general non-twisting D-dimensional geometry can be written
in the form [7]

ds? = gpg(r,u, ) dzP dz? + 2 gup(r, u, ©) duda? — 2 dudr + guu(r, u, =) du?, (1)

if natural coordinates are used. A non-twisting character of the spacetime implies
the existence of a foliation by null hypersurfaces u = const., i.e., a family of maximal
integral submanifolds labeled by the coordinate u. By the Frobenius theorem, this
is equivalent to the existence of a non-twisting null vector field k that is everywhere
tangent (and normal) to u =const. Since this field k generates a congruence of null
geodesics in the whole spacetime, it is most natural to take their affine parameter r
as the second coordinate, so that k = 0,.. At any fixed u and r we are thus left with
a (D — 2)-dimensional Riemannian manifold covered by the spatial coordinates z?.
We will use the indices m,n,p,q (ranging from 2 to D — 1) to label these spatial
coordinates on the transverse space, and a shorthand x for their complete set. The
nonvanishing contravariant metric components are

rr _

gpq ) gru =-1 ’ grp = gpqguq y 9 = —Guut gpqgupguq ’ (2)

where gP? is an inverse matrix to gpq. This implies

Jup = 9pa9" s Guu =—9"" + gpeg"" 9" (3)

The covariant derivative of the geometrically privileged null vector field k = 0,
with respect to the metric (1) is kqp =TY = %gab,,. so that kyp =0 = kg,
Consequently, the optical matriz [12] defined as p;; = kap mfmz’-, where m{ are
components of (D — 2) unit vectors m; such that m; -k =0= m¥ =0, forming
an orthonormal basis in the transverse Riemannian space, is simply given by

pij = kpqmim] = 3gpq.» mimJ. This can be decomposed as pi; = Aij + 0ij + 085,

where A;; = p[zj] is the antisymmetric twist matriz, o;; is the symmetric traceless
shear matriz, and the scalar © = ﬁ 8% p;; determines the ezpansion of the privileged
vector field k.

It can be observed that A;; = % 9pq,r mﬁmgl = 0 which confirms that the metric (1)
is nmon-twisting. Now, imposing the additional condition that the metric is shear-free,

0;; = 0, we obtain the relation

pij = ©0ij = 5 gpg.rmimy . (4)
Using the orthonormality relation d;; = gpem? m? we thus immediately infer
Ipa.r = 20Gpq ; (5)

implying gpq,rr = 2(@7,0 + 2@2)gpq. The expression (5) can be integrated as

Ipq = R2(r,u, ) hyg(u, ), where Br _ 0. (6)
R

Since either ® = 0 or © # 0, there are thus two distinct classes of non-twisting shear-
free geometries. The Kundt class [3-6,10,12,13,18] is defined by having the vanishing
expansion, © = 0, in which case the spatial metric gpq(u, ) = hpq(u, ) is independent
of the affine parameter r (and R in (6) effectively reduces to R = 1). The other case
© # 0 gives the expanding Robinson—Trautman class [1,2,5-8,12], for which R is a
non-trivial function of r determined by R = exp ( [ O(r,u,x) dr).
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3. Frame components of the Weyl tensor and its classification

The natural null frame for the general metric (1) is given by

k=k=90,, Il= %guu&« + 0y, m;=ml(gupdr + 0p), (7)
satisfying k -l = —1, m; - m; = 0;;. All the Weyl tensor components with respect to
such a frame (k, I, m;), sorted by the boost weight, can be denoted as [13,19]

Wois = Cabed k*mi k°m

Uyin = Capea K*mym§my Ui = Cpea k1" ke mf

Woisut = Caped M m? m§mi Wos = Cupea k" 1°1° k%,

Uiy = Capea k*1"m§m Uoris = Cabeq k* ml 1°m7 |

Wi = Capea 1* my m§mg, Uari = Capeq 12k 1°mE

Uyii = Capea 1*mY1° m}’-l. (8)

The scalars in the right column could, in fact, be obtained from those in the
left column by contractions, namely Wi = Uynki, Uog = ok, Uoraj) = %\Pgik]‘k,
Wyl = %\Ilgq,j, Wi = Uarki. Relations of these Newman—Penrose-like quantities to
other equivalent notations employed in [12] and elsewhere can be found in [13].

For the invariant (sub)classification of the Weyl tensor algebraic structure it is also
necessary to introduce the following irreducible components of these scalars (see [12]):

Dy = Ui — 555 (6 Vrrr — 6175 ) 9)
Dorin = Uoren — peg0iPas, (10)
Dgisee = Wi — 53 0k Varan + 8 Parar — 6uParun — S ¥aran)

*m (6ix01 — 6djn) Uas (11)
giin = Vg — g (6 Varn — 0 Vars) - (12)

The main step now is to project the coordinate components (A.34)—(A.43) of the
Weyl tensor of a generic non-twisting shear-free geometry (see Appendix A) onto the
null frame (7). A long calculation with non-trivial cancelations of various terms reveals
that the corresponding Weyl scalars take the following explicit and surprisingly simple
form

Uyy =0, (13)
Vire  =mf 575 [(=59upsr + Ogup)r + O], (14)
U =0, (15)
Uy =D2=3p, (16)
Wopin = mfm}l ﬁ (qu - ﬁ 9pa Q) ’ (17)
Uit = mit mimym; 5Crmpng » (18)
ois  =mim] Fpq, (19)
Uari =m? D_::; Vi, (20)
Uy = mim i (Xpmq — 575 9pim X)) » (21)
Tys =mim] (Wpg — 55 9paW) , (22)
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where
P = (39uur — Oui) , + mrmmmm B~ 153 9™ Gum.rGun.r

+ 55 (9" Gunrr + 9" Gum riin) — 525 9" GunOr — 204 — 55 9O

—02 5= 9" gun + O(B=5 9" Gun.r — 55 9" Jum|In) » (23)
Qpg = Squ + (D —4) [% (qu + gu(pgq)u,”“) - (@m - 62)9upguq

~20up©.9) = © (Gutplla) + 29upIayu.r)] (24)

Fog = Gulp.glr = GulpIqlu,rr + 20(GuipIqiu,r — Julp,q)) - (25)
Vo = 5[39wuprr — Guurp + Gupru — 597" Gun,rGup.r

+9™" Gum,r Enp — Gup (Guurr — 39" Gum,rJun.r) ]
+553 (397" 9unGup.rr + 9" €minGpur — 97" Gulnplr + 397" (Gulp,riin) + fon)
~9"™" (Gmlp,ulin] + Gulm.plln) — 39up (9" Gunrr + ™" frn) ]
+29upuu®,r + Gup© . + 2 9uu®
—O[ 2 9uuup,r — Guup + Gupsu — 9" GuinIpjur + 97" Enp — GupGuu,r
+ 575 (39" " GunGplur — 39" Guinp] — 3Gupd™ " Gmn.u + 59" Inpu)] 5 (26)
Xpmq = plm.ullg) + ulg.m]|lp T JupGulmIalu.rr + €pmIqlu.r
—Gulgmlu,rllp — JupGulm.rlla) — 39uleImlu,rJup.r
+O (3ulgImlu,rGup + JulgImlp,u + GulgImlullp — GupllimIalu — 29ulgm)Jup) -(27)
Wpe = —39uullplla — 39pa.uu + Ju(p,ullg) — 39uurepg T 39uu,(pIyu,r — Juu,r(pIq)u
+%9uu9u(p,r||q) + %yuugu(qu)u,rr - %guu,rryupguq + Gu(qIp)u,ru
+29™"(Jum GunGup,rGug,r + Jum.rGun,rGupGua) — 9™ GumGun,r Ju(qIp)u,r
+9™" (EmpEnq + Gum,r En(p9g)yu — gumEn(pgq)um)

+@(gupgquuu,r + Guu,(p9q)u — Juuu(pYq)u,r — 2gu(pgq)u,u - %guugpq,u) ) (28)
their contractions are defined as @ = gP?Qpq, W = gPiWpe and Xy = P Xppng , and
the auxiliary quantities are defined in (A.44)—(A.53).

As a generalization of the classical Petrov classification of four-dimensional
spacetimes in Einstein’s theory, classification scheme of the algebraic structure of the
Weyl tensor is based on whether the scalars (8) of various boost weights vanish or not
in a suitable null frame [20], see [12] for a recent comprehensive review.

Specifically, it is possible to introduce the principal alignment types and subtypes
of the Weyl tensor in any dimension D based on the existence of the (multiple) Weyl
aligned null direction (WAND) k, as summarized in table 1. Apart from a fully generic
type G with all Weyl tensor components nonvanishing, there is type I with subtypes
I(a) and I(b), type II with four possible subtypes II(a), II(b), II(c) and II(d), type
III with two subtypes III(a) and III(b), type N and type O corresponding to the case
when the Weyl tensor vanishes completely.

Subsequently, it is possible to introduce secondary alignment types of the Weyl
tensor defined by the property that there exists an additional WAND [, namely I;, II;
and ITI;. These are the types I, II, and III, respectively, for which not only W¥q:; =0
but also U,i; = 0. There is also the “degenerate” case of type D equivalent to II;; for
which only the zero-boost weight Weyl scalars Ws... are nonvanishing.

Of course, various combinations of these possibilities can occur. For example,
there may be a spacetime with the algebraic structure II(ab) which means that it is both
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type vanishing components
G no null frame exists in which all components ¥:; vanish
I ‘Iloij

I(a) ‘Iloij ‘IllTi
I(b) \Iloij \Plijk

il Wois  Wypi Wiin
ois Uy Upign Uag
Wois  Wypi ‘%’1% ‘?2T(’U>
\P()ij \IJITi \Plijk \IJQijkL
Wois Uy ‘i"w‘k Wois

I || O Uyge Uy Waog Woras Woim Ui
HI(&) \Iloij \IJITi \ijlijk \IJQS \iJQT(ij) \]:~12ijkl \Pgij \PgTi
II(b) || Wois  Wips Wrae  Wog Wopas Woin Woiy  Wain
N Vo Wypi Uyon Wog Woren Woum Woi  Wgpi Waus
0 Wois  Uipi Ure  Wog Uopasy Woint Wois  Wapi Waw Wy

=
=
—~
o
o — D T

Table 1. The principal alignment types and subtypes of the Weyl tensor defined
by the existence of a (multiple) WAND k.

type principal type | aditional vanishing components
I; I W 05
1I; II W 05
111, 111 T
D=1II; 11 Wapi Uaigr Wyis

Table 2. The secondary alignment types of the Weyl tensor defined by the
existence of another WAND [ (which is a double WAND in the case of type D).

of subtype II(a) and II(b). Clearly, II=I(ab), III=II(abcd), N=III(ab). In addition,
there may be, for example, a II(c), spacetime which means that it is simultaneously of
subtype II(c) and II;. Or there can be a D(bcd) spacetime defined by the property that
there exists a double WAND k and a double WAND [ such that the only nonvanishing
Weyl scalar is Wag.

In our present contribution, we are going to apply this algebraic classification
scheme to the fully general family of non-twisting and shear-free geometries. This
contains both the non-expanding Kundt class (0 = 0) and the expanding Robinson—
Trautman class (O # 0). In particular, we will completely characterize all possible
principal alignment types of the Weyl tensor with respect to the optically privileged
null vector field k = 9,..

Using the fact that Wgpi; = 0, see (13), and table 1, it immediately follows that a
generic Kundt or Robinson—Trautman geometry is of algebraic type I (or more special),
so that the optically privileged (non-twisting and shear-free) null vector field k = 9, is
a WAND. Moreover, since the relation (15) reads \I~/17,jk, =0, any Kundt or Robinson—
Trautman geometry is, in fact, of algebraic subtype I(b), or more special.

We will now discuss all possibilities when k = k is a multiple WAND. In other
words, the spacetime geometry is (at least) of algebraic type II with respect to O,.
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4. Multiple WAND k and algebraically special (sub)types

When the vector field k = 0, is (at least) a double WAND then the spacetime is
algebraically special (of type II, or more special).i It follows from table 1 that such a
situation occurs if, and only if,

Vi =0, (29)

where W7 is given by (14). Since the spatial vectors m; are linearly independent,
this condition is equivalent to (gupm — 2@gup) , = 20, which can be rewritten as

Gup,rr = 2Gup© » + 20gup r + 20 ,, (30)
or integrated to

Gup,r = 20Gup + fp (31)
where fp(r,u,z) =2 [ O ,dr + ¢,(u, z), that is

for =20,. (32)

Applying the condition ¥ = 0 which implies (31) and (30), the functions (23)—(28)
determining the remaining Weyl scalars (16)—(22) simplify considerably to

P = (39uur — Ogu) . + gy "R

559" fonlin — 3272 9™" ffn — 20 4, (33)
Qps = *Rpg+ 3(D = 4)(fopoiq) + 5Fofa), (34)
Fog = fipal s (35)
Vo = 32(fou = Guurp — GupGuuirr + 9" fmEnp) + 32289 Guip frn)

,%_3 gm" [gm[p,an] + Gu[m,pl||n + em[pfn] + %gupmen

_%gum(f(nﬂp) - Sf[nvp])]

+Gupuu®.r + 20up© 1 + Guu® p + O (GupGuu,r + Guup), (36)
1
Xpmg= Gpim,ulla] + Julg,mlllp + €pimSa) = GulaSmlllp — GupSim,a) — 39ulaSm] o > (37)
Wag = =39uuliplle = 39pa:uw  Ju(p.ulla) = 59uur€pg — Juur(pdayu — 3GupFuqGurrr

+2 90w fo) + 39w @llg) + JupSa)u + 9™ (GumGun fofq + Fm fnGupGuq)

—39"" Gum fnGupfa) + 9™ (BmpEng + finBnwdayu — GumEnpfa))

+9uuGup9uq® r + 29upGug® u + 29uugu(p®© q)

+0(29uu, (p9a)u + JuuGu(plla) + JupugGuur — 39uupgu)- (38)
Recall that

€pq = Gu(plla) — %gpq,ua Epg = Gulp,q + %gpq,ua (39)

foa = Fwlla) + 3Fofa + 29up0.q) + 20°9upuq + 20 (Gu(pllg) + Gu(pfa)): and | denotes
the covariant derivative with respect to the spatial metric g,q, while the corresponding
Ricci tensor and Ricci scalar are Ry and SR, respectively, see Appendix A.

Using table 1 we can thus explicitly present the necessary and sufficient conditions
determining all possible principal algebraic (sub)types of non-twisting shear-free
geometries with a double, triple and quadruple WAND k = 0,.. These are summarized
in table 3.

1 In principle, there could exist “peculiar” algebraically special spacetimes for which k is not a double
WAND and there is another double WAND vector field.
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type necessary and sufficient condition | equation
II(a) P=0 (40)
I1(b) Q- 2 9m@—0_ | (1)
II(c) SCrpng = 0 (42)
I1(d) Fy=0 (43)
111 ITI(abed)
ITI(a) Vo =20 (47)
111(b) Xpmg — DL—?, Gp[mXg =0 (48)
N ITI(ab)
O Wpq — ﬁ 9pgW =0 (50)

Table 3. Principal alignment types and subtypes of the algebraically special
Weyl tensor with respect to the multiple WAND k = 0O,.

4.1. Type II subtypes with a double WAND k

The Robinson—Trautman or Kundt spacetimes (1) with (5) satisfying the condition
(31), i.e., U115 =0 implying that they are (at least) of type II with respect to the
null direction k = 9,., admit the following particular algebraic subtypes of the Weyl
tensor:

o subtype II(a) & Uyg = 0 < P = 0 & the metric function g,,, satisfies the relation:
(39uur = Ogun) , = ~m=m= "B~ 539" fonlin + 1 5=39"" fnf + 26,0
(40)
This determines the specific dependence of gy, (7, u, ) on the coordinate r which
is the affine parameter along the null congruence generated by k.
o subtype TI(b) & Uyrey =0 € Qpg = s Ipg @

S 9 S g
Ryq — ﬁ R= _%(D —4) {(f(qu) + %fpfq) - ﬁ

g’mn (fm||n + %fmfn)} .
(41)
This is identically satisfied when D = 4 since for any 2-dimensional Riemannian
space there is °R,, = % Ipq °R.
o subtype 11(c) < Woijm = 0:
Sampnq =0. (42)
This is always satisfied when D =4 and D = 5 since the Weyl tensor vanishes
identically in dimensions 2 and 3.
o subtype II(d) & Voi; =0 & Fpy =0:
fipa =0- (43)
Introducing a 1-form ¢ = f;, da? in the transverse (D — 2)-dim Riemannian space,
this condition is equivalent to the condition that ¢ is closed (d¢ = 0). By the
Poincaré lemma, on any contractible domain there exists a potential function F
such that ¢ = dF, that is f, = F,. In a general case, such F exists only locally.

These four distinct subtypes of type II can be arbitrarily combined. Clearly, in the
D = 4 case the algebraically special non-twisting shear-free geometries are always of
subtype II(bc).
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4.2. Type III subtypes with a triple WAND k

The Robinson—Trautman or Kundt spacetime is of algebraic type III with respect
to the triple WAND k = 0, if all four independent conditions (40)—(43) are satisfied
simultaneously. In such a case the zero-boost-weight Weyl tensor components V...
vanish and we obtain geometries of type II(abced)=III, with the remaining Weyl scalars
(20)—(22) determined by the structural functions (36)—(38) now simplified to

Vo = %(fp,u — Guu,rp + 97" fm Enp — %gmngumfnfp) + Xp

+55 Jup [ 53 TR 9™ (i + 3Fmfn)] + 90O p + Oup (44)
Xpma= Gplm.ullg) + Jula.ml|lp + €plmSa) — Julafmlllp — 59ulafm1 fo (45)
Wy = 7%guu||:0||q - %gpq,uu + Jup,ullg) — (%guu,r - ®guu)el’q = Juur(pYa)u

+39uu,(pfa) + 39uuf(plle) + Gupfa),u + 797" GumGun fp fq

*%gmngumfngu(pfq) +gm" (EmpEnq + fmEnpYqyu — gumEn(pfq))

+ 53 GupGug [575 "R+ 9™ (fnlin + 5Fmfn)]

+20uuGu©,q) + 209w, (p9q)u - (46)

Consequently, in view of table 1, the explicit conditions for the subtypes III(a) and
ITI(b) with the triple WAND k are:

o subtype Ill(a) & Usri = 0 <V, = 0 < the function gy, -p is explicitly given as:
Guu,rp = fp,u + gmnmenp - %gmngumfnfp + DL_3XP
+ 553 Jup[55 "R A 9" (fnijn + 5 Fm )]
+29uu® p + 20Guu,p - (47)
This is a specific restriction on the spatial derivatives of the function gy, r.
o subtype I1I(b) & Vi = 0:
Xpmq = 15 9pimXq  Where  Xg = g"" Xpmq , (48)
and Xpmq is given by expression (45). Using the fact that any 2-dimensional

metric gpq is conformally flat, g,q = Q2d,4, it can be easily checked that the
condition (48) is identically satisfied in D = 4.

4.8. Type N with a quadruple WAND k

When both conditions (47) and (48) are satisfied, the only remaining Weyl scalar is
Wi = mfm?- (Wpq — 55 9pgW), see (22). In such a case we obtain the Robinson—
Trautman or Kundt spacetimes of algebraic type N with the quadruple WAND k = 0,.
Using V,, = 0, that is by substituting (47) into (46), the function W, for such type N

geometries reduces to a simple expression
Wog = =39uullplla = 39pauu + Gutpulle) ~ (39uur = © uu)epq
+39unpfo) + 39unf(pllq) + 19™" JumGun Fo o
— 57 YupGua[55 "B+ 97" (miin + 3.Smfn)]
— 523 X9y + 9" (EmpEng — GumEn(pfa)) - (49)

determined by the metric functions (1) and their first and second derivatives. The set
of functions W), directly encodes the amplitudes W4:; of the corresponding gravita-
tional waves, forming a symmetric traceless matrix of dimension (D — 2) x (D — 2).
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4.4. Type O geometries

The Weyl tensor vanishes completely if, and only if, all the above conditions are
satisfied and, in addition, W,:; = 0. This clearly occurs when

Wpe = 55 9paW (50)
with W = ¢gP9W,,, which is a restriction on the functions W), given by (49).

5. Secondary alignment types of the Weyl tensor

In the non-twisting and shear-free geometries there may also exist an additional
WAND [ distinct from the (multiple) WAND k = k = 9,.. In such cases the spacetimes
are of type I;, II;, ITI; or D, see table 2.

In general, when Wy = mim{ (Wpy — 55 gpgV) = 0 with W, given by (28),
the geometry is of type I; (the subtype I(b);, in fact). In such a case k = k = 9, and
l = %guuar + 0, are two distinct WANDSs, see (7).§

When the geometry is of type II with the double WAND k and W¥,:; = 0 where
Wpq is given by (38), the geometry is of type II; with another WAND 1. If the
additional conditions (40), (41), (42) and (43) are satisfied, we obtain the subtypes
II(a),, II(b),, II(c), and II(d),, respectively (or their combinations).

The type III; geometry is equivalent to II(abcd);, in which case there is the
triple WAND k and an additional WAND 1. The subtypes III(a), and III(b), occur if
conditions (47) and (48) are also satisfied. For such spacetimes, the only non-vanishing
Weyl scalars are \ifwc and Vs, respectively.

Finally, there is also the “degenerate” case D = II;; which admits the double
WAND k = 0, and the double WAND [ = %guuar + 0y. Its only nonvanishing Weyl
scalars are Ws..., i.e., those of zero-boost-weight. In view of (13)—(22) and (33)—
(38), this occurs if (and only if) V, =0, Xpng = ﬁgp[qu], Wpe = ﬁ Ipqg W,
in which the functions are determined by (36), (37), (38). Of course, with the
additional constraints (40), (41), (42) and (43) we obtain the subtypes D(a), D(b),
D(c) and D(d), respectively, and their various combinations. The simplest type D
geometry thus seems to be of the subtype D(bcd) for which the only nonvanishing
Weyl scalar is Wog = % P with P given by expression (33). This involves, for
example, generalizations of Schwarzschild black hole spacetimes, see subsection 8.1.

6. Kundt geometries

We will now discuss the two distinct important subclasses of non-twisting shear-free
geometries, namely the non-expanding Kundt and the expanding Robinson-Trautman
metrics (in the next section).

The Kundt family is defined by having a vanishing expansion, © = 0. It implies
that the spatial metric gpq in (1) is r-independent,

Ipq = hpg(u, ) , (51)
see end of section 2. This significantly simplifies the Riemann tensor (A.17)-

(A.26), the Ricci tensor (A.27)-(A.32) and the Weyl tensor (A.34)-(A.43) listed
explicitly in Appendix A. In fact, it is a complete generalization of the analogous

§ There may exist other WANDs distinct from I = %guuar + Ou, see e.g. the case D > 4 in sub-
section 8.1. However, their systematic investigation is not the topic of the present work.
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results presented previously in [13] since no field equations and no constraints on
algebraically special types have been employed. The curvature tensor components
given in Appendix A thus characterize the most general Kundt geometry, which is of
algebraic type I(b), whereas the results in Appendix B of [13] are only valid for Kundt
spacetimes of type II (or more special).

For such a generic Kundt geometry the Weyl tensor frame components are given
by (13)—(22) with (23)—(28), simplified by setting © = 0. These represent an explicit
form of the expressions (7)—(16) written in [13].

In the case of a vanishing expansion we may fully express the conditions discussed
in section 4 for algebraically special Kundt geometries with respect to the WAND
k = 0,. Specifically, we integrate equations (31) and (40), obtaining an explicit -
dependence of the metric functions gy, and gu., respectively. After substituting them
into the remaining conditions and separating in r, we obtain:

e The type I Kundt geometry is of subtype I(a)=I(ab)=Il & U7« =0 <
Gup = €p(u, @) + fp(u, )7, (52)
where e, and f, are arbitrary functions of the coordinates u and z.
e The type II=I(ab) Kundt geometry is of subtype II(a) < Uy =0 <
Guu = a(u, x) 7% + b(u, 2) r + c(u, z), (53)

where a = 1 f* f, — 55 (55 "R+ 97 fyq) With [P = g fo, fog = fiplle) + 53S0 fa
b and c are arbitrary functions of the coordinates u and x.

e The type II Kundt geometry is of subtype II(b) & Wypay =0 <
g g mn
Squ — = SR = _%(D —4) (qu — = ) fmn) . (54)

D -2 D-2
e The type II Kundt geometry is of subtype II(c) < Waijm =0 <
Crnpng = 0. (55)
e The type IT Kundt geometry is of subtype I1I(d) & ¥yi; =0 <
Fpg = fip.g = 0. (56)
e The type III=II(abcd) Kundt geometry is of subtype IlI(a) < ¥3ri =0 <
aq+ fga=0, bg— fou="Ty, (57)
where
Ty=—2eq(a— 317 fp) = 56" fpfa + [P Epg + 55 X (58)
q €q\@ — 3 J Jp) — 3¢ JpJq Pe T D3 >
with e? = gPleq, e, = €(pllq) — 39pq.u > Epq = €lp.q) + 59pq.u s Xq = 9" Xpmg and
Xpmg = Gplmyullg) T Elg,mlllp + EppmSal = ElaSmip - (59)
e The type III Kundt geometry is of subtype III(b) < Wsin = 0 <
Xpmg = 53 (9pm Xg — Ipg Xm) - (60)

e The type N=III(ab) Kundt geometry is completely described by the symmetric
traceless matrix Wy:;, which is determined by

1 1 1 1 1
Wpe = =5Cplla + 3¢S0 + 56 0l — b€y + (@ — 1" fn) epeq + epully)
*% Ipquu + %e”en fofa =€ Enpfg) + 9" EmpEng — D2—3 X(p€q)
1
—3(2aef, + Tplig) + Twfo) = Fwulla) = fofou) T (61)
e The type N becomes type O < Wy = 0 < Wyy = 55 gpg W with W = gPIW,,,.
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These are the same conditions as those presented in [13]. For Kundt geometries of
type II (whose metric functions g, satisfy the condition (52)) the shorthands (35),
(39), (37) used in this paper become

Foa = Jolla)» (62)
Foa = fwla) + 3F0Ta (63)
Epq = eplig) + 59pa. T 7 fiplla) (64)
€q = €0l — 39pau T T Sollg) (65)
Xpmq = €fq|im)|lp + Famep + Fpimeq) + epimfo) = foimeq) + Iplm.ullq)
+1 (Falmilp + FamFo + Fpimfq)) - (66)
The identification is
Fpy = Fpys (67)
fea =15y (68)
Ey,y =E5, +rFS, (69)
g = Cpg T flla) s (70)
Xpmg = Xpimg T 7 Yping » (71)

where the superscript ¥ denotes the quantities defined and employed in [13].

7. Particular Robinson—Trautman geometries

The algebraic structure of generic Robinson—Trautman geometries with an arbitrary
O # 0 has been described in sections 3 and 4. Let us now investigate in detail a large
particular subclass such that the non-twisting shear-free congruence generated by the
null vector field k = 0, has an expansion of the form

@:%. (72)

This is an important subcase since © , + ©2 =0 and thus, in view of (A.17) and
(A.27), there is Ryprq =0 = R,,. Consequently, Rgpcq k° m? ke m;l =0= R, k°kb
which means that such Robinson—Trautman geometries are of Riemann type I and
also of Ricci type I.

For the case (72) we can explicitly integrate all the conditions with respect to r
and determine the algebraic types and subtypes. First, the spatial metric g,q becomes

Ipa = r? hpq(u, ), (73)
see (6) for R =r, which is obtained by solving R, = ©R. Such geometries are, in
general, of the Weyl (sub)type I(b).

The metrics are of the Weyl type II (or more special) with the double WAND k
if, and only if, the condition ¥y7: = 0 is satisfied. For (72) we have f,, =0 due to
(32), i.e., the functions f, are independent of r. By integrating (31) we then obtain

Gup = ep(uax) TQ 7fp(u,£C)7”, (74)

where e, and f, are arbitrary functions of the coordinates u and z.
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With the conditions (72)—(74), the functions (33)—(38) determining the Weyl
scalars reduce to

P = (%guur*guuril)’rfaT727 (75)
Qpa = Rpg +3(D =) (fpllg) + 3Fpfa)s (76)
Foqg = Jipal» (77)
Vp = _%guu,rp + Guu,p rt - (ep r?— fp ’I“) (%guu rr = Guu,r rt 4 Guu 7“72)

+%fpau+%anRT+ég ifne[pfn 2D 3f"anr
1 mn
— 575 " [anfp,ulln] + €fmpliin + €y fal

+3 (epfmiln = emfonllp) + emFup = Fupiin 7] (78)
Xpmg= lez)ﬁq ¥+ Yomq T (%)
Wy = _§9uullpllq +epy (guuT zguu,r 7"2) - %f(PH‘Z) (guu ~ Juur T)

~Juu,r(p€q) r? + 20uu,(p€q) T — %guu,(pfq) + Juurpfo) T
— (epeq 2 _ 2€(pfq) r+ fpfq) (%guu rr r? — Guu,r T+ guu)

[ €pulla) T € Sa)u hpq wu T g (enenfpfq + fnfnepeQ) - %enfne(pfq)
+hmnE7P;£7E"F1{g anRT 6‘1) —e" n(pfq ]
~[fwullo) + fofou — 20 B Fon + f Eupeq) — "Frple) T
R P Fg - (80)

where R = °Rr? and Rpq = Squ are the Ricci scalar and the Ricci tensor with respect
to the Riemannian metric hpq(u, x), respectively,

a(u, $)54f fo— 5= 2(D s R+ + %fpfp) (81)
Xpmg = DPpimullg) + €lgmlllp + €ppmfa = €lafmillp — €pfimg — 3€lafml fo (82)
Yong = —Eqmilp + flgFmip + foFma (83)
and
P = hPie,, P o=hrf,, (84)
i =cllo ~ shwaus  Ejy = eplig + 3hoou, (85)
X = ppm X YR = hPYED (86)

Using the results of subsections 4.1-4.4 we can thus explicitly express the conditions
for the principal alignment (sub)types of the algebraically special Weyl tensor:

e The type IT Robinson-Trautman geometry is of subtype II(a) < Uy =0 <
Guu = ou, ) + Blu, ) r +y(u, z) r?, (87)
where « is given by (81) while 3, v are arbitrary functions of v and x.

e The type IT Robinson-Trautman geometry is of subtype II(b) & Wy =0 <

i hy
Ryq = 525 R = =3(D = 4) (ol + 3ofs) = 525 (£ + 57 5) | (39)

where R4 is the Ricei tensor with respect to the metric hyq.

e The type II Robinson—Trautman geometry is of subtype II(c) < Woijir = 0 <
Crnpng =0, (89)

where Cpypng = S 'mpngq r~2 is the Weyl tensor corresponding to the metric Ppg-
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e The type II Robinson—Trautman geometry is of subtype I1I(d) < WUy = 0 <

Fpg = fip.g = 0- (90)
e The type III Robinson-Trautman geometry is of subtype III(a) < W37 = 0 <
a,q+fqa207 ﬁ,q"’fq,u:?:]v (91)
where
T, =2¢q(a = 5f7f) + 5% fufo — FPER — o5 X (92)
with Xy = WPmXEE = gP" Xpmg
Xpmq = Pplm.ullg) + €la.mlllp T €pmfa) — elafmiip — 3€lafml fp - (93)
e The type III RobinsonTrautman geometry is of subtype III(b) < Wain = 0 <
X5 = 55 (hpm Xq — hpg Xm) - (94)

e The type N Robinson—Trautman geometry is described by the symmetric traceless
matrix W4, which is completely determined by

1 1 1 1 1 rn
Whpe = (*awpuq + 3%l T 37 wllo + 3057+ (@ = 1" fa)eneq + epulla

—5hpquu + g€ en fofq — e"Extfo T ERLERG — 3 X(p eq)) r?

+3 (20657 = o) = Tofo) = Fwaia) = Fofayu) 7 (95)
e The type N becomes type O & Vi =0 Wy, = ﬁ hpg K" Wi, where Wi,
is given by (95).

This completes the classification of principal alignment (sub)types of the Weyl tensor
of Robinson—-Trautman geometries with expansion (72) and the multiple WAND k.
The secondary alignment (sub)types with the additional WAND [ = % GuuOr + Oy
are obtained when the conditions summarized in table 2 are satisfied, namely:
e The type IT Robinson—Trautman geometry is of type II; & ¥, =0 <
Wpq = ﬁ hipg ™" W, (96)
where W, is given by (80).
e The type III Robinson-Trautman geometry is of type III; < U, = 0 < the
condition (96) is satisfied, where W), is given by

Woq = (=$inlla + 37000 + 37 il + 3855 + B pea — (0= 11" fa)ereq
+epulle) +ewfo)u — 3hgun + g€"en fofq — 5€" faewfy)

NS + [V eq) — € BN, £y )

—(3B1plla + 3B f0) — aels —2a,peq) — 2a e fo) + Fpaulla) + fiwfou) 7
=3l — 30f6ll0) — 30wl — afpfa- (97)
This, in fact, is a general form of W,,, for the type III spacetimes.

e The type II Robinson-Trautman geometry is of type D with respect to the double
WAND @ = 39,0 + 0y < Vari = Uz =0 and Uiy =0 &

Xpmg = ﬁ (hpm X§T = hpq X%T) J Yo = ﬁ (hpm Yt = hpq YnFiT) )
V,=0, Wpg = 575 hpg K" W (98)

where the corresponding functions are given by (82), (83), (86), (78) and (80).
The particular subtypes D(a), D(b), D(c), D(d) and their various combinations
occur if the additional conditions (87)—(90) are also valid.
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8. Example: vacuum Robinson—Trautman spacetimes

Motivated by our previous studies [7,9] of Robinson—Trautman spacetimes in general
relativity (extended to any dimension D > 4), let us consider a metric of the form

ds? = 12 hyy (do? + eP du)(dz? + e? du) — 2 dudr — g™ du?, (99)
where
: R b(u) 2 2A
rr_ ) _ P lppap Vp— —— S 42 (100
g (D72)(D73)+7’D*3 D72(e o= 3 o) 7 P (100)

In fact, this is the most general Robinson—Trautman vacuum line element in Einstein’s
theory (extended to an arbitrary dimension D), with a cosmological constant A and
possibly a pure radiation field aligned with k = 0.

Employing the results of the previous section, it is straightforward to obtain
explicit conditions under which this geometry becomes of a specific algebraic type.
Since

fp=0 (101)
and gyp = ep(u, z)r?, the condition (74) is satisfied, so that the spacetime is of
Weyl type II (or more special) with respect to the multiple WAND k. Moreover,

Guu =12 €%, — ¢'", that is

subtype II(c) < Cipng =0,

Guu = —a—br3 P —cr 412, (102)
where
R
a:—(D—2)(D—3) , (103)
c= — D27 5 (e"Hn — %hm”hmmu) , (104)
vy=ce"e,+ (D12)—[(XD2) . (105)
For f, = 0 with gy, of the form (102) we obtain from (75)—(80) that
P =-iYD-1)(D-2)brP, (106)
Qpq = Rpq; (107)
F,y, =0, (108)
Vo =(aep—icp+ 55Xp) —apr 4+ 5(D—1)(D—2)be,r3 P, (109)
Xpma= (Rppm,ulla) + elgmllip) 7 (110)
Wy = 30ipilg + (3€0plle — @ €57 — 20,060)) 7
+(= z(e"en) il — 3CeSs +aepeq — c peq)
+epaulle) — 3hpgu + hm"E%TpEEE)
—%(D—1)begg P 4+ L(D = 1)(D —2)beyeqri=P . (111)
In view of (13)—(22), the metric (99), (100) is thus of
e subtype II(a) < b(u)=0, 112
o subtype II(b) < Rp,= th—q2
(
(

(112)
R, (113)
(114)
(115)

subtype II(d) always.
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Interestingly, it follows from the contraction of Bianchi identities and condition
(113), which is identically satisfied in D = 4, that

0 = A" BP R npnglk + Rumpgkln + Rmpkn|lq) = % Rk (116)

Thus, any Robinson-Trautman D > 4 geometry (99), (100) of algebraic subtype II(b)
must have R = 0. Moreover

Crnpng = Runpng — Wl(p_s) R (himnhpg = hmghnp) - (117)

The condition Cp,png = 0 for subtype II(c) is always satisfied in D = 4 and D = 5.
We thus immediately infer that subtype II(bc)=II(bed) occurs if, and only if, the
(D — 2)-dimensional transverse space has a constant curvature, that is

Rupna = tp=5y5=3) R() (hmnhpg — hmghnp) - (118)
In such a case the metric can be written as hyg = P~26,4, where P =1 4+ 1K §,ppa™a",
K= m R(’U;), see [7,8]
The conditions for type III subtypes are then
2
o subtypeIll(a) < R,=0 and c4,=2ae;+ D—SXQ’ (119)
where  Xg = hP"XP0, 0 Xpng = hpimullg + Efgmllip
1
e subtype IlI(b) & X327 = m(hpm Xq = hpg Xim) . (120)

The type N is obtained by applying all the conditions (112)—(115) and (119)—(120).
In such a case, the only non-trivial function (111) reduces to

— (1 _ RT
Wog = (3¢1nll1q aepq)r

_1lon _ 1..RT _
+< 5(€"en)|Ipllg — 3CERT T aepeq — C (peq)

+e(pullg) — %hpq,uu + p™M" [RT ERT) r2. (121)

mp-—ng

Such a geometry is of type O when Wp, = ﬁ hpg P Winn.

The secondary alignment types II;, III;, D arise when the conditions (96), (97),
(98) are satisfied, respectively, in which the key functions are given by (109)—(111).

We thus conclude that the Robinson—Trautman geometry of the form (99), (100)
generally admits all the above mentioned algebraic types and subtypes. Of course,
specific field equations impose additional constrains that may exclude some of the
(sub)types. To illustrate this effect, let us now restrict ourselves to the most important
case, namely vacuum spacetimes in the Finstein theory.

8.1. Most general Robinson—Trautman vacuum spacetimes

As shown in [9], a fully general Robinson—Trautman vacuum solution in the Einstein
theory (including A) is given by (99), (100) where the metric functions are restricted
by the constraints

Rpq = ﬁ hpg R ( )

hpgu =2 €(p|jq) + Chpg , (123)

(D—4)R, =0, (124)

hmnaHmHn-i-%(D—l)(D—2)bC+(D—2)b,uZO, ( )
with a and ¢ defined in (103) and (104).
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Using conditions (122)—(125) and

pqg = %Chm’ Epq = eplig + %Chpqv (126)
hpgun = 2¢€(p)1q) + 2€(pllg).u + (€ + €u) Bpg (127)
Xpmg = " Rnpmq + Clghmp, Xq= (D —=3)(—aeq + %C,q) . (128)

functions (109)—(111) which, together with (106)-(108), characterize the algebraic
structure of the Weyl tensor become

Vp =—aprt+3(D-1)(D-2)be,r* P, (129)
Xpmg= (€" Rupmg + ¢,[ghm)p) r?, (130)
Wog = 30ipllg + (3CU1plla — 26,0)) 7

+e™e" Conpnq? + (D — 1)(D — 2) bepeq P

+hpg [zacr + (aeten — € — 3eu) 12+ 3(D = 1) bert=P]. (131)
To derive the last expression we have used the fact that e, v1q) — €(p|jq),u = €m Tpq

where the tensor T = SFZ}I . can be written as

m k m 13 mn
Tpq = W™ [en)iplla) — " Ri(payn] + 96 (»Ca) — 2" hpg Cn,s (132)
see Appendix A of [9]. The non-vanishing Weyl tensor components with respect to
the frame (7), sorted by the boost weight, are thus

Uos = —1(D—-2)(D-3)br'" P, (133)
Wyint = mi mimymy Crpng 7, (134)
Uaps =ml [2(D—1)(D=3)be,r* P —8=34 1], (135)
Ugie =mimmi " Copmg1? (136)
Was = mlmd | 5@y - ﬁ hpg ™| ) + €™ €" Conpng 72
+[3(Clplle = 553 Pwa K" Clmin) — 2(a,pEq) — Bz hpa €™ am)] 7
+i(D - 1)(D —2)b (epeg — 55 hpqg €™en) r5_D} . (137)

It is now convenient to perform a null rotation of the frame (7) with the
privileged null vector k fixed, I’ =1 + /2 L'm; + |L|* k, m} = m; + V2 L; k, see (C1)

in Appendix C of [19], and the parameters L; = —% r? epmt. The new null frame is
K'=0,, U'=-1g"0,+0,—€"0,, mi=mlo,, (138)

and using the expressions (C5) in [19] the nonvanishing irreducible Weyl scalars in
such a frame simplify considerably to

bs = —5(D—2)(D—=3)br' 7P, (139)
/Qijkl = mmmpmkml Crpng r2 , (140)
Wi = —m} 5o a,7 ", (141)
1 1
Wiy = 3mIm? [ (@pita + Clplia) = 55 oa B (@i + CfmiinT) | (142)
with \I/'Suk = 0. Notice, interestingly, that the last term can be rewritten as

I P g
Wy = 3l [ 711, = 555 hoa 7 97 ] - (143)
The gravitational wave amplitude matrix W/;; (which is symmetric and traceless) is

thus directly determined by the second spatial derivatives of the contravariant metric
coefficient g"", see (100).
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To prove the non-existence of type N and type Il vacuum solutions in D > 4 it
is now crucial to prove the identity

(D —4) (€pl1q = 53 Ppa K" Clmiin) = 0. (144)
This follows from the u-derivative of the condition (122), namely
Rpgu = 55 (PpauR + 55 hpg hann K™ 0 R+ hpg K™ Ron.) (145)
which using h™" ,, = —h™Ph"1h,, ,, and the constraint (123) can be rewritten as
Rpgu = 53 (2€0ll0R — 555 Mg €10 R + hpg h™" Runn.) - (146)

It remains to evaluate Rpq,,. From the definition of the Ricci tensor it follows that

RP‘LU

—Tm
pq|lm

m — STm
Wherequf T

_7m
pmllq’

pq,u

(147)

is a tensor symmetric in p,q and given by (132). Using common

relations for commutators of covariant derivatives and contracted Bianchi identities,

see (3.2.3), (3.2.21), (3.2.16) in
= €"nllplle T B3 €oll)) R + 55 Moa € Ron + Cliplla = 5hog B¢l (148)

Tm
pq||m

, . 1
T;l:anq = €"inllpllg + 3D = 2) ¢ljpiiq -

[21], we obtain the derivatives of (132)

Substituting into (147), the u-derivative of the Ricci tensor becomes

qu,u -

and its trace reads A" Ry =

2 1 1 1
575 €olla) R+ 575 hpg € Ron — 5(D = 4) ¢/1p(1q — 5hpg B Climin »

serting these two expressions into ?1426), the identity (144) is proven.
Using (139)—(142) with (124) and (144) it is now easy to determine explicitly
the algebraic structure of all vacuum Robinson—Trautman spacetimes in the Einstein
theory in any dimension D. The results are summarized in table 4.
In D > 4 it follows from (124) that a, = 0, which, together with (144), implies

(149)

(150)

725 € n R+ €" Ry = (D = 3) h™"¢|jpnjp- By in-

Ve = 0= W);;. This proves that there are no type N, type III and type II spacetimes
type D=4 D >4
II(a) || b=0 b=0 < D(a)
II(b) || always always < D(b)
II(c) always Crnpng =0 < D(c)
II(d) || always always < D(d)
111 II(abed)
IM(a) | b=0=R, equivalent to O
ITI(b) || always for b =0 equivalent to O
N ITI(ab)
O b=0="R, and cj,|q = ﬁ Bpg B Cljm)jn | equivalent to  D(ac)
D Rp=0 and ¢)pq = ﬁ hpg K™ ¢l im| |n always D(bd)

Table 4.

The necessary and sufficient conditions for all possible algebraic

(sub)types of the Robinson-Trautman vacuum solutions of Einstein’s field
equations. Some of them are always satisfied. The admissible algebraic structures
of the Weyl tensor differ significantly in the case D = 4 and in higher dimensions

D > 4.
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in the Robinson—Trautman family in higher dimensions when the Einstein vacuum field
equations are applied. Such a result is in full agreement with observations made in [7].

Thus, all Robinson—Trautman vacuum solutions in D >4 are of type D (or
type O). The double degenerate WANDs are k' =k = 9., l' = —%g"’“ Or + 0y, —€P0,,
see (138). Tt is also straightforward to identify the possible subtypes, namely D(a)
and D(c) and O=D(ac). In fact, the only non-vanishing Weyl scalars are

he = —5(D—=2)(D—-3)br'™", (151)

P

T,/ _ m n, 4 2
Whig = mi mimpmy Crpng 77, (152)

so that all such spacetimes are of the subtype D(bd). Clearly, there are only two
algebraically distinct cases possible, namely

e subtype D(a)=D(abd) < b=0, (153)
o subtype D(c)=D(bcd) < Cipng =0. (154)

The latter case (which necessarily occurs in dimension D = 5) admits just the scalar
U/ given by (151). Moreover, in view of (117) relation (118) must hold which means
that the transverse Riemannian space has a constant curvature. Such a family of
Robinson-Trautman vacuum spacetimes contains generalizations of the Schwarzschild
black hole of mass proportional to b. When both conditions (153) and (154) are
satisfied, the corresponding spacetime is of type O.

This generalizes, confirms and refines the conclusions of a previous work [7] where
the Robinson-Trautman vacuum solutions with e, = 0 were studied, i.e., assuming the
metric functions e, can be globally removed. Relation between the respective notations
is hpg = P72(u, ) vpg(z) with detyp, =1, b(u) = —p(u) and ¢ = —2(logP),. It
follows that the exceptional cases discussed in [7] with the functions p and/or Cpypng
vanishing are, in fact, algebraically distinct subtypes.

9. Concluding summary

We investigated the algebraic structure of a fully general class on non-twisting and
shear-free geometries in an arbitrary dimension D, that is, the complete Robinson—
Trautman and Kundt family. In particular:

e Using the Christoffel symbols we derived all coordinate components of the
Riemann, Ricci and Weyl curvature tensors in an explicit form. These are
presented in Appendix A.

e By projecting the Weyl tensor onto the natural null frame we evaluated the
corresponding scalars of all boost weights. In contrast to a complicated form
of the coordinate components, such Weyl scalars are, due to cancelation of many
terms, surprisingly simple, see equations (13)—(22) with (23)—(28).

e Weyl scalars obtained in this manner directly determine the algebraic structure
of the metric (1) with (6). Distinct algebraic types and subtypes are defined by
the vanishing of these scalars (and their combinations), see tables 1 and 2.

e We proved that all non-twisting shear-free geometries are of type I(b), or more
special, with the WAND aligned along the optically privileged null direction k.

e We were able to explicitly derive the necessary and sufficient conditions of all
principal alignment types such that the optically privileged null direction k is a
multiple WAND. These algebraically special (sub)types are II, II(a), II(b), II(c),
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II(d), their combinations, III, III(a), III(b), N and O. See the explicit conditions
given in section 4 and table 3.

e In section 5 we also identified the secondary alignment types for which there exists
an additional specific WAND [ distinct from the (multiple) WAND k, namely I,
I1;, I1I; or D with a double I. Moreover, there are various subtypes, namely II(a),,
II(b),, II(c),, II(d), (or their combinations), I1I(a),, III(b), and D(a), D(b), D(c),
D(d).

e The Kundt family, which is the nonexpanding (© = 0) subclass of the non-twisting
shear-free geometries, is studied in section 6. The corresponding conditions for
algebraic types and subtypes are simplified, and they fully agree with those
obtained previously in [13].

e The algebraic structure of the general Robinson—Trautman class with an arbitrary
expansion scalar © # 0 is described in section 4. The special case © = 1/r is
investigated in section 7. In fact, this is an important subcase, as such Robinson—
Trautman geometries are of Riemann type I and also of Ricci type I.

e No field equations have been employed in these calculations and discussions. All
results are thus “purely geometrical”, i.e., they can be applied in any metric
theory of gravity that admits non-twisting and shear-free geometries.

e Of course, there are specific constraints on admissible algebraic types imposed by
the field equations. To illustrate this, in section 8 we investigated an important
example, namely the Robinson—Trautman vacuum solutions in Einstein’s theory.
We proved that in all dimensions higher than four there exist only types
D(a)=D(abd), D(c)=D(bcd) and O of such spacetimes. This is in striking contrast
to the classical D = 4 case, which is much richer, see table 4.
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Appendix A. Explicit curvature tensors for a general non-twisting and
shear-free geometry

After applying the shear-free condition (5) the Christoffel symbols for the general
non-twisting geometry (1) are

. =0, (A1)
U7y = =5 Guur + 59" Gun.r (A.2)
Ly, = —59upr + Ofup (A.3)
I =3[ = 9" Guwr = Guuw + 9" (2Gunu — Guun)] - (A.4)
Dop = % [ = 9" Gup,r = Guu,p + 9" (2Gufn p) + gnp,u)] , (A.5)
Thg = =09 9q = Guiwlle) + 39pg.u (A.6)
rY = T4, =T% =0, (A7)
Ly = $9uur s (A.8)
Tip = 39up.r (A.9)
I'pq = ©9pq ; (A.10)
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=0, (A.11)
rm = %gm”gun,r , (A.12)
rm = esr, (A.13)
I =3 = 0" Guur + 9™ (29unu — Guun)) » (A.14)
L = 5[ = 9" Gupr + 9™ (29uin,p) + Gnp.u)] » (A.15)
I = —0g"mgp, + T (A.16)
The Riemann curvature tensor components then read
Ryprq = *(@,T + @2)gpq ’ (A.17)
Rrpru = —59up,rr + 5OGup,r » (A.18)
Rrpmg = 29pim© ,q — 2@29p[m9q]u + O9pimIqlu,r - (A.19)
Rrwru = =3 Guurr + 0™ GumrGun.r » (A.20)
Ripug = 39up,rila T §9uprGuar — 9pa©,u
~39(9pg,u + IpaGuu,r + JugGup,r — 9pg9"" Jun,r + 29ulp.q)) - (A.21)
Rrupg = Gulp,alr + O (Juip9alur = 29ulp.a) - (A.22)
Rinpng = SRmpnq - 0% (9mnIpq — GmaJpn)
*G(gmnepq + GpgCmn — GmgCpn — gzmemtI) ; (A.23)
Rrvup = 5(Guusrp = Gup,ru) + 39" Gun,rGup,r — 59™" Gum,r Enp
+®(gu;v,u — %guu,p - %gupguu,r) ) (A.24)
Rupmg = Gpim.ulla) T Gula,mllp + EpimYIalu,r
+0(9"" IpimIalu.r + unfaImlp = 29" EniqGmlp) (A.25)
Rupuq = *%(guu)\\p\\q + Gu(p,ulle) — %gpq,uu + igwgupmguw
_%guuﬂ“em + %guu,(pgq)um — 9" EnpYgyur + 9" EmpEng
10054 [9" Guur + Guuw — 9" (2Gun,u — Guun)] - (A.26)
The components of the Ricci tensor are
Ry =—(D —2)(0, +6?), (A.27)

R, = —%gup,,.,« + gup® » — (D — 3)0 , + (D — 2)0%g,,, — %(D —4)Ogup.r, (A.28)
Rruw=—20uurr + 0™ Gunrr + 20™ (Gum.r|n + Gum.rGun,r)

—(D =2)8 .4 = 50[9™"gmn,u — (D = 4)g"" Gun,r + (D = 2)guu,r] » (A.29)
Rpg = ®Rpq = fpa = 9pa (QWQT —20,, + 29m@,n) + 29u(9,9)

+0°[29p09™" gun — (D — 2)9pg9"" ~ 29upYuq]

+0[29u(pllg) + 29upIqyur — (D — 2)epg

+9pq (Guur — 29" Gun.r — 9" €mn) | » (A.30)

Rup = —39" Gup.rr — 3Guurp + 3Gupru + 9" Guinplr — 597" (Gup,rlin + Gun,rGup,r)

+9"™" (3 um.rGunllp + Imlpulln] T Julmpllln = 3€mnGup,r) + Jup©,u

+© [gupguu,r + %(D — 4)(GuuGup.r — Guup) — Gupu — 9" Gun,rJup

+(D = 6)9"™(Gufn.p] — 39unGup.r) + 5(D = 2)9"" gnpu] (A.31)
Ruw = =59 Guurr — 9" Guurn — 39" €mnGuur + 9" Gunru — 59" Gmnuu

+gmn(gum,u||n - %guuHmHn) + %(gr'rgmn - grmgrn)gum7rgun7r
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+29™" 9" Gum,rJuin.p] + 59" Gum,rGuun + 97" 9P Epm Eqn
+30[(D — 49" (29un,u — Guu,n — GunGuu,r)
+(D = 2)(GuuGuu,r — Guu,u)] » (A.32)
and the Ricci scalar is
R = SR+ guurr — 20" Gun,rr — 20™" Gum.r(jn — 39" Gum,rGun,r
+20 ;. [(D = 2)guu — (D = 3)g"™"gun] +4(D —2)0 ., — 4(D — 3)g"™O ,,
—©?[(D — 1)(D —2)g"" — 2(2D — 5)9"" gun)
+0 [2(D = 2)guu,r — 22D — 7)g"" Gun.r
+(D —1)¢g™" gmn,u — 2(D — 3)gm"gum||n] . (A.33)
These expressions enable us to calculate the explicit components of the Weyl tensor

for any non-twisting and shear-free geometry of an arbitrary dimension D. After a
straightforward but very lengthy calculation we obtain

Crp'r‘q = 07 (A34)

Crpru = D—:g [ - %gup,rr + gup®,r + @,p + @gup,r] ’ (A35)

Crpmq = %2 [ - %gp[mgq]u,rr + gp[mgq]u@,’!‘ + gp[m@,q] + @gp[mgq]u,r] ; (A36)
D—3

Cruru = —5—% [(%guu,r - eguu)m + m SR

_%%gmngum,'r‘gun,r + ﬁ (g’wlgun,rr + gmngum,an)
%grngun@ r 2@ u %grn@’n

s

623 29 gun + ®(D 29 gun r %gmngum\\n)} ’ (A37)
Crpug = D1—2 {Squ D—1 9prq R+ 3 ( Q)Qu[p,ruq] + %(D —4) fpq

Jr%g—gpqguu rr §gupguq,rr - %%gpqgrngun,rr

_% = gpqg " Gum,rGun,r — %%gpqgmngum,rnn

+0., (gupguq - ﬁgpqguu + D—_i)gpqgmgun) - Q%L‘Jpq@,u
+25=20p00""O.n — (D = 5)9up9.q) = (D = 3)9u0
+@2(D - 4)(9up9uq - %gpqgmgun)
+@(3D 2 9pq9"" Jun,r — %gmguum = (D = 5)9upYqyu,r + GulpJalu,r
(D = 4)guilla) = (D = 2)9ulp,q) + %gpqgmngumun)} , (A38)
Crupg = Gulp.gl.r — D=z 9ulpJalu.rr
~25739up©,q) — 20 (Julp.q) — D3 YulpIalu.r) - (A.39)
Crmpng = Scmpnq + m (gmn Squ * 9pq ¥ Rinn — 9Img San ~ Ypn SRmQ)
+ﬁ (gmnqu + Gpafmn — gmaSpn — gszmQ)
(
+9pq (Ju(m®© n) — O2GumGun + O(Gu(m|n) + Ju(mInyu,r))
~9ma (9upO.m) = O*FupGun + O (Guipiin) + Ju(pInyu.r))

— 555 {ymn 9uv©.9) — ©°9upGuq + O(Gu(pllg) + JuwIayu.r))

—Jpn (gu(m q) o? GJumYuq + e(gu(qu) + Ju(mYq)u,r ))}
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+m (gmngpq - gmqun) [guu,rr = 29" Gus,rr

72gosfos - %gosguomgus,r - % SR

+2®,r(*guu + 2grsgus) - 4@,u + 897"5@75

—602 9" gus + 20 ( — Guu,r + 59’“sgus r+ 2gosguo||s):| ) (A4O)
Cruup = %%(guu rp gup,ru) + 411 g gg gun s Gup,r — %g 39mngum TE’np
+ D172 [g em[pgn]u rt+ g (gm[p,an] + Gu[m )}
1

— 53 (39" GunGup.rr — 9" Guinplr + 39" Gup, run}

*mgup[ R— %(D = 3)Guurr + §(D —4)9™" Gum v Gun,r
+5(D = 5) (9" gun.rr + 9™ Gum,rln)]

+ =Dy [9up (207" Gun — 9uu) ©,r + (D — 3)9up®

_(D - 1)guu@,p + 49upgrn®,n}

(D-3)(D—4)
+@2m9 JunGup

*m@ [(D - 3)(guu7p - gup,U) + %(D - 6)gmgungup,r
—5(D = 2)9""gnpu — (D = 6)g"" Guin.p))
~ oo 9O [5(D = 5)(D ~ 6)9" gun.r + 5(D — 1)g"™" gmn,u
+(D = 3)(guuyr — 29" Gumin) ] » (A.41)
Cupmg = Gplm,ulla) T Julgmlllp + pmIatur + 523 (* RppmIalu — fpimIaiu)
+5 [(guu — 9" Gun)Yp[mIalu,rr — Guu,rlgImlp + IpimIaju,ru
+9"" (GpmYuln.g,r — IpaGulnml.r) = 9" Jun,rIpmIqlu,r — 9" " IplmIalu,r||n
+9"° Gun,r Gus||[qImlp + 9" (GpmInlq,ulls] — IpaTn[m,ul|s))
9" (gpmGuln.allls = IpaGuln.m)|s) — g”sensgp[mgqm}
~ 1= IelmIalu [ * R+ Guurr — 20" Gun,rr — 59" Gun,r Gus,r
=29"Gun.r||s + (D = 3)guu — (D = 5)9"" Gun) O »
+(D—=5)0,, —2(D —5)g"0 ;]
+ 555 9up© [mIglu — 462%9m9un9p[mgq]u — 20ep(mYglu
+5530 [Guplim)Jua = Ju(plla)Jum — JupGulmTalur — IpimIalu,r (Juu — 2" Gun)
—29""(gpmGuln.al — IpaGuln,m]) = IplmIqlusu + Juu,[qImlp]
+ 102 © Ipimalu [29uur + (D = 11)g"" Gun,r
+(D = 5)9™ Guns — 3(D — 1)g" ns,u] (A.42)
Cupug = *%guullpllq - %gpq,uu + Jup,ullg) — %guumepq + %guuxpgq)u,r + 97 Eoplisg
— 573 949" ( = 39uulimlin = 39mnuu + Gum,uln
=3 Guuremn + 39uumGun.r + 9°° EomEsn)
+ ==z (9uudpa — Gup9ua) (R + Guurr — 29" Gun,rr
=24 Gum,r Gun.r — 2™ Gum,r|n)
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— 502y Juudpa (uurr = 9" Gum,rGun,r) = g Juu” Rpg
_% (%guu - gmgun)gupmguqm + ﬁ Juuu(p,rlla) = 9" EnpIqyu,r
+ 555 9pa9"" [ GunGuurr + Guurn — Gun,ru

—39uo,r (9% Gus,rGun — 9" Gun.r — 49°° Jujn.s]) ]
+ 575 [(Guu — 97" Gun) Ju(qIpyu.rr — Guur9ayu + Ju(qIp)u,ru

9" Gun,rl|(p9a)u — 29" Gu(qIpyurlin = 9" Jun,rJu(aIp)u.r)

+ 53 9" [Gum,r Gunl| (p9ayu — EmnIu(qIpyur + GuaIpym,ulin — Imn,ull(pIa)u

+3 (JuqGumliplin + GupGumllalin) = Gu(aIp)ulimlin]
+W1(D_2)®,r [guugpq((D = 3)guu — (D — 5)gmgun)

~29upGug (D = 2)guu — (D = 3)9™" gun) |

2(D-3
+@,um (guugpq - gupguq) - % guugu(pe,q)

. D—5 2(D-3)
7297"@7"((Dfl)(D72)gu“qu - (Dfl)(D72)gngu‘1)
2AD-4) _n D— D—3)(D—4) n
+0? [(D,(l)(D),Q)g GunGuulpq — ngguugupguq + ED,lggD,Qgg gungupguq]

+0 [ﬁ gpqgrn (2gun,u — Guu,n — gunguu,r) + % (guu - grngun)gu(qu)u,r

D—3 2
+ D=2y Juu.rJundpe T BT D=2) JurJuqJuu,r
2(D—
*% grngun,r (guugpq - gupguq)
+Guu€pq 297‘nEn(pgq)u - ﬁ Juu (29u(p||q) - gpqgmnemn) (A'43)

2 D—4 4 rn
~ 55 9u(@Ip)uu — D=39uu,(pIa)u — 539" (Junl|(wIa)u — Ju(aIp)ulln)
+W1(D,2)(guugpq - gupguq)gmn((D - 1)9mn,u - 2(D - 3)gum||n)] .

In the above expressions, SF;’; = % 9" (29n(p,q) — Ipq,n) denote Christoffel
symbols with respect to the spatial coordinates only, i.e., the coefficients of the
covariant derivative on the transverse (D — 2)-dimensional Riemannian space. The
symbol || denotes this covariant derivative with respect to gpq. Similarly, ©Ryupng,
SCmpng, ° Rpq and R are the Riemann tensor, Weyl tensor, Ricci tensor and Ricci
scalar for the transverse-space metric gpq, respectively. We have also introduced the

following useful auxiliary quantities:

Juplla = Gup.g — Gum “Tpy, (A.44)
Juprlla = Guprq — Jum,r SF,’,’; , (A.45)
Gulp,rllg) = Yulpllal,r > (A.46)
Iotmoalla] = Ipfmaglu + 5T Gngu = “Tpg Gnmou) » (A7)
Julgmllle = Gulamlp = LUpg Guinm] = "Ly Gulan] » (A.48)
(Guu)pllq = Guwpg — Guun "Ly, (A.49)
Gupaulle = upsug — Gum,u Ty (A.50)
€pq = Gu(plla) — 39pa.u > (A.51)
Epq = Gulp.g) T 39pa.u s (A.52)
foa = Gu(pirllq) + 3Gup.rGuar » (A.53)

where gy[p.q] = Gu[p||q- These are tensors on the transverse Riemannian space.
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