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Abstract. We investigate the Weyl tensor algebraic structure of a fully general
family of D-dimensional geometries that admit a non-twisting and shear-free
null vector field k. From the coordinate components of the curvature tensor
we explicitly derive all Weyl scalars of various boost weights. This enables us
to give a complete algebraic classification of the metrics in the case when the
optically privileged null direction k is a (multiple) Weyl aligned null direction
(WAND). No field equations are applied, so that the results are valid not only in
Einstein’s gravity, including its extension to higher dimensions, but also in any
metric gravitation theory that admits non-twisting and shear-free spacetimes.

We prove that all such geometries are of type I(b), or more special, and we
derive surprisingly simple necessary and sufficient conditions under which k is
a double, triple or quadruple WAND. All possible algebraically special types,
including the refinement to subtypes, are thus identified, namely II(a), II(b),
II(c), II(d), III(a), III(b), N, O, IIi, IIIi, D, D(a), D(b), D(c), D(d), and their
combinations. Some conditions are identically satisfied in four dimensions.

We discuss both important subclasses, namely the Kundt family of geometries
with the vanishing expansion (Θ = 0) and the Robinson–Trautman family (Θ 6= 0,
and in particular Θ = 1/r). Finally, we apply Einstein’s field equations and
obtain a classification of all Robinson–Trautman vacuum spacetimes. This reveals
fundamental algebraic differences in the D > 4 and D = 4 cases, namely that
in higher dimensions there only exist such spacetimes of types D(a)≡D(abd),
D(c)≡D(bcd) and O.
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1. Introduction

Exact spacetimes play a crucial role in understanding Einstein’s general relativity and
other metric theories of gravity. They enable us to investigate many mathematical and
physical aspects of fundamental models in cosmology, black hole physics and theory
of gravitational waves.

Among the most important of such classes of exact solutions there are Robinson–
Trautman [1, 2] and Kundt [3, 4] geometries. They were discovered almost simulta-
neously about half a century ago, shortly after the advent of new concepts and
techniques in general relativity, in particular geometrical optics of null congruences
and algebraic classification of the Weyl tensor. Since then, an enormous progress has
been made in investigation of their various properties.

From the geometrical point of view, both these classes belong to a large family
of geometries admitting a non-twisting shear-free congruence of geodesics, generated
by a null vector field k. The Kundt class is defined by having vanishing expansion
while the other case with non-vanishing expansion defines the Robinson–Trautman
class. The former includes the famous pp-waves (with a covariantly constant k),
more general non-expanding gravitational waves (including gyratons, non-vanishing
cosmological constant Λ, impulsive limits), VSI and CSI spacetimes (for which all
scalar invariants of curvature vanish and are constant, respectively), or the direct-
product spacetimes (Bertotti–Robinson, Nariai, Plebański–Hacyan). In the Robinson–
Trautman class there are, e.g., some well-known black holes (Schwarzchild, Reissner–
Nordström, Schwarzchild–de Sitter, Vaidya), expanding spherical gravitational waves
(including Λ), the C-metric (representing the field of accelerated black holes) or
Kinnersley’s and Bonnor’s “photon rockets”. Details and a number of references can
be found in the monographs [5, 6] (chapters 28, 31 and 19, 18, respectively).

In view of the growing interest to generalize Einstein’s theory and to extend
it to higher dimensions, it is a natural task to find and analyse specific properties
of such spacetimes. Assuming the validity of Einstein’s field equations (for vacuum
with Λ, aligned electromagnetic field, pure radiation, gyratonic matter), the explicit
Robinson–Trautman class in any dimension was studied in [7–9]. The complementary
Kundt class was also investigated, e.g., in [10, 11]. The results were summarized in
the recent review [12] on algebraic properties of higher dimensional spacetimes.

In this paper we consider the fully general class of non-twisting and shear-free
geometries in an arbitrary dimension D ≥ 4, without assuming any field equations.
Starting from the canonical form of the metric we derive all components of the
Riemann, Ricci and Weyl tensors, and the Weyl tensor is projected onto a suitable
null frame. It enables us to give a complete and explicit classification of the whole
class into the algebraic types and subtypes based on the WAND multiplicity of the
optically privileged null vector field k. Our new results thus considerably generalize
the study of algebraic structure of the non-expanding Kundt family of geometries [13]
and exemplify general conclusions of previous works [14–17].

We introduce the general metric in section 2. In section 3 the null frame
components of the Weyl tensor are employed for the algebraic classification. The
necessary and sufficient conditions for all principal and secondary alignment (sub)types
are discussed in sections 4 and 5. Results for the Kundt class are summarized in
section 6 while those for the Robinson–Trautman class are contained in section 7. In
section 8 we discuss a special case, namely the Robinson–Trautman vacuum spacetimes
in D-dim Einstein’s theory. Coordinate components of the Riemann, Ricci, and Weyl
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tensors for the generic non-twisting shear-free geometry are given in Appendix A.

2. Robinson–Trautman and Kundt geometries

The metric of the most general non-twisting D-dimensional geometry can be written
in the form [7]

ds2 = gpq(r, u, x) dxp dxq + 2 gup(r, u, x) du dxp − 2 du dr + guu(r, u, x) du2 , (1)

if natural coordinates are used. A non-twisting character of the spacetime implies
the existence of a foliation by null hypersurfaces u =const., i.e., a family of maximal
integral submanifolds labeled by the coordinate u. By the Frobenius theorem, this
is equivalent to the existence of a non-twisting null vector field k that is everywhere
tangent (and normal) to u =const. Since this field k generates a congruence of null
geodesics in the whole spacetime, it is most natural to take their affine parameter r
as the second coordinate, so that k = ∂r. At any fixed u and r we are thus left with
a (D − 2)-dimensional Riemannian manifold covered by the spatial coordinates xp.
We will use the indices m, n, p, q (ranging from 2 to D − 1) to label these spatial
coordinates on the transverse space, and a shorthand x for their complete set. The
nonvanishing contravariant metric components are

gpq , gru = −1 , grp = gpqguq , grr = −guu + gpqgupguq , (2)

where gpq is an inverse matrix to gpq. This implies

gup = gpqg
rq , guu = −grr + gpqg

rpgrq . (3)

The covariant derivative of the geometrically privileged null vector field k = ∂r

with respect to the metric (1) is ka;b = Γu
ab = 1

2gab,r so that kr;b = 0 = ka;r.
Consequently, the optical matrix [12] defined as ρij ≡ ka;b ma

i mb
j , where ma

i are
components of (D − 2) unit vectors mi such that mi · k = 0 ⇒ mu

i = 0, forming
an orthonormal basis in the transverse Riemannian space, is simply given by
ρij = kp;q mp

i m
q
j = 1

2gpq,r mp
i m

q
j . This can be decomposed as ρij = Aij + σij + Θδij ,

where Aij ≡ ρ[ij] is the antisymmetric twist matrix, σij is the symmetric traceless

shear matrix, and the scalar Θ ≡ 1
D−2 δijρij determines the expansion of the privileged

vector field k.
It can be observed that Aij = 1

2gpq,r mp

[im
q

j] = 0 which confirms that the metric (1)

is non-twisting. Now, imposing the additional condition that the metric is shear-free,
σij = 0, we obtain the relation

ρij = Θδij = 1
2 gpq,rm

p
i m

q
j . (4)

Using the orthonormality relation δij = gpqm
p
i m

q
j we thus immediately infer

gpq,r = 2Θgpq , (5)

implying gpq,rr = 2
(

Θ,r + 2Θ2
)

gpq. The expression (5) can be integrated as

gpq = R2(r, u, x)hpq(u, x) , where
R,r

R
= Θ . (6)

Since either Θ = 0 or Θ 6= 0, there are thus two distinct classes of non-twisting shear-
free geometries. The Kundt class [3–6,10,12,13,18] is defined by having the vanishing
expansion, Θ = 0, in which case the spatial metric gpq(u, x) = hpq(u, x) is independent
of the affine parameter r (and R in (6) effectively reduces to R = 1). The other case
Θ 6= 0 gives the expanding Robinson–Trautman class [1, 2, 5–8, 12], for which R is a
non-trivial function of r determined by R = exp

( ∫

Θ(r, u, x) dr
)

.
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3. Frame components of the Weyl tensor and its classification

The natural null frame for the general metric (1) is given by

k = k = ∂r , l = 1
2guu∂r + ∂u , mi = mp

i (gup∂r + ∂p) , (7)

satisfying k · l = −1, mi · mj = δij . All the Weyl tensor components with respect to
such a frame (k, l, mi), sorted by the boost weight, can be denoted as [13, 19]

Ψ0ij = Cabcd ka mb
i kc md

j ,

Ψ1ijk = Cabcd ka mb
i mc

j md
k , Ψ1T i = Cabcd ka lb kc md

i

Ψ2ijkl = Cabcd ma
i mb

j mc
k md

l , Ψ2S = Cabcd ka lb lc kd ,

Ψ2ij = Cabcd ka lb mc
i md

j , Ψ2T ij = Cabcd ka mb
i lc md

j ,

Ψ3ijk = Cabcd la mb
i mc

j md
k , Ψ3T i = Cabcd la kb lc md

i ,

Ψ4ij = Cabcd la mb
i lc md

j . (8)

The scalars in the right column could, in fact, be obtained from those in the
left column by contractions, namely Ψ1T i = Ψ1k

k
i , Ψ2S = Ψ2T k

k , Ψ2T (ij) = 1
2Ψ2ikj

k ,
Ψ2T [ij] = 1

2Ψ2ij , Ψ3T i = Ψ3k
k

i . Relations of these Newman–Penrose-like quantities to
other equivalent notations employed in [12] and elsewhere can be found in [13].

For the invariant (sub)classification of the Weyl tensor algebraic structure it is also
necessary to introduce the following irreducible components of these scalars (see [12]):

Ψ̃1ijk ≡ Ψ1ijk − 1
D−3

(

δijΨ1T k − δikΨ1T j

)

, (9)

Ψ̃2T (ij) ≡ Ψ2T (ij) − 1
D−2δijΨ2S , (10)

Ψ̃2ijkl ≡ Ψ2ijkl − 2
D−4

(

δikΨ̃2T (jl) + δjlΨ̃2T (ik) − δilΨ̃2T (jk) − δjkΨ̃2T (il)

)

− 2
(D−2)(D−3)

(

δikδjl − δilδjk

)

Ψ2S , (11)

Ψ̃3ijk ≡ Ψ3ijk − 1
D−3

(

δijΨ3T k − δikΨ3T j

)

. (12)

The main step now is to project the coordinate components (A.34)–(A.43) of the
Weyl tensor of a generic non-twisting shear-free geometry (see Appendix A) onto the
null frame (7). A long calculation with non-trivial cancelations of various terms reveals
that the corresponding Weyl scalars take the following explicit and surprisingly simple
form

Ψ0ij = 0 , (13)

Ψ1T i = mp
i

D−3
D−2

[

(− 1
2gup,r + Θgup),r + Θ,p

]

, (14)

Ψ̃1ijk = 0 , (15)

Ψ2S = D−3
D−1 P , (16)

Ψ̃2T (ij) = mp
i m

q
j

1
D−2

(

Qpq − 1
D−2 gpq Q

)

, (17)

Ψ̃2ijkl = mm
i mp

jm
n
kmq

l
SCmpnq , (18)

Ψ2ij = mp
i m

q
j Fpq , (19)

Ψ3T i = mp
i

D−3
D−2 Vp , (20)

Ψ̃3ijk = mp
i m

m
j mq

k

(

Xpmq − 2
D−3 gp[mXq]

)

, (21)

Ψ4ij = mp
i m

q
j

(

Wpq − 1
D−2 gpqW

)

, (22)
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where

P =
(

1
2guu,r − Θguu

)

,r
+ 1

(D−2)(D−3)
SR − 1

4
D−4
D−2 gmngum,rgun,r

+ 1
D−2

(

grngun,rr + gmngum,r||n
)

− 2
D−2 grngunΘ,r − 2Θ,u − 4

D−2 grnΘ,n

−Θ2 D−4
D−2 grngun + Θ

(

D−6
D−2 grngun,r − 2

D−2 gmngum||n
)

, (23)

Qpq = SRpq + (D − 4)
[

1
2

(

fpq + gu(pgq)u,rr

)

−
(

Θ,r − Θ2
)

gupguq

−2gu(pΘ,q) − Θ
(

gu(p||q) + 2gu(pgq)u,r

)]

, (24)

Fpq = gu[p,q],r − gu[pgq]u,rr + 2Θ(gu[pgq]u,r − gu[p,q]) , (25)

Vp = 1
2

[

1
2guugup,rr − guu,rp + gup,ru − 1

2grngun,rgup,r

+gmngum,rEnp − gup

(

guu,rr − 1
2gmngum,rgun,r

)]

+ 1
D−3

[

1
2grngungup,rr + gmnem[ngp]u,r − grngu[n,p],r + 1

2grn
(

gu[p,r||n] + fpn

)

−gmn
(

gm[p,u||n] + gu[m,p]||n
)

− 1
2gup

(

grngun,rr + gmnfmn

)]

+ 1
2gupguuΘ,r + gupΘ,u + 1

2guuΘ,p

−Θ
[

1
2guugup,r − guu,p + gup,u − grngu[ngp]u,r + grnEnp − gupguu,r

+ 1
D−3 (3grngu[ngp]u,r − 3grngu[n,p] − 1

2gupg
mngmn,u + 1

2grngnp,u)
]

, (26)

Xpmq = gp[m,u||q] + gu[q,m]||p + gupgu[mgq]u,rr + ep[mgq]u,r

−gu[qgm]u,r||p − gupgu[m,r||q] − 1
2gu[qgm]u,rgup,r

+Θ
(

3gu[qgm]u,rgup + gu[qgm]p,u + gu[qgm]u||p − gup||[mgq]u − 2gu[q,m]gup

)

,(27)

Wpq = − 1
2guu||p||q − 1

2gpq,uu + gu(p,u||q) − 1
2guu,repq + 1

2guu,(pgq)u,r − guu,r(pgq)u

+ 1
2guugu(p,r||q) + 1

2guugu(qgp)u,rr − 1
2guu,rrgupguq + gu(qgp)u,ru

+ 1
4gmn

(

gumgungup,rguq,r + gum,rgun,rgupguq

)

− 1
2gmngumgun,rgu(qgp)u,r

+gmn
(

EmpEnq + gum,rEn(pgq)u − gumEn(pgq)u,r

)

+Θ
(

gupguqguu,r + guu,(pgq)u − guugu(pgq)u,r − 2gu(pgq)u,u − 1
2guugpq,u

)

, (28)

their contractions are defined as Q ≡ gpqQpq , W ≡ gpqWpq and Xq ≡ gpmXpmq , and
the auxiliary quantities are defined in (A.44)–(A.53).

As a generalization of the classical Petrov classification of four-dimensional
spacetimes in Einstein’s theory, classification scheme of the algebraic structure of the
Weyl tensor is based on whether the scalars (8) of various boost weights vanish or not
in a suitable null frame [20], see [12] for a recent comprehensive review.

Specifically, it is possible to introduce the principal alignment types and subtypes

of the Weyl tensor in any dimension D based on the existence of the (multiple) Weyl

aligned null direction (WAND) k, as summarized in table 1. Apart from a fully generic
type G with all Weyl tensor components nonvanishing, there is type I with subtypes
I(a) and I(b), type II with four possible subtypes II(a), II(b), II(c) and II(d), type
III with two subtypes III(a) and III(b), type N and type O corresponding to the case
when the Weyl tensor vanishes completely.

Subsequently, it is possible to introduce secondary alignment types of the Weyl
tensor defined by the property that there exists an additional WAND l, namely Ii, IIi
and IIIi. These are the types I, II, and III, respectively, for which not only Ψ0ij = 0
but also Ψ4ij = 0. There is also the “degenerate” case of type D equivalent to IIii for
which only the zero-boost weight Weyl scalars Ψ2... are nonvanishing.

Of course, various combinations of these possibilities can occur. For example,
there may be a spacetime with the algebraic structure II(ab) which means that it is both
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type vanishing components

G no null frame exists in which all components Ψ0ij vanish

I Ψ0ij

I(a) Ψ0ij Ψ1T i

I(b) Ψ0ij Ψ̃1ijk

II Ψ0ij Ψ1T i Ψ̃1ijk

II(a) Ψ0ij Ψ1T i Ψ̃1ijk Ψ2S

II(b) Ψ0ij Ψ1T i Ψ̃1ijk Ψ̃2T (ij)

II(c) Ψ0ij Ψ1T i Ψ̃1ijk Ψ̃2ijkl

II(d) Ψ0ij Ψ1T i Ψ̃1ijk Ψ2ij

III Ψ0ij Ψ1T i Ψ̃1ijk Ψ2S Ψ̃2T (ij) Ψ̃2ijkl Ψ2ij

III(a) Ψ0ij Ψ1T i Ψ̃1ijk Ψ2S Ψ̃2T (ij) Ψ̃2ijkl Ψ2ij Ψ3T i

III(b) Ψ0ij Ψ1T i Ψ̃1ijk Ψ2S Ψ̃2T (ij) Ψ̃2ijkl Ψ2ij Ψ̃3ijk

N Ψ0ij Ψ1T i Ψ̃1ijk Ψ2S Ψ̃2T (ij) Ψ̃2ijkl Ψ2ij Ψ3T i Ψ̃3ijk

O Ψ0ij Ψ1T i Ψ̃1ijk Ψ2S Ψ̃2T (ij) Ψ̃2ijkl Ψ2ij Ψ3T i Ψ̃3ijk Ψ4ij

Table 1. The principal alignment types and subtypes of the Weyl tensor defined
by the existence of a (multiple) WAND k.

type principal type aditional vanishing components

Ii I Ψ4ij

IIi II Ψ4ij

IIIi III Ψ4ij

D ≡ IIii II Ψ3T i Ψ̃3ijk Ψ4ij

Table 2. The secondary alignment types of the Weyl tensor defined by the
existence of another WAND l (which is a double WAND in the case of type D).

of subtype II(a) and II(b). Clearly, II=I(ab), III=II(abcd), N=III(ab). In addition,
there may be, for example, a II(c)i spacetime which means that it is simultaneously of
subtype II(c) and IIi. Or there can be a D(bcd) spacetime defined by the property that
there exists a double WAND k and a double WAND l such that the only nonvanishing
Weyl scalar is Ψ2S.

In our present contribution, we are going to apply this algebraic classification
scheme to the fully general family of non-twisting and shear-free geometries. This
contains both the non-expanding Kundt class (Θ = 0) and the expanding Robinson–
Trautman class (Θ 6= 0). In particular, we will completely characterize all possible
principal alignment types of the Weyl tensor with respect to the optically privileged
null vector field k = ∂r.

Using the fact that Ψ0ij = 0, see (13), and table 1, it immediately follows that a
generic Kundt or Robinson–Trautman geometry is of algebraic type I (or more special),
so that the optically privileged (non-twisting and shear-free) null vector field k = ∂r is
a WAND. Moreover, since the relation (15) reads Ψ̃1ijk = 0, any Kundt or Robinson–

Trautman geometry is, in fact, of algebraic subtype I(b), or more special.
We will now discuss all possibilities when k = k is a multiple WAND. In other

words, the spacetime geometry is (at least) of algebraic type II with respect to ∂r.
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4. Multiple WAND k and algebraically special (sub)types

When the vector field k = ∂r is (at least) a double WAND then the spacetime is
algebraically special (of type II, or more special).‡ It follows from table 1 that such a
situation occurs if, and only if,

Ψ1T i = 0 , (29)

where Ψ1T i is given by (14). Since the spatial vectors mi are linearly independent,
this condition is equivalent to

(

gup,r − 2Θgup

)

,r
= 2Θ,p which can be rewritten as

gup,rr = 2gupΘ,r + 2Θgup,r + 2Θ,p , (30)

or integrated to

gup,r = 2Θgup + fp , (31)

where fp(r, u, x) ≡ 2
∫

Θ,p dr + ϕp(u, x), that is

fp,r = 2Θ,p . (32)

Applying the condition Ψ1T i = 0 which implies (31) and (30), the functions (23)–(28)
determining the remaining Weyl scalars (16)–(22) simplify considerably to

P =
(

1
2guu,r − Θguu

)

,r
+ 1

(D−2)(D−3)
SR

+ 1
D−2gmnfm||n − 1

4
D−4
D−2gmnfmfn − 2Θ,u , (33)

Qpq = SRpq + 1
2 (D − 4)

(

f(p||q) + 1
2fpfq

)

, (34)

Fpq = f[p,q] , (35)

Vp = 1
2

(

fp,u − guu,rp − gupguu,rr + gmnfmEnp

)

+ 1
2

D−4
D−3gmngu[pfm]fn

− 1
D−3 gmn

[

gm[p,u||n] + gu[m,p]||n + em[pfn] + 1
2gupfm||n

− 1
2gum(f(n||p) − 3f[n,p])

]

+gupguuΘ,r + 2gupΘ,u + guuΘ,p + Θ
(

gupguu,r + guu,p

)

, (36)

Xpmq = gp[m,u||q] + gu[q,m]||p + ep[mfq] − gu[qfm]||p − gupf[m,q] − 1
2gu[qfm]fp , (37)

Wpq = − 1
2guu||p||q − 1

2gpq,uu + gu(p,u||q) − 1
2guu,repq − guu,r(pgq)u − 1

2gupguqguu,rr

+ 1
2guu,(pfq) + 1

2guuf(p||q) + gu(pfq),u + 1
4gmn

(

gumgunfpfq + fmfngupguq

)

− 1
2gmngumfngu(pfq) + gmn

(

EmpEnq + fmEn(pgq)u − gumEn(pfq)

)

+guugupguqΘ,r + 2gupguqΘ,u + 2guugu(pΘ,q)

+Θ
(

2guu,(pgq)u + guugu(p||q) + gupguqguu,r − 1
2guugpq,u

)

. (38)

Recall that

epq = gu(p||q) − 1
2gpq,u , Epq = gu[p,q] + 1

2gpq,u , (39)

fpq = f(p||q) + 1
2fpfq + 2gu(pΘ,q) + 2Θ2gupguq + 2Θ

(

gu(p||q) + gu(pfq)

)

, and || denotes
the covariant derivative with respect to the spatial metric gpq, while the corresponding
Ricci tensor and Ricci scalar are SRpq and SR, respectively, see Appendix A.

Using table 1 we can thus explicitly present the necessary and sufficient conditions
determining all possible principal algebraic (sub)types of non-twisting shear-free
geometries with a double, triple and quadruple WAND k = ∂r. These are summarized
in table 3.

‡ In principle, there could exist “peculiar” algebraically special spacetimes for which k is not a double

WAND and there is another double WAND vector field.
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type necessary and sufficient condition equation

II(a) P = 0 (40)

II(b) Qpq − 1
D−2 gpq Q = 0 (41)

II(c) SCmpnq = 0 (42)

II(d) Fpq = 0 (43)

III II(abcd)

III(a) Vp = 0 (47)

III(b) Xpmq − 2
D−3 gp[mXq] = 0 (48)

N III(ab)

O Wpq − 1
D−2 gpq W = 0 (50)

Table 3. Principal alignment types and subtypes of the algebraically special
Weyl tensor with respect to the multiple WAND k = ∂r .

4.1. Type II subtypes with a double WAND k

The Robinson–Trautman or Kundt spacetimes (1) with (5) satisfying the condition
(31), i.e., Ψ1T j = 0 implying that they are (at least) of type II with respect to the
null direction k = ∂r, admit the following particular algebraic subtypes of the Weyl
tensor:

• subtype II(a) ⇔ Ψ2S = 0 ⇔ P = 0 ⇔ the metric function guu satisfies the relation:
(

1
2guu,r − Θguu

)

,r
= − 1

(D−2)(D−3)
SR − 1

D−2gmnfm||n + 1
4

D−4
D−2gmnfmfn + 2Θ,u .

(40)

This determines the specific dependence of guu(r, u, x) on the coordinate r which
is the affine parameter along the null congruence generated by k.

• subtype II(b) ⇔ Ψ̃2T (ij) = 0 ⇔ Qpq = 1
D−2 gpq Q:

SRpq −
gpq

D − 2
SR = − 1

2 (D − 4)
[

(

f(p||q) + 1
2fpfq

)

− gpq

D − 2
gmn

(

fm||n + 1
2fmfn

)

]

.

(41)

This is identically satisfied when D = 4 since for any 2-dimensional Riemannian
space there is SRpq = 1

2gpq
SR.

• subtype II(c) ⇔ Ψ̃2ijkl = 0:
SCmpnq = 0 . (42)

This is always satisfied when D = 4 and D = 5 since the Weyl tensor vanishes
identically in dimensions 2 and 3.

• subtype II(d) ⇔ Ψ2ij = 0 ⇔ Fpq = 0:

f[p,q] = 0 . (43)

Introducing a 1-form φ ≡ fp dxp in the transverse (D − 2)-dim Riemannian space,
this condition is equivalent to the condition that φ is closed (dφ = 0). By the
Poincaré lemma, on any contractible domain there exists a potential function F
such that φ = dF , that is fp = F,p. In a general case, such F exists only locally.

These four distinct subtypes of type II can be arbitrarily combined. Clearly, in the
D = 4 case the algebraically special non-twisting shear-free geometries are always of
subtype II(bc).
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4.2. Type III subtypes with a triple WAND k

The Robinson–Trautman or Kundt spacetime is of algebraic type III with respect
to the triple WAND k = ∂r if all four independent conditions (40)–(43) are satisfied
simultaneously. In such a case the zero-boost-weight Weyl tensor components Ψ2...

vanish and we obtain geometries of type II(abcd)≡III, with the remaining Weyl scalars
(20)–(22) determined by the structural functions (36)–(38) now simplified to

Vp = 1
2

(

fp,u − guu,rp + gmnfmEnp − 1
2gmngumfnfp

)

+ Xp

+ 1
D−2 gup

[

1
D−3

SR + gmn
(

fm||n + 1
2fmfn

)]

+ guuΘ,p + Θguu,p , (44)

Xpmq = gp[m,u||q] + gu[q,m]||p + ep[mfq] − gu[qfm]||p − 1
2gu[qfm]fp , (45)

Wpq = − 1
2guu||p||q − 1

2gpq,uu + gu(p,u||q) −
(

1
2guu,r − Θguu

)

epq − guu,r(pgq)u

+ 1
2guu,(pfq) + 1

2guuf(p||q) + gu(pfq),u + 1
4gmngumgunfpfq

− 1
2gmngumfngu(pfq) + gmn

(

EmpEnq + fmEn(pgq)u − gumEn(pfq)

)

+ 1
D−2 gupguq

[

1
D−3

SR + gmn
(

fm||n + 1
2fmfn

)]

+2guugu(pΘ,q) + 2Θguu,(pgq)u . (46)

Consequently, in view of table 1, the explicit conditions for the subtypes III(a) and
III(b) with the triple WAND k are:

• subtype III(a) ⇔ Ψ3T i = 0 ⇔ Vp = 0 ⇔ the function guu,rp is explicitly given as:

guu,rp = fp,u + gmnfmEnp − 1
2gmngumfnfp + 2

D−3Xp

+ 2
D−2 gup

[

1
D−3

SR + gmn
(

fm||n + 1
2fmfn

)]

+2guuΘ,p + 2Θguu,p . (47)

This is a specific restriction on the spatial derivatives of the function guu,r.

• subtype III(b) ⇔ Ψ̃3ijk = 0:

Xpmq = 2
D−3 gp[mXq] where Xq = gpmXpmq , (48)

and Xpmq is given by expression (45). Using the fact that any 2-dimensional
metric gpq is conformally flat, gpq = Ω δpq, it can be easily checked that the
condition (48) is identically satisfied in D = 4.

4.3. Type N with a quadruple WAND k

When both conditions (47) and (48) are satisfied, the only remaining Weyl scalar is
Ψ4ij = mp

i m
q
j

(

Wpq − 1
D−2 gpqW

)

, see (22). In such a case we obtain the Robinson–
Trautman or Kundt spacetimes of algebraic type N with the quadruple WAND k = ∂r.
Using Vp = 0, that is by substituting (47) into (46), the function Wpq for such type N
geometries reduces to a simple expression

Wpq = − 1
2guu||p||q − 1

2gpq,uu + gu(p,u||q) −
(

1
2guu,r − Θ guu

)

epq

+ 1
2guu,(pfq) + 1

2guuf(p||q) + 1
4gmngumgunfpfq

− 1
D−2 gupguq

[

1
D−3

SR + gmn
(

fm||n + 1
2fmfn

)]

− 2
D−3 X(pgq)u + gmn

(

EmpEnq − gumEn(pfq)

)

, (49)

determined by the metric functions (1) and their first and second derivatives. The set
of functions Wpq directly encodes the amplitudes Ψ4ij of the corresponding gravita-
tional waves, forming a symmetric traceless matrix of dimension (D − 2) × (D − 2).
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4.4. Type O geometries

The Weyl tensor vanishes completely if, and only if, all the above conditions are
satisfied and, in addition , Ψ4ij = 0. This clearly occurs when

Wpq = 1
D−2 gpqW , (50)

with W = gpqWpq , which is a restriction on the functions Wpq given by (49).

5. Secondary alignment types of the Weyl tensor

In the non-twisting and shear-free geometries there may also exist an additional

WAND l distinct from the (multiple) WAND k = k = ∂r. In such cases the spacetimes
are of type Ii, IIi, IIIi or D, see table 2.

In general, when Ψ4ij = mp
i m

q
j

(

Wpq − 1
D−2 gpqW

)

= 0 with Wpq given by (28),
the geometry is of type Ii (the subtype I(b)i, in fact). In such a case k = k = ∂r and
l = 1

2guu∂r + ∂u are two distinct WANDs, see (7).§
When the geometry is of type II with the double WAND k and Ψ4ij = 0 where

Wpq is given by (38), the geometry is of type IIi with another WAND l. If the
additional conditions (40), (41), (42) and (43) are satisfied, we obtain the subtypes
II(a)i, II(b)i, II(c)i and II(d)i, respectively (or their combinations).

The type IIIi geometry is equivalent to II(abcd)i, in which case there is the
triple WAND k and an additional WAND l. The subtypes III(a)i and III(b)i occur if
conditions (47) and (48) are also satisfied. For such spacetimes, the only non-vanishing
Weyl scalars are Ψ̃3ijk and Ψ3T i , respectively.

Finally, there is also the “degenerate” case D ≡ IIii which admits the double

WAND k = ∂r and the double WAND l = 1
2guu∂r + ∂u. Its only nonvanishing Weyl

scalars are Ψ2... , i.e., those of zero-boost-weight. In view of (13)–(22) and (33)–
(38), this occurs if (and only if) Vp = 0, Xpmq = 2

D−3 gp[mXq], Wpq = 1
D−2 gpq W ,

in which the functions are determined by (36), (37), (38). Of course, with the
additional constraints (40), (41), (42) and (43) we obtain the subtypes D(a), D(b),
D(c) and D(d), respectively, and their various combinations. The simplest type D
geometry thus seems to be of the subtype D(bcd) for which the only nonvanishing
Weyl scalar is Ψ2S = D−3

D−1 P with P given by expression (33). This involves, for
example, generalizations of Schwarzschild black hole spacetimes, see subsection 8.1.

6. Kundt geometries

We will now discuss the two distinct important subclasses of non-twisting shear-free
geometries, namely the non-expanding Kundt and the expanding Robinson–Trautman
metrics (in the next section).

The Kundt family is defined by having a vanishing expansion, Θ = 0. It implies
that the spatial metric gpq in (1) is r-independent,

gpq ≡ hpq(u, x) , (51)

see end of section 2. This significantly simplifies the Riemann tensor (A.17)–
(A.26), the Ricci tensor (A.27)–(A.32) and the Weyl tensor (A.34)–(A.43) listed
explicitly in Appendix A. In fact, it is a complete generalization of the analogous

§ There may exist other WANDs distinct from l = 1

2
guu∂r + ∂u, see e.g. the case D > 4 in sub-

section 8.1. However, their systematic investigation is not the topic of the present work.
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results presented previously in [13] since no field equations and no constraints on

algebraically special types have been employed. The curvature tensor components
given in Appendix A thus characterize the most general Kundt geometry, which is of
algebraic type I(b), whereas the results in Appendix B of [13] are only valid for Kundt
spacetimes of type II (or more special).

For such a generic Kundt geometry the Weyl tensor frame components are given
by (13)–(22) with (23)–(28), simplified by setting Θ = 0. These represent an explicit
form of the expressions (7)–(16) written in [13].

In the case of a vanishing expansion we may fully express the conditions discussed
in section 4 for algebraically special Kundt geometries with respect to the WAND
k = ∂r. Specifically, we integrate equations (31) and (40), obtaining an explicit r-
dependence of the metric functions gup and guu, respectively. After substituting them
into the remaining conditions and separating in r, we obtain:

• The type I Kundt geometry is of subtype I(a)=I(ab)≡II ⇔ Ψ1T i = 0 ⇔
gup = ep(u, x) + fp(u, x) r , (52)

where ep and fp are arbitrary functions of the coordinates u and x.

• The type II≡I(ab) Kundt geometry is of subtype II(a) ⇔ Ψ2S = 0 ⇔
guu = a(u, x) r2 + b(u, x) r + c(u, x) , (53)

where a = 1
4fpfp − 1

D−2

(

1
D−3

SR + gpqfpq

)

with fp ≡ gpqfq, fpq ≡ f(p||q) + 1
2fpfq,

b and c are arbitrary functions of the coordinates u and x.

• The type II Kundt geometry is of subtype II(b) ⇔ Ψ̃2T (ij) = 0 ⇔
SRpq −

gpq

D − 2
SR = − 1

2 (D − 4)
(

fpq −
gpq

D − 2
gmnfmn

)

. (54)

• The type II Kundt geometry is of subtype II(c) ⇔ Ψ̃2ijkl = 0 ⇔
SCmpnq = 0 . (55)

• The type II Kundt geometry is of subtype II(d) ⇔ Ψ2ij = 0 ⇔
Fpq ≡ f[p,q] = 0 . (56)

• The type III≡II(abcd) Kundt geometry is of subtype III(a) ⇔ Ψ3T i = 0 ⇔
a,q + fq a = 0 , b,q − fq,u = Tq , (57)

where

Tq ≡ −2 eq

(

a − 1
4fpfp

)

− 1
2epfpfq + fpEpq + 2

D−3 Xq , (58)

with ep ≡ gpqeq, eK
pq ≡ e(p||q) − 1

2gpq,u , Epq = e[p,q] + 1
2gpq,u , Xq ≡ gpmXpmq and

Xpmq = gp[m,u||q] + e[q,m]||p + eK

p[mfq] − e[qfm]p . (59)

• The type III Kundt geometry is of subtype III(b) ⇔ Ψ̃3ijk = 0 ⇔
Xpmq = 1

D−3

(

gpm Xq − gpq Xm

)

. (60)

• The type N≡III(ab) Kundt geometry is completely described by the symmetric
traceless matrix Ψ4ij , which is determined by

Wpq = − 1
2c||p||q + 1

2c,(pfq) + 1
2cf(p||q) − 1

2b eK
pq +

(

a − 1
4fnfn

)

epeq + e(p,u||q)

− 1
2 gpq,uu + 1

4enen fpfq − enEn(pfq) + gmnEmpEnq − 2
D−3 X(p eq)

− 1
2

(

2a eK
pq + T(p||q) + T(pfq) − f(p,u||q) − f(pfq),u

)

r . (61)

• The type N becomes type O ⇔ Ψ4ij = 0 ⇔ Wpq = 1
D−2 gpq W with W ≡ gpqWpq .
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These are the same conditions as those presented in [13]. For Kundt geometries of
type II (whose metric functions gup satisfy the condition (52)) the shorthands (35),
(39), (37) used in this paper become

Fpq = f[p||q] , (62)

fpq = f(p||q) + 1
2fpfq , (63)

Epq = e[p||q] + 1
2gpq,u + r f[p||q] , (64)

epq = e(p||q) − 1
2gpq,u + r f(p||q) , (65)

Xpmq = e[q||m]||p + Fqmep + Fp[meq] + ep[mfq] − fp[meq] + gp[m,u||q]

+ r
(

f[q||m]||p + Fqmfp + Fp[mfq]

)

. (66)

The identification is

Fpq ≡ FK
pq , (67)

fpq ≡ fK
pq , (68)

Epq ≡ EK
pq + r FK

pq , (69)

epq ≡ eK
pq + r f(p||q) , (70)

Xpmq ≡ XK
pmq + r Y K

pmq , (71)

where the superscript K denotes the quantities defined and employed in [13].

7. Particular Robinson–Trautman geometries

The algebraic structure of generic Robinson–Trautman geometries with an arbitrary
Θ 6= 0 has been described in sections 3 and 4. Let us now investigate in detail a large
particular subclass such that the non-twisting shear-free congruence generated by the
null vector field k = ∂r has an expansion of the form

Θ =
1

r
. (72)

This is an important subcase since Θ,r + Θ2 = 0 and thus, in view of (A.17) and
(A.27), there is Rrprq = 0 = Rrr. Consequently, Rabcd ka mb

i kc md
j = 0 = Rab kakb

which means that such Robinson–Trautman geometries are of Riemann type I and

also of Ricci type I.
For the case (72) we can explicitly integrate all the conditions with respect to r

and determine the algebraic types and subtypes. First, the spatial metric gpq becomes

gpq = r2 hpq(u, x) , (73)

see (6) for R = r, which is obtained by solving R,r = ΘR . Such geometries are, in
general, of the Weyl (sub)type I(b).

The metrics are of the Weyl type II (or more special) with the double WAND k
if, and only if, the condition Ψ1T i = 0 is satisfied. For (72) we have fp,r = 0 due to
(32), i.e., the functions fp are independent of r. By integrating (31) we then obtain

gup = ep(u, x) r2 − fp(u, x) r , (74)

where ep and fp are arbitrary functions of the coordinates u and x.
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With the conditions (72)–(74), the functions (33)–(38) determining the Weyl
scalars reduce to

P =
(

1
2guu,r − guu r−1

)

,r
− α r−2 , (75)

Qpq = Rpq + 1
2 (D − 4)

(

f(p||q) + 1
2fpfq

)

, (76)

Fpq = f[p,q] , (77)

Vp = − 1
2guu,rp + guu,p r−1 −

(

ep r2 − fp r
)(

1
2guu,rr − guu,r r−1 + guu r−2

)

+ 1
2fp,u + 1

2fnERT
np + 1

2
D−4
D−3fne[pfn] − 1

2
D−6
D−3fnFnp r−1

− 1
D−3 hmn

[

hm[p,u||n] + e[m,p]||n + eRT

m[pfn]

+ 1
2

(

epfm||n − emf(n||p)

)

+ 3
2emFnp − Fmp||n r−1

]

, (78)

Xpmq = XRT
pmq r2 + Y RT

pmq r , (79)

Wpq = − 1
2guu||p||q + eRT

pq

(

guu r − 1
2guu,r r2

)

− 1
2f(p||q)

(

guu − guu,r r
)

−guu,r(peq) r2 + 2guu,(peq) r − 3
2guu,(pfq) + guu,r(pfq) r

−
(

epeqr
2 − 2e(pfq) r + fpfq

)(

1
2guu,rr r2 − guu,r r + guu

)

+
[

e(p,u||q) + e(pfq),u − 1
2hpq,uu + 1

4

(

enenfpfq + fnfnepeq

)

− 1
2enfne(pfq)

+hmnERT
mpE

RT
nq + fnERT

n(peq) − enERT

n(pfq)

]

r2

−
[

f(p,u||q) + f(pfq),u − 2hmnERT

m(pFq)n + fnFn(peq) − enFn(pfq)

]

r

+hmnFmp Fnq . (80)

where R = SR r2 and Rpq = SRpq are the Ricci scalar and the Ricci tensor with respect
to the Riemannian metric hpq(u, x), respectively,

α(u, x)≡ 1
4fpfp − 1

D−2

(

1
D−3 R + fp

||p + 1
2fpfp

)

, (81)

XRT
pmq ≡ hp[m,u||q] + e[q,m]||p + eRT

p[mfq] − e[qfm]||p − epFmq − 1
2e[qfm]fp , (82)

Y RT
pmq ≡ −Fqm||p + f[qFm]p + fpFmq , (83)

and

ep ≡ hpqeq , fp ≡ hpqfq , (84)

eRT
pq ≡ e(p||q) − 1

2hpq,u , ERT
pq ≡ e[p||q] + 1

2hpq,u , (85)

XRT
q ≡ hpmXRT

pmq , Y RT
q ≡ hpmY RT

pmq . (86)

Using the results of subsections 4.1–4.4 we can thus explicitly express the conditions
for the principal alignment (sub)types of the algebraically special Weyl tensor:

• The type II Robinson–Trautman geometry is of subtype II(a) ⇔ Ψ2S = 0 ⇔
guu = α(u, x) + β(u, x) r + γ(u, x) r2 , (87)

where α is given by (81) while β, γ are arbitrary functions of u and x.

• The type II Robinson–Trautman geometry is of subtype II(b) ⇔ Ψ̃2T (ij) = 0 ⇔

Rpq −
hpq

D − 2
R = − 1

2 (D − 4)
[

(

f(p||q) + 1
2fpfq

)

− hpq

D − 2

(

fn
||n + 1

2fnfn

)

]

, (88)

where Rpq is the Ricci tensor with respect to the metric hpq.

• The type II Robinson–Trautman geometry is of subtype II(c) ⇔ Ψ̃2ijkl = 0 ⇔
Cmpnq = 0 , (89)

where Cmpnq = SCmpnq r−2 is the Weyl tensor corresponding to the metric hpq.
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• The type II Robinson–Trautman geometry is of subtype II(d) ⇔ Ψ2ij = 0 ⇔
Fpq ≡ f[p,q] = 0 . (90)

• The type III Robinson–Trautman geometry is of subtype III(a) ⇔ Ψ3T i = 0 ⇔
α,q + fq α = 0 , β,q + fq,u = Tq , (91)

where

Tq ≡ 2 eq

(

α − 1
4fpfp

)

+ 1
2epfpfq − fpERT

pq − 2
D−3 Xq , (92)

with Xq = hpmXRT
pmq = gpmXpmq ,

XRT
pmq = hp[m,u||q] + e[q,m]||p + eRT

p[mfq] − e[qfm]||p − 1
2e[qfm]fp . (93)

• The type III Robinson–Trautman geometry is of subtype III(b) ⇔ Ψ̃3ijk = 0 ⇔
XRT

pmq = 1
D−3

(

hpm Xq − hpq Xm

)

. (94)

• The type N Robinson–Trautman geometry is described by the symmetric traceless
matrix Ψ4ij , which is completely determined by

Wpq =
(

− 1
2γ||p||q + 1

2γ,(pfq) + 1
2γf(p||q) + 1

2β eRT
pq +

(

α − 1
4fnfn

)

epeq + e(p,u||q)

− 1
2hpq,uu + 1

4enen fpfq − enERT

n(pfq) + hmnERT
mpE

RT
nq − 2

D−3 X(p eq)

)

r2

+ 1
2

(

2α eRT
pq − T(p||q) − T(pfq) − f(p,u||q) − f(pfq),u

)

r . (95)

• The type N becomes type O ⇔ Ψ4ij = 0 ⇔ Wpq = 1
D−2 hpq hmnWmn, where Wpq

is given by (95).

This completes the classification of principal alignment (sub)types of the Weyl tensor
of Robinson–Trautman geometries with expansion (72) and the multiple WAND k.

The secondary alignment (sub)types with the additional WAND l = 1
2guu∂r + ∂u

are obtained when the conditions summarized in table 2 are satisfied, namely:

• The type II Robinson–Trautman geometry is of type IIi ⇔ Ψ4ij = 0 ⇔
Wpq = 1

D−2 hpq hmnWmn , (96)

where Wpq is given by (80).

• The type III Robinson–Trautman geometry is of type IIIi ⇔ Ψ4ij = 0 ⇔ the
condition (96) is satisfied, where Wpq is given by

Wpq =
(

− 1
2γ||p||q + 1

2γ,(pfq) + 1
2γf(p||q) + 1

2β eRT
pq + β,(peq) −

(

α − 1
4fnfn

)

epeq

+e(p,u||q) + e(pfq),u − 1
2hpq,uu + 1

4enen fpfq − 1
2enfne(pfq)

+hmnERT
mpE

RT
nq + fnERT

n(peq) − enERT

n(pfq)

)

r2

−
(

1
2β||p||q + 1

2β,(pfq) − α eRT
pq − 2α,(peq) − 2αe(pfq) + f(p,u||q) + f(pfq),u

)

r

− 1
2α||p||q − 1

2αf(p||q) − 3
2α,(pfq) − αfpfq . (97)

This, in fact, is a general form of Wpq for the type III spacetimes.

• The type II Robinson–Trautman geometry is of type D with respect to the double
WAND l = 1

2guu∂r + ∂u ⇔ Ψ3T i = Ψ̃3ijk = 0 and Ψ4ij = 0 ⇔
XRT

pmq = 1
D−3

(

hpm XRT
q − hpq XRT

m

)

, Y RT
pmq = 1

D−3

(

hpm Y RT
q − hpq Y RT

m

)

,

Vp = 0 , Wpq = 1
D−2 hpq hmnWmn , (98)

where the corresponding functions are given by (82), (83), (86), (78) and (80).
The particular subtypes D(a), D(b), D(c), D(d) and their various combinations
occur if the additional conditions (87)–(90) are also valid.
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8. Example: vacuum Robinson–Trautman spacetimes

Motivated by our previous studies [7,9] of Robinson–Trautman spacetimes in general
relativity (extended to any dimension D ≥ 4), let us consider a metric of the form

ds2 = r2 hpq (dxp + ep du)(dxq + eq du) − 2 dudr − grr du2 , (99)

where

grr =
R

(D − 2)(D − 3)
+

b(u)

rD−3
− 2

D − 2

(

ep
||p− 1

2hpqhpq,u

)

r− 2Λ

(D − 1)(D − 2)
r2.(100)

In fact, this is the most general Robinson–Trautman vacuum line element in Einstein’s
theory (extended to an arbitrary dimension D), with a cosmological constant Λ and
possibly a pure radiation field aligned with k = ∂r.

Employing the results of the previous section, it is straightforward to obtain
explicit conditions under which this geometry becomes of a specific algebraic type.
Since

fp = 0 (101)

and gup = ep(u, x) r2, the condition (74) is satisfied, so that the spacetime is of
Weyl type II (or more special) with respect to the multiple WAND k. Moreover,
guu = r2 enen − grr, that is

guu = −a − b r3−D − c r + γ r2 , (102)

where

a =
R

(D − 2)(D − 3)
, (103)

c = − 2

D − 2

(

en
||n − 1

2
hmnhmn,u

)

, (104)

γ = enen +
2Λ

(D − 1)(D − 2)
. (105)

For fp = 0 with guu of the form (102) we obtain from (75)–(80) that

P = − 1
2 (D − 1)(D − 2) b r1−D , (106)

Qpq = Rpq , (107)

Fpq = 0 , (108)

Vp =
(

a ep − 1
2c,p + 1

D−3Xp

)

− a,p r−1 + 1
2 (D − 1)(D − 2) b ep r3−D , (109)

Xpmq =
(

hp[m,u||q] + e[q,m]||p
)

r2 , (110)

Wpq = 1
2a||p||q +

(

1
2c||p||q − a eRT

pq − 2a,(peq)

)

r

+
(

− 1
2 (enen)||p||q − 1

2c eRT
pq + aepeq − c,(peq)

+e(p,u||q) − 1
2hpq,uu + hmnERT

mpE
RT
nq

)

r2

− 1
2 (D − 1) b eRT

pq r4−D + 1
2 (D − 1)(D − 2) b epeq r5−D . (111)

In view of (13)–(22), the metric (99), (100) is thus of

• subtype II(a) ⇔ b(u) = 0 , (112)

• subtype II(b) ⇔ Rpq =
hpq

D − 2
R , (113)

• subtype II(c) ⇔ Cmpnq = 0 , (114)

• subtype II(d) always . (115)
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Interestingly, it follows from the contraction of Bianchi identities and condition
(113), which is identically satisfied in D = 4, that

0 = hmnhpq(Rmpnq||k + Rmpqk||n + Rmpkn||q) = D−4
D−2 R,k . (116)

Thus, any Robinson–Trautman D > 4 geometry (99), (100) of algebraic subtype II(b)
must have R,k = 0. Moreover

Cmpnq = Rmpnq − 1
(D−2)(D−3) R (hmnhpq − hmqhnp) . (117)

The condition Cmpnq = 0 for subtype II(c) is always satisfied in D = 4 and D = 5.
We thus immediately infer that subtype II(bc)≡II(bcd) occurs if, and only if, the

(D − 2)-dimensional transverse space has a constant curvature, that is

Rmpnq = 1
(D−2)(D−3) R(u) (hmnhpq − hmqhnp) . (118)

In such a case the metric can be written as hpq = P−2δpq, where P = 1 + 1
4K δmnxmxn,

K = 1
(D−2)(D−3) R(u), see [7, 8].

The conditions for type III subtypes are then

• subtype III(a) ⇔ R,q = 0 and c,q = 2 a eq +
2

D − 3
Xq , (119)

where Xq = hpmXRT
pmq , XRT

pmq = hp[m,u||q] + e[q,m]||p ,

• subtype III(b) ⇔ XRT
pmq =

1

D − 3

(

hpm Xq − hpq Xm

)

. (120)

The type N is obtained by applying all the conditions (112)–(115) and (119)–(120).
In such a case, the only non-trivial function (111) reduces to

Wpq =
(

1
2c||p||q − a eRT

pq

)

r

+
(

− 1
2 (enen)||p||q − 1

2c eRT
pq + a epeq − c,(peq)

+e(p,u||q) − 1
2hpq,uu + hmnERT

mpE
RT
nq

)

r2 . (121)

Such a geometry is of type O when Wpq = 1
D−2 hpq hmnWmn.

The secondary alignment types IIi, IIIi, D arise when the conditions (96), (97),
(98) are satisfied, respectively, in which the key functions are given by (109)–(111).

We thus conclude that the Robinson–Trautman geometry of the form (99), (100)
generally admits all the above mentioned algebraic types and subtypes. Of course,
specific field equations impose additional constrains that may exclude some of the
(sub)types. To illustrate this effect, let us now restrict ourselves to the most important
case, namely vacuum spacetimes in the Einstein theory.

8.1. Most general Robinson–Trautman vacuum spacetimes

As shown in [9], a fully general Robinson–Trautman vacuum solution in the Einstein
theory (including Λ) is given by (99), (100) where the metric functions are restricted
by the constraints

Rpq = 1
D−2 hpq R , (122)

hpq,u = 2 e(p||q) + c hpq , (123)

(D − 4)R,p = 0 , (124)

hmn a||m||n + 1
2 (D − 1)(D − 2) b c + (D − 2) b,u = 0 , (125)

with a and c defined in (103) and (104).
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Using conditions (122)–(125) and

eRT
pq = − 1

2c hpq , ERT
pq = ep||q + 1

2c hpq , (126)

hpq,uu = 2c e(p||q) + 2e(p||q),u + (c2 + c,u)hpq , (127)

XRT
pmq = enRnpmq + c,[qhm]p , Xq = (D − 3)(−a eq + 1

2 c,q) , (128)

functions (109)–(111) which, together with (106)–(108), characterize the algebraic
structure of the Weyl tensor become

Vp = −a,p r−1 + 1
2 (D − 1)(D − 2) b ep r3−D , (129)

Xpmq =
(

en Rnpmq + c,[qhm]p

)

r2 , (130)

Wpq = 1
2a||p||q +

(

1
2c||p||q − 2a,(peq)

)

r

+emen Cmpnq r2 + 1
2 (D − 1)(D − 2) b epeq r5−D

+hpq

[

1
2a c r +

(

a enen − 1
2enc,n − 1

2c,u

)

r2 + 1
4 (D − 1) b c r4−D

]

. (131)

To derive the last expression we have used the fact that e(p,u||q) − e(p||q),u = em T m
pq ,

where the tensor T m
pq ≡ SΓm

pq,u can be written as

T m
pq = hmn

[

en||(p||q) − ek Rk(pq)n

]

+ δm
(p c,q) − 1

2hmnhpq c,n , (132)

see Appendix A of [9]. The non-vanishing Weyl tensor components with respect to
the frame (7), sorted by the boost weight, are thus

Ψ2S = − 1
2 (D − 2)(D − 3) b r1−D , (133)

Ψ̃2ijkl = mm
i mp

jm
n
kmq

l Cmpnq r2 , (134)

Ψ3T i = mp
i

[

1
2 (D − 1)(D − 3) b ep r3−D − D−3

D−2 a,p r−1
]

, (135)

Ψ̃3ijk = mp
i m

m
j mq

k en Cnpmq r2 , (136)

Ψ4ij = mp
i m

q
j

[

1
2

(

a||p||q − 1
D−2 hpq hmna||m||n

)

+ emen Cmpnq r2

+
[

1
2

(

c||p||q − 1
D−2 hpq hmnc||m||n

)

− 2
(

a,(peq) − 1
D−2 hpq en a,n

)]

r

+ 1
2 (D − 1)(D − 2) b

(

epeq − 1
D−2 hpq enen

)

r5−D
]

. (137)

It is now convenient to perform a null rotation of the frame (7) with the
privileged null vector k fixed, l

′ = l +
√

2Li
mi + |L|2 k, m

′
i = mi +

√
2Li k, see (C1)

in Appendix C of [19], and the parameters Li ≡ − 1√
2

r2 ep mp
i . The new null frame is

k
′ = ∂r , l

′ = − 1
2grr ∂r + ∂u − ep ∂p , m

′
i = mp

i ∂p , (138)

and using the expressions (C5) in [19] the nonvanishing irreducible Weyl scalars in
such a frame simplify considerably to

Ψ′
2S = − 1

2 (D − 2)(D − 3) b r1−D , (139)

Ψ̃′
2ijkl = mm

i mp
jm

n
kmq

l Cmpnq r2 , (140)

Ψ′
3T i = −mp

i
D−3
D−2 a,p r−1 , (141)

Ψ′
4ij = 1

2mp
i m

q
j

[

(

a||p||q + c||p||q r
)

− 1
D−2 hpq hmn

(

a||m||n + c||m||n r
)

]

, (142)

with Ψ̃′
3ijk = 0. Notice, interestingly, that the last term can be rewritten as

Ψ′
4ij = 1

2mp
i m

q
j

[

grr
||p||q − 1

D−2 hpq hmn grr
||m||n

]

. (143)

The gravitational wave amplitude matrix Ψ′
4ij (which is symmetric and traceless) is

thus directly determined by the second spatial derivatives of the contravariant metric

coefficient grr, see (100).
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To prove the non-existence of type N and type II vacuum solutions in D > 4 it
is now crucial to prove the identity

(D − 4)
(

c||p||q − 1
D−2 hpq hmnc||m||n

)

= 0 . (144)

This follows from the u-derivative of the condition (122), namely

Rpq,u = 1
D−2

(

hpq,uR + 1
D−2 hpq hmn hmn

,u R + hpq hmn Rmn,u

)

, (145)

which using hmn
,u = −hmphnqhpq,u and the constraint (123) can be rewritten as

Rpq,u = 1
D−2

(

2 e(p||q)R− 2
D−2 hpq en

||nR + hpq hmn Rmn,u

)

. (146)

It remains to evaluate Rpq,u. From the definition of the Ricci tensor it follows that

Rpq,u = T m
pq||m − T m

pm||q , (147)

where T m
pq ≡ SΓm

pq,u is a tensor symmetric in p, q and given by (132). Using common
relations for commutators of covariant derivatives and contracted Bianchi identities,
see (3.2.3), (3.2.21), (3.2.16) in [21], we obtain the derivatives of (132)

T m
pq||m = en

||n||p||q + 2
D−2 e(p||q) R + 1

D−2 hpq en R,n + c||p||q − 1
2hpq hmnc||m||n , (148)

T m
pm||q = en

||n||p||q + 1
2 (D − 2) c||p||q . (149)

Substituting into (147), the u-derivative of the Ricci tensor becomes

Rpq,u = 2
D−2 e(p||q) R + 1

D−2 hpq en R,n − 1
2 (D − 4) c||p||q − 1

2hpq hmnc||m||n , (150)

and its trace reads hmnRmn,u = 2
D−2 en

||n R + en R,n − (D − 3)hmnc||m||n. By in-
serting these two expressions into (146), the identity (144) is proven.

Using (139)–(142) with (124) and (144) it is now easy to determine explicitly
the algebraic structure of all vacuum Robinson–Trautman spacetimes in the Einstein
theory in any dimension D. The results are summarized in table 4.

In D > 4 it follows from (124) that a,p = 0, which, together with (144), implies
Ψ′

3T i = 0 = Ψ′
4ij . This proves that there are no type N, type III and type II spacetimes

type D = 4 D > 4

II(a) b = 0 b = 0 ⇔ D(a)

II(b) always always ⇔ D(b)

II(c) always Cmpnq = 0 ⇔ D(c)

II(d) always always ⇔ D(d)

III II(abcd)

III(a) b = 0 = R,p equivalent to O

III(b) always for b = 0 equivalent to O

N III(ab)

O b = 0 = R,p and c||p||q = 1
D−2 hpq hmnc||m||n equivalent to D(ac)

D R,p = 0 and c||p||q = 1
D−2 hpq hmnc||m||n always D(bd)

Table 4. The necessary and sufficient conditions for all possible algebraic
(sub)types of the Robinson–Trautman vacuum solutions of Einstein’s field
equations. Some of them are always satisfied. The admissible algebraic structures
of the Weyl tensor differ significantly in the case D = 4 and in higher dimensions
D > 4.
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in the Robinson–Trautman family in higher dimensions when the Einstein vacuum field
equations are applied. Such a result is in full agreement with observations made in [7].

Thus, all Robinson–Trautman vacuum solutions in D > 4 are of type D (or
type O). The double degenerate WANDs are k

′ = k = ∂r, l
′ = − 1

2grr ∂r + ∂u − ep ∂p ,
see (138). It is also straightforward to identify the possible subtypes, namely D(a)
and D(c) and O≡D(ac). In fact, the only non-vanishing Weyl scalars are

Ψ′
2S = − 1

2 (D − 2)(D − 3) b r1−D , (151)

Ψ̃′
2ijkl = mm

i mp
jm

n
kmq

l Cmpnq r2 , (152)

so that all such spacetimes are of the subtype D(bd). Clearly, there are only two
algebraically distinct cases possible, namely

• subtype D(a)≡D(abd) ⇔ b = 0 , (153)

• subtype D(c)≡D(bcd) ⇔ Cmpnq = 0 . (154)

The latter case (which necessarily occurs in dimension D = 5) admits just the scalar
Ψ′

2S given by (151). Moreover, in view of (117) relation (118) must hold which means
that the transverse Riemannian space has a constant curvature. Such a family of
Robinson–Trautman vacuum spacetimes contains generalizations of the Schwarzschild
black hole of mass proportional to b. When both conditions (153) and (154) are
satisfied, the corresponding spacetime is of type O.

This generalizes, confirms and refines the conclusions of a previous work [7] where
the Robinson–Trautman vacuum solutions with ep = 0 were studied, i.e., assuming the
metric functions ep can be globally removed. Relation between the respective notations
is hpq = P−2(u, x) γpq(x) with det γpq = 1, b(u) = −µ(u) and c = −2 (logP ),u. It
follows that the exceptional cases discussed in [7] with the functions µ and/or Cmpnq

vanishing are, in fact, algebraically distinct subtypes.

9. Concluding summary

We investigated the algebraic structure of a fully general class on non-twisting and
shear-free geometries in an arbitrary dimension D, that is, the complete Robinson–
Trautman and Kundt family. In particular:

• Using the Christoffel symbols we derived all coordinate components of the
Riemann, Ricci and Weyl curvature tensors in an explicit form. These are
presented in Appendix A.

• By projecting the Weyl tensor onto the natural null frame we evaluated the
corresponding scalars of all boost weights. In contrast to a complicated form
of the coordinate components, such Weyl scalars are, due to cancelation of many
terms, surprisingly simple, see equations (13)–(22) with (23)–(28).

• Weyl scalars obtained in this manner directly determine the algebraic structure
of the metric (1) with (6). Distinct algebraic types and subtypes are defined by
the vanishing of these scalars (and their combinations), see tables 1 and 2.

• We proved that all non-twisting shear-free geometries are of type I(b), or more
special, with the WAND aligned along the optically privileged null direction k.

• We were able to explicitly derive the necessary and sufficient conditions of all
principal alignment types such that the optically privileged null direction k is a
multiple WAND. These algebraically special (sub)types are II, II(a), II(b), II(c),
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II(d), their combinations, III, III(a), III(b), N and O. See the explicit conditions
given in section 4 and table 3.

• In section 5 we also identified the secondary alignment types for which there exists
an additional specific WAND l distinct from the (multiple) WAND k, namely Ii,
IIi, IIIi or D with a double l. Moreover, there are various subtypes, namely II(a)i,
II(b)i, II(c)i, II(d)i (or their combinations), III(a)i, III(b)i and D(a), D(b), D(c),
D(d).

• The Kundt family, which is the nonexpanding (Θ = 0) subclass of the non-twisting
shear-free geometries, is studied in section 6. The corresponding conditions for
algebraic types and subtypes are simplified, and they fully agree with those
obtained previously in [13].

• The algebraic structure of the general Robinson–Trautman class with an arbitrary
expansion scalar Θ 6= 0 is described in section 4. The special case Θ = 1/r is
investigated in section 7. In fact, this is an important subcase, as such Robinson–
Trautman geometries are of Riemann type I and also of Ricci type I.

• No field equations have been employed in these calculations and discussions. All
results are thus “purely geometrical”, i.e., they can be applied in any metric
theory of gravity that admits non-twisting and shear-free geometries.

• Of course, there are specific constraints on admissible algebraic types imposed by
the field equations. To illustrate this, in section 8 we investigated an important
example, namely the Robinson–Trautman vacuum solutions in Einstein’s theory.
We proved that in all dimensions higher than four there exist only types
D(a)≡D(abd), D(c)≡D(bcd) and O of such spacetimes. This is in striking contrast
to the classical D = 4 case, which is much richer, see table 4.
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Appendix A. Explicit curvature tensors for a general non-twisting and
shear-free geometry

After applying the shear-free condition (5) the Christoffel symbols for the general
non-twisting geometry (1) are

Γr
rr = 0 , (A.1)

Γr
ru = − 1

2guu,r + 1
2grngun,r , (A.2)

Γr
rp = − 1

2gup,r + Θgup , (A.3)

Γr
uu = 1

2

[

− grrguu,r − guu,u + grn(2gun,u − guu,n)
]

, (A.4)

Γr
up = 1

2

[

− grrgup,r − guu,p + grn(2gu[n,p] + gnp,u)
]

, (A.5)

Γr
pq = −Θgrrgpq − gu(p||q) + 1

2gpq,u , (A.6)

Γu
rr = Γu

ru = Γu
rp = 0 , (A.7)

Γu
uu = 1

2guu,r , (A.8)

Γu
up = 1

2gup,r , (A.9)

Γu
pq = Θgpq , (A.10)
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Γm
rr = 0 , (A.11)

Γm
ru = 1

2gmngun,r , (A.12)

Γm
rp = Θδm

p , (A.13)

Γm
uu = 1

2

[

− grmguu,r + gmn(2gun,u − guu,n)
]

, (A.14)

Γm
up = 1

2

[

− grmgup,r + gmn(2gu[n,p] + gnp,u)
]

, (A.15)

Γm
pq = −Θgrmgpq + SΓm

pq . (A.16)

The Riemann curvature tensor components then read

Rrprq = −
(

Θ,r + Θ2
)

gpq , (A.17)

Rrpru = − 1
2gup,rr + 1

2Θgup,r , (A.18)

Rrpmq = 2gp[mΘ,q] − 2Θ2gp[mgq]u + Θgp[mgq]u,r , (A.19)

Rruru = − 1
2guu,rr + 1

4gmngum,rgun,r , (A.20)

Rrpuq = 1
2gup,r||q + 1

4gup,rguq,r − gpqΘ,u

− 1
2Θ

(

gpq,u + gpqguu,r + guqgup,r − gpqg
rngun,r + 2gu[p,q]

)

, (A.21)

Rrupq = gu[p,q],r + Θ
(

gu[pgq]u,r − 2gu[p,q]

)

, (A.22)

Rmpnq = SRmpnq − Θ2grr(gmngpq − gmqgpn)

−Θ
(

gmnepq + gpqemn − gmqepn − gpnemq

)

, (A.23)

Rruup = 1
2 (guu,rp − gup,ru) + 1

4grngun,rgup,r − 1
2gmngum,rEnp

+Θ
(

gup,u − 1
2guu,p − 1

2gupguu,r

)

, (A.24)

Rupmq = gp[m,u||q] + gu[q,m]||p + ep[mgq]u,r

+Θ
(

grrgp[mgq]u,r + guu,[qgm]p − 2grnEn[qgm]p

)

, (A.25)

Rupuq = − 1
2 (guu)||p||q + gu(p,u||q) − 1

2gpq,uu + 1
4grrgup,rguq,r

− 1
2guu,repq + 1

2guu,(pgq)u,r − grnEn(pgq)u,r + gmnEmpEnq

− 1
2Θgpq

[

grrguu,r + guu,u − grn(2gun,u − guu,n)
]

. (A.26)

The components of the Ricci tensor are

Rrr = −(D − 2)
(

Θ,r + Θ2
)

, (A.27)

Rrp = − 1
2gup,rr + gupΘ,r − (D − 3)Θ,p + (D − 2)Θ2gup − 1

2 (D − 4)Θgup,r , (A.28)

Rru = − 1
2guu,rr + 1

2grngun,rr + 1
2gmn

(

gum,r||n + gum,rgun,r

)

−(D − 2)Θ,u − 1
2Θ

[

gmngmn,u − (D − 4)grngun,r + (D − 2)guu,r

]

, (A.29)

Rpq = SRpq − fpq − gpq

(

grrΘ,r − 2Θ,u + 2grnΘ,n

)

+ 2gu(pΘ,q)

+Θ2
[

2gpqg
rngun − (D − 2)gpqg

rr − 2gupguq

]

+Θ
[

2gu(p||q) + 2gu(pgq)u,r − (D − 2)epq

+gpq

(

guu,r − 2grngun,r − gmnemn

)]

, (A.30)

Rup = − 1
2grrgup,rr − 1

2guu,rp + 1
2gup,ru + grngu[n,p],r − 1

2grn(gup,r||n + gun,rgup,r)

+gmn
(

1
2gum,rgun||p + gm[p,u||n] + gu[m,p]||n − 1

2emngup,r

)

+ gupΘ,u

+Θ
[

gupguu,r + 1
2 (D − 4)(guugup,r − guu,p) − gup,u − grngun,rgup

+(D − 6)grn(gu[n,p] − 1
2gungup,r) + 1

2 (D − 2)grngnp,u

]

, (A.31)

Ruu = − 1
2grrguu,rr − grnguu,rn − 1

2gmnemnguu,r + grngun,ru − 1
2gmngmn,uu

+gmn(gum,u||n − 1
2guu||m||n) + 1

2 (grrgmn − grmgrn)gum,rgun,r
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+2gmngrpgum,rgu[n,p] + 1
2gmngum,rguu,n + gmngpqEpmEqn

+ 1
2Θ

[

(D − 4)grn(2gun,u − guu,n − gunguu,r)

+(D − 2)(guuguu,r − guu,u)
]

, (A.32)

and the Ricci scalar is

R = SR + guu,rr − 2grngun,rr − 2gmngum,r||n − 3
2gmngum,rgun,r

+2Θ,r

[

(D − 2)guu − (D − 3)grngun

]

+ 4(D − 2)Θ,u − 4(D − 3)grnΘ,n

−Θ2
[

(D − 1)(D − 2)grr − 2(2D − 5)grngun

]

+Θ
[

2(D − 2)guu,r − 2(2D − 7)grngun,r

+(D − 1)gmngmn,u − 2(D − 3)gmngum||n
]

. (A.33)

These expressions enable us to calculate the explicit components of the Weyl tensor
for any non-twisting and shear-free geometry of an arbitrary dimension D. After a
straightforward but very lengthy calculation we obtain

Crprq = 0 , (A.34)

Crpru = D−3
D−2

[

− 1
2gup,rr + gupΘ,r + Θ,p + Θgup,r

]

, (A.35)

Crpmq = 2
D−2

[

− 1
2gp[mgq]u,rr + gp[mgq]uΘ,r + gp[mΘ,q] + Θgp[mgq]u,r

]

, (A.36)

Cruru = −D−3
D−1

[

(

1
2guu,r − Θguu

)

,r
+ 1

(D−2)(D−3)
SR

− 1
4

D−4
D−2gmngum,rgun,r + 1

D−2

(

grngun,rr + gmngum,r||n
)

− 2
D−2grngunΘ,r − 2Θ,u − 4

D−2grnΘ,n

−Θ2 D−4
D−2grngun + Θ

(

D−6
D−2grngun,r − 2

D−2gmngum||n
)

]

, (A.37)

Crpuq = 1
D−2

[

SRpq − 1
D−1 gpq

SR + 1
2 (D − 2)gu[p,r||q] +

1
2 (D − 4)fpq

+ 1
2

D−3
D−1gpqguu,rr − 1

2gupguq,rr − 1
2

D−5
D−1gpqg

rngun,rr

− 1
2

D−4
D−1gpqg

mngum,rgun,r − 1
2

D−5
D−1gpqg

mngum,r||n

+Θ,r

(

gupguq − D−3
D−1gpqguu + D−5

D−1gpqg
rngun

)

− 2D−3
D−1gpqΘ,u

+2D−5
D−1gpqg

rnΘ,n − (D − 5)gu(pΘ,q) − (D − 3)gu[pΘ,q]

+Θ2(D − 4)
(

gupguq − 2
D−1gpqg

rngun

)

+Θ
(

3D−13
D−1 gpqg

rngun,r − D−3
D−1gpqguu,r − (D − 5)gu(pgq)u,r + gu[pgq]u,r

−(D − 4)gu(p||q) − (D − 2)gu[p,q] + D−5
D−1gpqg

mngum||n
)

]

, (A.38)

Crupq = gu[p,q],r − 1
D−2gu[pgq]u,rr

−2D−3
D−2gu[pΘ,q] − 2Θ

(

gu[p,q] − 1
D−2gu[pgq]u,r

)

, (A.39)

Cmpnq = SCmpnq + 2
(D−2)(D−4)

(

gmn
SRpq + gpq

SRmn − gmq
SRpn − gpn

SRmq

)

+ 1
D−2

(

gmnfpq + gpqfmn − gmqfpn − gpnfmq

)

− 2
D−2

[

gmn

(

gu(pΘ,q) − Θ2gupguq + Θ(gu(p||q) + gu(pgq)u,r)
)

+gpq

(

gu(mΘ,n) − Θ2gumgun + Θ(gu(m||n) + gu(mgn)u,r)
)

−gmq

(

gu(pΘ,n) − Θ2gupgun + Θ(gu(p||n) + gu(pgn)u,r)
)

−gpn

(

gu(mΘ,q) − Θ2gumguq + Θ(gu(m||q) + gu(mgq)u,r)
)

]
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+ 1
(D−1)(D−2) (gmngpq − gmqgpn)

[

guu,rr − 2grsgus,rr

−2gosfos − 1
2gosguo,rgus,r − 2(2D−5)

(D−3)(D−4)
SR

+2Θ,r(−guu + 2grsgus) − 4Θ,u + 8grsΘ,s

−6Θ2 grsgus + 2Θ
(

− guu,r + 5grsgus,r + 2gosguo||s
)

]

, (A.40)

Cruup = 1
2

D−3
D−2 (guu,rp − gup,ru) + 1

4
D−4
D−2grngun,rgup,r − 1

2
D−3
D−2gmngum,rEnp

+ 1
D−2

[

gmnem[pgn]u,r + gmn
(

gm[p,u||n] + gu[m,p]||n
)]

− 1
D−2

[

1
2grngungup,rr − grngu[n,p],r + 1

2grngup,r||n
]

− 1
(D−1)(D−2)gup

[

SR − 1
2 (D − 3)guu,rr + 1

2 (D − 4)gmngum,rgun,r

+ 1
2 (D − 5)

(

grngun,rr + gmngum,r||n
)]

+ D−3
(D−1)(D−2)

[

gup

(

2grngun − guu

)

Θ,r + (D − 3)gupΘ,u

−(D − 1)guuΘ,p + 4gupg
rnΘ,n

]

+Θ2 (D−3)(D−4)
(D−1)(D−2)g

rngungup

− 1
D−2Θ

[

(D − 3)(guu,p − gup,u) + 1
2 (D − 6)grngungup,r

− 1
2 (D − 2)grngnp,u − (D − 6)grngu[n,p]

]

− 1
(D−1)(D−2)gupΘ

[

1
2 (D − 5)(D − 6)grngun,r + 1

2 (D − 1)gmngmn,u

+(D − 3)
(

guu,r − 2gmngum||n
)]

, (A.41)

Cupmq = gp[m,u||q] + gu[q,m]||p + ep[mgq]u,r + 2
D−2

(

SRp[mgq]u − fp[mgq]u

)

+ 1
D−2

[

(guu − grngun)gp[mgq]u,rr − guu,r[qgm]p + gp[mgq]u,ru

+grn(gpmgu[n,q],r − gpqgu[n,m],r) − grngun,rgp[mgq]u,r − grngp[mgq]u,r||n

+gnsgun,rgus||[qgm]p + gns(gpmgn[q,u||s] − gpqgn[m,u||s])

+gns(gpmgu[n,q]||s − gpqgu[n,m]||s) − gnsensgp[mgq]u,r

]

− 2
(D−1)(D−2) gp[mgq]u

[

SR + guu,rr − 2grngun,rr − 3
2gnsgun,rgus,r

−2gnsgun,r||s +
(

(D − 3)guu − (D − 5)grngun

)

Θ,r

+(D − 5)Θ,u − 2(D − 5)grnΘ,n

]

+ 2
D−2gupΘ,[mgq]u − 4Θ2 D−4

(D−1)(D−2)g
rngungp[mgq]u − 2Θep[mgq]u

+ 2
D−2Θ

[

gu(p||m)guq − gu(p||q)gum − gupgu[mgq]u,r − gp[mgq]u,r(guu − 2grngun)

−2grn(gpmgu[n,q] − gpqgu[n,m]) − gp[mgq]u,u + guu,[qgm]p

]

+ 2
(D−1)(D−2)Θ gp[mgq]u

[

2guu,r + (D − 11)grngun,r

+(D − 5)gnsgun||s − 1
2 (D − 1)gnsgns,u

]

, (A.42)

Cupuq = − 1
2guu||p||q − 1

2gpq,uu + gu(p,u||q) − 1
2guu,repq + 1

2guu,(pgq)u,r + gosEopEsq

− 1
D−2 gpqg

mn
(

− 1
2guu||m||n − 1

2gmn,uu + gum,u||n

− 1
2guu,remn + 1

2guu,mgun,r + gosEomEsn

)

+ 1
(D−1)(D−2) (guugpq − gupguq)

(

SR + guu,rr − 2grngun,rr

− 3
2gmngum,rgun,r − 2gmngum,r||n

)
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− 1
2(D−2) guugpq

(

guu,rr − gmngum,rgun,r

)

− 1
D−2 guu

SRpq

− 1
4

(

D−4
D−2guu − grngun

)

gup,rguq,r + 1
D−2 guugu(p,r||q) − grnEn(pgq)u,r

+ 1
D−2 gpqg

rn
[

1
2gunguu,rr + guu,rn − gun,ru

− 1
2guo,r

(

gosgus,rgun − grogun,r − 4gosgu[n,s]

)]

+ 1
D−2

[

(guu − grngun)gu(qgp)u,rr − guu,r(pgq)u + gu(qgp)u,ru

+grngun,r||(pgq)u − 2grngu(qgp)u,r||n − grngun,rgu(qgp)u,r

]

+ 1
D−2 gmn

[

gum,rgun||(pgq)u − emngu(qgp)u,r + gu(qgp)m,u||n − gmn,u||(pgq)u

+ 1
2

(

guqgum||p||n + gupgum||q||n
)

− gu(qgp)u||m||n
]

+ 1
(D−1)(D−2)Θ,r

[

guugpq

(

(D − 3)guu − (D − 5)grngun

)

−2gupguq

(

(D − 2)guu − (D − 3)grngun

)]

+Θ,u
2(D−3)

(D−1)(D−2)

(

guugpq − gupguq

)

− 2
D−2 guugu(pΘ,q)

−2grnΘ,n

(

D−5
(D−1)(D−2)guugpq − 2(D−3)

(D−1)(D−2)gupguq

)

+Θ2
[ 2(D−4)
(D−1)(D−2)g

rngunguugpq − D−4
D−2guugupguq + (D−3)(D−4)

(D−1)(D−2)g
rngungupguq

]

+Θ
[

1
D−2 gpqg

rn
(

2gun,u − guu,n − gunguu,r

)

+ D−6
D−2

(

guu − grngun

)

gu(qgp)u,r

+ D−3
(D−1)(D−2)guu,rguugpq + 2

(D−1)(D−2) gupguqguu,r

− 2(D−6)
(D−1)(D−2) grngun,r

(

guugpq − gupguq

)

+guuepq + 2grnEn(pgq)u − 1
D−2 guu

(

2gu(p||q) − gpqg
mnemn

)

(A.43)

− 2
D−2gu(qgp)u,u − D−4

D−2guu,(pgq)u − 4
D−2grn

(

gun||(pgq)u − gu(qgp)u||n
)

+ 1
(D−1)(D−2) (guugpq − gupguq)g

mn
(

(D − 1)gmn,u − 2(D − 3)gum||n
)]

.

In the above expressions, SΓm
pq ≡ 1

2gmn(2gn(p,q) − gpq,n) denote Christoffel
symbols with respect to the spatial coordinates only, i.e., the coefficients of the
covariant derivative on the transverse (D − 2)-dimensional Riemannian space. The
symbol || denotes this covariant derivative with respect to gpq. Similarly, SRmpnq,
SCmpnq,

SRpq and SR are the Riemann tensor, Weyl tensor, Ricci tensor and Ricci
scalar for the transverse-space metric gpq, respectively. We have also introduced the
following useful auxiliary quantities :

gup||q ≡ gup,q − gum
SΓm

pq , (A.44)

gup,r||q ≡ gup,rq − gum,r
SΓm

pq , (A.45)

gu[p,r||q] = gu[p||q],r , (A.46)

gp[m,u||q] ≡ gp[m,q],u + 1
2 ( SΓn

pm gnq,u − SΓn
pq gnm,u) , (A.47)

gu[q,m]||p ≡ gu[q,m],p − SΓn
pq gu[n,m] − SΓn

pm gu[q,n] , (A.48)

(guu)||p||q ≡ guu,pq − guu,n
SΓn

pq , (A.49)

gup,u||q ≡ gup,uq − gum,u
SΓm

pq , (A.50)

epq ≡ gu(p||q) − 1
2gpq,u , (A.51)

Epq ≡ gu[p,q] + 1
2gpq,u , (A.52)

fpq ≡ gu(p,r||q) + 1
2gup,rguq,r , (A.53)

where gu[p,q] = gu[p||q]. These are tensors on the transverse Riemannian space.
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