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Abstract

We consider a general class of four-dimensional geometries admitting a null vector field
that has no twist and no shear but has an arbitrary expansion. We explicitly present the
Petrov classification of such Robinson–Trautman (and Kundt) gravitational fields, based on
the algebraic properties of the Weyl tensor. In particular, we determine all algebraically
special subcases when the optically privileged null vector field is a multiple principal null
direction (PND), as well as all the cases when it remains a single PND. No field equations
are a priori applied, so that our classification scheme can be used in any metric theory of
gravity in four dimensions. In the classic Einstein theory this reproduces previous results for
vacuum spacetimes, possibly with a cosmological constant, pure radiation and electromagnetic
field, but can be applied to an arbitrary matter content. As non-trivial explicit examples we
investigate specific algebraic properties of the Robinson–Trautman spacetimes with a free
scalar field, and also black hole spacetimes in the pure Einstein–Weyl gravity.
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1 Introduction

Robinson–Trautman family of spacetimes was discovered more than half a century ago [1, 2], soon
after the advent of new powerful techniques and concepts in general relativity such as geomet-
rical optics of null congruences, null tetrad formalism, and related algebraic classification of the
Weyl tensor. It immediately became one of the most fundamental classes of exact solutions of
Einstein’s field equations, enabling us to construct explicit models in black hole physics, theory of
gravitational waves, and cosmology. A great effort has been put into investigation of their various
properties.

Geometrically, the Robinson–Trautman class is defined by admitting a non-twisting, shear-
free and expanding congruence of null geodesics generated by a vector field k (the non-expanding
class defines the closely related Kundt geometries [3, 4]). This group of spacetimes contains
many important vacuum, electrovacuum or pure radiation solutions, including any value of the
cosmological constat Λ. In particular, it involves the well-known spherically symmetric black
holes (Schwarzchild, Reissner–Nordström, Schwarzchild–de Sitter, Vaidya), uniformly accelerating
black holes (C-metric), arbitrarily moving Kinnersley’s or Bonnor’s “photon rockets”, expanding
spherical gravitational waves (including sandwich or impulsive waves) propagating on conformally
flat backgrounds with maximal symmetry (Minkowski, de Sitter, anti-de Sitter), and even their
combinations, e.g., radiative spacetimes with Λ settling down to spherical black holes. These are
of various algebraically special Petrov–Penrose types (D, N, O, III, II). Details and a substantial
list of references can be found in chapter 28 of the monograph [5], or chapter 19 of [6].

There has also been a growing interest in Robinson–Trautman spacetimes beyond the standard
settings of four-dimensional general relativity and classic matter fields. In [7] this family was
extended to the Einstein theory in higher dimensions D > 4 for the case of an empty space
(with any Λ) or aligned pure radiation, which revealed substantial differences with respect to
the usual D = 4 case. Aligned electromagnetic fields were also incorporated into the Robinson–
Trautman higher-dimensional spacetimes within the Einstein–Maxwell theory [8] (including the
Chern–Simons term for odd D) and even for more general p-form Maxwell fields [9].

Absence of gyratons (null fluid or particles with an internal spin) in the Robinson–Trautman
class of any D was proved in [10]. In fact, it was demonstrated that in four dimensions the off-
diagonal metric components do not encode the angular momentum of some gyraton but directly
determine two independent amplitudes of the Robinson–Trautman exact gravitational waves.

Moreover, new explicit solutions of this type in the Einstein gravity in D = 4 were found and
studied, namely Robinson–Trautman solutions with minimally coupled free scalar field [11] and
with electromagnetic field satisfying equations of nonlinear electrodynamics [12].

Very recently, a remarkable class of static, spherically symmetric solutions representing black
holes in the Einstein–Weyl gravity (with higher derivatives) was presented in [13, 14]. It was shown
numerically that such a class contains further black-hole solutions over and above the Schwarzschild
solution. As we will demonstrate below, this also belongs to the Robinson–Trautman class of
spacetimes.

Motivated by all these works, we now wish to present a complete algebraic classification of
the four-dimensional Robinson–Trautman (and Kundt) geometries. As far as we know, this has
not been done before because the classic works summarized in [5, 6] remained constrained to
(electro)vacuum or pure radiation solutions of Einstein’s equations which are algebraically special
due to the celebrated Goldberg–Sachs theorem [15] and its generalizations, see section 7.6 of [5].

To this end we will employ explicit components of the curvature tensors (Riemann, Ricci, and
Weyl) for the most general class of non-twisting, shear-free geometries in any dimension D ≥ 4
which we calculated in our previous work. This enabled us to determine possible algebraic types
and subtypes of such spacetimes in higher dimensions, based to the multiplicity of the Weyl
aligned null directions — following the classification method summarized in the review [16]. The
particular case of non-expanding Kundt geometries was investigated in [17, 18] while the inclusion
of expanding Robinson–Trautman geometries was achieved in [19], together with the discussion of
vacuum solutions of Einstein’s field equations.

In this work we will solely concentrate on the most important D = 4 case which exhibits highly
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specific properties. Above all, the corresponding transverse Riemannian space is 2-dimensional,
i.e., conformally flat which considerably simplifies the possible structure of algebraic subtypes.
Also, here we will use a different and more convenient choice of the null tetrad in real coordinates
and the corresponding ten independent real Weyl scalars of five distinct boost weights. This we
will combine with standard Newmann–Penrose formalism employing a complex null tetrad.

Let us also emphasize that in our analysis we will not initially assume any gravitational field
equations, so that the “purely geometrical” results can be applied in any metric theory of gravity
(not just in Einstein’s general relativity), and in the presence of any matter field.

First, in section 2 we present the general metric form of a non-twisting, shear-free spacetime,
and we introduce the Robinson–Trautman geometries. In section 3 we define the null tetrad and
the corresponding Weyl scalars, both in real and complex formalisms. Explicit form of these
Weyl scalars, crucial for the algebraic classification, are given in section 4. General method of
determining algebraic types of four-dimensional spacetimes and the corresponding principal null
directions (PNDs) are recalled in section 5. A detailed discussion of all possible algebraically
special subtypes of the Robinson–Trautman geometries is contained in sections 6 and 7 for the
cases when the geometrically privileged null vector field k is a multiple PND or it remains a single
PND, respectively. A remark on the special case of Kundt geometries is given in section 8. The final
section 9 is devoted to applications of our general results to several interesting explicit examples,
namely the algebraically special spacetimes of the Robinson–Trautman class in Einstein’s theory
of gravity — both of the Ricci type I (vacuum, aligned Maxwell field) and of a general Ricci type
(scalar field) — and the static, spherically symmetric black holes in the pure Einstein–Weyl gravity.
Explicit coordinate components of the Christoffel symbols, Riemann, Ricci, and Weyl tensors for
a generic non-twisting, shear-free geometry in four dimensions are presented in appendix A.

2 The Robinson–Trautman geometries

In this paper we will investigate the general family of four-dimensional spacetimes admitting a
null vector field k that is non-twisting (ω = 0), shear-free (σ = 0) but expanding (Θ 6= 0). It was
shown already in the original seminal work by Robinson and Trautman [1, 2] that the metric of
such spacetimes can be written in the form

ds2 = gij(r, u, x
k) dxidxj + 2gui(r, u, x

k) dudxi − 2dudr + guu(r, u, x
k) du2 , (1)

where the coordinates are adapted to the optically privileged null vector field. Namely, r is the
affine parameter along a congruence of null geodesics generated by k (so that k = ∂r), the whole
manifold is foliated in such a way that k is everywhere tangent (and normal) to hypersurfaces
u =const., and at any fixed u and r the two spatial coordinates xk ≡ (x2, x3) span the transverse
2-dimensional Riemannian manifold with the metric gij .

1 Note that the nontrivial components of
an inverse metric are gij (inverse of gij), g

ri = gijguj, g
ru = −1 and grr = −guu + gijguiguj (so

that gui = gijg
rj and guu = −grr + guig

ri).
By construction, the metric (1) is non-twisting with a non-zero shear σ and expansion Θ. The

requirement that the congruence generated by k is shear-free implies the condition

Gij = 0 , where Gij = gij,r − 2Θgij , (2)

which can be readily integrated to

gij = ̺2(r, u, xk)hij(u, x
k) , where ̺,r = Θ̺ , (3)

that is ̺ = exp
( ∫

Θ(r, u, xk) dr
)

. Moreover, since any 2-dimensional spatial metric is conformally
flat, without loss of generality we can assume

hij = δij , (4)

if such a choice of gauge is convenient.

1Throughout this paper the indices i, j, k, l label the spatial directions and range from 2 to 3.
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3 Null tetrad and corresponding Weyl scalars

To evaluate the Weyl scalars determining the algebraic structure of the spacetime it is necessary
to set up a normalized reference frame. In our notation this consists of two future oriented null
vectors, k and l, and two perpendicular real spacelike vectors m(i) (standing for m(2) and m(3))
which satisfy the normalization conditions

k · l = −1 , m(i) ·m(j) = δij , k · k = 0 = l · l , k ·m(i) = 0 = l ·m(i) . (5)

It is most convenient to identify the vector k with the geometrically privileged null vector field
k = ∂r which generates the non-twisting, shear-free and affinely parameterized geodesic congruence
of the spacetime (1). The conditions (5) are then satisfied by the natural choice of the null frame2

k = ∂r , l = − 1
2g

rr∂r + ∂u − gri∂i , m(i) = mi
(i)∂i , (6)

where the coefficients mi
(i) are normalized as gij m

i
(k)m

j
(l) = δkl , i.e., m

i
(k)m

(k)j = gij .

Our aim is to calculate the components of the Weyl tensor in the frame (6) and discuss its
algebraic properties. We define real Weyl scalars with respect to the frame {k, l,m(2),m(3)} by3

Ψ0ij = Cabcd k
amb

(i) k
cmd

(j) ,

Ψ1i = Cabcd k
a lb kcmd

(i) ,

Ψ2S = Cabcd k
a lb lc kd ,

Ψ2ij = Cabcd k
a lbmc

(i)m
d
(j) , (7)

Ψ3i = Cabcd l
a kb lcmd

(i) ,

Ψ4ij = Cabcd l
amb

(i) l
cmd

(j) ,

where the indices i, j = 2, 3 again correspond to two transverse spatial directions. The symmetries
of the Weyl tensor Cabcd imply that Ψ0ij = Ψ0ji , Ψ2ij = −Ψ2ji , Ψ4ij = Ψ4ji , and that these 2× 2
matrices are trace-free. We thus have exactly two independent components of each boost weight,
namely Ψ022 and Ψ023 , Ψ12 and Ψ13 , Ψ2S and Ψ223 , Ψ32 and Ψ33 , Ψ422 and Ψ423 .

In fact, these scalars defined by (7) are simply related to ten real components of the classic
five complex Newman–Penrose scalars

Ψ0 = Cabcd k
amb kcmd ,

Ψ1 = Cabcd k
a lb kcmd ,

Ψ2 = Cabcd k
amb m̄c ld , (8)

Ψ3 = Cabcd l
a kb lc m̄d ,

Ψ4 = Cabcd l
a m̄b lc m̄d ,

in the complex null tetrad {k, l,m, m̄}. Indeed, with the natural identification

m ≡ 1√
2
(m(2) − im(3)) , m̄ ≡ 1√

2
(m(2) + im(3)) , (9)

we immediately obtain the relations

Ψ0 = Ψ022 − i Ψ023 ,

Ψ1 = 1√
2
(Ψ12 − i Ψ13) ,

Ψ2 = − 1
2 (Ψ2S + iΨ223) , (10)

Ψ3 = 1√
2
(Ψ32 + iΨ33) ,

Ψ4 = Ψ422 + iΨ423 ,

2An alternative choice used, e.g., in [19] is k = ∂r, l =
1
2
guu ∂r + ∂u, m(i) = mi

(i)
∂i +mi

(i)
gui ∂r , from which

the null frame (6) is obtained by a null rotation k̃ = k, l̃ = l+
√
2Lim(i) + |L|2k, m̃(i) = m(i) +

√
2Lik, with

Li = − 1√
2
mi

(i)
gui (and dropping the tildes).

3Due to the symmetries of Cabcd, all other projections onto the frame vectors can be expressed in terms of (7).
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or inversely

Ψ022 = −Ψ033 = ReΨ0 , Ψ023 = Ψ032 = − ImΨ0 ,

Ψ12 =
√
2 ReΨ1 , Ψ13 = −

√
2 ImΨ1 ,

Ψ2S = −2ReΨ2 , Ψ223 = −2 ImΨ2 , (11)

Ψ32 =
√
2 ReΨ3 , Ψ33 =

√
2 ImΨ3 ,

Ψ422 = −Ψ433 = ReΨ4 , Ψ423 = Ψ432 = ImΨ4 .

Clearly, the real scalars (7) constructed from the Weyl curvature tensor are (up to a constant
rescaling) just the real and imaginary parts of the standard Newman–Penrose complex scalars (8).

4 Weyl scalars for generic Robinson–Trautman geometries

Now the main point is to explicitly express the key Weyl scalars in the null frame (6) using their
definition (7). The Weyl tensor coordinate components for a completely general four-dimensional
Robinson–Trautman metric (1) are summarized in equations (188)–(198) of appendix A. Straight-
forward but lengthy calculation of the respective projections leads to the following Weyl scalars:

Ψ0ij = 0 , (12)

Ψ1i = 1
2 m

i
(i)Ni , (13)

Ψ2S = 1
3 S , (14)

Ψ2ij = mi
(i)m

j
(j) Fij , (15)

Ψ3i = 1
2 m

i
(i) Vi , (16)

Ψ4ij = mi
(i)m

j
(j)

(

Wij − 1
2 gijW

)

, (17)

where

Ni = − 1
2Gui,r +Θ,i , (18)

S = 1
2
SR+ 1

2Guu,r +
1
2g

ijGui||j + 2griNi − 2Θ,u , (19)

Fij = Gu[i,j] , (20)

Vi =
1
2
SRgui +

1
2g

kleklGui − 1
2g

rjGui||j + grjGuj||i +
1
2Gui,u − 1

2Guu,i

+ 1
2g

jk(gij,u − gui||j)Guk − gkl(gk[i,u||l] + gu[k,i]||l) +
1
2g

rrNi , (21)

Wij = − 1
2guu||ij − 1

2gij,uu + gu(i,u||j) − 1
2eijGuu + 1

2guu,(iGj)u + 1
2guuGu(i||j)

+ 1
4g

rkgukGuiGuj − 1
2 guiguj

[

SR− gkl
(

Guk||l +
1
2GukGul

)]

+gkl
[

gui
(

gk[j,u||l] + gu[k,j]||l
)

+ guj
(

gk[i,u||l] + gu[k,i]||l
)]

−gkleklGu(igj)u + gklGukel(igj)u − 1
2g

rkGukGu(igj)u

+gklEkiElj − grkEk(iGj)u − 1
2g

rk
(

gu(iGj)u||k +Guk||(igj)u
)

, (22)

and the contraction W is defined as W = gijWij . Here we have introduced convenient functions

Gui = gui,r − 2Θgui , (23)

Guu = guu,r − 2Θguu , (24)
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and auxiliary tensor quantities on the transverse Riemannian 2-space

eij = gu(i||j) − 1
2gij,u ,

Eij = gu[i,j] +
1
2gij,u ,

gui||j = gui,j − guk
SΓk

ij ,

gui,u||j = gui,uj − guk,u
SΓk

ij ,

guu||ij = guu,ij − guu,l
SΓl

ij , (25)

gi[k,u||j] = gi[k,j],u + 1
2 (

SΓl
ikglj,u − SΓl

ijglk,u) ,

gu[j,k]||i = gu[j,k],i − SΓl
ijgu[l,k] − SΓl

ikgu[j,l] .

Covariant derivative with respect to gij is denoted by the symbol ||. Of course, gu[i,j] = gu[i||j].
The symbol SR is the Ricci scalar for the metric gij of the transverse Riemannian 2-space.

It can be observed that the key functions (18)–(22) simplify enormously when the off-diagonal
coefficients gui of the Robinson–Trautman metric (1) vanish, that is

ds2 = gij(r, u, x
k) dxidxj − 2dudr + guu(r, u, x

k) du2 . (26)

Indeed, in such a case

gui = 0 ⇒ Gui = 0 , gri = 0 , grr = −guu , (27)

so that

Ni = Θ,i , (28)

S = 1
2
SR+ 1

2Guu,r − 2Θ,u , (29)

Fij = 0 , (30)

Vi = − 1
2Guu,i − gjkgj[i,u||k] − 1

2guuNi , (31)

Wij = − 1
2guu||ij − 1

2gij,uu + 1
4gij,uGuu + 1

4g
klgik,ugjl,u . (32)

Notice that Ψ2ij = 0 due to (30), which indicates that the case (27) is a specific algebraically
distinct subcase of the Robinson–Trautman geometry.

Let us also recall that it is always possible to assume

gij = ̺2(r, u, xk) δij , (33)

see (3) and (4), in which case the normalized spacelike vectors m(i) have simple components

mk
(i) = ̺−1δki and expressions (13)–(17) reduce to

Ψ1i =
1
2 ̺

−1Ni , Ψ2S = 1
3 S , Ψ2ij = ̺−2 Fij , (34)

Ψ3i =
1
2 ̺

−1 Vi , Ψ4ij = ̺−2
(

Wij − 1
2 gijW

)

. (35)

Finally, it can be seen from the definitions (23) and (24) that — once the functions Gui and Guu

are determined — the metric coefficients gui and guu can be immediately obtained by integration
using the relation ̺,r = Θ̺ , see (3), namely

gui = ̺2
∫

̺−2Gui dr , and guu = ̺2
∫

̺−2Guu dr . (36)
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5 Determining the algebraic types and principal null direc-

tions (PNDs)

Let us emphasize that the results (12)–(17) with (18)–(22) are valid for all Robinson–Trautman
geometries (and Kundt geometries as well, by setting Θ = 0), without any restriction imposed
by specific field equations and/or matter content of the spacetime. This enables us to explicitly
determine the algebraic type of an arbitrary spacetime of the form (1), (3), and to find the
corresponding principal null directions (together with their multiplicity).

First, we immediately observe from (12) that Ψ0ij = 0. This means that the optically privileged
null vector field k = ∂r is always a principal null direction of the Weyl tensor, and the algebraic
structure is obviously of type I with respect to the null frame (6).

The next question then arises: What is the explicit condition for the Robinson–Trautman
geometry to be of type II, i.e., algebraically special, and what is the corresponding double PND?
It is well known (see, e.g., sections 4.2, 4.3, 9.3 in [5] or the explicit algorithm in [20]) that such a
condition reads I3 = 27J2, in terms of scalar polynomial invariants constructed from the complex
Newman–Penrose scalars ΨA as

I = Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2 , J =

∣

∣

∣

∣

∣

∣

Ψ0 Ψ1 Ψ2

Ψ1 Ψ2 Ψ3

Ψ2 Ψ3 Ψ4

∣

∣

∣

∣

∣

∣

. (37)

For any Robinson–Trautman geometry the Weyl scalars Ψ0ij identically vanish, implying Ψ0 = 0.
The invariants (37) thus reduce to

I = 3Ψ2
2 − 4Ψ1Ψ3 , J = Ψ1(2Ψ2Ψ3 −Ψ1Ψ4)−Ψ3

2 , (38)

so that the condition I3 = 27J2 explicitly reads

Ψ2
1

[

27(Ψ2
1Ψ

2
4 − 4Ψ1Ψ2Ψ3Ψ4 + 2Ψ3

2Ψ4) + 64Ψ1Ψ
3
3 − 36Ψ2

2Ψ
2
3

]

= 0 . (39)

The Robinson–Trautman spacetime is algebraically special (admits a double PND) if, and only
if, the condition (39) is satisfied. Clearly, there are two distinct possibilities, namely Ψ1 = 0 and
Ψ1 6= 0 :

• In the case Ψ1 = 0, the optically privileged vector field k = ∂r is (at least) a double PND of
the Weyl tensor, and its algebraic structure is of type II with respect to the null frame (6).

• In the peculiar case Ψ1 6= 0, the optically privileged null vector field k = ∂r is not a double
principal null direction (it remains a non-degenerate PND), and there exists another double
PND in the spacetime provided the expression in the square bracket of (39) vanishes.

In the following sections we will systematically analyze both these cases (including all possible
subcases) separately. We will also discuss the conditions for the Robinson–Trautman geometry to
be of algebraic type III, N, O and D.

Moreover, we will explicitly determine the corresponding four (possibly multiple) principal null
directions. Recall (cf. [5, 6]) that any PND k

′ can be obtained by performing a null rotation of
the frame (6), (9) with a fixed null vector l, that is

k
′ = k +K m̄+ K̄m+KK̄ l , l

′ = l , m
′ = m+K l , (40)

where the parameter K is a root of the equation Ψ4K
4 + 4Ψ3K

3 + 6Ψ2K
2 + 4Ψ1K +Ψ0 = 0 .

This always has four complex solutions, each corresponding to one of the four PNDs. Of course,
for a degenerate root K we obtain a multiple PND k

′ given by (40). Since we employ the frame
(6) in which Ψ0 = 0 for any Robinson–Trautman geometry, this quartic equation reduces to

K(Ψ4K
3 + 4Ψ3K

2 + 6Ψ2K + 4Ψ1) = 0 , (41)

with an obvious root K = 0 corresponding to the optically privileged PND k
′ = k = k = ∂r.
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6 Multiple PND k = ∂r and algebraically special subtypes

We will first analyze the most important case Ψ1 = 0, for which the key equation (41) reads

K2(Ψ4K
2 + 4Ψ3K + 6Ψ2) = 0 . (42)

Since K = 0 is its double root, the optically privileged null vector field k = ∂r is (at least) a double
PND of the Weyl tensor, and the corresponding Robinson–Trautman spacetime is of type II (or
more special).

In view of (10), (13), such a situation occurs if, and only if,

Ψ1i = 0 ⇔ Ni = 0 , (43)

for both i = 2 and i = 3 (because the spatial vectors m(i) are independent). Using (18), this
condition is equivalent to Gui,r = 2Θ,i. It can be integrated to

Gui ≡ fi , where fi(r, u, x) = 2

∫

Θ,i dr + ϕi(u, x) , (44)

in which ϕi is any function independent of r. Consequently,

gui = ̺2
∫

̺−2 fi dr . (45)

Moreover, applying the condition Ni = 0 and (44), the functions (19)–(22) determining the
remaining Weyl scalars (14)–(17) simplify to

S = 1
2
SR + 1

2Guu,r +
1
2g

ijfi||j − 2Θ,u , (46)

Fij = f[i,j] , (47)

Vi =
1
2
SRgui +

1
2g

kleklfi − 1
2g

rjfi||j + grjfj||i +
1
2fi,u − 1

2Guu,i

+ 1
2g

jk(gij,u − gui||j)fk − gkl(gk[i,u||l] + gu[k,i]||l) , (48)

Wij = − 1
2guu||ij − 1

2gij,uu + gu(i,u||j) − 1
2eijGuu + 1

2guu,(ifj) +
1
2guuf(i||j)

+ 1
4g

rkgukfifj − 1
2 guiguj

[

SR− gkl
(

fk||l +
1
2fkfl

)]

+gkl
[

gui
(

gk[j,u||l] + gu[k,j]||l
)

+ guj
(

gk[i,u||l] + gu[k,i]||l
)]

−gkleklf(igj)u + gklfkel(igj)u − 1
2g

rkfkf(igj)u

+gklEkiElj − grkEk(ifj) − 1
2g

rk
(

gu(ifj)||k + fk||(igj)u
)

. (49)

6.1 Type II subtypes with a double PND k

The Robinson–Trautman spacetimes (1), (3) satisfying the condition (44) are of type II with (at
least) a double PND k = ∂r. In addition to Ψ1i = 0, they may admit the following particular
algebraic subtypes of the Weyl tensor:

• subtype II(a) ⇔ Ψ2S = 0 ⇔ S = 0 ⇔ the metric function guu satisfies the relation:

Guu,r = − SR− gijfi||j + 4Θ,u . (50)

This determines the specific dependence ofGuu(r, u, x) on the coordinate r, which is the affine
parameter along the optically privileged null congruence generated by k, and subsequently
also the r-dependence of guu via the second equation of (36).

• subtype II(d) ⇔ Ψ2ij = 0 ⇔ Fij = 0:

f[i,j] = 0 , (51)

or equivalently fi||j = fj||i. Introducing a 1-form φ ≡ fi dx
i in the transverse 2-dimensional

Riemannian space, this condition says that φ is closed (dφ = 0). By the Poincaré lemma,
on any contractible domain there exists a potential function F such that φ = dF , that is
fi = F,i. In a general case, such F exists only locally.
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In general, there are two additional (distinct) principal null directions k
′ given by (40). The

corresponding two parametersK are solutions of the quadratic equation Ψ4K
2 + 4Ψ3K + 6Ψ2 = 0,

which follows from (42), that is explicitly

K = ±
√

4
(Ψ3

Ψ4

)2

− 6
Ψ2

Ψ4
− 2

Ψ3

Ψ4
. (52)

The special case Ψ4 = 0 will be discussed in subsections 6.5 and 6.6.

6.2 Type III with a triple PND k

The Robinson–Trautman spacetime is of algebraic type III with respect to the triple PND k = ∂r
if both independent conditions (50) and (51) are satisfied simultaneously. Indeed, in such a case
the boost-weight zero Weyl tensor component Ψ2 vanishes, see (10), and equation (42) reduces to

K3(Ψ4K + 4Ψ3) = 0 . (53)

Thus, K = 0 is a triple root, so that the optically privileged null vector field k = ∂r is a triply
degenerate principal null direction of the Weyl tensor.

There is just one additional PND k
′ determined by (40) with the parameter K given by

K = −4
Ψ3

Ψ4
, (54)

which is the fourth root of the complex equation (53). Again, the special case Ψ4 = 0 is left to
section 6.5. The Weyl scalars Ψ3,Ψ4 entering the above expressions are explicitly determined by
equations (10), (16), (17), in which the structural functions Vi and Wij take the form (48) and
(49), respectively, with the two constraints (50), (51).

6.3 Type N with a quadruple PND k

It immediately follows from (53) that the geometrically privileged PND k = ∂r becomes quadruply
degenerate if, and only if, Ψ3 = 0 (so that K = 0 becomes a quadruple root). In view of (10),
(16), this is equivalent to

Ψ3i = 0 ⇔ Vi = 0 , (55)

for both i = 2 and i = 3. Using (48) simplified by (51), this condition takes the explicit form

Guu,i =
SRgui + grjfi||j + gkleklfi + fi,u

+gjk(gij,u − gui||j)fk − 2gkl(gk[i,u||l] + gu[k,i]||l) . (56)

This is a specific constraint on the spatial derivatives of the function Guu, and thus guu.
In such a case, the only remaining Weyl tensor components form a symmetric and traceless

2× 2 matrix Ψ4ij = mi
(i)m

j
(j)(Wij − 1

2 gijW ), see (17), equivalent to the complex Newman–Penrose

scalar Ψ4 = Ψ422 + iΨ423 . The structural functions Wij for such type N geometries are explicitly
given by (49). They directly encode the amplitudes Ψ4ij of the corresponding gravitational waves.

6.4 Type O geometries

The Weyl tensor vanishes completely if, and only if, all the above conditions are satisfied and, in
addition , Ψ4 = 0, equivalent to Ψ4ij = 0. This clearly occurs when

Wij =
1
2 gijW , (57)

with W = gijWij , which is a specific restriction on the functions Wij of (49).
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6.5 Type IIIi with a triple PND k and a PND l

Let us now investigate the special case Ψ4 = 0 forbidden in expression (52), and for which (42) re-
duces just to a cubic equation. It can immediately be seen from the definitions (7) that Ψ0ij ↔ Ψ4ij

and Ψ1i ↔ Ψ3i under the swap k ↔ l of the null vectors. Consequently, the condition Ψ4 = 0
means that the null vector l defined in (6) is a PND. Instead of (40) with (54), that formally
diverges in this case, the single separate PND is now given by

k
′ = l = − 1

2g
rr∂r + ∂u − gri∂i , (58)

in addition to the triply degenerate PND k = ∂r.

6.6 Type D with a double PND k and a double PND l

In the highly degenerate case when Ψ4 = 0 = Ψ3 and Ψ0 = 0 = Ψ1, both the null vectors of the
frame (6), that is k = k = ∂r and l = − 1

2g
rr∂r + ∂u − gri∂i, are doubly degenerate principal null

directions. Such a situation occurs if, and only if,

Vi = 0 and Wij =
1
2 gijW , (59)

where the functions Vi and Wij are given by (48) and (49). The only remaining components of
the Weyl tensor are thus Ψ2S and Ψ2ij (of boost-weight zero). If one of them vanishes, we obtain
the algebraic subtypes D(a) and D(d), respectively, see the conditions (50) and (51).

The explicit conditions (59) look rather complicated to enable a complete integration of the
metric functions in the most general case. However, there is a considerable simplification for
the Robinson–Trautman geometries with gui = 0, given by the metric (26). As can be seen from
expressions (27) and (29)–(32), all such type D spacetimes are determined by the conditions

Guu,i = −2gjkgj[i,u||k] , (60)

guu||ij + gij,uu − 1
2gij,uGuu − 1

2g
mngim,u gjn,u

= 1
2gijg

kl
(

guu||kl + gkl,uu − 1
2gkl,uGuu − 1

2g
mngkm,u gln,u

)

. (61)

Fij = 0 due to fi = 0 in this case, see (30) and (47), therefore such geometries are always of
subtype D(d) since (51) is automatically satisfied, with the only remaining Weyl component

Ψ2 = − 1
2Ψ2S = − 1

12 (
SR+Guu,r − 4Θ,u) . (62)

For gij = ̺2(r, u, xk) δij , the conditions (60), (61) for algebraic type D further simplify to
(

Guu − (log ̺2),u
)

,i
= 0 , (63)

guu||23 = 0 = guu||32 , guu||22 = guu||33 . (64)

6.7 Type D with a double PND k and a double PND k
′ 6= l

Finally, the special case Ψ1 = 0, Ψ4 6= 0 of equation (42) can take the form

K2 Ψ4(K − a)2 = 0 , (65)

when the quadratic expression Ψ4K
2 + 4Ψ3K + 6Ψ2 is Ψ4(K − a)2 with a double root K = a.

This happens if, and only if, the discriminant vanishes, i.e.,

3Ψ2Ψ4 = 2Ψ2
3 . (66)

It represents type D Robinson–Trautman geometries with a doubly degenerate PND k = ∂r (cor-
responding to the root K2 = 0) and another doubly degenerate PND k

′ (corresponding to the root
(K − a)2 = 0) given by (40) with

K = −2
Ψ3

Ψ4
. (67)
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7 Exceptional type II cases when k = ∂r is a single PND

In this section we will analyze the peculiar case of algebraically special Robinson–Trautman geome-
tries for which the optically privileged null vector field k = ∂r remains a single (non-degenerate)
PND while there is another null direction which is doubly or possibly triply degenerate principal
null direction of the Weyl tensor.

As shown in section 5, such a situation occurs if, and only if, Ψ1 6= 0 and

27(Ψ2
1Ψ

2
4 − 4Ψ1Ψ2Ψ3Ψ4 + 2Ψ3

2Ψ4) + 64Ψ1Ψ
3
3 − 36Ψ2

2Ψ
2
3 = 0 . (68)

According to the value of Ψ4, we distinguish two cases:

7.1 Case Ψ4 = 0 : the vector l is a PND

In the case when Ψ4 = 0, the null vector field l = − 1
2g

rr∂r + ∂u − gri∂i is a principal null direction
(in addition to the single PND k = ∂r), see subsection 6.5. The condition (68) for the algebraically
special spacetime (i.e., type II admitting a degenerate PND) simplifies substantially to

9Ψ2
2Ψ

2
3 = 16Ψ1Ψ

3
3 . (69)

There are now 3 possible subcases of such geometries:

7.1.1 Subcase Ψ3 6= 0 with a single PND l

In such a case the principal null directions k = ∂r and l given by (58) are both single, so that the
remaining distinct PND must be a doubly degenerate. Indeed, the key equation (41) reduces to

2Ψ3K
2 + 3Ψ2K + 2Ψ1 = 0 . (70)

The discriminant 9Ψ2
2 − 16Ψ1Ψ3 of this quadratic equation vanishes due to (69), so that there is

a double root

K = −3Ψ2

4Ψ3
, (71)

uniquely determining the additional double PND k
′ via (40).

7.1.2 Subcase Ψ3 = 0 , Ψ2 6= 0 with a double PND l

Clearly, the vector field l given by (58) is now a doubly degenerate PND, and the key equation
(70) reduces to 3Ψ2K + 2Ψ1 = 0. The additional single PND k

′ is thus determined by (40) with

K = −2Ψ1

3Ψ2
. (72)

7.1.3 Subcase Ψ3 = 0 , Ψ2 = 0 with a triple PND l (type III)

The only nonvanishing Weyl scalar is Ψ1. This means that the optically privileged null vector field
k = ∂r is a single (non-degenerate) PND while the the null vector field l = − 1

2g
rr∂r + ∂u − gri∂i

is triply degenerate principal null direction of the Weyl tensor.

7.2 Case Ψ4 6= 0 : the vector l is not a PND

This seems to be the most peculiar situation. Although the condition (68) is now very complicated
when we explicitly substitute the structural functions (18)–(22) using (10) and (13)–(17), it is still
possible to determine the corresponding multiple PND, distinct from k = ∂r.

Indeed, the fundamental quartic equation (41) whose three roots K 6= 0 determine the remain-
ing three PNDs must have the following factorized form

K Ψ4(K − a)2(K − b) = 0 . (73)

11



By comparing the coefficients of different powers of K in (41) and (73) we obtain three conditions

2a+ b = A , a2 + 2ab = B , a2b = C , (74)

where

A = −4
Ψ3

Ψ4
, B = 6

Ψ2

Ψ4
, C = −4

Ψ1

Ψ4
. (75)

The first two conditions imply b = A− 2a and thus 3a2 − 2Aa+B = 0, so that

a = 1
3 (A±

√
A2 − 3B ) , b = 1

3 (A∓ 2
√
A2 − 3B ) . (76)

Straightforward calculation now shows that the third condition of (74) is automatically satisfied
provided the relation (68) is applied, selecting just one of the possible signs (upper or lower)
in (76). For example, when A > 0, B = 0 the first relation (76) reduces to a = 1

3 (A±A). This
excludes the lower sign because with a = 0 the condition a2b = C 6= 0 of (74) can not be satisfied.

We also assume b 6= 0 since the case b = 0 of (73), implying C = 0 ⇔ Ψ1 = 0, represents type D
Robinson–Trautman geometries discussed in subsection 6.7. Notice that for Ψ1 = 0 the condition
(68) reduces to 3Ψ2Ψ4 = 2Ψ2

3 ⇔ A2 = 4B, which is exactly the condition (66).

7.2.1 Subcase a 6= b with a double PND k
′ 6= l (type II)

In such a case we have a specific unique solution for the principal null directions: there is a doubly
degenerate PND k

′ 6= l given by K = a 6= 0, and a different single PND given by K = b 6= 0.
These are both distinct from the optically privileged single PND k = ∂r (and also distinct from
l = − 1

2g
rr∂r + ∂u − gri∂i).

7.2.2 Subcase a = b with a triple PND k
′ 6= l (type III)

In the special case a = b⇔ A2 = 3B 6= 0, the fundamental quartic equation (73) takes the form

K Ψ4(K − a)3 = 0 . (77)

Clearly, there is the optically privileged single PND k = ∂r and a triply degenerate PND k
′ 6= l

given by K = a = 1
3A, that is

K = −4Ψ3

3Ψ4
. (78)

Such type III geometries occur if, and only if, A2 = 3B which is equivalent to

8Ψ2
3 = 9Ψ2Ψ4 , (79)

with Ψ4, Ψ3, Ψ2, Ψ1 all non-vanishing.

8 The Kundt geometries

We would like to emphasize at this point that all the conditions and expressions for specific
algebraic types of the Weyl tensor presented in previous sections 4–7 are also valid for the Kundt
geometries with vanishing expansion of the non-twisting, shear-free null vector field k = ∂r: it
just suffices to set Θ = 0. In view of (2), (23), (24) this immediately implies

Gij = gij,r = 0 , (80)

Gui = gui,r , (81)

Guu = guu,r , (82)

and (3), (4) simplify to
gij(u, x

k) = ̺2(u, xk) δij . (83)
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9 Application of our results on explicit examples

We will now illustrate the usefulness of these general results concerning algebraic classification of
Robinson–Trautman geometries on several interesting classes of such spacetimes.

9.1 Algebraically special spacetimes in Einstein’s general relativity

Algebraically special spacetimes of the Robinson–Trautman class in Einstein’s theory of gravity
have been extensively studied for decades since their introduction in the original papers [1, 2].
These classic results are summarized—and specific references are given—in the monographs [5, 6],
namely in chapters 28 and 19, respectively (see also [8, 9, 10, 19] for more recent results).

They include vacuum spacetimes, possibly with any value of the cosmological constant Λ,
aligned electromagnetic field, or pure radiation field (null fluid). Indeed, the Goldberg–Sachs
theorem and its generalisations guarantee that all such Robinson–Trautman geometries must be
algebraically special, with the optically privileged null vector field k = ∂r (at least) doubly degen-
erate PND, that is the case Ψ1 = 0 described in section 6. The corresponding metrics can always
be written in the form

ds2 = gij(r, u, x
k) dxidxj − 2dudr + guu(r, u, x

k) du2 , (84)

which is exactly the line element (1) with gui = 0, i.e., (26). In such a case the key functions
determining the algebraic structure of the spacetimes take simple explicit forms

Ni = Θ,i = 0 , (85)

S = 1
2
SR+ 1

2Guu,r − 2Θ,u , (86)

Fij = 0 , (87)

Vi = − 1
2Guu,i − gjkgj[i,u||k] , (88)

Wij = − 1
2guu||ij − 1

2gij,uu + 1
4gij,uGuu + 1

4g
klgik,ugjl,u , (89)

see (28)–(32). Let us also recall, see (3) and (4), that it is always possible to assume

gij = ̺2(r, u, xk) δij , (90)

in which case, using (25) with the Christoffel symbols SΓl
ik for the spatial metric (90),

gjkgj[i,u||k] = −(log ̺),ui , (91)

and guu||ij in (89) can also easily be evaluated, yielding

guu||22 = guu,22 − guu,2 (log ̺),2 + guu,3 (log ̺),3 , (92)

guu||33 = guu,33 + guu,2 (log ̺),2 − guu,3 (log ̺),3 , (93)

guu||23 = guu,23 − guu,2 (log ̺),3 − guu,3 (log ̺),2 = guu||32 . (94)

Moreover, the normalized spacelike vectors m(i) have simple components mk
(i) = ̺−1δki , so that

the null frame (6) is now

k = ∂r , l = 1
2guu ∂r + ∂u , m(i) = ̺−1∂i . (95)

In this frame, the only non-vanishing Weyl scalars (see expressions (13)–(17)) are

Ψ2S = 1
3 S , (96)

Ψ3i =
1
2 ̺

−1 Vi , (97)

Ψ4ij = ̺−2
(

Wij − 1
2 δijδ

klWkl

)

. (98)

Since Wij = − 1
2guu||ij +

1
4δij

[(

̺−1(̺2),u
)2 − 2(̺2),uu + (̺2),uGuu

]

, we clearly have

Ψ422 = 1
2̺

−2
(

W22 −W33

)

= 1
4̺

−2
(

guu||33 − guu||22
)

, (99)

Ψ423 = ̺−2W23 = − 1
2̺

−2 guu||23 . (100)

Recall that Ψ433 = −Ψ422 and Ψ423 = Ψ432 .
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9.1.1 Spacetimes of the Ricci type I

Almost all algebraically special Robinson–Trautman spacetimes studied in general relativity so far
have had a special form of the energy-momentum tensor Tab such that in the null frame its highest
boost weight vanishes — namely, that it satisfies the condition

Tabk
akb = Trr = 0 . (101)

Due to Einstein’s equations and the fact that grr = 0, this immediately implies Rrr = Rabk
akb = 0,

i.e., the spacetimes are of aligned Ricci type I. In view of the explicit form (181) of this Ricci
tensor component, this puts a constraint Θ,r = −Θ2 on the expansion function which can readily

be integrated as Θ =
(

r + ψ(u, xi)
)−1

. Since Θ,i = 0, see (85), the integration function ψ must
be independent of the spatial coordinates xi. However, any such function ψ(u) can be removed
by the gauge transformation r → r − ψ(u) of the metric (84). Without loss of generality we thus
obtain, using (3),

Θ =
1

r
⇔ ̺ =

r

P (u, xi)
, (102)

and the key Weyl scalars (96)–(100) reduce to

Ψ2S =
1

6

(

Guu,r +
SR

)

, (103)

Ψ3i = − P

4r

(

Guu,i + 2(log ̺),ui
)

, (104)

Ψ422 =
P 2

4r2
(

guu||33 − guu||22
)

, (105)

Ψ423 = − P 2

2r2
guu||23 . (106)

For an important large class of Robinson–Trautman (electro)vacuum spacetimes with Λ, the
metric coefficient guu takes the explicit form

guu = −K + 2r (logP ),u +
2m

r
− κ

|Q|2
2r2

+
Λ

3
r2 (107)

(see expressions (28.8), (28.37), (28.78) in [5], or [8, 9]). Here

K ≡ ∆ logP =
SR

2
r2 (108)

is the Gaussian curvature of the transverse 2-space with the metric gij = (r2/P 2) δij , and ∆ is
the corresponding Laplace operator (in fact, SR = R r−2, where R is the Ricci scalar calculated
with respect to the r-independent part of the spatial metric gij , that is P

−2δij). The parameter
m represents the mass while Q typically represents the charge. In view of (24), the function
Guu = guu,r − (2/r) guu is thus

Guu = −2(logP ),u +
2K
r

− 6m

r2
+ 2κ

|Q|2
r3

. (109)

Putting this into expressions (103), (104), and relations (92)–(94) where now (log ̺),i = −(logP ),i
into (105), (106), we finally obtain

Ψ2S =
2m

r3
− κ

|Q|2
r4

, (110)

Ψ3i = − P

2r

(K
r
− 3m

r2
+ κ

|Q|2
r3

)

,i
, (111)

Ψ422 =
P 2

4r2

(

(

guu,33 − guu,22
)

− 2guu,2 (logP ),2 + 2guu,3 (logP ),3

)

, (112)

Ψ423 = − P 2

2r2

(

guu,23 + guu,2 (logP ),3 + guu,3 (logP ),2

)

, (113)
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where guu is given by (107).
In literature it has been a common approach to use a complex notation for the two transverse

spatial coordinates xk, namely

ζ = 1√
2
(x2 + ix3) , so that ∂ζ = 1√

2
(∂2 − i∂3) . (114)

The metric (84) thus becomes

ds2 = 2
r2

P 2
dζdζ̄ − 2dudr +

[

−K+ 2r (logP ),u +
2m

r
− κ

|Q|2
2r2

+
Λ

3
r2
]

du2 , (115)

with P 2(u, ζ, ζ̄). The only non-vanishing Weyl scalars in the complex null frame (9), (95), that is

k = ∂r , l = 1
2guu ∂r + ∂u , m =

P

r
∂ζ , (116)

are immediately obtained using (10) and (110)–(113) as:

Ψ2 = −m
r3

+ κ
|Q|2
2r4

, (117)

Ψ3 = − P

2r2
K,ζ̄ +

3P

2r3
m,ζ̄ −

κP

2r4
(|Q|2),ζ̄ , (118)

Ψ4 = − 1

2r2

(

P 2guu,ζ̄

)

,ζ̄

=
1

2r2
(

P 2K,ζ̄

)

,ζ̄
− 1

r

(

P 2(logP ),uζ̄
)

,ζ̄
− 1

r3
(

P 2m,ζ̄

)

,ζ̄
+

κ

4r4
(

P 2(|Q|2),ζ̄
)

,ζ̄
. (119)

These Newman–Penrose complex scalars are in full agreement with expressions (28.10) and (28.38)
presented in [5].

9.1.2 Spacetimes of a general Ricci type: scalar field

Recently, an interesting Robinson–Trautman solution with minimally coupled free scalar field
φ was found and studied in [11]. It satisfies the Einstein equations Rab − 1

2Rgab = Tab where
Tab = φ,aφ,b − 1

2gabg
cdφ,cφ,d (or, equivalently, Rab = φ,aφ,b ), and ✷φ = 0. The explicit metric is

ds2 =
r2U2 − C2

U p2(x, y)
(dx2 + dy2)− 2dudr −

[

k(x, y)

U
+ r

U,u

U

]

du2 , (120)

with

U(u) = γ exp(ω2u2 + η u) , (121)

∆ log p = k , ∆k = 4C2ω2 , (122)

φ(r, u) =
1√
2
log

(

rU − C

rU + C

)

, (123)

where C, γ, ω, η are positive constants. For C = 0 the scalar field vanishes, φ = 0, and vacuum
spacetime is recovered by solving the standard Robinson–Trautman field equation ∆∆ log p = 0
(with m = 0, see [5, 6]). Notice also that φ→ 0 as u→ ∞.

In fact, this solution can be rewritten using the gauge transformation

u = F (ū) , r =
r̄

F,ū
, where F,ū =

√
U ⇒ ū(u) =

1√
γ

∫

exp
(

− ω2

2
u2 − η

2
u
)

du , (124)

after which the metric (120) takes an alternative form

ds2 =
r̄2 − C2 U−1

p2(x, y)
(dx2 + dy2)− 2dūdr̄ − k(x, y) dū2 . (125)
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This looks simpler, however at the expense of a more complicated form of the function U(ū) which
is obtained by substituting the transcendent function u(ū) from (124) into (121).

Now, it is obvious from (123) that

Rabk
akb = Rrr = Trr = (φ,r)

2 =
2C2U2

(r2U2 − C2)2
6= 0 . (126)

so that the highest boost weight of the scalar field energy-momentum tensor Tab is nonvanishing,
and consequently the corresponding Robinson–Trautman spacetime is of a general Ricci type.

Comparing (120) with (84), (90) we infer

̺2(r, u, x, y) =
r2U2 − C2

U p2(x, y)
, guu(r, u, x, y) = −k(x, y)

U
− r

U,u

U
. (127)

The corresponding expansion scalar Θ = ̺,r/̺ = 1
2 (̺

2),r/̺
2 is thus

Θ =
r U2

r2U2 − C2
⇒ Θ,i = 0 , Θ,u = − 2C2r UU,u

(r2U2 − C2)2
, (128)

and since Ψ1i =
1
2̺

−1Ni =
1
2̺

−1Θ,i = 0, the spacetime is (at least) of Weyl type II.
Notice also that for C = 0 we obtain Θ = 1/r and recover the vacuum case (102), and the same

behaviour is obtained for a general C as r → ∞. Due to (24),

Guu =
r2U2 + C2

r2U2 − C2

U,u

U
+

2krU

r2U2 − C2
. (129)

Evaluating Guu,r , Guu,i, using expressions (86)–(100) where (log ̺),ui = 0, (log ̺),i = −(log p),i,
gij,u = (̺2),u δij , and the identity

SR =
2kU

r2U2 − C2
, (130)

we obtain

Ψ2S =
2

3
C2U

r U,u − k

(r2U2 − C2)2
, (131)

Ψ3i = − r U3/2 p

2(r2U2 − C2)3/2
k,i , (132)

Ψ422 =
p2

4(r2U2 − C2)

(

(k,22 − k,33) + 2k,2 (log p),2 − 2k,3 (log p),3

)

, (133)

Ψ423 =
p2

2(r2U2 − C2)

(

k,23 + k,2 (log p),3 + k,3 (log p),2

)

. (134)

The corresponding Newman–Penrose scalars (10) are

Ψ2 =
1

3
C2U

k − r U,u

(r2U2 − C2)2
, (135)

Ψ3 = − r U3/2 p

2(r2U2 − C2)3/2
k,ζ̄ , (136)

Ψ4 =
1

2(r2U2 − C2)

(

p2k,ζ̄
)

,ζ̄
. (137)

They agree with the results presented in [11] with identification ζ = 1√
2
(x + i y) and Ψ2 ↔ −Ψ̄2,

Ψ3 ↔ −Ψ̄1, Ψ4 ↔ −Ψ̄0 due to different choice of the null vectors and the sign convention of the
Weyl tensor.4

4There are typos in Eq. (5.2) of [11], namely missing factors P and 2 in Ψ0, and a missing factor 1/4 in Ψ1.
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These Weyl scalars can be used for explicit discussion of the possible algebraic types of the
Robinson–Trautman spacetimes with free scalar field (120)–(123). Clearly, the optically privileged
vector field k = ∂r is a double PND of the Weyl tensor. Such type II spacetimes are fully classified
in section 6. For C 6= 0, however, Ψ2 = 0 ⇔ k = 0 = U,u . From (122), (121) it then follows that
ω2 = 0 ⇒ U(u) = γ exp(η u), and U,u = 0 requires γ η = 0 which does not allow any nontrivial
form U(u). Therefore, there are no type III, N or O solutions of the form (120)–(123), i.e., such
Robinson–Trautman spacetimes with the free scalar field are of genuine type II or D.

The spacetimes are of type D if, and only if, 3Ψ2Ψ4 = 2Ψ2
3, see (66). Using (135)–(137) this

reads C2(k − r U,u)(p
2k,ζ̄),ζ̄ = r2U2p2(k,ζ̄)

2. The coefficients of all powers of r must vanish, so that
necessarily k,ζ̄ = 0. Consequently, the spacetimes are of type D ⇔ k =const., i.e., the transverse
2-space has a constant Gaussian curvature. The only nonvanishing Weyl scalar is

Ψ2 =
1

3
C2U

k − r U,u

(r2U2 − C2)2
, (138)

and the two double degenerate PNDs are k = ∂r, l = − 1
2 (k + rU,u)/U ∂r + ∂u. Using the gauge

(124), such type D metrics can be rewritten in the form (125) with constant k. It is a warped-
product spacetime, somewhat resembling direct-product (Kundt) type D electrovacuum spacetimes
of Plebański and Hacyan [21], see [6].

Notice finally that by setting C = 0 we recover (special) vacuum Robinson–Trautman space-
time, with the only nonvanishing Weyl scalars (136), (137)

Ψ3 = − p

2r2U3/2
k,ζ̄ , Ψ4 =

1

2r2U2

(

p2k,ζ̄
)

,ζ̄
. (139)

With the gauge transformation (124), implying r = r̄/
√
U , the line element (125) now reads

ds2 =
r̄2

p2
(dx2 + dy2)− 2dūdr̄ − k dū2 . (140)

This is the metric (115) for the case P (x, y), m = 0 = Q, Λ = 0 if we identify r̄/p = r/P , so that
p = P

√
U and k = K. Substituting these relations into (139) we obtain

Ψ3 = − P

2r̄2
K,ζ̄ , Ψ4 =

1

2r̄2
(

P 2K,ζ̄

)

,ζ̄
, (141)

which are exactly the relations (118), (119) after dropping the bar over r. Such vacuum spacetimes
are clearly of type III, N, or O.

9.2 Algebraically general spacetimes in Einstein’s general relativity

To our knowledge, an exact Robinson–Trautman-type solution of Einstein’s field equations of
genuine type I is not known. The authors would be grateful if anybody brings our attention to an
explicit example of such an interesting four-dimensional spacetime.

9.3 Black holes in the Einstein–Weyl gravity

As the last example of non-trivial Robinson–Trautman geometries we will now investigate a
remarkable class of static, spherically symmetric solutions representing black holes in the pure
Einstein–Weyl gravity, presented last year in [13, 14]. It was demonstrated by numerical methods
that such a class contains further black-hole solutions over and above the Schwarzschild solution.

The action of the Einstein–Weyl gravity contains an additional quadratic curvature term,
namely I =

∫

(R− αCabcdC
abcd)

√−g d4x, where α is a constant. The corresponding field equa-
tions are then Rab − 1

2Rgab = 4αBab, where Bab = (∇c∇d + 1
2R

cd)Cacbd is the trace-free Bach
tensor. The static, spherically symmetric ansatz of [13] reads

ds2 = −h(r̄)dt2 + dr̄2

f(r̄)
+ r̄2(dθ2 + sin2 θ dφ2) , (142)
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where the spatial part can be written, using the standard stereographic representation

x2 + ix3 =
√
2 ζ = 2 tan

θ

2
exp(iφ) , as dθ2 + sin2 θ dφ2 =

δij dx
idxj

(1 + 1
4δkl x

kxl)2
. (143)

This is equivalent to a special case of the Robinson–Trautman metric (84), (90) by performing the
coordinate transformation

r̄ = ρ(r) , (144)

t = u−
∫

dr

guu(r)
, (145)

see [22]. Indeed, the metric (142), (143) becomes

ds2 = ̺2(r, xk) δij dx
idxj − 2dudr + guu(r) du

2 , (146)

where

̺(r, xk) =
ρ(r)

1 + 1
4δkl x

kxl
, (147)

with the identification

h(r̄) = −guu(r) , (148)

f(r̄) = h(r̄) (ρ,r)
2 . (149)

For the simplest choice ρ(r) = r ⇒ ρ,r = 1 we obtain r̄ = r and

f = h = −guu(r) . (150)

The corresponding expansion scalar is Θ = ̺,r/̺ = 1/r, and the Ricci tensor component (181)
is thus trivial, Rrr = Rabk

akb = 0, which means that the spacetime is (at least) of aligned Ricci
type I, cf. expression (102). It is an analogue of the classic Schwarzschild black hole solution
from the Einstein gravity (α = 0), as described in subsection 9.1.1. It is well known that such
spherically symmetric vacuum spacetime is of Weyl type D (see expressions (117)–(119) which,
for a constant Gaussian curvature K, simplify to Ψ2 = −m/r3).

Interestingly, as has been demonstarted numerically in [13, 14], in the pure Einstein–Weyl
gravity with quadratic curvature terms (α 6= 0), there exists an additional branch of static, spher-
ically symmetric solutions distinct from the Schwarzschild black holes. These non-Schwarzschild
black holes have

f 6= h ⇔ ρ,r 6= 1 , (151)

i.e, ̺ given by (147) can not be simply linear in the coordinate r (the affine parameter along
the geometrically privileged null congruence of the Robinson–Trautman geometry). To apply the
general results presented in this paper, we can now determine the algebraic type of such solutions.

Clearly, the expansion scalar Θ = ̺,r/̺ = ρ,r/ρ 6= 1/r. The Ricci tensor component (181) is
non-trivial, Rrr = Rabk

akb 6= 0, which means that the spacetime is of a general Ricci type.
The Weyl type follows from explicit expressions (86)–(100) which simplify considerably to

Ψ2S = 1
6 (

SR+Guu,r) =
1

6

(

2

ρ2
+
[

ρ2
(guu
ρ2

)

,r

]

,r

)

, (152)

where we have used the fact that the Ricci scalar of the transverse 2-space of a positive constant
curvature is SR = 2K/ρ2 with K = 1, cf. (108), and Guu = guu,r − 2(ρ,r/ρ) guu = ρ2(guu/ρ

2),r.
The spacetime is clearly of Weyl type D.

The corresponding Newman–Penrose scalar Ψ2 = − 1
2Ψ2S can be rewritten using the relations

(144), (148), (149), implying ∂r =
√

f/h∂r̄, as

Ψ2 =
1

12

(

− 2

r̄2
+

√

f

h

[

r̄2
√

f

h

(

h

r̄2

)′ ]′)

=
1

12

(

2

r̄2

[

− 1 +
f

h

(

h− r̄h′ + 1
2 r̄

2h′′
)

]

− 1

r̄

(f

h

)′
(

h− 1
2 r̄h

′)
)

, (153)
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where the prime denotes the derivative with respect to r̄. For the simpler Schwarzschild-like case
(150), that is f = h and r̄ = r, this reduces to

Ψ2 =
1

6 r̄2
(

− 1 + h− r̄h′ + 1
2 r̄

2h′′
)

. (154)

For f = h = 1− 2m/r̄ we obtain Ψ2 = −m/r3, in full agreement with expression (117).
Moreover, we observe from (153) that the general black hole spacetime in the Einstein–Weyl

gravity is asymptotically flat (Ψ2 → 0) when f → 1 and h→ const. as r̄ → ∞.

10 Summary

We found and described the possible algebraic structures of a general class of non-twisting and
shear-free spacetimes in four dimensions (1), that is, the complete Robinson–Trautman (and
Kundt) family. Our discussion was based on the explicit Weyl scalars (12)–(17) with (18)–(22)
which we obtained by projecting the Weyl tensor components onto the most suitable null tetrad.

Generically, such geometries are of Weyl type I, and the optically privileged null vector field
k = ∂r is always a principal null direction of the Weyl tensor.

We derived the necessary and sufficient conditions for all possible algebraically special types
such that the null direction k is a multiple PND. These identify the spacetimes of type II, subtypes
II(a) and II(d), type III, N, O, IIIi and D, see the explicit conditions given in the corresponding
subsections of section 6. In the subsequent section 7 we also analyzed the exceptional case when
the optically privileged null direction k remains a single PND. Such geometries can be of type I,
II or III. For all these algebraic types we found the corresponding four principal null directions.

These conditions can also immediately be applied to non-expanding Kundt geometries, see
section 8. Moreover, all our results can be used in any metric theory of gravity that admits
non-twisting and shear-free geometries.

The field equations impose specific constraints on admissible algebraic types. Therefore, we
investigated several examples in section 9. We analyzed (Weyl) algebraically special spacetimes
of the Robinson–Trautman class in Einstein’s general relativity, namely the Ricci type I solutions
(vacuum spacetimes, possibly with Λ, aligned electromagnetic field, or pure radiation in subsec-
tion 9.1.1), and spacetimes of a general Ricci type (free scalar field in subsection 9.1.2). Recently
identified static, spherically symmetric black holes in the pure Einstein–Weyl gravity were studied
in section 9.3.
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A Riemann, Ricci and Weyl tensors

The Christoffel symbols for the general Robinson–Trautman metric (1) are

Γr
rr = 0 , (155)

Γr
ru = − 1

2guu,r +
1
2g

rigui,r , (156)

Γr
ri = − 1

2gui,r +Θgui , (157)

Γr
uu = 1

2

[

− grrguu,r − guu,u + gri(2gui,u − guu,i)
]

, (158)

Γr
ui =

1
2

[

− grrgui,r − guu,i + grj(2gu[j,i] + gji,u)
]

, (159)

Γr
ij = −Θgrrgij − gu(i||j) +

1
2gij,u , (160)

Γu
rr = Γu

ru = Γu
ri = 0 , (161)

Γu
uu = 1

2guu,r , (162)

Γu
ui =

1
2gui,r , (163)

Γu
ij = Θgij , (164)

Γk
rr = 0 , (165)

Γk
ru = 1

2g
klgul,r , (166)

Γk
ri = Θδki , (167)

Γk
uu = 1

2

[

− grkguu,r + gkl(2gul,u − guu,l)
]

, (168)

Γk
ui =

1
2

[

− grkgui,r + gkl(2gu[l,i] + gli,u)
]

, (169)

Γk
ij = −Θgrkgij +

SΓk
ij , (170)

where SΓk
ij ≡ 1

2g
kl(2gl(i,j) − gij,l) are the Christoffel symbols with respect to the spatial coordi-

nates (determining the covariant derivative on the transverse 2-dimensional Riemannian space).
The Riemann curvature tensor components are

Rrirj = −
(

Θ,r +Θ2
)

gij , (171)

Rriru = − 1
2gui,rr +

1
2Θgui,r , (172)

Rrikj = 2gi[kΘ,j] − 2Θ2gi[kgj]u +Θgi[kgj]u,r , (173)

Rruru = − 1
2guu,rr +

1
4g

ijgui,rguj,r , (174)

Rriuj =
1
2gui,r||j +

1
4gui,rguj,r − gijΘ,u

− 1
2Θ

(

gij,u + gijguu,r + gujgui,r − gijg
rlgul,r + 2gu[i,j]

)

, (175)

Rruij = gu[i,j],r +Θ
(

gu[igj]u,r − 2gu[i,j]
)

, (176)

Rruui = gu[u,i],r +
1
4g

rlgul,rgui,r − 1
2g

klguk,rEli

+Θ
(

gui,u − 1
2guu,i − 1

2guiguu,r
)

, (177)

Rkilj = (12
SR −Θ2grr)(gklgij − gkjgil)

−Θ
(

gkleij + gijekl − gkjeil − gilekj
)

, (178)

Ruikj = gi[k,u||j] + gu[j,k]||i + ei[kgj]u,r

+Θ
(

grrgi[kgj]u,r + guu,[jgk]i − 2grlEl[jgk]i
)

, (179)

Ruiuj = − 1
2guu||ij + gu(i,u||j) − 1

2gij,uu + 1
4g

rrgui,rguj,r

− 1
2guu,reij +

1
2guu,(igj)u,r − grlEl(igj)u,r + gklEkiElj

− 1
2Θgij

[

grrguu,r + guu,u − grl(2gul,u − guu,l)
]

, (180)
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the components of the Ricci tensor are

Rrr = −2
(

Θ,r +Θ2
)

, (181)

Rri = − 1
2gui,rr + guiΘ,r −Θ,i + 2Θ2gui , (182)

Rru = − 1
2guu,rr +

1
2g

rigui,rr +
1
2g

ij
(

gui,r||j + gui,rguj,r
)

−2Θ,u − 1
2Θ

(

gijgij,u + 2guu,r
)

, (183)

Rij =
1
2
SRgij − gu(i,r||j) − 1

2gui,rguj,r − gij
(

grrΘ,r − 2Θ,u + 2grlΘ,l

)

+ 2gu(iΘ,j)

+Θ2
(

2gijg
rlgul − 2gijg

rr − 2guiguj
)

+Θ
[

2gu(i||j) + 2gu(igj)u,r − 2eij + gij
(

guu,r − 2grlgul,r − gklekl
)]

, (184)

Rui = − 1
2g

rrgui,rr − 1
2guu,ri +

1
2gui,ru + grlgu[l,i],r − 1

2g
rl(gui,r||l + gul,rgui,r)

+gkl
(

1
2guk,rgul||i + gk[i,u||l] + gu[k,i]||l − 1

2eklgui,r
)

+guiΘ,u +Θ
[

guiguu,r − gui,u

−grlgul,rgui − 2grl(gu[l,i] − 1
2gulgui,r) + grlgli,u

]

, (185)

Ruu = − 1
2g

rrguu,rr − grlguu,rl − 1
2g

kleklguu,r + grlgul,ru − 1
2g

klgkl,uu

+gkl(guk,u||l − 1
2guu||kl) +

1
2 (g

rrgkl − grkgrl)guk,rgul,r

+2gklgriguk,rgu[l,i] +
1
2g

klguk,rguu,l + gklgijEikEjl

+Θ
(

guuguu,r − guu,u
)

, (186)

and the Ricci scalar is

R = SR+ guu,rr − 2grlgul,rr − 2gijgui,r||j − 3
2g

ijgui,rguj,r

+2Θ,r

(

2guu − grlgul
)

+ 8Θ,u − 4grlΘ,l + 6Θ2guu

+Θ
(

4guu,r − 2grlgul,r + 3gijgij,u − 2gijgui||j
)

. (187)

The Weyl tensor components are

Crirj = 0 , (188)

Criru = 1
4 (−Gui,r + 2Θ,i) , (189)

Crikj = − 1
2gi[kGj]u,r + gi[kΘ,j] , (190)

Cruru = − 1
3

[

1
2
SR+ 1

2Guu,r +
1
2g

ijGui||j +
1
2g

ri(Gui,r − 2Θ,i)− 2Θ,u

]

, (191)

Criuj =
1
2

[

1
6 gij

SR+Gu[i||j] +
1
6gij

(

Guu,r + grlGul,r + gklGuk||l
)

− 1
2guiGuj,r

+guiΘ,j − 2
3gijΘ,u − 1

3gijg
rlΘ,l

]

, (192)

Cruij = Gu[i||j] − 1
2gu[iGj]u,r + gu[iΘ,j] , (193)

Ckilj = 1
6 (gklgij − gkjgil)

[

SR+Guu,r − 2gmnGum||n − 2grn(Gun,r − 2Θ,n) (194)

− 3
2g

mnGumGun − 4Θ,u

]

+ 1
4gkl

(

2Gu(i||j) +GuiGuj

)

+ 1
4gij

(

2Gu(k||l) +GukGul

)

− 1
4gkj

(

2Gu(i||l) +GuiGul

)

− 1
4gil

(

2Gu(k||j) +GukGuj

)

, (195)

Cruui =
1
2Gu[u,i] +

1
4g

klGuk(gui||l − gil,u)− 1
4g

kleklGui − 1
4g

rlgulGui,r

+ 1
2g

kl
(

gk[i,u||l] + gu[k,i]||l
)

+ 1
4g

rl
(

3Gu[l||i] −Gu(i||l)
)

+ 1
2g

rlgulΘ,i

− 1
6gui

[

SR− 1
2Guu,r − 1

2

(

grlGul,r + gklGuk||l
)

+ 2Θ,u + grlΘ,l

]

, (196)
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Cuikj = gi[k,u||j] + gu[j,k]||i + ei[kGj]u − 1
2

(

Gui||[kgj]u + gu[jGk]u||i +GuiGu[kgj]u
)

+ 1
2

[

− grrgi[kGj]u,r −Guu,[jgk]i + 2grrΘ,[jgk]i + gi[kGj]u,u

+grl
(

Gul||[jgk]i − 2gi[kGj]u||l −Gulgi[kGj]u

)

+gln
(

Gulgun||[jgk]i + gikgl[j,u||n] − gijgl[k,u||n]

+gikgu[l,j]||n − gijgu[l,k]||n − elngi[kGj]u

)]

+ 1
3 gi[kgj]u

(

1
2
SR+ 4Θ,u − 4grlΘ,l

−Guu,r + 2grlGul,r +
3
2g

lnGulGun + 2glnGul||n
)

, (197)

Cuiuj = − 1
2guu||ij − 1

2gij,uu + gu(i,u||j) − 1
2Guueij +

1
2guu,(iGj)u + gmnEmiEnj

− 1
2 gijg

kl
(

− 1
2guu||kl − 1

2gkl,uu + guk,u||l

− 1
2Guuekl +

1
2guu,kGul + gmnEmkEnl

)

+ 1
6 (guugij − guiguj)

(

SR+Guu,r − 2grlGul,r − 3
2g

klGukGul − 2gklGuk||l
)

− 1
4 guugij

(

SR+Guu,r − gklGukGul

)

+ 1
4g

rlgulGuiGuj +
1
2 guuGu(i||j) − grlEl(iGj)u

+ 1
2 gijg

rl
[

1
2gulGuu,r +Guu,l −Gul,u

− 1
2Gum

(

gmnGungul − grmGul − 4gmngu[l,n]
)]

+ 1
2

(

− grrgu(jGi)u,r −Guu,(igj)u + gu(jGi)u,u

+grlGul||(igj)u − 2grlgu(jGi)u||l − grlGulgu(jGi)u

)

+ 1
2 g

kl
[

Gukgul||(igj)u − eklgu(jGi)u + gu(jgi)k,u||l − gkl,u||(igj)u

+ 1
2

(

gujguk||il + guiguk||jl
)

− gu(jgi)u||kl
]

+ 1
3Θ,u

(

guugij + 2guiguj − 3grlgulgij
)

+grrgu(iΘ,j) +
2
3g

rlΘ,l

(

guugij − guiguj
)

. (198)

References

[1] I. Robinson and A. Trautman, Spherical gravitational waves, Phys. Rev. Lett. 4 (1960) 431–
432.

[2] I. Robinson and A. Trautman, Some spherical gravitational waves in general relativity, Proc.
Roy. Soc. A 265 (1962) 463–473.

[3] W. Kundt, The plane-fronted gravitational waves, Z. Physik 163 (1961) 77–86.

[4] W. Kundt, Exact solutions of the field equations: twist-free pure radiation fields, Proc. Roy.
Soc. A 270 (1962) 328–334.

[5] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt, Exact Solutions of
Einstein’s Field Equations (Cambridge University Press, Cambridge, 2003).
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[19] J. Podolský and R. Švarc, Algebraic structure of Robinson–Trautman and Kundt spacetimes
in arbitrary dimension, Class. Quantum Grav. 32 (2015) 015001 (34pp).

[20] R. A. d’Inverno and R. A. Russell-Clark, Classification of the Harrison metrics, J. Math.
Phys. 12 (1971) 1258–1263.
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