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In our previous paper [Phys. Rev. D 89, 124029 (2014)], we attempted to find Robinson-Trautman-type
solutions of Einstein’s equations representing gyratonic sources (a matter field in the form of an aligned
null fluid, or particles propagating with the speed of light, with an additional internal spin). Unfortunately,
by making a mistake in our calculations, we came to the wrong conclusion that such solutions do not exist.
We are now correcting this mistake. In fact, this allows us to explicitly find a new large family of gyratonic
solutions in the Robinson-Trautman class of spacetimes in any dimension greater than (or equal to) 3.
Gyratons thus exist in all twist-free and shear-free geometries, that is, both in the expanding Robinson-
Trautman and in the nonexpanding Kundt classes of spacetimes. We derive, summarize, and compare

explicit canonical metrics for all such spacetimes in arbitrary dimension.
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I. INTRODUCTION

The Robinson-Trautman class of spacetimes [1,2] and
the closely related Kundt class [3] are important families of
exact solutions to FEinstein’s field equations. They are
geometrically defined by admitting a geodesic, shear-free,
and twist-free null congruence. For the Robinson-Trautman
class, such a congruence is expanding, while for the Kundt
class it is nonexpanding.

In the usual dimension D = 4, these classes contain a great
number of famous solutions, namely, Schwarzschild-like
static black holes, accelerating black holes (C-metric),
Vaidya metric, Kinnersley photon rockets, spacetimes
with gravitational waves of various types (including well-
known pp-waves) propagating on various backgrounds
(Minkowski, de Sitter, anti—de Sitter, direct-product uni-
verses, etc.), and many other exact spacetimes. These are
vacuum solutions with any value of the cosmological
constant A, they admit pure radiation, electromagnetic fields
(both null and non-null), and other forms of matter. More
details and specific references can be found, e.g., in chapters
28 and 31 of [4] or chapters 18 and 19 of [5], respectively.

During the past decade, the large Robinson-Trautman
class of solutions was extended to any higher dimension
D > 4 for the case of an empty space with any A or aligned
pure radiation [6], for aligned electromagnetic fields [7],
and general p-form fields [8]. Similarly, extension of the
Kundt class to higher dimensions was presented in [9]; see
also [10-13]. Complementarily, all Robinson-Trautman
and Kundt solutions to Einstein’s equations for A-vacuum,
aligned pure radiation and gyratonic matter in lower
dimension D = 3 were recently found in [14].
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Gyratonic matter is a null field with internal spin/helicity.
It was first considered in 1970 by Bonnor [15] who studied
both the interior and the exterior solution of a “spinning
null fluid” in the class of axially symmetric p p-waves (see
also Griffiths [16] who studied neutrino fields). Such matter
is characterized not only by a specific energy density
profile, but also by a nonzero angular momentum density
profile. Spacetimes with localized spinning sources of this
kind (spinning null particles accompanied by impulsive
gravitational waves) moving at the speed of light were then
independently rediscovered and investigated in 2005 by
Frolov et al. [17,18]. These pp-wave-type gyratons in
D > 4 were subsequently studied in greater detail, and also
generalized to include A < 0 [19], electromagnetic field
[20], and various other settings including nonflat back-
grounds or supergravity models. Summary of these gyra-
tonic solutions can be found, e.g., in [21,22].

All the so-far-known spacetimes with gyratonic matter
sources belong to the Kundt class. Five years ago we asked
ourselves a question: are there gyratons in other geometries
as well? The most natural candidate to investigate was the
Robinson-Trautman class because it shares the twist-free
and shear-free properties. It differs only in having a
nonvanishing expansion of the privileged null congruence.
In our paper [23] we attempted to systematically study the
possible existence of Robinson-Trautman gyratonic solu-
tions (in any dimension) which would be analogous to
those known in the Kundt class. Unfortunately, by making a
mistake in evaluating the gyratonic energy-momentum
conservation equation, we came to the wrong conclusion
that such solutions do not exist. Here we are correcting this
specific mistake, and we explicitly derive a new large
family of gyratonic solutions in the Robinson-Trautman
class. Gyratons thus exist in all twist-free and shear-free
D > 3 geometries.
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In Sec. II we summarize the general form of nontwisting
shear-free geometries and Einstein’s field equations,
including the correct form of the gyratonic matter.
Complete integration of the field equations is presented
in Sec. III. The obtained Robinson-Trautman spacetimes
are summarized and discussed in concluding Sec. IV. In
particular, we compare the D >4, D=4, and D =3
cases. Moreover, in a compact and explicit form we present
the entire class of Kundt solutions with aligned gyratonic
matter in any dimension D, and we compare it with the
newly obtained Robinson-Trautman class.

II. GENERAL ROBINSON-TRAUTMAN
AND KUNDT GEOMETRIES AND
EINSTEIN’S EQUATIONS FOR ALIGNED
GYRATONIC MATTER

The metric of the most general D-dimensional
Robinson-Trautman or Kundt geometry can be written as

ds? = gpq(r, u, x)dxPdx? + 2gup(r, u, x)du dx?
—2dudr + g,,(r, u, x)du? (1)

[see Eq. (1) in [23]], where x is a shorthand for (D —2)
spatial coordinates x”. Recall also that the nonvanishing
contravariant metric components are gP? (an inverse matrix
to .gpq)’ gt=-1, gt = gpq.gmp and ¢ = —g,, +
9""9upGug ~ (s0 that g, =g,,9" and g, =
—9" + 9,497 g""). The null vector field k = 9, generates
a geodesic and affinely parametrized null congruence
which is  twist-free and  shear-free, provided
9pgr = 20g,,. In the Robinson-Trautman class of geom-
etries, this congruence has a nonvanishing expansion
® # 0, while ® = 0 defines the Kundt class.

Einstein’s equations for the metric g, read
R, — %Rgab + Ag,, = 8xT,;,, where A is any cosmologi-
cal constant. We study spacetimes with a gyratonic matter
aligned with k [15,17,21]. In the coordinates of (1), the
nonvanishing components of the energy-momentum tensor
T,, are

Tu(roux),  Typ(rou.x), ()
where T,, corresponds to the classical pure radiation
component, while T,, encodes inner gyratonic angular
momentum. Since its trace T = ¢**T,;, vanishes, Einstein’s
equations simplify to

2
Ry, = m/\gab + 87T 4p. (3)

In our previous paper [23], we explicitly calculated all
complicated components of the Ricci tensor R,;,, namely,
Eqgs. (32)-(37). While these are correct, we made an
unfortunate mistake in evaluating the conditions T‘”;) =0

following from the Bianchi identities. Indeed, Eqgs. (54) and
(55) in [23] are wrong. Their correct form is

Tup,r + (D - 2)®Tup =0, (4)
Tuu,r + (D - 2)®Tuu = gquuqu + grp,rTupv (5)

where the symbol | denotes the covariant derivative
with respect to the spatial metric g,,, that is, T

Typg— Tumsrglq’ in which Srglq = %gmn(zgn(p.q) = 9pgn)
are the Christoffel symbols with respect to the spatial

coordinates only.

upllg =

III. COMPLETE INTEGRATION
OF THE FIELD EQUATIONS

As in [23], we will now perform a step-by-step integra-
tion of the Einstein field equations (3) for ® # 0. Some
results will remain the same, but due to the corrected
constraints (4) and (5), gyratonic solutions are actually
found to exist.

A. The equation R,,. =0

This field equation remains unchanged, providing us
with the expansion scalar

o= (6)

and thus the (D — 2)-dimensional spatial metric

9Ipq = rzhpq(”’x)’ (7)

which are the same expressions as Egs. (57) and (58)
of [23].

B. The equation R,, =0

Also this equation has a correct solution given by
Egs. (61) and (62) of [23], that is,

g7 = e"(u,x) + r'=P f9(u. x), (8)
and
Gup = 12, (u,x) + r7Lf ,(u,x), 9)
respectively. Here e, = h,,e? and f, = h,,,f* are arbitrary
functions of u and x.

Using (6)—(8), we can fully integrate the corrected
energy-momentum conservation equations (4) and (5),
yielding

T,, :ijZ_D, (10)

Ty = NP =7, /"0 4 fr 7,722 (11)
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where 7 ,(u,x) and N(u,x) are arbitrary integration
functions of u and x, and J Pip = hra g plg- These expres-
sions rectify wrong Egs. (63) and (64) of [23].

C. The equation R, = - ;25 A
Since this field equation is unaffected by the above-

mentioned mistakes, Eq. (67) of [23] is correct, so that the
corresponding metric function is

2A
rro_ br3—D _ 2
g a—+ br +cr (D—l)(D—Z)r
D-3 D-1
o g T (12
where
2 1
€= "D-2 <enﬂ - Ehmnhmn,u> > (13)

which leads to

Guu = =97 +r?ele, +2rPel f, + rZ(Z‘D)fpr. (14)

D. The equation R, = l%Agpq

This Einstein field equation was also correctly evaluated
and integrated in [23]. It turns out that in any dimension
D > 4, necessarily

fr=0 (15)

for all (D —2) spatial indices p (interestingly, in lower
dimension D = 3, the single function f remains arbitrary;
see [14] and Sec. IV B below). Consequently, the most
general Robinson-Trautman line element takes the form
ds? = r?h,,dxPdx + 2r?e ,dudx? — 2dudr
+ (rPefe, — g")du?, (16)

where

rro__ 3—-D _ 2A
g =a+brP+ecr (D—l)(D—Z)rZ' (17)

The functions £, and e, are constrained by the equations

R
Ropq :D_2hpq’ (18)
1 1
Ehpq.u =€pllg) + EChpq’ (19)

that are also imposed by the field equation R, = ﬁ NGy
together with the relation

R

SNCESED 20

Here, R = h"7R,, is the Ricci scalar curvature of the
spatial metric /,,, which is the r-independent part of g,,.
Notice that due to (7), the corresponding Ricci tensor is
R,, = °R,,» while R =5Rr*. Due to (18), the transverse
(D —2)-dimensional Riemannian space must be an
Einstein space.

E. The equation R, = ;%5 Ag,, + 87T,

This Einstein equation now takes the form

1 D-3 1
— R _ n _ hmnh
D-2"""Dp 2 (e In =7 ’””*“)ﬁp
+ B (Ronfp ) + €lm,p]in)

(D —4) I T
3D —2)D=3) " T3

1 1
+ [(D -2) <e”e[,,.p] =3 (e”en),p + 2e"hnp,u>

1
+e, (6",, _Ehmnhmn.u>:|r: 877,'Tup. (21)

The gyratonic term 7', on the right-hand side is given by
the corrected expression (10), namely, T',, = J ,r*~?. This
gives us four conditions:

1
Rép + (D - 3) <e”|n - Ehmnhmn,u)
P

= (D =2)R" (hypjp ulj) + €mpin) =0, (22)
(D-4R, =0, (23)

b,=—1627,  (24)

1 1
(D - 2) <ene[n,p] - E (enen),p + 5 enhnp.u>
n 1 mn
+ ep e [In — Eh hmn,u =0. (25)

In our previous paper we used the wrong expression
T,, = J,r, which led us to the wrong relations b , =0
and subsequently 7, = 0; cf. Egs. (86) and (92) in [23].
Thus, we were misled to the incorrect conclusion that there
are no gyratonic solutions in the Robinson-Trautman class
of geometries. But such solutions do exist since nonzero
J , is obviously allowed by admitting a spatial dependence
of the function b(u, x) in (24).

Moreover, as shown in our paper [23], complicated
Eqgs. (22) and (25) are identically satisfied. Equation (23)
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clearly restricts the dependence of the spatial Ricci scalar R
on the spatial coordinates x”, namely,

R =R(u) for D >4, (26)

R =R(u,x) for D=4. (27)

There is thus a significant difference between the D = 4
case of classical relativity and the extension of Robinson-
Trautman spacetimes to higher dimensions. The remaining
Eq. (24) gives

Jy=——>h,. (28)
|

Therefore, in any dimension D > 4 we obtain the gyratonic
matter component

Tup = ———b,r>P. (29)

F. The equation R,, = 525 Ag,, + 87T,

This final equation determines the relation between the
Robinson-Trautman geometry and the pure radiation matter
field represented by the profile NV (u,x) in (11).

For (6)-(9) and (14) with (15), the Ricci tensor compo-
nent R,, becomes

1 1
Ruu = _grrgrr,rr + E |:en|n - Ehmnhmn.u + (D - Z)grrr—l - Ze”enr] grr’r

1
+eh |:grr,r + E (D _ 6)grrr—l:|

1 1
+ = hmngrer”nr—Z 4+ - (D _ 2)grryur—l

) 2
n rr mn 1 1
_(D - 3)6 ey +h Cmulln — 5 (epep)HmHn - Ehmn.uu
R 1 1
+h""h e[p,m] + Ehpm,u e[q.n] +§hqn,u
1 m,n n p n 1 mn
+ E(D —2)(e"e" ., — € (epep)’n) —ePe,| e, — Eh R | | 7- (30)

Employing the explicit form (17) of ¢g'" with the help of (19) we obtain

1

2 1 1 1
Ruu = —Aguu+_ |:(D - 2)bu +§(D - 2)(D - l)bC_Denb,n:| rz_D+§Abrl_D +5Aar_2

D -2 2

1
—|—5 (D -2)(a,+ac)+ (D—-6)e"a, + Aclr™!
1 1
+§ (D —=2)(c, +c?) +e",c + 3 (D—4)e"c,—(D—3)ePe,a

1 1

1
- {ewln =5 o =5 (€7 €p) mpn + h”qepmeq"} +5(D=2)[e"e = €"(ePey) , = e"enclr. (31)

2

where a is given by (20), c is given by (13), and Aa = h™"aj|,,, denotes the covariant Laplace operator on the (D — 2)-

dimensional transverse Riemannian space.

Now, in the Appendix of our previous work [23] we proved the nontrivial identities

m,n
e-e hmn,u

—e"(ele,), —e"e,c =0, (32)

1

1 1 1
E(D _2)(C.u =+ Cz) + eanC +§(D —4)6"6’” - (D - 3>epepa+hmn €m.ulln __hmn,uu _E(epep)HmHn + hpqepl\mean =0,

1 n.o— pnm = —
Recall that e In = h Cmln> €pllg = €pg

Srm — _ Strn
en Thgs pllg = apg — anT

2
(33)

bg» €IC.; see [23] for more details.
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(D-2)(a, +ac)+ (D —-6)e"a, + Ac = (D —4)e"a,,
(34)

which are valid in any dimension D > 4. These appear in
the terms in (31) proportional to r, %, and r~!, respectively.
Einstein’s equation R, = ﬁAguu + 8xT,, with (11) thus
simplifies to”

1
(D-2)b, +§(D—2) (D=1)bc=De"b , | r*~P +Abr'~P

+Aar?+(D-4)e"a,r"' =16a[N'r?=P - J7) ,r'=P].
(35)

Moreover, due to (28) the gyratonic matter functions 7,
always obey the “divergence relation”

~16277), = Ab, (36)

so that the =P part of Eq. (35) is identically valid. Also,
(D —4)a, = 0in any dimension D > 4; see Eqgs. (23) and
(20). Consequently, the field equation (35) reduces to

1
(D=2)b, + 5 (D=2)(D—1)bc — De"b,, | r*=P
+Aar? =16z NrP. (37)

The factor Aa proportional to =2 is always zero in any
D > 4 due to (26), while in the D = 4 case it is combined
with the terms proportional to r>~? = r~2. The last
Einstein’s field equation thus reads

1
(D-2)b, +§(D—2)(D— 1)bc—De"b,, =16z N forD >4,

(38)

1
A(§R> +2b, +3bc —4e"b,, =16z N for D = 4.

(39)

This is a complete and explicit solution for gyratons with
aligned pure radiation in the Robinson-Trautman class of
geometries (16) in four and any higher dimension D.

According to (28), specific properties of the corresponding
gyraton are encoded in the metric function b(u, x) and in the
related off-diagonal functions e, (u, x). The gyratonic matter
is absent when J = 0, which is equivalent to b, p= 0. In
other words, there are no gyratons if (and only if) the function
b(u) is independent of any spatial coordinates.

“Recall that necessarily 7 = 0; see (15).

IV. SUMMARY AND DISCUSSION

By fully integrating all Einstein’s equations we explicitly
proved that there are gyratons in the Robinson-Trautman
class, as they are in the Kundt class. A null matter field in
these geometries can thus have its “internal spin”/angular
momentum.

A. Robinson-Trautman gyratons in D > 4

The most general D-dimensional (D > 4) Robinson-
Trautman line element in vacuum, with a cosmological
constant A, and possibly the pure radiation matter field with
an additional gyratonic component, characterized by

Ty =J,7P. (40)
Tuu:er_D—ijprl_D, (41)

can be written as
ds? = r2h,,dxPdx? + 272, dudx? —2dudr + g,,du?, (42)

where

2 n 1 mn
+m< [In —Eh hmn’u>r
27 ,
el S 43
*QD—U@—@*e%)“ (43)

with the functions #,,(u,x), e,(u,x), and b(u,x) con-
strained by the field equations (18), (19), (24), and (37),
that is

h
Rpg =55 R (44)

1 hl"i n 1 mn
€lolla) 5 e = 55 (e =5k hmn,u>, (45)

—b,=1617, (46)

AR n 1 mn
m‘@‘”(e I =5 hmn,u>b
4 (D=2)b,~De'b, = 16zN.  (47)

The first equation (44) restricts the Riemannian metric
h,q of the transverse (D — 2)-dimensional space covered by
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the coordinates x” (with R, and R being its Ricci tensor
and Ricci scalar). Any Einstein space metric £, is admitted.
The second constraint (45) imposes a specific coupling
between this spatial metric /,,, and the off-diagonal metric
components represented by (D — 2) functions e”.
Equation (46) directly expresses the gyratonic matter
profile functions 7 ,(u, x) in (40) in terms of the spatial
derivatives of b(u,x) [recall also the relation (36) which
enables us to express the function J Plip in (41) as

— ﬁ Ab], while Eq. (47) effectively relates these functions
to the pure radiation profile N (u, x).

In particular, in any higher dimension D > 4, the field
equation (47) simplifies to (38), while in the usual D = 4
case it takes the form (39). In the no-gyraton (J, = 0)
case, that is, for b.p =0, Eq. (39) reduces exactly to the
classical Robinson-Trautman equation [see [4,5] with the
identification a =1R =A(logP) =K, b=-2m(u),
¢ = —2(log P),,, where K is the Gaussian curvature of
the spatial metric h,, = P~25,,]. Equation (38) generalizes
the field equation previously derived in [6] to admit the
gyratonic matter in D > 4.

Vacuum spacetimes are obtained when J, =0 =N
First of all, this arises when » = 0 [and R is constant,
which is true in any D > 4 due to (23)].

B. Comparison to Robinson-Trautman
gyratons in D=3

In our recent work [14], we integrated Einstein’s field
equations for a general three-dimensional Robinson-
Trautman metric in vacuum, with a cosmological constant
A, and possibly a pure radiation field and gyratons. The
matter field takes the form

- J
Tue =" (48)
P(P P?
T = N _E “27)" + f 3j , (49)
r I r

where N (u, x) and J(u, x) are functions determining the
(density of) energy and angular momentum. The corre-
sponding generic metric can be written in the form
2
ds? = %dﬁ +2(er” + f)dudx — 2dudr
+ (—a+2[P(Pe) .+ (InP) ,|r + (A + P*e*)r?)du?.
(50)

The functions P(u,x), e(u,x), f(u,x), and a(u,x) are
constrained just by two equations, namely,

a,=cf =2f,—16x7J, (51)

a,=ac+Ac+2(A+P*e*)P(Pf),+3P*f(P?e?),
—2Pfe ,—P*e(4f ,—cf +48nJ)+ 162N, (52)

where Ac = P(Pc,), is the transverse-space Laplace
operator applied on the function ¢, defined by c=
2[P(Pe), + (InP) ].

Generically, by prescribing an arbitrary gyratonic func-
tion J (as well as any metric functions P, e, f) we can
always integrate (51) to obtain a(u, x). Subsequently, its
partial derivative a, (and other given functions) uniquely
determines the pure radiation energy profile AV via the field
equation (52).

It is remarkable that in D = 3 the function f(u, x) in the
metric (50) remains arbitrary and, in general, nonvanishing.
This is an entirely new feature which does not occur in
dimensions D > 4. Indeed, it was demonstrated in [6—8]
that for the Robinson-Trautman class of spacetimes in four
and any higher dimensions necessarily f, =0 for all
(D —2) spatial components. In this sense, the D = 3 case
is surprisingly richer than the D > 4 cases.

In the specific subcase f = 0, the metric (50) basically
reduces to the form (42) and (43) (where, of course, R = 0)
with the two remaining field equations (51) and (52)
simplifying considerably to

a,=-16z7, (53)
a,=ac+ Ac—48zP*eJ + 16zN. (54)

Since a here corresponds to b in (43), these two equations
are very similar to Egs. (46) and (47). The only difference is
the additional term Ac in (54). In fact, it is not possible to
set D = 3 in (47) because in this number of dimensions
the terms in (31) proportional to r>~? and r~! combine
together, introducing thus the term Ac into the correct field
equation (54).

C. Comparison to Kundt gyratons in D > 3

Finally, it is useful to compare the newly found complete
class of Robinson-Trautman-type (® # 0) gyratons in any
dimension D with the most general gyratonic solutions
in the closely related Kundt family (® = 0) of spacetimes,
completing thus the derivation of all solutions with
aligned gyratonic matter in any nontwisting and shear-free
geometry.

We obtain the most general Kundt gyratons by a direct
integration of the field equations, using the explicit form of
the Ricci tensor components which we presented in [23].
By setting ® = 0, they simplify considerably. First, from
the geometric relation g,,, =20g,, we immediately
obtain g,, = h,,(u,x) independent of r, instead of (7)
in the Robinson-Trautman case. The second field equation
R,, =0 for ® =0 yields g,, = e, + f,r, so that g7 =
e? + fPr (recall that e? = hPle,, fP = hPif ). The gyra-
tonic/pure radiation matter field is then obtained by
integrating (4) and (5) as

044004-6



GYRATONS IN THE ROBINSON-TRAUTMAN AND KUNDT ...

PHYS. REV. D 99, 044004 (2019)

T, =Jp, (55)

Ty =N+ (TP +fPT )1, (56)

where 7, and N are arbitrary functions of u and x.
The Einstein’s equation R,, = —%A gives g, =

ar* + br +c, with®

2A 1
azﬁ—l-i(f”up +f7fp)s (57)

so that the Kundt metric takes the form

ds? = h,,,dxPdx? 4 2(e, + f,r)dudx? — 2dudr
+ (ar?* + br + c)du. (58)

The next field equation R,, = ﬁ/\gm yields just one
constraint, namely,

2A
R ——h

1
Pa = p_9o ra T frg: WherequEf(qu)+§fpfq-

(59)

It couples the Ricci curvature R,, of the (D —2)-
dimensional spatial metric £, to the tensor f ,, constructed
from the functions f, determining the metric components
Gup- The trace of (59) is R = 2A + f7, +%f”fp, which
enables us to rewrite a as

I D-4 1
— R-ZTINf o, 60
a=yR=p Mgy (60)

Evaluating the field equation R,,, = ﬁ Agup + 8xT,,, we
obtain the following two conditions:

1
ap 45 o+ L) = 2" Finp) = B Fim plin

2A
+ o fy =0, (61)
b,p _fp,u - en(anp - prHn _fpfn)

1
+fp <€ [|n _Eh hmn,u)
= f"eullp = 20" (Rynfp i) + €lm.pljn)

4N
+m€p :—16ﬂ'jp (62)

Effectively, they determine the spatial derivatives of the
metric functions a and b, respectively. The last Einstein

3 .
The meanings of a, b, ¢, e, and f, are here, of course,
different from those in the Robinson-Trautman case.

equation R, = 525 Ag,, + 8xT,, contains terms propor-

tional to 72, r', and r°. Separately, they form three

constraints, namely,

Aa + anna +3fa, +2f"f,a— thnhqu[p,m]f[q,n] =0,
63)

(
1
Ab+ b, +4e"a, +2a <e”|n - 2hm”h,,,,w)
+ 4fnena - 2fnfn,u - 4fnemf[n,m]
- thnfm,an - 2hmnhqu[p.m] (Ze[q,n] + hqn.u)
= —162(J7), + £7T ). (64)

1
Ac — annc - fnC,n + 2e”b,,, +b <€n|n - Ehmnhmn,u>

+ hmnhmn,uu + 2enena - enenfmfm + enfnemfm
- Zenfn,u - 4fn€me[n,m] - thnem,an

1 1
— 2R P4 <€[p’m] + zhpm,u) <e[q,n] + thn,u)

= —16zN. (65)

Surprisingly, a lengthy calculation [using (57) and (59),
standard properties of covariant derivatives, the
identity (A.15) from [23], and also the Bianchi identities]
reveals that Egs. (63) and (64) are, in fact, identically
satisfied as a consequence of previous Egs. (61)
and (62) (As shown in [24], see footnote 8, the same is
true for the Kundt spacetimes with aligned electromagnetic
field.). We thus conclude that the most general Kundt
metric with aligned gyratonic matter can be written in the
form (58) with (59), in which the metric function a given by
(60) is constrained by (61), the function b is determined
by (62), and the function c satisfies Eq. (65). The particular
subcase D = 3 is presented and discussed in more detail
in [14].

There is a great simplification in the case when
fp =0 for all p. In fact, it was shown in our previous
work [9] that this is a geometrically distinct subclass of the
Kundt class. The complete family of such gyratonic
solutions reads

ds? = hpgdxPdx? + 2e,dudx? — 2dudr

2A
+ (D_2r2+br—|—c)du2, (66)

where, as in the Robinson-Trautman case [cf. (18)], &, is
the spatial metric of any Einstein space,

2A

r=p_2"

R =2A, (67)

rq
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Eq. (61) is satisfied identically, and Egs. (62) and (65) for
the functions b, ¢ reduce to

4N
b p = 20" (i) + €m.pljn) +

ﬁep:—16ﬂ'jp,

(68)

1
Ac+2e"b,+b <ean - Eh’"”hmn,u) + 0" R i

4A
+D_2€ € —2h"" e y|jn
| 1
_ 2k (e[p,m] +5hpm.u> (e[q,,l] +§hq,,,,,) — 162N,
(69)

respectively. Equation (68) relating b , to J, is similar to
Eq. (24) in the Robinson-Trautman case, while Eq. (69)
relates the metric function ¢ to N. The corresponding
gyratonic matter takes the form

Tup =T ps (70)
Tus =N+ TP)pr. (71)

In fact, this f,, = 0 subclass of Kundt spacetimes (66)—(71)
contains all particular gyratonic solutions discussed in the
literature so far; see [21,22] for a review and a list of
references.
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