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Abstract
Impulsive gravitational waves in Minkowski space were introduced by Roger Penrose
at the end of the 1960s, and have been widely studied over the decades. Here we focus
on nonexpanding waves which later have been generalized to impulses traveling in
all constant-curvature backgrounds, i.e., the (anti-)de Sitter universe. While Penrose’s
original construction was based on his vivid geometric “scissors-and-paste” approach
in a flat background, until recently a comparably powerful visualization and under-
standing has been missing in the case with a cosmological constant � �= 0. Here we
review the original Penrose construction and its generalization to non-vanishing� in a
pedagogical way, as well as the recently established visualization: A special family of
global null geodesics defines an appropriate comoving coordinate system that allows
to relate the distributional to the continuous form of the metric.
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1 Introduction

In this paper we would like to pay tribute to Sir Roger Penrose for his lifelong con-
tribution to mathematical physics and to general relativity, in particular. The list of
fundamental ideas, concepts and methods he has shaped is incredibly vast, ranging
from his celebrated singularity theorem and his cosmic censorship hypotheses to the
Newman–Penrose formalism and twistor theory, to name only a few. Here we wish to
review yet another topic in mathematical relativity he has pioneered and which is still
an active area, namely impulsive gravitational waves.

It was at the end of the 1960s when Roger Penrose introduced this topic in [1, 2].
The work [2] actually is a written version of a lecture series delivered at the Battelle
Seattle Research Center in the summer of 1967 on differential geometry, spinors and
spacetime singularities. Impulsive planewaves appear there on page 198 as an example
of a spacetimewhich does not possess aCauchy surface, simplifying an earlier example
of an extended plane wave given in [3], which exploits the focusing effect the wave
exerts on null geodesics. Such impulsive waves are introduced as idealized versions of
sandwich waves with infinitesimal duration but still producing an effect in the sense
that the wave profile is a Dirac-delta. Since such metrics clearly do not satisfy the
usual regularity assumptions for spacetimes which possess a delta-function curvature
on a hypersurface,1 Penrose also described a geometric construction using a vivid
visualization that leads to a continuous metric, which models the same situation. This
construction was more explicitly given in [1, p. 82f.] where also the term “scissors-
and-paste” occurs for the first time. The focus of this work, however, was to employ
impulsive pp-waves as an example illustrating the construction of spacetime twistors.

Finally, Penrose’s seminal paper [4], which was a contribution to the volume in
honour of J. L. Synge, was entirely devoted to the geometry of impulsive waves in
Minkowski space. It is here that the continuous metric is for the first time given explic-
itly (in the plane wave case), and that also spherical impulsive waves are considered.
Again, the geometry of the (single) null wave surface is studied using spinors.

1 These assumptions put on the metric are that it is C0 everywhere, but fails to be C3 on a hypersurface.
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From there on, impulsive gravitational waves have been used in many contexts as
models of short but violent bursts of gravitational radiation. Over the years they have
attracted the attention of researchers in exact spacetimes, who have widely generalized
the original class of solutions, of particle physicists, who have used them as toymodels
in quantum scattering, and of geometers, who have used them as relevant key-models
in low regularity Lorentzian geometry.

Personally, the abovementioned works of Penrose have been a source of inspiration
for us during many years. It is thus an honour for us to review Penrose’s geometric
constructions and some of its generalizations in this contribution. In particular, we
will concentrate on nonexpanding impulsive gravitational waves in (anti-)de Sitter
space, and put the respective geometric constructions in the context of low-regularity
Lorentzian geometry.

More precisely, we will recall Penrose’s ingenious “scissors-and-paste” construc-
tion (nowadays and in the following called “cut-and-paste” method) of impulsive
waves in flat space in Sect. 2. Then, in Sect. 3 we will briefly discuss the distributional
as well as the continuous metric forms for impulsive pp-waves in Minkowski space
[5], and also their interrelation. In fact, we sketch the consistent mathematical way of
[6] looking at the “discontinuous coordinate transform” between them. In Sect. 4 we
move on to explain the generalization of the Penrose construction to nonexpanding
impulsive waves in (anti-)de Sitter space [7] and explicitly derive, again, the distribu-
tional as well as the continuous form of the metric. In Sect. 5 we turn to discussing
the interrelation between these two metric forms by studying a special family of null
geodesics crossing the impulse. These recent calculations [8] finally lead to a geo-
metric and vivid picture which we will present in Sect. 6, generalizing the original
visualization of Penrose to the case � �= 0.

2 Penrose’s construction of plane and spherical impulsive waves in
Minkowski space

In this section we recall the beautiful geometric construction of impulsive waves
propagating in flat space given by Roger Penrose in [1, 2] and, most importantly, in
[4]. The basic idea is the following:

Minkowski space is “cut” along a null plane into two “halves”, which are then re-
attached with a “warp”, given by the so-called Penrose junction conditions. This “cut-
and-paste” approach leads to the construction of an impulsive pp-wave. In particular,
Penrose considered a specific plane wave.

In the samework [4], Penrose also constructed impulsive spherical wave as a single
sphere of curvature that expands at the speed of light. In this case, Minkowski space
is cut along a null cone, and the junction conditions are more involved.

In both cases, the Penrose geometric recipe for the construction of an impulsive
wave in Minkowski space M is the following:
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Fig. 1 Minkowski space is cut
into two parts M− andM+
along a null planeN . These
parts are then re-attached with a
“warp” in which points are
arbitrarily shunted along the null
generators of the cut, and then
identified. Such a construction
generates an impulsive plane
gravitational wave

• cut the space M along the null plane or null cone N using “scissors”,
• shift the two resulting half-spaces M−, M+ along the cut with a “warp”,2

• paste them together identifying the corresponding boundary points in N .

Let us now be more specific and present this construction explicitly using the most
natural coordinates for such a procedure. We start with the plane wave case.

2.1 Plane impulsive waves

In this case the usual null coordinates of flat space are employed, namely

U = 1√
2

(t − z) , V = 1√
2

(t + z) , η = 1√
2

(x + i y) , (1)

in which the Minkowski metric takes the form

ds20 = 2 dη dη̄ − 2 dU dV . (2)

Now this spacetime M is cut along the null plane N given by U = 0, and the half-
spaces M− and M+ are defined by U < 0 and U > 0, respectively, see Fig. 1.

The warp at U = 0 is then given by a deformed shift along V , specified by an
arbitrary functionH(η, η̄), while keepingη (that is x, y) fixed. ThesePenrose junction
conditions at U = 0 are explicitly given by

(V, η, η̄
)
M− = (V − H(η, η̄), η, η̄

)
M+ . (3)

Such an identification of the boundary points leads to an impulsive plane wave char-
acterized by the (arbitrary) real function H(η, η̄), as we will see more explicitly in
Sect. 3.

2 Here we re-attach N to bothM− and M+, and consider them as manifolds with boundaryN .
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Fig. 2 Minkowski space is cut
into two parts M− andM+
along a future null coneN . The
parts are then re-attached with an
arbitrary “warp” by identifying
points on the two boundaries.
Such a construction generates an
impulsive spherical wave

2.2 Spherical impulsive waves

Toobtain spheres expanding at the speed of light, alternative coordinates ofMinkowski
space (2), namely

U = U + ζ ζ̄ V , V = V , η = ζ V , (4)

must be employed in which U = 0 represents a null cone N . In fact, these are the
Robinson–Trautman coordinates

ds20 = 2 V 2 dζ dζ̄ − 2 dU dV , (5)

where V = 0 labels the vertex of the cone, from which the spherical impulse expands
(these coordinates degenerate along t = −z). The “half-spaces”M− andM+, again
given by U < 0 and U > 0, are now the interior and the exterior of the null cone,
respectively, see Fig. 2.

The warp at U = 0 is performed by the Penrose junction conditions

(
V , ζ, ζ̄

)
M− =

( V

|h′| , h(ζ ), h̄(ζ̄ )
)

M+ , (6)

where h(ζ ) is an arbitrary holomorphic function of the complex coordinate ζ (which
is actually a stereographic representation of the spherical angles θ, φ on the expanding
impulse). Such an identification of the boundary points represented by the mapping
ζ �→ h(ζ ) leads to an impulsive sphericalwave,whose specific character is determined
by h(ζ ).

More details and many references can be found in Chapter 20 of [9], in the review
[10], or in [11]. Recent summaries of nonexpanding impulsive waves are contained in
[12], and of expanding (spherical) impulsive waves in [13].

Our present contribution concentrates on nonexpanding impulses propagating in
Minkowski, de Sitter and anti-de Sitter spaces (maximally symmetric vacuum space-
times with any value of the cosmological constant �), and is based mainly on our
recent papers on this topic [14, 15], and most of all [8].
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3 Impulsive pp-waves

In this section we wish to discuss planar impulses in flat Minkowski space. In fact,
these impulsive plane-fronted waves with parallel rays geometrically belong to the
famous family of pp-waves [9, 16].

3.1 Continuous and distributional metric forms

In his work [4] Roger Penrose not only introduced the geometrical “cut-and-paste”
construction method (described in Sect. 2.1) but also presented both a continuous and
a distributional metric form of impulsive pp-waves, and their mutual relation.

While in [4] only aparticularwarping functionwas considered explicitly, namely the
quadratic expressionH = η2 + η̄2 (which enters themetric (11) below), the procedure
also works for the complete family of pp-waves parametrized by an arbitrary function
H(η, η̄). Indeed, extending Penrose’s original idea we may apply to the flat metric (2),
that is to ds20 = 2 dη dη̄ − 2 dU dV , the transformation

U = u ,

V = v + �(u) h + u+(u) h,Z h,Z̄ ,

η = Z + u+(u) h,Z̄ ,

(7)

where
h ≡ h(Z , Z̄) (8)

is any smooth enough real-valued function of the complex variable Z and its complex
conjugate Z̄ . Moreover, u+ is the (Lipschitz) continuous kink function, while � is the
(locally bounded, i.e., L∞

loc) Heaviside step function

u+(u) =
{
0 for u ≤ 0

u for u ≥ 0
, �(u) =

{
0 for u < 0

1 for u > 0
. (9)

Therefore, h(Z , Z̄) = h(η, η̄) at u = 0, which may be identified with H(η, η̄).
If (7) is applied separately to (2) for u < 0 definingM− (where it is just an identity

U = u,V = v, η = Z ) and to u > 0 defining M+, the metric becomes

ds2 = 2
∣∣dZ + u+(u)(h,Z̄ Z dZ + h,Z̄ Z̄ d Z̄)

∣∣2 − 2 du dv . (10)

This is the continuous Rosen form of a pp-wave [5, 17], which is impulsive due to
the (mere) Lipschitz continuity of the coefficient u+.3

3 Rosen presented this type of the metric only for (extended) plane waves, which are a special subcase of
the complete family of pp-waves.
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Interestingly, applying the transformation (7) to (2) for any u ∈ R we formally get
the metric with the Dirac delta δ(U),4

ds2 = 2 dη dη̄ − 2 dU dV + 2H(η, η̄) δ(U) dU2 . (11)

This is theBrinkmann form of a pp-wave, which is impulsive due to it being explicitly
distributional in U . Its warping metric function is given by H(η, η̄) ≡ h(Z , Z̄)

evaluated at u = 0 .
Moreover, it can be immediately observed that the transformation (7) is discon-

tinuous due to the presence of the Heaviside function �(u) entering V , which
exactly represents the Penrose junction conditions (3), namely

(V, η, η̄
)
M− =(V − H(η, η̄), η, η̄

)
M+ . Recall that there is no change in η at U ≡ u = 0 because

η(Z , Z̄) given by expression (7) is continuous.
There are thus close relations between the continuous Rosen metric form (10), the

distributional Brinkmannmetric form (11), and the Penrose junction conditions (3) for
impulsive pp-waves. However, at this stage, these relations have to be considered only
formal, because they involve distributions and also their products. A more rigorous
treatment of the related mathematical subtleties occurring in low regularity is thus
required to clarify exact meaning of these relations.

3.2 Rigorously relating the continuous and distributional metric forms

To begin with, we discuss the regularities of the involved metrics. The continuous
form (10) of the impulsive pp-wave is actually locally Lipschitz continuous, a class
of metrics which is often denoted by C0,1 or C1−. Such metrics are well within the
Geroch–Traschen (or GT) class of metrics [18] which possess regularity H2

loc ∩ L∞
loc

and are uniformly nondegenerate [19, 20]. In their classical paper [18] Robert Geroch
and Jennie Trashen have shown that such metrics allow to (stably) define the Riemann
tensor as a tensor distribution, and that they are well-suited to describe spacetimes
which possess a distributional curvature supported on a hypersurface. This is in fact
the case for the metric (10) which has the Riemann and the Ricci tensor proportional
to δ(u), and hence its curvature concentrated on the impulse.

On the other hand, the distributional form of the impulsive pp-wave metric (11)
clearly is outside the GT-class, and hence there is no consistent distributional frame-
work (such as [21]) available to study its curvature. Nevertheless, using the special
Brinkmann coordinates it is formally possible to compute the curvature which then is
again concentrated on the impulse and proportional to δ(U). As a warning it has to
be remarked that we have definitely reached the “grey areas” of distribution theory
since e.g. only the mixed components Ri

j of the Ricci tensor can be computed, but
not those with both upper or lower indices. Moreover, the discontinuous change of
coordinates is literally non-sensical within distribution theory since it boils down to
performing the distributional pullback of the metric (11) by a merely L∞-map.

4 More precisely, by applying the discontinuous transformation (7) on themetric (11),with the distributional
identities u′+ = �, �′ = δ, �u+ = u+ and the identification H|u=0 = h (using η|u=0 = Z ), one obtains
the continuous Rosen form (10).
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Fig. 3 In usual coordinates (2) of Minkowski space, any null geodesic with constant V0, η0 for U < 0
in M− crosses the impulse N located at U = 0, and continues for U > 0 in M+. It experiences a
unique “shift” and “refraction” which is exactly characterized by the Penrose junction conditions (3) in the
distributional Brinkmann form (11) of the implusive metric. Moreover, the family of such null geodesics
gives the “comoving” Rosen coordinates (10)

A rigorous investigation of impulsive pp-waves was performed in 1998–1999
by Michael Kunzinger and the second author in the series of articles [6, 22, 23].
First, in [22] the geodesics (and the geodesic deviation) for the distributional form of
impulsive pp-waves were studied using a careful regularization procedure. Thereby
the Dirac δ in (11) was replaced by a general class of smooth functions, the so-
called model delta nets δε defined as follows: Choose a smooth function ρ with
unit integral, supported in [−1, 1], and set δε(x) = (1/ε) ρ(x/ε).5 Technically, the
geodesic equation for the regularized metric(s) become nonlinear, and the fact that
(at least for small regularization parameters ε) the geodesics exist long enough to
cross the regularised impulse6 and hence are complete, is established using a fixed
point argument. The resulting geodesics for the distributional metric (obtained by
a distributional limit) are then independent of the specific regularisation used, and
reproduce earlier ad-hoc results of e.g. [24, 25].

Then in [23] this analysis was put into the framework of nonlinear distributional
geometry [26, Ch. 3.2] providing a solution concept for the geodesic (and geodesic
deviation) equation for the (generalised version of the) metric (11), which is obtained
by replacing the Dirac delta by a so-called generalized delta function.7 This setting,
based on Colombeau’s construction of algebras of generalized functions [27, 28],
allows for a consistent treatment of products of distributions in (semi-)Riemannian
geometry. In particular, this allowed to clarify the meaning of the Penrose junction
conditions and the equivalence of the distributional and continuous forms of themetric
[6].

Thegeometric key ideawas to employ aprivileged (natural) family ofnull geodesics
which cross the impulse. Indeed, the existence (and uniqueness) of such geodesics
was proven, enabling a study of their interaction with the impulse, see Fig. 3. Their
“shift” and their “refraction” can explicitly be expressed in terms of the profileH and
its derivatives at the point the corresponding geodesic hits the impulse. Finally, this

5 All results are actually independent of the specific choice of ρ.
6 By this we mean the support of the sandwich profile δε , i.e., the region −ε ≤ u ≤ ε.
7 Technically, this is an equivalence class of smooth functions represented by a model delta net.
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family of null geodesics gives the “comoving” Rosen coordinates, and hence allows
to smoothly and explicitly transform the generalized version of (11) to the generalized
version of (10).

Neglecting the mathematical details, we can summarize that:

• a suitable family of null geodesics in the distributional pp-wave metric (11) is
explicitly constructed,

• they cross the impulse, they are complete, and define the comoving coordinates of
the Rosen metric (10), hence

• they allow us to “geometrically regularize” the discontinuous transformation (7).

Put somewhatmorevividly, it turns out thatwithin nonlinear distributional geometry
the impulsive pp-wave spacetime can be equivalently described by two metrics, the
generalized distributionalBrinkmann formand the generalized continuousRosen form
which are related by a generalized coordinate transform. The distributional limits of
the respective metrics are precisely (11) and (10), and the distributional limit of the
corresponding transformation is thediscontinuous transformation (7),which explicitly
encodes the Penrose junction conditions (3), see also [29, 30] and the diagram in [6,
p. 1261].

Finally, we mention that this way of dealing with the intricacies of low-regularity
metrics in the context of impulsive plane waves has recently lead to the clarification
of a lapse in the literature on the wave memory effect in these geometries [31].

4 Nonexpanding impulsive gravitational waves with a cosmological
constant3

The pp-waves, representing gravitational waves with plane surfaces, are solutions of
Einstein’s field equations only in Minkowski space. However, their generalizations to
a nonzero value of the cosmological constant � exist within the large class of Kundt
spacetimes [32] which is defined by admitting the existence of a congruence of null
geodesics without twist, shear and expansion [9, 16]. In this context, nonexpanding
impulses in de Sitter and anti-de Sitter spaces can be constructed. In fact, they have
been systematically studied since 1990s. We will now summarize the main results and
references.

4.1 The background de Sitter and anti-de Sitter spaces

Let us begin by recalling the (anti-)de Sitter geometries. They are constant-curvature
spaces which are also maximally symmetric (admitting 10 Killing vector fields), and
conformally flat vacuum solutions of Einstein’s equations with �. Their metric can
be very conveniently written as

ds20 = 2 dη dη̄ − 2 dU dV
[ 1 + 1

6�(ηη̄ − UV) ]2 , (12)
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Fig. 4 The de Sitter (left) and anti-de Sitter (right) spaces depicted as 4-dimensional hyperboloids (13)
embedded in 5-dimensional flat space (14), shown here in the section Z2 = 0 = Z3. The location of the
nonexpanding impulse is indicated by a pair of null lines Z0 = Z1, that is U = 0 equivalent to U = 0

which nicely represents Minkowski, de Sitter, and anti-de Sitter space, for � = 0,
� > 0, and � < 0, respectively, and is explicitly conformally flat.

The coordinates of (12) cover the full (anti-)de Sitter hyperboloid

Z2
2 + Z3

2 + σ Z4
2 − 2UV = σ a2 , (13)

embedded in 5-dimensional flat space

ds2 = dZ2
2 + dZ2

3 + σdZ2
4 − 2dUdV , (14)

where
U = 1√

2
(Z0 − Z1) , V = 1√

2
(Z0 + Z1) , (15)

and
σ ≡ sign� = ±1 , a = √

3/(σ�) . (16)

The global coordinate parameterization of the (anti-)de Sitter manifold deter-
mined by (13) in (14) corresponding to the conformally flat metric (12) is

U = U
�

, V = V
�

, Z2 + i Z3 = √
2

η

�
, Z4 = 2

�
a − a , (17)

where the conformal factor is

� = 1 + 1
6�(ηη̄ − UV) . (18)

Recalling
√
2 η ≡ x + i y, see (1), we obtain Z2 = x/� and Z3 = y/�. The inverse

expressions to (17) are thus simply given by

U = �U , V = � V , x = � Z2 , y = � Z3 , (19)

with � = 2a/(Z4 + a).
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4.2 The 5-dimensional embedding formalism

There exists an interesting geometric method by which impulsive gravitational waves
can be constructed in de Sitter and anti-de Sitter spaces. This was introduced in the
work of Hotta and Tanaka in 1993 [33] (which also employed the “shift function”
method by Dray and ’t Hooft [34]), and further developed in [35–37]. It employs the
5-dimensional representation (13), (14) of the background (anti-)de Sitter manifold.

In fact, the use of the 5-dimensional formalism initially occurred in the works
[33, 35, 36] where special impulsive waves in de Sitter space were constructed by
boosting the Schwarzschild–de Sitter black hole solution to the speed of light. This
itself was a natural generalization of the ultrarelativistic boost of the Schwarzschild
solution, which in 1971 has lead to the famous Aichelburg–Sexl impulsive pp-wave in
Minkowski space [38]. In caseswith any�, this procedure produces specific impulsive
waves generated by null particles, i.e., sources moving at the speed of light.

The embedding method is based on considering impulsive pp-waves in flat 5-
dimensional semi-Riemannian space (14), but constraining them to the 4 -dimensional
hyperboloid (13). Specifically, we consider the 5-dimensional impulsive pp-wave,
generalizing the Brinkmann distributional metric (11),

ds2 = dZ2
2 + dZ2

3 + σdZ2
4 − 2 dUdV + H(Z2, Z3, Z4) δ(U ) dU 2 . (20)

By applying the constraint (13), the manifold is reduced to the 4-dimensional (anti-)
de Sitter space whenever U �= 0. However, due to the presence of δ(U ) in (20), the
distributional curvature arises at the single wave-surfaceU = 0, which represents the
impulse in de Sitter or anti-de Sitter space. In view of (17), such an impulse is
located at

U = 0 ⇔ U = 0 ⇔ Z0 = Z1 . (21)

The location of the impulse is indicated in Fig. 4 as a pair of null lines. Moreover,
from (13) we find its geometry to be given by

Z2
2 + Z3

2 + σ Z4
2 = σa2 . (22)

This is clearly a sphere S2 in de Sitter space (since σ = 1 for � > 0), and a hyper-
boloid H2 in anti-de Sitter space (since σ = −1 for� < 0).Moreover, their “radius”
is determined by the constant a = √

3/(σ�), which means that such an impulse is
indeed nonexpanding.

4.3 Continuous, distributional, and embeddingmetric forms of impulses in
(anti-)de Sitter space

The impulsive waves discussed above, be they constructed by embedding the
4-dimensional (anti-)de Sitter hyperboloid (13) into the 5-dimensional pp-wave space-
time (20), or by considering an ultrarelativistic limit of special sources, belong to the
Kundt class of spacetimes.
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All Kundt-type solutions of vacuum Einstein’s equations with � �= 0 of algebraic
type N (i.e., those which represent “pure” gravitational waves) were explicitly found
in [39, 40]. In these works it was demonstrated that there are two distinct subclasses
of such spacetimes when � = 0, only one subclass when � > 0, but (interestingly)
three subclasses when � < 0, including a special Siklos solution [41], representing
gravitationalwaveswith hyperbolic surfaces in the anti-de Sitter universe (see [42–44],
or the review [9] for more details concerning the classification and mutual relations
between the subclasses).

These various subclasses are geometrically distinct for a general (smooth) wave-
profile. However, in the impulsive case, i.e., if the wave profile is taken to be a Dirac
delta thus localizing the Kundt waves to just one impulsive wave surface, only a single
(locally) unique impulsive class of solutions exists — a surprising result proved by
the first author in [45].

A number of questions thus naturally arose, namely: Can such nonexpanding impul-
sive waves with�, which possess a unique distributional form, also bewritten in some
continuous metric form? What are their mutual coordinate relations? Can the Pen-
rose “cut-and-paste” method be extended to such a cosmological setting? And, what
are the corresponding Penrose junction conditions generalized to any cosmological
constant �?

These questions were basically answered in 1999 in the work [7] of the first author
with JerryGriffiths.The trickwas to employ the convenientmetric (12)whichdescribes
the full (anti-)de Sitter background space via the simple parametrization (19), (18) of
the hyperboloid (13). Moreover, the metric (12) is conformally flat, so the only dif-
ference with respect to impulsive pp-waves is the presence of the overall conformal
factor � = 1 + 1

6 �(ηη̄ − UV). This approach allowed us to generalize in [7] the
continuous Rosen form (10) and the distributional Brinkmann form (11) of impul-
sive pp-waves, to find their mutual transformation, and to obtain the relation to the
embedding metric (20). The results are as follows:

Nonexpanding impulsive gravitational waves in (anti-)de Sitter space can bewritten
in the following 3 alternative forms:

• A continuous metric

ds2 = 2
∣∣dZ + u+(u)(h,Z̄ Z dZ + h,Z̄ Z̄ d Z̄)

∣∣2 − 2 du dv
[
1 + 1

6�(Z Z̄ − uv + u+(u)G)
]2 , (23)

where u+(u) is the kink function (9), h ≡ h(Z , Z̄) is any real-valued function as
in (8), and the function G(Z , Z̄) is defined as G ≡ Z h,Z + Z̄ h,Z̄ − h. Again, the
non-differentiability of u+ gives rise to a δ-function curvature located at u = 0.
For� = 0 themetric (23) clearly reduces to theRosen form of impulsive pp-waves
(10).

• A distributional metric

ds2 = 2 dη dη̄ − 2 dU dV + 2H(η, η̄) δ(U) dU2

[ 1 + 1
6�(ηη̄ − UV) ]2 , (24)
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where δ(U) is the Dirac delta distribution. The corresponding impulse in (anti-)
de Sitter space (12) is thus clearly located at U = 0, and its geometry is
2 dη dη̄ [ 1 + 1

6�ηη̄ ]−2, that is a sphere S2 in de Sitter space and a hyperboloid
H2 in anti-de Sitter space, in full agreement with (22). For� = 0 we immediately
recover planar impulsive wave in Minkowski space, namely the Brinkmann form
of impulsive pp-waves (11).

• An embedding metric, as introduced in Sect. 4.2, namely

ds2 = dZ2
2 + dZ2

3 + σdZ2
4 − 2dUdV + H(Z2, Z3, Z4) δ(U ) dU 2 , (25)

with the constraint (13), that is

Z2
2 + Z3

2 + σ Z4
2 − 2UV = 3/� , (26)

where σ = 1 for � > 0 while σ = −1 for � < 0. This is the 5-dimensional pp-
wavemetric in the distributional (Brinkmann) form constrained to the (anti-)de Sit-
ter hyperboloid (26). The nonexpanding impulse is located atU = 0 ⇔ Z0 = Z1,
see (21) and Fig. 4, and its geometry is given by (22).

4.4 Relating the alternative metric forms

It is now straightforward to formally obtain the coordinate relation between the 5-
dimensional embedding metric (25) and the distributional metric (24). By applying
the parametrization (17) of the (anti-)de Sitter hyperboloid—which satisfies the con-
straint (26)—to the metric (25), the (anti-)de Sitter background part ds20 takes the form
(12), and there is an additional impulsive term H δ(U ) dU 2. Because U = U �−1,
using the distributional identities δ(U ) = �δ(U) and Uδ(U) = 0 it can be written as
H �−1 δ(U) dU2. This is exactly the last term 2H�−2 δ(U) dU2 in the distributional
metric (24), with the obvious identification

H = 1
2 H (1 + 1

6�ηη̄) . (27)

Similarly, we can find the transformation between the distributional metric (24)
and the continuous metric (23). Since their numerators are exactly the Brinkmann and
Rosen forms of impulsive pp-waves, respectively, which are related by the transfor-
mation (7), we only need to compare their conformal factors. Applying the relations
(7) and the identity (of L∞-functions) u+ = u � we observe that actually

� = 1 + 1
6�

(
ηη̄ − UV) = 1 + 1

6�
(
Z Z̄ − uv + u+(u)G

)
. (28)

We thus conclude that the metric forms (24) and (23) of nonexpanding impulses in
(anti-)de Sitter space are related by the same discontinuous transformation (7) as
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in flat space, namely

U = u ,

V = v + �(u) h + u+(u) h,Z h,Z̄ ,

η = Z + u+(u) h,Z̄ .

(29)

This fact enables us to generalize the Penrose “cut-and-paste” construction method
and to formulate the corresponding Penrose junction conditions for any value of the
cosmological constant �.

4.5 Penrose junction conditions with3

The transformation between the continuous metric (23) and the distributional metric
(24) is given by the discontinuous transformation (29), which is independent of�. The
Penrose “cut-and-paste” method for construction of these nonexpanding impulsive
waves can thus be used similarly as in flat Minkowski space M, provided the more
general, conformally flat metric (12) is employed. The only difference is that the cut
is performed in de Sitter manifold dS or anti-de Sitter manifold AdS along the
null surface N , expressed as U = 0 in the background coordinates of (12). Such a
cut is indicated in Fig. 4. The pasting is then performed using the Penrose junction
conditions at U = 0

(V, η, η̄
)
(A)dS− = (V − H(η, η̄), η, η̄

)
(A)dS+ , (30)

which are formally the same as (3) in the original case � = 0. The geometric reason
is that the cosmological constant enters the metric (12) only via the conformal factor.

Moreover, the Penrose junction conditions (30) are again implicitly encoded in the
transformation (29), namely via the deformed shift alongV given by the real function
H(η, η̄) which corresponds to the step-term �(u) h therein. Indeed, it follows from
(29) thatH(η, η̄) = h(Z , Z̄) because η = Z at u = U = 0 due to the continuity of the
kink function u+(u).

5 Relating the continuous and distributional metric forms with3

Above we have argued that the continuous metric (23) and the distributional metrics
(24) and (25) with (26) are equivalent. But from the mathematical point of view these
relations are only formal, again due to the discontinuity of the transformation (29). This
is analogous to the situation in impulsive pp-waves concerning the relation between
the continuous Rosen form (10) and the distributional Brinkmann form (11). As in
Sect. 3.2, to find the exact relation between the metrics, and to rigorously prove their
equivalence, it is necessary to study the geodesics.
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5.1 Geodesics in nonexpanding impulsive waves with3

All geodesics crossing any nonexpanding impulse in (anti-)de Sitter space were inves-
tigated and (formally) found in 2001 by the first author and Marcello Ortaggio [46].
Using the embedding formalism, they are explicitly given by

U = t , U = aU̇ 0 sinh(t/a) , U = aU̇ 0 sin(t/a) , (31)

in the cases σe = 0, σe < 0, and σe > 0, respectively. Here σ = sign�, and e deter-
mines the velocity normalization (e = −1 for timelike, e = 0 for null, and e = 1 for
spacelike geodesics, respectively). The affine parameter t is chosen in such a way that
each geodesic crosses the impulse U = 0 at t = 0.

Without loss of generality, U̇ 0 can be taken to be positive, so that (31) are increas-
ing functions. Using U as a convenient parameter and applying some distributional
identities, the general solution of the remaining geodesic equations can be derived.
For null geodesics with U̇ 0 = 1, it can be written8

Z p(U ) = Z0
p + Ż0

p U + Ap U �(U ) ,

V (U ) = V 0 + V̇ 0U + B �(U ) + C U �(U ) . (32)

The constants Z0
p, Ż

0
p, V

0, V̇ 0 for p = 2, 3, 4 are determined by the initial data, while
the coefficients Ap, B,C are

A j = 1
2

(
H, j (0) − �

3
Z0
j G(0)

)
for j = 2, 3 ,

A4 = 1
2

(
σH,4(0) − �

3
Z0
4 G(0)

)
, B = 1

2 H(0),

C = 1
8

(
H,2(0)

2 + H,3(0)
2 + σH,4(0)

2 + �

3
H(0)2 − �

3

(
δ pq Z0

p H,q(0)
)2 )

− �

6
V 0 G(0) + 1

2δ
pq Ż0

p H,q(0) , (33)

H(0) = H(Z0
p),G(0) = G(Z0

p) ≡ δ pq Z0
p H,q(Z0

r ) − H(Z0
r ),H,q(0) = H,q(Z0

p) are
functions evaluated on the impulse U = 0, given by H(Z2, Z3, Z4) of (25).

Hence we see that, analogous to the case of impulsive pp-waves, the global
geodesics suffer a jump in V across the impulse (determined by B) and, in addi-
tion, are broken in the V and Z p-directions (determined by C and Ap, respectively).
The coefficients specifying themagnitude of these effects are again given by the profile
function H and its derivatives, evaluated at the points where the respective geodesic
hits the impulse.

These results were fully confirmed in 2016 [14, 15] by a rigorous investigation
of the geodesic equations using a regularisation technique. Again the Dirac δ in the
metric, now in (25), was replaced by a model delta nets δε. In physical terms this

8 See Sect. 5 in [14], namely Proposition 5.3. Relation to the original form presented in [46] (which uses
a different definition of C) is contained in Remark 5.4.
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means that the formal distributional form of the impulsive metric is understood as a
limit of a family of spacetimes with ever shorter but stronger sandwich gravitational
waves with smooth profile δε.

Although the resulting geodesic equation for the regularized metric(s) forms a
highly coupled system, it was possible to prove the existence and uniqueness of
geodesics that (at least for small regularization parameters ε) exist long enough such
that they cross the regularized wave impulse, i.e., the region −ε ≤ U ≤ ε. Since
off that region we are dealing with the (anti-)de Sitter background this immediately
implies completeness of the geodesics of the regularized spacetime(s). The proof is
based on an application of Weissinger’s fixed point theorem [47]. Remarkably, when
taking the impulsive limit ε → 0, the geodesics converge to the the same limit for
any choice of profile ρ of the sandwich gravitational waves, i.e., they are independent
of the specific regularization. Moreover, they fully agree with (32)–(33), and extend
these formulae to any value of the initial data U̇ 0, Z0

p, Ż
0
p, V

0, V̇ 0.
Moreover, we have also investigated the geodesics in these spacetimes employing

the continuous form of the metric (23). This analysis is based on the local Lips-
chitz continuity of this metric and the observation made in [48] that every locally
Lipschitz metric has C1-geodesics in the sense of Filipov [49]. This solution con-
cept for ordinary differential equations with discontinuous right-hand sides was also
used in [12] to establish the existence and uniqueness of continuously differentiable
geodesics crossing the wave impulse. We also explicitly derived their form using a
C1-matching procedure.

A natural question thus arose about the mutual consistency of these two results,
both obtained in a rigorous way but starting from two different forms of the metric,
namely the continuous and the embedding 5-dimensional distributional form. It can
indeed formally be shown that the form of the geodesics derived in both ways are the
same when appropriate coordinate transformations are applied. This result confirmed
that both our approaches are consistent, and that the understanding of geodesics in the
complete family of spacetimes with nonexpanding impulsive gravitational waves and
any cosmological constant now rests on firm mathematical grounds, preparing us for
the next step.

5.2 Deriving the discontinuous transformation

With these explicit geodesics at hand, we were able in [8] to geometrically derive
the discontinuous transformation (29) and the Penrose junction conditions (30), thus
clarifying their nature and meaning, and laying the foundations for their rigorous
treatment analogous to the one for the pp-wave case in [6]. Let us summarize the key
steps and the main results:

• First, in the distributional metric (24) with coordinates (U ,V, x, y) we identify a
special family of global null geodesicswhich cross the impulse located at U = 0.
We get them by naturally setting their initial values V0, x0, y0 to be constants
(with no velocity) in (anti-)de Sitter space (A)dS− in front of the impulse, that is
for U < 0. So in front of the impulse they are the generators of the (anti-)de Sitter
space, when expressed in the 5-dimensional flat space.
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• Such null geodesics are explicitly given by

γ (λ) =
( αλ

1 − βλ
,V0, x0, y0

)
, (34)

where λ is the affine parameter and

α ≡ 1 + �

12

(
x20 + y20

)
, β ≡ −�

6
V0 . (35)

Notice that U = 0 iff λ = 0.
• Next we express these null geodesics in the 5-dimensional embedding form of
(anti-)de Sitter space in the coordinates (U , V , Z2, Z3, Z4) of (14) using (17) as

γ (λ) = 1 − βλ

α

(
αλ

1 − βλ
,V0, x0, y0, a

(
2 − α

1 − βλ

))
. (36)

Notice that U = λ.
• Now we employ the results on global null geodesics crossing the impulse at
U = 0 to the regionU > 0 behind it, expressed in the 5-dimensional coordinates
(U , V , Z2, Z3, Z4). As explained in Sect. 5.1, these were rigorously derived using
a general regularisation. After a distributional limit they take the form

γ5D(λ) ≡
⎛

⎝
U (λ)

V (λ)

Z p(λ)

⎞

⎠ =
⎛

⎝
λ

V 0 + V̇ 0 λ + B �(λ) + C λ+(λ)

Z0
p + Ż0

p λ + Ap λ+(λ)

⎞

⎠ , (37)

cf. (32), (33), with the initial data (for U < 0)

V 0 = V0

α
, Z0

2 = x0
α

, Z0
3 = y0

α
, Z0

4 = a
( 2

α
− 1

)
,

V̇ 0 = −β

α
V0 , Ż0

2 = −β

α
x0 , Ż0

3 = −β

α
y0 , Ż0

4 = −2a
β

α
. (38)

Here λ+(λ) ≡ λ �(λ), while the coefficients are

A j = Hi
, j + x j

0

2σαa2
G, A4 = 1

σαa
G, B = 1

α
Hi ,

C = 1

2

(
(Hi

,x )
2 + (Hi

,y)
2) + 1

2σαa2
(
(Hi + G)V0 + HiG)

, (39)

with G ≡ Hi − x0Hi
,x − y0Hi

,y . Here the superscript
i denotes the evaluation of

the respective functions at U = 0, i.e., “at the impulse”.
• Nextweexpress these null geodesics in thedistributional coordinates (U ,V, x, y)
for the (anti-)de Sitter space (A)dS+ behind the impulse, that is for U > 0, using
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the relations (19),

U = �U , V = � V , x = � Z2 , y = � Z3 , with � = 2a

Z4 + a
. (40)

A somewhat lengthy calculation gives the explicit global null geodesics crossing
the impulse in the form

γ4D[V0, x0, y0](λ) (41)

≡
⎛

⎝
U(λ)

V(λ)

x j (λ)

⎞

⎠ =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

αλ

1 − βλ + �
6 G λ+

V0 + �(λ)

1 − βλ + �
6 G λ+

Hi + αλ+
2(1 − βλ + �

6 G λ+)
F

x j
0 + αλ+

1 − βλ + �
6 G λ+

Hi
, j

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

.

We have denoted the dependence on the initial data [V0, x0, y0] explicitly, and we
have used the abbreviation

F ≡ (Hi
,x )

2 + (Hi
,y)

2 + Hi

σαa2
(V0 + G) . (42)

Recall also that the constants α, β are given by (35).
• Finally, using the relations U(λ) = αλ/(1 − βλ + �

6 G λ+) and �(λ) = �(U)

implying U+ = αλ+/(1 − βλ + �
6 G λ+), the result (41) can be simply rewrit-

ten as

γ4D[V0, x0, y0](U) ≡
⎛

⎝
U

V(U)

x j (U)

⎞

⎠=

⎛

⎜⎜
⎝

U
V0 + �(U)Hi + U+ 1

2

[
(Hi

,x )
2 + (Hi

,y)
2
]

x j
0 + U+ Hi

, j

⎞

⎟⎟
⎠.

This is the rigorously derived explicit form of the global null geodesics of the distri-
butional metric (24), influenced by the nonexpanding impulse in (anti-)de Sitter space
(12).

5.3 The discontinous transformation and the Penrose junction conditions with3

The explicit form of global null geodesics in (anti-)de Sitter space with nonexpanding
impulsive gravitational waves just obtained can be employed as a transforma-
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tion from the continuous to the corresponding distributional form of the metric
(u, v, X ,Y ) �→ (U ,V, x, y) with u = U . The trick is:

Take the initial values V0, x0, y0 as the comoving coordinates.
They define the coordinates of the continuous metric form.

In a fully explicit form we hence obtain the mapping

⎛

⎜⎜
⎝

u
v

X
Y

⎞

⎟⎟
⎠�→ γ4D[v, X ,Y ](u)=

⎛

⎜⎜
⎝

u
v + �(u)Hi + u+ 1

2

[
(Hi

,X )2 + (Hi
,Y )2

]

X + u+Hi
,X

Y + u+Hi
,Y

⎞

⎟⎟
⎠=

⎛

⎜⎜
⎝

U
V
x
y

⎞

⎟⎟
⎠ .

This is the relation between the continuousmetric (23) and distributional metric (24).
Indeed, by denoting

Z ≡ 1√
2
(X + i Y ) , η = 1√

2
(x + i y) , h(Z , Z̄) ≡ Hi = H(0) , (43)

we get

U = u ,

V = v + �(u) h + u+(u) h,Z h,Z̄ ,

η = Z + u+(u) h,Z̄ . (44)

which is exactly the discontinuous transformation (29).
Moreover, by inspecting (44) it is seen that the coordinates η, η̄ are continous across

the impulse at U = 0, but there is a jump in V having the value h(Z , Z̄) = H(η, η̄),
i.e., V �→ V − H across the impulse N . This provides the justification — and, in
fact, a systematic derivation—of the Penrose junction conditions (30) in de Sitter
and anti-de Sitter space.

In a nutshell, our overall procedure employed in this section was:

• We have derived the discontinuous transformation (44) from a special family
of global null geodesics in (anti-)de Sitter space with impulsive waves in the
distributional form, obtained by a general regularisation. To do so, we employed
the 5-dimensional embedding formalism where these geodesics are easily seen to
be the generators of the (anti-)de Sitter hyperboloid.

• This transformation turns these special null geodesics into coordinate lines, hence
the coordinates (u, v, X ,Y ), equivalent to (u, v, Z , Z̄), are comoving with the
corresponding null particles.

• In fact, that is the way how the distributional metric (24) is transformed to the
much more regular (locally Lipschitz) continuous metric (23).
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Fig. 5 The “cut-and-paste” construction method for non-expanding impulsive waves in de Sitter space (12)
is based on cutting the hyperboloid (13) along the null hyperplaneN given byU = 0 = U . The two “halves”
dS± are then re-attached with a shift along N . Here we depict the null geodesic generator of dS− given
by V = V0. Instead of continuing as unbroken null generator into dS+ (indicated by the dashed line in the
upper left part), its interaction with the impulse at N makes it jump according to Penrose’s identification
of points V �→ V − Hi, but also refracts it to become the appropriate null generator of dS+, as exactly
described by formulae (37)–(39). As in Fig. 4, the directions Z2 and Z3 are suppressed. To ensure that
Z2(λ) = 0 = Z3(λ) for all values of the affine parameter λ, here we specialise to initial data x0 = 0 = y0
and to waves with Hi

,2 = 0 = Hi
,3, so that A2 = 0 = A3

• This generalises (and is in perfect agreement with) the case � = 0, in which the
continous Rosen coordinates (10) for pp-waves are also comoving, and are related
to the distributional Brinkmann coordinates (11) by the same transformation (7).

• Moreover, the rigorously derived discontinuous transformation (44) justifies and
proves the uniqueness of the Penrose junction conditions (30) for construction of
nonexpanding impulsive waves in de Sitter and anti-de Sitter spaces.

• Finally, this approach also allows us to extend the mathematically precise analysis
of the Penrose “discontinuous coordinate transformation” described in Sect. 3.2 to
the case of non-vanishing cosmological constant �. Its detailed implementation
will appear in a forthcoming, more technical paper.

6 “Cut-and-paste” with3

In this concluding section we will employ the above results to derive a nice picture
generalizing the Penrose “cut-and-paste” picture of Figs. 1 and 3 to any non-vanishing
�. Indeed, the transformation (44) demonstrates the geometrical importance of the
special family of null geodesics employed, namely the null geodesic generators
of the (anti-)de Sitter hyperboloid (26), which are transverse to the generator at
which the wave impulse is located. For a fixed value of η, these are given simply by
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Fig. 6 The “cut-and-paste”
construction method for
non-expanding impulsive waves
in anti-de Sitter space (12) is
based on cutting the hyperboloid
(13) along the null
hyperplaneN given by
U = 0 = U . The two “halves”
AdS± are then re-attached with
a shift alongN . Here we depict
the null geodesic generator of
AdS− given by V = V0.
Instead of continuing as
unbroken null generator into
AdS+, its interaction with the
impulse at N makes it jump
according to the Penrose’s
identification of points
V �→ V − Hi, but also refracts
it to become the appropriate null
generator of AdS+, as exactly
given by (37)–(39)

U = const. and V = const. in the conformally flat form of the metric (12) given by
the parametrization (19).

Specifically, due to the interaction with the impulse N located at U = 0, encoded
in the transformation (44), the null generators V = V0 = const. suffer the jump
V0 �→ V0 − Hi prescribed by the function H, according to the Penrose junction
conditions (30), but also a unique refraction. The reason for it is that the corre-
sponding fixed value of V of the global and unique null geodesic behind the impulse
must again be a null generator of the hyperboloid.

This insight provides us with a vivid geometrical picture illustrating the “cut-and-
paste” approach to the construction of nonexpanding impulsive waves in a background
de Sitter space, shown in Fig. 5.

The de Sitter hyperboloid is cut into two “halves” dS− and dS+ along the
non-expanding spherical impulsive surface U = 0 = U . These two parts are then re-
attached in the very specific and unique way: The generators approaching the impulse
at U = 0 from dS− are shifted from their value V0 in dS− to the value V0 + Hi in
dS+ due to the interaction with the wave.9 Moreover, they are tilted (refracted) by the
impulse according to (37), which is precisely the amount needed to turn them into
the generators of dS+ starting at V0 + Hi.

The picture representing the construction of nonexpanding impulsive waves in
anti-de Sitter space is analogous, starting with the hyperboloid shown on the right
of Fig. 6. Since now � < 0 the corresponding sign parameter is σ = −1, so that the

9 In terms of the coordinates of the 5-dimensional embeddingmetric (25), (26), such a shift reads V 0 + 1
2 H

i

because V 0 = V0/α and Hi = 1
2αH i, see (38), (27), (35).
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impulse (22) has the geometry of H2. Nevertheless, the transformation (44) and the
inherent Penrose junction conditions have the same form. The geometrical meaning
of the shift and the refraction on the null generators of the anti-de Sitter hyperboloid
thus remain the same. The corresponding picture is presented in Fig. 6 .

We may thus conclude that these explicit visualizations provide us with clear
geometrical insights. They give a deeper understanding of the various construction
methods of nonexpanding impulsive gravitational waves propagating in de Sitter and
anti-de Sitter universes. Moreover, they naturally explain their unambiguous mutual
relations, because the key elements of the geometric picture—namely the null gen-
erators of the hyperboloids representing the constant-curvature backgrounds—are
globally unique.

Acknowledgements This paper was supported by the Czech Science Foundation Grant No. GAČR 20-
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