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Abstract
We present a convenient method of algebraic classification of 2+1 spacetimes
into the types I, II, D, III, N and O, without using any field equations. It is
based on the 2+1 analogue of the Newman–Penrose curvature scalars ΨA of
distinct boost weights, which are specific projections of the Cotton tensor onto
a suitable null triad. The algebraic types are then simply determined by the
gradual vanishing of such Cotton scalars, starting with those of the highest
boost weight. This classification is directly related to the specific multiplicity
of the Cotton-aligned null directions and to the corresponding Bel–Debever
criteria. Using a bivector (that is 2-form) decomposition, we demonstrate that
our method is fully equivalent to the usual Petrov-type classification of 2+1
spacetimes based on the eigenvalue problem and determining the respective
canonical Jordan form of the Cotton–York tensor. We also derive a simple
synoptic algorithm of algebraic classification based on the key polynomial
curvature invariants. To show the practical usefulness of our approach, we per-
form the classification of several explicit examples, namely the general class
of Robinson–Trautman spacetimes with an aligned electromagnetic field and a
cosmological constant, and other metrics of various algebraic types.

Keywords: algebraic classification, 3D Lorentzian manifolds, Cotton tensor,
Cotton–York tensor, Newman–Penrose scalars, Bel–Debever criteria,
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1. Introduction

Algebraic classification of spacetimes is an important tool for investigation and understanding
of exact solutions of Einstein’s field equations and other theories of gravity. In the context
of D= 4 general relativity (that is for 3+ 1 geometries) this was developed at the end of the
1950s by Petrov, Géhéniau, Pirani, Bell, Debever and Penrose [1–7] using various equivalent
approaches. In its most convenient formulation, related to the study of gravitational radiation
(spacetimes of type N) and also stationary black holes (of type D), this is based on finding
the multiplicity of four possible principal null directions (PNDs) of the Weyl curvature tensor,
encoded in its null-frame components which are denoted as the complex Newman–Penrose
scalars ΨA, where A= 0,1,2,3,4, see [8]. Comprehensive reviews of this topic can be found
in the monographs [9, 10].

In 2004, this key concept of algebraic classification was extended to higher dimensions
D> 4 by Coley et al [11, 12]. In such a case, there are many more components of the Weyl
tensor, but all their null-frame projections can again be sorted into just five groups with distinct
boost weights. This fact enables one to perform the classification of the Weyl tensor in an
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analogous way as in theD= 4 case, i.e. by the multiplicity of fourWeyl-aligned null directions
(WANDs), see the reviews [13, 14]. To keep the closest possible analogy with the standard
Newman–Penrose formalism, Krtouš and Podolský [15] introduced the familiar notation ΨA

to represent all the relevant realWeyl scalars in any D> 4.
In fact, it should be emphasized that the classification scheme developed in [12] applies to

any tensor in arbitrary Lorentzian geometry. Although not explicitly mentioned in this seminal
work, it can be immediately observed that the scheme is valid also in the lower-dimensional
case D= 3 admitting two independent null directions and just one additional spatial direction.

From this general point of view, our classification method is an application of the scheme
presented in [12, 14] to 2+1 Lorentzian geometries in which we take the rank-3 Cotton tensor
[16] (instead of the identically vanishing rank-4 Weyl tensor) as the key geometric quantity.
The Cotton algebraic types correspond to the general classification into (primary) principal and
secondary alignment types (PAT and SAT), as introduced for an arbitrary tensor by definitions
4.1 and 4.2 in [12], and 2.5 in [14]).

Classification of spacetimes in lower dimension D= 3 was introduced many years ago.
Neither the Petrov approach (based on the eigenvalue problem of the Weyl tensor) nor the
Debever–Penrose analysis (based on the multiplicity of the Weyl tensor PNDs) could be dir-
ectly applied because in 2+1 geometries the rank-4Weyl tensor vanishes. Instead, it was found
that the fundamental role for the algebraic classification plays the rank-3 Cotton tensor. The
number of its independent components in 2+1 gravity is five, so that it can be mapped onto
the rank-2 symmetric and traceless Cotton–York tensor. This tensor can be represented by a
3× 3 matrix, and thus its algebraic classification can be performed analogously to the original
Petrov approach. This was done in 1986 by Barrow et al [17].

Such a classification in 2+1 gravity is, nevertheless, different from its D= 4 counterpart.
In the actual formulation of the eigenvalue problem, the symmetry of the Cotton–York tensor
is no longer manifest. The eigenvalues and also the corresponding eigenvectors can thus gen-
erally be complex. This feature was pointed out and remedied by García, Hehl, Heinicke and
Macías in 2004. In their paper [18], it was proposed to classify the spacetimes according to
the possible Jordan forms of the Cotton–York tensor in a suitable orthonormal basis. By this
method, the spacetimes were divided into the types I, II, D, III, N and O. To deal with the
possible complex eigenvalues, an additional type I′ was proposed which restricts the solutions
to only real numbers.

Alternative approaches to classification of 2+1 spacetimes were also presented. The form-
alism of null basis was developed in [19], while in [20] a spinor algebra was established and
used for the Ricci and Cotton–York tensors. An invariant Karlhede classification method was
developed in [21] employing the Ricci and Cotton–York real spinors. Interestingly, in topolo-
gically massive gravity (TMG), whose action involves a gravitational Chern–Simons term, the
field equations imply that the Cotton–York tensor is proportional to the traceless Ricci tensor.
Therefore, the Petrov-type classification of 2+1 spacetimes in TMG is equivalent to the Segre
classification of the simpler traceless Ricci tensor, see [22, 23].

Actually, the Segre–Pirani–Plebański classification of the energy-momentum tensor of mat-
ter, related to the traceless Ricci tensor, is another important way of characterizing the space-
time. It takes advantage of its symmetry property, so that the eigenvalues and eigenvectors
can be directly determined by a standard procedure, and classified using the nomenclature of
Plebański [24]. More details on these schemes, and their application to many important classes
of exact solutions to 2+1 gravity, are given in the monograph [25], see in particular sections
1.2 and 20.5 therein.
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In our work, we now propose a simpler and general method of algebraic classification of
spacetimes in 2+1 gravity which does not assume any field equations. It is based directly on
the Cotton tensor, namely on five Cotton scalars ΨA obtained by specific projections onto
a null triad. In fact, this is a lower-dimensional analogue of the standard Newman–Penrose
method of D= 4 general relativity which uses the Weyl tensor. It is naturally related to the
multiplicity of the Cotton-aligned null directions (CANDs), in full analogy to the multiplicity
of PNDs andWANDs.We show that this approach is equivalent to the classification developed
in [18] which relies on the canonical Jordan forms of the Cotton–York tensor. We also identify
key scalar polynomial invariants constructed from the Cotton scalars ΨA, which conveniently
assist with the algebraic classification.

We begin in section 2 by establishing the notation and introducing the Cotton tensor Cabc.
In subsequent section 3 we define a null triad onto which the Cotton tensor is projected, obtain-
ing thus the key Newman–Penrose-type Cotton scalars ΨA. This allows us to present a very
simple classification scheme in section 4. Then in section 5we define a bivector basis and prove
that the corresponding components of the Cotton tensor are just the scalars ΨA. Relation to
the Bel–Debever criteria for the privileged aligned null vector k is demonstrated in section 6.
All Lorentz transformations are investigated in section 7, in particular their effect on the key
Cotton scalarsΨA. It is then demonstrated that a suitable null rotation can always be performed
in whichΨ0 = 0, identifying thus the principle null triad and the CAND, see section 8. In fact,
as shown in section 9, the specific multiplicities of CANDs k uniquely determine the algeb-
raic types of spacetimes. In section 10 we present the related symmetric traceless Cotton–York
tensor, and wewrite it in terms of the Cotton scalarsΨA. Expressing it in the orthonormal basis,
in section 11 we are able to prove a full equivalence with the previous method of classification
of 2+1 geometries based on the eigenvalues and the canonical Jordan forms of the Cotton–
York tensor. In section 12 we investigate scalar curvature polynomial invariants constructed
from the Cotton and Cotton–York tensors, and their relation to various algebraic types. In
fact, we derive a simple practical classification algorithm based on these invariants. Section 13
introduces the refinement to subtypes Ir, IIr, Dr for which all four (possibly multiple) CANDs
are real, and subtypes Ic, IIc, Dc for which some of the CANDs are complex. This is indirectly
related to complex eigenvalues of the Cotton–York tensor. In final section 14, we explicitly
apply this procedure on an interesting class of Robinson–Trautman spacetimes with a cosmo-
logical constant and an electromagnetic field, demonstrating that it is algebraically general (of
type I), but with only Ψ1 and Ψ3 scalars non-vanishing. Similarly, we analyze several other
examples of metrics of various algebraic types and subtypes.

2. Cotton tensor

Let (M,g) be a general three-dimensional Lorentzian manifold with the metric signature
(−,+,+). On such a manifold, at any point we construct the basis of the tangent space con-
sisting of three vectors ea, and the cotangent space dual basis given by three 1-forms ωa. In
local coordinates xα, these are

ea = eαa ∂α , ωa = eaα dx
α . (1)

By the Latin letters a,b, . . . we denote the frame (anholonomic) indices, while by the Greek
letters α,β, . . . we denote the coordinate (holonomic) indices. In terms of the dual basis, the
line element corresponding to the metric gab is

ds2 = gabω
aωb . (2)

We also assume that the manifold is equipped with the symmetric Levi-Civita connection∇.
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The role of the key geometrical object in 2+1 spaces plays the (conformally invariant)
Cotton tensor, first investigated by Cotton [16] already in 1899, and later by Schouten [26].
It is the best analogue for the Weyl tensor which identically vanishes in 2+1 geometries. The
Cotton tensor is defined as

Cabc ≡ 2

(
∇[aRb]c−

1
4
∇[aRgb]c

)
, (3)

where Rab is the Ricci tensor of the metric gab, see equation (20.39) in [25]. From the defini-
tion (3) it follows that the Cotton tensor is antisymmetric in the first two indices1,

Cabc =−Cbac , (4)

and that it also satisfies the constraints

C[abc] = 0 , (5)

Cab
a = 0 . (6)

For a detailed exposition of the Cotton tensor see [18] or chapter 20 in [25]. These constraints
restrict the Cotton tensor in 2+1 geometries to have only 5 independent components. Indeed,
due to (4), the Cotton tensor has 3× 3= 9 independent components which are constrained by
1 condition (5) and 3 independent conditions (6).

3. Null triad and the Cotton scalars ΨA

The next step is to project the Cotton tensor onto a suitable basis on the tangent space. We
choose the null triad {ea} ≡ {k, l,m}, such that k · k= 0= l · l, k ·m= 0= l ·m, and

k · l=−1 , m ·m= 1 , (7)

or written explicitly in the components

ka l
a =−1 , mam

a = 1 . (8)

It means that both k and l are null vectors (future-oriented and mutually normalized to −1),
while m is the spatial unit vector orthogonal to k and l.

A dual basis {ωb} is given by the relation eαa ω
b
α = δba . In view of the scalar products (7),

such a dual basis can be written as {ωb} ≡ {−l,−k,m}. By this notation we mean that the
dual to the vector e1 = k= kα ∂α is the 1-form ω1 =−lα dxα, and similarly for the remaining
two basis vectors.

Now we define the Newman–Penrose-type curvature Cotton scalars ΨA as

Ψ 0 ≡ Cabc k
amb kc ,

Ψ 1 ≡ Cabc k
a lb kc ,

Ψ 2 ≡ Cabc k
amb lc ,

Ψ 3 ≡ Cabc l
a kb lc ,

Ψ 4 ≡ Cabc l
amb lc .

(9)

1 Unfortunately, in mathematical literature a different convention is also used for the position of the antisymmetric
indices, as for example in equation (3.89) in [10].
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Table 1. The algebraic classification of 2+1 geometries.

Algebraic type The conditions

I Ψ 0 = 0 , Ψ 1 ̸= 0
II Ψ 0 =Ψ 1 = 0 , Ψ 2 ̸= 0
III Ψ 0 =Ψ 1 =Ψ 2 = 0 , Ψ 3 ̸= 0
N Ψ 0 =Ψ 1 =Ψ 2 =Ψ 3 = 0 , Ψ 4 ̸= 0
D Ψ 0 =Ψ 1 = 0=Ψ 3 =Ψ 4 , Ψ 2 ̸= 0
O all ΨA = 0

These are fully analogous to standard definition of the Newman–Penrose scalars constructed
from theWeyl curvature tensor inD= 4 (see [10]) and in anyD> 4 (see [15], equivalent to [11–
14]). Notice that these scalars are real, and completely represent the 5 independent components
of the Cotton tensor.

4. Algebraic classification based on the ΨA scalars

We propose that the algebraic classification of 2+1 geometries can easily be made by using
these curvature scalars ΨA, which are the components of the Cotton tensor with respect to the
null triad, defined in (9). The specific algebraic types are given by simple conditions, namely
that in a suitable triad {k, l,m} the specific Cotton scalars vanish, as summarized in table 1.

In fact, this is a direct analogue of the Petrov–Penrose algebraic classification in standard
general relativity based on the multiplicity of the PNDs of the Weyl tensor (see section 4.3 in
[10] for the review), or of PAT/SAT and the multiplicity of the WANDs in higher dimensions
(see [14]).

To justify the definition of algebraic types presented in table 1 and to demonstrate that it is
equivalent to the previous definition based on the Jordan forms of the Cotton–York tensor, it is
now necessary to introduce a convenient bivector basis of 2-forms, which effectively represent
the first two (antisymmetric) indices of the Cotton tensor (3).

5. Cotton tensor in the bivector basis

The space of all 2-forms (also called bivectors) in 2+1 geometries has dimension 3, and we
now construct a basis{

ZI
}
= {U,V,W} , (10)

where I= 1,2,3, to express them. In particular, employing the null triad {k, l,m} normalized
as (7), we define these base 2-forms as the wedge products

U≡ 2m∧ l ,
V≡ 2k∧m ,
W≡ 2 l∧ k . (11)

More explicitly, in the null triad frame such a bivector basis is {ZIab}= {Uab ,Vab,Wab}, where
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Uab = ma lb− lamb ,

Vab = kamb−ma kb ,

Wab = la kb− ka lb . (12)

It is the analogous definition as in D= 4, see equation (3.40) in [10]. A direct calculation
using (8) reveals that these bivectors satisfy the normalization relations

UabV
ab = 2 , WabW

ab =−2 , (13)

while all other contractions are zero.
The rank-3 Cotton tensor, antisymmetric in the first two indices, can be expressed in the

basis given by (all combinations of) the tensor product of a basis bivector ZI and a 1-form ωJ,
that is

Cabc =
3∑

I,J=1

CIJZ
I
abω

J
c , (14)

where CIJ are the corresponding components2. Written explicitly, it has nine terms,

Cabc =−C11Uab lc−C12Uab kc+C13Uabmc

−C21Vab lc−C22Vab kc+C23Vabmc

−C31Wab lc−C32Wab kc+C33Wabmc . (15)

Since the bivectorsUab,Vab,Wab are antisymmetric, the condition (4) is trivially satisfied. Now
we employ the vanishing trace condition (6). Using the relations

Uab l
a = 0 , Uab k

a = mb , Uabm
a = lb ,

Vab l
a =−mb , Vab k

a = 0 , Vabm
a =−kb ,

Wab l
a = lb , Wab k

a =−kb , Wabm
a = 0 , (16)

we obtain the constraint

(C13 −C31) lb+(C32 −C23) kb+(C21 −C12) mb = 0 . (17)

This 1-form must be identically zero, and so we obtain three conditions for the components,
namely

C13 = C31 , C23 = C32 , C12 = C21 . (18)

The Cotton tensor thus can be written in the form

Cabc =−C11Uab lc−C12 (Uab kc+Vab lc)+C13 (Uabmc−Wab lc)

−C22Vab kc+C23 (Vabmc−Wab kc)+C33Wabmc . (19)

Finally, we have to apply the remaining condition (5). It is helpful first to calculate that

3!
(
U[ab kc] +V[ab lc]

)
= 4 (Uab kc+Vab lc+Wabmc) ,

2 Here ZIabω
J
c is a shorthand for Z

I
ab ⊗ωJ

c .
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3!W[abmc] = 2 (Uab kc+Vab lc+Wabmc) , (20)

where the factorial was included just to compensate the factor in the definition of the antisym-
metrization. All other terms of the tensor-product basis are trivially zero under the complete
antisymmetrization, namely

U[ab lc] = 0 , U[abmc] = 0 ,

V[ab kc] = 0 , V[abmc] = 0 ,

W[ab kc] = 0 , W[ab lc] = 0 . (21)

From the condition (5) for (19) we now obtain

(−2C12 +C33)(Uab kc+Vab lc+Wabmc) = 0 , (22)

which implies the last constraint

C33 = 2C12 . (23)

The generic Cotton tensor in the bivector-null basis thus takes the form

Cabc =−C11Uab lc−C12 (Uab kc+Vab lc− 2Wabmc)

+C13 (Uabmc−Wab lc)−C22Vab kc+C23 (Vabmc−Wab kc) . (24)

It has five independent components, namely C11,C12,C13,C22,C23. They can be uniquely
expressed in terms of the Newman–Penrose-type curvature Cotton scalars ΨA defined in (9).
Indeed, using the normalization relations (8) and (13), the coefficients in (24) can be expressed
as

C11 =
1
2CabcV

ab kc ,

C12 =
1
2CabcV

ab lc = 1
2CabcU

ab kc =− 1
4CabcW

abmc ,

C13 =
1
2CabcV

abmc =− 1
2CabcW

ab kc ,

C22 =
1
2CabcU

ab lc ,

C23 =
1
2CabcU

abmc =− 1
2CabcW

ab lc . (25)

After explicitly putting the bivectors (12) into the first terms on the right-hand side of (25),
using the definition (9) of the scalars ΨA and the antisymmetry of the Cotton tensor (4), we
arrive at a very simple expressions for the five independent components of the Cotton tensor,
namely

C11 =Ψ 0 , C12 =Ψ 2 , C13 =Ψ 1 , C22 =−Ψ 4 , C23 =−Ψ 3 . (26)

Moreover, the four other basis components of the Cotton tensor in the expansion (14) are not
independent because from the remaining four expressions on the right-hand side of (25) we
get

C12 = Cabcm
a lb kc = 1

2Cabc k
a lbmc ,

C13 = Cabc k
ambmc ,

C23 = Cabcm
a lbmc . (27)

Using (26) we can thus write that

Ψ1 = Cabc k
ambmc ,

8
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Ψ2 = Cabcm
a lb kc = 1

2Cabc k
a lbmc ,

Ψ3 = Cabc l
ambmc , (28)

which are the four alternative expressions for the three scalars Ψ1,Ψ2,Ψ3, equivalent to their
definitions given in (9).

We can thus conclude that the most general Cotton tensor in the bivector-null basis (24)
takes the form

Cabc =−Ψ 0Uab lc+Ψ 1 (Uabmc−Wab lc)

−Ψ 2 (Uab kc+Vab lc− 2Wabmc)

−Ψ 3 (Vabmc−Wab kc)+Ψ 4Vab kc . (29)

This is an important expression of the Cotton tensor in terms of the five key scalarsΨA, which
we will employ in proving many further properties and relations. In fact, it is obviously an
analogue of the standard expression valid in D= 4 general relativity, see equation (3.58) in
[10].

6. Bel–Debever criteria

It is now possible to explicitly connect the algebraic classification of 2+1 gravity fields, sum-
marized in table 1, to another property, namely to the Bel–Debever criteria which involve the
Cotton tensor and the related (aligned) null vectors k.

These criteria were presented in 1959 by Bel and Debever [4–6] in the context of Einstein’s
general relativity in D= 4, employing the Riemann or Weyl tensors and the corresponding
Debever–Penrose null vectors k. Relatively recently, they were also generalized to geometries
of any higher dimension D> 4 by Ortaggio [27] (using the principal directions of the Weyl
tensor) and equivalently by Senovilla [28] (using the Bel–Robinson tensor).

We claim that in D= 3 spacetimes the Bel–Debever criteria involve the Cotton scalars, and
they have the following form:

k[dCa]bc k
b kc = 0 ⇔ Ψ 0 = 0 , (30)

Cabc k
b kc = 0 ⇔ Ψ 0 =Ψ 1 = 0 , (31)

k[dCa]bc k
b = 0 ⇔ Ψ 0 =Ψ 1 =Ψ 2 = 0 , (32)

Cabc k
b = 0 ⇔ Ψ 0 =Ψ 1 =Ψ 2 =Ψ 3 = 0 . (33)

The proof is not difficult. Using (29) we get

Cabc k
b =Ψ 0ma lc−Ψ 1 (mamc+ ka lc)+Ψ 2 (ma kc+ 2kamc)+Ψ 3 ka kc , (34)

and then

Cabc k
b kc =−Ψ 0ma+Ψ 1 ka . (35)

After multiplying this expression by kd, the antisymmetrization yields

k[dCa]bc k
b kc = 1

2 Ψ 0Vad , (36)

from which we obtain the equivalence (30). The equivalence (31) follows immediately
from (35). As for (32), we employ (34) which implies

k[dCa]bc k
b = 1

2 Vda (Ψ 0 lc−Ψ 1mc+Ψ 2 kc) , (37)

9
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Table 2. For all algebraic types, the Bel–Debever criteria in 2+1 geometries involving
the Cotton tensor Cabc (left) and in 3+1 geometries involving the Weyl tensor Cabcd
(right) are fully analogous.

Algebraic type 2+1 geometries 3+1 geometries

I k[dCa]bc k
b kc = 0 k[fCa]bc[d ke] k

b kc = 0

II Cabc k
b kc = 0 Cabc[d ke]k

b kc = 0

III k[dCa]bc k
b = 0 k[fCa]bcd k

b = 0

N Cabc k
b = 0 Cabcd k

b = 0

D Cabc k
b kc = 0 Cabc[d ke] k

b kc = 0
and Cabc l

b lc = 0 and Cabc[d le] l
b lc = 0

O Cabc = 0 Cabcd = 0

from which the equivalence (32) is clear. The last relation (33) is obvious from (34).
For type D spacetimes, not only Ψ 0 =Ψ 1 = 0 but also Ψ 4 =Ψ 3 = 0. Because

Cabc l
b lc =Ψ 3 la−Ψ 4ma , (38)

it follows that

Cabc l
b lc = 0 ⇔ Ψ 3 =Ψ 4 = 0 . (39)

Therefore, for typeD geometries both Cabc kb kc = 0 andCabc lb lc = 0. This concludes the proof
of the Bel–Debever criteria in 2+1 gravity.

The results for all algebraic types are summarized in table 2. The second column contains
the Bel–Debever criteria in 2+1 geometries, while the last column contains the classic Bel–
Debever criteria in 3+1 geometries, see equations (4.21)–(4.24) and (4.27) in [10]. It is obvious
that there is a perfect analogy when theWeyl tensor Cabcd is replaced by the Cotton tensor Cabc
in lower dimension D= 3.

In fact, the privileged (aligned) null vectors kwhich enter the Bel–Debever criteria in table 2
are the (possibly multiple) principal null directions of the Cotton and theWeyl tensor, respect-
ively. Now we will demonstrate that these can be systematically investigated and easily found
also by using the Newman–Penrose-type Cotton scalars ΨA defined in (9).

7. Lorentz transformations of the Cotton scalars ΨA

The key curvature scalars ΨA, which conveniently represent five independent components of
the Cotton tensor (9), are not unique in the sense that they depend on the choice of the null triad
{k, l,m}. However, as in the caseD⩾ 4 this freedom is simple, given just by the local Lorentz
transformations between various triads at a given point of the spacetime manifold. These are
the only admitted changes of the null basis of the tangent space which keep the normalization
conditions (7).

In particular, there are three subgroups of such Lorentz transformations, namely:

k ′ = Bk , l ′ = B−1 l , m ′ =m , (40)

k ′ = k , l ′ = l+
√
2Lm+L2 k , m ′ =m+

√
2Lk , (41)

k ′ = k+
√
2Km+K2 l , l ′ = l , m ′ =m+

√
2K l . (42)

10
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The boost (40) in the k− l subspace is parameterized by B, the null rotation (41) with k fixed
(changing l and m) is parameterized by L, while the complementary null rotation (42) with l
fixed (changing k and m) is parameterized by K. All these three parameters B,K,L are real.

It is now straightforward to determine the transformation properties of the Cotton scal-
ars (9). In particular, under the boost (40) they transform as a rescaling

Ψ ′
A = B2−AΨA . (43)

It means that they are naturally ordered in the definition (9) according to their specific boost
weight, which is the corresponding power (2−A) of the boost parameter B. This fact is fun-
damental for the algebraic classification of the Cotton tensor, as an application of a general
scheme developed in [12, 14] for any tensor.

Under the null rotation (41) the Cotton scalars transform as

Ψ ′
0 =Ψ0 ,

Ψ ′
1 =Ψ1 +

√
2LΨ0 ,

Ψ ′
2 =Ψ2 +

√
2LΨ1 +L2Ψ0 ,

Ψ ′
3 =Ψ3 − 3

√
2LΨ2 − 3L2Ψ1 −

√
2L3Ψ0 ,

Ψ ′
4 =Ψ4 + 2

√
2LΨ3 − 6L2Ψ2 − 2

√
2L3Ψ1 −L4Ψ0 . (44)

It follows that the classification of 2+1 geometries summarized in table 1 is invariant with
respect to both types of the Lorentz transformations (40) and (41). Indeed, if the corresponding
condition for a certain algebraic type is satisfied for ΨA, it remains satisfied for Ψ ′

A.
Finally—and more importantly—it remains to investigate the effect of the null rotation (42)

with fixed l ′ = l which changes the vectors k and m of the null triad to k ′ and m ′. In such a
case the Cotton scalars (9) transform as

Ψ ′
0 =Ψ0 + 2

√
2KΨ1 + 6K2Ψ2 − 2

√
2K3Ψ3 −K4Ψ4 ,

Ψ ′
1 =Ψ1 + 3

√
2KΨ2 − 3K2Ψ3 −

√
2K3Ψ4 ,

Ψ ′
2 =Ψ2 −

√
2KΨ3 −K2Ψ4 ,

Ψ ′
3 =Ψ3 +

√
2KΨ4 ,

Ψ ′
4 =Ψ4 . (45)

Notice that these expressions are complementary to (44) under the swap of the null vectors
k↔ l and K↔ L, which implies Ψ0 ↔Ψ4, Ψ1 ↔Ψ3 and Ψ2 ↔−Ψ2, see (9) and (28).

8. Principle null triad and the CAND

Now we come to a crucial observation, namely that the null rotation (45) always allows us
to achieve Ψ ′

0 = 0 by a suitable choice of the (complex) parameter K. Consequently, in the
new null triad {k ′, l ′,m ′} the condition for algebraic type I given in table 1 is satisfied. Such a
special frame is called the principle null triad, and its special null vector k ′ is said to be aligned
with the Cotton curvature tensor Cabc. The existence of the principal null triad demonstrates
that all 2+1 geometries are (at least) of algebraic type I. Recall that the same is true for
all 3+ 1 geometries, considering the Weyl tensor instead of the Cotton tensor, but in higher-
dimensional spacetimes such a principal null frame need not exist at all (see [10] and [14],
respectively).

11
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For practical reasons, however, wewill consider the equivalent opposite procedure, in which
one starts with the Cotton scalars Ψ ′

A calculated with respect to an arbitrarily chosen null
triad {k ′, l ′,m ′}. It is then possible to achieve Ψ0 = 0 by performing the inverse of the null
rotation (42), that is

k= k ′ −
√
2Km ′ +K2 l ′ , l= l ′ , m=m ′ −

√
2K l ′ . (46)

The resulting special triad {k, l,m} becomes the principle null triad, and its null vector k is
the Cotton-aligned null direction, which we can abbreviate as CAND. It is the 2+1 analogue
of the usual concept of PND of the Weyl tensor in D= 4 general relativity, and of WAND in
D⩾ 4 gravity, as introduced in [11, 12].

In fact, such an algebraically privileged triad with the CAND can be explicitly found. Under
the null rotation (46) the Cotton scalarΨ0 (having the highest boost weight+2) transforms as

Ψ0 =Ψ ′
0 − 2

√
2KΨ ′

1 + 6K2Ψ ′
2 + 2

√
2K3Ψ ′

3 −K4Ψ ′
4 . (47)

Actually, it is obtained from (45) by the simple swap ΨA ↔Ψ ′
A and K↔−K. The condition

Ψ0 = 0 thus takes the form

Ψ ′
4K

4 − 2
√
2Ψ ′

3K
3 − 6Ψ ′

2K
2 + 2

√
2Ψ ′

1K−Ψ ′
0 = 0 . (48)

It is an algebraic equation of the fourth order in the parameter K which, in general, admits
four complex solutions (not necessarily distinct). It thus follows that, at any event of the 2+1
spacetime there exist, in general, four CANDs determined by the local algebraic structure of
the (non-vanishing) Cotton tensor.

Each of these CANDs k is obtained using the relation (46), in which the parameter K is the
corresponding root of the equation (48).Moreover, anymultiplicity of these rootsK implies the
samemultiplicity of the CANDs. We will now demonstrate that such multiplicities are uniquely
related to the algebraic types.

9. Algebraic types and the CANDs multiplicity

A 2+1 spacetime is said to be algebraically general if its CANDs, i.e. the four roots of (48),
are all distinct. Such a spacetime is of algebraic type I.

A spacetime is algebraically special if at least two its CANDs coincide. If just twoCANDs k
coincide, it is of type II. Analogously, higher multiplicity defines type III (triple CAND/root)
and the most special type N (quadruple CAND/root) geometries.

In addition, there exists another degenerate case of type D. It is a subtype of type II such that
there are two distinct CANDs k and l, both of multiplicity 2 (two pairs of coinciding roots).
For completeness, the algebraic type O denotes a spacetime with everywhere vanishing Cotton
tensor (a conformally flat 2+1 spacetime). The complete scheme is summarized in table 3.

More specifically, if the vector k of the principal null triad is the CAND then Ψ0 = 0, and
the key equation (48) in such a triad becomes(

Ψ4K
3 − 2

√
2Ψ3K

2 − 6Ψ2K+ 2
√
2Ψ1

)
K= 0 . (49)

The root K= 0 corresponds to the CAND k. The special algebraic types arise when also the
cubic expression in the bracket has another root(s) K= 0. It is now obvious that type II arises
whenΨ1 = 0, and type III arises whenΨ1 =Ψ2 = 0. Type N occurs whenΨ1 =Ψ2 =Ψ3 = 0,
in which case (49) reduces to Ψ4K4 = 0. The quadruple root K= 0 corresponds to the unique
and privileged quadruple CAND k. For type D spacetimes with the Cotton scalars having the

12
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Table 3. Possible algebraic types of 2+1 geometries. The classification is uniquely
related to the multiplicity of the Cotton-aligned null directions (CANDs), that is to the
multiplicity of the four (complex) roots of the key equation (48). The canonical forms
of the five real Cotton scalars ΨA for each algebraic type are also included.

Algebraic type CANDs Multiplicity Canonical Cotton scalars

I 1+ 1+ 1+ 1 Ψ0 = 0 , Ψ1 ̸= 0

II 1+ 1+ 2 Ψ0 =Ψ1 = 0 , Ψ2 ̸= 0
D 2+ 2 Ψ0 =Ψ1 = 0=Ψ3 =Ψ4 , Ψ2 ̸= 0
III 1+ 3 Ψ0 =Ψ1 =Ψ2 = 0 , Ψ3 ̸= 0

N 4 Ψ0 =Ψ1 =Ψ2 =Ψ3 = 0 , Ψ4 ̸= 0
O N/A all ΨA = 0

form Ψ0 =Ψ1 = 0=Ψ3 =Ψ4 the equation (49) reduces to quadratic equation Ψ2K2 = 0, so
that k is the double CAND, as in type II. To be more specific:

• Type I geometries with the CAND k satisfy the equation (49) in which the simple root
K= 0 corresponds to k. Because Ψ1 ̸= 0 the remaining part of the equation is of the third
order, admitting in general three distinct (complex) roots different from zero. In such a gen-
eric case, there exist four different CANDs with no multiplicities, symbolically denoted as
1+ 1+ 1+ 1.

• Type II geometries have the canonical form Ψ0 = 0=Ψ 1 and Ψ2 ̸= 0, in which case (49)
reduces to (

Ψ4K
2 − 2

√
2Ψ3K− 6Ψ2

)
K2 = 0 . (50)

It has the solution K= 0 with the multiplicity 2 (which means that k is a double CAND),
and other K ̸= 0 solutions are given by the roots of the quadratic equation in the bracket.
In general, there exist two different (complex) roots, meaning that the multiplicities of the
three different CANDs are 1+ 1+ 2.

• Type III geometries have the canonical form of the Cotton scalars Ψ0 =Ψ1 =Ψ2 = 0 with
Ψ3 ̸= 0. The key equation (49) thus takes the form(

Ψ4K− 2
√
2Ψ3

)
K3 = 0 . (51)

The trivial solution K= 0 has the multiplicity 3 (which means that k is a triple CAND), and
there exists another (real) root K= 2

√
2Ψ3/Ψ4 ̸= 0. The multiplicities of the two different

CANDs are thus 1+ 3.
• Type N geometries are defined by the canonical conditionΨ4 ̸= 0 with all remaining Cotton
scalars zero, so that the equation (49) simplifies to

K4 = 0 . (52)

Therefore, k is a quadrupleCAND, corresponding to themultiplicity 4 of the solutionK= 0.

13
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Table 4. Algebraic classification of 2+1 geometries for the special case Ψ4 = 0=Ψ 0.

Ψ 1 = 0
Ψ 2 = 0

Ψ 3 = 0 type O

Ψ 3 ̸= 0 type III

Ψ 2 ̸= 0
Ψ3 = 0 type D

Ψ 3 ̸= 0 type II

Ψ 1 ̸= 0

Ψ2 = 0
Ψ3 = 0 type III

Ψ 3 ̸= 0 type I

Ψ 2 ̸= 0
Ψ3 = 0 type II

Ψ 3 ̸= 0
9Ψ 2

2 =−8Ψ 1Ψ 3 type II

9Ψ 2
2 ̸=−8Ψ 1Ψ 3 type I

• Type D geometries have the canonical form Ψ0 =Ψ1 = 0=Ψ3 =Ψ4 and Ψ2 ̸= 0. The key
equation (49) thus reduces to

K2 = 0 , (53)

from which it follows that k is a double CAND, corresponding to the multiplicity 2 of the
solution K= 0. In section 8 we have defined the CAND k ′ as the null vector of the principle
null triad {k ′, l ′,m ′} in whichΨ ′

0 = 0. Analogously3, the null vector l ′ of the principle null
triad is CAND if Ψ ′

4 = 0. In view of the transformation property (44) of the Cotton scalars
under the null rotation (41) with k fixed, that is

k ′ = k , l ′ = l+
√
2Lm+L2 k , m ′ =m+

√
2Lk , (54)

for the canonical form of type D geometries we obtain

Ψ ′
0 = 0 , Ψ ′

1 = 0 , Ψ ′
2 =Ψ2 , Ψ ′

3 =−3
√
2LΨ2 , Ψ ′

4 =−6L2Ψ2 . (55)

Therefore, the condition Ψ ′
4 = 0 for l ′ being the Cotton-aligned null direction is simply

L2 = 0 . (56)

It means that the null vector l= l ′ is, in fact, a double CAND, corresponding to themultipli-
city 2 of the solution L= 0. To summarize, geometries of algebraic type D admit two distinct
CANDs k and l, both of multiplicity 2.

This completes the proof of the relations contained in table 3.
A special situation Ψ 4 = 0=Ψ 0 has to be treated separately. In such a case the quartic

equation (49) reduces to the cubic(√
2Ψ3K

2 + 3Ψ2K−
√
2Ψ1

)
K= 0 , (57)

with the CAND k (corresponding to K= 0) and the distinct CAND l (corresponding to L= 0).
The respective multiplicities of the remaining roots of (57) are given by the nature of the quad-
ratic polynomial in the bracket, depending on the (non-)vanishing of the scalars Ψ1,Ψ2,Ψ 3,

3 Recall that the swap of the null vectors k↔ l results in Ψ0 ↔Ψ4, Ψ1 ↔Ψ3, Ψ2 ↔−Ψ2.
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and also on the discriminant D= 9Ψ 2
2 + 8Ψ 1Ψ 3. Full discussion of all possible algebraic

types in this case is presented in table 4.
We should emphasize that the algebraic classification in 2+1 dimensions (presented here)

is actually more subtle than in 3+1 geometries. The complication arises from the fact that the
key real equation (48) can in general have some complex roots K. This implies that some of
the null vectors k representing the CANDs may formally be complex. This somewhat unwel-
come consequence is closely related to the property that the important Cotton–Yorkmatrix Yab,
see (79) for its explicit form, is not symmetric and there is thus no guarantee that its eigen-
values are real. Nevertheless, it is a common practice in the field of algebraic classification of
2+1 spacetimes to formally admit the complex classification. A geometrically more justified
(sub)classification based on the real roots can be introduced. By restricting the eigenvalues to
only real numbers, a new algebraic subtype of spacetimes denoted as Class I ′ can be added,
see for example section 20.5.2 in the García-Díaz monograph [25]. We will return to this issue
later in section 13, after presenting the usual approach to algebraic classification based on the
Jordan form of the Cotton–York tensor in section 11.

10. Cotton–York tensor

The number of independent components of the Cotton tensor Cabc (3) in three dimensions,
being five, is exactly equal to the number of components of a symmetric and traceless rank-2
tensor. This can be obtained as the Hodge dual.

More specifically, following the conventions given in [25], with only slight modifications,
the Cotton–York tensor (sometimes also called the Schouten–Cotton–York tensor) is geomet-
rically defined by equation (20.111) in [25] (but denoted as Cαβ therein) as

Yab ≡ ea⌋∗Cb =
∗ (Cb ∧ωa) , (58)

where ωa = gabωb is the linear combination of the basis 1-forms (1) and Cb is the Cotton
(‘vector valued’) 2-form

2-form: Cb ≡ 1
2 Cmnbω

m ∧ωn . (59)

The symbol ⌋ in (58) stands for the interior product defined on a general p-form σ as4

ea⌋σ ≡ 1
(p− 1)!

σab2...bp ω
b2 ∧ . . .∧ωbp . (60)

Another common notation for this operation is ιeσ.
Recall that a metric-independent Hodge dual operator can be defined by employing the so

called ϵ-basis. This is constructed by subsequent interior products of the Levi-Civita tensor

ω ≡−3!
√
−g ω0 ∧ω1 ∧ω2 , (61)

in which g is the determinant of the metric gab. In components, this tensor explicitly reads

ωabc =−
√
−g εabc , or ωabc =

1√
−g

εabc , (62)

4 The exterior calculus notation and definitions used here are mainly taken from appendix A in [29].
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where εabc = εabc is the Levi-Civita symbol. Without loss of generality we assume that the null
triad has the following orientation

ωabc k
a lbmc = 1 . (63)

It is equivalent to defining the Levi-Civita symbol in the null basis {ωb} as ε123 = ε123 =−1.
Such an orientation ensures that, in an orthonormal frame, the spatial part will have the right-
handed orientation. The correspondence between the Hodge dual operation and the ϵ-basis
is

2-form: ϵa ≡ ∗ωa = ea⌋ω = 1
2ωabcω

b ∧ωc ,

1-form: ϵab ≡ ∗ (ωa ∧ωb) = eb⌋ϵa = ωabcω
c ,

0-form: ϵabc ≡ ∗ (ωa ∧ωb ∧ωc) = ec⌋ϵab = ωabc . (64)

Applying this construction of the Hodge dual to the (vector valued) Cotton 2-form (59) we
obtain ∗Cb =

1
2Cmnb ϵ

mn, that gives the following expression for the dual

1-form: ∗Cb =
1
2 ω

mnkCmnb gkcω
c . (65)

By performing the contractions ea⌋ωc = δa
c we get from the definition (58) an explicit pre-

scription for the Cotton–York tensor, namely

Yab = 1
2 gakω

kmnCmnb

=−
√
−g εamn

(
∇mRnb−

1
4
δnb ∂

mR

)
. (66)

This alternative form of the Cotton tensor appeared in York’s work [30], but was already dis-
cussed before by Arnowitt et al [31]. It encodes the same information as the Cotton tensor, but
it is a rank-lower tensor. One of its major advantages is that it is symmetric

Yab = Yba , (67)

and also traceless

Ya
a = 0 . (68)

Moreover, 2+1 spacetime is locally conformally flat if and only if Yab = 0. This Cotton–York
tensor is the key tensor in the context of 2+1 gravity, whose algebraic classification has already
been introduced and successfully employed. Since it is a rank-2 tensor, the eigenvalue problem
can be formulated exactly as a standard eigenvalue problem for matrices, see [18, 25].

To find an explicit relation to our new method of classification, we first express Yab in the
null triad (7) as

Yab =
3∑

I,J=1

YIJ ω
I
aω

J
b , (69)

where Y IJ are the corresponding components (recall that the dual basis is {ωI} ≡ {−l,−k,m}).
We can uniquely relate them to the Newman–Penrose-like Cotton scalars (9). Writing the
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sum (69) explicitly, using just the symmetry property (67) of the Cotton–York tensor, we get

Yab = Y11 la lb+Y12 (la kb+ ka lb)−Y13 (lamb+ma lb)

+Y22 ka kb−Y23 (kamb+ma kb)+ Y33mamb . (70)

Applying the normalization condition (7), from (70) the coefficients can be expressed as5

Y11 = Yab k
a kb ,

Y12 = Yab k
a lb ,

Y13 = Yab k
amb ,

Y22 = Yab l
a lb ,

Y23 = Yab l
amb ,

Y33 = Yabm
amb . (71)

Using the definition (66) with the relation (63) and the full expression (29) of the general
Cotton tensor, one arrives at the following result

Y11 =−Ψ 0 , Y12 =−Ψ 2 , Y13 =−Ψ 1 ,

Y22 =Ψ 4 , Y23 =Ψ 3 , Y33 =−2Ψ 2 . (72)

The general Cotton–York tensor (70) in the null triad basis thus takes the form

Yab =−Ψ 0 la lb+Ψ 1 (lamb+ma lb)

−Ψ 2 (la kb+ ka lb+ 2mamb)

−Ψ 3 (kamb+ma kb)+Ψ 4 ka kb . (73)

This is the key expression that will allow us now to relate the Cotton scalars ΨA to the algeb-
raic classification of spacetimes in 2+1 gravity, and to demonstrate its equivalence with the
previous classification scheme based on the Jordan form of the Cotton–York tensor [25].

To this end, it is important to express the general Cotton–York tensor in an orthonormal
basis {E0, E1, E2} corresponding to the null triad (7) via the usual relations

E0 ≡ 1√
2
(k+ l) , E1 ≡ 1√

2
(k− l) , E2 ≡m . (74)

Due to the normalization (7), such a basis satisfies the conditions

E0 ·E0 =−1 , E1 ·E1 = 1 , E2 ·E2 = 1 , (75)

with all other scalar products equal to zero, i.e. the metric in this basis reads

gab = diag(−1,1,1) . (76)

It means thatE0 is the (future-oriented) timelike unit vector, whileE1 andE2 are perpendicular
Cartesian spatial vectors. It also follows that

Ea
0 ka =− 1√

2
, Ea

0 la =− 1√
2
, Ea

0 ma = 0 ,

5 Basically, these are the real symmetric quantities ΨAB introduced in section 5 of [21].
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Ea
1 ka =

1√
2
, Ea

1 la =− 1√
2
, Ea

1 ma = 0 ,

Ea
2 ka = 0 , Ea

2 la = 0 , Ea
2 ma = 1 . (77)

Using (73), we thus easily obtain all orthonormal projections of the Cotton–York tensor, such
as Y00 ≡ Ea

0E
b
0 Yab =−Ψ 2 − 1

2 (Ψ 0 −Ψ 4), etc. The result is

Yab =


−Ψ 2 − 1

2 (Ψ 0 −Ψ 4) − 1
2 (Ψ 0 +Ψ 4) − 1√

2
(Ψ 1 −Ψ 3)

− 1
2 (Ψ 0 +Ψ 4) Ψ 2 − 1

2 (Ψ 0 −Ψ 4) − 1√
2
(Ψ 1 +Ψ 3)

− 1√
2
(Ψ 1 −Ψ 3) − 1√

2
(Ψ 1 +Ψ 3) −2Ψ 2

 , (78)

which is clearly a symmetric real matrix (Yab = Yba, Yaa = 0). Actually, it is a direct 2+1
analogue of the symmetric complex 3× 3 matrix Q (with zero trace) which is used for the
algebraic classification of the Weyl tensor in 3+1 spacetimes in the original Petrov approach
(see equation (3.65) in [10]).

11. Equivalence with the previous method of classification

To complete this work, it remains to prove the equivalence of our new convenient method of
algebraic classification, based on the Cotton scalars ΨA and the multiplicity of CANDs, with
the previous ‘Petrov-type’ classification scheme based on finding the specific Jordan forms of
the Cotton–York tensor. As summarized in Introduction, this was first considered in [17] and
refined in [18].

Let us repeat the main results, following sections 1.2.1 and 20.5.2 of the monograph [25]
by García-Díaz. The key idea is to solve the ordinary eigenvalue problem Ya

b vb = λva for the
Cotton–York 3× 3matrix Yab ≡ Yac gcb. In view of (78) and (76), in the orthonormal basis (74)
we get its explicit expression (a denotes rows, while b denotes the columns)

Ya
b =


Ψ 2 +

1
2 (Ψ 0 −Ψ 4) − 1

2 (Ψ 0 +Ψ 4) − 1√
2
(Ψ 1 −Ψ 3)

1
2 (Ψ 0 +Ψ 4) Ψ 2 − 1

2 (Ψ 0 −Ψ 4) − 1√
2
(Ψ 1 +Ψ 3)

1√
2
(Ψ 1 −Ψ 3) − 1√

2
(Ψ 1 +Ψ 3) −2Ψ 2

 . (79)

It is important to emphasize that the matrix Yab is traceless but not symmetric. Therefore,
the roots of the characteristic cubic polynomial det(Yab−λδa

b) = 0 may be complex.
Nevertheless, according to the possible eigenvalues λ1,λ2 and λ3 =−λ1 −λ2, one can find
the corresponding canonical Jordan forms, defining the algebraic ‘Petrov’ types of all 2+1
geometries. Such forms are presented in table 5, which is actually the copy of table 1.2.1 of
[25].

Now, we would like to find a one-to-one correspondence between the canonical Jordan
forms J of Yab presented in table 5 for each ‘Petrov’ type, and the canonical values
of the Cotton scalars ΨA. By comparing the Jordan form of type I with the explicit
expression (79) we uniquely obtain the conditions Ψ 1 ±Ψ 3 = 0 (so that Ψ 1 = 0=Ψ 3),
Ψ 0 +Ψ 4 = 0, 1

2 (Ψ 0 −Ψ 4)+Ψ 2 = λ1 and− 1
2 (Ψ 0 −Ψ 4)+Ψ 2 = λ2 (so that 2Ψ 2 = λ1 +λ2

and Ψ 0 −Ψ 4 = λ1 −λ2). Similarly for type D we immediately obtain Ψ 0 = 0=Ψ 4,
Ψ 1 = 0=Ψ 3 and Ψ 2 = λ1. However, for types II, III and N such an identification is not
directly possible. Instead, in these cases it is necessary to employ an equivalent (alternative)
normal forms of the Cotton–York matrix Ya

b.
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Table 5. Traditional algebraic classification of the Cotton–York tensor Yab based on the
possible Jordan forms and eigenvalues.

‘Petrov’ type Jordan form J of Yab Eigenvalues relation

I

λ1 0 0
0 λ2 0
0 0 −λ1 −λ2

 λ1 ̸= λ2, λ3 =−λ1 −λ2

II

λ1 1 0
0 λ1 0
0 0 −2λ1

 λ1 = λ2 ̸= 0, λ3 =−2λ1

D

λ1 0 0
0 λ1 0
0 0 −2λ1

 λ1 = λ2 ̸= 0, λ3 =−2λ1

III

0 1 0
0 0 1
0 0 0

 λ1 = λ2 = λ3 = 0

N

0 1 0
0 0 0
0 0 0

 λ1 = λ2 = λ3 = 0

O

0 0 0
0 0 0
0 0 0



More precisely, we look for a similarity transformation between the Jordan form J and the
specific normal form N, such that

N= AJA−1 , (80)

where A is an invertable matrix and A−1 its inverse. In particular, a direct calculation shows
that for type II geometries such a similarity transformation takes the form

N=

λ1 − 1 −1 0
1 λ1 + 1 0
0 0 −2λ1

=

−1 1 0
1 0 0
0 0 1

λ1 1 0
0 λ1 0
0 0 −2λ1

0 1 0
1 1 0
0 0 1

 .(81)

The subcase λ1 = 0 gives the transformation for type N geometries. And for type III we get

N=

 0 0 1
0 0 −1
−1 −1 0

=

−1 0 1
1 0 0
0 −1 0

0 1 0
0 0 1
0 0 0

0 1 0
0 0 −1
1 1 0

 . (82)

Such normal forms of the Cotton–York tensor Yab can be uniquely identifiedwith the canon-
ical values of the Cotton scalars ΨA for each algebraic type. The results are summarized in
table 6.

We have thus proven that for each ‘Petrov’ algebraic type in D= 3 there exists a privileged
orthonormal basis, which can be called the principal Cotton–York basis, in which Yab has the
corresponding normal form N, and the associated canonical values of the Cotton scalars ΨA,
as given in the last column of table 6. Actually, it is an analogue of table 4.2 in [10] which
contains the normal forms of the Weyl tensor for all Petrov types in D= 4.

Moreover, the specific values of the Cotton scalarsΨA in table 6 are fully consistentwith our
new simpler method of algebraic classification of 2+1 geometries, as summarized in table 1
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Table 6. Algebraic classification based on the possible normal forms of the Cotton–York
tensor Yab and the specific values of the Cotton scalars ΨA.

‘Petrov’ type Normal form N of Yab Values of the Cotton scalars

I

λ1 0 0
0 λ2 0
0 0 −λ1 −λ2

 Ψ 1 = 0=Ψ 3

Ψ 0 =
1
2 (λ1 −λ2) =−Ψ 4

Ψ 2 =
1
2 (λ1 +λ2)

II

λ1 − 1 −1 0
1 λ1 + 1 0
0 0 −2λ1

 Ψ 0 = 0 , Ψ 1 = 0=Ψ 3

Ψ 2 = λ1

Ψ 4 = 2

D

λ1 0 0
0 λ1 0
0 0 −2λ1

 Ψ 0 = 0=Ψ 4

Ψ 1 = 0=Ψ 3

Ψ 2 = λ1

III

 0 0 1
0 0 −1
−1 −1 0

 Ψ 0 = 0=Ψ 4

Ψ 1 = 0=Ψ 2

Ψ 3 =
√
2

N

−1 −1 0
1 1 0
0 0 0

 Ψ 0 = 0=Ψ 2

Ψ 1 = 0=Ψ 3

Ψ 4 = 2

O

0 0 0
0 0 0
0 0 0

 all ΨA = 0

and corroborated in table 3 to also include the related multiplicity of the CANDs. To be more
specific:

• Type I geometries with CAND k ′ are defined by the existence of the principle null triad
such that Ψ ′

0 = 0, see section 8. By inspecting the last column of table 6 we observe that
such a condition is not satisfied in the principal Cotton–York basis because Ψ0 ̸= 0 (recall
that λ1 ̸= λ2 for type I spacetimes). However, we can employ a suitable Lorentz transform-
ation (45) which for the canonical values of the Cotton scalars reduces to

Ψ ′
0 =

(
K4 + 1

)
Ψ0 + 6K2Ψ2 ,

Ψ ′
1 =

√
2K

(
K2Ψ0 + 3Ψ2

)
,

Ψ ′
2 = K2Ψ0 +Ψ2 ,

Ψ ′
3 =−

√
2KΨ0 ,

Ψ ′
4 =−Ψ0 . (83)

Obviously, we achieve Ψ ′
0 = 0 by taking K to be any root of the bi-quadratic equation

Ψ0K
4 + 6Ψ2K

2 +Ψ0 = 0 . (84)

Because Ψ 0 =
1
2 (λ1 −λ2) and Ψ 2 =

1
2 (λ1 +λ2), these four distinct explicit roots are

K2 =
−3Ψ2 ±

√
9Ψ2

2 −Ψ2
0

Ψ0
=−3

λ1 +λ2
λ1 −λ2

±

√
9(λ1 +λ2)

2 − (λ1 −λ2)
2

λ1 −λ2
. (85)
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Table 7. Multiplicities of the Cotton-aligned null directions (CANDs) for all algebraic
types. These are obtained from the key condition Ψ ′

0 = 0 expressed in the principal
Cotton–York basis, in which the Cotton scalars ΨA have the canonical form presented
in table 6. Multiplicity of the root corresponds to the multiplicity of the related CAND.
If the root is K= 0 then the null vector k is CAND. Similarly, the root L= 0 identifies
that l is CAND. For type N geometries the only nontrivial Cotton scalar is Ψ 4, so that
the vector k is a quadruple CAND corresponding to the multiplicity 4 of the root K= 0.

Type Condition Ψ ′
0 = 0 Roots CANDs Multiplicity

I K4 + 6bK2 + 1= 0 K=±
√

−3b± 2
√
D, 1+1+1+1

where b= λ1+λ2
λ1−λ2

and
√
D=

√
2λ2

1+5λ1λ2+2λ2
2

λ1−λ2

II (K2 − 3λ1)K
2 = 0 K=±

√
3λ1 and double K= 0 1+1+2

D L2 = 0 and K2 = 0 double L= 0 and double K= 0 2+2
III L= 0 and K3 = 0 L= 0 and triple K= 0 1+3

N K4 = 0 quadruple K= 0 4

The corresponding null vectors k ′ = k+
√
2Km+K2 l are then CANDs because Ψ ′

0 = 0.
Moreover, K2Ψ0 + 3Ψ2 =± 1

2

√
9(λ1 +λ2)2 − (λ1 −λ2)2, so that generally Ψ ′

1 ̸= 0.
• Type II geometries in the principal Cotton–York basis have Ψ 0 =Ψ 1 = 0, Ψ 2 = λ1 ̸= 0,
see table 6. This fully corresponds to our definition presented in table 1. In fact, we can
even achieveΨ 3 = 0 by performing (the inverse of) the Lorentz transformation (45), namely
Ψ3 =Ψ ′

3 −
√
2KΨ ′

4 for the particular choice of the null rotation parameter
√
2K=Ψ ′

3/Ψ
′
4.

Using (45), the condition Ψ ′
0 = 0 for CAND k ′ in the principal Cotton–York basis reduces

to a special form(
K2 − 3λ1

)
K2 = 0 . (86)

The factor K2 shows that k is a double CAND, and other two distinct CANDs are obtained
by applying the null rotation with the parameters K=±

√
3λ1.

• Type D geometries in the principal Cotton–York basis have Ψ 0 = 0=Ψ 1, Ψ 3 = 0=Ψ 4

and Ψ 2 = λ1 ̸= 0. This is a complete agreement with our definition presented in table 1.
There are two distinct CANDs k and l, both of multiplicity 2 becauseK2 = 0 and also L2 = 0,
see relations (53) and (56).

• Type III geometries in the principal Cotton–York basis haveΨ 0 =Ψ 1 =Ψ2 = 0,Ψ 3 =
√
2

and Ψ4 = 0, which exactly corresponds to our definition in table 1. We can achieve Ψ 4 = 0
by performing (the inverse of) the Lorentz transformation (44). Indeed, for the particular
choice of the null rotation parameter 2

√
2L=Ψ ′

4/Ψ
′
3 we getΨ4 =Ψ ′

4 − 2
√
2LΨ ′

3 = 0. The
key equation Ψ ′

0 = 0 given by (45) reduces to

K3 = 0 . (87)

It demonstrates that k is a triple CAND, while the fourth distinct CAND is l corresponding
to L= 0.

• Type N geometries in the principal Cotton–York basis have Ψ 0 =Ψ 1 =Ψ2 =Ψ3 = 0 and
Ψ 4 = 2, in full agreement with table 1. We can achieve the fixed canonical value Ψ 4 = 2
from any Ψ ′

4 ̸= 0 by the boost (40), which implies a simple rescaling Ψ4 = B2Ψ ′
4, see (43).
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In this case the condition Ψ ′
0 = 0 reduces to

K4 = 0 , (88)

which proves that k is a quadruple CAND.

These results are summarized in table 7. They show that our new simpler method of algebraic
classification of 2+1 geometries, based on the direct evaluation (9) of the Cotton scalars ΨA

and using the conditions in table 1, is fully equivalent to the previous (rather cumbersome)
‘Petrov’ approach based on determining the eigenvalues and the respective Jordan form J of
the Cotton–York tensor Yab (employed, e.g. in [25]). Moreover, our approach shows the unique
relation of the algebraic types to the corresponding multiplicity of the CANDs, in a complete
analogy with the multiplicities of the PNDs in D= 4 gravity (see section 4.3 of [10]) and the
WANDs in D> 4 gravity theories (see [14]).

12. Invariants assisting with the algebraic classification

To complete our new procedure of algebraic classification of 2+1 geometries, we now invest-
igate an important concept of scalar curvature polynomial invariantswhich can be constructed
from the Cotton tensor and the related Cotton–York tensor. In fact, it will turn out that these
invariants play a crucial role in easily determining the algebraic type of the spacetime.

From the explicit expression (29) for the Cotton tensor, using the normalization relations (8)
and (13), we can directly evaluate the quadratic scalar invariant

CabcC
abc = 4

(
Ψ 0Ψ 4 − 2Ψ 1Ψ 3 − 3Ψ 2

2

)
, (89)

and similarly from the expression (73) for the Cotton–York tensor we similarly obtain

YabY
ab =−2

(
Ψ 0Ψ 4 − 2Ψ 1Ψ 3 − 3Ψ 2

2

)
. (90)

Another invariant can be constructed as their specific cubic combination

CabcC
abdYcd = 6

(
Ψ 0Ψ

2
3 −Ψ 2

1Ψ 4 + 2Ψ 0Ψ 2Ψ 4 + 2Ψ 1Ψ 2Ψ 3 + 2Ψ 3
2

)
. (91)

It can be immediately seen that for type N spacetimes, in which the only non-vanishing
Cotton scalar is Ψ4, one gets

CabcC
abc = 0= YabY

ab and CabcC
abdYcd = 0 . (92)

In fact, all algebraic types can be uniquely identified by using such invariants expressed in
terms of the specific polynomials constructed from the Cotton scalarsΨA. The two key invari-
ants are

I= 1
4 CabcC

abc =− 1
2 YabY

ab ,

J= 1
6 CabcC

abdYcd . (93)

In view of (89)–(91) they can be defined as

I≡Ψ 0Ψ 4 − 2Ψ 1Ψ 3 − 3Ψ 2
2 ,

J≡ 2Ψ 0Ψ 2Ψ 4 + 2Ψ 1Ψ 2Ψ 3 + 2Ψ 3
2 +Ψ 0Ψ

2
3 −Ψ 4Ψ

2
1 . (94)
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Figure 1. Flow diagram for determining the algebraic type of a 2+1 geometry using
the invariants (94) and (97) constructed from the Cotton scalars ΨA. In the special case
Ψ4 = 0=Ψ0 it is necessary to employ table 4.

These unique invariants naturally occur in the expression for the discriminant∆ of the key
quartic equation (48), after dropping the primes. Indeed, a direct calculation shows that

−∆= 28 I3 + 2633 J2 . (95)

It is well-known that the necessary and sufficient condition for the quartic equation to have a
multiple root is∆= 0. In the present context it means that a spacetime is algebraically special
(it admits at least one multiple CAND), i.e. it is at least of type II, if and only if

4 I3 =−27J2 . (96)

Furthermore, if and only if I= 0= J the key equation (48) has at least a triple root and the
corresponding spacetime is of type III or of type N. To distinguish them we define additional
quantities

G≡Ψ 1Ψ
2
4 − 3Ψ 2Ψ 3Ψ 4 −Ψ 3

3 ,

H≡ 2Ψ 2Ψ 4 +Ψ 2
3 ,
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Table 8. Consistency of the algebraic classification based on the normal forms of the
Cotton–York tensor Yab with the invariants calculated from the corresponding specific
values of the Cotton scalars ΨA.

Algebraic type Special values of ΨA Corresponding invariants

I
Ψ 1 = 0=Ψ 3

Ψ 0 =
1
2 (λ1 −λ2) =−Ψ 4

Ψ 2 =
1
2 (λ1 +λ2)

I= λ1λ2 − (λ1 +λ2)
2

J= λ1λ2 (λ1 +λ2)

II
Ψ 0 = 0 , Ψ 1 = 0=Ψ 3

Ψ 2 = λ1

Ψ 4 = 2

I=−3λ2
1

J= 2λ3
1

G= 0 , N= 36λ2
1

D
Ψ 0 = 0=Ψ 4

Ψ 1 = 0=Ψ 3

Ψ 2 = λ1

I=−3λ2
1

J= 2λ3
1

G= 0= N

III
Ψ 0 = 0=Ψ 4

Ψ 1 = 0=Ψ 2

Ψ 3 =
√
2

I= 0= J
G=−2

√
2 , H= 2

N
Ψ 0 = 0=Ψ 2

Ψ 1 = 0=Ψ 3

Ψ 4 = 2

I= 0= J
G= 0= H

N≡ 3H2 +Ψ 2
4 I . (97)

A spacetime is of algebraic type N if I= 0= J and G= 0= H. Finally, algebraically special
spacetime with I ̸= 0 ̸= J is of type D if and only ifG= 0= N (otherwise it remains of type II).

These conditions follow from first eliminating the cubic term in the quartic equation (48),
resulting in the so called depressed quartic. The quantityG is the coefficient in front of the lin-
ear term in this depressed quartic. Its vanishing reduces the equation to bi-quadratic equation,
from which the subsequent analysis depending on H= 0 and N= 0 immediately follows.

The useful complete6 algorithm of algebraic classification is synoptically summarized by
the flow diagram in figure 1. Actually, it is a one-to-one analogue of the flow diagram for the
algebraic classification of D= 4 spacetimes presented in the original work [32] by d’Inverno
and Russell-Clark, and in figure 9.1 of [10].

With the help of the practical algorithm in figure 1, we can finally confirm the classification
into the algebraic types contained in table 6. The invariants I,J,G,H,N for the corresponding
special values ofΨA in the principal Cotton–York basis (contained in the last column of table 6)
are shown in the last column of table 8. Their values and mutual relations are fully consistent
with the flow diagram scheme in figure 1.

13. Complex CANDs and complex eigenvalues

We have already mentioned at the end of section 9 that in 2+1 gravity the algebraic classi-
fication suffers from the (somewhat unwelcome) property that the key real equation (48) can,

6 The procedure is not applicable if Ψ 4 = 0 and Ψ 0 ̸= 0. However, in such a case it is possible to perform the swap
Ψ 0 ↔−Ψ 4 and Ψ 1 ↔−Ψ 3 in the expressions, after which the algorithm in figure 1 can be used.
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in general, have some complex roots K. More specifically, an equation of the fourth order can
have either four (possibly multiple) real roots, or four complex roots, or two real and two
complex roots. This implies that some of the null vectors k= k ′ −

√
2Km ′ +K2 l ′, represent-

ing the Cotton-aligned PNDs CANDs obtained by (46), may be complex. This cannot happen
neither in 3+1 gravity (because the Newman–Penrose formalism in D= 4 with the Weyl scal-
ars ΨA is complex, and thus complex roots K are allowed, leading to four real PNDs) nor in
higher dimensional gravity D> 4 (because the corresponding real quartic equation involves
more parameters Ki, leading to four real WANDs—except in type G spacetimes).

It is thus natural to suggest a subclassification which, for each algebraic type, distinguishes
the real and complex CANDs. In particular, we may introduce the definition:

• Subtypes Ir, IIr and Dr: all four (possibly multiple) CANDs are real,
• Subtypes Ic, IIc and Dc: some of the CANDs are (formally) complex.

We need not distinguish such subtypes for geometries of algebraic type III and type N. Indeed,
if a quartic equation (48) admits a root of multiplicity three or four, necessarily all roots must
be real, and thus III≡ IIIr and N≡Nr.

On the other hand, for type I and type II (and thus also for type D) geometries we have
to investigate the complexity of the roots of the equation (48), which is best done using the
invariants (94) and (97)7.

• For type I (when 4I3 ̸=−27J2) the equation (48) has four distinct roots. If

4I3 >−27J2 , (98)

the discriminant∆ given by (95) is negative, and the equation has two distinct real roots and
a pair of (conjugated) complex roots. It means that the geometry is of subtype Ic with two
complex CANDs.
If the relation (98) is not satisfied, there exist either four distinct real roots, or four distinct

complex roots. If both the relations

H> 0 and N> 0 (99)

hold then there are four real roots and the geometry is of subtype Ir with four real CANDs.
Otherwise, all roots of the equation (48) are complex and the algebraic subtype is Ic.

• For type II (when 4I3 =−27J2) the discriminant∆ vanishes and there is at least one double
root. The only possibility of the subtype IIc is when there is one double real root and a pair
of complex conjugated roots and thus CANDs. This happens if and only if

N< 0 . (100)

For G= 0= N the geometry is of type D (see figure 1). The subtype Dc with two double
complex CANDs occurs when the equation (48) admits two conjugated complex roots of
multiplicity two. This can only happen in the case when

H< 0 . (101)

In particular, with the canonical form of the Cotton scalars Ψ0 = 0=Ψ1 with Ψ2 ̸= 0, the
subtype IIr occurs if and only if 3Ψ2Ψ4 +Ψ2

3 > 0. In the opposite case 3Ψ2Ψ4 +Ψ2
3 < 0 it is

of subtype IIc. The case 3Ψ2Ψ4 +Ψ2
3 = 0 gives the geometry of subtype Dr with two double

real CANDs.

7 We assume that Ψ 4 ̸= 0, otherwise we perform the swap Ψ 0 ↔−Ψ 4 and Ψ 1 ↔−Ψ 3, provided Ψ 0 ̸= 0.
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Actually, the presence of the complex CANDs in the subtypes Ic, IIc and Dc is (indirectly)
related to the known property that the Cotton–York matrix Yab is not symmetric and thus its
eigenvalues can be complex, see [18] and section 20.5.2 in the monograph [25]. Therefore, in
these works a special algebraic subtype denoted as Class I ′ was introduced. This represents
the case when the Cotton–York matrix has three distinct eigenvalues—of which one is real and
two are complex (necessarily complex conjugated).

In view of the Jordan form J of Yab (equal to its normal form N) and the corresponding
Cotton scalars ΨA, given in tables 5 and 6, we can relate the complex eigenvalues of Class I ′,
written as

λ1 ≡ λr+ iλc and λ2 ≡ λr− iλc , (102)

(so that λ3 =−λ1 −λ2 =−2λr) to the canonical values of the Cotton scalars asΨ1 = 0=Ψ3,

Ψ2 = λr , Ψ0 = iλc , Ψ4 =−iλc . (103)

It means that the Cotton scalars Ψ0 and Ψ4 are purely imaginary (and complex conjugated).
However, in this case it is more appropriate to employ the equivalent form of Yab given in

table in section 20.5.2 in [25], namely

Ya
b =

 λr λc 0
−λc λr 0
0 0 −2λr

 . (104)

In view of (79), the corresponding real Cotton scalars take the values Ψ 1 = 0=Ψ 3 and

Ψ2 = λr , Ψ0 = λc =Ψ 4 . (105)

In this case the key equation (48) for determining the CANDs becomes

λcK
4 − 6λrK

2 −λc = 0 , (106)

and the four solutions to this bi-quadratic equation are

K2
± = 3

λr
λc

±

√
9
λ2r
λ2c

+ 1 , (107)

so that K2
+ > 0 and K2

− < 0. There are thus two complex CANDs corresponding to ±i |K−|.
This shows that the Class I′ defined in [18, 25] is equivalent to the case 4I3 >−27J2 of
subtype Ic, introduced here. If (and only if) λc = 0 then the only non-trivial (real) Cotton
scalar (103) or (105) is Ψ2 = λr. The eigenvalues are λ1 = λ2 =Ψ2 and λ3 =−2Ψ2. They
are real, and the spacetime is of type D.

Moreover, it can be seen that our subtypes Ir and Ic are directly related to the Petrov–Segre
types IR and IC in TMG, as introduced in [22, 23], with real and complex eigenvalues of the
Cotton–York/traceless Ricci tensors, respectively.

On the other hand, it follows from table 6 that type II and type D spacetimes have only real
eigenvalues and real Cotton scalarsΨA, so it is not necessary to introduce analogous Class II

′

and Class D ′. However, the CANDs given by the complex roots of (48) can be complex. It thus
seems that it is useful to define the subtypes Ic, IIc, Dc, respectively, to denote these subcases.
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14. Explicit examples of the new classification method

Finally, to demonstrate the usefulness of our simple classification scheme based on the Cotton
scalars ΨA, as summarized in table 1 (see also table 3) and in the flow diagram figure 1, we
will apply it to several explicit classes of 2+1 geometries.

14.1. Robinson–Trautman spacetimes with Λ and electromagnetic field

Let us consider a large class of the Robinson–Trautman spacetimes with a cosmological con-
stant Λ and an aligned electromagnetic field. Recently in [33] we derived that in the geomet-
rically adapted canonical coordinates r,u,x the most general form of such 2+1 solutions to
Einstein–Maxwell equations (with a coupling constant κ0 > 0) can be written as

ds2 =
r2

P2

(
dx+ eP2du

)2 − 2dudr+

(
µQ2 −κ0Q

2 ln
∣∣∣Q
r

∣∣∣+ 2 (lnQ),u r+Λr2
)
du2 ,

(108)

with the Maxwell field potential

A= Q ln
r
r0

du , (109)

so that F= (Q/r)dr∧ du , see equations (180) and (182) of [33]. Here µ is a constant, Q(u) is
any function of u, and the metric functions P(u,x), e(u,x) satisfy the field equation(

Q
P

)
,u

= Q (eP),x . (110)

Now, using the general components of the Ricci tensor Rab (see equations (A24)–(A29) of
[33]) the Cotton tensor Cabc corresponding to the solution (108) can be calculated from the
definition (3). Its non-vanishing coordinate components are

Curr =
κ0Q2

2r3
,

Curu = Lr
κ0Q4

2r3
+Auru

1
r2

+
(
e2P2 −Λ

) κ0Q2

2r
,

Cxru = e
κ0Q2

2r
,

Cxuu = Axuu−
(
P(eP),x+

P,u
P

)
,x

(κ0
2

+Lr
) Q2

r
,

Curx = e
κ0Q2

2r
,

Cxrx =
κ0Q2

2rP2
,

Cxux =

(
(eP),x+

P,u
P2

)(
3
2
κ0 +Lr

)
Q2

P
− (2κ0 +Lr)

QQ,u
P2

, (111)

where the function Lr(u,r) is

Lr ≡ κ0 ln
∣∣∣Q
r

∣∣∣−µ, (112)
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and the more involved functions Auru and Auux are

Auru ≡ (κ0 +Lr)QQ,u−
(
P(eP),x+

P,u
P

)(
3
2
κ0 +Lr

)
Q2 ,

Axuu ≡
(
P(eP),x+

P,u
P

)(
3
2
κ0 +Lr

)
eQ2 − (2κ0 +Lr) eQQ,u

+

[
P(eP),x+

P,u
P

]
,x

Q,u
Q

+P,x (Pe,u),x+P (P,x e,u),x+P (Pe,ux),x

+

(
P,uu
P

)
,x

− 4
P,u
P

(
P,u
P

)
,x

−
[
2e2P2P2,x+P4

(
e2,x+ ee,xx

)
+ eP3 (5e,xP,x+ eP,xx)

]
,x
.

(113)

These coordinate expressions of the Cotton tensor components are very complicated. However,
using the natural null triad satisfying (7),

k= ∂r , l=
1
2
guu ∂r+ ∂u , m=

1
√
gxx

(gux ∂r+ ∂x) , (114)

(see equation (6) of [33]), the definition (9) and the field equation (110), we obtain simple
Cotton scalars ΨA, namely

Ψ 0 = 0 ,

Ψ 1 =−κ0Q
2

2r3
,

Ψ 2 =−eP κ0Q
2

2r2
,

Ψ 3 =

(
κ0 ln

∣∣∣Q
r

∣∣∣−µ

)
κ0Q4

4r3
+
(
e2P2 −Λ

) κ0Q2

4r
,

Ψ 4 = eP

(
κ0 ln

∣∣∣Q
r

∣∣∣−µ

)
κ0Q4

2r2
+ eP

(
e2P2 −Λ

) κ0Q2

2
. (115)

BecauseΨ 0 = 0, it is obvious from table 1 that all such Robinson–Trautman spacetimes with a
cosmological constant Λ and an aligned electromagnetic field are (at least) of algebraic type I.
Moreover, it follows from sections 8 and 9 that the null vector k= ∂r is CAND. In other words,
this CAND k= ∂r coincides with the privileged null-aligned direction of the electromagnetic
field.

In fact, the general Cotton scalars (115) can considerably be further simplified just by per-
forming a suitable Lorentz transformation of the triad. In particular, the null rotation (41) with
k fixed, changing l and m as

k ′ = k , l ′ = l+
√
2Lm+L2 k , m ′ =m+

√
2Lk , (116)

transforms the Cotton scalars according to the rule (44). Choosing the specific real para-
meter L,

√
2L=−ePr , (117)
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and relabeling the constant µ to the function m(u)≡ µQ2(u), we get a very nice result

Ψ ′
0 = 0 ,

Ψ ′
1 =−κ0Q

2

2r3
,

Ψ ′
2 = 0 ,

Ψ ′
3 =−

(
m−κ0Q

2 ln
∣∣∣Q
r

∣∣∣+Λr2
)
κ0Q2

4r3
,

Ψ ′
4 = 0 . (118)

Interestingly,

2Ψ ′
3 =

(
m−κ0Q

2 ln
∣∣∣Q
r

∣∣∣+Λr2
)
Ψ ′

1 . (119)

These are the Cotton scalars expressed with respect to the unique null triad

k ′ = ∂r ,

l ′ = ∂u+
1
2

(
m−κ0Q

2 ln
∣∣∣Q
r

∣∣∣+ 2 (lnQ),u r+Λr2
)
∂r− eP2 ∂x ,

m ′ =
P
r
∂x . (120)

Clearly, all these scalars vanish when Q= 0, which corresponds to vacuum solutions with Λ,
and thus necessarily are spacetimes of constant curvature (locally Minkowski, de Sitter or
anti-de Sitter), which are conformally flat.

In the non-trivial case Q ̸= 0 with an (aligned) electromagnetic field, the key scalar
curvature invariants (94) are

I=−2Ψ ′
1Ψ

′
3 =

(
−m+κ0Q

2 ln
∣∣∣Q
r

∣∣∣−Λr2
)
κ20Q

4

4r6
,

J= 0 . (121)

It is obvious that the fundamental condition (96), that is 4 I3 =−27J2, cannot be satisfied.
Consequently, all such spacetimes are of algebraic type I, see also the flow diagram in figure 1.
More precisely, here it is necessary to employ table 4 because in this caseΨ ′

4 = 0=Ψ ′
0. Using

the fact that Ψ ′
1 ̸= 0, Ψ ′

2 = 0, Ψ ′
3 ̸= 0, the corresponding row in table 4 determines the type I.

In our work [33] we were able to identify the famous class of (cyclic symmetric) charged
black hole electrostatic solutions [34] that is the 2+1 analogue to the Reissner–Nordström–
(anti-)de Sitter solution, see the metric (192) in [33] and the review given in section 11.2 of
[25]. It arises as the special subcase Q= const. and e= 0 of the metric (108). In such a situ-
ation L given by (117) is trivial (L= 0), and (115) is thus identical to (118). In any case, the key
invariants (121) remain the same, which implies that these electrostatic black hole spacetimes
are of algebraic type I. The same result was obtained already by applying the Petrov classific-
ation based on the corresponding Jordan form of the Cotton–York tensor, see section 11.1.5 in
[25].
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Interestingly, on the horizons which are localized by the condition −m+κ0Q2

ln
∣∣Q
r

∣∣−Λr2 = 0 the scalar Ψ ′
3 vanishes, see (119), so that according to table 4 these horizons

are of algebraic type III. Moreover, for (118) the key equation (48) determining the CANDs
becomes [(

−m+κ0Q
2 ln

∣∣∣Q
r

∣∣∣−Λr2
)
K2 + 2

]
K= 0 . (122)

The square bracket tells us that above the horizon, where −m+κ0Q2 ln
∣∣Q
r

∣∣−Λr2 > 0, there
exist two complex CANDs, so that such a region of the spacetime is of algebraic subtype Ic
(which in this case is equivalent to Class I′). Contrarily, below the horizon there are four real
CANDs, and therefore the region is of subtype Ir.

14.2. Other examples of 2+1 spacetimes of various algebraic types

In their seminal work [18], García, Hehl, Heinicke and Macías investigated some solutions of
Einstein’s field equations in 2+1 gravity, as well as solutions of the TMG model of Deser,
Jackiw and Templeton, presenting explicit examples for each algebraic class. To further con-
firm and justify our classification method, we will now apply it to these examples studied in
section 7 of [18].

14.2.1. Type I (and type D) spacetime. The line element given by equations (114)–(117) in
[18] takes the form

ds2 =− (a1 + a2)
2 dψ 2 − 2(a1 + a2)

2 sinhθdψ dϕ

−
(
a21 − a22

)
sin2ψ coshθdθdϕ+

(
a21 sin

2ψ + a22 cos
2ψ

)
dθ2

+
[(
a21 cos

2ψ + a22 sin
2ψ

)
cosh2 θ− (a1 + a2)

2 sinh2 θ
]
dϕ2 , (123)

with the natural orthonormal dual basis

ω0 =−(a1 + a2)(dψ + sinhθdϕ) ,

ω1 = a1 (−sinψ dθ+ cosψ coshθdϕ) ,

ω2 = a2 (cosψ dθ+ sinψ coshθdϕ) . (124)

In view of (74), the corresponding null triad reads

k=
1√
2

[(
1

a1 + a2
− cosψ tanhθ

a1

)
∂ψ − 1

a1
sinψ ∂θ +

1
a1

cosψ sechθ∂ϕ

]
,

l=
1√
2

[(
1

a1 + a2
+

cosψ tanhθ
a1

)
∂ψ +

1
a1

sinψ ∂θ −
1
a1

cosψ sechθ∂ϕ

]
,

m=− 1
a2

sinψ tanhθ∂ψ +
1
a2

cosψ ∂θ +
1
a2

sinψ sechθ∂ϕ . (125)
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The non-vanishing Cotton tensor components of the metric (123) are

Cψθθ = 2
a31 − a32

a1a2 (a1 + a2)
sin2ψ ,

Cψϕθ = 2

(
a21 + a1a2 + a22

)
[a1 + a2 − (a1 − a2)cos2ψ ]

a1a2 (a1 + a2)
coshθ ,

Cψθϕ =−2

(
a21 + a1a2 + a22

)
[a1 + a2 +(a1 − a2)cos2ψ ]

a1a2 (a1 + a2)
coshθ ,

Cψϕϕ =−2
a31 − a32

a1a2 (a1 + a2)
sin2ψ cosh2 θ ,

Cθϕψ = 4
a21 + a1a2 + a22

a1a2
coshθ ,

Cθϕθ =−2
a31 − a32

a1a2 (a1 + a2)
sin2ψ sinhθ ,

Cθϕϕ =

(
a21 + a1a2 + a22

)
[3(a1 + a2)+ (a1 − a2)cos2ψ ]

a1 a2 (a1 + a2)
sinh2θ . (126)

The Cotton scalars (9) evaluated with respect to this basis are simply the constants

Ψ 0 =−2
a31 +(a1 + a2)

3

a21a
2
2 (a1 + a2)

2 ,

Ψ 1 = 0 ,

Ψ 2 =−2
a21 + a1a2 + a22
a21a2 (a1 + a2)

2 ,

Ψ 3 = 0 ,

Ψ 4 =−Ψ 0 ,

(127)

and the scalar invariants (94) reduce to

I=−16

(
a21 + a1a2 + a22

)3
a41a

4
2 (a1 + a2)

4 , J= 64

(
a21 + a1a2 + a22

)3
a51a

5
2 (a1 + a2)

5 . (128)

It is straightforward to check that the key relation 4I3 =−27J2 cannot be satisfied in general,
so according to the flow diagram in figure 1 the spacetime (123) is of algebraic type I.

We can obtain the four distinct CANDs by performing the null rotation (42) to
achieve Ψ ′

0 = 0. Because Ψ1 = 0=Ψ3 and Ψ4 =−Ψ0, the parameter K has to satisfy the
bi-quadratic equation

Ψ 0 + 6Ψ 2K
2 +Ψ 0K

4 = 0 , (129)

see (45). Its four distinct roots are ±K such that the two distinct values of K2 are

K2 =
1
B

(
− 3
a1

− 3
a2

− 3a2
a21

± 2
a21 + a1a2 + a22

a21a
2
2

√
2a22 − a1a2 − a21

)
, (130)
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where

B=
3
a1

+
3
a2

+
2a1
a22

+
a2
a21
. (131)

Actually, the metric (123) is an example of a subtype Ic spacetime that is not equivalent to
Class I′. It is straightforward to check that the relation (98) does not hold. The conditions (99)
are satisfied if and only if

a1 < 0 and − a1
2
< a2 <−2a1 , (132)

or

a1 > 0 and − 2a1 < a2 <−a1
2
, (133)

and the spacetime is of subtype Ir. Otherwise, it is of subtype Ic but not of Class I′.
Interestingly, in the special case a1 = a2 the invariants (128) reduce to

I=−27

a61
, J=

54

a91
, (134)

so that 4I3 =−27J2. According to the flow diagram in figure 1, the spacetime (123) becomes
algebraically special. In fact, because I,J ̸= 0 and G= N= 0, it degenerates to type D. This is
in full agreement with the results of [18]. Actually, the roots (130) are K=±i so that the two
double CANDs are complex, and the spacetime is of a subtype Dc (see section 13).

From (130) we also conclude that the spacetime (123) is of algebraic type D if and only
if 2a22 − a1a2 − a21 = 0. This has only two solutions, namely a1 = a2 (discussed above) and
a1 =−2a2. In the latter case we get

I=−27

a62
, J=

54

a92
, (135)

again implying 4I3 =−27J2.

14.2.2. Type I′ spacetime. A generic example of the Class I′ metric is a spherically sym-
metric spacetime

ds2 =−ψ (r) dt2 +
dr2

ψ (r)
+ r2 dφ 2 , (136)

see equation (111) in [18], which suggests a natural orthonormal dual basis (beware of the
opposite signature used in [18])

ω0 =
√
ψ dt , ω1 =

dr√
ψ
, ω2 = rdφ . (137)

The corresponding null triad reads

k=
1√
2

(
1√
ψ
∂t−

√
ψ∂r

)
, l=

1√
2

(
1√
ψ
∂t+

√
ψ∂r

)
, m=

1
r
∂φ . (138)

The only non-vanishing components of the Cotton tensor are

Crtt = 1
4ψ ψ

′ ′ ′ , Crφφ = 1
4 r

2ψ ′ ′ ′ , (139)
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where prime denotes the derivative with respect to r. The Cotton scalars (9) simply evaluate
to

Ψ 0 = 0 ,

Ψ 1 =− 1
4
√
2

√
ψψ ′ ′ ′ ,

Ψ 2 = 0 ,

Ψ 3 =−Ψ 1 ,

Ψ 4 = 0 . (140)

According to table 4 the spacetime is of type I. In view of the equation (48) for CANDs which
reduces to (

K2 + 1
)
K= 0 , (141)

we conclude that there are two real CANDs, namely k and l, and two complex CANDs given
by the solutions K=±i. Therefore, the spacetime (136) is of algebraic subtype Ic, which in
this case is also equivalent to the Class I′.

14.2.3. Type I spacetime with type II hypersurface. The metric

ds2 =−e−4y dt2 − 2e−2y dtdx+
(
e2y− 1

)
dx2 + dy2 , (142)

given by the orthonormal dual basis

ω0 = e−2y dt+ dx , ω1 = ey dx , ω2 = dy , (143)

see equation (132) in [18], has the natural null triad

k= 1√
2

[
ey (ey− 1) ∂t+ e−y ∂x

]
, l= 1√

2

[
ey (ey+ 1) ∂t− e−y ∂x

]
, m= ∂y . (144)

The non-vanishing components of the Cotton tensor are

Ctxy = 4e−4y
(
1− 3e2y

)
,

Ctyt = 6e−6y
(
3− e2y

)
,

Ctyx = 2e−4y
(
7− 9e2y

)
,

Cxyt = 2e−4y
(
5− 3e2y

)
,

Cxyx = 6e−2y
(
1− e4y

)
. (145)

The corresponding Coton scalars (9) read

Ψ 0 =−6e−3y
(
1− 3ey+ e2y+ e3y

)
,

Ψ 1 = 0 ,

Ψ 2 = e−3y
(
6e2y− 2

)
,

Ψ 3 = 0 ,

Ψ 4 = 6e−3y
(
1+ 3ey+ e2y− e3y

)
, (146)
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and the scalar invariants (94) are

I= 12
(
3− 4e−6y+ 27e−4y− 30e−2y

)
,

J= 16e−9y
(
8− 81e2y+ 225e4y− 171e6y+ 27e2y

)
. (147)

The key expression 4I3 + 27J2 = 4322 e−14y(1+ e2y)4(e6y− 7e4y+ 7e2y− 1) is nonzero,
which implies that the spacetime (142) is generally of algebraic type I.

However, on the special hypersurface y= 0 this expression reduces to 4I3 + 27J2 = 0. In
fact, the only non-vanishingCotton scalars on y= 0 areΨ2 = 4 andΨ4 = 24, and thus I=−48,
J= 128, G= 0, N= 2882. According to the flow diagram in figure 1 the spacetime (142) is
of type II on y= 0. Since the condition (100) is not satisfied, it is of subtype IIr. Actually,
the null vector k of the null triad (144) is the Cotton aligned null direction (CAND) on this
hypersurface because Ψ0 = 0 there.

14.2.4. Type I spacetime with type III hypersurface. Let us assume a simple metric

ds2 =−(t− x)2 dt2 +(t+ x)2 dx2 + dy2 , (148)

given by the orthonormal basis (133) in [18], namely

ω0 = (x− t) dt , ω1 = (x+ t) dx , ω2 = dy . (149)

The corresponding null triad reads

k=
1√
2

(
1

t− x
∂t−

1
t+ x

∂x

)
, l=

1√
2

(
1

t− x
∂t+

1
t+ x

∂x

)
, m= ∂y . (150)

The non-vanishing components of the Cotton tensor are

Ctxt =−
4
(
2t2x+ x3

)
(t+ x)4 (t− x)2

,

Ctxx =
4
(
t3 + 2tx2

)
(t+ x)2 (t− x)4

,

Ctyy =−
4
(
t3 + 2tx2

)
(t+ x)4 (t− x)4

,

Cxyy =
4
(
2t2x+ x3

)
(t+ x)4 (t− x)4

, (151)

and thus the Cotton scalars (9) take the form

Ψ 0 = 0 ,

Ψ 1 =−2
√
2
t4 + 3t3x+ 3tx3 − x4

(t+ x)5 (t− x)5
,

Ψ 2 = 0 ,

Ψ 3 =−2
√
2
t4 − t3x+ 4t2x2 + tx3 + x4

(t+ x)5 (t− x)5
,

Ψ 4 = 0 . (152)
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In this case we have to be careful becauseΨ 0 = 0=Ψ 4 and the algorithm presented in figure 1
is thus not applicable. In such an exceptional case we have to use the table 4 instead, which
implies that the spacetime (148) is generally of type I.

However, applying this table we may notice that there exist specific subcases which are
algebraically special. For example, the condition Ψ1 = 0 with Ψ3 ̸= 0 leads to the algebraic
type III. In view of (152), this can be achieved by taking the constraint x= t(

√
13+ 3)/2,

which is exactly the conclusion presented in [18]. Indeed, on this hypersurface the Cotton
scalars reduce to

Ψ 0 = 0 , Ψ 1 = 0 , Ψ 2 = 0 , Ψ 3 =
64

√
2
(
11+ 3

√
13
)

27
(
3+

√
13
)5
t6

, Ψ 4 = 0 . (153)

14.2.5. Type D spacetime. Taking the orthonormal basis given by equations (119)–(121) in
[18] (with an opposite signature), we obtain the 2+1 Gödel metric

ds2 =− 9
µ2

dt2 +
36
µ2

(√
r2 + 1− 1

)
dtdϕ

+
9
µ2

(
8
√
r2 + 1− 3r2 − 8

)
dϕ 2 +

9
µ2

dr2

r2 + 1
. (154)

The null triad constructed from the natural basis, namely

ω0 =
3
µ

[
dt− 2

(√
r2 + 1− 1

)
dϕ

]
, ω1 =

3
µ

dr√
r2 + 1

, ω2 =
3
µ
rdϕ , (155)

has the form

k=
1√
2

µ

3

[
∂t−

√
r2 + 1∂r

]
,

l=
1√
2

µ

3

[
∂t+

√
r2 + 1∂r

]
,

m=
µ

3r

[
2
(√

r2 + 1− 1
)
∂t+ ∂ϕ

]
. (156)

The non-vanishing components of the Cotton tensor are

Ctϕ r =− 3r√
r2 + 1

, Ctrϕ =
3r√
r2 + 1

,

Crϕ t =− 6r√
r2 + 1

, Crϕϕ = 18r

(
1− 1√

r2 + 1

)
, (157)

so that the Cotton scalars (9) are simply

Ψ 0 =
µ3

6
,

Ψ 1 = 0 ,

35



Class. Quantum Grav. 41 (2024) 115008 M Papajčík and J Podolský

Ψ 2 =
µ3

18
,

Ψ 3 = 0 ,

Ψ 4 =−µ
3

6
. (158)

It is easy to evaluate the invariants (94) and (97),

I=−µ
6

27
, J=−2µ9

272
, G= 0 , N= 0 . (159)

Using the flow diagram in figure 1, we obtain that the Gödel spacetime (154) is of algebraic
type D, in agreement with the results of [18]. By solving (48) with the Cotton scalars (158)
we obtain the complex roots K=±i. Therefore, the two double CANDs are complex, and the
spacetime is actually of a subtype Dc. In fact, using the complex null basis

k=
µ

3
√
2r

[
2i

(
1−

√
r2 + 1

)
∂t+ r

√
r2 + 1∂r− i∂ϕ

]
,

l=
µ

3
√
2r

[
2i

(
1−

√
r2 + 1

)
∂t− r

√
r2 + 1∂r− i∂ϕ

]
,

m=
µ

3
i∂t , (160)

the real Cotton scalars take the canonical form

Ψ 0 = 0 , Ψ 1 = 0 , Ψ 2 =−µ
3

9
, Ψ 3 = 0 , Ψ 4 = 0 , (161)

with only Ψ2 non-vanishing. Therefore, both k and l given by (160) are double CANDs.

14.2.6. Type N spacetime. An example of typeNmetric was given by equations (128)–(130)
in [18], namely the orthonormal basis

ω0 = eµy/2
[(
1+ 1

2e
−µy) dt+ (

1− 1
2e

−µy) dx] ,
ω1 = 1

2e
−µy/2 (dt− dx) ,

ω2 = dy , (162)

which yields the line element

ds2 =−(1+ eµy) dt2 − 2eµy dtdx+(1− eµy) dx2 + dy2 . (163)

The corresponding null triad reads

k= 1√
2
eµy/2 (∂t− ∂x) ,

l= 1√
2
e−µy/2 [(eµy− 1) ∂t− (eµy+ 1) ∂x] ,

m= ∂y . (164)

The only non-vanishing components of the Cotton tensor are

Ctyt = Ctyx = Cxyt = Cxyx =− 1
2µ

3eµy , (165)

which projected onto the triad (164) give

Ψ 0 =Ψ 1 =Ψ 2 =Ψ 3 = 0 , Ψ 4 =−µ3 . (166)
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In view of the definition of invariants (94) and (97) we obtain

I= 0= J , G= 0= H , (167)

and using the flow diagram in figure 1we immediately see that the spacetime (163) is of type N,
in agreement with [18]. Moreover, it is clear that the Cotton scalars (166) are already in the
canonical form with only the scalar Ψ4 non-trival, see table 3. The vector k given by (164) is
thus a quadruple CAND.

Notice that by performing transformations u= t+ x and r= 1
2 (t− x), the metric (163) takes

the canonical Brinkmann form of pp-waves [33, 35]

ds2 = dy2 − 2dudr+ adu2 , (168)

with k∝ ∂r and specific metric function a=−eµy which depends only on the transverse spa-
tial coordinate y. Actually, it is a VSI spacetime with pure radiation (the only non-trivial com-

ponent of the energy-momentum tensor is Tuu =
µ2

16π e
µy), see equations (101) and (102) in

[35].

14.2.7. Type O spacetime. Finally, we consider spherically symmetric solution with perfect
fluid of a constant density ρ and pressure p(r),

ds2 =−N2 dt2 +
dr2

F 2
+ r2 dϕ 2 . (169)

The metric functions are

N(r) =
c1

ρ+ p(r)
,

F 2 (r) = c2 − (ℓρ+Λ) r2 ,

p(r) =
c3 (ℓρ+Λ) F(r)+ c23 ℓΛ+ ρF 2 (r)

c23 ℓ
2 −F 2 (r)

, (170)

where c1,c2,c3, ℓ are constants, see equations (134), (139), (140) and (142) in [18]. The Cotton
tensor for this metric identically vanishes (Cabc = 0), so that its projections onto a null triad
give

ΨA = 0 for all A . (171)

The spacetime is conformally flat, that is of algebraic type O.

15. Summary

We introduced a useful approach to algebraic classification of 2+1 geometries, assuming no
particular field equations. It is based on projecting the Cotton tensor onto a null triad. The
corresponding five real Cotton scalars ΨA (which are the 2+1 analogue of well-known 3+1
Newman–Penrose curvature scalars constructed from the Weyl tensor) then simply determine
the algebraic types I, II, III, N, D and O by their gradual vanishing, starting with those of
the highest boost weight, see table 1. Moreover, such a classification is directly related to
the specific multiplicity of the CANDs and to the Bel–Debever criteria, see tables 2 and 3,
respectively. We also derived a synoptic algorithm of the algebraic classification based on the
polynomial curvature invariants (94) and (97), see figure 1 (or table 4 when Ψ4 = 0=Ψ 0).
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Using the bivector decomposition, we showed that our method is equivalent to the previ-
ously introduced Petrov-type classification of 2+1 spacetimes based on the eigenvalue prob-
lem and respective canonical Jordan form of the Cotton–York tensor, see tables 5 and 6.

In addition, we introduced a refinement of the algebraic types into the subtypes Ir, IIr, Dr

(for which all CANDs are real) and subtypes Ic, IIc, Dc (for which some of the CANDs are
complex). The subtype Ic is related to the Class I’ defined in [18, 25], and the subtypes Ir and
Ic correspond to the Petrov–Segre types IR and IC in TMG defined in [22].

In final section 14 we demonstrated the practical usefulness of our novel method on sev-
eral explicit examples of various algebraic types. We hope that it will prove to be helpful for
classification and analysis of other interesting spacetimes in 2+1 gravity.
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