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Abstract

We revisit the charged rotating Bañados-Teitelboim-Zanelli (BTZ) solution in
the three-dimensional Einstein-Maxwell-Λ system. After the erroneous an-
nouncement of its discovery at the end of the original BTZ paper in 1992,
the solution was first obtained by Clément in the paper published in 1996 by
coordinate transformations from the charged non-rotating BTZ solution. While
Clément’s form of the solution is valid only for Λ < 0, we present a new form for
a wider range of Λ by uniform scaling transformations and a reparametrization.
We also introduce new coordinates corresponding to the Doran coordinates in
the Kerr spacetime, in which the metric and also its inverse are regular at the
Killing horizon, and described by elementary functions. Lastly, we show that
(i) the algebraic Cotton type of the spacetime is type III on the Killing horizon
and type I away from the horizon, and (ii) the energy-momentum tensor for the
Maxwell field is of the Hawking-Ellis type I everywhere.
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1 Introduction

In three spacetime dimensions, the numbers of independent components of the Riemann
tensor and the Ricci tensor are the same, so that the Ricci tensor determined by the
Einstein equations contains all the local information of spacetime. This means that three-
dimensional gravity is locally trivial and, for example, does not admit gravitational waves
encoded in the Weyl tensor. Therefore, the discovery of the Bañados-Teitelboim-Zanelli
(BTZ) solution [1] with a negative cosmological constant Λ was greeted with great surprise
by the community because the spacetime is locally anti-de Sitter (AdS) but can still describe
a rotating black hole globally by proper identifications of spacetime events. Similar to the
Kerr-AdS black hole in four dimensions, the rotating BTZ black hole in asymptotically
AdS possesses an inner horizon and admits closed time curves (in the region where r2 < 0
holds) [2]. For this reason, it has been intensively studied in order to gain insight into the
quantum theory of gravity [3].

The charged generalization of the rotating BTZ solution with a non-trivial Maxwell field
has, in fact, a noteworthy complicated history. Its discovery was first mentioned in 1992 at
the end of the original BTZ paper [1] on the rotating BTZ solution in the vacuum case, but
unfortunately the metric and gauge field do not satisfy the field equations in the rotating
case.1 The charged non-rotating BTZ solution was discovered independently by Peldan in
the same year [4]. After several years, the charged rotating BTZ solution was first obtained
by Clément in the paper published in 1996 [5] by coordinate transformations from the non-
rotating solution. Later, in 2000, the solution was studied in detail by Mart́ınez, Teitelboim,
and Zanelli [6]. It should be noted that the charged rotating solution obtained earlier by
Clément (Eq. (23) in [7]) is also locally identical to the charged non-rotating BTZ solution,
but a double Wick rotation is required. (See Appendix A.) On the other hand, the charged
rotating solution obtained by Kamata and Koikawa in [8], slightly earlier than [5], belongs to
a different class from the charged BTZ solution because it gives FµνF

µν = 0. (See Sec. 11.6
in [9].) Unfortunately, a non-negligible number of papers have been published wrongly using
the incorrect metric of the charged rotating BTZ solution presented in [1] for the analysis
in the Einstein-Maxwell-Λ system, and such papers appear even at present [10–23].

Despite this situation, the understanding of the solution space of the Einstein equations
in three dimensions has progressed rapidly in recent years. In particular, the Einstein
equations with Λ have been solved with only few natural assumptions imposed, and the
local structure of the solutions has been classified not only in the vacuum case but also in the
presence of a null dust fluid or a gyratonic matter [24]. In the Einstein-Maxwell-Λ system,
stationary and circularly symmetric solutions have been classified by Garćıa-Dı́az [25, 26],
which (locally) include the charged rotating BTZ solution. Recently, the field equations in
this system have been fully solved without imposing any spacetime symmetry [27]. Exact
solutions to the Einstein equations in three dimensions until 2017 have been summarized

1See the note added at the end of the arXiv version of the paper [1].
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in [9].

It should be emphasized here that the coordinate system of the charged rotating BTZ
solution derived in [6] does not cover the Killing horizons corresponding to the event horizon
and the inner horizon of a black hole, and therefore does not directly allow for a correct
analysis of some geometrical and physical properties on the horizon. This fact can be
most easily exhibited in the calculation of surface gravity κ of the famous four-dimensional
Schwarzschild black hole using the diagonal coordinates

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2). (1.1)

The surface gravity κ on the Killing horizon at r = 2GM associated with the Killing
vector ξµ(∂/∂xµ) = ∂/∂t is defined by ξν∇ν ξ

µ|r=2GM = κ ξµ|r=2GM . Actually, the left-
hand side is zero for all µ in the coordinates (1.1), so that one arrives at a wrong answer
κ = 0. Of course, the reason for this error is that the coordinates (1.1) do not cover the
horizon. In the maximally extended Schwarzschild spacetime, the black-hole type future
Killing horizon corresponds to (t, r) → (+∞, 2GM), while the white-hole type past Killing
horizon corresponds to (t, r) → (−∞, 2GM). In fact, (t, r) → (t0, 2GM) with a finite
constant t0 corresponds to a bifurcation two-sphere where the Killing vector generating
staticity becomes a zero vector. With the advanced time v := t+

∫
(1− 2GM/r)−1dr and

ξµ(∂/∂xµ) = ∂/∂v instead of ∂/∂t, one obtains a correct answer κ = 1/(4GM) for the
black-hole horizon, while one obtains κ = −1/(4GM) for the white-hole horizon with the
retarded time u := t−

∫
(1− 2GM/r)−1dr and ξµ(∂/∂xµ) = ∂/∂u.

The necessity of a regular coordinate system covering the Killing horizon was recently
emphasized in the Hawking-Ellis classification of the energy-momentum tensor in static
spacetimes with symmetry [28] and also in the Petrov classification of spacetime [29, 30].
For these reasons, it is undoubtedly important to find a coordinate system that covers a
horizon in exact solutions. However, it is not easy even for a stationary and axisymmetrc
spacetime to find coordinates in which the metric and its inverse are not only finite on the
horizon but also described by elementary functions. In the case of the four-dimensional
Kerr spacetime, the Doran coordinates are an example of such coordinates [31], which
reduce to the Painlevé-Gullstrand coordinates for the Schwarzschild spacetime in the non-
rotating limit. Until now, the Doran-type horizon-penetrating coordinates have also been
obtained for the Kerr-Newman spacetime [32,33], uncharged rotating BTZ spacetime [34],
and five-dimensional Myers-Perry spacetime [35]. We note that, in [32], although the
authors presented coordinates with Λ, namely in the Kerr-Newman-(A)dS spacetime, they
are not horizon-penetrating with Λ as the inverse metric diverges at the Killing horizon.
In [34], the author studied horizon-penetrating coordinates in the generic stationary and
axisymmetric spacetime in four dimensions. But again, the finiteness of the inverse metric
was not taken into account.

In the present paper, we will revisit the charged rotating BTZ solution and expose its
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several new aspects. The organization of the article is as follows. After introducing the field
equations and reviewing axisymmetric spacetimes in three dimensions in Sec. 2, we will de-
scribe our main result in Sec. 3. We will first present a new form of the charged rotating BTZ
solution that is valid for a wider range of Λ, and then derive horizon-penetrating coordinates
in a much more general spacetime. Then, we will perform the recently established Cotton
algebraic classification of spacetime [36, 37] and the Hawking-Ellis classification [38, 39] of
the energy-momentum tensor for the Maxwell field. Concluding remarks are given in the
final section. Appendix A shows that Clément’s solution given by Eq. (23) in [7] is locally
identical to the charged non-rotating BTZ solution. Appendix B explains the derivation of
the Doran-type new coordinates. Throughout this article, the signature of the Minkowski
spacetime is (−,+,+). We adopt the units such that c = 1, and the conventions of curva-
ture tensors such as [∇ρ,∇σ]V

µ = Rµ
νρσV

ν and Rµν = Rρ
µρν . We use κ := 8πG instead

of the gravitational constant G.

2 Einstein-Maxwell-Λ system in three dimensions

2.1 Field equations

In the present paper, we study the charged rotating BTZ solution in the three-dimensional
Einstein-Maxwell-Λ system. The action for the spacetime metric gµν and the U(1) gauge
field Aµ is given by

S[gµν , Aµ] =

∫
d3x

√
−g
(

1

2κ
(R− 2Λ)− 1

4
FµνF

µν

)
+SΣ, (2.1)

where Fµν := ∇µAν −∇νAµ is the Faraday tensor and SΣ is the boundary term. Variation
of the action gives the field equations

Gµν + Λgµν = κTµν , (2.2)

∇νF
µν = 0, (2.3)

where Gµν is the Einstein tensor and the energy-momentum tensor Tµν for the Maxwell
field is given by

Tµν =FµρF
ρ
ν − 1

4
gµνFρσF

ρσ. (2.4)

We note that the system (2.1) is equivalent to the Einstein-Λ system with a massless
scalar field ϕ. In three dimensions, the dual Maxwell one-form is defined by

∗Fµ :=
1

2
εµνρF

νρ
(
⇔ ∗Fµε

µαβ = −F αβ
)
, (2.5)
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where the totally anti-symmetric volume three-form εµνρ is defined by

εµνρ :=
√
−gϵµνρ

(
⇔ εµνρ = −ϵµνρ/

√
−g
)

(2.6)

with the Levi-Civita symbol ϵµνρ satisfying ϵ012 = 1 and ϵ012 = 1. Using the Maxwell
equations and εµαβεµνρ = −ϵµαβϵµνρ = −(δανδ

β
ρ − δαρδ

β
ν), we obtain

εασµ∇σ
∗Fµ = −∇σF

ασ = 0, (2.7)

which shows that there exists a potential scalar ϕ satisfying ∇µϕ = ∗Fµ by the Poincaré
lemma. This potential ϕ is identified as a massless scalar field. In fact, the equivalence
between the energy-momentum tensors of a Maxwell field and a massless scalar field is
shown as

Tµν = FµρF
ρ
ν − 1

4
gµνFρσF

ρσ = (∇µϕ)(∇νϕ)−
1

2
gµν(∇ϕ)2, (2.8)

where (∇ϕ)2 := (∇αϕ)(∇αϕ) and FµνF
µν = −2(∇ϕ)2. Also, the equation of motion for a

scalar field ∇µ∇µϕ = 0 is satisfied, shown as

∇µ∇µϕ =
1

2
εµνρ∇µF νρ =

1

2
εµνρ∇[µF νρ] = 0. (2.9)

It should be noted that there is a no-go theorem for three-dimensional black holes as
solutions to the Einstein equations (2.2) without specifying a matter field. Ida’s theorem
asserts the absence of an apparent horizon for Λ > 0 under the dominant energy condition
(DEC) for the matter field Tµν [40]. Here an apparent horizon is the outer boundary of
outer trapped regions and the theorem asserts the absence of the event horizon in the
stationary case. In his paper [40], Ida also commented that the same holds for Λ = 0 with
a Maxwell field. Therefore, a black hole is possible only for Λ < 0 in the present system.

2.2 Axisymmetric solutions

2.2.1 KGBD quasi-local mass and angular momentum

The most general metric in a three-dimensional axisymmetric spacetime without assuming
stationarity can be generally written as

ds2 = gµνdx
µdxν = hij(y)dy

idyj +R(y)2(dθ + ai(y)dy
i)2, (2.10)

where i, j = 0, 1 and ψµ(∂/∂xµ) = ∂/∂θ is a Killing vector generating axisymmetry. Re-
cently, a quasi-local mass m and a quasi-local angular momentum j for axisymmetric
spacetimes in three dimensions have been defined by Gundlach, Bourg, and Davey [41]
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and independently by Kinoshita [42] in a covariant manner without using the coordinate
system (2.10). Their definitions differ only by constant factors, and we follow Kinoshita’s
definitions because the quasi-local mass in his definition reduces to the three-dimensional
Misner-Sharp quasi-local mass if the Killing vector ψµ is hypersurface-orthogonal, namely,
it satisfies ψ[µ∇νψρ] = 0. Let us now briefly summarize the results in [41, 42].

A three-dimensional axisymmetric spacetime is defined by the existence of a spacelike
Killing vector ψµ with a closed orbit. The squared norm of ψµ defines the areal radius as

R :=
√
ψµψµ. (2.11)

The metric in the reduced two-dimensional spacetime of orbits of ψµ is given by

hµν := gµν −R−2ψµψν , (2.12)

which satisfies hµνψ
ν = 0. The volume two-form in the reduced spacetime is defined by

ε̄µν := R−1εµνρψ
ρ, (2.13)

which satisfies ε̄µρε̄
µσ = −h σ

ρ , where εµρσ is totally anti-symmetric volume three-form. (See
Sec. 2.8 in the textbook [43] for the properties of εµρσ.)

In [42], Kinoshita defined m and j as

m :=
π

κ
(−Λψµψ

µ +KµK
µ), (2.14)

j :=
1

κ
εµρσψµ∇ρψσ

(
= −2π

κ
ψµK

µ

)
, (2.15)

where Kµ is the generalized Kodama vector defined by

Kµ := −1

2
εµρσ∇ρψσ

(
= −ε̄µν∇νR− κj

2πR2
ψµ
)
. (2.16)

The vector Kµ shares the same properties as the Kodama vector in n(≥ 3) dimensions [44,
45], namely, (i) ∇µK

µ = 0, (ii) Kµ∇µR = 0, and (iii) Gµν∇µKν = 0. If ψµ is hypersurface-
orthogonal, j = 0 holds and then m and Kµ reduce to the Misner-Sharp quasi-local
mass [46, 47] and the Kodama vector [44, 45] in three dimensions (n = 3), respectively.
The quantities m and j satisfy the relation

8Gm =− ΛR2 +
(4Gj)2

R2
− (∇µR)(∇µR). (2.17)

We will refer tom and j as the Kinoshita-Gundlach-Bourg-Davey (KGBD) quasi-local mass
and the KGBD quasi-local angular momentum, respectively.
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Similar to the Misner-Sharp mass [45,48–50], the KGBD mass m and angular momentum
j satisfy

∇µm = −2πR ε̄µρ J ρ
(K) ⇔ ε̄σµ∇µm = −2πRhσρ J

ρ
(K), (2.18)

∇µ j = −2πR ε̄µρ J ρ
(ψ) ⇔ ε̄σµ∇µ j = −2πRhσρ J

ρ
(ψ), (2.19)

where

J ρ
(K) := −T ρσKσ, J ρ

(ψ) := T ρσψσ. (2.20)

Since J µ
(K) (J

µ
(ψ)) is a divergence-free current vector associated with Kµ (ψµ), the quantity

m (j) is a locally conserved charge associated with J µ
(K) (J µ

(ψ)). In addition, m and j

are constant in vacuum (Tµν = 0). As a consequence, with those constants m and j, the
rotating BTZ vacuum solution [1] can be written as

ds2 = −f dt 2 + f−1dr2 + r2
(
dθ − 4Gj

r2
dt

)2

,

f(r) = −Λr2 − 8Gm+
(4Gj)2

r2
.

(2.21)

In Sec. 11.11 of the textbook [9], Garćıa-Dı́az computed the Brown-York quasi-local quanti-
ties such as energy, mass, and momentum [51] for the charged rotating BTZ solution along
the methods in [52]. However, unlike the KGBD mass and angular momentum, they are
not constant even for the rotating BTZ vacuum solution (2.21).

In fact, although the Brown-York (quasi-local) mass converges to the ADM (global)
mass at spacelike infinity in an asymptotically flat spacetime, it gives an r-dependent
profile for the Schwarzschild-Tangherlini solution and coincides with the ADM mass only
asymptotically r → ∞. (See [53], for example.) In contrast, the Misner-Sharp (quasi-
local) mass was originally defined for spherically symmetric spacetimes in four dimensions
without Λ [46] and its generalization has been defined for spacetimes with more general
symmetries in arbitrary n(≥ 3) dimensions with Λ [45,47]. Similar to the Brown-York mass,
it converges to the ADM mass at spacelike infinity in an asymptotically flat spacetime (for
Λ = 0). However, different from the Brown-York mass, the Misner-Sharp mass is constant
for the Schwarzschild-Tangherlini solution which coincides with the ADMmass. In addition,
it has monotonicity and positivity properties under the dominant energy condition [45,48].
Hence, as they are natural generalizations of the three-dimensional Misner-Sharp mass,
we prefer the KGBD mass and angular momentum in the present study rather than the
Brown-York mass. (See [54] for a review of quasi-local quantities in general relativity.)

Depending on the parameters m and j, the rotating BTZ vacuum spacetime (2.21)
admits Killing horizons located at r = rh determined by f(rh) = 0, namely rh = r±, where

r2± =
4Gm

(−Λ)

(
1±

√
1 + Λ

j2

m2

)
. (2.22)
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The extremal rotating BTZ vacuum solution is realized for

|m| =
√
−Λ |j|. (2.23)

Then, the radius of the degenerate (extreme) horizon r = rex is given by

rex :=

√
4Gm

(−Λ)
, (2.24)

which satisfies f(rex) = f ′(rex) = 0, where a prime denotes differentiation with respect to
r.

2.2.2 Two coordinate systems in the stationary case

The most general metric for stationary and axisymmetric spacetime in three dimensions
may be written as

ds2 = − r2

R2
f dt2 + f−1dr2 +R2

(
dθ +

h

R2
dt

)2

(2.25)

in the suitable coordinates (t, r, θ), where f = f(r), R = R(r), and h = h(r). The metric
(2.25) gives

√
− det g = r, and the following non-zero components of the inverse metric

gtt = − R2

r2f
, gtθ =

h

r2f
, grr = f, gθθ =

r2f − h2

r2R2f
. (2.26)

In this spacetime, gtt(rerg) = 0 determines the radius of an ergocircle r = rerg, while f(rh) = 0
determines locations of Killing horizons r = rh associated with a Killing vector ξµ =
(1, 0,−h(rh)/R2(rh)).

For the metric (2.25) with a Killing vector ψµ = (0, 0, 1) generating axisymmetry, the
generalized Kodama vector (2.16) is given by

Kµ ∂

∂xµ
=
RR′

r

∂

∂t
− h′

2r

∂

∂θ
, (2.27)

and the dual one-form is

Kµdx
µ = −2r2fR′ + hh′R− 2h2R′

2rR
dt− R(h′R− 2hR′)

2r
dθ, (2.28)

with which the KGBD mass (2.14) and the KGBD angular momentum (2.15) are computed
to give

m =
R2

8G

[
h2

4r2

(
2
R′

R
− h′

h

)2

−f R
′2

R2
− Λ

]
, (2.29)

j =− hR2

8Gr

(
2
R′

R
− h′

h

)
, (2.30)
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where we have used κ = 8πG. Equation (2.17) gives the relation

8Gm =− ΛR2 +
(4Gj)2

R2
− fR′2. (2.31)

Let us notice that one cannot directly study geometry on the Killing horizon r = rh in
the coordinate system (2.25) because it is singular there as the metric diverges. Therefore,
in order to perform a correct analysis on the horizon, we need to have a coordinate system
in which the metric and its inverse are both regular at r = rh. In terms of a new coordinate
x defined by

x :=

∫
r

R(r)
dr, (2.32)

the metric (2.25) is written as

ds2 = −H dt2 +H−1dx2 + R̄2

(
dθ +

h̄

R̄2
dt

)2

, (2.33)

where

H(x) :=
r(x)2

R(r(x))2
f(r(x)), R̄(x) := R(r(x)), h̄(x) := h(r(x)). (2.34)

Then, introducing new coordinates v and ϕ defined by

dv := dt+H−1dx, dϕ := dθ − h̄

HR̄2
dx, (2.35)

we write the metric as2

ds2 = −H dv2 + 2dvdx+ R̄2

(
dϕ+

h̄

R̄2
dv

)2

. (2.36)

The determinant of this metric is det g = −R̄2, while non-zero components of the inverse
metric are given by

gvx = 1, gxx = H, gxϕ = − h̄

R̄2
, gϕϕ =

1

R̄2
. (2.37)

As a result, the coordinate system (2.36) is regular at the Killing horizon x = xh defined
by H(xh) = 0.

Unfortunately, the metric functions in Eq. (2.36) cannot be written explicitly in terms of
elementary functions for the charged rotating BTZ solution due to the complicated integral
(2.32) with R(r) given by Eq. (3.3) or (3.32) below. For this reason, the coordinate system
(2.36) is not so useful for studying some specific aspects of the Killing horizons of the
solution.

2Actually, this is the Robinson-Trautman form of the metric in which the coordinate x is an affine
parameter along a geometrically privileged null expanding (shear-free and twist-free) geodesic congruence.
This was shown in [24,27], where the retarded coordinate u was employed instead of the advanced coordinate
v, x was denoted as r, and ϕ was denoted as x.
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3 Charged rotating BTZ solution

3.1 Conventional form for Λ < 0

In [5], Clément obtained the charged rotating BTZ solution in the system (2.1) with Λ < 0
in the coordinates (2.25), namely,

ds2 = − r2

R2
f dt2 + f−1dr2 +R2

(
dθ +

h

R2
dt

)2

. (3.1)

After suitable reparametrizations, the gauge field Aµ(r) and the metric functions R(r),
f(r), and h(r) in his solution are given by

Aµdx
µ = − Q√

1− ω2
ln r

(
dt− ω√

−Λ
dθ

)
, (3.2)

R(r) =

√
r2 +

ω2

(−Λ)(1− ω2)

(
M + κQ2 ln r

)
, (3.3)

f(r) = −Λr2 −M − κQ2 ln r, (3.4)

h(r) = − ω√
−Λ (1− ω2)

(
M + κQ2 ln r

)
, (3.5)

which gives

FµνF
µν = −2Q2

r2
. (3.6)

This solution is parametrized by three constants, namely ω ( ̸= ±1),M , and Q, and requires
Λ < 0 in order for the metric to be real. We note that, although the gauge field Aµ and
the Faraday tensor Fµν become pure imaginary if a condition −1 < ω < 1 is not satisfied,
the energy-momentum tensor Tµν remains real even in such a case. The metric shows
limr→∞Rµν

ρσ = Λ(δµρδ
ν
σ − δµσδ

ν
ρ), so that the spacetime is asymptotically locally AdS as

r → ∞. We refer to the solution given by Eqs. (3.1)–(3.5) as the charged rotating BTZ
solution in the Clément form. In [6], the solution (3.1)–(3.5) was studied in detail adopting
the units c = −Λ = 1.

The Ricci scalar is computed to give

R = 6Λ +
κQ2

r2
, (3.7)

which shows that r = 0 is a scalar polynomial curvature singularity for Q ̸= 0. As a
consequence, the domain of r for the charged rotating BTZ solution is determined by the
constraint R2(r) > 0. The charged solution (Q ̸= 0) describes a black hole only for Λ < 0,
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and its event horizon is identical to the outermost Killing horizon. The condition f(rh) = 0
gives the relation between the mass parameter M and the radius of the Killing horizon rh
as

M = −Λr2h − κQ2 ln rh =:Mh(rh). (3.8)

In the domain r ∈ (0,∞), the functionMh(r) admits a single local minimumMex :=Mh(rex),
where

rex :=

√
κQ2

2(−Λ)
, (3.9)

Mex =
1

2
κQ2

{
1− ln

(
κQ2

2(−Λ)

)}
. (3.10)

As r = rex and M =Mex satisfy f(rex) = f ′(rex) = 0, r = rex is a degenerate horizon. For
M > Mex, there are two non-degenerate Killing horizons. For M =Mex, there is a single
degenerate Killing horizon. For M < Mex, there is no horizon. We note that Mex > (<)0
holds for κQ2/[2(−Λ)] < (>)e.

In the uncharged case Q = 0, in contrast, the spacetime is locally maximally symmetric
and the metric (3.1) reduces to

ds2 = −F dt2 + F−1dR2 +R2

(
dθ − Mω√

−Λ (1− ω2)R2
dt

)2

,

F (R) :=
r2

R2
f = −ΛR2 − 1 + ω2

1− ω2
M +

M2ω2

(−Λ) (1− ω2)2R2

(3.11)

in the coordinates (t, R, θ). The metric (3.11) is identical to the vacuum rotating BTZ
solution (2.21) with

m =
1 + ω2

8G(1− ω2)
M, j =

Mω

4G
√
−Λ(1− ω2)

, (3.12)

which are solved for M and ω to give

M =∓ 8G
√
m2 + Λj2, ω =

m±
√
m2 + Λj2

j
√
−Λ

. (3.13)

The extremality condition (2.23) under the parametrization (2.21) is m = ±
√
−Λj. Al-

though it gives M = 0 and ω = ±1 by Eq. (3.13), m and j are then undetermined in
Eq. (3.12). It shows that the extreme case in vacuum cannot be treated properly under the
parametrization (3.11). In fact, the only way to give a finite limit is to take M → 0 first
and next ω2 → 1, but then we have gtθ = 0 and F (R) = −ΛR2, which is a particular class
of the vacuum BTZ solution (2.21) with m = j = 0. For this reason, the uncharged limit
Q→ 0 is not allowed in Eqs. (3.9) and (3.10).
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In the vacuum rotating BTZ solution (3.11), R = 0 is not a curvature singularity but
just a coordinate singularity, so that the spacetime can be analytically extended beyond
there. This extension is performed by a coordinate transformation x := R2, with which
the metric and its inverse are both analytic at x = 0 and the determinant of the metric
becomes det g = −1/4. In the extended region x < 0, which corresponds to R2 < 0, there
exist closed timelike curves because the squared norm of a Killing vector Θµ = (∂/∂θ)µ

becomes negative such as ΘµΘ
µ = x < 0.

In the uncharged non-rotating case Q = 0 = ω, in contrast, R = 0 is not always analytic.
For example, the metric (3.11) with M < 0 and ω = 0 can be written near R = 0 as

ds2 ≃ −(−M) dt2 + (−M)−1dR2 +R2dθ2 = − dt̂2 + dr̂2 + r̂2dθ̂2, (3.14)

where t̂ :=
√
−Mt, r̂ := R/

√
−M , and θ̂ :=

√
−Mθ. Since the period 2π of θ means the

period 2π
√
−M of θ̂, there is a conical singularity at R = 0 for M ̸= −1.

In the non-rotating limit ω → 0, the solution (3.1)–(3.5) reduces to the charged non-
rotating BTZ solution [1, 4] given by

ds2 = −f dt2 + f−1dr2 + r2dθ2,

Aµdx
µ = −Q ln r dt,

f(r) = −Λr2 −M − κQ2 ln r.

(3.15)

It is emphasized that the rotating solution is locally identical to the non-rotating solution.
In fact, by the following coordinate transformations

t =
1√

1− ω2
t̃+

ω√
−Λ

√
1− ω2

θ̃, θ =
ω
√
−Λ√

1− ω2
t̃+

1√
1− ω2

θ̃, (3.16)

the rotating solution (3.1)–(3.5) becomes the non-rotating solution (3.15) with t and θ
replaced by t̃ and θ̃. However, the rotating and non-rotating solutions are globally different
if θ is a periodic coordinate. In fact, if we identify (t, r, θ) and (t, r, θ + 2π) in the rotating
solution (3.1), the transformations (3.16) show that (t, r, θ) and (t+a, r, θ+b) are identified
in the non-rotating solution (3.15), where

a = − 2πω√
−Λ

√
1− ω2

, b =
2π√
1− ω2

. (3.17)

In fact, there is another non-rotating limit ω → ±∞. In this limit, the solution (3.1)–(3.5)
reduces to

ds2 = Λr2 dt2 + f−1dr2 − f

Λ
dθ2,

Aµdx
µ = ± Q√

Λ
ln r dθ,

f(r) = −Λr2 −M − κQ2 ln r,

(3.18)
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which is related to the solution (3.15) by the double Wick rotations t → iθ/
√
−Λ and

θ → ∓i
√
−Λt.

Equations (2.29) and (2.30) with Eqs. (3.3)–(3.5) give the KGBD mass and the KGBD
angular momentum of the charged rotating BTZ solution in the Clément form as

m =
1 + ω2

8G(1− ω2)
(M + 8πGQ2 ln r)− πω2Q2

1− ω2

(
1 +

2πGQ2

Λr2

)
, (3.19)

j =
ω

4G
√
−Λ(1− ω2)

(
M + 8πGQ2 ln r − 4πGQ2

)
. (3.20)

In the non-rotating limit ω → 0, we obtain

m =
1

8G
(M + 8πGQ2 ln r), j = 0. (3.21)

In other non-rotating limits ω → ±∞, we obtain

m = − 1

8G
(M + 8πGQ2 ln r) + πQ2

(
1 +

2πGQ2

Λr2

)
, j = 0. (3.22)

In the uncharged limit Q → 0, m and j reduce to the constants given by Eq. (3.12). In
the asymptotically AdS region r → ∞, m and j given by Eqs. (3.19) and (3.20) diverge
for Q ̸= 0 and ωQ ̸= 0, respectively. The divergent terms in m and j are proportional to a
scalar product of the gauge field and the generalized Kodama vector (2.27) defined by

Φ := −AµKµ =
Q√

1− ω2
ln r. (3.23)

With the metric function f(r), Eqs. (3.19) and (3.20) can be written as

m =
1 + ω2

8G(1− ω2)

(
1

2
rf ′(r)− f(r)

)
+
πω2Q2

1− ω2

f ′(r)

4Λr
+

πQ2

2(1− ω2)
, (3.24)

j =
ω

4G
√
−Λ(1− ω2)

(
1

2
rf ′(r)− f(r)

)
. (3.25)

While m and j are constants given by Eq. (3.12) in the uncharged case Q = 0, they depend
on r for Q ≠ 0. In particular, on the degenerate horizon r = rex given by Eq. (3.9) satisfying
f(rex) = f ′(rex) = 0, the values of m and j are

m(rex) =
πQ2

2(1− ω2)
, j(rex) = 0. (3.26)

Unexpectedly, the KGBD quasi-local angular momentum j is vanishing on the degenerate
horizon in the extremal charged rotating BTZ solution. Because the present parametriza-
tion cannot treat the extreme case properly in the uncharged case, a naive limit Q→ 0 is
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not allowed in Eq. (3.26). In fact, j is a non-zero constant in the rotating uncharged case
Q = 0 even under the extremality condition m = ±

√
−Λj.

Lastly, using non-zero components of F µν given by

F tr = − Q√
1− ω2r

, F rθ =
ωQ

√
−Λ√

1− ω2r
, (3.27)

we obtain the dual one-form (2.5) for the charged rotating BTZ solution in the Clément
form (3.1)–(3.5) as

∗Ft =
ωQ

√
−Λ√

1− ω2
, ∗Fr = 0, ∗Fθ = − Q√

1− ω2
. (3.28)

Hence, by ∇µϕ ≡ ∗Fµ, the expression of the dual massless scalar field ϕ is given by

ϕ =
ωQ

√
−Λ√

1− ω2
t− Q√

1− ω2
θ + ϕ0, (3.29)

where ϕ0 is a constant. However, different from the Maxwell field, a periodic boundary
condition ϕ(t, θ) = ϕ(t, θ + 2π) cannot be imposed on the dual scalar field.

3.2 New form for a wider range of Λ

In fact, the solution in the Clément form (3.1)–(3.5) for Λ < 0 can be analytically extended
for a wider range of Λ. By uniform scaling transformations

t =
√
1− ω2 t̄, θ =

θ̄√
1− ω2

(3.30)

with a reparametrization a := ω/[
√
−Λ (1− ω2)], the solution is given by the metric (3.1)

with

Aµdx
µ = −Q ln r (dt− a dθ), (3.31)

R(r) =
√
ζr2 + a2(M + κQ2 ln r), (3.32)

f(r) = −Λr2 −M − κQ2 ln r, (3.33)

h(r) = −a (M + κQ2 ln r), (3.34)

where we have omitted the bars for simplicity, and the constant

ζ = (1− ω2)−1 (3.35)

is determined by

ζ2 − ζ + a2Λ = 0, (3.36)
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and hence

ζ =
1

2

(
1±

√
1− 4a2Λ

)
=: ζ±. (3.37)

If θ is a periodic coordinate, the rotating solution after the transformations (3.30) is globally
different from the original rotating solution in the Clément form since an identification of
θ and θ + 2π in the latter implies an identification of θ̄ and θ̄ + 2π

√
1− ω2 in the former.

The solution in this new form is parametrized by M , Q, and a, and it is valid for
Λ ∈ (−∞,Λc], where Λc := 1/(4a2) (> 0). Since the form of the function f(r) (3.4) remains
the same, the location of the Killing horizon r = rh is unchanged, and R2(rh) = ζ2r2h is
satisfied. Hence, the reality condition R2 > 0 is always satisfied at r = rh. In fact, the
solution in the new form with Q ̸= 0 and Λ ∈ [0,Λc] admits a single Killing horizon for
any value of M . However, consistent with Ida’s no-go theorem [40], the solution does not
describe a black hole in that case because the trapped region is then given by r > rh, so
that the Killing horizon is not the outer boundary of the trapped region.

For Λ < Λc, there are two real branches of solutions. They coincide for Λ = Λc, while
the metric becomes complex and unphysical for Λ > Λc. We refer to the solution with ζ+
(ζ−) as the plus-branch (minus-branch) solution, and both branches satisfy limr→∞Rµν

ρσ =
Λ(δµρδ

ν
σ − δµσδ

ν
ρ).

Table 1: Asymptotic behavior as r → ∞ of the charged rotating BTZ solution (3.1) in
different forms depending on the value of Λ. Here “dS”, “flat”, and “AdS” stand for
asymptotically locally de Sitter, flat, and anti-de Sitter spacetime, respectively.

Forms Λ < 0 Λ = 0 Λ ∈ (0,Λc] Λ > Λc

Plus-branch AdS flat dS n.a.
Minus-branch unphysical flat dS n.a.

Clément AdS n.a. n.a. n.a.

For Λ = 0, we obtain ζ+ = 1 and ζ− = 0, and the two branches are both asymptotically
locally flat as r → ∞. For 0 < Λ ≤ Λc, the two branches are both asymptotically locally dS
as r → ∞. For Λ < 0, we have ζ+ > 0 and ζ− < 0, so that the metric in the minus-branch
becomes complex in the asymptotically locally AdS region r → ∞. Those properties are
summarized in Table 1. If the parameters admit real solutions to f(r) = 0 for Λ < 0 with
ζ = ζ+, the metric describes an asymptotically AdS charged rotating black hole with an
event horizon at r = rEH, where rEH is the largest root of f(r) = 0.

Now we consider three special cases of the solution in the new form given by the metric
(3.1) with Eqs. (3.31)–(3.34) for M ̸= 0. In the uncharged case (Q = 0) for ζ ̸= 0, using R
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as a radial coordinate, one can write both branches of solutions in the same form as

ds2 = −F dt̄ 2 + F−1dR2 +R2

(
dθ − ā

R2
dt̄

)2

,

Aµdx
µ = 0,

F (R) = −ΛR2 − M̄ +
ā2

R2
,

(3.38)

where t̄ := t/ζ and

M̄ := ζ(2ζ − 1)M, ā := ζ aM. (3.39)

This is the uncharged rotating BTZ solution parametrized by M̄ and ā [1] which is locally
maximally symmetric. For ζ = 0, the limit Q→ 0 is possible only for Λ = 0 with a ̸= 0 in
the minus-branch by Eq. (3.36), and then the solution reduces to the following locally flat
spacetime

ds2 = −dt̄2 + t̄2 dr̄2 + dθ̄2, (3.40)

where r̄ := (
√
M/a) t, t̄ := r/

√
M , and θ̄ :=

√
M (a θ − t).

In the case without a cosmological constant (Λ = 0), the solution reduces to

ds2 = − r2

R2
f dt2 + f−1dr2 +R2

(
dθ +

h

R2
dt

)2

,

Aµdx
µ = −Q ln r (dt− a dθ),

f(r) = −M − κQ2 ln r,

(3.41)

with h(r) and R(r) given by Eqs. (3.34) and (3.32), where ζ = 1 (= ζ+) or ζ = 0 (= ζ−).
In the minus-branch (ζ = 0), by coordinate transformations t̂ := t − a θ and θ̂ := t/a, the
solution is written as

ds2 = −(−M − κQ2 ln r) dt̂2 + (−M − κQ2 ln r)−1 dr2 + r2 dθ̂2,

Aµdx
µ = −Q ln r dt̂,

(3.42)

which is the non-rotating charged BTZ solution with Λ = 0. (See also the electrostatic
solution given by Eq. (11.54) in Sec. 11.2.2 of [9].)

Lastly, only the positive-branch solution admits the non-rotating limit a→ 0 (implying
ζ(ζ − 1) = 0 so that only the case ζ = 1 is possible) given by Eq. (3.15). In contrast, the
negative-branch solution does not admit a non-rotating limit a→ 0 due to lima→0R = 0.

Equations (2.29) and (2.30) with Eqs. (3.32)–(3.34) give the KGBD mass and the KGBD
angular momentum of the charged rotating BTZ solution in the new form as

m =
ζ(2ζ − 1)

8G
(M + 8πGQ2 ln r) + πa2Q2

(
Λ +

2πGQ2

r2

)
, (3.43)

j =
ζa

4G

(
M + 8πGQ2 ln r − 4πGQ2

)
. (3.44)
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The expressions (3.43) and (3.44) are consistent with Eqs. (3.19) and (3.20) for the Clément
form because the transformations (3.30) with Eq. (3.35) put a constant factor

√
1− ω2 on

the axial Killing vector ψµ. The quantities m and j defined by Eqs. (2.14) and (2.15),
respectively, are quadratic of ψµ.

In the non-rotating limit a→ 0 (and then only ζ = ζ+ = 1 is possible), we obtain

m =
1

8G
(M + 8πGQ2 ln r), j = 0. (3.45)

In the uncharged limit Q→ 0, m and j reduce to the constants

m =
ζ(2ζ − 1)

8G
M, j =

ζ

4G
aM, (3.46)

which give m = j = 0 for ζ = 0 (realized only for Λ = 0) and m = 0 in the degenerate case
ζ = 1/2 for a2Λ = 1/4. In the asymptotic region r → ∞, m given by Eq. (3.43) diverges
for ζ(2ζ − 1)Q ̸= 0, while j given by Eq. (3.44) diverges for ζaQ ̸= 0. Therefore in the
charged case Q ̸= 0, both m and j are finite as r → ∞ only for ζ = 0 with Λ = 0.

3.3 New Doran-type horizon-penetrating coordinates

In this subsection, we present a new coordinate system of the charged rotating BTZ solution
which covers the Killing horizon. By the coordinate transformations

dt = dT + ϵr

√
R2 − r2f

rf
dr, (3.47)

dθ = dφ− ϵr
h

rf
√
R2 − r2f

dr, (3.48)

with ϵr = ±1, the metric (3.1) with arbitrary R(r), f(r), and h(r) is written in the new
coordinate system (T, r, φ) as

ds2 = −dT 2 +
R2(R2 − r2f)

R2 − r2f + h2
dφ2

+
r2(R2 − r2f + h2)

R2(R2 − r2f)

[
dr − ϵr

√
R2 − r2f

r

(
dT +

hR2

R2 − r2f + h2
dφ

)]2
. (3.49)

The derivation of the new coordinate system is presented in Appendix B. The determinant
of the metric (3.49) in the new coordinates is det g = −r2, while the metric and its inverse
are given by

gTT = −r
2f − h2

R2
, gTr = −ϵrr(R

2 − r2f + h2)

R2
√
R2 − r2f

, gTφ = h,

grr =
r2(R2 − r2f + h2)

R2(R2 − r2f)
, grφ = − ϵrrh√

R2 − r2f
, gφφ = R2,

(3.50)
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and

gTT = −1, gTr = −ϵr
√
R2 − r2f

r
, gTφ = 0,

grr = f, grφ =
ϵrh

r
√
R2 − r2f

, gφφ =
R2 − r2f + h2

R2(R2 − r2f)
,

(3.51)

respectively, which are regular on the horizon f(rh) = 0. Two remarkable properties of the
new coordinate system (3.49) are as follows:

• gTT = −1.

• The time coordinate T coincides with the proper time along timelike geodesics with
E = 1 and L = 0. (See Appendix B.)

Therefore, our new coordinate system is the counterpart of the Doran coordinates in the
Kerr spacetime [31] which share the same properties. The coordinate system (3.49) was
obtained in [34] with particular forms of R(r), f(r), and h(r) for the uncharged rotating
BTZ solution. As the new coordinate system is regular on the Killing horizon r = rh,
the surface gravity κh on the horizon can be computed from the definition ξν∇νξ

µ = κhξ
µ

evaluated at r = rh. With the associated Killing vector ξµ = (1, 0,−h(rh)/R2(rh)) in the
coordinate system (3.49), we obtain

κh =− ϵr
rf ′

2R

∣∣∣∣
r=rh

. (3.52)

In order for the metric to be real, the new coordinates (3.49) cover the original spacetime
(3.1) only in the domain where R2 > r2f holds. Consequently, we can identify a stably
causal region in the spacetime described by the metric (3.1). A time-orientable general
spacetime is said to be causal if there is no closed causal curve [38] and stably causal if it is
causal and no closed causal curve appears even under any small perturbation against the
metric.

Proposition 1 A spacetime described by the metric (3.1) is stably causal in the region
where R2 > r2f holds.

Proof. By Proposition 6.4.9 in [38], a time-orientable spacetime is everywhere stably causal
if and only if there is a time function T , which is a differentiable function giving timelike
∇µT . Since R2 > r2f holds by assumption, we can use the coordinates (3.49). Then, since
a vector Uµ := ∇µT is everywhere timelike satisfying UµU

µ = −1, the spacetime (3.49)
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is time-orientable by Uµ. Furthermore, since T is a time function, the spacetime is stably
causal.

Different from the single-null coordinates (2.36), the charged rotating BTZ solution is
described by elementary functions in the new coordinates (3.49) with Eqs. (3.31)–(3.34).
As we have R2 − r2f = ζr2 + (r2 + a2)(M + κQ2 ln r) + Λr4, the new coordinates (3.49) do
not cover the asymptotically AdS region r → ∞ for Λ < 0 and near the singularity r = 0
for any Λ ∈ (−∞,Λc]. Nevertheless, they cover the Killing horizon r = rh, as the metric
and its inverse are both finite. The gauge field is written in the new coordinates as

Aµdx
µ = −Q ln r

(
dT + ϵr

R2 − r2f + ah

rf
√
R2 − r2f

dr − a dφ

)
. (3.53)

It is seen that Ar diverges on the horizon, but we can always set Ar = 0 by a gauge trans-
formation Aµ → Aµ +∇µB with an appropriate B = B(r). In fact, non-zero components
of the Faraday tensor are given by

FTr = −FrT =
Q

r
, Frφ = −Fφr = a

Q

r
, (3.54)

which are finite at the Killing horizon, and give FµνF
µν = −2Q2/r2 in agreement with

Eq. (3.6). With a = 0, which is allowed only in the plus branch (and then ζ = 1 so that
R = r), the solution reduces to the charged non-rotating BTZ solution in the Painlevé-
Gullstrand coordinates,

ds2 = −dT 2 + r2 dφ2 +
(
dr − ϵr

√
1− f dT

)2
,

Aµdx
µ = −Q ln r

(
dT + ϵr

√
1− f

f
dr

)
,

(3.55)

where f(r) is given by Eq. (3.33).

3.4 Cotton and Hawking-Ellis types

Here we clarify the algebraic structures of the charged rotating BTZ solution. Since the
solution is locally identical to the non-rotating solution and the algebraic structures are
invariant under coordinate transformations, it is sufficient to study the simpler charged
non-rotating BTZ solution (3.15).

First, we study the Cotton type of the charged non-rotating BTZ spacetime. Recently, a
novel and more practical method of classification of spacetimes in three-dimensional gravity,
consistent with [55], was suggested [36, 37]. It uses five real Cotton scalars ΨA defined by
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the following direct projections of the Cotton tensor Cµνρ [56] onto a properly normalized
null triad {kµ, lµ,mµ},

Ψ0 := Cµνρ k
µmνkρ,

Ψ1 := Cµνρ k
µlνkρ,

Ψ2 := Cµνρ k
µmνlρ,

Ψ3 := Cµνρ l
µkνlρ,

Ψ4 := Cµνρ l
µmνlρ,

(3.56)

which are three-dimensional counterparts of the famous Newman-Penrose complex Weyl
scalars of four-dimensional gravity [57]. Here the Cotton tensor is defined as (following the
convention of [55])

Cµνρ := 2
(
∇[µRν]ρ − 1

4
∇[µRgν]ρ

)
, (3.57)

which automatically satisfies the constraints C(µν)ρ ≡ 0, C[µνρ] ≡ 0, and C µ
µν ≡ 0, and kµ,

lµ, and mµ are the basis vectors of the spacetime satisfying

kµk
µ = 0 = lµl

µ, kµl
µ = −1,

mµm
µ = 1, kµm

µ = 0 = lµm
µ.

(3.58)

The locally trivial type O geometry is a conformally flat spacetime with vanishing Cotton
tensor (if and only if Cµνρ ≡ 0). It occurs in the case when ΨA = 0 holds for all A. The
uncharged (Q = 0) rotating BTZ spacetime is locally AdS and therefore conformally flat, so
that it is of type O everywhere. In contrast, the charged (Q ̸= 0) rotating BTZ spacetime
is not conformally flat, so that its Cotton type is non-trivial. To determine the Cotton type
of the charged rotating BTZ spacetime, we will use the following proposition.

Proposition 2 Consider the most general static and circularly symmetric spacetime de-
scribed by the metric in the single-null coordinates (v, x, θ) given by

ds2 = −f dv2 + 2dvdx+ r2dθ2 (3.59)

with f = f(x) and r = r(x), and assume that the metric functions f and r are at least C2,1

(often denoted by C3− in physics)3. Then, the Cotton type of the spacetime in a region with
r ̸= 0 is determined as follows:

2f(rr,xxx − r,xr,xx)− r(rf,xxx − 4f,xr,xx) = 0 → type O,

2f(rr,xxx − r,xr,xx)− r(rf,xxx − 4f,xr,xx) ̸= 0 with f ̸= 0 → type I,

2f(rr,xxx − r,xr,xx)− r(rf,xxx − 4f,xr,xx) ̸= 0 with f = 0 → type III.

(3.60)

3The metric functions are at least C2 and have the second derivatives that are locally Lipschitz contin-
uous, which restricts the third derivatives to be finite but allows their finite jumps.
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Proof. For the basis one-forms given by

kµdx
µ = −dv,

lµdx
µ = −1

2
fdv + dx, (3.61)

mµdx
µ = r dθ,

we obtain kν∇νk
µ = 0, and therefore kµ is tangent to a null geodesic. The optical

scalars [24] in three dimensions for kµ and lµ are computed to give

ρk := (∇µkν)m
µmν = −r,x

r
, (3.62)

ρl := (∇µlν)m
µmν =

fr,x
2r

. (3.63)

Note that the basis one-forms (3.61) and their inverses are finite with f = 0. Then, the
Cotton scalars (3.56) are given by

Ψ0 = Ψ2 = Ψ4 = 0,

Ψ1 =
1

4r2
[2f(rr,xxx − r,xr,xx)− r(rf,xxx − 4f,xr,xx)] ,

Ψ3 = −1

2
fΨ1.

(3.64)

If f and r are at least C2,1, the Cotton scalars are finite with r ̸= 0. Then, as Ψ0 = 0 = Ψ4

holds, we can use Table II in [36] (which is Table IV in [37]) to determine the algebraic
type of the spacetime, according to the structure of its Cotton tensor. The table shows
that the spacetime is of the Cotton type O if Ψ1 = 0 = Ψ3, type I if Ψ1 ̸= 0 and Ψ3 ̸= 0,
and type III if Ψ1 ̸= 0 and Ψ3 = 0, so that the proposition follows from Eq. (3.64).

Proposition 2 shows the Cotton type of the charged non-rotating BTZ solution as follows.

Corollary 1 The uncharged rotating BTZ spacetime (with Q = 0) is of the Cotton type O
everywhere. The charged rotating BTZ spacetime (with Q ̸= 0) is of the Cotton type I at
r ̸= rh, and of the Cotton type III on the Killing horizon r = rh.

Proof. The charged non-rotating BTZ solution (3.15) is described by the metric (3.59) with
f(x) = −Λx2 −M − κQ2 ln x and r(x) = x, which gives

2f(rr,xxx − r,xr,xx)− r(rf,xxx − 4f,xr,xx) =
2κQ2

x
. (3.65)

Then, the corollary follows from Proposition 2.

Corollary 1 is consistent with the book [9], in which the charged rotating BTZ solution is
shown to be of the Cotton type I away from the horizon in Sec. 11.11.2 with the Clément
form [5], and in Sec. 11.11.3 with the Mart́ınez-Teitelboim-Zanelli form [6].
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Finally, we study the Hawking-Ellis type of the energy-momentum tensor for the Maxwell
field. (See Sec. 3 in [39] for the Hawking-Ellis classification in arbitrary ≥ 3 dimensions.)
It is almost a trivial task to confirm that Propositions 1 and 2 in [28] remain valid in the
presence of Λ. Therefore, the energy-momentum tensor of the Maxwell field in the solution
(3.15) is of the Hawking-Ellis type I everywhere, including the Killing horizon r = rh.

Proposition 3 The energy-momentum tensor of the Maxwell field in the charged rotating
BTZ solution is of the Hawking-Ellis type I everywhere, including the Killing horizon r = rh.

4 Summary

In this paper, we have revisited the charged rotating BTZ solution in the three-dimensional
Einstein-Maxwell-Λ system. Our main results can be summarized as follows.

1. We have extended the charged rotating BTZ solution in the Clément form (3.1)–(3.5)
for Λ < 0 to a wider range of Λ. Our new form is given by the metric (3.1) with
Eqs. (3.31)–(3.34), and valid for any Λ ≤ 1/(4a2). The new form consists of two
branches, and the metric in the plus-branch is real and physical in the asymptotically
AdS region r → ∞ for Λ < 0.

2. We have presented the new coordinates (3.49) nicely covering the Killing horizon
r = rh defined by f(rh) = 0. The new coordinates cover the original spacetime (3.1)
only in the region where R2 > r2f holds. As a consequence, by Proposition 1, the re-
gion given by R2 > r2f in a spacetime described by the metric (3.1) — not necessarily
to be the charged rotating BTZ spacetime — is stably causal.

3. We have computed the KGBD mass m and the KGBD angular momentum j for
the charged rotating BTZ solution in the Clément form, and also in the new form
as Eqs. (3.19) and (3.20) and Eqs. (3.43) and (3.44), respectively. They are finite
in the uncharged case Q = 0, but for Q ̸= 0 at least either of them diverges in
the asymptotic region r → ∞, with the exception of ζ = 0 (for Λ = 0) in the new
form. In particular, j = 0 is satisfied on the degenerate horizon r = rex in the charged
rotating case Q ̸= 0 in spite that j is non-zero in the uncharged rotating case Q = 0
even under the extremality condition m = ±

√
−Λj.

4. By Corollary 1, the uncharged rotating BTZ spacetime (Q = 0) is of the Cotton
type O (that is conformally flat) everywhere. The charged rotating BTZ spacetime
(Q ̸= 0) is of the Cotton type I at r ̸= rh, and of the Cotton type III on the Killing
horizon r = rh. Interestingly, this is analogous to the charged static black holes in
the Robinson-Trautman form presented in Sec. VIII of [36].
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5. By Proposition 3, the energy-momentum tensor of the Maxwell field in the charged
rotating BTZ solution is of the Hawking-Ellis type I everywhere, including the Killing
horizon.

Related to the result 3, as seen in Eqs. (3.19), (3.20), and (3.23), the KGBD quasi-local
mass and angular momentum as well as the electric potential measured by the Kodama
observer diverge as r → ∞ for the charged rotating BTZ solution. Nevertheless, finite
values of the global mass, angular momentum, and electric charge have been obtained as
the Regge-Teitelboim charges based on the Hamiltonian formalism of the Einstein-Maxwell-
Λ system [6]. The relation between those quasi-local quantities and the global quantities
for the charged rotating BTZ black hole is an important open question.

The results 4 and 5 show that algebraic properties on the Killing horizon are quite
different from other regions of the spacetime. In comparison, it was shown in four di-
mensions [58] that a spacetime described by the Gürses-Gürsey metric [59] in the Doran
coordinates (T, r, θ, φ),

ds2 =− dT 2 + (r2 + a2 cos2 θ) dθ2 + (r2 + a2) sin2 θ dφ2

+
r2 + a2 cos2 θ

r2 + a2

[
dr +

√
2M(r) r (r2 + a2)

r2 + a2 cos2 θ
(dT − a sin2 θ dφ)

]2
, (4.1)

with an arbitrary mass function M(r) satisfying rM(r) ≥ 0 is of the Petrov type D ev-
erywhere and the corresponding energy-momentum tensor in general relativity is of the
Hawking-Ellis type I everywhere including the Killing horizon r = rh defined by ∆(rh) = 0
with ∆(r) = r2 − 2rM(r) + a2. The metric (4.1) satisfies gTT = −1, and includes the
Kerr spacetime for M(r) =M0 and the Kerr-Newman spacetime for M(r) =M0 −Q2/r
as special cases, where M0 and Q are constants. Such rigorous algebraic classifications of
spacetime geometry and of the energy-momentum tensor on the horizon in a more general
spacetime, and in higher dimensions, are still open. We leave these problems for future
investigation.
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A Clément’s solution in the 1993 paper

In this appendix, we show that Clément’s solution given by Eq. (23) in [7] is locally iden-
tical to the charged non-rotating BTZ solution. The original solution is written in the
coordinates (t, ρ, θ) as

ds2 = U(dt− ω dθ)2 +Wdθ2 +
dρ2

2ρU
,

Aµdx
µ = −q ln

(
ρ

ρ0

)
(dt− ω dθ),

U(ρ) = 2

(
−Λρ+ κq2 ln

(
ρ

ρ0

))
, W (ρ) = −2ρ,

(A.1)

where ρ0 and q are parameters. By coordinate transformations t− ω θ = i t̄, ρ = r2/2,
and θ = i θ̄ together with reparametrizations Q := 2iq and M := 2κq2 ln(2ρ0), the solution
becomes

ds2 = −f dt̄2 + f−1dr2 + r2dθ̄2,

Aµdx
µ = −Q ln r dt̄+ constant,

f(r) = −Λr2 −M − κQ2 ln r,

(A.2)

which is Eq. (3.15).

B Derivation of the Doran-type coordinates

In this appendix, we present how to systematically find the transformations (3.47) and
(3.48) from the original coordinates (3.1) to the Doran-type coordinates (3.49). For deriva-
tion, we consider an affinely parametrized geodesic γ with its tangent vector vµ (= dxµ/dλ),
where λ is an affine parameter along γ in the original coordinate system (3.1). As the
spacetime (3.1) in the coordinates (t, r, θ) admits two Killing vectors ξµ = (1, 0, 0) and
Θµ = (0, 0, 1), there are conserved quantities E := −ξµvµ and L := Θµv

µ along γ. Using
them and the normalization ε = vµv

µ, where ε = −1, 0, and 1, corresponds to timelike,
null, and spacelike γ, respectively, we write down the geodesic equations as

ṫ =
ER2 + Lh

r2f
, (B.1)

ṙ = ϵr

√
(ER2 + Lh)2 + r2f(εR2 − L2)

rR
, (B.2)

θ̇ =
Lr2f − h(ER2 + Lh)

r2R2f
. (B.3)
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where ϵr = 1 (−1) corresponds to an outgoing (ingoing) γ.

Equations (B.2) and (B.3) give

dθ

dr
=
θ̇

ṙ
= γ(r), (B.4)

where

γ(r) := ϵr
Lr2f − h(ER2 + Lh)

rRf
√

(ER2 + Lh)2 + r2f(εR2 − L2)
. (B.5)

Equation (B.4) shows that a new coordinate φ defined by

dφ = dθ − γ(r) dr (B.6)

is constant along γ.

Now consider a new time coordinate T given by

dT = dt+ β(r) dr, (B.7)

and impose Ṫ = 1 along γ. Then, using Eqs. (B.1) and (B.2), we obtain β(r) as

β(r) =
1− ṫ

ṙ
= ϵr

R(r2f − ER2 − Lh)

rf
√

(ER2 + Lh)2 + r2f(εR2 − L2)
. (B.8)

In the new coordinates (T, r, φ), the metric (3.1) is written as

ds2 =− r2

R2
f(dT − βdr)2 + f−1dr2 +R2

(
dφ+ γdr +

h

R2
(dT − βdr)

)2

, (B.9)

where γ and β are given by Eqs. (B.5) and (B.8), respectively. Lastly, we impose a key
condition gTT = −1. This condition is satisfied with ε = −1, E = 1, and L = 0 for any set
of f(r), h(r), and R(r). Then, the transformations (B.7) and (B.6) and the metric (B.9)
coincide with Eqs. (3.47), (3.48), and (3.49), respectively.

By the coordinate transformations (3.47) and (3.48) from Eqs. (B.1)–(B.3), we obtain
geodesic equations for a timelike particle (ε = −1) with E = 1 and L = 0 in the Doran-type
coordinates (3.49) as

Ṫ =1, ṙ = ϵr

√
R2 − r2f

r
, φ̇ = 0. (B.10)

Hence, T is the proper time of the massive particle and dr/dT = ϵrR/r is satisfied on the
Killing horizon f = 0. In particular, dr/dT = ϵr = ±1 is satisfied for the solution with
R = r such as the rotating BTZ vacuum solution (2.21).
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[9] A. A. Garćıa-Dı́az, Exact Solutions in Three-Dimensional Gravity (Cambridge Uni-
versity Press, Cambridge, England, 2017). doi:10.1017/9781316556566

[10] J. S. F. Chan, K. C. K. Chan and R. B. Mann, “Interior structure of a charged
spinning black hole in (2+1)-dimensions”, Phys. Rev. D 54 (1996), 1535–1539
doi:10.1103/PhysRevD.54.1535 [arXiv:gr-qc/9406049 [gr-qc]].

[11] M. Akbar and A. A. Siddiqui, “Charged rotating BTZ black hole and thermody-
namic behavior of field equations at its horizon”, Phys. Lett. B 656 (2007), 217–220
doi:10.1016/j.physletb.2007.09.053 [arXiv:1009.3749 [gr-qc]].

[12] M. Cadoni, M. Melis and M. R. Setare, “Microscopic entropy of the charged BTZ black
hole”, Class. Quant. Grav. 25 (2008), 195022 doi:10.1088/0264-9381/25/19/195022
[arXiv:0710.3009 [hep-th]].

26



[13] A. Larranaga, “On the thermodynamical relation between rotating charged BTZ
black holes and effective string theory”, Commun. Theor. Phys. 50 (2008), 1341-1344
doi:10.1088/0253-6102/50/6/19 [arXiv:0803.1998 [gr-qc]].

[14] M. R. Setare and M. Jamil, “The Cardy-Verlinde formula and entropy of
the charged rotating BTZ black hole”, Phys. Lett. B 681 (2009), 469–471
doi:10.1016/j.physletb.2009.10.057 [arXiv:0912.0861 [hep-th]].

[15] M. Akbar and K. Saifullah, “Quantum corrections to the entropy of charged rotating
black holes”, Eur. Phys. J. C 67 (2010), 205–211 doi:10.1140/epjc/s10052-010-1279-5
[arXiv:1002.3581 [gr-qc]].

[16] M. Akbar, H. Quevedo, K. Saifullah, A. Sanchez and S. Taj, “Thermodynamic ge-
ometry of charged rotating BTZ black holes”, Phys. Rev. D 83 (2011), 084031
doi:10.1103/PhysRevD.83.084031 [arXiv:1101.2722 [gr-qc]].

[17] I. Hussain, “Energy in the spacetime field of the charged rotating BTZ black hole
via approximate Lie symmetries”, Phys. Scripta 05 (2011), 055002 doi:10.1088/0031-
8949/83/05/055002

[18] S. Kawamoto, K. Nagasaki and W. Y. Wen, “Charged rotating BTZ black holes
in noncommutative spaces and torsion gravity”, PTEP 2018 (2018) no.4, 043E01
doi:10.1093/ptep/pty019 [arXiv:1701.01005 [hep-th]].

[19] G. Gecim and Y. Sucu, “Quantum gravity effect on the Hawking radiation of charged
rotating BTZ black hole”, Gen. Rel. Grav. 50 (2018), 152 doi:10.1007/s10714-018-
2478-x [arXiv:1804.10551 [gr-qc]].

[20] M. Sharif and F. Javed, “Dynamics of scalar shell for rotating and charged
rotating BTZ black holes”, Mod. Phys. Lett. A 35 (2019) no.02, 1950350
doi:10.1142/S0217732319503504

[21] Y. P. Zhang, S. W. Wei and Y. X. Liu, “Topological approach to derive the global
Hawking temperature of (massive) BTZ black hole”, Phys. Lett. B 810 (2020), 135788
doi:10.1016/j.physletb.2020.135788 [arXiv:2009.07704 [gr-qc]].
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