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Abstract

Under the (anti-)self-dual condition for orthonormal components of the Faraday
tensor, the three-dimensional Einstein-Maxwell system with a negative cosmo-
logical constant Λ admits a solution obtained by Kamata and Koikawa and later
by Cataldo and Salgado in the most general form. Actually, Clément first ob-
tained this solution and interpreted it as a regular particle-like solution without
horizon. Nevertheless, it has been erroneously stated in some literature that
this Clément-Cataldo-Salgado (CCS) solution, locally characterized by a single
parameter, describes a black hole even in the charged case as it reduces to the
extremal rotating Bañados-Teitelboim-Zanelli (BTZ) solution in the vacuum
limit and its curvature invariants are constant. In this paper, we supplement
Clément’s interpretation by showing that there appears a parallelly propagated
curvature singularity corresponding to an infinite affine parameter along space-
like geodesics at the location of the Killing horizon in the extremal rotating
BTZ solution when the (anti-)self-dual Maxwell field is added. If the spatial
coordinate θ is periodic, closed timelike curves exist near the singularity. It is
also shown that the CCS solution is of the Cotton type N (in contrast to charged
rotating BTZ black holes which are of type I away from the horizon), and the
energy-momentum tensor of the Maxwell field is of the Hawking-Ellis type II.
The metric solves the Einstein-Λ equations also with a massless scalar field or a
null dust fluid. We explicitly demonstrate that it belongs to the Kundt shear-
free, non-twisting, and non-expanding class of geometries, whereas extremal
rotating BTZ black holes have expanding principal null directions. It means
that the CCS metric represents the specific null (that is “radiative”) Maxwell
field generated by a singular source, rather than an extremal rotating BTZ black
hole dressed in an (anti-)self-dual Maxwell field.

http://arxiv.org/abs/2408.16056v2
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1 Introduction

Three-dimensional gravity has been studied very intensively so far as a testing ground for
quantum gravity due to its simplicity [1]. In particular, the Bañados-Teitelboim-Zanelli
(BTZ) vacuum black-hole solution [2] in the presence of a negative cosmological constant Λ
is expected to provide clues to the description of black holes in quantum gravity. Since the
number of independent components of the Riemann tensor and Ricci tensor are the same
in three dimensions, the BTZ spacetime is locally identical to the maximally symmetric
anti-de Sitter (AdS) spacetime. Nevertheless, their global structures are different as the
BTZ spacetime is obtained by the identifications in the AdS spacetime [3].

In the three-dimensional Einstein-Maxwell-Λ system, the charged non-rotating BTZ
solution was obtained in Ref. [2] and independently in Ref. [4]. Then, the charged rotating
BTZ solution was obtained by linear coordinate transformations from the non-rotating
solution by Clément [5]. (See the introduction in [6] for the history of this solution.)
Therefore, the rotating and non-rotating charged BTZ solutions are locally identical, but
again, they are globally different if one uses a periodic coordinate. The charged rotating
BTZ solution for Λ < 0, which corresponds to the Kerr-Newman-AdS solution in four
dimensions, can be extended for a wider range of Λ by coordinate transformations [6],
however, the extended solution for Λ ≥ 0 does not describe a black hole due to Ida’s
theorem [7].

In fact, other exact solutions exist in the three-dimensional Einstein-Maxwell-Λ system
besides the charged rotating BTZ solution as summarized in Chapter 11 of the textbook [8].
Among them, there is a charged solution obtained by Kamata and Koikawa [9], which re-
duces to the extremal rotating BTZ solution in the uncharged limit. Unlike the charged
BTZ solution, orthonormal components of the Faraday tensor of the Kamata-Koikawa so-
lution satisfy the so-called self-dual or anti-self-dual condition1 and the curvature invariants
are constant. As a generalization of the Kamata-Koikawa solution, Cataldo and Salgado
obtained the most general stationary and axisymmetric solution under the (anti-)self-dual
condition on the Maxwell field [10]. The Cataldo-Salgado solution is characterized by
four parameters and its curvature invariants are also constant. For some reason, only the
Kamata-Koikawa solution is mentioned in Garćıa-Dı́az’s textbook [8], while the Cataldo-
Salgado solution is not included.

In Ref. [5], Clément pointed out that the Kamata-Koikawa solution has previously been
presented in Eq. (29) in Ref. [11]. In fact, as we will show in the present paper, the Cataldo-
Salgado solution, including the Kamata-Koikawa solution as a special case, is also locally
identical to the Clément solution. For this reason, we will refer to this solution as the
Clément-Cataldo-Salgado solution (CCS) solution. As described in some literature [8, 9],
one might expect that the CCS solution describes a black hole since the curvature invariants

1This terminology differs from the usual one for the Maxwell field and will be explained in Sec. 2.2.
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are constant as the uncharged rotating BTZ solution. In Ref. [5], Clément interpreted the
CCS solution as a perfectly regular particle-like solution without horizon. However, in this
work, we supplement Clément’s interpretation by showing that there appears a parallelly
propagated curvature singularity at the location of the Killing horizon in the extremal
rotating BTZ solution if the (anti-)self-dual Maxwell field is added. We also clarify the
specific Cotton type of the spacetime and the Hawking-Ellis type of the energy-momentum
tensor.

In this paper, we first explain some mathematical tools and review the CCS solution
and the charged rotating BTZ solution in Sec. 2. Then, we study the CCS solution in
detail in Sec. 3. The summary of our main results and final remarks are given in the final
section. Appendix A shows that the Cataldo-Salgado solution and the Clément solution
are locally identical. Appendix B explains the parameters of the Cataldo-Salgado solution.
Throughout this article, the signature of the Minkowski spacetime is (−,+,+), and a prime
denotes differentiation with respect to the argument. We adopt the units such that c = 1,
and the conventions of curvature tensors such as [∇ρ,∇σ]V

µ = Rµ
νρσV

ν and Rµν = Rρ
µρν .

We use κ := 8πG instead of the gravitational constant G.

2 Preliminaries

The action of the three-dimensional Einstein-Maxwell-Λ system for the spacetime metric
gµν and the U(1) gauge field Aµ is given by

S[gµν , Aµ] =

∫

d3x
√
−g

(

1

2κ
(R− 2Λ)− 1

4
FµνF

µν

)

, (2.1)

where R is the Ricci scalar and Fµν := ∇µAν − ∇νAµ is the Faraday tensor satisfying an
identity ∇[ρFµν] ≡ 0. We have omitted the boundary term in the action for simplicity.
Variation of the action gives the field equations

Gµν + Λgµν = κTµν ,

∇νF
µν = 0,

(2.2)

where Gµν is the Einstein tensor and the energy-momentum tensor Tµν for the Maxwell
field is given by

Tµν =FµρF
ρ

ν − 1

4
gµνFρσF

ρσ. (2.3)

Recently, the field equations in this system have been fully solved without imposing any
spacetime symmetry [12].
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In this paper, we study stationary and axisymmetric solutions described in the coordi-
nates (t, r, θ) by the following metric

ds2 = − r2

R2
f dt2 +

dr2

f
+R2

(

dθ +
h

R2
dt

)2

, (2.4)

where f = f(r), R = R(r), and h = h(r). In this spacetime,
√−g = r holds, and a regular

null hypersurface r = rh defined by the condition f(rh) = 0 is a Killing horizon. In the

domain f > 0, natural orthonormal basis one-forms {E(0)
µ , E

(1)
µ , E

(2)
µ } in the coordinate

system (2.4) are given by

E(0)
µ dxµ =

√

r2f

R
dt, E(1)

µ dxµ =
1√
f
dr, E(2)

µ dxµ = R

(

dθ +
h

R2
dt

)

, (2.5)

of which contravariant components are

E(0)µ ∂µ =
1

√

r2f

(

− R∂t +
h

R
∂θ

)

, E(1)µ ∂µ =
√

f ∂r, E(2)µ ∂µ =
1

R
∂θ. (2.6)

However, the coordinate system (2.4) does not cover the Killing horizons, as the metric
and the natural basis (2.5) diverge for f = 0. To properly investigate the geometrical and
physical properties, it is necessary to investigate the metric more carefully [6].

2.1 Kinoshita-Gundlach-Bourg-Davey quasi-local mass and an-

gular momentum

For general axisymmetric spacetimes in three dimensions, Kinoshita-Gundlach-Bourg-Davey
(KGBD) quasi-local mass m and angular momentum j are defined by [13, 14]

m :=
π

κ

(

− Λψµψ
µ +KµK

µ
)

, (2.7)

j :=
1

κ
εµρσψµ∇ρψσ

(

= −2π

κ
ψµK

µ
)

, (2.8)

where ψµ = (∂/∂θ)µ is the Killing vector generating axisymmetry. Here Kµ is the general-
ized Kodama vector defined in Ref. [13, 14] by

Kµ := −1

2
εµρσ∇ρψσ, (2.9)

where εµρσ is totally anti-symmetric volume three-form. The vector Kµ shares the same
properties as the Kodama vector in n (≥ 3) dimensions [15, 16]. If ψµ is hypersurface-
orthogonal, j = 0 holds and thenm andKµ reduce to the Misner-Sharp quasi-local mass [17,

4



18] and the Kodama vector [15,16] in three dimensions (n = 3), respectively. In the space-
time (2.4), the generalized Kodama vector is given by

Kµ∂µ =
1

2r
(2RR′∂t − h′∂θ) . (2.10)

For the rotating BTZ vacuum solution [2], m and j are constants and the metric is
written as [6]

ds2 = −f dt 2 + f−1dr2 + r2
(

dθ − 4Gj

r2
dt

)2

,

f(r) = −Λr2 − 8Gm+
(4Gj)2

r2
.

(2.11)

Depending on the parameters m and j, the spacetime admits two Killing horizons, at most.
They are located at r = rh determined by f(rh) = 0, namely, rh = r±, where

r2± :=
4Gm

(−Λ)

(

1±
√

1 + Λ
j2

m2

)

. (2.12)

The extremal rotating BTZ vacuum solution is realized for

|m| =
√
−Λ |j|. (2.13)

In such a case the metric function becomes

f(r) = (−Λ)
( r2 − r2ex)

2

r2
, (2.14)

with (assuming j > 0) one double-degenerate Killing horizon located at r = rex, where

r2ex :=
4Gj√
−Λ

=
4Gm

(−Λ)
. (2.15)

Recall that, in the rotating (j 6= 0) BTZ vacuum solution, r = 0 is a coordinate singu-
larity and the spacetime can be analytically extended using the coordinate y := r2 into the
region of y < 0. In the coordinates (t, y, θ), the metric (2.11) is written as

ds2 = −(−Λy −M)dt2 − 8Gj dt dθ +
dy2

4yf̄
+ y dθ2

= −f̄ dt2 + dy2

4yf̄
+ y

(

dθ − 4Gj

y
dt

)2

,

f̄(y) := −Λy −M +
(4Gj)2

y
,

(2.16)
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where M = 8Gm, which give the determinant of the metric det(g) = −1/4, and non-zero
components of the inverse metric as

gtt = −1

f̄
, gtθ = −4Gj

yf̄
, gyy = 4yf̄ , gθθ = −Λy +M

yf̄
. (2.17)

Because the metric and its inverse are analytic at y(= r2) = 0 for j 6= 0, the spacetime in
the region of y > 0 can be analytically extended beyond y = 0 into the region of y < 0. As
gµν(∇µy)(∇νy)|y=0 = gyy|y=0 = 4(4Gj)2 > 0, y = 0 is a regular timelike hypersurface.2

2.2 Clément-Cataldo-Salgado solution

Cataldo and Salgado obtained the most general charged version of the rotating BTZ so-
lution assuming a self-dual or anti-self-dual condition imposed on the orthonormal basis
components of the electric and magnetic fields [10]. It can be written in the form of the line
element (2.4) in the coordinates (t, r, θ) with the metric functions given by Eqs. (40)–(42)
in [10], namely

f(r) = (−Λ)
(r2 −D)2

r2
,

R(r) =

√

r2 +
κC2

0

2(−Λ)
ln |r2 −D| ,

h(r) = ǫ
(

D
√
−Λ +

κC2
0

2
√
−Λ

ln
∣

∣r2 −D
∣

∣

)

,

(2.18)

while the gauge field is

Aµ dx
µ =

1

2
C0 ln |r2 −D|

(

ǫ dt +
dθ√
−Λ

)

. (2.19)

Using the useful identities

√

r2f =
√
−Λ (r2 −D),

h+ ǫ
√

r2f = ǫ
√
−ΛR2,

h− ǫ
√

r2f = ǫ
√
−ΛR2 − 2ǫ

√

r2f,

(2.20)

in the region of r2 > D the metric can be rewritten in a simple form

ds2 = (−Λ)
[

R2 − 2(r2 −D)
]

dt2 + 2ǫ
√
−Λ

[

R2 − (r2 −D)
]

dt dθ +R2dθ2 +
dr2

f
, (2.21)

2In Ref. [19], the authors use the singular coordinates (t, r, θ) of (2.11) and claim that r = 0 is singular
based on the analysis of the holonomy operator on a closed path (i.e., Wilson loop) around r = 0.
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and the inverse metric is given by

gtt =
R2

Λ(r2 −D)2
, gtθ = ǫ

R2 − (r2 −D)√
−Λ(r2 −D)2

,

gθθ = −R
2 − 2(r2 −D)

(r2 −D)2
, grr = f.

(2.22)

Non-zero components of the Maxwell field Fµν and F µν are given by

Ftr = − ǫ C0 r

r2 −D
, Frθ =

C0 r√
−Λ (r2 −D)

,

F tr = ǫ
C0

r
, F rθ =

√
−Λ

C0

r
,

(2.23)

and hence the main Maxwell electromagnetic invariant is vanishing,

FµνF
µν = 0. (2.24)

As shown in Appendix A, this Cataldo-Salgado solution is locally identical to Clément’s
solution given by Eq. (29) in Ref. [11]. For this reason, we will refer to this solution as the
Clément-Cataldo-Salgado (CCS) solution.

Apart from the (negative) cosmological constant Λ, the CCS solution contains two con-

tinuous real parameters,D and C0, and also a discrete parameter ǫ = ±1, introduced already
in [9,10]. In fact, the original form of the solution presented in [10] includes two additional
parameters C and E, but we have set C = 1 and E = 0 by using the coordinate freedom
and suitable redefinitions of the other parameters, as shown explicitly in Appendix B. Al-
though those additional parameters C and E possibly may have global meanings, in this
paper we focus on the local properties of the solution.

Moreover, one can also set D = 0 in the charged case C0 6= 0 by coordinate transforma-
tions as shown in Appendix B, so that C0 is the only continuous parameter characterizing
the CCS solution. However, by setting D = 0, we miss the limit from the CCS solution
to the Kamata-Koikawa solution [9] for κC2

0 = −2ΛD. For this reason, we will keep D
arbitrary in the following analysis.

Since the CCS solution reduces to the extremal rotating BTZ vacuum solution for C0 = 0,
the parameter C0 is related to the electric charge QE , while the parameter D corresponds
to the extreme horizon r2ex of the vacuum BTZ black hole in view of Eq. (2.14). In fact,
C0 = QE holds, as can be immediately seen from the asymptotic behavior r → ∞ of the
electric field component F tr given by Eq. (2.23) (provided r is the radial distance from the
charge). Therefore, the constant factor which occurs in (2.18) is actually κC2

0 = 8πGQ2
E.

On the other hand, the physical meaning of the discrete parameter ǫ = ±1 is twofold.
First, since the metric (2.21) shows that changing the sign of ǫ is equivalent to the trans-
formation of time reversal t↔ −t, the two possibilities ǫ = ±1 represent the choice of the
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time orientation. Second, it denotes two possible types of the electromagnetic field, namely,

• ǫ = +1: self-dual Maxwell field,

• ǫ = −1: anti-self-dual Maxwell field,

which is exhibited by the frame components of the Faraday tensor F(a)(b) := Fµν E
µ
(a)E

ν
(b).

With the orthonormal basis one-forms (2.5) in the domain r2 > D, non-zero components
of F(a)(b) are

F(0)(1) = −F(1)(0) =: E ,
F(2)(1) = −F(1)(2) =: B, (2.25)

where the electric component E and the magnetic component B of F(a)(b) are given by

E = ǫB = −ǫ C0

R
. (2.26)

Hence, the self-dual condition E = B and the anti-self-dual condition E = −B introduced
in Ref. [9] are satisfied for ǫ = 1, and ǫ = −1, respectively, and a self-dual solution is the
time reversal of an anti-self-dual solution.

Using ψµ∂µ = ∂θ and Eq. (2.10), which for (2.18) is

Kµ∂µ = ∂t +
κC2

0

2
√
−Λ |r2 −D|

( 1√
−Λ

∂t − ǫ ∂θ

)

, (2.27)

we compute the KGBD mass (2.7) and the KGBD angular momentum (2.8) to obtain

m = −ǫ
√
−Λ j =

1

8G

[

2D (−Λ)− κC2
0

(

1− ln
∣

∣r2 −D
∣

∣

)

]

. (2.28)

While the CCS solution (2.18) reduces to the extremal rotating BTZ vacuum solution (2.11)
for C0 = 0, it satisfies the extremality condition (2.13) independent of the parameters D,
C0, and ǫ.

2.3 Charged rotating BTZ solution

In this subsection, for comparison with the CCS solution we review the charged rotating
BTZ solution. In Ref. [5], Clément obtained the so-called charged rotating BTZ solution
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in the system (2.1) with Λ < 0. After suitable reparametrizations, the solution is written
in the form of the line element (2.4) with the metric functions given by

f(r) = −Λr2 −M − κQ2 ln r,

R(r) =

√

r2 +
ω2

(−Λ)(1− ω2)

(

M + κQ2 ln r
)

,

h(r) = − ω√
−Λ (1− ω2)

(

M + κQ2 ln r
)

,

(2.29)

while the gauge field is

Aµdx
µ = − Q√

1− ω2
ln r

(

dt− ω√
−Λ

dθ

)

. (2.30)

We refer to the solution given by Eqs. (2.29) and (2.30) as the charged rotating BTZ
solution in the Clément form. Non-zero components of the inverse metric are given by

gtt = − ω2f + Λr2

Λr2f(1− ω2)
, gtθ =

ω(f + Λr2)√
−Λ r2f(1− ω2)

,

gθθ =
f + ω2Λr2

r2f(1− ω2)
, grr = f.

(2.31)

This solution is parameterized by three constants, namely ω ( 6= ±1),M , andQ, and requires
Λ < 0 in order for the metric to be real. (A different parametrization for a wider range of
Λ has been presented in [6].) Since there is a curvature singularity at r = 0 for Q 6= 0, the
domain of r is restricted to r ∈ (0,∞).

Non-zero components of the Maxwell field Fµν and F µν are given by

Ftr =
Q√

1− ω2 r
, Frθ =

ωQ
√

−Λ(1− ω2) r
,

F tr = − Q√
1− ω2 r

, F rθ =
ωQ

√
−Λ√

1− ω2 r
,

(2.32)

which give the following main Maxwell electromagnetic invariant as

FµνF
µν = −2Q2

r2
. (2.33)

We note that, although the gauge field Aµ and the Faraday tensor Fµν become pure imag-
inary if a condition −1 < ω < 1 is not satisfied, the energy-momentum tensor Tµν remains
real even in such a case. With the orthonormal basis one-forms (2.5), non-zero components
of F(a)(b) are

E := F(0)(1) = −F(1)(0) =
Q√

1− ω2R
,

B := F(2)(1) = −F(1)(2) = −ω
√

f

−Λr2
E ,

(2.34)
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where f(r) is given by Eq. (2.29). As they do not satisfy the relation (2.26), the charged
rotating BTZ solution is not self-dual nor anti-self-dual. We note that the solution is
purely electric in the non-rotating limit ω → 0. In contrast, the CCS solution reduces to
the massless BTZ vacuum solution in the non-rotating limit given by D → 0 and C0 → 0.

The KGBD mass and the KGBD angular momentum are given by

m =
1 + ω2

8G(1− ω2)

(

1

2
rf ′ − f

)

+
πQ2

2(1− ω2)

(

1 +
ω2

2Λr
f ′
)

=
1 + ω2

8G(1− ω2)
(M + 8πGQ2 ln r)− πω2Q2

1− ω2

(

1 +
2πGQ2

Λr2

)

, (2.35)

j =
ω

4G
√
−Λ(1− ω2)

(

1

2
rf ′ − f

)

=
ω

4G
√
−Λ(1− ω2)

(

M + 8πGQ2 ln r − 4πGQ2
)

. (2.36)

We note that m and j are non-constant in general for Q 6= 0. We also observe that j = 0
is possible for ω = 0 with Q 6= 0.

Clément’s charged rotating BTZ solution (2.29) admits an extremal Killing horizon if
M and Q satisfy the relation

M = 4πGQ2

[

1− ln

(

4πGQ2

−Λ

)]

. (2.37)

The location of the extremal horizon r = rex is determined by f(rex) = f ′(rex) = 0 such as

rex =

√

4πGQ2

−Λ
. (2.38)

Evaluating Eqs. (2.35) and (2.36) on r = rex, we obtain

m(rex) =
πQ2

2(1− ω2)
, j(rex) = 0. (2.39)

In particular, the KGBD quasi-local angular momentum j vanishes on the extremal horizon.

Unfortunately, the charged rotating BTZ solution in the Clément form (2.29) cannot

treat the extremal case in vacuum. In the uncharged case Q = 0, the metric (2.4) with
Eq. (2.29) becomes

ds2 = −F dt2 + F−1dR2 +R2

(

dθ − Mω√
−Λ (1− ω2)R2

dt

)2

,

F (R) :=
r2

R2
f = −ΛR2 − 1 + ω2

1− ω2
M +

M2ω2

(−Λ) (1− ω2)2R2

=
[M + Λ(1− ω2)R2][Mω2 + Λ(1− ω2)R2]

(−Λ)(ω2 − 1)2R2
,

(2.40)

10



in the coordinates (t, R, θ), which is locally maximally symmetric and identical to the metric
(2.11) with Eq. (2.42).

The solution admits two Killing horizons (at most) in the region y > 0 (recall that
y := R2), and their locations y = y1 and y = y2 are the roots of F (R) = 0, namely

y1 =
Mω2

(−Λ)(1− ω2)
, y2 =

M

(−Λ)(1− ω2)
. (2.41)

As ω2 6= 1 is assumed in the Clément form, the extremal case y1 = y2 cannot be treated.

Let us show this fact differently. In the uncharged case Q = 0, the KGBD mass (2.35)
and angular momentum (2.36) for Clément’s charged rotating BTZ solution reduce to the
following constants

m =
1 + ω2

8G(1− ω2)
M, j =

Mω

4G
√
−Λ (1− ω2)

. (2.42)

The above equations are solved for M and ω to give

M = ∓8G
√

m2 + Λj2, ω =
m±

√

m2 + Λj2√
−Λ j

. (2.43)

Under the extremality condition (2.13), namely m = ±
√
−Λ j, we obtain

M = 0, ω = ±1, (2.44)

where the latter is not allowed in the Clément form. In fact, m and j are then undetermined

in Eq. (2.42). Hence, the extreme case in vacuum cannot be treated properly under the
parametrization (2.40).

This is also the case under a new parametrization of the charged rotating BTZ solution
for a wider range of Λ introduced in [6]. In Ref. [6], the gauge field and the metric functions
are written as

Aµdx
µ = −Q ln r (dt− a dθ), (2.45)

R(r) =
√

ζr2 + a2(M + κQ2 ln r), (2.46)

f(r) = −Λr2 −M − κQ2 ln r, (2.47)

h(r) = −a (M + κQ2 ln r), (2.48)

which are parametrized by M , a, and Q. While M and Q are the same as in the Clément
form, the rotation parameter a and the constant ζ are related to ω as

a =
ω√

−Λ (1− ω2)
, ζ =

1

1− ω2
. (2.49)
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Those two constants satisfy

ζ2 − ζ + a2Λ = 0, (2.50)

which shows

ζ =
1

2

(

1±
√
1− 4a2Λ

)

. (2.51)

In this new parametrization, there are two branches of solutions depending on the sign
in Eq. (2.51). In the uncharged case (Q = 0) for ζ 6= 0, one can write both branches of
solutions in the same form as

ds2 = −F dt̄ 2 + F−1dR2 +R2

(

dθ − ζaM

R2
dt̄

)2

,

F (R) = −ΛR2 − ζ(2ζ − 1)M +
ζ2a2M2

R2
,

(2.52)

where t̄ := t/ζ. The solution admits two Killing horizons (at most) in the region of y > 0,
and their locations y = y± are roots of F (R) = 0, namely

y± =
ζM(2ζ − 1± 1)

2(−Λ)
, (2.53)

where we have used Eq. (2.50). Clearly, the extremal case y+ = y− is not possible for
ζM 6= 0.

In the uncharged case Q = 0, the KGBD mass (2.35) and angular momentum (2.36)
under the new parametrization become

m =
ζ(2ζ − 1)

8G
M, j =

ζ

4G
aM, (2.54)

which give

m− ε
√
−Λ j =

ζM

8G

(

2ζ − 1− 2εa
√
−Λ

)

. (2.55)

As the bracket in the right-hand side cannot be zero due to Eq. (2.51), the extremality con-
dition (2.13), namely m = ε

√
−Λj, with ε = ±1, in the uncharged case is not satisfied for

ζM 6= 0. Hence, the extremal case in vacuum cannot be treated in the new parametrization

as well.

The results obtained in this subsection are summarized in Fig. 1. We note that, unlike the
extremal charged rotating BTZ solution in three dimensions, the extremal Kerr-Newman-
AdS solution in four dimensions reduces to the extremal Kerr-AdS solution in the uncharged
limit Q→ 0.

12



Figure 1: Various limits from Clément’s charged rotating BTZ solution, and from the CCS
solution.

3 Properties of the Clément-Cataldo-Salgado solution

In this section, we investigate geometrical and physical properties of the CCS solution in
detail to give its physical interpretation.

3.1 Geodesics and locally AdS infinity

In the original coordinate system (t, r, θ) with the metric (2.21), we consider the domain
of r given by r ∈ (0,∞), in which the metric component grr or grr diverges as r → 0 or
degenerates for any value of D. Actually, it is a coordinate singularity for D 6= 0 and can
be removed by introducing a new radial coordinate y := r2. In the new coordinates (t, y, θ),
the metric (2.21) and the gauge field (2.19) are written as

ds2 = (−Λ)
[

S − 2(y −D)
]

dt2 + 2ǫ
√
−Λ

[

S − (y −D)
]

dt dθ

+ S dθ2 +
dy2

4(−Λ)(y −D)2
,

Aµ dx
µ =

1

2
C0 ln |y −D|

(

ǫ dt+
dθ√
−Λ

)

,

(3.1)

where

S(y) := y +
κC2

0

2(−Λ)
ln |y −D|

[

= R2
(

r(y)
) ]

. (3.2)
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Non-zero components of the inverse metric are

gtt =
S

Λ(y −D)2
, gtθ = ǫ

S − (y −D)√
−Λ(y −D)2

,

gθθ = −S − 2(y −D)

(y −D)2
, gyy = 4(−Λ)(y −D)2.

(3.3)

Because for C0 = 0 the metric and its inverse are both analytic at y = 0 at D 6= 0, the
spacetime defined in the domain y ≥ 0 can be analytically extended beyond y = 0 into the
domain y < 0 in that case. In contrast, as shown in Sec. 3.2 below, in the non-vacuum case

for C0 6= 0, y = D is not a coordinate singularity but a p.p. scalar curvature singularity.
Consequently, the domain of y in the coordinate system (3.1) is y ∈ (D,∞).

For later use, we derive geodesic equations in the coordinates (t, y, θ). Consider an
affinely parametrized geodesic γ represented as xµ = xµ(λ) with its tangent vector vµ (given
by dxµ/dλ), where λ is an affine parameter along γ in the coordinate system (3.1). As the
spacetime admits two Killing vectors, namely ξµ = (∂/∂t)µ and Θµ = (∂/∂θ)µ, there are
conserved quantities E := −ξµvµ and L := Θµv

µ along γ. Using them and the normal-
ization ε = vµv

µ, where ε = −1, 0, and 1, corresponds to timelike, null, and spacelike γ,
respectively, we can write down the geodesic equations as

ṫ =
ǫ
√
−ΛL(S − y +D) + ES

(−Λ)(y −D)2
,

ẏ2 = 4ε(−Λ)(y −D)2 + 4(E + ǫ
√
−ΛL)

[

(E + ǫ
√
−ΛL)S − 2ǫ

√
−ΛL(y −D)

]

,

θ̇ =
−ǫ

√
−ΛL

[

S − 2(y −D)
]

− E(S − y +D)

ǫ
√
−Λ(y −D)2

,

(3.4)

where a dot denotes differentiation with respect to λ. (Notice also the difference between
ε and ǫ.)

Since limy→∞Rµν
ρσ = Λ(δµρδ

ν
σ−δµσδνρ) is satisfied, the CCS spacetime is asymptotically

(at least) locally AdS near the coordinate infinity y → ∞. In fact, null geodesics (ε = 0)
with E2 > −ΛL2 or E = −ǫ

√
−ΛL and timelike geodesics (ε = −1) cannot reach y → ∞

because the right-hand side of the radial geodesic equation (3.4) becomes negative in the
limit y → ∞. Along other geodesics, we obtain

ẏ2 ≃







4(E2 + ΛL2)y (ε = 0, E2 > −ΛL2)
8κC2

0E
2 ln |y −D|/(−Λ) (ε = 0, E = ǫ

√
−ΛL 6= 0)

4(−Λ)y2 (ε = 1)
, (3.5)

near y → ∞. In the first and the third cases, Eq. (3.5) is integrated to give

y(λ) ≃
{

(E2 + ΛL2)(λ− λ0)
2 (ε = 0, E2 > −ΛL2)

e2
√
−Λ (λ−λ0) (ε = 1)

, (3.6)
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where λ0 is a constant. Hence, y → ∞ corresponds to an infinite affine parameter λ→ ∞.
It is also true in the second case in Eq. (3.5) for ε = 0 with E = ǫ

√
−ΛL 6= 0 because the

left-hand side blows up in the following inequality

lim
y→D

∫ y dy

y
< lim

y→D

∫ y dy√
ln y

. (3.7)

Therefore, the asymptotically locally AdS region y → ∞ corresponds to both spacelike and

null infinities.

Lastly, we can also show that the infinity y → ∞ is causally timelike by the conformal
compactification of spacetime. The line element of the CCS spacetime (M3, gµν) described
by the metric gµν given by Eq. (3.1) can be written as ds2 = Ω−2ds̄2 with a conformal factor
Ω = S−1/2 that satisfies limy→∞Ω = 0. Here ds̄2 is the line element of the conformally
compactified spacetime (M̄3, ḡµν) given by

ds̄2 = (ǫdθ +
√
−Λdt)

[

ǫdθ +
√
−Λ

(

1− 2
(

y(y∗)−D)

S(y(y∗)
)

)

dt

]

+dy2∗,

y∗ :=

∫ y dy

2
√
−Λ(y −D)

√
S
.

(3.8)

In the asymptotically locally AdS region y → ∞, (M̄3, ḡµν) which shares the same light-
cone structure with (M3, gµν) is asymptotically flat,

ds̄2|y→∞ = −(−Λ)dt2 + dθ2 + dy2∗. (3.9)

Such a boundary y → ∞ is causally timelike because it corresponds to a finite value of y∗,
as shown by

lim
y→∞

y∗ ≃ lim
y→∞

∫ y dy

2
√
−Λ y3/2

= C∞ − 1√
−Λ

lim
y→∞

y−1/2 = C∞, (3.10)

where C∞ is an integration constant.

3.2 Curvature singularity at r2(≡ y) = D

Here we investigate the properties of y = D. We first show that y = D is causally null by
the conformal compactification of spacetime. Since S is negative near y = D, we write the
line element of the CCS solution (3.1) as ds2 = Ω−2ds̄2, but now with a conformal factor
Ω = (−S)−1/2 that also satisfies limy→D Ω = 0. The line element ds̄2 of such conformally
compactified spacetime is

ds̄2 = −(ǫdθ +
√
−Λdt)

[

ǫdθ +
√
−Λ

(

1− 2
(

y(y∗)−D
)

S
(

y(y∗)
)

)

dt

]

+dy2∗,

y∗ :=

∫ y dy

2
√
−Λ(y −D)

√
−S

.

(3.11)
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Near y = D, it reduces to

ds̄2|y→D ≃ −(ǫdθ +
√
−Λdt)2 + dy2∗, (3.12)

which is two-dimensional. The boundary y = D is causally null because it corresponds to
|y∗| → ∞, shown by

lim
y→D

|y∗| ≃ lim
y→D

∣

∣

∣

∣

∫ y dy
√

2κC2
0(y −D)

√

− ln |y −D|

∣

∣

∣

∣

= lim
y→D

√

−2 ln |y −D|
κC2

0

→ ∞. (3.13)

In Ref. [5], Clément showed that only a particular class of spacelike geodesics can reach
y = D, and it corresponds to an infinite affine distance. Because the right-hand side
of Eq. (3.4) becomes negative as y → D unless E = −ǫ

√
−ΛL due to limy→D S → −∞,

geodesics with E 6= −ǫ
√
−ΛL cannot reach y = D. With E = −ǫ

√
−ΛL, the geodesic

equations (3.4) for ingoing γ reduce to

ṫ =
E

(−Λ)(y −D)
, θ̇ = − E

ǫ
√
−Λ(y −D)

, ẏ = −2
√

ε(−Λ)(y −D), (3.14)

which show that only spacelike geodesics (ε = 1) with E = −ǫ
√
−ΛL can arrive at y = D.

Along it, Rµνv
µvν = 2Λ is satisfied, and the radial geodesic equation is integrated to give

y(λ) = D + e−2
√
−Λ (λ−λ0), (3.15)

where λ0 is a constant. The above expression shows that y = D corresponds to an infinite
affine parameter λ→ ∞ along such a spacelike γ. For this reason, Clément concluded that
the CCS solution is perfectly regular [5]. However, we will show that y = D is not a regular
spacelike infinity but a parallelly propagated curvature singularity.

It is known that curvature singularities are classified into two main categories [20].
Although a scalar polynomial (s.p.) curvature singularity is usually examined, it may miss
a parallelly propagated (p.p.) curvature singularity. A s.p. curvature singularity is defined
by the blowing up of a scalar, formed as a polynomial in the curvature tensor, such as
the Ricci scalar R and the Kretschmann scalar RµνρσRµνρσ. On the other hand, a p.p.
curvature singularity is defined by the blowing up of a component of the Riemann tensor in
a parallelly propagated (pseudo-)orthonormal frame R(a)(b)(c)(d) := Rµνρσ E

µ
(a)E

ν
(b)E

ρ
(c)E

σ
(d)

with basis vectors Eµ
(a) along a curve. A s.p. curvature singularity is a p.p. curvature

singularity but the latter is not always the former. (See Sec. 3 in [21].) In fact, the
following curvature invariants of the CCS solution (3.1) are constant:

R = 6Λ, RµνRµν = RµνρσRµνρσ = 12Λ2,

R ν
µ R ρ

ν R µ
ρ = 24Λ3, (∇ρRµν)(∇ρRµν) = 0.

(3.16)

Nevertheless, as shown below, y = D in the CCS spacetime (3.1) is a p.p. curvature
singularity.
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We consider a spacelike geodesic given by (3.14) with E = 0 = L, of which the tangent
vector is

vµ∂µ = −2
√
−Λ(y −D) ∂y. (3.17)

We also introduce parallelly propagated basis vectors {Eµ
(0), E

µ
(1), E

µ
(2)} with Eµ

(2) = vµ along
the geodesic as

Eµ
(0)∂µ =

1

2
√
−Λ (y −D)3/2

[

−(S + y −D) ∂t + ǫ
√
−Λ (S − y +D) ∂θ

]

,

Eµ
(1)∂µ =

1

2
√
−Λ (y −D)3/2

[

−(S − y +D) ∂t + ǫ
√
−Λ [S − 3(y −D)] ∂θ

]

,

Eµ
(2)∂µ = −2

√
−Λ (y −D) ∂y,

(3.18)

which satisfy E(a)µE(b)µ = diag(−1, 1, 1) and Eν
(2)∇νE

µ
(a) = 0 for a = 0, 1, 2. Then, the fol-

lowing orthonormal components of the Riemann tensor diverge as y → D along η for C0 6= 0:

R(0)(2)(0)(2) = −Λ +
κC2

0

y −D
, R(1)(2)(1)(2) = Λ +

κC2
0

y −D
, R(0)(2)(1)(2) =

κC2
0

y −D
.

(3.19)

Therefore, y = D is not a spacelike infinity but a p.p. scalar curvature singularity corre-
sponding to an infinite affine parameter λ.

To summarize, we have shown the following properties of y = D:

1. It is causally null.

2. Among all geodesics, only spacelike geodesics with E = −ǫ
√
−ΛL can reach y = D,

corresponding to an infinite affine parameter.

3. Some components of R(a)(b)(c)(d) blow up as y → D along a spacelike geodesic with
E = 0 = L.

By the property 2, y = D is not a null infinity nor a timelike infinity. By the property 3,
y = D is a spacelike infinity, and also a p.p. curvature singularity. However, such a singu-
larity may be harmless because (i) it is not naked for any observer in the region of y > D,
and (ii) no free-falling causal observer arrives there.

In spite that no causal geodesic reaches y = D, causal curves could.3 However, any
causal curve t = t(y) with constant θ does not reach y = D with a finite value of t. For

3For example, in the five-dimensional vacuum spacetime obtained in Ref. [22], there exist timelike curves,
corresponding to accelerated timelike observers, that arrive at a wormhole throat in spite that no causal
geodesic arrives there.
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such curves, from (3.1) we obtain
(

dt

dy

)2

≥ 1

4(−Λ)2(y −D)2 [−S + 2(y −D)]
, (3.20)

with equality holding for null curves. For a null curve, we get

lim
y→D

t ≃ ± lim
y→D

√

−2 ln |y −D|
(−Λ)κC2

0

→ ±∞. (3.21)

Since the right-hand side of Eq. (3.20) blows up as y → D, any causal curve with constant θ
does not reach y = D with a finite value of t.

Similarly, it can be shown that any causal curve θ = θ(y) with constant t does not reach
y = D with a finite value of θ. Indeed for such curves, we obtain

(

dθ

dy

)2

≥ 1

4(−Λ)(y −D)2(−S) , (3.22)

with equality holding for null curves. For a null curve, we obtain

lim
y→D

θ ≃ ± lim
y→D

√

−2 ln |y −D|
κC2

0

→ ±∞. (3.23)

Since the right-hand side of Eq. (3.22) blows up as y → D, any causal curve with constant t
does not reach y = D with a finite value of θ. Generally, there is no null curve y = y(t, θ)
that arrives at y = D with finite values of t and θ because we obtain

lim
y→D

|ǫ θ +
√
−Λ t| ≃ lim

y→D

∫ y dy

2
√
−Λ (y −D)

√
−S

= lim
y→D

√

−2 ln |y −D|
κC2

0

→ ∞ (3.24)

along such curves, cf. (3.12), (3.13). We note that a curve satisfying ǫ θ +
√
−Λ t = 0 is

spacelike because ds2 = dy2/[4(−Λ)(y −D)2] > 0 is satisfied along it.

The above facts (do not prove but strongly) suggest that there is no causal curve reaching
y = D, and therefore the CCS spacetime cannot be extended along such curves. We thus
conclude that the CCS solution with the non-vanishing (anti-)self-dual Maxwell field does
not admit a (regular) horizon of a black hole (at y ≡ r2 = D), as opposed to the claim
in [8] that the solution describes an extremal black hole with mass, angular momentum,
and electric charge.

3.3 Causality violations

Here we study causality in the CCS spacetime under the assumption that θ is a periodic
coordinate. First, we consider the standard identification (t, y, θ) = (t, y, θ + 2π) in the
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coordinate system (3.1). Then, as gθθ < 0 holds near the curvature singularity y = D due
to limy→D S → −∞, the Killing vector Θµ = (∂/∂θ)µ becomes timelike and therefore there
are closed timelike curves near y = D.

In fact, under a different way of identification, the CCS spacetime admits closed null
geodesics everywhere. To show it, we introduce a null coordinate defined by

u :=
√
−Λ t+ ǫ θ (3.25)

and write the CCS solution (3.1) in the new coordinates (u, y, θ) as

ds2 = −
[

2(y −D)− S
]

du2 + 2ǫ (y −D) du dθ +
dy2

4(−Λ)(y −D)2
,

Aµ dx
µ =

ǫ C0

2
√
−Λ

ln |y −D| du.
(3.26)

Since gµν(∇µu)(∇νu) = guu = 0 holds, u = u0 is a null hypersurface. In fact, the con-
stant u0 labels privileged null hypersurfaces in the Kundt family, as shown in Eqs. (3.34)
and (3.47) below. Also, as gθθ = 0 holds, the Killing vector Φµ = (∂/∂θ)µ ( 6= Θµ) is null
everywhere.

As the new coordinate system (3.26) admits the Killing vectors ζµ = (∂/∂u)µ and
Φµ = (∂/∂θ)µ, Ē := −gµνζµvν , L̄ := gµνΦ

µvν , and ε = gµνv
µvν are conserved along a geo-

desic γ with its tangent vector vµ, where ε = −1, 0, 1 corresponds to timelike, null, and
spacelike γ. Hence, geodesic equations for γ are given by

u̇ =
ǫL̄

y −D
,

ẏ2 = 4ε(−Λ)(y −D)2 − 4(−Λ)L̄
[

2(L̄− ǫĒ)(y −D)− L̄S
]

,

θ̇ =
−ǫĒ(y −D) + L̄

[

2(y −D)− S
]

(y −D)2
.

(3.27)

For null geodesics (ε = 0) with L̄ = 0, the above geodesic equations are easily integrated
to give

u = u0, y = y0, θ = − ǫĒ

y0 −D
λ+ θ0, (3.28)

where u0, y0, and θ0 are constants. Hence, if we identify (u, y, θ) = (u, y, θ + 2π) in the
coordinate system (3.26), the CCS spacetime admits closed null geodesics everywhere, which
are described by Eq. (3.28) with Ē 6= 0.

Such causal pathology is circumvented by the re-interpretation of the CCS solution in
terms of the related (Kundt-type) coordinate r

K
, which is introduced below in (3.44) and

is non-cyclic. Actually, it is an affine parameter along the privileged quadruple degenerate
Cotton-aligned null direction kµ, as shown in Eq. (3.47) below.
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3.4 Cotton and Maxwell algebraic types

Next, we determine the Cotton type of the CCS spacetime (3.1), using the method recently
developed in [23, 24]. It uses five real Cotton scalars ΨA (A = 0, 1, · · · , 4) defined by

Ψ0 := Cµνρ k
µmνkρ,

Ψ1 := Cµνρ k
µlνkρ,

Ψ2 := Cµνρ k
µmν lρ,

Ψ3 := Cµνρ l
µkν lρ,

Ψ4 := Cµνρ l
µmν lρ,

(3.29)

where Cµνρ is the Cotton tensor [25], and a null triad {kµ, lµ, mµ} is properly normalized
such that

kµk
µ = 0 = lµl

µ, kµl
µ = −1, mµm

µ = 1, kµm
µ = 0 = lµm

µ. (3.30)

Following the convention of [26], we define the Cotton tensor as

Cµνρ := 2
(

∇[µRν]ρ − 1
4
∇[µRgν]ρ

)

, (3.31)

which automatically satisfies the constraints C(µν)ρ ≡ 0, C[µνρ] ≡ 0, and C µ
µν ≡ 0. The

Cotton scalars ΨA are three-dimensional counterparts of the Newman-Penrose complex
Weyl scalars of four-dimensional gravity [27]. Moreover, for the algebraic classification, it
is then convenient to employ the scalar polynomial invariants [23, 24]

I := Ψ0Ψ4 − 2Ψ1Ψ3 − 3Ψ2
2,

J := 2Ψ0Ψ2Ψ4 + 2Ψ1Ψ2Ψ3 + 2Ψ3
2 +Ψ0Ψ

2
3 −Ψ4Ψ

2
1,

G := Ψ1Ψ
2
4 − 3Ψ2Ψ3Ψ4 −Ψ3

3,

H := 2Ψ2Ψ4 +Ψ2
3,

N := 3H2 +Ψ2
4I.

(3.32)

As the metric (3.1) can be written as

ds2 =−
(√

−Λdt+ ǫ dθ
)[

2
√
−Λ (y −D) dt− S (

√
−Λdt + ǫ dθ)

]

+
dy2

4(−Λ) (y −D)2
,

(3.33)

a natural triad {kµ, lµ, mµ} in the coordinate system (3.1) satisfying (3.30) is given by the
one-forms

kµ dx
µ =− 1√

2

(√
−Λdt + ǫ dθ

)

,

lµ dx
µ =− 1√

2

(

2
√
−Λ(y −D) dt− S (

√
−Λdt+ ǫ dθ)

)

,

mµ dx
µ =

dy

2
√
−Λ (y −D)

,

(3.34)
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of which contravariant components are

kµ ∂µ =
1√

2 (y −D)

( 1√
−Λ

∂t − ǫ ∂θ

)

,

lµ ∂µ =
1√

2 (y −D)

( S√
−Λ

∂t − ǫ
[

S − 2(y −D)
]

∂θ

)

,

mµ ∂µ = 2
√
−Λ (y −D) ∂y.

(3.35)

The null vector kµ satisfies the geodesic conditions kν∇νk
µ = 0, while lµ does not. Also,

as kµ = −(∇µu)/
√
2 is satisfied, where u is defined by Eq. (3.25), kµ is a normal vector of

a null hypersurface given by u =constant.

The Cotton scalars (3.29) with respect to such a null triad are

Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0, Ψ4 = 16πG
√
−ΛC2

0 , (3.36)

which give the identically vanishing invariants,

I = J = G = H = N = 0. (3.37)

Therefore, according to the flow diagram in Figure 1 in [23], or equivalently in [24], the
CCS spacetime is of the Cotton type N everywhere (unless we consider the vacuum case
C0 = 0 which is conformally flat, that is of type O). This is in striking contrast to the large
class of charged rotating BTZ black holes which are of Cotton type I away from the horizon
and type III on the horizon. (See Corollary 1 in [6].)

As generally explained in detail in [24], by a suitable choice of the triad the Cotton
scalars for any type N spacetime can be put into the canonical form in which only the

scalar Ψ4 is nonzero. It is the case of Eq. (3.36), and this explicitly demonstrates that the
null vector kµ ∂µ given by (3.35) is the quadruple Cotton-aligned null direction (CAND) of
the type N CCS spacetime. Moreover, (3.35) is the principal null triad. (See [23, 24] for
more details on the definition and multiplicity of CAND.)

Analogous (Newman-Penrose) scalars for the Maxwell field are computed to give

φ0 :=Fµν k
µmν = 0,

φ1 :=Fµν k
µ lν = 0,

φ2 :=Fµν m
µ lν = ǫ

√
2C0.

(3.38)

It proves that the electromagnetic field is aligned with the gravitational field (because
φ0 = 0), and it is null, that is radiative (because φ0 = 0 = φ1 but φ2 6= 0). Expressed geo-
metrically, the double-degenerate null direction of the type N Maxwell field coincides with
the quadruple-degenerate Cotton aligned null direction of the CCS type N gravitational
field. In fact, it was observed in [8] that both the Cotton and Maxwell tensors possess the
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same triple zero eigenvalues, so that their algebraic types are N. (See page 188.) However,
these key properties of the algebraically most special (“null”, that is “radiative”) type have
not been taken into account for the physical (re)interpretations of the CCS solution.

The geometrically privileged null vector field kµ of the principal triad (3.35) satisfies the
geodesic conditions (kν∇νk

µ = 0). Then, its optical scalars are all zero, in particular the
expansion ρk := (∇µkν)m

µmν ,

ρk = 0. (3.39)

It means that the whole CCS family of solutions, including the Kamata-Koikawa solution,
belongs to the Kundt class of spacetimes [12].

3.5 The Kundt canonical form of the solution

We have thus shown that the CCS spacetime belongs to the Kundt class in three dimensions.
Now we write the metric of this solution in the canonical Kundt form.

Using a null coordinate u defined by (3.25) instead of t, and renaming the spatial coordi-
nate r as r 7→ x, we write the metric (2.21) and the gauge field (2.19) in the new coordinates
(u, x, θ) as

ds2 =
dx2

P 2
+ 2ǫ (x2 −D) du dθ +H du2,

Aµ dx
µ =

ǫ C0

2
√
−Λ

ln |x2 −D| du,
(3.40)

where

P (x) :=
√
−Λ

x2 −D

x
, (3.41)

H(x) := 2D − x2 +
κC2

0

2(−Λ)
ln |x2 −D|. (3.42)

The Faraday tensor is given by

F = Fµν dx
µ ∧ dxν =

ǫ C0√
−Λ

x

x2 −D
dx ∧ du. (3.43)

This is a three-dimensional analogue of the four-dimensional metric representing a family
of all type-N Kundt spacetimes which are the solutions in the Einstein-Maxwell-Λ system,
or in the system with a null dust fluid instead of the Maxwell field. In four dimensions, such
the most general type N Kundt solution was first presented in [28], and later investigated
in detail [29]. (See Chap. 18 of the textbook [30] for a review.)
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Finally, by introducing a new coordinate r
K
, instead of θ, defined by

r
K
:= −ǫ (x2 −D) θ, (3.44)

the CCS metric (3.40) is written in the canonical Kundt form in the coordinates (u, x, r
K
)

as

ds2 =
dx2

P 2
+

4 x r
K

x2 −D
du dx− 2 du dr

K
+H du2, (3.45)

while Aµ and F are unchanged. It actually belongs to a special family of degenerate Kundt

metrics. (See, e.g., Sec. 7.1 of the topical review [31] for the definition and more details.)

The metric (3.45) can be directly compared with the complete family of three-dimensional
Kundt solutions with a Maxwell field (necessarily aligned) and Λ, found recently in [12].
Comparing the metric functions in Eq. (3.45) with the general expressions gux = e + f r

K

and guu = a + b r
K
+ c r2

K
given in Eq. (90) in [12], we identify

e = 0, f =
2x

x2 −D
6= 0, a = H,

b = 0, c = −1
2
κ0Q

2 = 0 ⇒ Q = 0.
(3.46)

The corresponding Maxwell field, given by Eq. (95) in [12], is thus F = ξ(x) dx ∧ du, that
is easily identified with Eq. (3.40). It is an aligned null Maxwell field that belongs to
the subcase (i) with φ0 = 0 = φ1. (See Eq. (99) in [12].) Moreover, by performing the
transformations (3.25) and (3.44), the principal null triad (3.35) becomes

kµ ∂µ =
1√
2
∂r

K
, lµ ∂µ =

1√
2
H ∂r

K
+
√
2∂u, mµ ∂µ = P (∂x + gux ∂r

K
). (3.47)

After an additional simple boost B kµ → kµ and B−1 lµ → lµ with B =
√
2, the triad (3.47)

fully agrees with Eq. (6) in [12].

It can also be observed that by introducing a modified spatial coordinate

z :=
1

2
√
−Λ

ln |x2 −D|, (3.48)

the metric (3.45) of the CCS solution is put into the form

ds2 = dz2 + 4
√
−Λ r

K
du dx− 2 du dr

K
+

(

D − e2
√
−Λ z +

κC2
0√

−Λ
z

)

du2, (3.49)

in which the p.p. curvature singularity (originally at r2 = D) is located at z → −∞. In
this coordinate system (u, z, r

K
), the Maxwell field (3.43) is uniform, namely

F = ǫ C0 dz ∧ du =
φ2√
2
dz ∧ du. (3.50)
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It should finally be noted that the physical interpretation of the family of closely related
four-dimensional Kundt spacetime of algebraic type N with any Λ was investigated in
[32, 33]. It elucidated the character of wave surfaces in these spacetimes, and also the
related p.p. singularity. It is the caustics formed as an envelope of the wave surfaces (see
Chap. 18 of the textbook [30] for a review.)

3.6 Compatible matter fields

Lastly, we show that the CCS solution (3.1) can be a solution not only with the original
Maxwell field but also with a null dust fluid or a massless scalar field. For this purpose, we
study the Hawking-Ellis type of Tµν for the solution. With the orthonormal basis one-forms
given by

E(0)
µ =

1√
2
(lµ + kµ), E(1)

µ =
1√
2
(lµ − kµ), E(2)

µ = mµ (3.51)

constructed from a triad {kµ, lµ, mµ} in Eq. (3.34), non-zero components of T (a)(b) :=

T µνE
(a)
µ E

(b)
ν are computed to give

T (0)(0) = T (1)(1) = T (0)(1)
(

= T (1)(0)
)

= C2
0 , (3.52)

which shows
(

T (0)(0) + T (1)(1)
)2 − 4( T (0)(1))2 = 0. (3.53)

Then, by Lemma 1 in [34], Tµν for the Maxwell field in the CCS solution is of the Hawking-
Ellis type II everywhere.

Additionally, the expression (3.52) of T (a)(b) shows that the CCS metric also solves the
Einstein-Λ equations with a null dust fluid, of which energy-momentum tensor is given by

Tµν = Ω kµkν . (3.54)

Here kµ is the null vector in Eq. (3.34) and the energy density of the null dust Ω is constant
given by

Ω = 2C2
0 . (3.55)

In three dimensions, the field equations (2.2) are equivalent to the ones with a massless
scalar field φ instead of the Maxwell field, using the duality. The dual Maxwell one-form
is defined by

∗Fµ :=
1

2
εµνρ F

νρ
(

⇔ ∗Fµ ε
µαβ = −F αβ

)

, (3.56)
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where the totally anti-symmetric volume three-form εµνρ is defined by

εµνρ :=
√
−g ǫµνρ

(

⇔ εµνρ = −ǫµνρ/
√
−g

)

, (3.57)

with the Levi-Civita symbol ǫµνρ satisfying ǫ012 = 1 and ǫ012 = 1. Identifying

∇µφ ≡ ∗Fµ, (3.58)

and using εµαβεµνρ = −(δανδ
β
ρ − δαρδ

β
ν), we obtain the equation of motion and the energy-

momentum tensors of φ as

∇2φ = 0, (3.59)

Tµν = FµρF
ρ

ν − 1

4
gµνFρσF

ρσ

= (∇µφ)(∇νφ)−
1

2
gµν(∇φ)2, (3.60)

where ∇2φ := ∇µ∇µφ and (∇φ)2 := (∇αφ)(∇αφ).

For the CCS solution, the dual massless scalar field is given in the coordinate system
(2.4) as

φ = C0

(
√
−Λ t+ ǫ θ

)

+ φ0 = C0 u+ φ0, (3.61)

where φ0 is a constant, and u is the null coordinate defined by Eq. (3.25). Different from
the case with a Maxwell field or a null dust fluid, the coordinate θ now cannot be periodic,
as a periodic boundary condition φ(t, θ) = φ(t, θ + 2π) is not satisfied unless C0 = 0.

4 Concluding remarks

In our paper, we have studied in detail the CCS solution (3.1) with the metric function (3.2)
in the coordinates (t, y, θ). It is the most general stationary and axisymmetric solution in
the three-dimensional Einstein-Maxwell-Λ system under the so-called self-dual or anti-self-
dual condition on the Maxwell field [10]. The solution is locally characterized by a single
parameter C0, and it reduces to the extremal rotating BTZ vacuum solution for C0 = 0.
Nevertheless, we have kept an auxiliary parameter D which allows the limit to the Kamata-
Koikawa solution.

Our results for the charged case C0 6= 0 are summarized as follows.

1. For any value of D, the domain of the radial coordinate is y ∈ (D,∞). The spacetime
is asymptotically locally AdS near the spacelike and null infinities given by y → ∞.
At y = D, there is a p.p. curvature singularity which corresponds to an infinite affine
parameter along specific spacelike geodesics.
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2. If θ is a periodic coordinate such that (t, y, θ) = (t, y, θ+2π), there are closed timelike
curves near the singularity y = D.

3. The spacetime is of the Cotton type N everywhere. We have identified a uniquely
chosen principal null triad and the quadruple Cotton-aligned null direction (CAND).

4. The Maxwell field is null, namely radiative. The double-degenerate null direction
of the type N Maxwell field coincides with the quadruple-degenerate CAND of the
type N gravitational field.

5. We have written the CCS solution in the canonical Kundt form and identified the
privileged null coordinate u given by Eq. (3.25) such that u = u0 =constant labels
privileged null hypersurface in the Kundt family.

6. The energy-momentum tensor of the solution is of the Hawking-Ellis type II every-
where. The CCS metric also solves the three-dimensional Einstein-Λ equations with
a null dust fluid given by Eqs. (3.54) and (3.55) or a massless scalar field given by
Eq. (3.61).

To summarize, the CCS solution is algebraically, geometrically, and physically different

from the charged rotating BTZ solution [5] and does not describe a black hole, unless the
Maxwell field is trivial.

In the three-dimensional Einstein-Maxwell-Λ system, many stationary and axisymmetric
symmetric solutions have been classified and described by Garćıa-Dı́az [35,36]. However, to
the best of the authors’ knowledge, it is still an open problem whether there is a different
class of charged rotating asymptotically AdS black-hole solutions other than the charged
rotating BTZ solution. This problem is left for future investigation.
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A Clément’s solution in the 1993 paper

In this appendix, we show that Clément’s solution given by Eq. (29) in Ref. [11] with the
Minkowski signature (+,−,−) is locally identical to the Cataldo-Salgado solution.4 The
original solution can be written in the coordinates (t, ρ, θ) with the Minkowski signature
(−,+,+) as

ds2 = ±4

ℓ
ρ dt dθ +

(

− b ρ+ 2κq2 ln |ρ/ρ0|
)

dθ2 +
ℓ2

4ρ2
dρ2,

Aµdx
µ = q ln |ρ/ρ0|dθ,

(A.1)

where ρ0, b, and q are constants, and ℓ is the AdS radius defined by ℓ = 1/
√
−Λ.

The Cataldo-Salgado solution in the single-null coordinates (3.26) is

ds2 = −
(

y − 2D − κC2
0

2(−Λ)
ln |y −D|

)

du2 + 2ǫ (y −D) du dθ +
dy2

4(−Λ)(y −D)2
,

Aµ dx
µ =

ǫ C0

2
√
−Λ

ln |y −D| du.
(A.2)

By coordinate transformations

y −D = α ρ, u = β θ̄, θ = (αβ)−1 2

ℓ
t, (A.3)

with constant α and β satisfying

κC2
0

2(−Λ)
ln |α| = −D − κC2

0

2(−Λ)
ln |ρ0|, β2 =

b

α
, (A.4)

and using the freedom of a gauge constant of Aµ, the solution (A.2) is transformed into
Clément’s solution (A.1) with q = ǫβ C0/(2

√
−Λ).

B Parameters of the Cataldo-Salgado solution

Cataldo and Salgado presented their solution as

ds2 = − r2

R2
f dt2 +

dr2

f
+R2

(

dθ +
h

R2
dt
)2

,

Aµdx
µ =

C0

2
√
−Λ

ln

∣

∣

∣

∣

r2 −D

C

∣

∣

∣

∣

[(

ǫ
√
−Λ +

E

C

)

dt+ dθ
]

,

(B.1)

4Note that (23) in Ref. [11] is the charged rotating BTZ solution after the double Wick rotation.
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with the metric functions

f(r) = (−Λ)
(r2 −D)2

r2
, (B.2)

R(r) =

√

r2 +
κC2

0

2(−Λ)
ln

∣

∣

∣

∣

r2 −D

C

∣

∣

∣

∣

, (B.3)

h(r) =
E

C
r2 + ǫD

√
−Λ +

κC2
0

2
√
−Λ

(

ǫ+
E√
−ΛC

)

ln

∣

∣

∣

∣

r2 −D

C

∣

∣

∣

∣

, (B.4)

see Eqs. (37)–(39) in [10], in which C ( 6= 0), D, C0 and E are four arbitrary constants of
integration, and ǫ = ±1.

However, without loss of generality we can locally set C = 1 and E = 0 by the following
coordinate transformations

t =
t̄√
C
, r =

√
C r̄, θ =

θ̄ − Ē t̄√
C

, (B.5)

with the reparametrizations E = CĒ, D = CD̄, and C0 =
√
CC̄0. Nevertheless, the con-

stants C and E may possibly have global meanings. For example, if one assumes that θ is
periodic as θ ∈ [0, 2π) in the coordinates (B.1) with C 6= 1 and E 6= 0, then θ̄ = 0 is not
identified with θ̄ = 2π at different times.

With C = 1 and E = 0, using the useful identities (2.20) in the region of r2 > D, the
Cataldo-Salgado solution can be rewritten in the simple form (2.21),

ds2 = (−Λ)
[

R2 − 2(r2 −D)
]

dt2 + 2ǫ
√
−Λ

[

R2 − (r2 −D)
]

dt dθ +R2dθ2 +
dr2

f
,

Aµ dx
µ =

1

2
C0 ln |r2 −D|

(

ǫ dt +
dθ√
−Λ

)

,

(B.6)

where R2 is given by Eq. (2.18). Changing the sign of ǫ is equivalent to a transformation
of time reversal t→ −t. Then, without loss of generality we can also locally set D = 0 in
the charged case C0 6= 0 by the following coordinate transformations

r2 −D = e−2(−Λ)D/(κC2

0
) r̄2, t = e(−Λ)D/(κC2

0
) t̄, θ = e(−Λ)D/(κC2

0
) θ̄, (B.7)

with a reparametrization C0 = e−(−Λ)D/(κC2

0
)C̄0, which generate a gauge constant for Aµ.

However, setting D = 0 forces us to miss the limit from the Cataldo-Salgado solution (B.6)
to the Kamata-Koikawa solution [9] for κC2

0 = −2ΛD.
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[2] M. Bañados, C. Teitelboim and J. Zanelli, “The black hole in three-dimensional
space-time”, Phys. Rev. Lett. 69 (1992), 1849–1851 doi:10.1103/PhysRevLett.69.1849
[arXiv:hep-th/9204099 [hep-th]].
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