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Kerr black hole in a uniform magnetic field: An exact solution
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A new class of exact spacetimes in Einstein’s gravity, which are Kerr black holes immersed in an
external magnetic (or electric) field that is asymptotically uniform and oriented along the rotational
axis, is presented. These are axisymmetric stationary solutions to the Einstein-Maxwell equations
such that (unlike in the Plebanski-Demianiski spacetime) the null directions of the Faraday tensor
are not aligned with neither of the two principal null directions of the Weyl tensor of algebraic
type D (unlike the Kerr-Melvin spacetime). Three physical parameters are the black hole mass m,
its rotation a, and the external field value B. For vanishing B the metric directly reduces to
standard Boyer-Lindquist form of the Kerr black hole, while for zero m we recover conformally flat
Bertotti-Robinson universe with a uniform Maxwell field. For zero a the spacetime is contained in
the Van den Bergh-Carminati solutions which can be understood as the Schwarzschild black hole in
a magnetic field. Our family of black holes with non-aligned Maxwell hair — that can be called the
Kerr-Bertotti-Robinson (Kerr-BR) black holes — may find application in various studies ranging
from mathematical relativity to relativistic astrophysics.

PACS numbers: 04.20.Jb, 04.40.Nr, 04.70.Bw, 04.70.Dy

I. INTRODUCTION

suitable for physical studies of these type D black holes

Black holes, regions with extremely strong gravity, are
remarkable theoretical predictions of Einstein’s general
relativity and fascinating objects in our Universe. Direct
observational evidences of their existence were recently
provided by detections of gravitational waves from binary
black hole coalescences [1], and by the first images of
a shadow of supermassive black holes in M87* [2] and
Sgr A*, the center our Galaxy.

The most important eract models of black holes are
the Schwarzschild (1916) and the Kerr (1963) solutions.
They are unique spherically/axially symmetric station-
ary vacuum spacetimes that are asymptotically flat [3, 4].
These textbook metrics have been widely employed for
investigation of their surprising mathematical structure
and, above all, of (astro)physical effects in the vicinity
of the static/rotating black holes, such as influence on
matter and fields, thermodynamics, or quantum effects.

Their charged versions exist. The Reissner-Nordstrom
(1916, 1918) and Kerr-Newman (1965) black holes are so-
lutions to the Einstein-Maxwell equations such that the
algebraic structures of the gravitational and electromag-
netic fields are aligned. Other generalizations include a
cosmological constant, NUT parameter, or acceleration
[3, 4]. Interestingly, all these exact spacetimes belong to
a big class such that the Weyl tensor is of algebraic type D
and the two null directions of (non-null) Faraday tensor
are both aligned with (double-degenerate) principal null
directions (PNDs) of the Weyl tensor [5-7]. Plebaniski
and Demianiski in their seminal work [6] obtained a com-
pact representation of this class, the metric forms more
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were found in [8-10] and [11, 12]. A new description of
the whole family was obtaind recently [13-15].

Let us remark that these spacetimes in general possess
conical singularities (strings or struts) related to accel-
eration and NUT twist. For asymptotically flat Kerr-
Newman black holes the axis of symmetry is regular.

Another generalization of the Kerr-Newman family
was found by adding an external electromagnetic field.
This was motivated astrophysically because black holes
in the Universe are usually immersed in a magnetic field,
providing a basis for the explanation of the high energy
activity of galactic nuclei and quasars. Such exact solu-
tions were first found by Ernst and Wild [16, 17] employ-
ing the Harrison transformation. These were nicknamed
Schwarzschild-Melvin, Kerr-Melvin, and Kerr-Newman-
Melvin spacetimes because they can be understood as
the corresponding black holes immersed in an external
magnetic field of the Bonnor-Melvin universe [18, 19],
see [4] for more details. Further interesting extensions
were found, most recently in [20].

These black holes have been widely used for the analy-
sis of various physical phenomena, see [21, 22] for reviews
of the main results. In particular, interaction between
the external field and the black hole was investigated,
leading to the discovery of the so-called Meissner effect,
namely that black holes expel magnetic field away from
their horizon if they become extremal, see e.g. [23-26].

The Melvin-like black hole spacetimes, however, have
also some drawbacks preventing them to be considered as
fully realistic global models. The magnetic field decreases
far away from the black hole, but geodesics cannot escape
to infinity. They can even be chaotic [27]. Ergoregions
extend to infinity [28]. Moreover, the spacetimes are of
algebraic type I, see [29], suggesting that such “standing”
black holes can be seen as radiative.
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Our paper aims to overcome these problems. In fact,
we will show that the new class of spacetimes is of al-
gebraic type D, has bounded ergoregions, and the field
is asymptotically finite and uniform. The test particles
can, in principle, escape to infinity. Such properties allow
us to consider this class as a more appropriate model of a
black hole immersed in an external electromagnetic field.

In Sec. II the new class of solutions is presented, and
in Sec. III we perform its fundamental physical analysis.

II. THE KERR-BR METRIC AND THE
ELECTROMAGNETIC FIELD

Our novel metric has a compact explicit form
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so that the spacetime is of algebraic type D.

The nonaligned parts of electromagnetic field [3, 4] are
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Interestingly, they vanish on the horizon (where @ = 0)
and also along the axis of symmetry (at § =0, 7). The
aligned part is more involved, namely
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D = cosO[I?(2 — cos® 0) + B*m?I5cos? 0], and « is the
duality rotation parameter. For m = 0, purely magnetic
field is given by v = 0, while purely electric field is given
by v = 3. Clearly, the Mazwell field vanishes if and
only if B =0. The corresponding invariant
15 Fr F* P = $g 0y — ©F (2.14)
is non-zero, so that the electromagnetic field is non-null.
To summarize, the metric (2.1) satisfies the Einstein-
Maxwell equations with A% = 2Re A given by (2.8). It
is of Weyl type D (unlike the Kerr-Melvin type I solution)
with a non-aligned (and non-null) electromagnetic field
without sources (unlike the Kerr-Newman solution which
has an aligned Maxwell field generated by charges of the
black hole). It is thus a new interesting class of exact
spacetimes with three parameters, namely m, a, and B.
We will now show that these can be physically interpreted
as the mass of the black hole, its rotation, and value of
the external uniform magnetic field, respectively. Such an
interpretation follows from the fact that the metric (2.1)
reduces to usual forms of the rotating Kerr black hole
and to the Bertotti-Robinson universe with a uniform
Maxwell field when B = 0 and m = 0, respectively.

A. The case B =0 is Kerr

For vanishing Maxwell field, that is for B =0, the
metric functions (2.2)-(2.6) simplify to Q2> =1, P =1,
p? =12 +a%cos?0, Q = A =1r?—2mr + a?, so that the
metric (2.1) becomes
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This is exactly the famous form of the Kerr black hole
in Boyer-Lindquist (spheroidal) coordinates. It depends
on two physical parameters, namely the mass m and the
rotation parameter a related to the angular momentum.

B. The case m = 0 is Bertotti-Robinson

For m = 0 the spacetime is conformally flat (¥s = 0)
with a non-null (and source-free) electromagnetic field.
According to the famous uniqueness theorem (see Sec. 7.1
in [4]) it must be the Bertotti-Robinson spacetime. (If
B =0 it is just Minkowski.)

This fact can be shown explicitly. The metric functions
reduce to P = 1 — B%a?cos? 0, Q = (1 + B?r?)(r? + a?),
02 = P+ B*?sin?0, p? =r? 4+ a?cos? 6, and a coordi-
nate transformation r,6,¢,po — R,0, T, ¢
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usual form of the Bertotti-Robinson spacetime
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see Eq. (7.4) in [4]. Recall that it is a unique confor-
mally flat homogeneous universe without singularities,
filled with a uniform electromagnetic field. It has the
direct-product geometry of 2-dim anti-de Sitter space-
time and a 2-sphere of constant radius e. Actually, (2.14)
for m = 0 gives the constant Bertotti-Robinson value

(2.17)
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because (2.12) reduces to much simpler expression
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Such electromagnetic field can be put into a canonical
non-null form. The Bertotti-Robinson spacetime is con-
formally flat, so that there is no PND of the Weyl tensor
and we are allowed to perform a suitable null rotations
with fixed k, and then fixed 1. We obtain ®{ = JABe!7,
®J =0 = P, in full agreement with (2.18).

C. The case a =0 is Schwarzschild-BR

The metric (2.1) simplifies to
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For B = 0 we recover spherical form of the Schwarzschild
solution. The Weyl scalar (2.10) reduces to
m 2 2 2
\Ilgz—r—3(1+B mr cos”0) Q% (2.20)
so that the curvature singularity is located at r = 0, as
for the Schwarzschild black hole. Far away from the black
hole (for large r) the curvature is finite, depending on 6.
In the equatorial plane 6§ = 7 the spacetime is asymptot-
ically flat because Wy = —m (1 + B%r?)/r® — 0.
The Maxwell field is obtained from (2.11)—(2.13) as
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where the coefficients are Dy =1 — B?m?(1 — 2 cos? 6)
and Dy = B?m [2 + (B*m? — 1) cos? 0 ].

It can be shown [30] that this type D solution with
non-aligned Maxwell field is a subcase of the h = 0 case
of [31], namely Eq. (85) and Egs. (101)—(103) therein,
expressed here in more convenient coordinates. Note that
this solution is different from the solution presented in
[32] because it is of type I [33].

III. PHYSICAL ANALYSIS

The novel family of black holes with non-aligned
“Maxwell hair” can thus be justifiably called the Kerr-
Bertotti-Robinson (Kerr-BR, in short) black holes. Let
us now give its basic physical interpretation.

A. Curvature singularities

It follows from (2.10) that the curvature singularity
occurs at r =0, but only if also § = 5. It thus has a
ring structure, similarly as in the Kerr spacetime. When
6 # % it is possible to reach the region r < 0. At this cur-
vature singularity also the electromagnetic field diverges.

B. Horizons

The function (2.4) enables us to easily determine the
position of the horizons. They are located at Q = 0 where
the coordinate r changes its spatial/temporal character.
The corresponding quadratic equation A =0 given by
(2.6) has up to two roots

- m Iy + /m2ly — a?I? 7
* 12— B*m?I, b

(3.1)

which localize the outer and inner black hole horizons.
For B = 0 implying I; = 1 = I5 we recover the formula
r+ = m £ vm? — a2 valid for the Kerr black hole.



In the case a = 0 without rotation (so that Iy =1 = I)
we get a single horizon at
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Notice that this is located at greater wvalues than the
Schwarzschild horizon rschw = 2m < rp,.

In the extreme situation, which appears for the large
value of the rotation a when a?I? = m?I5, the magnetic
field Beytr takes the extremal value
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For a = m we get Bexty = 0 and rexty, = m which is the
extreme Kerr subcase.

(3.3)

C. Ergoregions

For the black hole metric (2.1) the condition g =0
defines the boundary of the ergoregions, that are the sur-
face of infinite redshift where also observers at fixed r, 0
cannot “stand still”. Such a boundary is located at

Q(re) = a*sin® 0 P(9), (3.5)

where the functions P, @ are given by (2.3), (2.4). For
a = 0 it coincides with a horizon given by @ = 0. For
a # 0 the ergoregion boundary “touchess” the horizon at
the poles 8 =0 and # = 7. An explicit form of r. as a
function of 6 can be found numerically and plotted, as in
Fig. 1 where it is indicated by dashed lines.

D. Regularity of the axes

The spatial axes of symmetry are identified by zeros
of the Killing vector field 0, norm. These are located at
0 = 0 and § = 7, and can be made simultaneously regular
by a proper choice of the unique conicity parameter C
determining the range of the angular coordinate

v €10,27C). (3.6)
A circle around 6 = 0 and § = 7 given by 6 = const., as-
suming fixed ¢ and r, has an invariant length of its cir-

cumference fo%c, /Gop dip, and a radius [/geg dd. Thus
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= 27C P(m). (3.7)

The axis is regular if the fraction is equal to 2w. More-
over, for P of the form (2.3) we get P(0) = P(x), so that
there exists a unique choice of the conicity parameter

C= {lJrBz(mzé —az)}_l,

7 (3.8)

simultaneously regularizing both the axes. For the
Kerr black hole (B=0) we get C =1, for the non-
rotating Schwarzschild-BR black hole (@ = 0) we must
choose C' = 1/(1 + B*m?).

E. The electromagnetic field

All components of the Maxwell field are given by
the scalars (2.11), (2.12). To clarify the character of
such electromagnetic field in more detail, we determine
the corresponding 3-vectors of the electric and magnetic
fields E¢ and B?, and visualize them in pictures.

The vectors E? and B arise from the 1+3 splitting of
a spacetime adapted to an observer with 4-velocity u and
the transverse 3-dim local Cartesian frame e(®) = (i),

E' =™ uue(i)

v )

i — 1 _pvpo (1)
B* = je Foouye

v 9

(3.9)

where F),, are components of the 2-form F = dAreal
given by (2.8). For the metric (2.1) we chose the ZAMO
observer 4-velocity,

uzN_l(ﬁt +w8¢), with
a

IRy
RQO2 R

R=P(r* +a®)? - Qa’sin’f, and the frame adapted
to r,0,p as ey = (k — l)/\/i7 e = (m — rh)/(\/ii),
e(,) = (m+m)/v2 where k,1,m are given by (2.9).
Due to the axial symmetry B(¥) =0, and B, B(¥) can
be plotted in 2-dim pictures in which (r, ) are treated as
the polar coordinates in the auxiliary (z,y)-plane, that
is  =rcosf, y=rsingd, B® = B gsind + B cosb,
BW = B(" cos® — B sin 6.

In Fig. 1 we plot the magnetic field for several values of
the physical parameters m and a (representing the mass
and the rotation of the black hole) assuming the value
B =0.2 and v =0. (The pictures for v = 7 depicting
the dual electric field are the same.) In these pictures
the magnitude of the magnetic field is represented by the
color, such that black corresponds to zero value, while
the lighter colors (yellow to white) indicate bigger val-
ues. The specific direction of the magnetic field in various
points of the space is represented by the arrow (which has
everywhere the same size). Effectively, these arrows form
the “lines of forces” visualizing the magnetic field. Hori-
zons of the black holes are depicted by black circles, the
ergoregions boundaries are indicated by dashed curves.

The top left panel shows the magnetic field in the
spacetime with m =0, a=0. This is the uniform
magnetic field of the Bertotti-Robinson (BR) universe.
The middle left panel exhibits the situation in the
Schwarzschild-BR spacetime for m = 0.2 (and a = 0). It
can be observed (both by the “darker color” near the
equatorial plane ¢ = 5, and also by the “deflection” of
the force lines) that the magnetic field is “expelled” from
the black hole, away from its horizon. Such an effect —

N2 P(r*+d*) —-Q), (3.10)
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FIG. 1. Visualization of the magnetic field by the color plots
(encoding the magnitude of the field) and the force lines (the
arrows indicating the directions of the field) for B = 0.2. The
top left panel (m = 0, a = 0) shows the uniform magnetic field
of the Bertotti-Robinson (BR) background universe. Left col-
umn corresponds to the Schwarzschild-BR. black holes with-
out rotation (a = 0), while the right column depicts the gen-
eral situation for Kerr-BR black holes (a # 0) with the rota-
tion parameters a = 0.35,0.39,0.399998 (labeled as a = 0.4)
and m = 0.4. The horizons are indicated by the black circles,
the ergoregions are bounded by the dashed curves. In all the
cases the external magnetic field is weakened in the equato-
rial plane § = 7, and the force lines are “expelled away” —
exhibiting the Meissner effect. The blue discs and annuli indi-
cate non-stationary region ) < 0 inside the black hole where
the ZAMO observer (3.10) is not timelike and thus the field
(3.9) is not well defined.

called the Meissner effect — has already been reported
in other axisymmetric spacetimes with black holes. In
our case the expulsion is not complete because the black
hole is not charged and extremal (as for the Kerr-Melvin
spacetime [25]). The bottom left panel shows the same
situation, but amplified by the larger Schwarzschild-BR
black hole with bigger mass m = 0.4 (and a = 0).

The three panels on the right show the character of
the magnetic field in the case when the black hole is ro-
tating, that is in the Kerr-BR spacetime for the same
mass m = 0.4. The value of the rotation parameter in-
creases from a = 0.35 to a = 0.39, and to the extreme
case a = 0.4 (actually a = 0.399998). In all these cases
the magnetic field is expelled away, forming more com-
plicated patterns. The Meissner behavior, resulting from
the non-linear interaction between the external (asymp-
totically) uniform Bertotti-Robinson magnetic field and
the uncharged rotating Kerr black hole is quite involved.

F. Geodesic motion and ISCO

Geodesics can be studied using integrals of motion re-
lated to symmetries of the spacetime (2.1). The Killing
vectors 0y and 0, imply the conservation of energy and
angular momentum of a uncharged test particle as

pr=—F, P =1L, (3.11)
respectively. A complete analysis of the geodesics ex-
ceeds the scope of this letter. To illustrate the effect of
the external magnetic field, let us restrict here to the
equatorial motion (6 = %) of a particle of a rest mass mq
in the non-rotating Schwarzschild-BR metric (2.19).

Using the normalization g, u*u” = —1 we get

2= [EQ Jm2 — V(r)]. (3.12)
Stable circular orbits (7 = 0) are possible only at the min-
imum of the effective potential (see Fig. 2)

2m L? /1
V(r) = (1- B*m® - 7) 1+ Hg(ﬁ +52)]. (3.13)

From the conditions V' =0 and V" = 0 we derive that
the innermost stable circular orbit (ISCO) is located at
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12 _ 12m2m(2)
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for
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(3.14)

Surprisingly, in view of (3.2) we get a simple result

T8O = 37 - (3.15)

This is formally the same expression for the ISCO as
in the Schwarzschild metric. Notice however, that the
position of the horizon is not simply given by r;, = 2m,
but is modified by the presence of the magnetic field to
rn, = 2m/(1 — B?*m?) > 2m. The ISCO is thus located
at larger values than in the Schwarzschild black hole.



FIG. 2. Effective potential V' (r) as a function of the radial
coordinate r for different values of the magnetic field B (for
m =1, L =4mg # Lisco). The points on the dashed curve
show the positions of the corresponding stable circular orbits.

G. Thermodynamics

Finally, we evaluate the basic thermodynamic quanti-
ties of this class of black holes, namely entropy S and
temperature T of their horizons. Using the famous rela-
tions, see e.g. [34], these are respectively given by the
horizon area A and the surface gravity « as

S=1A, T=3x. (3.16)

The horizon area is obtained by integrating the an-
gular coordinates of the metric (2.1) for fixed values of
t and r =7, namely A(r,) = fO%CfOTr V900 G A0 dop,
where C' is the conicity parameter (3.8). Using Q(rp,) =0
we get A =21C (r + a?) [ Q7 2(ry) sinfdf. Surpris-
ingly, (2.5) evaluated on the horizon is a constant
Q2(ry) = 1+ B?r?. By substitution « = cosf we obtain

2 2
r, +a

=40 TR TL
Apn Wol—i—BQr%

(3.17)

For mnon-rotating black holes (a=0) it reduces to
Ap =4nCri/(1+ B%r?) = 16mm? /(1 + B*m?)3.

The surface gravity k of the horizon is defined as
the “acceleration” of the null normal &% generating the
horizon at r;, via the relation &4 §b =k&, (so that
k%= =1 €%P) [34]. In our case, this can be calcu-
lated using the usual formula ry = 3Q'(r)/(r} + a?).
For (2.4), applying Q(rp) = 0, we get

1+ B} (
Il Th

12 a2)
Rp = .
i +a?

(3.18)

In the Schwarzschild-BR black hole case (a = 0), the sur-
face gravity of the black hole horizon of the metric (2.19)
reduces to xk, = m (r;, 2 + B2) = (1 + B?>m?)?/4m. Also,
kp =0 for the extreme black hole with a double-
degenerate horizon at rextr = m/I; which occurs when
a?I? = m2I,. Such black holes have zero temperature T.

By combining (3.18), (3.17) we obtain a nice relation

(3.19)

It reduces to 27S = C'm when a = 0. This resembles
the Smarr formula [35], namely M = 2T, if we make
the identification M = Cm. Moreover, it satisfies the
first law of thermodynamics dM = T 4S5 if one assumes in
its derivation that the conicity parameter is not changed
(6C = 0). Similar assumption was used for the C-metric
in [36]. However, alternative approaches exist, allowing
the variations of m, B, and C such that the relation (3.8)
still holds. This may add terms related to the magnetic
moment of a black hole (namely 4+u B in the Smarr for-
mula, and —p dB in the first law), but such an analysis
goes beyond the scope of the present work.

IV. CONCLUSIONS

We presented the new family of spacetimes (2.1),
demonstrating that they describe rotating black holes
in asymptotically uniform magnetic (or electric) external
field. These are type D exact solutions to the Einstein-
Maxwell equations with a non-aligned electromagnetic
field thus distinct from the Plebanski-Demianski class).
The physical parameters are the black hole mass m, its
rotation a, and the value of the field B. When they are
set to zero, standard forms of the Kerr, Schwarzschild,
and Bertotti-Robinson spacetimes are obtained.

The metric functions (2.2)-(2.6) are quadratic in r
and cos 6. Key physical characteristics of the new black
holes can thus be easily evaluated, namely the location
of singularities, horizons, ergoregions, regularity of the
axis, geodesics, and thermodynamics. They generalize
the Kerr black hole ones, with an interesting influence of
the magnetic field. In particular, the Schwarzschild-BR
(a = 0) black hole horizon 75, (3.2), and the innermost
stable circular orbit (3.15) risco = 3ry, are larger than
in the Schwarzschild case. With the magnetic field B, the
black hole entropy S is smaller, while its temperature T’
is bigger. Interestingly, the Smarr formula (3.19) holds,
and the first law of thermodynamics is also satisfied.

In Fig. 1 we visualized the magnitude and orienta-
tion of the magnetic field, given by (2.8) with respect
to ZAMO observer (3.10), for several values of m and a.
Both for the Schwarzschild-BR and the Kerr-BR black
holes it demonstrates the Meissner effect, namely that
the external field is weakened in the equatorial plane,
and its force lines are expelled away. This complements
previous studies of such an effect in the context of (ex-
treme) charged black holes [25, 26].

Black holes immersed in a magnetic field have already
been studied in a number of works. These were mostly
modeled by the Schwarzschild-Melvin spacetime, and its
generalizations to include rotation, charges, NUT, and
other physical parameters [16]-[29]. It should be empha-
sized that such spacetimes are of algebraic type I.

Our novel solution is of type D, and the external
Maxwell field is uniform far away from the uncharged
black hole. Generalization to include charge and acceler-
ation is possible, retaining the type D structure [37].



We hope that the simple new metric will become useful
for investigation of various effects, both in the context of
mathematical theory of black holes, and also as a model
of more realistic black holes in relativistic astrophysics.
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