
A new class of rotating charged black holes

with non-aligned electromagnetic field

Hryhorii Ovcharenko∗ and Jǐŕı Podolský†
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Abstract

We present a large family of twisting and expanding solutions to the Einstein-Maxwell equations

of algebraic type D, for which the two double principal null directions (PNDs) of the Weyl tensor

are not aligned with the null eigendirections of the Faraday tensor. In addition to systematically

deriving this new class, we present its various metric forms and convenient parameterizations. We

show that in Boyer-Lindquist-type coordinates these solutions depend on 7 parameters, namely

the Kerr and NUT (Newman-Unti-Tamburino) twist parameters a and l, mass parameter m, ac-

celeration α, strength of the Maxwell field |c|, and angular parameters β, γ that represent two

duality rotations of the Faraday tensor, which include the rotation between the electric and mag-

netic charges generating the aligned part of the Maxwell field. This coordinate parameterization,

analogous to the Griffiths-Podolský form of the Plebański-Demiański solutions, allows us to per-

form various limits, explicitly identify the subcases, and determine the physical interpretation of

the new class. Interestingly, by considering the limit with no acceleration (α → 0), one obtains

either the famous Kerr-Newman-NUT black holes (if the parameter |c| remains constant) or the

novel Kerr-Bertotti-Robinson black holes, announced recently in our work arXiv:2507.05199 (if

|c| → ∞ while α|c| = const.). We may thus conclude that this new class of spacetimes represents

twisting charged accelerating black holes, immersed in an external magnetic (or electric) field. In

the non-twisting subcase, we obtain the previously known solutions of Alexeev-Garcia and Van den

Bergh-Carminati.
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V. Adding the acceleration and twist parameters α and ω 19

VI. The electromagnetic field 23

VII. The Griffiths-Podolský-type form 26
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I. INTRODUCTION

Since the discovery and understanding of the Schwarzschild solution, there has been a

great interest in exact solutions describing black holes. Different possible generalizations of

the Schwarzschild spacetime, describing charged (Reissner-Nordström) and rotating (Kerr

and Kerr-Newman) black holes were found (for their reviews see, e.g., [1, 2]). All these

solutions are of special physical interest because they describe unique asymptotically flat

spacetimes. Indeed, these are the only asymptotically flat black hole solutions to the Einstein-

Maxwell equations with specific symmetries (according to the uniqueness theorems). In

addition, these solutions are of algebraic type D, and the two null eigendirections of the

electromagnetic field are aligned with both the (double-degenerate) PNDs of the Weyl tensor.

Up to the moment when the Kerr and the Kerr-Newman solutions appeared in the 1960s,

some other solutions were also known that satisfied all the properties mentioned above,

except the global asymptotical flatness (namely the C-metric [3] and the Taub-NUT solution

[4]). This initiated (along with purely mathematical interest) attempts to find all solutions

satisfying the aforementioned properties except of the asymptotical flatness. An extensive

work on this topic was done to fully integrate the Einstein-Maxwell equations for the case of

type D spacetimes with a completely aligned electromagnetic field [5–8] (in [9, 10] this class

was denoted as the D class). The most general such solution was found in [11, 12]. However,

due to its great complexity, it was not physically fully interpreted. Nevertheless, it was

shown that the only expanding spacetimes within this class are contained in the Plebański-

Demiański solution [13] (see also its revised versions [14–18] and very recent analysis [19, 20]).

Along with the idea of violating the asymptotical flatness condition, a question of what

happens if, in addition, one does not require the alignment condition of all the PNDs of the

Faraday and Weyl tensors. The search was primarily focused on the case such that only one

of the eigendirections of the Faraday tensor Fαβ is not aligned with the PNDs of the Weyl

tensor Cαβγδ. A strong interest in such a setup was initiated by the Kundt-Trümper theorem

[21], which states that if the special condition 3Ψ2 = ±2|Φ1|2 for the Newman-Penrose scalars
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is not satisfied, then (at least one of) the optical scalars κ and σ associated with the aligned

PND congruence must be zero [1]. This condition implies a great simplification of the field

equations, and it allowed to extend the already known solutions of vacuum field equations

with geodesic and shear-free PND [22] to the case where only one eigendirection of the

Faraday tensor is aligned [23] (note that the original solutions are more general and do not

require a spacetime to be of algebraic type D). Later, it was shown [24, 25] that if in addition

one assumes the solution to be of algebraic type D, then the corresponding spacetime is flat

in the vacuum case. This means that this spacetime does not contain a Kerr black hole as a

subcase, and thus cannot be considered as a proper non-aligned analog of the Kerr-Newman

spacetime.

One may attempt to take one step further and consider fully non-aligned spacetimes (such

that none of the eigendirections of the Faraday tensor is aligned with any of the two double-

degenerate PNDs of the Weyl tensor). Unfortunately, for a long time such a general setup

was not of interest because of the great complexity of the corresponding field equations.

Relatively recently, Van den Bergh [26] in his work proved that non-aligned algebraic type D

solutions of the Einstein-Maxwell equations are not compatible with non-zero cosmological

constant Λ. This important observation simplified the search for corresponding solutions.

Subsequently, a non-aligned solution was explicitly found by Van den Bergh and Carminati

[27]. It was obtained under the assumption of zero twist, and in its presented form it is

complicated. Moreover, it does not directly allow to obtain various limiting subcases.

Our current work aims to overcome these issues, and to generalize the solution found in

[27] to the twisting situation. Instead of presenting the solution in just one mathematical

form, our study also elaborates on presenting various metric forms and the corresponding

parameterizations. This is useful because it allows us to give a basic physical interpretation

of the new class of metrics, and to take various limits. Our final form of the solution, see

Eq. (136) below, depends on 7 different parameters: mass m, Kerr-like rotation a, NUT-like

twist l, acceleration α, magnitude of the electromagnetic field |c|, and two duality rotation

parameters γ and β. By considering special cases we show that the electromagnetic field

can be split into two parts: the field generated by charges of a black hole itself, and the

external electromagnetic field (that becomes uniform for m = 0). Thus the whole solution

has an interpretation as a charged twisting black hole in an external magnetic (or electric)

field. Moreover, this parametrization allows us to show that in the static limit, we recover

4



the non-twisting solutions previously found in [27, 28].

Despite the fact that the solutions we are considering here are not asymptotically flat

globally (because of the presence of an external electromagnetic field, which backreacts on

the geometry), models describing black holes in magnetic fields were always of great interest.

There exists a wide class of Melvin-type spacetimes representing black holes immersed into a

Bonnor-Melvin background [29, 30]. These solutions were found by employing the Harrison

transformation to the Schwarzschild, Kerr, and Kerr-Newman black holes [31, 32] (see also

recent developments [33]). They were used to investigate the influence of the magnetic fields

on the motion of uncharged [34–36] and charged [37] particles, the black hole shadows [38],

the image of a black hole created by accretion discs [39], the thermodynamical properties

[40], and other effcts. However, there are several objections against the applicability of

these spacetimes as realistic models of magnetized black holes. Both charged and uncharged

particles cannot escape to infinity in the equatorial plane [34]. Even more, geodesics may

become chaotic in this spacetime [41], ergoregions may extend to infinity [42], and these

spacetimes are of algebraic type I [43], which means that they generally radiate. Our solution

does not belong to the Melvin-type spacetimes. It may thus overcome these issues, and

become a more useful playground for astrophysical investigations and various studies of

mathematical relativity.

Our new solution may also become interesting in the context of supergravity. It is known

that the Einstein-Maxwell theory in 4 spacetime dimensions corresponds to the bosonic

part of the D = 4, N = 2 (ungauged) minimal supergravity [44]. The solution to the whole

supergravity (with a fermionic sector) may be obtained from any spacetime of the Einstein-

Maxwell theory if in such a spacetime there exists a Killing spinor (for an explanation see

[45]). Moreover, such a solution preserves at least a quarter of the supersymmetries (this

represents the so-called BPS states). Imposing the condition of the existence of the Killing

spinor within the Plebański-Demiański class of solutions gave rise to supersymmetric type

D spacetimes [46–49]. The case of non-aligned electromagnetic field presented here was not

considered in this context yet.
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The paper is organized as follows. In Sec. II we establish an ansatz for the metric

and electromagnetic field, along with writing the field equations in the Newman-Penrose

formalism. In Sec. III we solve them, and present the most general solution. In Secs. IV-V we

elaborate on finding the Plebański-Demiański-type form, adding the acceleration and twist

parameters to it. In Sec. VI we investigate the structure of the non-aligned electromagnetic

field. In Sec. VII we present the Griffiths-Podolský-type form resembling the Boyer-Lindquist

coordinates. Sec. VIII investigates several important subcases that allow us to interpret the

new class. In Sec. IX we give a summary of various particular cases, and present the

physical interpretation for each parameter, appearing in the new class. In Sec. X we analyze

positions of horizons, cosmic strings, and the electromagnetic field for the most general case.

Concluding remarks are given in Sec. XI.
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II. MOTIVATION AND GENERAL SETUP

As was outlined in the Introduction, our work aims to find a class of twisting solutions of

type D with a fully non-aligned electromagnetic field Fαβ. For the integration, it is natural

to choose a null tetrad aligned with the the PNDs of the Weyl tensor Cαβγδ. This means that

the only non-zero Weyl scalar is Ψ2, whereas all scalars Φ0,Φ1,Φ2 of the electromagnetic

field are nonzero in general.

Let us formulate an ansatz for deriving our new class. We expect that it will reduce to

the non-twisting metric obtained by Van den Bergh and Carminati in [27], namely Eq. (85)

therein. With a trivial renaming t 7→ η, x 7→ q, s 7→ p, z 7→ σ, k 7→ K it has the form

ds2 =
K2

2N

(
− e ξ2dη2 + e ξ−2dq2 + ς−2dp2 + ς2dσ2

)
, (1)

where e = ±1, ξ2 is the quartic function of q (Eqs. (83) and (101) in [27]), ς2 is the quartic

function of p (Eqs. (84) and (102) in [27]), and the function N is quadratic in both p and q

(Eqs. (82) and (103) in [27]). By simple redefinitions Q = e ξ2 , P = ς2 , Ω2 = 2N/K2 , this

metric becomes

ds2 =
1

Ω2

(
−Q dη2 +

dq2

Q
+

dp2

P
+ P dσ2

)
, (2)

where P (p) and Q(q) are quartic functions of p and q, respectively, while the conformal factor

Ω2(p, q) is quadratic in both p and q. The metric (2) resembles the C-metric that represents

accelerating black holes [50] (see also Eq. (14.6) in [2]). The basic difference between the

solution of [27] and the C-metric (along with the fact that the electromagnetic field is no

longer aligned) is that for the C-metric the function Ω2 is given by a simple expression

Ω = 1− pq, while for the Van den Bergh-Carminati solution it is much more complicated

(given by Eq. (82) and (103) in [27]).

It is well-known that twisting generalization of the C-metric is the Plebański-Demiański

solution, which in the original form [13] reads

ds2 =
1

Ω2

[
− Q

ρ2
(dη − p2dσ)2 +

ρ2

Q
dq2 +

ρ2

P
dp2 +

P

ρ2
(dη + q2dσ)2

]
, (3)

where

ρ2 = p2 + q2 , and Ω = 1− pq . (4)
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The solution (2) basically differs by a more complicated conformal factor Ω, and by the

absence of ρ2, so the basic idea is that a twisting generalization of the Van den Bergh-

Carminati solution could be given by the metric (3), but with more general metric functions

P (p), Q(q), and Ω(p, q). This is indeed so: Explicit expressions for these metric functions,

namely (70), (71), (76) with (64), (65), will be found below by applying the field equations.

For the integration of the field equations, we will employ the Newman-Penrose formalism.

The natural orthonormal tetrad for the metric (3) is

e0 =

√
Ω2

Qρ2
(q2∂η − ∂σ) , e1 =

√
Ω2Q

ρ2
∂q ,

e2 =

√
Ω2P

ρ2
∂p , e3 =

√
Ω2

Pρ2
(p2∂η + ∂σ) . (5)

The corresponding null tetrad k = 1√
2
(e0 + e1), l =

1√
2
(e0 − e1), m = 1√

2
(e3 + i e2) reads

k =

√
Ω2

2Qρ2
(q2∂η − ∂σ +Q∂q) ,

l =

√
Ω2

2Qρ2
(q2∂η − ∂σ −Q∂q) ,

m =

√
Ω2

2Pρ2
(p2∂η + ∂σ + iP∂p) ,

m̄ =

√
Ω2

2Pρ2
(p2∂η + ∂σ − iP∂p) . (6)

One can now check that the metric ansatz (3) is of algebraic type D. We start by calcu-

lating the spin coefficients associated with the null vector fields k and l, namely

ρsc = µ =
1

2

√
QΩ2

2ρ2

[(
ln

Ω2

ρ2

)
,q
+ i (ln ρ2),p

]
,

τ = π =
1

2

√
PΩ2

2ρ2

[
(ln ρ2),q + i

(
ln

Ω2

ρ2

)
,p

]
,

α = β =
1

4

√
PΩ2

2ρ2

[
(ln ρ2),q + i

(
ln

P

ρ2Ω2

)
,p

]
,

ϵ = γ =
1

4

√
QΩ2

2ρ2

[(
ln

Q

ρ2Ω2

)
,q
+ i (ln ρ2),p

]
,

κ = ν = 0, σ = λ = 0 . (7)
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The Ricci tensor components are given by expressions

Φ00 =
QΩ

2ρ2
Ω,qq = Φ22, (8)

Φ02 = −PΩ
2ρ2

Ω,pp = Φ̄20, (9)

Φ01 =

√
PQ

2ρ4
Ω
(
i ρ2Ω,qp − (q + i p)(Ω,q + iΩ,p)

)
= Φ21 (10)

= Φ̄10 = Φ̄12 , (11)

Φ11 =
1

8ρ4

[
ρ6Ω4

( Q,q

Ω2ρ4

)
,q
+ 2Q

[(
Ω2(ρ2),q

)
,q
− ρ2ΩΩ,qq

]
− ρ6Ω4

( P,p

Ω2ρ4

)
,p
− 2P

[(
Ω2(ρ2),p

)
,p
− ρ2ΩΩ,pp

]]
, (12)

and the Ricci scalar reads

R = −Ω2

ρ2

[[
P
(
ln
P

Ω3

)
,p

]
,p
+
[
Q
(
ln
Q

Ω3

)
,q

]
,q

+
3

2

[
P
(
(lnΩ2),p

)2
+Q

(
(lnΩ2),q

)2]]
. (13)

The only non-zero Weyl scalar is

Ψ2 =
Ω2

12

(q + i p)2

q − i p

[( Q

(q + i p)3

)
,qq

+
( P

(q + i p)3

)
,pp

]
, (14)

confirming that the metric (3) is indeed of algebraic type D.

Now let us discuss the corresponding electromagnetic field. As the spacetime (3) admits

two Killing vectors, namely ∂η and ∂σ, the electromagnetic field also has to be invariant

with respect to translations along them. This means that the vector potential Aµ has to be

independent of the coordinates η and σ. Then, by performing a convenient gauge fixing, it

is possible to write the electromagnetic field potential in the form.

A = Aη(q, p) dη + Aσ(q, p) dσ. (15)

Calculating the Faraday tensor components from (15), it turns out that the relation

Φ2 = Φ0 (16)

holds.
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This “symmetry condition” will be crucial for solving the Einstein-Maxwell field equations

Φij = 2ΦiΦ̄j , (17)

R = 0 , (18)

along with the Maxwell equations

DΦ1 − δ̄Φ0 = (π − 2α)Φ0 + 2ρΦ1 − κΦ2 ,

DΦ2 − δ̄Φ1 = −λΦ0 + 2πΦ1 + (ρ− 2ε)Φ2 ,

∆Φ0 − δΦ1 = (2γ − µ)Φ0 − 2τΦ1 + σΦ2 ,

∆Φ1 − δΦ2 = νΦ0 − 2µΦ1 + (2β − τ)Φ2 . (19)

By solving them we obtain the real metric functions P,Q,Ω2 and the electromagnetic field

represented by the complex NP scalars Φ0 = Φ2 and Φ1.

III. SOLVING THE FIELD EQUATIONS

Now we are ready to solve the Einstein and Maxwell equations. We start with the

equations (17) for Φ00 and Φ02, given by (8) and (9), namely

Φ00 =
QΩ

2ρ2
Ω,qq = 2Φ0Φ̄0 , (20)

Φ02 = −PΩ
2ρ2

Ω,pp = 2Φ0Φ̄2 . (21)

A fully general solution is difficult to obtain, so we will make a further assumption. In

analogy to the Van den Bergh-Carminati work [27] (in the spirit of the Newman-Janish

algorithm) we will assume that Φ0 (equal to Φ2 due to (16)) has the form

Φ0 =
c′

Ω

√
PQ

q + i p
= Φ2 , (22)

where c′ is a complex constant (here we use a primed symbol to avoid confusion with the

rescaled constant c introduced later in (88)).

This form of Φ0 = Φ2 allows us to obtain an analytical solution for Ω. Indeed, rewriting

Eqs. (20) and (21) as

QΩ,qq = 4
c′c̄′

Ω3
PQ = −P Ω,pp , (23)

10



one can solve these equations to obtain two alternative forms of Ω, namely1

4c′c̄′P

f1(p)
+ f1(p)

[
q + f2(p)

]2
= Ω2 = −4c′c̄′Q

f3(q)
+ f3(q)

[
p+ f4(q)

]2
. (24)

The functions f1, f2, f3, f4 can be found explicitly. First of all, we note that the left-

hand-side of (24) is quadratic in q, whereas the right-hand-side is quadratic in p. Therefore,

taking
∂5Ω2

∂p3∂q2
of (24) it follows that

(f1),ppp = 0 ⇒ f1 = f10 + f11 p+ f12 p
2, (25)

where f10, f11, f12 are just constants. If one takes the partial derivatives in the reversed

order,
∂5Ω2

∂q3∂p2
, one analogously obtains

(f3),qqq = 0 ⇒ f3 = f30 + f31 q + f32 q
2. (26)

Similarly, by comparing the left-hand-side and the right-hand-side of
∂4Ω2

∂p3∂q
of (24), one

obtains

(f1f2),ppp = 0 ⇒ f2 =
f20 + f21 p+ f22 p

2

f1(p)
, (27)

and by considering
∂4Ω2

∂q3∂p
one gets

(f3f4),qqq = 0 ⇒ f4 =
f40 + f41 q + f42 q

2

f3(q)
, (28)

Moreover, from (Ω2),ppp it follows that(4c′c̄′P
f1

+ f1f
2
2

)
,ppp

= 0 . (29)

Integrating this equation and using the expression (27), one obtains

f−1
1

[
4c′c̄′P + (f20 + f21 p+ f22 p

2)2
]
= P0 + P1 p+ P2 p

2, (30)

where P0, P1, P2 are also constants. So that

P =
1

4c′c̄′

[
(f10 + f11 p+ f12 p

2)(P0 + P1 p+ P2 p
2)− (f20 + f21 p+ f22 p

2)2
]
. (31)

1 Notice that QΩ,qq + P Ω,pp = 0 admits a trivial solution Ω,qq = 0 = Ω,pp for which Ω is linear both in p

and q. This leads to the Plebański-Demiański class of type D solutions with aligned electromagnetic field

such that Ω = 1− pq, see (4).
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From this expression it follows that the function P is at most quartic in p. Analogously,

from (Ω2),qqq one finds that the function Q is at most quartic in q.

Finally, the function Ω2 can be written using the left-hand-side of (24), (27) and (30) in

the form

Ω2 = f−1
1

(
4c′c̄′P + f 2

1 f
2
2

)
+ 2f1f2 q + f1 q

2

= (P0 + P1 p+ P2 p
2) + 2(f20 + f21 p+ f22 p

2) q + (f10 + f11 p+ f12 p
2) q2, (32)

so that the function Ω2 is a quadratic function in both coordinates p and q. The same

conclusion follows, of course, from the right-hand-side of (24).

To summarize, by solving the Einstein-Maxwell field equations for Φ00 and Φ02 we ob-

tained general forms of the metric functions

P = â0 + â1 p+ â2 p
2 + â3 p

3 + â4 p
4, (33)

Q = b̂0 + b̂1 q + b̂2 q
2 + b̂3 q

3 + b̂4 q
4, (34)

Ω2 =
(
c00 + c01q + c02q

2
)
+
(
c10 + c11q + c12q

2
)
p+

(
c20 + c21q + c22q

2
)
p2, (35)

where âi, b̂i, cij are constants.

Due to (8) and (16), i.e. Φ2 = Φ0, also the field equation for Φ22 is now satisfied. In

order to solve the remaining equations (17) for Φ01,Φ11,Φ12 (= Φ10) and R = 0, we have

to determine the electromagnetic field component Φ1. It is obtained from the Maxwell

equations (19). In view of (7) for the spin coefficients, they simplify to

DΦ1 − δ̄Φ0 = (π − 2α)Φ0 + 2ρΦ1 , (36)

DΦ0 − δ̄Φ1 = 2πΦ1 + (ρ− 2ε)Φ0 , (37)

−∆Φ0 + δΦ1 = 2πΦ1 + (ρ− 2ε)Φ0 , (38)

−∆Φ1 + δΦ0 = (π − 2α)Φ0 + 2ρΦ1 , (39)

where D = kµ∇µ, δ = mµ∇µ, ∆ = lµ∇µ. For the null tetrad (6) we get the relations

−∆Φi = DΦi , δΦi = −δ̄Φi . (40)

Indeed, using the fact that Φi depend only on the coordinates q and p we have

−∆Φi =

√
QΩ2

2ρ2
(Φi),q = DΦi , δΦi = i

√
PΩ2

2ρ2
(Φi),p = −δ̄Φi . (41)
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It is thus obvious that the Maxwell equation (38) is identical to (37), and the Maxwell

equation (39) is identical to (36). These two Maxwell equations have the explicit form√
QΩ2

2ρ2
(Φ1),q + i

√
PΩ2

2ρ2
(Φ0),p =

i

2

√
PΩ2

2ρ2

(
ln

Ω4

P

)
,p
Φ0 +

√
QΩ2

2ρ2

[(
ln

Ω2

ρ2

)
,q
+ i (ln ρ2),p

]
Φ1,

(42)√
QΩ2

2ρ2
(Φ0),q + i

√
PΩ2

2ρ2
(Φ1),p =

√
PΩ2

2ρ2

[
(ln ρ2),q + i

(
ln

Ω2

ρ2

)
,p

]
Φ1 +

1

2

√
QΩ2

2ρ2

(
ln

Ω4

Q

)
,q
Φ0,

(43)

which can be rewritten compactly as√
Q

[
Ω2

ρ2

( ρ2
Ω2

Φ1

)
,q
− i (ln ρ2),p Φ1

]
+ iΩ2

(√P
Ω2

Φ0

)
,p
= 0 , (44)

√
P

[
Ω2

ρ2

( ρ2
Ω2

Φ1

)
,p
+ i (ln ρ2),q Φ1

]
− i Ω2

(√Q
Ω2

Φ0

)
,q
= 0 . (45)

For the assumed form (22) of Φ0 and applying the field equations (23), we obtain the set of

equations

Ω2

ρ2

( ρ2
Ω2

Φ1

)
,q
− i (ln ρ2),p Φ1 + iΩ2

( 1

4c̄′
Ω,qq

q + i p

)
,p
= 0 , (46)

Ω2

ρ2

( ρ2
Ω2

Φ1

)
,p
+ i (ln ρ2),q Φ1 + iΩ2

( 1

4c̄′
Ω,pp

q + ip

)
,q
= 0 . (47)

This can be further simplified by making a substitution

Φ1 =
1

4c̄′
Ω2

(q + i p)2
g(p, q) , (48)

where g is a general function of both p and q. This brings the Maxwell equations to[
g − p2

(Ω,q

p

)
,p

]
,q
+ i qΩ,qqp = 0 , (49)[

g + i q2
(Ω,p

q

)
,q

]
,p
− pΩ,ppq = 0 , (50)

which allow us to easily find the function g as

g = g0 + p2
(Ω,q

p

)
,p
− i q2

(Ω,p

q

)
,q
, (51)

where g0 is a complex constant (this can be directly checked by inserting this g into the

equations (49), (50)). The electromagnetic field is thus given by the components

Φ0 = Φ2 =
c′

Ω

√
PQ

q + i p
, (52)

Φ1 =
1

4c̄′
Ω2

(q + i p)2

[
g0 + p2

(Ω,q

p

)
,p
− i q2

(Ω,p

q

)
,q

]
, (53)
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where c′ and g0 are any complex constants.

Next we solve the Einstein-Maxwell equation Φ01 = 2Φ0Φ̄1. The Ricci tensor component

Φ01 is given by (10), while the right-hand side reads

2Φ0Φ̄1 =

√
PQ

2ρ4
Ω
[
ḡ0(q + i p) + i ρ2Ω,qp − (q + i p)(Ω,q + iΩ,p)

]
. (54)

It follows that in (53) we have to set

g0 = 0 . (55)

It can now be proven that the Maxwell field is generated by the specific potential (15),

written as the 1-form A = Aµ dx
µ, as

A =
1

4c̄′

[ Ω,q − i Ω,p

q + i p
dη +

(q2Ω,q + i p2Ω,p

q + i p
− Ω

)
dσ

]
. (56)

This complex expression gives the Faraday 2-form F := dA. Defining F∗ := F+ i F̃, where F̃

is the Hodge dual, the energy-momentum tensor of the field is Tαβ = 1
2
F ∗ γ

α F̄ ∗
βγ (see Sec. 5.2

in [1]). Also the corresponding real counterpart can be obtained from the relation

Areal = 2ReA. (57)

Moreover, there is an invariant F ∗
µν F

∗µν = 16(Φ0Φ2 − Φ2
1), distinguishing null and non-

null fields. Since Φ0 = Φ2 ̸= Φ1 in our case, we conclude that the electromagnetic field is

generally non-null.

Finally, we explicitly find the metric functions (33)–(35) by applying the last two field

equations, namely R = 0, where R is a Ricci scalar given by (13), and Φ11 = 2Φ1Φ̄1, where

Φ11 is given by (12) and

2Φ1Φ̄1 =
1

c′c̄′
Ω4

8ρ4

[[
p2
(Ω,q

p

)
,p

]2
+
[
q2
(Ω,p

q

)
,q

]2]
. (58)

A direct calculation shows that the explicit solution to all the Einstein-Maxwell equations

has the form

â0 =
4c02 − c201
16c′c̄′

,

â1 =
c01 + c02c10 + c12

4c′c̄′
,

â2 = −2 + 2c202 − 2c10c12 + c01c21 − 2c22
8c′c̄′

, (59)

â3 =
c21 + c22c10 − c02c12

4c′c̄′
,

â4 = −4c02c22 + c221
16c′c̄′

,
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and

b̂0 =
4c02 + c210
16c′c̄′

,

b̂1 = −c10 − c02c01 + c21
4c′c̄′

,

b̂2 =
2 + 2c202 + c10c12 − 2c01c21 − 2c22

8c′c̄′
, (60)

b̂3 = −c12 + c22c01 + c02c21
4c′c̄′

,

b̂4 = −4c02c22 − c212
16c′c̄′

,

where

c00 = 1 , c11 = −2 , c20 = −c02 . (61)

There are thus 6 free real parameters c01, c10, c02, c12, c21, c22, in addition to the complex

charge parameter c′.

Let us remark that c00 = 1 can always be obtained (when c00 ̸= 0) by performing a con-

stant rescaling of the conformal factor Ω 7→ S Ω, accompanied by the rescailing of the charge

parameter c′ 7→ S2c′ which keeps the Einstein-Maxwell field equations unchanged. Moreover,

the metric (3) and the electromagnetic field (52), (53) are unchanged under a constant rescal-

ing of the coordinates p 7→ cp, q 7→ cq, η 7→ η/c, σ 7→ σ/c3, P 7→ c4P , Q 7→ c4Q, c′ 7→ c′/c3.

This allows us to scale one of the coefficients cij to an arbitrary value, for example c11 = −2.

Our next task is to get a clear physical interpretation of this new large class of exact solu-

tions given by (3), (4) and (52), (53) with (59)–(61). In particular, first we have to identify

the subclass of well-known spacetimes of algebraic type D, namely the Kerr-Newman-NUT

black holes and their accelerating (C-metric) generalizations. To this end we have to find

an explicit relation to their Plebański-Demiański (PD) form [13] and the Griffiths-Podolský

(GP) form [14, 17–20].
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IV. THE PLEBAŃSKI-DEMIAŃSKI-TYPE FORM

The relations (59)–(61) are complicated, and physical meaning of the coefficients cij is not

obvious at all. It turns out that a considerable simplification, and subsequent understanding,

is achieved if we perform a shift of the coordinates

p 7→ p+ p0 , q 7→ q + q0 , (62)

where p0, q0 are some constants. This allows us to impose an additional (gauge) condition

c01 = 0 = c10 . (63)

Basically, by (62) we are replacing the two real parameters c01, c10 by the two equivalent real

parameters p0, q0.

After the shift (62) the metric is not given by (3), but has a slightly more general form

ds2 =
1

Ω2

[
− Q

ρ2
[
dη − (p+ p0)

2dσ
]2

+
ρ2

Q
dq2 +

ρ2

P
dp2 +

P

ρ2
[
dη + (q + q0)

2dσ
]2]

, (64)

where

ρ2 = (p+ p0)
2 + (q + q0)

2 , (65)

and the conformal factor is

Ω2 = 1− 2pq + c02(q
2 − p2) + (c21 p+ c12 q) pq + c22 p

2q2 . (66)

The electromagnetic field now reads

Φ0 = Φ2 =
c′

Ω

√
PQ

(q + q0) + i (p+ p0)
, (67)

Φ1 =
1

4c̄′
Ω2

[(q + q0) + i (p+ p0)]2

[
(p+ p0)

2
( Ω,q

p+ p0

)
,p
− i (q + q0)

2
( Ω,p

q + q0

)
,q

]
, (68)

arising from the shifted 1-form potential (56),

A =
1

4c̄′

[ Ω,q − i Ω,p

(q + q0) + i (p+ p0)
dη +

((q + q0)
2Ω,q + i (p+ p0)

2Ω,p

(q + q0) + i (p+ p0)
− Ω

)
dσ

]
. (69)

The functions P and Q remain quartic in p and q, respectively, with the coefficients a′i, b
′
i,

P = a′0 + a′1 p+ a′2 p
2 + a′3 p

3 + a′4 p
4, (70)

Q = b′0 + b′1 q + b′2 q
2 + b′3 q

3 + b′4 q
4. (71)
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Solving the field equations R = 0 and Φ11 = 2Φ1Φ̄1, one obtains that the coefficients a′i, b
′
i

in (70), (71) are related to the coefficients cij in (66) by expressions analogous to (59), (60),

but now with c01 = 0 = c10 (and âi, b̂i renamed to a′i, b
′
i).

All the constants a′i, b
′
i are thus determined by 4 real constants c02, c12, c21, c22, and by

the complex charge c′. However, instead of c02, c12, c21, c22, it is now convenient to introduce

4 new auxiliary parameters defined by the expressions

k′ :=
c02
4c′c̄′

,

ϵ′ :=
1 + c202 − c22

4c′c̄′
,

m′ :=
2c21 − c02c12

16c′c̄′
,

n′ :=
2c12 + c02c21

16c′c̄′
. (72)

Then the coefficients in (70) and (71) take compact forms

a′0 = k′ ,

a′1 = 2
n′ − C ′m′

1 + C ′2 ,

a′2 = −ϵ′ , (73)

a′3 = 2
(1 + 2C ′2)m′ − C ′n′

1 + C ′2 ,

a′4 = −(1 + 4C ′2)k′ + 2C ′
(
ϵ′ − (m′ + C ′n′)2

k′(1 + C ′2)2

)
,

and

b′0 = k′ ,

b′1 = −2
m′ + C ′n′

1 + C ′2 ,

b′2 = ϵ′ , (74)

b′3 = −2
(1 + 2C ′2)n′ + C ′m′

1 + C ′2 ,

b′4 = −(1 + 4C ′2)k′ + 2C ′
(
ϵ′ +

(n′ − C ′m′)2

k′(1 + C ′2)2

)
,

where

C ′ :=
c02
2

= 2c′c̄′k′ . (75)
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Moreover, the conformal factor Ω2 becomes

Ω2 = (1− pq)2 + 2C ′(q2 − p2) + 4(C ′2 − c′c̄′ϵ′) p2q2

+
8c′c̄′

1 + C ′2

[
(m′ + C ′n′)p+ (n′ − C ′m′)q

]
pq . (76)

The Einstein-Maxwell field equations also impose an additional constraint on the shift

coefficients p0, q0, namely

( p0 − A′)2 + (q0 −B′)2 = R′2 , (77)

where the constants A′, B′, R′ are

A′ =
2C ′(n′ − C ′m′)

(1 + C ′2)[(1 + 4C ′2)k′ − 2C ′ϵ′]
,

B′ =
2C ′(m′ + C ′n′)

(1 + C ′2)[(1 + 4C ′2)k′ − 2C ′ϵ′]
, (78)

R′ =
2C ′

√
m′2 + n′2

√
1 + C ′2 [(1 + 4C ′2)k′ − 2C ′ϵ′]

.

This represents a circle of radius R′ in the space of the coefficients (p0, q0). The constraint

(77) can thus be naturally parametrized by a single angle β as

p0 = A′ +R′ sin β ,

q0 = B′ +R′ cos β . (79)

Instead of the two coefficients p0, q0 there is, in fact, only one new independent parameter β.

Interestingly, p0 = 0 = q0 can always be achieved for the particular choice of β such that

sin β0 = −A
′

R′ =
−(n′ − C ′m′)√

1 + C ′2
√
m′2 + n′2

⇒ cos β0 = −B
′

R′ =
−(m′ + C ′n′)√

1 + C ′2
√
m′2 + n′2

, (80)

so that

tan β0 =
n′ − C ′m′

m′ + C ′ n′ . (81)

Notice that the metric functions Ω, P,Q, in (64) do not contain β. As we shall see, this

is of a great help in identifying the horizons and poles of these black hole spacetimes. The

parameter β appears only in the metric function ρ, defined in (65), via (79). In particular,

it determines the structure of the curvature singularity located at ρ2 = 0.
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More importantly, β which enters p0 and q0 plays a crucial role in the character of the

electromagnetic field described by the components (67), (68). In fact, in subsequent sections

of this paper we will show that these parameters are related to charges of the black hole.

It can immediately be seen from (78) that for C ′ = 0 (keeping other parameters fixed)

the constants A′, B′, R′ all vanish, and thus using (79) we get p0 = 0 = q0. Moreover, the

conformal factor (76) reduces to a very simple expression Ω2 = (1− pq)2 (notice from (75)

that C ′ = 0 necessarily implies c′ = 0, unless in a peculiar subcase k′ = 0), so that

ρ2 = p2 + q2 , Ω = 1− pq . (82)

The coefficients (73), (74) also simplify considerably to

a′0 = b′0 = k′ = −a′4 = −b′4 , a′1 = −b′3 = 2n′ , −a′2 = b′2 = ϵ′ , a′3 = −b′1 = 2m′ , (83)

and thus the metric functions (70), (71) reduce to

P = k′ + 2n′p− ϵ′p2 + 2m′p3 − k′p4 , (84)

Q = k′ − 2m′q + ϵ′q2 − 2n′q3 − k′q4 . (85)

For C ′ = 0, that is for a vanishing electromagnetic field, we thus obtain the metric (3),

ds2 =
1

Ω2

[
− Q

ρ2
(dη − p2dσ)2 +

ρ2

Q
dq2 +

ρ2

P
dp2 +

P

ρ2
(dη + q2dσ)2

]
, (86)

which is exactly the class of type D vacuum Plebański-Demiański solutions, see [13] or

Eqs. (16.1), (16.2) in [2]. This justifies the introduction of this parametrization, and calling

it the Plebański-Demiański-type form of the metric.

V. ADDING THE ACCELERATION AND TWIST PARAMETERS α AND ω

The new class of type D solutions to Einstein-Maxwell equations we found in the previous

Section is very large, depending of 5 real parameters k′, ϵ′,m′, n′, β, and 1 complex c′. How-

ever, its physical interpretation is not obvious, standard black holes are not identified, and

its form does not directly admit various geometrically distinct subcases. In particular, in the

current metric (86) it is not even possible to obtain static subcases because the spacetime is

always twisting (the spin coefficients ρsc and µ given by (7) always have non-zero imaginary

part).
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Actually, the Plebański-Demiański (PD) solution [13] in its original coordinates presented

in 1976 suffered from the same problem. This was the main motivation for the series of

works [14–16] by Griffiths and Podolský (GP) in 2005–6, summarized in Chapter 16 of [2],

in which two convenient parameters with clear kinematic meaning were introduced, namely

the acceleration parameter α and the twist parameter ω. Indeed, for α = 0 the corresponding

black holes do not accelerate, and for ω = 0 they do not rotate (because the imaginary part

of ρsc = µ vanishes).

The new metric (64) resembles the Plebański-Demiański metric (82)–(86), and reduces

to it for C ′ = 0. Therefore, we will apply the same trick as in [14], that is, we will perform

the specific rescaling (and trivial renaming) of the coordinates2

p =
√
αω x , q =

√
α

ω
r , η =

√
ω

α
τ , σ =

√
ω

α3
ϕ , (87)

accompanied by the rescaling of the parameters

m′ + in′ =

√
α3

ω3
(m+ in) , ϵ′ =

α

ω
ϵ , k′ = α2k ,

c′ =

√
ω

α
c , C ′ = αω C , p0 =

√
αω x0 , q0 =

√
α

ω
r0 . (88)

Note that these are exactly the transformations given by Eqs. (3), (4) in [14] (except that

the complex electromagnetic charge c′ scales differently than in the PD case with just the

aligned Maxwell field). Introducing the rescaled metric functions and coefficients as

P(x) :=
1

α2
P
(√

αω x
)
, Q(r) :=

ω2

α2
Q
(√α

ω
r
)
, ϱ2(r, x) :=

ω

α
ρ2,

ai :=
(αω)i/2

α2
a′i , bi :=

(ω
α

)(4−i)/2

b′i , (89)

the metric (64) becomes

ds2 =
1

Ω2

[
− Q
ϱ2

[
(dτ − ω (x+ x0)

2dϕ
]2

+
ϱ2

Q
dr2

+
P
ϱ2

[
ω dτ + (r + r0)

2dϕ
]2

+
ϱ2

P
dx2

]
, (90)

2 In our recent studies [19, 20] we denoted this change as a transition from the PD metric to the PDαω

metric. It should also be emphasized that α here is the GP acceleration parameter, which is generally

different from the A+ acceleration parameter, as investigated in full detail also in [19, 20].

20



where the function ϱ2(r, x) and the conformal factor Ω2(r, x) are given by

ϱ2 = (r + r0)
2 + ω2(x+ x0)

2 , (91)

Ω2 = (1− αrx)2 + 2α2C(r2 − ω2x2) + α2
(
4α2ω2C2 − 2C

ϵ

k

)
r2x2

+
4α2C

(1 + α2ω2C2)k

[
(m+ αω Cn)x+ (n− αω Cm)

r

ω

]
rx , (92)

and P ,Q are quartic polynomials

P(x) = a0 + a1 x+ a2 x
2 + a3 x

3 + a4 x
4 , (93)

Q(r) = b0 + b1 r + b2 r
2 + b3 r

3 + b4 r
4 . (94)

Here the real constant is

C := 2cc̄k , (95)

and the coefficients ai and bi defined in (89) take the explicit form

a0 = k ,

a1 =
2

ω

n− αωCm

1 + α2ω2C2
,

a2 = −ϵ , (96)

a3 = 2α
(1 + 2α2ω2C2)m− αωCn

1 + α2ω2C2
,

a4 = −α2ω2(1 + 4α2ω2C2)k + 2α2ω2C
(
ϵ− (m+ αωCn)2

ω2k(1 + α2ω2C2)2

)
,

and

b0 = ω2k ,

b1 = −2
m+ αωCn

1 + α2ω2C2
,

b2 = ϵ , (97)

b3 = −2
α

ω

(1 + 2α2ω2C2)n+ αωCm

1 + α2ω2C2
,

b4 = −α2(1 + 4α2ω2C2)k + 2α2C
(
ϵ+

(n− αωCm)2

ω2k(1 + α2ω2C2)2

)
.

Finally, the constraint (77) now becomes

(ω x0 − A)2 + ( r0 −B)2 = R2 , (98)

21



where the constants A,B,R read

A =
2C

(1 + α2ω2C2)[(1 + 4α2ω2C2)k − 2Cϵ]
(n− αω Cm) ,

B =
2C

(1 + α2ω2C2)[(1 + 4α2ω2C2)k − 2Cϵ]
(m+ αω Cn) , (99)

R =
2C√

1 + α2ω2C2 [(1 + 4α2ω2C2)k − 2Cϵ]

√
m2 + n2 .

The relation (98) is satisfied by considering a single angular parameter β such that

ω x0 = A+R sin β ,

r0 = B +R cos β . (100)

The two coefficients ω x0 and r0 can always be made zero (ω x0 = 0 = r0) by the special

choice (81) of β, which now reads

tan β0 =
n − αωmC

m+ αω nC
. (101)

The components of the electromagnetic field (67) and (68) with respect to the null tetrad

k =
Ω√
2Q ϱ

(r2∂τ − ω ∂ϕ +Q ∂r),

l =
Ω√
2Q ϱ

(r2∂τ − ω ∂ϕ −Q ∂r),

m =
Ω√
2P ϱ

(ω x2∂τ + ∂ϕ + iP ∂x),

m̄ =
Ω√
2P ϱ

(ω x2∂τ + ∂ϕ − iP ∂x), (102)

(which is obtained by the rescaling of (6)) are

Φ0 = Φ2 =
αc

Ω

√
PQ

(r + r0) + iω (x+ x0)
, (103)

Φ1 =
1

4α c̄

Ω2

[(r + r0) + iω (x+ x0)]2

[
ω (x+ x0)

2
( Ω,r

x+ x0

)
,x
− i (r + r0)

2
( Ω,x

r + r0

)
,r

]
.

(104)

The corresponding potential (69) has been rescaled to

A =
1

4α c̄

[ ωΩ,r − i Ω,x

(r + r0) + iω (x+ x0)
dτ +

((r + r0)
2Ω,r + iω (x+ x0)

2Ω,x

(r + r0) + iω (x+ x0)
− Ω

)
dϕ

]
. (105)
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In the reparametrized metric (90) it is now easy to obtain the static (non-twisting) subcase

by simply setting ω = 0, in which case the metric becomes diagonal.

Taking the acceleration α to zero is not so straightforward, and depends on how do other

parameters behave in this limit.

If we set the acceleration to zero by α = 0, while keeping |c| constant, then the conformal

factor simplifies enormously to Ω = 1, and the metric functions are just

P = k + 2n/ω x− ϵ x2 , Q = ω2k − 2mr + ϵ r2 . (106)

Even more interestingly, in this limit (103) become

Φ0 = 0 = Φ2 . (107)

This means that for such non-accelerating black holes the non-aligned components Φ0 and

Φ2 of the electromagnetic field vanish. As we will show, in such a case, we recover the

Kerr-Newman-NUT black holes.

Interestingly, this is not the only acceleration-free limit. As we will show further in

Sec. VIII E, when both r0 and x0 are zero it is possible to perform the α → 0 limit while

|c| → ∞ such that 2α|c| ≡ B = const. This special limit represents the Kerr black hole in

a uniform magnetic field of the Bertotti-Robinson type, presented by us in [52].

However, before we describe how such limits can be taken, we have to investigate the

structure of the electromagnetic field in more detail, which is done in the next Section.

VI. THE ELECTROMAGNETIC FIELD

The non-trivial electromagnetic field in the new class of solutions presented here is the

main ingredient that distinguishes these spacetimes from other (well-known) black holes of

algebraic type D, for which the electromagnetic field is aligned with the geometry. Focusing

on its properties is thus key for the interpretation of these solutions, and understanding the

physical role of its parameters.

The acceleration and twist parameters α and ω allowed us to put the expressions (67),

(68) for the electromagnetic scalars Φ0, Φ1, Φ2 into the form (103), (104).
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We can thus easily obtain the static (non-twisting) limit by simply setting ω = 0, so that

Φ0 = Φ2 =
αc

Ω

√
PQ

r + r0
, (108)

Φ1 = − i

4

Ω2

α c̄
(r + r0)

( Ω,x

r + r0

)
,r
. (109)

The expression for Φ0 = Φ2 exactly corresponds to the results of Van den Bergh and Carmi-

nati presented in Eq. (14) of [27].

The non-accelerating limit α = 0, as we already mentioned, is not unique. Before con-

sidering it, let us simplify the expression for Φ1 given by (104), which can be rewritten

as

Φ1 =
1

4α c̄

Ω2

[(r + r0) + iω(x+ x0)]2

[
ω x2

(Ω,r

x

)
,x
− i r2

(Ω,x

r

)
,r
+ (ω x0 − i r0) Ω,rx

]
. (110)

Now let us express the complex constant c in the polar form

c ≡ |c| ei γ , (111)

and define two new quantities as charges

e := − 1

2|c|
(
ω x0 cos γ + r0 sin γ

)
, g := − 1

2|c|
(
ω x0 sin γ − r0 cos γ

)
, (112)

or inversely,

r0 = −2|c|
(
e cos γ − g sin γ

)
, ω x0 = −2|c|

(
e sin γ + g cos γ

)
. (113)

Consequently, the charges satisfy the relation

e2 + g2 =
1

4|c|2
(
r20 + ω2x20

)
. (114)

Recall also the expressions (100), namely ω x0 = A+R sin β and r0 = B +R cos β, so that

e = − 1

2|c|

(
(A cos γ +B sin γ) +R sin(β + γ)

)
,

g = − 1

2|c|

(
(A sin γ −B cos γ)−R cos(β + γ)

)
, (115)

and substituting into (113) we get

r0 = (A cos 2γ +B sin 2γ) +R sin(2γ + β) ,

ω x0 = (A sin 2γ −B cos 2γ)−R cos(2γ + β) . (116)
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The constants A,B,R are explicitly given by (99). They depend on C defined in (95) as

C = 2|c|2k, which means that they are independent of the angles β and γ. This enables

us to interpret (115) and (116) as specific forms of duality rotation represented by the two

angular parameters β and γ. They “mix” the charges e, g and also the related parameters

r0, ωx0. In particular, for any fixed γ = γ0 (that is the complex phase of c), the value of the

“electric charge e” is effectively determined by sin(β+γ0), while the value of the “magnetic

charge g” is determined by − cos(β+γ0). Recall also that for the special choice β = β0 given

by (101) the coefficients ω x0 and r0 are both made zero (ω x0 = 0 = r0). The meaning of

the parameter γ is not fully clear now, as it represents the duality rotation of both aligned

Φ1 and non-aligned Φ0, Φ2 components of the electromagnetic field. We will give it some

interpretation further.

We can thus see that the electromagnetic field is determined by 3 real parameters, namely

|c| and two angular parameters β, γ representing specific duality rotations described above.

In terms of these parameters the component Φ1 takes the form

Φ1 =
1

4α

Ω2

[(r + r0) + iω(x+ x0)]2

[
ei γ

|c|

[
ω x2

(Ω,r

x

)
,x
− i r2

(Ω,x

r

)
,r

]
− 2(e+ i g) Ω,rx

]
. (117)

Now, in the α → 0 limit of vanishing acceleration (while keeping |c| = const.), the con-

formal factor (92) reduces to Ω2 = 1− 2αrx+O(α2), so that Ω = 1− αrx+O(α2). The

aligned Φ1 component of the electromagnetic thus considerably simplifies to

Φ1 =
1
2
(e+ i g)

[(r + r0) + iω(x+ x0)]2
. (118)

This expression agrees with the result for Kerr-Newman-NUT black holes with fully aligned

(Coulombic) electromagnetic field (see e.g. [2, 18]), in which case the two parameters e and g

have direct physical interpretation as electric and magnetic charges, respectively. This means

that in such a limit α → 0 we can interpret the parameters e and g (and equivalently the

constants r0 and x0) as related to electric and magnetic charges of a black hole.

However, it does not mean that these parameters are equal to electric and magnetic

charges of a black hole in the most general case α ̸= 0. The corresponding physical charges

may be found by integrating the electric and magnetic flux through the horizon of a black

hole, but this exceeds the scope of our present work.
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VII. THE GRIFFITHS-PODOLSKÝ-TYPE FORM

In the preceding Sections we have found a new class of spacetimes with the non-aligned

electromagnetic field, generalizing the known type D black hole solutions. In fact, this

solution is more general also in the context of the possible horizon topology, as currently

this is not specified. For realistic black holes we expect the topology of their horizons to

be spherical, and thus it is desirable to transform the coordinates and reparametrize the

general solution so that we can restrict to the subclass of spherical topologies.

The same problem existed for the Plebański-Demiański spacetime. The corresponding

transformations were introduced by Griffiths and Podolský in [14–16], where they obtained

the Boyer-Lindquist-type coordinates for the PD class. We can apply the same method here,

using the convenient fact that the metric (90) is very similar to the Plebański-Demiański

metric (86), with quartic functions P (x) and Q(r) given by (84), (85).

Specifically, we will conduct a linear transformation of coordinates

x =
a

ω
x̃+

l

ω
, τ = t− (a+ l + ω x0)

2

a
φ , ϕ = −ω

a
φ , (119)

with the corresponding redefinition

P̃ (x̃) :=
ω2

a2
P
( a

ω
x̃+

l

ω

)
, (120)

that puts the metric (90) into

ds2 =
1

Ω2

[
− Q
ϱ2

(
dt−

[
a(1− x̃2) + 2(l + ω x0)(1− x̃)

]
dφ

)2

+
ϱ2

Q
dr2

+
P̃

ϱ2

(
a dt−

[
(r + r0)

2 + (a+ l + ω x0)
2
]
dφ

)2

+
ϱ2

P̃
dx̃2

]
, (121)

where

ϱ2 = (r + r0)
2 + (a x̃+ l + ω x0)

2. (122)

The function P̃ (x̃) has the quartic form

P̃ = ã0 + ã1 x̃+ ã2 x
2 + ã3 x̃

3 + ã4 x̃
4 , (123)
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where

ã0 =
1

a2ω2
(ω4a0 + lω3a1 + l2ω2a2 + l3ω a3 + l4a4) ,

ã1 =
1

aω2
(ω3a1 + 2lω2a2 + 3l2ω a3 + 4l3a4) ,

ã2 =
1

ω2
(ω2a2 + 3lω a3 + 6l2a4) , (124)

ã3 =
a

ω2
(ω a3 + 4l a4) ,

ã4 =
a2

ω2
a4 ,

while Q(r) remains to be given by (94).

The coefficients ãi of P̃ , explicitly expressed in terms of k,m, n, ϵ, C, α, ω using (96), are

very complicated. However, as was argued in [14, 15], looking for the black hole solutions

with spherical topology the function P̃ must have at least two roots (corresponding to two

poles along the axis of symmetry). In this case it is always possible to choose the parameters

a and l in such a way that these roots are conveniently placed at x̃ = 1 and x̃ = −1. (It will

turn out that a is the Kerr-like rotational parameter, l in the NUT-like twist parameter, and

x̃ = ±1 will correspond to the poles at θ = 0 and θ = π in Boyer-Lindquist-type coordinates.)

Therefore, the metric function P̃ may be written in the factorized form

P̃ = (1− x̃2)(ã0 − ã3 x̃− ã4 x̃
2) . (125)

This natural requirement is satisfied if the coefficients ãi given by (124) obey the following

two constraints

ã1 + ã3 = 0 , ã0 + ã2 + ã4 = 0 . (126)

Interestingly, they are linear in ϵ. By equating ϵ obtained independently from both of them,

we get a quadratic equation for n. It is thus possible to express these two coefficients n and ϵ
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explicitly in terms of the remaining physical parameters, in particular a and l, as

n =
k

4α4C3(a2 − l2)l

[
− 4α3C2(a2 − l2)

ml

ωk

+
(
1− α2C

[
3a2 + 5l2 − 2α2C(a2 − l2)2

]
∓ I1I2

)(
1 + α2C2ω2

) ]
, (127)

ϵ =
k

4α4C3(a2 − l2)2l2

[
4α3C2

(
a4 + 2a2l2 − 3l4 − 2α2C(a2 − l2)3

)ml
ωk

+ 8α4C3ω2(a2 + l2)l2

−
(
1− α2C

[
3a2 + 5l2 − 2α2C(a2 − l2)2

]
∓ I1I2

)(
a2 + 3l2 − α2C(a2 − l2)2

)]
, (128)

where the new constants I1, I2 are convenient shorthands for the square roots

I1 :=

√
1− α2C

[
2a2 + 6l2 − α2C(a2 − l2)2 + 8α2C2ω2l2 + 8αC(a2 − l2)

ml

ωk

]
, (129)

I2 :=
√

1− 4α2C
[
a2 + l2 − α2C(a2 − l2)2

]
.

Equations (127) and (128) explicitly relate the PD parameters n and ϵ to the GP pa-

rameters a and l. Finally, we can substitute them into the expression (124) for ã0 which

yields

ã0 =
k

4α4C3(a2 − l2)2

[
4α4ω2C3(a2 − 4l2)− 4α3C2(a2 − l2)

[
3− 2α2C(a2 − l2)

]ml
ωk

(130)

+
[
3− α2C(a2 − l2)

](
1− α2C

[
3a2 + 5l2 − 2α2C(a2 − l2)2

]
∓ I1I2

)]
.

Recall that the real dimensionless constant C was introduced in (95) as

C = 2k |c|2 , (131)

where the complex parameter c is related to the value of the non-aligned components Φ0 = Φ2

of the electromagnetic field (103).

The character of the spacetime depends on whether ã0 is zero, positive, or negative. If it

is non-zero, the scaling freedom can be used to set ã0 = ±1. Effectively, this also determines

the geometry of the black hole horizons (located at Q = 0) with

ã0 = 1 (132)

corresponding to the usual compact, spherical-like topology. Thus naturally assuming ã0 = 1,

the equation (130) determines the PD parameter k. By substituting the expressions for I1, I2
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(which are square roots) it can be infered that it is the 5-th order polynomial equation, so

that in general it has up to 5 roots. This may be surprising, because in the case of Plebański-

Demiański spacetimes with aligned electromagnetic field it was shown in [14, 15] that for

given parameters m, a, l, α there is only one unique solution for k, n, ϵ, namely

k =
1 + 2α

l

ω
m− 3α2 l

2

ω2
(e2 + g2)

ω2

a2 − l2
+ 3α2 l2

, (133)

n =
ω2k

a2 − l2
l − α

a2 − l2

ω
m+ α2 l

a2 − l2

ω2
(ω2k + e2 + g2), (134)

ϵ =
ω2k

a2 − l2
+ 4α

l

ω
m− α2 a

2 + 3l2

ω2
(ω2k + e2 + g2). (135)

In the present more general case, we have up to 5 roots. However, there is actually no

contradiction because in the limit |c| → 0, four of these roots diverge (or disappear).

This is nicely seen in Fig. 1 which plots all the admitted solutions for the PD parameters

k,−n, ϵ as functions of the parameter |c|. It is clearly seen that only one solution remains

finite as |c| → 0, denoted in Fig. 1 by the Roman number I (the solid colored line). It

corresponds to the upper (minus) sign in front of I1I2 in the expressions (127), (128), (130)

in the limit C → 0. Moreover, such a finite solution exactly agrees with the expressions

(133)–(135) for the Plebański-Demiański black holes of algebraic type D [13] in the Griffiths-

Podolský representation (see Eqs. (14)–(16) in [14], and Eqs. (16.15)–(16.17) in [2]) in case

of vacuum (e = 0 = g, Λ = 0). The role of the other four classes of solutions, denoted as II,

III, IV, V, has to be understood better, but this exceeds the scope of the current work.
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FIG. 1: Graphs showing the dependence of the Plebański-Demiański parameters k, −n, ϵ on |c|,

calculated from (127), (128), (130), plotted in symmetric logarithmic scale. The Roman numbers

I-V label different 5 possible roots. Colored solid lines represent the solutions with finite real limits

as |c| → 0 (these are the upper lines denoted as I), while the dashed lines represent the roots of

(127), (128), (130) which either diverge or are complex in the |c| → 0 limit. Notice also that the

roots IV and V occur only in a small restricted interval of |c| ≠ 0. The specific fixed values of the

physical parameters are m = 2.2, a = 1.1, l = 0.2, ω = 1, α = 0.14.

Now, taking this finite solution of (127), (128), and (130) with (132), the metric func-

tion P̃ simplifies to P̃ = (1− x̃2)(1− ã3 x̃− ã4 x̃
2). The final simple step is to introduce the

spherical-like coordinate θ by x̃ = cos θ, so that the metric (121) takes form

ds2 =
1

Ω2

[
− Q
ϱ2

(
dt−

[
a sin2 θ + 2(l + ω x0)(1− cos θ)

]
dφ

)2

+
ϱ2

Q
dr2

+
ϱ2

P̃
dθ2 +

P̃
ϱ2

sin2 θ
(
a dt−

[
(r + r0)

2 + (a+ l + ω x0)
2
]
dφ

)2
]
, (136)

30



with the metric functions

P̃(θ) = 1− ã3 cos θ − ã4 cos
2 θ , (137)

Q(r) = b0 + b1 r + b2 r
2 + b3 r

3 + b4 r
4 , (138)

ϱ2(r, θ) = (r + r0)
2 + (a cos θ + l + ω x0)

2 , (139)

where the coefficients are explicitly given by (124), (96), (97), (100). The conformal factor

Ω2(r, θ) is determined by (92), (119), that is

Ω2 =
[
1− α

ω
(a cos θ + l)r

]2
+ 2α2C

[
r2 − (a cos θ + l)2

]
+ 2α2C

(
2α2C − ϵ

ω2k

)
(a cos θ + l)2 r2 (140)

+
4α2C

(1 + α2ω2C2)ω2k

[
(m+ αω Cn)(a cos θ + l) + (n− αω Cm) r

]
(a cos θ + l) r .

The non-aligned components (103) of the electromagnetic field now read

Φ0 = Φ2 = α c
a

ω

√
P̃Q

(r + r0) + i (a cos θ + l + ω x0)

sin θ

Ω
, (141)

while the aligned component Φ1 is obtained from (104) by the substitution ω x = a cos θ + l,

Φ1 =
1

4α c̄ sin θ

ω

a

Ω2

[(r + r0) + i (a cos θ + l + ω x0)]2
(142)

×
[
(a cos θ + l + ω x0)

2
( −Ω,r

a cos θ + l + ω x0

)
,θ
+ i (r + r0)

2
( Ω,θ

r + r0

)
,r

]
.

The corresponding potential 1-form A follows from (105) by the same substitution, namely

A =
1

4α c̄

ω

a

[
Ω,r

a dt− [(r + r0)
2 + (a+ l + ω x0)

2] dφ

(r + r0) + i (a cos θ + l + ω x0)
(143)

+
iΩ,θ

sin θ

dt− [a sin2 θ + 2(l + ω x0)(1− cos θ)] dφ

(r + r0) + i (a cos θ + l + ω x0)
+ Ωdφ

]
+A0 .

There is also a gauge freedom in choosing A0 such that dA0 = 0. For example,

A0 = − 1
4α c̄

ω
a
dφ removes the apparent divergence of A as α → 0, |c| = const.

It is important to note what role the twist parameter ω plays in this solution. In [19]

we showed for the Plebański-Demiański spacetime that, if at least one of the parameters a

and l is non-zero, then ω can be chosen arbitrarily and it represents just the rescaling of

the acceleration parameter α. As our case is somewhat analogous, the interpretation of the

parameter ω remains the same. The case when both a and l are zero is not considered in

this work, and it is postponed to [51].
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There also exists an alternative, closely related compact form of the metric for this large

class of black hole solutions. It is obtained by performing a simple shift of the coordinate r

and reparametrization of the NUT constant to l̃ such that

r̃ := r + r0 , l̃ := l + ω x0 . (144)

The metric (136) thus simplifies to

ds2 =
1

Ω2

[
− Q
ϱ2

(
dt−

[
a sin2 θ + 2l̃(1− cos θ)

]
dφ

)2

+
ϱ2

Q
dr̃2

+
ϱ2

P̃
dθ2 +

P̃
ϱ2

sin2 θ
(
a dt−

[
r̃ 2 + (a+ l̃ )2

]
dφ

)2
]
, (145)

where

ϱ2(r̃, θ) = r̃2 + (a cos θ + l̃ )2, (146)

Such metric is exactly the Griffiths-Podolský general form of type D black holes with

(aligned) Maxwell field, see Eq. (16.18) in [2], but the 1-form potential is now more compli-

cated and given by

A =
1

4α c̄

ω

a

[
Ω,r̃

a dt−
[
r̃ 2 + (a+ l̃ )2

]
dφ

r̃ + i (a cos θ + l̃ )
(147)

+
iΩ,θ

sin θ

dt−
[
a sin2 θ + 2l̃(1− cos θ)

]
dφ

r̃ + i (a cos θ + l̃ )
+ Ωdφ

]
+A0 .

Notice that this explicit form of the electromagnetic field involves (in the numerators) exactly

the 1-forms which appear in the metric (145).

The constants r0 and x0, related to the charges e and g via (113), are thus removed from

the metric (145) and its function ϱ2, and also from the potential (147). However, they are

contained implicitly in the remaining metric functions P̃ , Q and Ω2 because it is necessary to

replace the auxiliary parameter l by l̃ − ω x0. They also appear in the equations for ϵ, n and

k (see (127), (128) and (130)) which additionally complicates the corresponding formulas.

The expression for Q(r̃) and for Ω2(r̃, θ) become even more complicated by the substitution

r = r̃ − r0 in the quartic (138) and in (140), respectively. Because of these complications,

we do not consider this form in the general case, only in some of the special subcases.
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VIII. IMPORTANT PARTICULAR CASES

In previous Sections we derived the new class of solutions to the Einstein-Maxwell field

equations of algebraic type D with a non-aligned electromagnetic field, and we presented it

in various metric forms. This general solution is quite complicated, so it may be illustrative

to consider now its particular cases. After understanding the main features of these cases,

we will return to the investigation of the most general situation in the final Section X.

A. No acceleration (α = 0, |c| = const.): Kerr-Newman-NUT

First, we will focus on spacetimes with zero acceleration parameter, α = 0 while keeping

the complex parameter c = const. The conformal factor (140) becomes simply Ω = 1, and

the coefficients ai, bi, given by (96)–(97), reduce to

a0 = k , a1 = 2
n

ω
, a2 = −ϵ , a3 = 0, a4 = 0 , (148)

b0 = ω2k , b1 = −2m, b2 = ϵ , b3 = 0 , b4 = 0 . (149)

The electromagnetic field (141), (142) simplifies to

Φ0 = 0 = Φ2 , Φ1 =
1
2
(e+ i g)[

(r + r0) + i (a cos θ + l + ωx0)
]2 , (150)

see also (118) with (119). In such a case, the two eigendirections of the electromagnetic field

are both aligned with the two (double degenerate) PNDs of the Weyl tensor.

Let us now employ the expressions (127), (128), (130) to find the PD coefficients n, ϵ, k.

Taking the limit α → 0, c = const., we derive that the only possible finite solution is

n = l , ϵ = 1 , ω2k = a2 − l2 , (151)

see also the expressions (134), (135), (133) for α = 0, |c| = const. Moreover, P̃ = 1 because

ã3 = 0 = ã4 due to (124) and (148).

Finally, performing the shift (144) and introducing new mass and NUT parameters as

m̃ := m+ r0 , l̃ := l + ω x0 , (152)

we obtain the metric in the form (145) with Ω = 1 = P̃ , that is

33



ds2 =− Q
ϱ2

(
dt−

[
a sin2 θ + 2l̃ (1− cos θ)

]
dφ

)2

+
ϱ2

Q
dr̃2

+ ϱ2dθ2 +
sin2 θ

ϱ2

(
a dt−

[
r̃2 + (a+ l̃)2

]
dφ

)2

, (153)

where

ϱ2 = r̃2 + (a cos θ + l̃)2,

Q = a2 − l̃2 + e2 + g2 − 2m̃ r̃ + r̃2, (154)

Φ0 = 0 = Φ2 , Φ1 =
1
2
(e+ i g)[

r̃ + i (a cos θ + l̃)
]2 .

Actually, for the derivation of Q we have employed the identity(
r20 + ω2x20

)
+ 2(mr0 + lω x0) = e2 + g2. (155)

This can be proven by the direct evaluation of (100), in which the coefficients (99) for

α = 0, |c| = const. are simplified to

A =
4|c|2

1− 4|c|2
l , B =

4|c|2

1− 4|c|2
m, R =

4|c|2

1− 4|c|2
√
m2 + l2 . (156)

Indeed,(
r20 + ω2x20

)
+ 2(mr0 + lω x0) =

8|c|2

(1− 4|c|2)2
[
m2 + l2 +

√
m2 + l2 (m cos β + l sin β)

]
,

(157)

which is the same expression as for the identity (114), that is

e2 + g2 =
1

4|c|2
(
r20 + ω2x20

)
. (158)

The metric (153), (154) is exactly the usual form of the Kerr-Newman-NUT black hole

with an aligned electromagnetic field. This also demonstrates that turning off the accelera-

tion parameter α while keeping |c| = const. also turns off the non-aligned part of the elec-

tromagnetic field Φ0,Φ2. The aligned part Φ1 is characterized by two parameters e and g,

which are the electric and magnetic charges of the black hole. It justifies the introduction

of these parameters in Section VI.

Let us discuss the role of the complex parameter c in this subcase. As we mentioned, the

non-aligned part vanishes in this limit. However, the parameter |c| enters the expressions
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for A, B and R in (156), and thus the charges e and g. This allows to say that in this limit

the parameter c represents the charges of a black hole. However, generally this parameter

also enters the non-aligned part of the electromagnetic field, so to properly interpret the role

of c in other special cases, a more careful analysis must be performed.

B. No twist (ω = 0): Alexeev-Garcia and Van den Bergh-Carminati

The static subcase is not so straightforward, as one has to take the ω → 0 limit in the

original metric (90) while keeping ωn = const. Because of this complication, we postpone it

for the separate work [51] in which we will show that there is a one-to-one correspondence

between the static limit of our solution and the Van den Bergh-Carminati solution found in

[27], as given here by the metric (1) that is equivalent to (2). Moreover, our case with non-

zero r0 corresponds to the hj ̸= 0 subcase, while the case r0 = 0 corresponds to h = 0 = j

subcase of [27]. The relation to the solution by Alexeev and Garcia [28] will also be presented

in [51].

C. Special non-aligned electromagnetic field (e = 0 = g)

Let us recall (cf. Section VI) that the electromagnetic field is determined by 3 parameters,

namely |c| and two angular parameters β, γ representing specific duality rotations (115),

(116) which “mix” the charges e, g and the related parameters r0, ω x0. For the special

choice β = β0 given by (101), that is for

tan β0 =
n − αωmC

m+ αω nC
, (159)

the coefficients r0 and ω x0 are both zero, and this is equivalent to vanishing of both e and g,

r0 = 0 = ω x0 ⇔ e = 0 = g , (160)

see (112), (113) for |c| ≠ 0. This considerably simplifies the metric, preserving the existence

of both aligned and non-aligned components of the electromagnetic field Φ1 ̸= 0, Φ0 = Φ2 ̸= 0.
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Indeed, the metric (136) reduces to

ds2 =
1

Ω2

[
− Q
ϱ2

(
dt−

[
a sin2 θ + 2l (1− cos θ)

]
dφ

)2

+
ϱ2

Q
dr2

+
ϱ2

P̃
dθ2 +

P̃
ϱ2

sin2 θ
(
a dt−

[
r2 + (a+ l)2

]
dφ

)2
]
, (161)

where Ω2 is given by (140),

P̃ = 1−
( a
ω
a3 +

4al

ω2
a4

)
cos θ − a2

ω2
a4 cos

2 θ ,

Q = b0 + b1 r + b2 r
2 + b3 r

3 + b4 r
4 , (162)

ϱ2 = r2 + (a cos θ + l)2 ,

with the coefficients ai, bi determined by (96), (97), and n, ϵ, k, C by (127)–(132). Actually,

this is the metric (145) because (144) simplifies to trivial relations

r = r̃ , l = l̃ . (163)

In fact, this metric form is the same as for the Griffiths-Podolský form of type D black

holes, see Eq. (16.18) in [2]. But the Maxwell field is now extended to non-aligned compo-

nents (141), (142),

Φ0 = Φ2 =
αc

Ω

a

ω

√
P̃Q sin θ

r + i (a cos θ + l)
, (164)

Φ1 =
1

4α c̄ sin θ

ω

a

Ω2

[r + i (a cos θ + l)]2

[
(a cos θ + l)2

( −Ω,r

a cos θ + l

)
,θ
+ i r2

(Ω,θ

r

)
,r

]
. (165)

Such electromagnetic field is described by (147) which due to the relation (163) reads

A =
1

4α c̄

ω

a

[
Ω,r

a dt−
[
r 2 + (a+ l)2

]
dφ

r + i (a cos θ + l)
(166)

+
iΩ,θ

sin θ

dt−
[
a sin2 θ + 2l(1− cos θ)

]
dφ

r + i (a cos θ + l)
+ Ωdφ

]
+A0 .

This e = 0 = g subcase is important for the physical interpretation of the new spacetime,

as now it is easier to set some of the remaining parameters to zero, and to understand

their role (which is rather complicated if e, g are nonzero). This is done in the following

Subsections.
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D. No acceleration (α = 0, |c| = const., e = 0 = g): Kerr-NUT

We can employ the general result derived in Section VIIIA, namely that in the α → 0,

|c| = const. limit the electromagnetic field becomes aligned. Moreover, it follows from (150)

that for e = 0 = g the field completely vanishes, Φ0 = Φ2 = 0, Φ1 = 0. The corresponding

metric (153) is

ds2 =− Q
ϱ2

(
dt−

[
a sin2 θ + 2l (1− cos θ)

]
dφ

)2

+
ϱ2

Q
dr2

+ ϱ2dθ2 +
sin2 θ

ϱ2

(
a dt−

[
r2 + (a+ l)2

]
dφ

)2

, (167)

where

ϱ2 = r2 + (a cos θ + l)2, Q = a2 − l2 − 2mr + r2, (168)

which is the usual form of the Kerr-NUT black hole, see Eq. (16.23) in [2].

E. No NUT (l = 0, e = 0 = g): New uncharged black holes

In this case, the metric (161) becomes

ds2 =
1

Ω2

[
− Q
ϱ2

(
dt− a sin2 θ dφ

)2

+
ϱ2

Q
dr2 +

ϱ2

P̃
dθ2 +

P̃
ϱ2

sin2 θ
(
a dt− (r2 + a2) dφ

)2
]
,

(169)

where

Ω2 =
(
1− α

ω
a r cos θ

)2

+ 2α2C
[
r2 +

(
2α2C − ϵ

ω2k

)
a2r2 cos2 θ − a2 cos2 θ

]
(170)

+
4α2C

ω2k

( m+ αω Cn

1 + α2ω2C2
a2r cos2 θ +

n− αω Cm

1 + α2ω2C2
a r2 cos θ

)
,

P̃ = 1− a

ω
a3 cos θ −

a2

ω2
a4 cos

2 θ , (171)

Q = b0 + b1 r + b2 r
2 + b3 r

3 + b4 r
4 , (172)

ϱ2 = r2 + a2 cos2 θ . (173)

As argued in [19], it is possible to choose any value of the twist parameter ω by a suitable

rescaling of the acceleration parameter α. In this particular case, the most natural choice is

ω = a , (174)

37



because this simplifies the metric functions. Indeed, evaluating the complicated square

roots (129) for l = 0 we get very simple expressions I1 = 1− α2a2C, I2 = 1− 2α2a2C, so

that (130) with the upper (minus) sign gives ã0 = k. Equations (132) and (131) thus imply

k = 1 , C = 2|c|2 . (175)

To express (127) and (128), we must expand I1 and I2 to the second order in l and then

perform the limit l → 0. Nevertheless, even in this more involved case we obtain modest

explicit relations

n = −αam 1

I1

(
1− 2|c|2I2

)
,

ϵ = 1− 4α2m2|c|2 I2
I21

− α2a2
1

I2

(
1− 4|c|2I2

)
, (176)

where

I1 = 1− 2α2a2|c|2 ,

I2 = 1− 4α2a2|c|2 , (177)

so that

m+ αω Cn

1 + α2ω2C2
= m

I2
I1
,

n− αω Cm

1 + α2ω2C2
= −α am 1

I1
. (178)

Using these very simple expressions, the coefficients (96), (97) reduce to

a3 = 2αm
1

I1
,

a4 = −α2a2
1

I2

(
1− 4|c|2I2

)
− 4α2m2|c|2 I2

I21
, (179)

(actually, a4 = ϵ− 1, b2 = ϵ), and

b0 = a2 ,

b1 = −2m
I2
I1
,

b2 =
(
1− 4α2m2|c|2 I2

I21

)
− α2a2

1

I2

(
1− 4|c|2I2

)
, (180)

b3 = 2α2m
1

I1

(
1− 4|c|2I2

)
,

b4 = −α2 1

I2

(
1− 4α2m2|c|2 I2

I21

)(
1− 4|c|2I2

)
.
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Therefore, the quadratic metric function P̃(cos θ) in (169) reads

P̃ = 1− 2αm
1

I1
cos θ + α2

[
a2

1− 4|c|2I2
I2

+ 4m2|c|2 I2
I21

]
cos2 θ , (181)

and (miraculously) the quartic Q(r) is factorized as

Q =
[
a2 − 2m

I2
I1
r +

(
1− 4α2m2|c|2 I2

I21

)
r2

] [
1− α2 1− 4|c|2I2

I2
r2

]
. (182)

This factorization enables us to easily calculate the position of the four horizons of this

new family of black holes with non-aligned Maxwell field, namely

r±b =
mI2 ±

√
m2I22 − a2(I21 − 4α2m2|c|2I2)
I21 − 4α2m2|c|2I2

I1 , (183)

r±a = ± 1

α

√
I2

1− 4|c|2I2
. (184)

The former are two black hole horizons, whereas the later are two acceleration horizons.

The conformal factor in (169) is now given by a compact expression

Ω2 =
(
1− αr cos θ

)2
+ 4α2|c|2

(
J r2 + 2m

I2
I1
r cos2 θ − a2 cos2 θ

)
, (185)

where

J(cos θ) := P̃ − (1− 4α2a2|c|2) cos2 θ

= sin2 θ − 2αm
1

I1
cos θ + α2

(
a2

1

I2
+ 4m2|c|2 I2

I21

)
cos2 θ . (186)

It reduces to Ω = 1− αr cos θ when c = 0.

The only Weyl curvature NP component is given by the scalar

Ψ2 = −m Ω2

I21

[
I1

(r + i a cos θ)3

(
I2 − α(r cos θ + i a) + α2(1− 4|c|2I2) i a r cos θ

)
+

4α2m|c|2r2 cos2 θ
(r2 + a2 cos2 θ)(r + i a cos θ)2

]
. (187)

The curvature singularity occurs at r = 0, but only if also θ = π
2
and a ̸= 0. It thus has a

ring structure, similarly as in the Kerr spacetime. When θ ̸= π
2
, it is possible to reach the

region r < 0.

The potential of the Maxwell field (166) is simplified to

A =
1

4α c̄

[
Ω,r

a dt− (r 2 + a2)dφ

r + i a cos θ
+

iΩ,θ

sin θ

dt− a sin2 θ dφ

r + i a cos θ
+ Ωdφ

]
+A0 .
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The nonaligned part of the electromagnetic field is given by

Φ0 = Φ2 = α c
1

Ω

√
P̃Q sin θ

r + i a cos θ
. (188)

Interestingly, it vanishes on the horizons (where Q = 0) and also along the axis of symmetry

(at θ = 0, π). The aligned component is more complicated, namely

Φ1 = α c
B0 +B1 r +B2 r

2 +B3 r
3

I31I2Ω (r + i a cos θ)2
, (189)

in which Bi(cos θ) are the following functions, independent of r,

B0 = a I21I2 cos θ
[
mI2 cos θ − αa2I1(1− i 4αa|c|2) cos2 θ − i a I1

]
,

B1 = a I1
[
− I21I2(1 + cos2 θ) + αmI22 cos

2 θ (4αm|c|2 + I1 cos θ)

+ α2a2I1 cos
2 θ (I1 + 8|c|2I1I2 − 8αm|c|2I2 cos θ)

+ i 3αa I1I2 cos
2 θ (I1 − 4αm|c|2I2 cos θ)

]
, (190)

B2 = I1
[
3αa I2(I1 − αm cos θ)(I1 − 4αm|c|2I2 cos θ) cos θ − i 4α4a4|c|2I21 cos3 θ − iα2a2D cos θ

+ i I2
(
I21 cos θ − 4α2m2|c|2I2 cos θ (1− 2I2 cos

2 θ) + αmI1(1− 3I2 cos
2 θ)

)]
,

B3 = −α
[
αaI2(I1 − αm cos θ)

(
(I21 + 16α2m2|c|4I2) cos2 θ − 4|c|2I1(2αm cos θ − I1 sin

2 θ)
)

+ 4α3a3|c|2I21 (I1 − αm cos θ) cos2 θ − i 4α3a2m|c|2I21I2 cos3 θ + i I2
(
I31 − αmD cos θ

)]
,

where

D = I21
[
1 + 8|c|2I2 + (1− 4|c|2)I2 cos2 θ

]
+ 4αm|c|2I2 cos θ(4αm|c|2I2 cos θ − 3I1). (191)

Now, after we described the general setting for this interesting class of accelerating un-

charged black holes, let us consider several possible limits.

1. Kerr

In the α = 0, |c| = const. subcase we get Ω = 1, P̃ = 1, Q = a2 − 2mr + r2 and

Φ0 = Φ2 = 0, Φ1 = 0. The corresponding metric is simply the Kerr black hole spacetime

with two horizons located at

r±b = m±
√
m2 − a2 , (192)

which has the standard form (167) for l = 0.
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2. Kerr with acceleration

In the c = 0, α = const. subcase the coefficients (177) become I1 = 1 = I2.

The metric functions in (169) thus reduce to the form Ω = 1− αr cos θ ,

P̃ = 1− 2αm cos θ + α2a2 cos2 θ, Q = (a2 − 2mr + r2)(1− α2 r2), and expressions (183),

(184) read

r±b = m±
√
m2 − a2 , r±a = ± 1

α
. (193)

These are the positions of the four horizons for usual accelerating Kerr black hole (rotating

C-metric solution) without electromagnetic field, see [17].

3. Kerr in a magnetic field

In the special limit α → 0, |c| → ∞, such that 2α|c| ≡ B = const., the coefficients I1

and I2 become

I1 = 1− 1

2
B2a2 , I2 = 1−B2a2 . (194)

The metric functions in (169) simplify to

P̃ = 1 +B2
(
m2 I2

I21
− a2

)
cos2 θ , (195)

Q = (1 +B2r2)∆ , (196)

Ω2 = (1 +B2r2)−B2∆cos2 θ , (197)

where

∆ =
(
1−B2m2 I2

I21

)
r2 − 2m

I2
I1

+ a2 . (198)

The two horizons (183) are located at

r±b =
mI2 ±

√
m2I2 − a2I21

I21 −B2m2I2
I1 . (199)

This solution is precisely the new spacetime presented in [52], which represents the Kerr

black hole immersed in an external uniform magnetic field. Such physical interpretation

comes from the fact that for B = 0 we recover the standard Kerr metric. In the m = 0 case,
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after a proper coordinate transformation, one obtains the Bertotti-Robinson spacetime (see

Section II.B in [52]), which is known to describe a uniform electromagnetic field [2]. The

parameter B in this solution stands for the value of the magnetic field. The parameter γ,

entering expressions for Φ0, Φ1, Φ2 (see Eqs. (2.11) and (2.12) in [52]) represents the

duality rotation between the electric and magnetic field. Interestingly, the magnetic field is

weakened and expelled away in the equatorial plane, exhibiting the Meissner effect.

IX. SUMMARY OF THE PARTICULAR CASES AND STRUCTURE OF THE

NEW CLASS

We have presented a new solution, and analyzed its various main subcases. Now let us

summarize the role of each of its physical parameters.

• The parameters m, a, l, α.

Meaning of these parameters seems to be more or less straightforward in various subcases:

m is related to the mass of a black hole, a to its Kerr-like parameter, l to the NUT twist

parameter, and α to the acceleration. However, one has to be careful with the precise

interpretation in the general case. This warning is necessary because even for the classic

Plebański-Demiański spacetime, in the most general case there exist various metric forms

(see [19, 20]), and relation between their physical parameters is complicated. This may lead

to some incorrect statements while considering various special cases. We expect the same

situation to appear here.

• The parameter |c|

This is the new parameter in our class of solutions. Its physical interpretation is not straight-

forward. However, we can say that it is related both to the (electric and magnetic) charges

of a black hole, and to the strength of the external electromagnetic field. This interpretation

comes from two limits. If α = 0, |c| = const., then (as we showed in Section VIIIA) the

non-aligned part disappears and the strength of the aligned part is related to the charges e

and g that depend on |c|. Thus, |c| is related to the charges of a black hole. On the other

hand, if α → 0 and 2α|c| ≡ B = const. with β = βc (see Section VIII E), then the corre-

sponding solution is the Kerr black hole immersed in an external magnetic (or electric) field,
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and in this case |c| is related to the value B of this external electromagnetic field. Moreover,

if |c| = 0 while all other parameters are kept finite, the electromagnetic field vanishes. This

means that |c| is solely related to the electromagnetic field.

• The parameters e and g

These are auxiliary parameters, introduced in (112), and they cannot be considered as

independent ones (instead of them it is possible, without loss of generality, to use only the

parameters |c| and β). Their interpretation is based on the fact that in the limit α = 0,

= const. they are equal to the electric and magnetic charges of the Kerr-Newman-NUT

black hole itself. Thus e and g can be thought of as related to the physical charges of a black

hole. In the general case, however, one should calculate the corresponding fluxes of electric

and magnetic fields to properly identify them, but this lies beyond the scope of this work.

• The parameter β

This parameter appears in the relations (100), and represents a duality rotation between the

electric and magnetic charges of a black hole itself, as r0 and x0 are related to the charges

e and g by (113).

• The parameter γ

The role of this parameter seems to be quite straightforward because it is the phase of

the complex parameter c, see (111). It thus directly enters in the expressions (141), (142)

for Φ0, Φ1, Φ2, and can be interpreted as the duality rotation parameter of the external

electromagnetic field.

In conclusion, it is important to emphasize that the above parametrization, in which we

have presented this large class of new solutions, need not be the best one for the physical

interpretation, and additional work in finding more convenient parametrization can/must

be done. Nevertheless, from the analysis of the special cases we may conclude that the most

general solution can be interpreted as representing a massive, charged, accelerating black

holes with the Kerr and NUT twist parameters, immersed into an external electromagnetic

field. This external field is the reason why the electromagnetic field is not aligned, as

a distinctive feature from the Kerr-Newman family, generalized in the whole Plebański-

Demiański class. Interestingly enough, the gravitational field remains of algebraic type D.
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X. MAIN PHYSICAL PROPERTIES OF THE GENERAL CLASS

The metric functions in the most general case (136)–(140) are quite complicated. Explicit

investigation has been done only in particular cases (as discussed above). However, the most

general case also requires physical analysis, which we are going to do now using also numerical

methods. Moreover, the new solution differs from the Plebański-Demiański class in the form

of the metric functions Q, P̃ , Ω, and in the non-trivial structure of the electromagnetic field.

In this section, we investigate both of these features.

A. Positions of the horizons

Here we aim to investigate how the horizons of this new class of black holes depend on

the key parameter |c|. For this, we employ the form of the metric (136) with Ω2(r, θ) given

by (140), the function Q(r) is given by (138), the function P̃ is given by (137) with ã3 and ã4

determined by (124), the parameters r0 and x0 are given by (100), and n, ϵ, and k, entering

(96)–(97), are related to the physical parameters by (127), (128), and (130), respectively.

We choose this form of the metric because the metric function Q does not depend on the

parameter β, so our results made in this Subsection will be valid for all β.

First of all, we have to solve Eqs. (127), (128), (130) for k, n, ϵ. Their dependence

on |c| is presented on the plots in Fig. 1 in Section VII. Generally, there are up to 5 roots.

However, only one of them gives a finite real limit of k, n, ϵ as c→ 0 (namely the solid lines

denoted as I in Fig. 1).

This root (the curves I in Fig. 1) in the c→ 0 limit corresponds to the Plebański-

Demiański solution, with the unique form (133)–(135). The corresponding positions of the

horizons, given by the roots Q(r) = 0 determined by (138) and (97), are shown in Fig. 2.

First of all, we note that, as in the case of the Plebański-Demiański solution, this more gen-

eral solution also has 4 roots. However, in the PD case it is known that two of the roots do

not depend on charge (see [17]), namely the acceleration horizons r±a . In our case it appears

that they depend on the parameter |c| (these are the orange and purple curves in Fig. 2).

The second difference is that in the Plebański-Demiański spacetime there are two black hole

horizons at r±b = m±
√
m2 + l2 − a2 − e2 − g2, see [17]. As e2 + g2 increases, these horizons

converge and merge to one extremal horizon at e2 + g2 = m2 + l2 − a2 located at re = m.
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FIG. 2: Plots showing the positions of horizons depending on |c| for the branch I of Fig 1 (plotted in

symmetric logarithmic scale). Different colors show different horizons, namely blue and red curves

represent the outer and inner black hole horizons r±b , respectively, while the purple and orange

curves represent the outer and inner acceleration horizons r±a (notations are taken from [17, 18]).

The parameters employed here are m = 2.2, a = 1.1, l = 0.2, α = 0.14, ω = 1.

In our case of the non-aligned electromagnetic field, these two roots are also present (the

red and blue curves). However, instead of converging with an increase of the parameter |c|,

they diverge.

Moreover, there are distinct 4 roots for k, n, ϵ, as depicted in Fig. 1. The branches

IV and V give rise to the function Q that does not have any real roots for a given set of

parameters, so we will not consider them here because these spacetimes have no horizons.

Solutions for the branches II and III are drawn in Fig. 3. Note that both these branches

give finite positions of the 4 horizons in the limit c → 0, despite the fact that the PD-like

coefficients k, n, ϵ diverge in this limit (see Fig. 1). However, as can be shown by the analysis

of the electromagnetic field, these branches possess non-trivial poles. Such configurations

are not physically expected, and thus the physical relevance of the branches II and III is

questionable.
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FIG. 3: Plots showing the positions of horizons depending on |c| for the branches II and III of

Fig. 1. Different colors show different horizons, namely blue and red curves represent the outer

and inner black hole horizons r±b , while the purple and orange curves represent the outer and inner

acceleration horizons r±a . Notice a nice and uniform ordering r+a > r+b > r−b > r−a for all values of

|c|. The parameters are m = 2.2, a = 1.1, l = 0.2, α = 0.14, ω = 1.

B. Cosmic strings at θ = 0, π causing the acceleration

The metric (145), which is equivalent to (136), is convenient for explicit analysis of the

regularity of the poles/axes located at θ = 0 and θ = π, respectively. The spatial axes of

symmetry are associated with the Killing vector field ∂φ, and identified as zeros of the

function sin θ in the metric (145). The range of the spatial coordinate θ is thus constrained

to θ ∈ [0, π].

Apart from 7 physical parameters in the new class of solutions, namely m, a, l, α, |c|, β, γ,

there is also eighth free parameter, namely the conicity C hidden in the range of the angular

coordinate

φ ∈ [0, 2πC) , (200)

which has not yet been specified. We will now demonstrate its physical meaning by relating

it to deficit (or excess) angles of the cosmic strings (or struts). Their internal tension is the
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physical source of the acceleration of the black holes. These are basically topological defects

associated with conical singularities around the two distinct axes.

Let us start with investigation of the first axis of symmetry θ = 0 in the metric (145).

Consider a small circle around it given by θ = const., with the range of φ given by (200),

assuming fixed t and r. The invariant length of its circumference is
∫ 2πC

0

√
gφφ dφ, while its

radius is
∫ θ

0

√
gθθ dθ. The axis is regular if their fraction in the limit θ → 0 is equal to 2π.

However, in general we obtain

f0 := lim
θ→0

circumference

radius
= lim

θ→0

2πC
√
gφφ

θ
√
gθθ

. (201)

For the metric (145), the relevant metric functions are

gφφ =
1

Ω2ϱ2

[
P̃ sin2θ

[
r̃ 2 + (a+ l̃ )2

]2 −Q
[
a sin2 θ + 2l̃(1− cos θ)

]2 ]
,

gθθ =
ϱ2

Ω2 P̃
, where ϱ2 = r̃2 + (a cos θ + l̃ )2. (202)

For small values of θ, the second term in gφφ proportional to Q becomes negligible com-

pared to the first term proportional to P̃ , so that we obtain gφφ ≈ P̃
[
r̃ 2 + (a+ l̃ )2

]2 θ2

Ω2ϱ2
.

Evaluation of the limit (201) using (137) gives

f0 = 2πC P̃(0) = 2πC (1− ã3 − ã4) , (203)

where the coefficients ã3 and ã4 are explicitly given by (124). The axis θ = 0 in the metric

(145) can thus be made regular by the unique choice

C = C0 ≡
1

1− ã3 − ã4
. (204)

Notice that for vanishing acceleration this condition is simply C0 = 1 because ã3 = 0 = ã4

for α = 0, see Section VIIIA.

Analogously, we can regularize the second axis of symmetry θ = π. However, there is now

a conceptual problem that the metric function gφφ (and thus the circumference) does not

approach zero in the limit θ → π due to the presence of the term 2l̃(1− cos θ) → 4l̃. This

can be resolved by first applying the transformation of the time coordinate

tπ ≡ t− 4l̃ φ . (205)
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The metric (145) then becomes

ds2 =
1

Ω2

[
− Q
ϱ2

(
dtπ −

[
a sin2 θ − 2l̃(1 + cos θ)

]
dφ

)2

+
ϱ2

Q
dr̃2

+
ϱ2

P̃
dθ2 +

P̃
ϱ2

sin2 θ
(
a dtπ −

[
r̃ 2 + (a− l̃ )2

]
dφ

)2
]
, (206)

i.e.,

gφφ =
1

Ω2ϱ2

[
P̃ sin2θ

[
r̃ 2 + (a− l̃ )2

]2 −Q
[
a sin2 θ − 2l̃(1 + cos θ)

]2 ]
. (207)

For θ → π we thus get gφφ ≈ P̃
[
r̃ 2 + (a− l̃ )2

]2 (π − θ)2

Ω2ϱ2
. The radius of a small circle around

the axis θ = π is
∫ π

θ

√
gθθ dθ, so that the fraction

fπ := lim
θ→π

circumference

radius
= lim

θ→π

2πC
√
gφφ

(π − θ)
√
gθθ

, (208)

is

fπ = 2πC P̃(π) = 2πC (1 + ã3 − ã4) . (209)

The axis θ = π in the metric (206) is thus regular for the unique choice

C = Cπ ≡ 1

1 + ã3 − ã4
, (210)

(which for vanishing acceleration α is simply Cπ = 1). With such a choice, there is a deficit

angle δ0 (conical singularity) along θ = 0, namely

δ0 ≡ 2π − f0 =
4π ã3

1 + ã3 − ã4
. (211)

The tension in the corresponding cosmic string along θ = 0 pulls the black hole, causing its

uniform acceleration α.

Complementarily, when the first axis of symmetry θ = 0 is made regular by the choice

(204), there is necessarily an excess angle δπ along the second axis θ = π, namely

δπ ≡ 2π − fπ = − 4π ã3
1− ã3 − ã4

. (212)

This represents the cosmic strut along θ = π pushing the black hole.

Both the axes θ = 0 and θ = π can be simultaneously regular if and only if ã3 = 0. In the

famous C-metric this necessarily requires α = 0. In view of (124), for our new type of black

holes this can be achieved if the physical parameters satisfy the constraint

a

ω2
(ω a3 + 4l a4) = 0 . (213)
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For l = 0, e = 0 = g it requires a3 = 0, and using (179) we obtain the condition

αm = 0. This is achieved in the non-acceleration subcases α = 0, both for the Kerr black

holes, i.e. (153) with l̃ = 0, but interestingly also for the Kerr-Bertotti-Robinson black holes

(195)–(197) immersed in the external magnetic field [52].

C. Structure of the electromagnetic field

To give a more detailed geometric interpretation of the new solution, it is also useful to

find the null eigendirections of the electromagnetic field, and to clarify their relation to the

PNDs of the Weyl tensor. The standard way of finding them is to conduct a null rotation

of the PND tetrad (102),

l′ = l , m′ = m+K l , k′ = k+K m̄+ K̄m+KK̄ l , (214)

and to find the specific values of K such that the new value of the field component

Φ′
0 = K2Φ2 + 2K Φ1 + Φ0 (215)

is zero, Φ′
0 = 0. In general, this equation has 2 complex roots,

K± = −κ±
√
κ2 − 1 , (216)

where the complex parameter κ is

κ := Φ1/Φ0 . (217)

These two values of K± identify the two null eigendirections of the electromagnetic field

k± = k+K± m̄+ K̄±m+K±K̄± l of the Maxwell field. In the case Φ0 = 0, implying

also Φ2 = 0, both the Weyl tensor PNDs k and l are also the null eigendirections of the

electromagnetic field (the fields are aligned as, e.g., for the Kerr-Newman black holes)

It is convenient to introduce alternative quantities describing geometrically how the PNDs

of the Weyl tensor and the Faraday null eigendirections differ. Using the orthogonal basis

e0 = (k + l)/
√
2, e1 = (k − l)/

√
2, e3 = (m + m̄)/

√
2 and e2 = (m − m̄)/

√
2i, calculated

from the null tetrad (102), we express k′ in the form

k′ =
1 +KK̄√

2
e0 +

1−KK̄√
2

e1 + i
K̄ −K√

2
e2 +

K + K̄√
2

e3 . (218)
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One obtains a privileged spatial vector e⃗ by subtracting the timelike part from k′,

e⃗ =
1−KK̄√

2
e1 + i

K̄ −K√
2

e2 +
K + K̄√

2
e3 . (219)

Its norm is

||⃗e|| = 1 +KK̄√
2

. (220)

Now we define a parameter δ measuring an angle between e⃗ and the privileged spatial

vector e1, which in our case is the radial vector

e1 =
Ω
√
Q
ϱ

∂r , (221)

and a parameter ψ measuring an angle between different polar projections of e⃗, namely

cos δ :=
e⃗ · e1
||⃗e||

=
1−KK̄

1 +KK̄
, ψ := argK . (222)

We can prove an important relationship for the two eigendirections roots K± given by

(216), corresponding to the angles δ± and ψ±, namely that

cos δ+ = − cos δ− , ψ+ = 2π − ψ− . (223)

Indeed, from (222) we get

cos δ+ + cos δ− =
1−K+K̄+

1 +K+K̄+

+
1−K−K̄−

1 +K−K̄−
= 2

1−K+K̄+K−K̄−

(1 +K+K̄+)(1 +K−K̄−)
. (224)

Employing specific values of K± from (216), we infer that

K+K−K̄+K̄− =
(
κ−

√
κ2 − 1

)(
κ+

√
κ2 − 1

)(
κ̄−

√
κ̄2 − 1

)(
κ̄+

√
κ̄2 − 1

)
=

(
κ2 −

(√
κ2 − 1

)2)(
κ̄2 −

(√
κ̄2 − 1

)2)
= 1 , (225)

so that from (224) we indeed obtain cos δ+ + cos δ− = 0.

This means geometrically that the two eigendirections of the electromagnetic field are

mutually symmetric with respect to a plane spanned by PNDs of the Weyl tensor. As can

be verified, this result is the consequence of the fact that Φ0 = Φ2, which, in turn, is the

consequence of the axial symmetry of the corresponding solution.
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Let us move to visualization of the electromagnetic field structure, focusing on a solution

e = 0 = g (equivalent to β = β0). We can do this simplification because the parameters e

and g are related to charges of a black hole itself, while the new feature of this class (namely,

the non-alignment of the electromagnetic field) remains even if e = 0 = g. For this analysis,

we will use the quantities δ and ψ introduced in (222), calculated from (141)–(142). Their

dependence on r and θ is plotted in Fig. 4 (for the branch I of Fig. 1).

FIG. 4: Values of the angles δ (left panel) and ψ (right panel), defined by (222), characterizing how

the spacelike part of the eigendirections of the electromagnetic field is rotated relative to the space-

like part of the Weyl tensor PNDs for the branch I of Fig. 1. Black circles represent horizons, dashed

curves represent ergoregions. The darkest blue means zero value, so that in such regions with δ = 0

the fields are aligned. The parameters are m = 2.2, a = 1.1, l = 0.2, |c| = 0.2, α = 0.14, ω = 1.

Note that these plots show the angles δ and ψ for only one null eigendirection of the

electromagnetic tensor. Analogous plots for the second eigendirection are not required, as

they are symmetric due to Eq. (223). As we mentioned in Sec. VI, on the horizons and on

the poles there is δ = 0. This means that the corresponding electromagnetic eigendirections

become aligned with the PNDs of the Weyl tensor there. This was expected because Φ0 and

Φ2 given by (141) are zero where either Q = 0 or sin θ = 0 are zero.
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Such analysis applies to branch I of Fig. 1. One may also be interested in what happens

in other branches, describing new unexpected solutions. For branch III (shown in Fig. 5)

we observe that it possesses the existence of additional non-trivial zeros of P̃ (depicted by

thick dashed lines). Such solutions are thus not expected to describe realistic black holes.

FIG. 5: Values of the angles δ (left panel) and ψ (right panel), defined by (222), char-

acterizing how the spacelike part of eigendirections of the electromagnetic field is rotated

relative to the spacelike part of the Weyl tensor PNDs for the branch III of Fig. 1.

Black circles represent horizons, dashed curves represent ergoregions. The parameters are

m = 2.2, a = 1.1, l = 0.2, |c| = 0.2, α = 0.14, ω = 1.

XI. CONCLUSIONS

In this work, we constructed a new class of exact twisting solutions to the Einstein-

Maxwell equations of algebraic type D with a non-aligned electromagnetic field. In addition

to obtaining it by an integration of the field equations, we significantly elaborated on the

construction of its several coordinate systems and parameterizations. It turned out that the

most useful coordinates for the physical interpretation are the quasipolar ones, in particular

(136). The parameters describing this solution are the mass parameter m, the acceleration

parameter α, the Kerr parameter a, the NUT parameter l, the “charge” parameter |c|, and
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the angles β and γ generating duality rotations between the electric and magnetic parts of

the aligned part of the electromagnetic field.

From the analysis of the special cases we have found that the interpretation of some of

these parameters is more involved, and admits rich structure of black holes. For example, if

α → 0 while |c| is kept constant, then one obtains a Kerr-Newman-NUT black hole, and c

represents the value of the charges of a black hole itself. However, if α → 0 while α|c| is kept

constant, one obtains a novel class of black holes immersed in a uniform magnetic field B

(see [52]). In this case, |c| is related to the strengths of the external field. Also, for any

nonzero α, in the limit |c| → 0 the electromagnetic field vanishes. This allows us to conclude

that in the most general case, |c| is related solely to the electromagnetic field, and represents

its strength. Also, explicit analysis has shown that the parameter γ represents the duality

rotation of the whole electromagnetic field, while β represents duality rotation between the

electric and magnetic charges of a black hole itself.

Even though the parametersm, a, l, and α are related to mass, Kerr and NUT twists, and

acceleration, we have to warn that they are not always equal to them. A similar situation

exists for the Plebański-Demiański class, and for various other metric forms, in which the

corresponding parameters are different [19, 20]. This is a crucial point, because by setting

some parameter to zero (in a given metric form) does not necessarily erase the corresponding

genuine physical parameter. A search of various metric forms and reparametrizations is thus

still required for this solution. This will allow for a better understanding of the physical

properties of the new class.

In addition, we have analyzed various physical properties of the general solution. It turned

out that for a given set of m, a, l, α, c there exist up to 5 different types of black holes

with different positions of horizons, and only one of them corresponds to the accelerating

Kerr-NUT solutions in the c→ 0 limit. This fact may indicate that either several black hole

branches exist, or that this is a spurious property of the quasipolar coordinates and specific

parametrization we have chosen. This also has to be investigated in future works.

Supplemental material

Main expressions and derivations related to this paper are contained in the supplementary

Wolfram Mathematica file.
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