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Abstract

We present a large family of twisting and expanding solutions to the Einstein-Maxwell equations
of algebraic type D, for which the two double principal null directions (PNDs) of the Weyl tensor
are not aligned with the null eigendirections of the Faraday tensor. In addition to systematically
deriving this new class, we present its various metric forms and convenient parameterizations. We
show that in Boyer-Lindquist-type coordinates these solutions depend on 7 parameters, namely
the Kerr and NUT (Newman-Unti-Tamburino) twist parameters a and [, mass parameter m, ac-
celeration «, strength of the Maxwell field |c|, and angular parameters (3, that represent two
duality rotations of the Faraday tensor, which include the rotation between the electric and mag-
netic charges generating the aligned part of the Maxwell field. This coordinate parameterization,
analogous to the Griffiths-Podolsky form of the Plebanski-Demianski solutions, allows us to per-
form various limits, explicitly identify the subcases, and determine the physical interpretation of
the new class. Interestingly, by considering the limit with no acceleration (o« — 0), one obtains
either the famous Kerr-Newman-NUT black holes (if the parameter |c| remains constant) or the
novel Kerr-Bertotti-Robinson black holes, announced recently in our work arXiv:2507.05199 (if
|c| = oo while a|c| = const.). We may thus conclude that this new class of spacetimes represents
twisting charged accelerating black holes, immersed in an external magnetic (or electric) field. In
the non-twisting subcase, we obtain the previously known solutions of Alexeev-Garcia and Van den

Bergh-Carminati.
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I. INTRODUCTION

Since the discovery and understanding of the Schwarzschild solution, there has been a
great interest in exact solutions describing black holes. Different possible generalizations of
the Schwarzschild spacetime, describing charged (Reissner-Nordstrém) and rotating (Kerr
and Kerr-Newman) black holes were found (for their reviews see, e.g., [1, 2]). All these
solutions are of special physical interest because they describe unique asymptotically flat
spacetimes. Indeed, these are the only asymptotically flat black hole solutions to the Einstein-
Maxwell equations with specific symmetries (according to the uniqueness theorems). In
addition, these solutions are of algebraic type D, and the two null eigendirections of the
electromagnetic field are aligned with both the (double-degenerate) PNDs of the Weyl tensor.
Up to the moment when the Kerr and the Kerr-Newman solutions appeared in the 1960s,
some other solutions were also known that satisfied all the properties mentioned above,
except the global asymptotical flatness (namely the C-metric [3] and the Taub-NUT solution
[4]). This initiated (along with purely mathematical interest) attempts to find all solutions
satisfying the aforementioned properties except of the asymptotical flatness. An extensive
work on this topic was done to fully integrate the Einstein-Maxwell equations for the case of
type D spacetimes with a completely aligned electromagnetic field [5-8] (in [9, 10] this class
was denoted as the D class). The most general such solution was found in [11, 12]. However,
due to its great complexity, it was not physically fully interpreted. Nevertheless, it was
shown that the only expanding spacetimes within this class are contained in the Plebanski-
Demianiski solution [13] (see also its revised versions [14-18] and very recent analysis [19, 20]).

Along with the idea of violating the asymptotical flatness condition, a question of what
happens if, in addition, one does not require the alignment condition of all the PNDs of the
Faraday and Weyl tensors. The search was primarily focused on the case such that only one
of the eigendirections of the Faraday tensor F,z is not aligned with the PNDs of the Weyl
tensor Cyp,5. A strong interest in such a setup was initiated by the Kundt-Triimper theorem

[21], which states that if the special condition 3W, = £2|®; |? for the Newman-Penrose scalars



is not satisfied, then (at least one of) the optical scalars k and o associated with the aligned
PND congruence must be zero [1]. This condition implies a great simplification of the field
equations, and it allowed to extend the already known solutions of vacuum field equations
with geodesic and shear-free PND [22] to the case where only one eigendirection of the
Faraday tensor is aligned [23] (note that the original solutions are more general and do not
require a spacetime to be of algebraic type D). Later, it was shown [24, 25] that if in addition
one assumes the solution to be of algebraic type D, then the corresponding spacetime is flat
i the vacuum case. This means that this spacetime does not contain a Kerr black hole as a
subcase, and thus cannot be considered as a proper non-aligned analog of the Kerr-Newman
spacetime.

One may attempt to take one step further and consider fully non-aligned spacetimes (such
that none of the eigendirections of the Faraday tensor is aligned with any of the two double-
degenerate PNDs of the Weyl tensor). Unfortunately, for a long time such a general setup
was not of interest because of the great complexity of the corresponding field equations.
Relatively recently, Van den Bergh [26] in his work proved that non-aligned algebraic type D
solutions of the Einstein-Maxwell equations are not compatible with non-zero cosmological
constant A. This important observation simplified the search for corresponding solutions.
Subsequently, a non-aligned solution was explicitly found by Van den Bergh and Carminati
[27]. It was obtained under the assumption of zero twist, and in its presented form it is
complicated. Moreover, it does not directly allow to obtain various limiting subcases.

Our current work aims to overcome these issues, and to generalize the solution found in
[27] to the twisting situation. Instead of presenting the solution in just one mathematical
form, our study also elaborates on presenting various metric forms and the corresponding
parameterizations. This is useful because it allows us to give a basic physical interpretation
of the new class of metrics, and to take various limits. Our final form of the solution, see
Eq. (136) below, depends on 7 different parameters: mass m, Kerr-like rotation a, NUT-like
twist [, acceleration «, magnitude of the electromagnetic field |c|, and two duality rotation
parameters v and 5. By considering special cases we show that the electromagnetic field
can be split into two parts: the field generated by charges of a black hole itself, and the
external electromagnetic field (that becomes uniform for m = 0). Thus the whole solution
has an interpretation as a charged twisting black hole in an external magnetic (or electric)

field. Moreover, this parametrization allows us to show that in the static limit, we recover



the non-twisting solutions previously found in [27, 28].

Despite the fact that the solutions we are considering here are not asymptotically flat
globally (because of the presence of an external electromagnetic field, which backreacts on
the geometry), models describing black holes in magnetic fields were always of great interest.
There exists a wide class of Melvin-type spacetimes representing black holes immersed into a
Bonnor-Melvin background [29, 30]. These solutions were found by employing the Harrison
transformation to the Schwarzschild, Kerr, and Kerr-Newman black holes [31, 32] (see also
recent developments [33]). They were used to investigate the influence of the magnetic fields
on the motion of uncharged [34-36] and charged [37] particles, the black hole shadows [38],
the image of a black hole created by accretion discs [39], the thermodynamical properties
[40], and other effcts. However, there are several objections against the applicability of
these spacetimes as realistic models of magnetized black holes. Both charged and uncharged
particles cannot escape to infinity in the equatorial plane [34]. Even more, geodesics may
become chaotic in this spacetime [41], ergoregions may extend to infinity [42], and these
spacetimes are of algebraic type I [43], which means that they generally radiate. Our solution
does not belong to the Melvin-type spacetimes. It may thus overcome these issues, and
become a more useful playground for astrophysical investigations and various studies of
mathematical relativity.

Our new solution may also become interesting in the context of supergravity. It is known
that the Einstein-Maxwell theory in 4 spacetime dimensions corresponds to the bosonic
part of the D = 4, N/ = 2 (ungauged) minimal supergravity [44]. The solution to the whole
supergravity (with a fermionic sector) may be obtained from any spacetime of the Einstein-
Maxwell theory if in such a spacetime there exists a Killing spinor (for an explanation see
[45]). Moreover, such a solution preserves at least a quarter of the supersymmetries (this
represents the so-called BPS states). Imposing the condition of the existence of the Killing
spinor within the Plebanski-Demianski class of solutions gave rise to supersymmetric type
D spacetimes [46-49]. The case of non-aligned electromagnetic field presented here was not

considered in this context yet.



The paper is organized as follows. In Sec. Il we establish an ansatz for the metric
and electromagnetic field, along with writing the field equations in the Newman-Penrose
formalism. In Sec. ITI we solve them, and present the most general solution. In Secs. IV-V we
elaborate on finding the Plebanski-Demianski-type form, adding the acceleration and twist
parameters to it. In Sec. VI we investigate the structure of the non-aligned electromagnetic
field. In Sec. VII we present the Griffiths-Podolsky-type form resembling the Boyer-Lindquist
coordinates. Sec. VIII investigates several important subcases that allow us to interpret the
new class. In Sec. IX we give a summary of various particular cases, and present the
physical interpretation for each parameter, appearing in the new class. In Sec. X we analyze
positions of horizons, cosmic strings, and the electromagnetic field for the most general case.

Concluding remarks are given in Sec. XI.



II. MOTIVATION AND GENERAL SETUP

As was outlined in the Introduction, our work aims to find a class of twisting solutions of
type D with a fully non-aligned electromagnetic field F, 3. For the integration, it is natural
to choose a null tetrad aligned with the the PNDs of the Weyl tensor C,s,5. This means that
the only non-zero Weyl scalar is Wy, whereas all scalars ®q, &, P, of the electromagnetic
field are nonzero in general.

Let us formulate an ansatz for deriving our new class. We expect that it will reduce to
the non-twisting metric obtained by Van den Bergh and Carminati in [27], namely Eq. (85)
therein. With a trivial renaming ¢t — 7, z +— ¢, s — p, 2 +— o, k — K it has the form

2

K
ds? = = (= e€di + e + P dp? + o) (1)

where e = +1, &2 is the quartic function of ¢ (Egs. (83) and (101) in [27]), ¢? is the quartic
function of p (Egs. (84) and (102) in [27]), and the function N is quadratic in both p and ¢
(Egs. (82) and (103) in [27]). By simple redefinitions Q = e¢*, P =¢?, Q? = 2N/K? | this
metric becomes

1 dg?  dp?
:§<—@dn2+6+?+Pd02), 2)

where P(p) and @(q) are quartic functions of p and ¢, respectively, while the conformal factor

ds?

02(p, q) is quadratic in both p and ¢q. The metric (2) resembles the C-metric that represents
accelerating black holes [50] (see also Eq. (14.6) in [2]). The basic difference between the
solution of [27] and the C-metric (along with the fact that the electromagnetic field is no
longer aligned) is that for the C-metric the function ? is given by a simple expression
Q) =1 — pq, while for the Van den Bergh-Carminati solution it is much more complicated
(given by Eq. (82) and (103) in [27]).

It is well-known that twisting generalization of the C-metric is the Plebanski-Demianski

solution, which in the original form [13] reads

17 Q P’ p p
d2:—[——d . 2d 2 _d2 _d2 —d 2d 2
5 = m pz(np0)+Qq+Pp+p2(n+q o), (3)
where
PP=p"+q¢, and Q=1-pq. (4)



The solution (2) basically differs by a more complicated conformal factor €, and by the
absence of p?, so the basic idea is that a twisting generalization of the Van den Bergh-
Carminati solution could be given by the metric (3), but with more general metric functions
P(p), Q(q), and (p, q). This is indeed so: Explicit expressions for these metric functions,
namely (70), (71), (76) with (64), (65), will be found below by applying the field equations.

For the integration of the field equations, we will employ the Newman-Penrose formalism.

The natural orthonormal tetrad for the metric (3) is

0=\ gz (01— ), —\/QZQa
€y — ’/ Q2 pa e3 — “ 28 —1—3 (5)
dk=

The corresponding null tetra \/Li (ep+ep), 1= % e —e1), m= % (es +iey) reads
Q2
k = 207 (¢%0, — 0, + Q0,),
Q2
1= 20, (QQan — 0, — Q0,),
o,
m = Oy + 0, +1 PO,
2Pp? (b b)
QZ
m = 2P (p*0, + 0, —1 PO,). (6)

One can now check that the metric ansatz (3) is of algebraic type D. We start by calcu-

lating the spin coefficients associated with the null vector fields k and 1, namely

1 [z, 2
sc — =5 1 _> i(l 2 )
Pre = 1= 50 9 (HPQ ’q+1(np),p
1 [po2| 02
—r == In p? '(1 —>
T=T=g 27 (Inp*),+1 an Nt
1 [po2| N
a=/ 1\ 27 (Inp”),+1i anQQ At
Ll Q.
- 1 ) 1
e=7=7 2 (np2Q2 ’q+1(np) ,
k=v=0, oc=A=0 (7)



The Ricci tensor components are given by expressions

Q
Py = g_pQ Q g = oo, (8)
PQ _
Doz = _2_p2 Q pp = Pao, 9)
P ‘ .
q)Ol - 2p4629(1p2 qu - (q + lp)(Qg + 1Q7p)> = @21 (10)
= 019 = Py, (11)
_ 1 64 Q,q 2, 9 9
Oy = 8—/)4[P (sz4>q+2Q[(Q (p ),q)ﬂ—p QQW]
P
604 ( —2 2( 2 2
—p Q <92p4>,p - 2P[(Q (P ),p)p —p QQvPP}] , (12)

2
r=—z|[P(ngz) ), [e(n) ],
- ; P((n02),)" +Q((n 92),(])2}] . (13)
The only non-zero Weyl scalar is
2 -2
2o % ((ZJtllj;) <(q +Qip)3),qq " <(q +Pip)3),pp] ’ (14)

confirming that the metric (3) is indeed of algebraic type D.

Now let us discuss the corresponding electromagnetic field. As the spacetime (3) admits
two Killing vectors, namely 0, and 9,, the electromagnetic field also has to be invariant
with respect to translations along them. This means that the vector potential A, has to be
independent of the coordinates n and . Then, by performing a convenient gauge fixing, it

is possible to write the electromagnetic field potential in the form.
A = Ay(q,p) dn + As(g, p) do. (15)
Calculating the Faraday tensor components from (15), it turns out that the relation
By = B, (16)

holds.



This “symmetry condition” will be crucial for solving the Einstein-Maxwell field equations
q)ij == 2(131(1)] 5 (17)
R=0, (18)

along with the Maxwell equations

D®, — 09y = (7 — 2a)Pg + 2pP; — kD, ,
D®y — 60 = —ADy + 27D, + (p — 26) D,
ADy — 0Dy = (27 — )Py — 27D + 0Dy,
AD) — 0Dy = vPy — 2uP; + (26 — 7)o . (19)

By solving them we obtain the real metric functions P, Q,2? and the electromagnetic field

represented by the complex NP scalars &y = ¢, and ;.

III. SOLVING THE FIELD EQUATIONS

Now we are ready to solve the Einstein and Maxwell equations. We start with the

equations (17) for @y and Py, given by (8) and (9), namely

Q -

Poo = g_pZ Q0 gq = 200Dy, (20)
PQ =

(I)OQ - _2_p2 Q,pp == 2(130(1)2 . (21)

A fully general solution is difficult to obtain, so we will make a further assumption. In
analogy to the Van den Bergh-Carminati work [27] (in the spirit of the Newman-Janish
algorithm) we will assume that @y (equal to @5 due to (16)) has the form

_ ¢ vPe

= — P, 22
Qq+ip 2 (22)

0

where ¢ is a complex constant (here we use a primed symbol to avoid confusion with the
rescaled constant ¢ introduced later in (88)).

This form of &5 = P, allows us to obtain an analytical solution for €2. Indeed, rewriting
Egs. (20) and (21) as

e

o3 PQ=—PQy, (23)

Q€ = 45

10



one can solve these equations to obtain two alternative forms of €2, namely!

4¢'d P 4¢7Q)
hilp) f5(q)

The functions fi, fa, f3, f4 can be found explicitly. First of all, we note that the left-

+ i) [a+ L) =02 =~ + fs()[p+ f1(0)]” (24)

hand-side of (24) is quadratic in ¢, whereas the right-hand-side is quadratic in p. Therefore,
50)2

taking ——— FRTIE of (24) it follows that

(f1).pop =0 = fi=Fo+ fup+ fp’ (25)
where fi9, fi1, fi2 are just constants. If one takes the partial derivatives in the reversed
0°0?
order, W, one analogously obtains
(f3)q00 =0 = fs=Fso+ fs1a+ fe2d’ (26)
4092
Similarly, by comparing the left-hand-side and the right-hand-side of —— 5730 of (24), one
p-0q
obtains
+ + faa p°
(fif2) pop = 0 — fy = J20+ forp+ fa2p ’ (27)
fi(p)
00?2
and by considering 30p one gets
+ + fi2 @
(f3£1) qq = 0 — £y = Jio+ funqg+ fi2q ’ (28)
f3(q)
Moreover, from (92?) ,, it follows that
4¢P
( + f1f3 > =0. (29)
fl »PPP
Integrating this equation and using the expression (27), one obtains
ST ACEP + (foo + frp + fo20°)?] = Po+ Pip+ Pap?, (30)
where Py, P, P, are also constants. So that
1
P = e [(fm—l-fnp-l-flzp)(P0+P1p+P2p2)—(f20+f21p+f22p2)2]- (31)

! Notice that Q Q 44 + P, = 0 admits a trivial solution Q 4, = 0= Q,, for which Q is linear both in p
and ¢. This leads to the Plebanski-Demiariski class of type D solutions with aligned electromagnetic field
such that Q =1 — pq, see (4).

11



From this expression it follows that the function P is at most quartic in p. Analogously,
from (Q?) 44, one finds that the function Q is at most quartic in q.
Finally, the function Q2 can be written using the left-hand-side of (24), (27) and (30) in

the form

= i (addP+ [ f3) +2fifaq+ Fi ¢

= (Po+ Pip+ Pap®) +2(fao + fr P+ f220) ¢+ (fro + fuup + fi20?) ¢, (32)

so that the function Q? is a quadratic function in both coordinates p and q. The same
conclusion follows, of course, from the right-hand-side of (24).
To summarize, by solving the Einstein-Maxwell field equations for ®yy and g, we ob-

tained general forms of the metric functions

P =g+ ayp+agp* + agp’ + as p’, (33)
Q=bo+biqg+bq*+bsq’ +bsg’, (34)
0’ (Coo + co1q + 002q2) + (CIO +cuq + 01292)19 + (C20 + C219 + cg2q2)p2, (35)

where a;, b;, ¢;; are constants.

Due to (8) and (16), i.e. ®y = Py, also the field equation for ®yy is now satisfied. In
order to solve the remaining equations (17) for ®¢;, P11, P12 (= $19) and R = 0, we have
to determine the electromagnetic field component ®;. It is obtained from the Maxwell

equations (19). In view of (7) for the spin coefficients, they simplify to

D®, — 60y = (1 — 2a)Pg + 2pP, ,
D®y — 0®; = 27®; + (p — 2¢) Dy,
—Ady + Py = 21D + (p — 2¢) Dy,
—AD; + 5Py = (7 — 2a)) Py + 2pP ,

where D = k*V,, 6 =m"V,, A =[*V,. For the null tetrad (6) we get the relations
“AD, = Dd;, B, = —5;. (40)

Indeed, using the fact that ®; depend only on the coordinates ¢ and p we have

002 P2 )
2p2 ((I)i),q = D(Dl, 6@1 =1 2p2 (q)i),p = _5(1)1 . (41)

12



It is thus obvious that the Maxwell equation (38) is identical to (37), and the Maxwell

equation (39) is identical to (36). These two Maxwell equations have the explicit form

Q02 . [ PQ? i [PQ? O Q0?2 02 ) 9
pr (a5 (@0 =515 (1 P) @+ /55 [(m pQ)’q—l-l(lnp o] @1,
(42)
Q02 . [ PQ? P 9 ) 02 Q(Zz Ot
@0 i[5 @0, = [ [+ (10 2) Jon 5y /S5 (10 ) de
(43)
which can be rewritten compactly as
02 p2 ' \/ﬁ
V@ F(@‘bl)’q—l(lnpz),p@ +1Q2<§®0> =0, (44)
@0 - V@,
VP —2(@@1)1)—1-1(111,02)7(]@1 —192(92 )q:o. (45)

For the assumed form (22) of ®, and applying the field equations (23), we obtain the set of

equations
0%/ p? 1 Qg
——<1>> —i(np?), & +i9( ) —0, 16
(QQ 1), i(Inp?), @1 +1i 4Cq+1p (46)
02 1 Q
i(Inp?),, @, +102 ( i ) ~0. a7
(92 ) i), @19 () (47)
This can be further snnphﬁed by making a substitution
S (a9
1_4él(q+lp)2.gp7q Y
where g is a general function of both p and ¢. This brings the Maxwell equations to
Q .
|:g_p2<_,q> i| +1qQ,qquoa (49)
p /pda
oSl
[g+1q (—) } —pQppy =0, (50)
q /.,q4p
which allow us to easily find the function g as
Q . Q
9= 9o +p2(—’q) —1q2(—”’) , (51)
p /p q /q

where gy is a complex constant (this can be directly checked by inserting this ¢ into the

equations (49), (50)). The electromagnetic field is thus given by the components

b=y = 5 L (52)
2
e oG, (). )



where ¢ and g are any complex constants.
Next we solve the Einstein-Maxwell equation ®g; = 2®,®;. The Ricci tensor component

®q; is given by (10), while the right-hand side reads

2@0@1 ==

o2 0[dla+19) 1 Q= 0+ 1D +19,)] (54)

It follows that in (53) we have to set
G0 =0. (55)

It can now be proven that the Maxwell field is generated by the specific potential (15),

written as the 1-form A = A, dz*, as
171Q,—-1Q 2Q ip?Q
:—_[”—U’dn+<q at 1P ’p—Q>do]. (56)
¢l qg+ip q+ip
This complex expression gives the Faraday 2-form F := dA. Defining F* := F + i F, where F

is the Hodge dual, the energy-momentum tensor of the field is T3 = % FZVFZH (see Sec. 5.2

in [1]). Also the corresponding real counterpart can be obtained from the relation
A" = 2ReA. (57)

Moreover, there is an invariant I, F*" = 16($gP; — ®?), distinguishing null and non-
null fields. Since ®q = &y # P, in our case, we conclude that the electromagnetic field is
generally non-null.

Finally, we explicitly find the metric functions (33)—(35) by applying the last two field
equations, namely R = 0, where R is a Ricci scalar given by (13), and ®;; = 2P, where
®q, is given by (12) and

- 1 04
2(1)1@1 — @8_p4

(%), T ()T 2

A direct calculation shows that the explicit solution to all the Einstein-Maxwell equations

has the form

do _ 4602 — 6(2)1
16c/'¢
N Co1 1 Co2C10 + C12
a; = — )
4c'c
iy = _2 + 2¢3, — 2¢10¢12 + Co1Ca1 — 2C22 ’ (59)
8c'e
s = Co1 + C22C10 — Cp2C12
4c'¢ ’
. _4002022 + 3,
16¢¢

14



and

l; 4002 + C%O

16
Bl _ _ C10 — Co2Co1 + c21
4c'e ’
[;2 _ 2 + 26%2 —+ C10C12 — 2C01621 — 2C22 (60)
8c'c ’
83 _ G2 + C22C01 + Co20C21
Ac'e ’
34 _ _4002622 - C%g 7
16c¢¢
where
coo =1, cp = —2, Co0 = —Cp2 - (61)

There are thus 6 free real parameters cgi, 19, Co2, C12, Co1, C22, in addition to the complex
charge parameter .

Let us remark that cgo = 1 can always be obtained (when c¢og # 0) by performing a con-
stant rescaling of the conformal factor €2 — S €2, accompanied by the rescailing of the charge
parameter ¢ — S?¢’ which keeps the Einstein-Maxwell field equations unchanged. Moreover,
the metric (3) and the electromagnetic field (52), (53) are unchanged under a constant rescal-
ing of the coordinates p — cp, ¢+ cq, n > n/c, o+ /3, P P, Q — *Q, d — /3.
This allows us to scale one of the coefficients ¢;; to an arbitrary value, for example ¢;; = —2.

Our next task is to get a clear physical interpretation of this new large class of exact solu-
tions given by (3), (4) and (52), (53) with (59)—(61). In particular, first we have to identify
the subclass of well-known spacetimes of algebraic type D, namely the Kerr-Newman-NUT
black holes and their accelerating (C-metric) generalizations. To this end we have to find
an explicit relation to their Plebaniski-Demiariski (PD) form [13] and the Griffiths-Podolsky
(GP) form [14, 17-20].

15



IV. THE PLEBANSKI-DEMIANSKI-TYPE FORM

The relations (59)—(61) are complicated, and physical meaning of the coefficients ¢;; is not
obvious at all. It turns out that a considerable simplification, and subsequent understanding,

is achieved if we perform a shift of the coordinates
p=p+po, 4 q+a, (62)
where py, go are some constants. This allows us to impose an additional (gauge) condition
co1 =0=cyp. (63)

Basically, by (62) we are replacing the two real parameters co1, ¢19 by the two equivalent real
parameters pg, qo-

After the shift (62) the metric is not given by (3), but has a slightly more general form

1 Q 2, P P’ P 2
2 2 2 2 2
ds’ = 55| - S ldn = o+ po)*do]” 4+ Gde* + T’ + 7 [dn + (g + @)*do] [
where
P> =(p+p)*+ (¢ + q)*, (65)
and the conformal factor is
02 =1 —2pq + coa(q® — p*) + (ca1 p + c129) pq + c22 P*G° . (66)

The electromagnetic field now reads

/
VP
By = By = — ) , (67)
Q2 (¢+q)+i(p+po)
1 02 Q Q
¢ =— , +po)*(—L) —i(g+q)*(—2 : 68
P 4d [(g+ ) +i(p+po)P? [(p 7o) <p+po),p @+ ) <Q+QO>,q] (6%)
arising from the shifted 1-form potential (56),
1 Q,—iQ 20 i 20

:TI[ =1 ((q+qo) a 1P+ po) ,p_Q) da]. (69)

4¢ L (g +qo) +1i(p + po) (¢4 q0) +1(p+ po)

The functions P and @) remain quartic in p and g, respectively, with the coefficients a, ¥/,

P:a6+a’1p+a’2p2+agp3—|—aﬁlp4, (70)

Q= by +byg+byg® +by¢° + b q". (71)
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Solving the field equations R = 0 and ®;; = 2®,®,, one obtains that the coefficients a!, b’

17 71

in (70), (71) are related to the coefficients ¢;; in (66) by expressions analogous to (59), (60),

but now with cg; = 0 = ¢10 (and a;, b; renamed to a, b).

All the constants al, b are thus determined by 4 real constants cgg, 19, Ca1, C22, and by

the complex charge ¢/. However, instead of cgo, ¢12, Ca1, €29, it is now convenient to introduce

4 new auxiliary parameters defined by the expressions

p o= 02
© 407
;L 1+C(2)2—022
€= AcE ’
L 2¢91 — Co2C12
N 16c'¢
o e 2¢12 + Cp2C21 (72)
l16c¢

Then the coefficients in (70) and (71) take compact forms

ag = k',
) n — C'm’
A o
ay = —¢, (73)
) (1+2C*)ym’ — C'n’
CL3 = 2 )
1+C”2
) (m/_|_ O/n/)2
aﬁl = —(1 —f- 40/ )]{?, —f- 2C/<€/ — m) s
and
by =k,
m' + C'n’
h= e
by =¢€, (74)
, (1+2C™*)n' + C'm/
by = —2 ,
1+C"
I 12\ 1./ 1 1 (n, _ C,m/)2
W, = —(1+ 40k + 2C (e +—k,(1+0,2)2> ,
where

O = % = 202k . (75)
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Moreover, the conformal factor Q2 becomes

0 = (1 —pq)® +2C"(¢* — p*) + 4(C? — €) p°q?
8
1+C”

[(m' 4+ C'n)p + (n' — C'm/)q] pq . (76)

The Einstein-Maxwell field equations also impose an additional constraint on the shift

coefficients py, qo, namely
(po— AV + (a0~ B = R?, (77)

where the constants A’, B’, R’ are

20" (n' — C'm’)
1+ C2)[(1 +4C2)k —2C"¢]’
, 2C"(m' + C'n’)
B =
(1 + 0/2)[(1 + 40’2)]{’ _ 20’6’] ? (78)
- 20N/ T 1
V14 C2[(1+4C?)k —20"]

A=

This represents a circle of radius R’ in the space of the coefficients (pg, ¢o). The constraint

(77) can thus be naturally parametrized by a single angle B as

po=A+ R'sinf3,
qgo =B + R cosf3. (79)

Instead of the two coefficients py, gy there is, in fact, only one new independent parameter j3.

Interestingly, pgp = 0 = ¢ can always be achieved for the particular choice of 5 such that

A —(n = C'm! B’ _ e
sinffy = —— = (n ud) = cosfy=—— = (m’ + ') , (80)
R /14 C?%ym +n? R 1+ C2v/m? +n?
so that
n—C'm

Notice that the metric functions Q, P, @, in (64) do not contain [3. As we shall see, this
is of a great help in identifying the horizons and poles of these black hole spacetimes. The
parameter 5 appears only in the metric function p, defined in (65), via (79). In particular,

it determines the structure of the curvature singularity located at p* = 0.
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More importantly, § which enters py and ¢o plays a crucial role in the character of the
electromagnetic field described by the components (67), (68). In fact, in subsequent sections

of this paper we will show that these parameters are related to charges of the black hole.

It can immediately be seen from (78) that for C" = 0 (keeping other parameters fixed)
the constants A’, B’, R’ all vanish, and thus using (79) we get py = 0 = qo. Moreover, the
conformal factor (76) reduces to a very simple expression Q2 = (1 — pq)? (notice from (75)

that C” = 0 necessarily implies ¢ = 0, unless in a peculiar subcase k' = 0), so that
P=p+¢,  Q=1-pq. (82)

The coefficients (73), (74) also simplify considerably to

ag=by =k =—ay=-b,, aj=-b=2n", —a,=U,=¢, ay=-b=2m', (83)

and thus the metric functions (70), (71) reduce to

P=F +2n'p—p* +2m/p® — K'p*, (84)

Q=Fk—-2mqg+®—2n'¢® — Kq¢*. (85)

For C’ = 0, that is for a vanishing electromagnetic field, we thus obtain the metric (3),

1 Q p2 p2 P
2_ | _Xx 2 2 2 2 2 2
ds” = 2l (dn —p°do)” + qu +5 dp” + P (dn + ¢°do)?|, (86)

which is exactly the class of type D wvacuum Plebariski-Demiariski solutions, see [13] or
Egs. (16.1), (16.2) in [2]. This justifies the introduction of this parametrization, and calling

it the Plebanski-Demianski-type form of the metric.

V. ADDING THE ACCELERATION AND TWIST PARAMETERS a AND w

The new class of type D solutions to Einstein-Maxwell equations we found in the previous
Section is very large, depending of 5 real parameters k', ¢, m’,n’, 8, and 1 complex ¢’. How-
ever, its physical interpretation is not obvious, standard black holes are not identified, and
its form does not directly admit various geometrically distinct subcases. In particular, in the
current metric (86) it is not even possible to obtain static subcases because the spacetime is
always twisting (the spin coefficients ps. and p given by (7) always have non-zero imaginary

part).
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Actually, the Plebanski-Demiariski (PD) solution [13] in its original coordinates presented
in 1976 suffered from the same problem. This was the main motivation for the series of
works [14-16] by Griffiths and Podolsky (GP) in 2005-6, summarized in Chapter 16 of [2],
in which two convenient parameters with clear kinematic meaning were introduced, namely
the acceleration parameter o and the twist parameter w. Indeed, for & = 0 the corresponding
black holes do not accelerate, and for w = 0 they do not rotate (because the imaginary part
of pse = p vanishes).

The new metric (64) resembles the Plebariski-Demianski metric (82)—(86), and reduces
to it for C" = 0. Therefore, we will apply the same trick as in [14], that is, we will perform

the specific rescaling (and trivial renaming) of the coordinates?

p=+awz, q:\/gr, ﬁ:\/ET, az,/%gﬁ, (87)
w o «

accompanied by the rescaling of the parameters

Oé3

: , o
m' +in' =/ — (m+in), € =—e, K=ok,
w w

d = gc, C'=awC, Po = Vow To, qo = g7“0- (88)
o V w

Note that these are exactly the transformations given by Eqs. (3), (4) in [14] (except that
the complex electromagnetic charge ¢’ scales differently than in the PD case with just the

aligned Maxwell field). Introducing the rescaled metric functions and coefficients as

P)i= HPVaEn), AN =50(/20), 2 =20

a? a?
(aw)i/Q WA (4—i)/2
a’L = CY2 az 9 (2 = (a) ;, Y (89)
the metric (64) becomes
1r Q ¢
ds? = ﬁ[— allar—wt 20)%dg)” + % dr?

P 2

+E[wdr+(r+r0)2d¢]2+%dx2] : (90)

2 In our recent studies [19, 20] we denoted this change as a transition from the PD metric to the PD,,,
metric. It should also be emphasized that « here is the GP acceleration parameter, which is generally

different from the AT acceleration parameter, as investigated in full detail also in [19, 20].
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where the function ¢*(r,z) and the conformal factor Q?(r,z) are given by

0* = (r+1)? +w?(x + 10)?,

Q0 = (1 — arz)® +222C(r* — W

402C'
+ [
(1 + 2?C)k

and P, Q are quartic polynomials

P(r)=ag+ax+ayz® +aza® +ag a0t

(m+aw0n)x+(n—aw0m)z] re,
w

2 2 2, 22  o~E\ 2 2
x)+a<4awC’ 20k>rx

4

Q(r):b0+blr+b2r2—|—b3r3+b4r4.

Here the real constant is

C = 2cck,

and the coefficients a; and b; defined in (89) take the explicit form

CL[):k’,

2 n—awCm

== —— "
YT w1+ 2w’
a9 = —€,
(1 + 202w?C?*)m — awCn
as = 2«

1+ a?w?C?

ay = —a?w?(1 + 4*w?C?)k + 2a2w20(e —

and
b0:w2k‘,
b 2m+osz’n
e 1+ a2w2C?’
b2:6,

by =2

Y

w2k(1 + a?w?C?)?

a (1+202w2C?%)n + awCm

Finally, the constraint (77) now becomes

w 1 4+ a2w2C? ’

by = —a®(1 + 40w’ C?)k + 2a2C’<e +

(n — awCm)? >
W2k(1 + a2 2C?)2)

(wag — A)? + (ro — B)> = R?,

21

(m + awCn)? ) |

(91)

(92)

(96)

(98)



where the constants A, B, R read

20

A= T 220D (1 7 4022k —a0q !~ oW om).
20

B = G oo s erarcny —2cq M ew ) (99)
20

R = vm? 4 n?.
V14 @?w?C? (1 + 4a2w?C?)k — 2C¢|

The relation (98) is satisfied by considering a single angular parameter 5 such that
wrg=A+ Rsinf,
ro =B+ Rcosf3. (100)

The two coefficients w g and ry can always be made zero (wxzo =0 =ry) by the special

choice (81) of /3, which now reads

n —awmC

tanﬁo = (101)

m+awnC
The components of the electromagnetic field (67) and (68) with respect to the null tetrad

k =

W%QW&—W%+Q&%

0
V2Qo0

Q

V2P,
Q

V2P o

(which is obtained by the rescaling of (6)) are

ac VPO

1

(r20, —wdy — Q0,),

(w20, + 0y +1P 0,),

m =

(wa?d, + 0y —1PIy), (102)

Py = P, = — , 103
0 T 0 (r+ro) +iw(x + m) (103)
1 0? Q Q
@ — 2 T s 2 s L )
YT aae [(r+ro) 4 iw (x4 m)]2 [w(:c—i—xo) (x—i—x()),x (o) (7‘+T0),ri|

(104)

The corresponding potential (69) has been rescaled to

A

1 wQ, —iQ, dr ((7’+r0)2 Q, +iw(r+20)*Q,

— daC (T‘f‘TO)"‘iW(I‘—i—IO) (7’+T0)+iw(l‘—i—xo) —Q) dgb} (105)
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In the reparametrized metric (90) it is now easy to obtain the static (non-twisting) subcase
by simply setting w = 0, in which case the metric becomes diagonal.

Taking the acceleration « to zero is not so straightforward, and depends on how do other
parameters behave in this limit.

If we set the acceleration to zero by a = 0, while keeping |c| constant, then the conformal

factor simplifies enormously to 2 = 1, and the metric functions are just
P=k+2njwr—ex?, Q=wk —2mr+er’. (106)
Even more interestingly, in this limit (103) become
O =0=2>,. (107)

This means that for such non-accelerating black holes the non-aligned components ®y and
®, of the electromagnetic field vanish. As we will show, in such a case, we recover the
Kerr-Newman-NUT black holes.

Interestingly, this is not the only acceleration-free limit. As we will show further in
Sec. VIIIE, when both ry and z( are zero it is possible to perform the @ — 0 limit while
lc| = oo such that 2alc| = B = const. This special limit represents the Kerr black hole in
a uniform magnetic field of the Bertotti-Robinson type, presented by us in [52].

However, before we describe how such limits can be taken, we have to investigate the

structure of the electromagnetic field in more detail, which is done in the next Section.

VI. THE ELECTROMAGNETIC FIELD

The non-trivial electromagnetic field in the new class of solutions presented here is the
main ingredient that distinguishes these spacetimes from other (well-known) black holes of
algebraic type D, for which the electromagnetic field is aligned with the geometry. Focusing
on its properties is thus key for the interpretation of these solutions, and understanding the
physical role of its parameters.

The acceleration and twist parameters o and w allowed us to put the expressions (67),

(68) for the electromagnetic scalars @, ®1, 5 into the form (103), (104).
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We can thus easily obtain the static (non-twisting) limit by simply setting w = 0, so that

ac /PQ

b, =P, = — 108

0 2 QT+T07 ( )
i 02 Q

B — 11 ( @ ) _ 109

! 40“_:(7“4—7’0) r+ry/r ( )

The expression for &, = @, exactly corresponds to the results of Van den Bergh and Carmi-
nati presented in Eq. (14) of [27].

The non-accelerating limit o = 0, as we already mentioned, is not unique. Before con-
sidering it, let us simplify the expression for ®; given by (104), which can be rewritten

as

1 02 Q N
o, = 2 N a2tk o Qm ' 11
YT daE[(r + o) +iw(w + @) [” ( x ) r ( . ),ﬁ(wxo ir9) Qpe|. (110)

Now let us express the complex constant ¢ in the polar form
c=|c|e, (111)

and define two new quantities as charges

1 1

€= ——— (w xo cosy + 1o sin'y) , g:=—— (wazo siny — rg cos*y) ) (112)
2c| 2c|
or inversely,
ro = —2|c| (e cosy — gsin~y), w g = —2|c| (esiny + gcos). (113)
Consequently, the charges satisfy the relation
e’ +g° = (rg + w’ag) . (114)

Recall also the expressions (100), namely wzg = A 4+ Rsin 8 and ro = B + Rcos 3, so that

e = —ﬁ <(ACOS’}/—|— BSiH’}/) +R Sin(ﬁ +7))7
g= —ﬁ <(Asinfy — Bcosy) — R cos(f + ’Y))? (115)

and substituting into (113) we get
ro = (Acos2y + Bsin2y) + R sin(2y + ) ,

wrg = (Asin2y — Bcos2y) — R cos(2y + f3) . (116)
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The constants A, B, R are explicitly given by (99). They depend on C' defined in (95) as
C = 2|c|?k, which means that they are independent of the angles 3 and «y. This enables
us to interpret (115) and (116) as specific forms of duality rotation represented by the two
angular parameters 5 and v. They “mix” the charges e, g and also the related parameters
0, wxo. In particular, for any fixed v = 7 (that is the complex phase of ¢), the value of the
“electric charge e” is effectively determined by sin(/+ o), while the value of the “magnetic
charge ¢” is determined by — cos(3+). Recall also that for the special choice 5 = [, given
by (101) the coefficients w xy and ry are both made zero (wxy =0 =ry). The meaning of
the parameter ~ is not fully clear now, as it represents the duality rotation of both aligned
®, and non-aligned ®,, ®5 components of the electromagnetic field. We will give it some

interpretation further.

We can thus see that the electromagnetic field is determined by 3 real parameters, namely
|c| and two angular parameters /3,y representing specific duality rotations described above.

In terms of these parameters the component ®; takes the form

by — L L [ew [wgﬁ(&) - iTQ(&) } —9e+ig) Qx] (117)

dac [(r+10) +iw(x + x0)]? | || x /, r /,

Now, in the o — 0 limit of vanishing acceleration (while keeping |c| = const.), the con-
formal factor (92) reduces to Q2 =1 — 2arz + O(a?), so that Q@ =1 — arx + O(a?). The
aligned ®; component of the electromagnetic thus considerably simplifies to

f(e+ig)
[(r4+70) +iw(z+ x0)]?

D, = (118)

This expression agrees with the result for Kerr-Newman-NUT black holes with fully aligned
(Coulombic) electromagnetic field (see e.g. [2, 18]), in which case the two parameters e and g
have direct physical interpretation as electric and magnetic charges, respectively. This means
that in such a limit @ — 0 we can interpret the parameters e and g (and equivalently the
constants ro and xg) as related to electric and magnetic charges of a black hole.

However, it does not mean that these parameters are equal to electric and magnetic
charges of a black hole in the most general case o # 0. The corresponding physical charges
may be found by integrating the electric and magnetic flux through the horizon of a black

hole, but this exceeds the scope of our present work.
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VII. THE GRIFFITHS-PODOLSKY-TYPE FORM

In the preceding Sections we have found a new class of spacetimes with the non-aligned
electromagnetic field, generalizing the known type D black hole solutions. In fact, this
solution is more general also in the context of the possible horizon topology, as currently
this is not specified. For realistic black holes we expect the topology of their horizons to
be spherical, and thus it is desirable to transform the coordinates and reparametrize the
general solution so that we can restrict to the subclass of spherical topologies.

The same problem existed for the Plebanski-Demianski spacetime. The corresponding
transformations were introduced by Griffiths and Podolsky in [14-16], where they obtained
the Boyer-Lindquist-type coordinates for the PD class. We can apply the same method here,
using the convenient fact that the metric (90) is very similar to the Plebanski-Demiariski
metric (86), with quartic functions P(x) and Q(r) given by (84), (85).

Specifically, we will conduct a linear transformation of coordinates

l l 2
e=2i+ 2, SR Cha L L) 0, d=——p, (119)
w w a a

with the corresponding redefinition

P(7) ;=§P(3f+£>, (120)
that puts the metric (90) into
ds® = % [ — Q—%(dt — [a(1 = 2%) + 2(l + wao)(1 — :Z‘)}dgo)Q + Q—QQdTQ
+ Qé(a dt — [(r+70)* + (a+ 1+ wa:o)z}dgp>2 - Q—;dﬁ] : (121)
where
> =(r+mr9)+ (aZ+1+wrg)’ (122)

The function P(#) has the quartic form

P =g+, &+ aga® + as i° + ag i, (123)
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where

ao = —5— (whag + lwPa; + Pw?ay + Pwas + *ay)
a‘w

o 3 2 2 3

a; = —2(w ai + 2lw?as + 3l*w az + 4l°ay) ,
aw
1

ag = (w2a2 + 3lw as + 612a4) s (124)
w

~ a

as = E (wag +4la4),

. a?

ay = — Ay,

while Q(r) remains to be given by (94).

The coefficients @; of P, explicitly expressed in terms of k,m, n, e, C, o, w using (96), are
very complicated. However, as was argued in [14, 15], looking for the black hole solutions
with spherical topology the function P must have at least two roots (corresponding to two
poles along the axis of symmetry). In this case it is always possible to choose the parameters
a and [ in such a way that these roots are conveniently placed at Z = 1 and & = —1. (It will
turn out that a is the Kerr-like rotational parameter, [ in the NUT-like twist parameter, and
Z = 1 will correspond to the poles at § = 0 and # = 7 in Boyer-Lindquist-type coordinates.)

Therefore, the metric function P may be written in the factorized form

P=(1-3)(ap—a3% — as 7°). (125)

This natural requirement is satisfied if the coefficients a@; given by (124) obey the following

two constraints
a,+az =0, ap+as+as=0. (126)

Interestingly, they are linear in €. By equating € obtained independently from both of them,

we get a quadratic equation for n. It is thus possible to express these two coefficients n and €
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explicitly in terms of the remaining physical parameters, in particular a and [, as

k ml
_ —4 302 2 l2 o
" 404C3(a? — 12)1 [ a’C(a )wk
+ (1 — a20[3a2 + 51% — 20°C(a* — 12)2} T 11]2> (1 + aQCQwQ) , (127)
€= i 40 C? <a4 + 2a21* — 31* — 2a°C(a® — l2)3> mi + 8a*C3w? (a® + 1%)1?
404C3(a? — 12)21? wk

— (1 — a?C[3a® + 51° — 2°C(a® — I*)*] F [112> (a® 4 31* — *C(a® — l2)2)] , (128)

where the new constants I, I are convenient shorthands for the square roots

ml} . (129)

= \/ 1- a2C[2a2 612 — a2C(a? — 12)? + 8020221 + 8aC(a® — 12) —

I = \/1 —402C[a® + > — a?C(a? — 12)?] .

Equations (127) and (128) explicitly relate the PD parameters n and € to the GP pa-
rameters a and [. Finally, we can substitute them into the expression (124) for a, which

yields

k
404C3 (a2 — 12)2

10'w*C?(a® — A%) — 46°C?(a® — 1?)[3 — 2a°C(a® — I7)] Z—é (130)

agp =

+ [3—a?C(a® - 17)] (1 — ?C[3a® + 51* — 22°C(a® — P)*] F 11[2)] :
Recall that the real dimensionless constant C' was introduced in (95) as
C =2k|c|?*, (131)

where the complex parameter c is related to the value of the non-aligned components &y = &,

of the electromagnetic field (103).

The character of the spacetime depends on whether aq is zero, positive, or negative. If it
is non-zero, the scaling freedom can be used to set ay = +1. Effectively, this also determines

the geometry of the black hole horizons (located at Q = 0) with
o = 1 (132)

corresponding to the usual compact, spherical-like topology. Thus naturally assuming ag = 1,

the equation (130) determines the PD parameter k. By substituting the expressions for I3, I
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(which are square roots) it can be infered that it is the 5-th order polynomial equation, so
that in general it has up to 5 roots. This may be surprising, because in the case of Plebanski-
Demianski spacetimes with aligned electromagnetic field it was shown in [14, 15] that for
given parameters m, a, [, « there is only one unique solution for k, n, €, namely

l 12
1420 —m —3a*—(e* + ¢°)
w w

k= : , (133)
a2_l2+3a212
2]€ 2_[2 2_[2
n—a;}_lQl—aa - m+ a2l 2 (W?k + e* + ¢%), (134)
w?k l , a®+31% 5 9
e:a2_l2+4a;m—a T(w k+ e+ g°). (135)

In the present more general case, we have up to 5 roots. However, there is actually no
contradiction because in the limit |¢| — 0, four of these roots diverge (or disappear).

This is nicely seen in Fig. 1 which plots all the admitted solutions for the PD parameters
k,—n, e as functions of the parameter |c|. It is clearly seen that only one solution remains
finite as |c| — 0, denoted in Fig. 1 by the Roman number I (the solid colored line). It
corresponds to the upper (minus) sign in front of I /5 in the expressions (127), (128), (130)
in the limit C' — 0. Moreover, such a finite solution exactly agrees with the expressions
(133)—(135) for the Plebanski-Demiariski black holes of algebraic type D [13] in the Griffiths-
Podolsky representation (see Eqs. (14)—(16) in [14], and Eqs. (16.15)—(16.17) in [2]) in case
of vacuum (e = 0 = g, A = 0). The role of the other four classes of solutions, denoted as II,

I1I, TV, V, has to be understood better, but this exceeds the scope of the current work.
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FIG. 1: Graphs showing the dependence of the Plebariski-Demianski parameters k, —n, € on ||,
calculated from (127), (128), (130), plotted in symmetric logarithmic scale. The Roman numbers
I-V label different 5 possible roots. Colored solid lines represent the solutions with finite real limits
as |c| — 0 (these are the upper lines denoted as I), while the dashed lines represent the roots of
(127), (128), (130) which either diverge or are complex in the |¢| — 0 limit. Notice also that the
roots IV and V occur only in a small restricted interval of |c| # 0. The specific fixed values of the

physical parameters are m =2.2, a =1.1,1=0.2, w =1, a = 0.14.

Now, taking this finite solution of (127), (128), and (130) with (132), the metric func-
tion P simplifies to P = (1 — #2)(1 — a3 & — a4 #2). The final simple step is to introduce the

spherical-like coordinate 6 by & = cosf, so that the metric (121) takes form

1| 2 . 2
S R ST 2 _ Q" 2
ds® = oz 7 <dt [asin®60 4+ 2(1 + wxo)(1 — cos 0)]d<p> + ) dr
0 P 2
+ %d02 + 2 sin? 9(@ dt — [(r+m)* + (a+ 1+ wx@ﬂdgp) : (136)
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with the metric functions

P(0) =1 — dzcos — aycos’ 0, (137)
Q(r) = by +bir +byr® +byr® + byr?, (138)
0*(r,0) = (r +70)* + (acosf + | + wxg)?, (139)

where the coefficients are explicitly given by (124), (96), (97), (100). The conformal factor
O2(r,0) is determined by (92), (119), that is

0?2 = [1 — g(acos@ + l)r}2

w
+2a°C[r* — (acosf +1)%] + 2a20<2a20 - ﬁ) (acos® +1)*r* (140)
N 4a*C

(1 + ?w?C?)w?k

[(m—l—aan)(acosQ—l—l)+(n—awC’m)r](acos€+l)r.

The non-aligned components (103) of the electromagnetic field now read

a VPO sin 6
(DO:(I)QZQC_ - )
w(r+mr)+i(acostd+1+wxy)

(141)

while the aligned component ®; is obtained from (104) by the substitution wx = acosf + I,
1 w 02
a [(r+mr9)+i(acostd+ 1+ wxg))?

o), i () ]
1 .
acost +1+wxg/ 0 rTo r+ro/r

The corresponding potential 1-form A follows from (105) by the same substitution, namely

4 (142)

- 4dove sin @

X [(acos@+l+wxo)2<

A

1w [ adt —[(r+79)*+ (a + 1 +wz)?|dp (143)

~ daca (r+mro)+i(acostd+ 1+ wxp)

Qg dt — [asin® 0 + 2(1 + w ) (1 — cos 0)] dep
sin 6 (r+m1o)+i(acostd+ 1+ wxp)

There is also a gauge freedom in choosing Ay such that dAy=0. For example,
Ay = —Hlé “ dy removes the apparent divergence of A as a — 0, |c| = const.

It is important to note what role the twist parameter w plays in this solution. In [19]
we showed for the Plebanski-Demianski spacetime that, if at least one of the parameters a
and [ is non-zero, then w can be chosen arbitrarily and it represents just the rescaling of
the acceleration parameter a. As our case is somewhat analogous, the interpretation of the

parameter w remains the same. The case when both a and [ are zero is not considered in

this work, and it is postponed to [51].
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There also exists an alternative, closely related compact form of the metric for this large
class of black hole solutions. It is obtained by performing a simple shift of the coordinate r

and reparametrization of the NUT constant to { such that
T:=r+r7g, l:=14wm. (144)

The metric (136) thus simplifies to

1 ~ 2 2
dszzml—?%(dt— [asin29+21(1—0089)}dg0> —l—%dFZ
) .
o e Py T2 7\2 2
—|—75d9 +Q2sm 9<adt [7 +(a+l)]dgp) ], (145)
where
0*(7,0) = 7 + (acos O + 1), (146)

Such metric is exactly the Griffiths-Podolsky general form of type D black holes with
(aligned) Maxwell field, see Eq. (16.18) in [2], but the 1-form potential is now more compli-
cated and given by

dt — [#2 1)?]d
A:L_f[ma [P+ (a+1)]dy (147)
dacc a 7 +i(acosf+1)
iQ, dt — [asin®6 + 20(1 — cos0)]d
44 [N , (1= cos0) @+ng0]+Ao.
sin 0 F+i(acosf+1)

Notice that this explicit form of the electromagnetic field involves (in the numerators) exactly

the 1-forms which appear in the metric (145).

The constants ¢ and zg, related to the charges e and g via (113), are thus removed from
the metric (145) and its function ¢?, and also from the potential (147). However, they are
contained implicitly in the remaining metric functions P, Q and Q2 because it is necessary to
replace the auxiliary parameter [ by [ — w o They also appear in the equations for €, n and
k (see (127), (128) and (130)) which additionally complicates the corresponding formulas.
The expression for Q(r) and for Q?(7, ) become even more complicated by the substitution
r =7 —1p in the quartic (138) and in (140), respectively. Because of these complications,

we do not consider this form in the general case, only in some of the special subcases.
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VIII. IMPORTANT PARTICULAR CASES

In previous Sections we derived the new class of solutions to the Einstein-Maxwell field
equations of algebraic type D with a non-aligned electromagnetic field, and we presented it
in various metric forms. This general solution is quite complicated, so it may be illustrative
to consider now its particular cases. After understanding the main features of these cases,

we will return to the investigation of the most general situation in the final Section X.

A. No acceleration (a =0, |c| = const.): Kerr-Newman-NUT

First, we will focus on spacetimes with zero acceleration parameter, a = 0 while keeping
the complex parameter ¢ = const. The conformal factor (140) becomes simply = 1, and

the coefficients a;, b;, given by (96)—(97), reduce to

ag =k, a1:2ﬁ, s = —€, az =0, a; =0, (148)
w
bozwzl{?, b1:—2m, bQZG, b3:07 b4:0 (149)

The electromagnetic field (141), (142) simplifies to

1 .
e+
By=0=1y, D= 3(€+19) 5 (150)
[(r+70) +i(acosd+ 1 + wp)]

see also (118) with (119). In such a case, the two eigendirections of the electromagnetic field
are both aligned with the two (double degenerate) PNDs of the Weyl tensor.
Let us now employ the expressions (127), (128), (130) to find the PD coefficients n, e, k.

Taking the limit « — 0, ¢ = const., we derive that the only possible finite solution is
n=I1, e=1, Wk =a®—1?, (151)

see also the expressions (134), (135), (133) for & = 0, |¢| = const. Moreover, P = 1 because
a3 = 0 = a4 due to (124) and (148).

Finally, performing the shift (144) and introducing new mass and NUT parameters as

m:=m-+rg, l:=l+wxg, (152)

we obtain the metric in the form (145) with Q = 1 = P, that is
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Q

2
2_ = _ .2 i1 9 .9
ds® = 7 (dt [asin® 6 + 21 (1 — cos 9)}dgo> + ) dr
. 2 0 B 2
+ 0%d6? + S“;z (a dt — [+ (a+ )2]de) (153)

where

0> =72 + (acosf +1)?,
Q=a>—P+e*4¢g>—2mi+ 72, (154)
t(e+ig)

Dy=0=0Dy, @ — .
" ’ ' [f+i(acos@+l)]2

Actually, for the derivation of Q we have employed the identity
(rg +w’zy) +2(mro + lwxg) = € + g°. (155)

This can be proven by the direct evaluation of (100), in which the coefficients (99) for

a =0, |c¢| = const. are simplified to

Afcf? Afcf? Afcf?
A _ R= Vit 2. 156
— a2 —aer ™ —ae V" (156)
Indeed,
8 2
(rg + w’azg) +2(mro + lwag) = % [m® + I* + vVm? + 12 (mcos 8 + Isin B)] ,
(157)
which is the same expression as for the identity (114), that is
1
e +g° = oe (rg +w?xg) - (158)

The metric (153), (154) is exactly the usual form of the Kerr-Newman-NUT black hole
with an aligned electromagnetic field. This also demonstrates that turning off the accelera-
tion parameter « while keeping |c| = const. also turns off the non-aligned part of the elec-
tromagnetic field ®q, ®,. The aligned part ®; is characterized by two parameters e and g,
which are the electric and magnetic charges of the black hole. It justifies the introduction
of these parameters in Section VI.

Let us discuss the role of the complex parameter ¢ in this subcase. As we mentioned, the

non-aligned part vanishes in this limit. However, the parameter |c| enters the expressions
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for A, B and R in (156), and thus the charges e and g. This allows to say that in this limit
the parameter ¢ represents the charges of a black hole. However, generally this parameter
also enters the non-aligned part of the electromagnetic field, so to properly interpret the role

of ¢ in other special cases, a more careful analysis must be performed.

B. No twist (w=0): Alexeev-Garcia and Van den Bergh-Carminati

The static subcase is not so straightforward, as one has to take the w — 0 limit in the
original metric (90) while keeping wn = const. Because of this complication, we postpone it
for the separate work [51] in which we will show that there is a one-to-one correspondence
between the static limit of our solution and the Van den Bergh-Carminati solution found in
[27], as given here by the metric (1) that is equivalent to (2). Moreover, our case with non-
zero 1y corresponds to the hj # 0 subcase, while the case ry = 0 corresponds to h =0 =j
subcase of [27]. The relation to the solution by Alexeev and Garcia [28] will also be presented

in [51].

C. Special non-aligned electromagnetic field (e =0 = g)

Let us recall (cf. Section VI) that the electromagnetic field is determined by 3 parameters,
namely |c| and two angular parameters 3, representing specific duality rotations (115),
(116) which “mix” the charges e,g and the related parameters ro,wzo. For the special

choice f = B given by (101), that is for

n —awmC

tan By = (159)

m+awnC’
the coefficients ry and w zy are both zero, and this is equivalent to vanishing of both e and g,

see (112), (113) for |¢| # 0. This considerably simplifies the metric, preserving the existence
of both aligned and non-aligned components of the electromagnetic field ®; # 0, &y = Py # 0.
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Indeed, the metric (136) reduces to

1| 9 . 2
2 _ 2 2
ds —ml—g@t—[asm 9+2l(1—cos€)}d<,0> —{—édr
0’ P 2
+ Edéz + 2 sin? 9(@ dt — [r* + (a+ l)ﬂdgo) : (161)
where Q? is given by (140),
N a 4al a? 5
P=1- <;a3+ﬁa4> cosf — ECLZLCOS 0,
Q=0by+bir+br’+bsr’+byrt, (162)

0 =1?+ (acosf +1)?,

with the coefficients a;, b; determined by (96), (97), and n, €, k, C' by (127)—(132). Actually,

this is the metric (145) because (144) simplifies to trivial relations

In fact, this metric form is the same as for the Griffiths-Podolsky form of type D black
holes, see Eq. (16.18) in [2]. But the Maxwell field is now extended to non-aligned compo-
nents (141), (142),

aca PO sinb

Py =0, = — — 164
0 T Quwr+ilacosf+1)’ (164)
1 w 02 —Q Qg
O, = — 0+ ——— ir?(—=2) |. (1
" 4acsing a [r+i(acosf + )2 [(CLCOS +0) (acos&—l—l),e—'—”n ( r )r} (165)

Such electromagnetic field is described by (147) which due to the relation (163) reads

1 w[ adt — [r?+ (a+1)*]de (166)

A=——10Q
dacc a r+1i(acosf +1)
Q4 dt — [asin®6 + 2/(1 — cos§)|dy
+—— -
sin 0 r+1i(acosf+1)

+Qdcp]+A0.

This e = 0 = g subcase is important for the physical interpretation of the new spacetime,
as now it is easier to set some of the remaining parameters to zero, and to understand
their role (which is rather complicated if e,g are nonzero). This is done in the following

Subsections.
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D. No acceleration (o =0, |¢| = const., e =0=g): Kerr-NUT

We can employ the general result derived in Section VIII A, namely that in the a — 0,
|c| = const. limit the electromagnetic field becomes aligned. Moreover, it follows from (150)
that for e = 0 = g the field completely vanishes, &y = &5 =0, &; = 0. The corresponding
metric (153) is

d32:—2<dt—[asm 0+ 21 ( 1—(3089 dgp) +Q—
0 Q
4 o 9<adt— [+ (a+1) ) (167)
where
0> =r*+ (acosb +1)?% Q=a®>—1*—2mr+r? (168)

which is the usual form of the Kerr-NUT black hole, see Eq. (16.23) in [2].

E. No NUT (I =0, e=0=g): New uncharged black holes

In this case, the metric (161) becomes

1 2 2 2 D 2
d52:§[—g—%<dt—asin29dgp> +%dr2+%d02+§sin2«9<adt—(T2+a2)dg0> ],
(169)
where
2
0 = (1—gar0050>
w
+2a20[7’ + <2a20——k>a r? cos?  — a® cos 9} (170)
402Cym+awCn 5, o, n—awCm
o <1+a2w202a r COS (9+—1+a2w202ar COSH),
~ 2
le—gagcosé’—a—zcucos%’, (171)
w w
Q=1by+bir+br’+byr’+byrt, (172)
0> =r? +a*cos’f. (173)

As argued in [19], it is possible to choose any value of the twist parameter w by a suitable

rescaling of the acceleration parameter «. In this particular case, the most natural choice is

w=a, (174)
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because this simplifies the metric functions. Indeed, evaluating the complicated square
roots (129) for [ = 0 we get very simple expressions [, = 1 — a?a?C, I, = 1 — 2a2a2C, so

that (130) with the upper (minus) sign gives ao = k. Equations (132) and (131) thus imply
k=1, C =2|c*. (175)

To express (127) and (128), we must expand I; and I to the second order in [ and then
perform the limit [ — 0. Nevertheless, even in this more involved case we obtain modest
explicit relations

1
n = —aam [—1(1 —2|c[Ly),

I 1
e =1—4a’m?|c|*22 — a?a®— (1 — 4|c’L,), (176)
I I
where
I =1 —2d%a®|c|?,
I =1—4a*a®|c)?, (177)
so that
m+ awCn I n—aoawCm 1 (178)
—_—— =m— ——— = —aam—.
1+ o2w?2C? I’ 1+ a2w?C? I

Using these very simple expressions, the coefficients (96), (97) reduce to

1
— 2am —
as amll,
2 21 2 2,2 2]2
ag = —a’a®— (1 — 4|c]’ L) — 4”*m?|c|* = , (179)
(actually, ay = € — 1, by =€), and
b0:a2,
I
by = —2m —=
1 mlla
_ 2,2 212 2 91 2
by = (1 — 4a2m?|c| —2) — 022 (1 — 4[c[2D), (180)
1 2
bs = 2« m[—1(1—4]C’ IQ)a
Ty 2, 2 212 2
by = —« —(1—404 m*|c| —2>(1—4\c\ L).
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Therefore, the quadratic metric function P(cos ) in (169) reads

9 1-— 4|C‘2IQ

1
i +4m2|c|2—2] cos? @), (181)
2

. 1
P:1—2aml—cos¢9+0z2[a 2

1
and (miraculously) the quartic Q(r) is factorized as

1 —4|el?I
o? || 27“2]'

) (182)

I 1
Q= [a2—2m1—i7’—|— (1—4a2m2|0|21—f2)7“2] [1—

This factorization enables us to easily calculate the position of the four horizons of this

new family of black holes with non-aligned Maxwell field, namely

L omly £ /m2I3 — a2(I} — 4a2m?|c|2]y)
'S =
b I? — 4a2m?|c|? ], b

1 I
Fogo 2 184
Ta a\[ 1 —4|c)?ly (184)

The former are two black hole horizons, whereas the later are two acceleration horizons.

(183)

The conformal factor in (169) is now given by a compact expression
1
Q* = (1— arcos 9)2 + 40?|c|? (J?“2 +2m 1—2 rcos® 0 — a* cos® 9) , (185)
1
where

J(cos ) := P — (1 — 402a®|c|*) cos® 0

1 1 1
= sin?6 — 2am — cos 0 + o <a2— + 4m2|c|2—3> cos? 6. (186)
I I I

It reduces to 2 =1 — arcosf when ¢ = 0.
The only Weyl curvature NP component is given by the scalar
v L h (1 (rcosf +ia) + (1 — 4fc|*Ly) i 9)
=-m—|————=1— arcos ia) + a“(1 —4|c iarcos
2 I | (r+iacosf)3\"? ?
4a*m|c)?r? cos? 6 }

(r2 4+ a?cos?0)(r +iacosf)?

(187)

The curvature singularity occurs at r = 0, but only if also § = 5 and a # 0. It thus has a
ring structure, similarly as in the Kerr spacetime. When ¢ # 7, it is possible to reach the
region r < 0.

The potential of the Maxwell field (166) is simplified to

(22 - o in2
A—L QO adt — (r +a)dcp+1Q79 dt — asin®0dyp

- — T . . .
dace r+iacosf sinff r+iacos@
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The nonaligned part of the electromagnetic field is given by

1 VPO sinb
by = P, = S 188
0 2 ach—l—iacos@ (188)

Interestingly, it vanishes on the horizons (where Q@ = 0) and also along the azis of symmetry

(at @ = 0, 7). The aligned component is more complicated, namely

Bo—f-BlT+BQT2+B3T3

b1 =ac BLQ(r+iacosf)? (189)
in which B;(cosf) are the following functions, independent of r,
By = alilycosf [mly cosb — aa’l1(1 — idaalc]?) cos® —ia L],
By =al; [— IT (1 4 cos® ) + am I} cos® 0 (4dam|c|® + I, cos f)
+ a?a*I; cos® O (I, + 8|c|* I, I, — 8am|c|*I; cos 0)
+i3aa 115 cos* 0 (I; — dam|c|* Iy cos )], (190)

By = I [3aa (I} — amcos§)(I; — dam|c| Iy cos §) cos § — ida’a?|c|* I} cos® 6 — ia”a®D cos §
+ il (I3 cos 8 — 4a’m?|c|* L5 cos 0 (1 — 215 cos® ) + amlI; (1 — 315 cos” 6))],
B; = —a [aaly (I, — amcos0) ((I7 + 160°m?|c|*I5) cos® § — 4|c|* [ (2am cos 6 — I, sin® 6))

+ 4a’a®|c]*I7 (I — amcos ) cos® § — i4a’a®m|c|* [} 15 cos® § + 115 (I] — am D cos )],
where

D =17 [1+8|c|*Lr + (1 — 4]c[*) I cos® 8] + dam|c|*I5 cos §(4am|c|* [ cos§ — 31;).  (191)

Now, after we described the general setting for this interesting class of accelerating un-

charged black holes, let us consider several possible limits.

1. Kerr

In the o =0, |¢| =const. subcase we get Q =1, P=1, Q=a®>—2mr+ 72 and
®y =Py =0, &; = 0. The corresponding metric is simply the Kerr black hole spacetime

with two horizons located at

rif =m+vVm2 —a?, (192)
which has the standard form (167) for [ = 0.
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2.  Kerr with acceleration

In the ¢=0, «o=const. subcase the coeflicients (177) become I} =1=I.

The metric functions in (169) thus reduce to the form Q=1—arcosf,

P =1-2am cos + a*a*cos? 0, Q= (a® —2mr +1r?)(1 —a?r?), and expressions (183),

(184) read

1
rif =m 4 vVm?2 — a2, rE=4—. (193)

(07

These are the positions of the four horizons for usual accelerating Kerr black hole (rotating

C-metric solution) without electromagnetic field, see [17].

3. Kerr in a magnetic field

In the special limit a@ — 0, |¢| — oo, such that 2ac| = B = const., the coefficients [

and Iy become
[ 2 2
Ilzl—aBa, I, =1— B%a”. (194)

The metric functions in (169) simplify to

~ I
P=1+DB <m2—§ — a2> cos? 0, (195)

h
Q= (1+B*%)A, (196)
0 = (1 + B*?*) — B*Acos*0, (197)

where
I I
_ _ p2,,2%2\..2 22 2

A= (1 B*m 112>r QmI1 +a”. (198)

The two horizons (183) are located at

L mlyt/m2l — a?l?
'S =
b I} — B2m21,

I (199)

This solution is precisely the new spacetime presented in [52], which represents the Kerr
black hole immersed in an external uniform magnetic field. Such physical interpretation

comes from the fact that for B = 0 we recover the standard Kerr metric. In the m = 0 case,
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after a proper coordinate transformation, one obtains the Bertotti-Robinson spacetime (see
Section II.B in [52]), which is known to describe a uniform electromagnetic field [2]. The
parameter B in this solution stands for the value of the magnetic field. The parameter 7,
entering expressions for @y, ®;, &y (see Egs. (2.11) and (2.12) in [52]) represents the
duality rotation between the electric and magnetic field. Interestingly, the magnetic field is

weakened and expelled away in the equatorial plane, exhibiting the Meissner effect.

IX. SUMMARY OF THE PARTICULAR CASES AND STRUCTURE OF THE
NEW CLASS

We have presented a new solution, and analyzed its various main subcases. Now let us

summarize the role of each of its physical parameters.
e The parameters m, a, [, a.

Meaning of these parameters seems to be more or less straightforward in various subcases:
m is related to the mass of a black hole, a to its Kerr-like parameter, [ to the NUT twist
parameter, and « to the acceleration. However, one has to be careful with the precise
interpretation in the general case. This warning is necessary because even for the classic
Plebanski-Demianski spacetime, in the most general case there exist various metric forms
(see [19, 20]), and relation between their physical parameters is complicated. This may lead
to some incorrect statements while considering various special cases. We expect the same

situation to appear here.
e The parameter |c|

This is the new parameter in our class of solutions. Its physical interpretation is not straight-
forward. However, we can say that it is related both to the (electric and magnetic) charges
of a black hole, and to the strength of the external electromagnetic field. This interpretation
comes from two limits. If @ = 0, |¢| = const., then (as we showed in Section VIIIA) the
non-aligned part disappears and the strength of the aligned part is related to the charges e
and ¢ that depend on |c|. Thus, || is related to the charges of a black hole. On the other
hand, if « — 0 and 2alc|] = B = const. with § = (. (see Section VIIIE), then the corre-

sponding solution is the Kerr black hole immersed in an external magnetic (or electric) field,
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and in this case || is related to the value B of this external electromagnetic field. Moreover,
if || = 0 while all other parameters are kept finite, the electromagnetic field vanishes. This

means that |c| is solely related to the electromagnetic field.
e The parameters e and g

These are auziliary parameters, introduced in (112), and they cannot be considered as
independent ones (instead of them it is possible, without loss of generality, to use only the
parameters |c| and ). Their interpretation is based on the fact that in the limit o = 0,
= const. they are equal to the electric and magnetic charges of the Kerr-Newman-NUT
black hole itself. Thus e and g can be thought of as related to the physical charges of a black
hole. In the general case, however, one should calculate the corresponding fluxes of electric

and magnetic fields to properly identify them, but this lies beyond the scope of this work.
e The parameter 3

This parameter appears in the relations (100), and represents a duality rotation between the
electric and magnetic charges of a black hole itself, as rq and x( are related to the charges

e and g by (113).
e The parameter v

The role of this parameter seems to be quite straightforward because it is the phase of
the complex parameter ¢, see (111). It thus directly enters in the expressions (141), (142)
for &y, ¢y, 5, and can be interpreted as the duality rotation parameter of the external

electromagnetic field.

In conclusion, it is important to emphasize that the above parametrization, in which we
have presented this large class of new solutions, need not be the best one for the physical
interpretation, and additional work in finding more convenient parametrization can/must
be done. Nevertheless, from the analysis of the special cases we may conclude that the most
general solution can be interpreted as representing a massive, charged, accelerating black
holes with the Kerr and NUT twist parameters, immersed into an external electromagnetic
field. This external field is the reason why the electromagnetic field is not aligned, as
a distinctive feature from the Kerr-Newman family, generalized in the whole Plebanski-

Demianski class. Interestingly enough, the gravitational field remains of algebraic type D.
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X. MAIN PHYSICAL PROPERTIES OF THE GENERAL CLASS

The metric functions in the most general case (136)—(140) are quite complicated. Explicit
investigation has been done only in particular cases (as discussed above). However, the most
general case also requires physical analysis, which we are going to do now using also numerical
methods. Moreover, the new solution differs from the Plebanski-Demianski class in the form
of the metric functions Q, P, ©, and in the non-trivial structure of the electromagnetic field.

In this section, we investigate both of these features.

A. Positions of the horizons

Here we aim to investigate how the horizons of this new class of black holes depend on
the key parameter |c|. For this, we employ the form of the metric (136) with Q?(r,6) given
by (140), the function Q(r) is given by (138), the function P is given by (137) with as and d,
determined by (124), the parameters ry and z are given by (100), and n, €, and k, entering
(96)—(97), are related to the physical parameters by (127), (128), and (130), respectively.
We choose this form of the metric because the metric function @ does not depend on the
parameter (3, so our results made in this Subsection will be valid for all 5.

First of all, we have to solve Eqs. (127), (128), (130) for k, n, e. Their dependence
on |c| is presented on the plots in Fig. 1 in Section VII. Generally, there are up to 5 roots.
However, only one of them gives a finite real limit of k, n, € as ¢ — 0 (namely the solid lines
denoted as I in Fig. 1).

This root (the curves I in Fig. 1) in the ¢ — 0 limit corresponds to the Plebanski-
Demianiski solution, with the unique form (133)—(135). The corresponding positions of the
horizons, given by the roots Q(r) = 0 determined by (138) and (97), are shown in Fig. 2.
First of all, we note that, as in the case of the Plebanski-Demianski solution, this more gen-
eral solution also has 4 roots. However, in the PD case it is known that two of the roots do
not depend on charge (see [17]), namely the acceleration horizons r£. In our case it appears
that they depend on the parameter |c| (these are the orange and purple curves in Fig. 2).

The second difference is that in the Plebanski-Demianski spacetime there are two black hole

horizons at 1" = m 4 \/m?2 + [2 — a2 — €% — g2, see [17]. As e® + ¢? increases, these horizons

converge and merge to one extremal horizon at e? + g*> = m? + [2 — a? located at r, = m.
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FIG. 2: Plots showing the positions of horizons depending on |¢| for the branch I of Fig 1 (plotted in

symmetric logarithmic scale). Different colors show different horizons, namely blue and red curves

represent the outer and inner black hole horizons rg[, respectively, while the purple and orange
+

curves represent the outer and inner acceleration horizons r;- (notations are taken from [17, 18]).

The parameters employed here are m = 2.2, a =11, | =0.2, «a =0.14, w = 1.

In our case of the non-aligned electromagnetic field, these two roots are also present (the
red and blue curves). However, instead of converging with an increase of the parameter |c|,
they diverge.

Moreover, there are distinct 4 roots for k, n, €, as depicted in Fig. 1. The branches
IV and V give rise to the function Q that does not have any real roots for a given set of
parameters, so we will not consider them here because these spacetimes have no horizons.
Solutions for the branches II and III are drawn in Fig. 3. Note that both these branches
give finite positions of the 4 horizons in the limit ¢ — 0, despite the fact that the PD-like
coefficients k, n, € diverge in this limit (see Fig. 1). However, as can be shown by the analysis
of the electromagnetic field, these branches possess non-trivial poles. Such configurations
are not physically expected, and thus the physical relevance of the branches II and III is

questionable.
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FIG. 3: Plots showing the positions of horizons depending on |c| for the branches II and IIT of
Fig. 1. Different colors show different horizons, namely blue and red curves represent the outer
and inner black hole horizons rbi, while the purple and orange curves represent the outer and inner
acceleration horizons . Notice a nice and uniform ordering v > r,” > r;” > r, for all values of

lc|. The parameters are m =2.2, a=1.1, [ = 0.2, a =0.14, w = 1.
B. Cosmic strings at § = 0,7 causing the acceleration

The metric (145), which is equivalent to (136), is convenient for explicit analysis of the
reqularity of the poles/azes located at § = 0 and 6 = 7, respectively. The spatial axes of
symmetry are associated with the Killing vector field J,, and identified as zeros of the
function sin @ in the metric (145). The range of the spatial coordinate ¢ is thus constrained
to 6 € [0, 7].

Apart from 7 physical parameters in the new class of solutions, namely m, a,l, a, |¢|, 5,7,
there is also eighth free parameter, namely the conicity C' hidden in the range of the angular
coordinate

p€0,2rC), (200)

which has not yet been specified. We will now demonstrate its physical meaning by relating

it to deficit (or excess) angles of the cosmic strings (or struts). Their internal tension is the
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physical source of the acceleration of the black holes. These are basically topological defects
associated with conical singularities around the two distinct axes.

Let us start with investigation of the first azis of symmetry 6 = 0 in the metric (145).
Consider a small circle around it given by 6 = const., with the range of ¢ given by (200),
assuming fixed ¢ and r. The invariant length of its circumference is ﬁow dep, while its
radius is foe\/gﬁ df. The axis is regular if their fraction in the limit § — 0 is equal to 2.

However, in general we obtain

circumference . 27C.\ /oy

=lim ——— = 201
Jo 913(1) radius algtl) 0 /G99 (201)
For the metric (145), the relevant metric functions are
Ios = 3 [ﬁsinQQ [7%+ (a+ 5)2}2 — Qlasin®0 + 20(1 — COSQ)]2],
0
2 ~
Joo = where ¢® =7 + (acosd + 1) (202)

0P’

For small values of 6, the second term in g,, proportional to Q@ becomes negligible com-

. - ~ 62
pared to the first term proportional to P, so that we obtain g,, ~ P [f2 +(a+1 )2]2 g
Evaluation of the limit (201) using (137) gives
fo=271CP0) =2xC (1 — a3 — ay4) , (203)

where the coefficients a3 and ay are explicitly given by (124). The azis 0 = 0 in the metric
(145) can thus be made regular by the unique choice

C:C()_ L

=1 @ . (204)
Notice that for vanishing acceleration this condition is simply Cy = 1 because a3 = 0 = ay
for a = 0, see Section VIII A.

Analogously, we can regularize the second axis of symmetry § = w. However, there is now
a conceptual problem that the metric function g,, (and thus the circumference) does not

approach zero in the limit # — 7 due to the presence of the term 2[~(1 —cosf) — 41. This

can be resolved by first applying the transformation of the time coordinate

tr=t—4lp. (205)
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The metric (145) then becomes

s’ = L |~ 2 26 — 20(1 + cos8)]dg) + L a2
S =m _E< = — |asin® @ — 2{(1 + cos 6)] <p> +§ T
o’ P [ ’
—l—;dGQ—i-—QSinQG(adt,r— [fz—i-(a—l)ﬂdgo) : (206)
0
ie.,
Yoo = (g [ﬁsin% [7% + (a —1)?]* — Qlasin® @ — 2I(1 + cos e)ﬂ. (207)
For 6 h ~ P[i? 1212 7% e radius of a small circl d
or § — m we thus get g,, ~ P[r +(a—1) ] g e radius of a small circle aroun
the axis 0 = 7 is [, /ges d6, so that the fraction
' 2nC',/
£ = lim curcumf'erence i Ve ’ (208)
07 radius o—r (T — 0) /o0
is
fr=2nCP(n) =21C (1 + G5 — dy) - (209)
The axis @ = 7 in the metric (206) is thus reqular for the unique choice
1
=Ur=7"77, 21
¢ < 1+ a3 — Ay ( O)

(which for vanishing acceleration « is simply C, = 1). With such a choice, there is a deficit
angle &y (conical singularity) along 6§ = 0, namely

4 C~L3

60 =21 — fg = (211)

The tension in the corresponding cosmic string along € = 0 pulls the black hole, causing its
uniform acceleration a.

Complementarily, when the first axis of symmetry 6§ = 0 is made regular by the choice
(204), there is necessarily an ezcess angle ¢, along the second axis § = m, namely

47 (~Z3

O =21 — fr = (212)

a3 —da

This represents the cosmic strut along @ = m pushing the black hole.
Both the axes # = 0 and # = 7 can be simultaneously reqular if and only if a3 = 0. In the

famous C-metric this necessarily requires a = 0. In view of (124), for our new type of black

holes this can be achieved if the physical parameters satisfy the constraint

% (was +4lay) = 0. (213)
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For | = 0, e = 0 = g it requires a3 = 0, and using (179) we obtain the condition
am = (0. This is achieved in the non-acceleration subcases o = 0, both for the Kerr black
holes, i.e. (153) with [ = 0, but interestingly also for the Kerr-Bertotti-Robinson black holes
(195)—(197) immersed in the external magnetic field [52].

C. Structure of the electromagnetic field

To give a more detailed geometric interpretation of the new solution, it is also useful to
find the null eigendirections of the electromagnetic field, and to clarify their relation to the
PNDs of the Weyl tensor. The standard way of finding them is to conduct a null rotation
of the PND tetrad (102),

=1, m =m+ K1, K=k+Km+Km+KKI, (214)
and to find the specific values of K such that the new value of the field component
Py = K> Py + 2K &1 + P (215)
is zero, ®( = 0. In general, this equation has 2 complex roots,
Ki=—-k+VK2-1, (216)

where the complex parameter k is
R = Cbl/q)o. (217)

These two values of K. identify the two null eigendirections of the electromagnetic field
ki =k+K.,m+K,m+ K, K. 1 of the Maxwell field. In the case ®, = 0, implying
also @, = 0, both the Weyl tensor PNDs k and | are also the null eigendirections of the
electromagnetic field (the fields are aligned as, e.g., for the Kerr-Newman black holes)

It is convenient to introduce alternative quantities describing geometrically how the PNDs
of the Weyl tensor and the Faraday null eigendirections differ. Using the orthogonal basis
eo = (k+1)/v2, e = (k—1)/v2, e3 = (m+m)/v2 and e; = (m — m)//2i, calculated
from the null tetrad (102), we express k' in the form

1+ KK 1- KK K-K K+ K

Kk’ ey + e +i e +
V2 o V2o V2 o V2

e;. (218)
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One obtains a privileged spatial vector € by subtracting the timelike part from k',

1- KK K-K K+ K

6= ———e +i——ey+ ———
N V2 V2

es. (219)
Its norm is

. 1+ KK
€[] = ——F=—. (220)
V2

Now we define a parameter § measuring an angle between € and the privileged spatial

vector e, which in our case is the radial vector

e; = @GT, (221)

0

and a parameter 1) measuring an angle between different polar projections of €, namely

é-el 1—KK
Ccos) = —— = — =arg K. 222
16 1+ KK V= arg (222)

We can prove an important relationship for the two eigendirections roots K. given by

(216), corresponding to the angles 0+ and 14, namely that
cosdy = —cosd_, =2 —Y_. (223)

Indeed, from (222) we get

1-K,K, 1-K_ K_ 1-K. K, K_K_
) o_ = — —— = 2 — — . 224
O8O COS0- = T R T I KK I+ KR+ K K (224)
Employing specific values of K1 from (216), we infer that
KK K.K_ = (k—Vr*=1)(k+Vr2=1)(F— VR —1)(F + V&> — 1)
— <R2—(\/ﬁ2—1 2 <R2—( R2—1)2>
~1, (225)

so that from (224) we indeed obtain cosd; + cosd_ = 0.

This means geometrically that the two eigendirections of the electromagnetic field are
mutually symmetric with respect to a plane spanned by PNDs of the Weyl tensor. As can
be verified, this result is the consequence of the fact that ®; = &5, which, in turn, is the

consequence of the axial symmetry of the corresponding solution.
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Let us move to visualization of the electromagnetic field structure, focusing on a solution
e =0 =g (equivalent to 8 = ). We can do this simplification because the parameters e
and g are related to charges of a black hole itself, while the new feature of this class (namely,
the non-alignment of the electromagnetic field) remains even if e = 0 = g. For this analysis,
we will use the quantities ¢ and ¢ introduced in (222), calculated from (141)-(142). Their
dependence on r and 6 is plotted in Fig. 4 (for the branch I of Fig. 1).

/2

3n/8

7 cos 6

/4

/8

FIG. 4: Values of the angles § (left panel) and v (right panel), defined by (222), characterizing how
the spacelike part of the eigendirections of the electromagnetic field is rotated relative to the space-
like part of the Weyl tensor PNDs for the branch I of Fig. 1. Black circles represent horizons, dashed
curves represent ergoregions. The darkest blue means zero value, so that in such regions with § = 0

the fields are aligned. The parameters are m = 2.2, a =1.1, 1 =0.2, |¢| =0.2, a =0.14, w = 1.

Note that these plots show the angles  and 1 for only one null eigendirection of the
electromagnetic tensor. Analogous plots for the second eigendirection are not required, as
they are symmetric due to Eq. (223). As we mentioned in Sec. VI, on the horizons and on
the poles there is = 0. This means that the corresponding electromagnetic eigendirections
become aligned with the PNDs of the Weyl tensor there. This was expected because @, and

®, given by (141) are zero where either Q = 0 or sinf = 0 are zero.
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Such analysis applies to branch I of Fig. 1. One may also be interested in what happens
in other branches, describing new unexpected solutions. For branch III (shown in Fig. 5)
we observe that it possesses the existence of additional non-trivial zeros of P (depicted by

thick dashed lines). Such solutions are thus not expected to describe realistic black holes.

/2

/8

7 cos 6

FIG. 5: Values of the angles 6 (left panel) and ¢ (right panel), defined by (222), char-
acterizing how the spacelike part of eigendirections of the electromagnetic field is rotated
relative to the spacelike part of the Weyl tensor PNDs for the branch III of Fig. 1.
Black circles represent horizons, dashed curves represent ergoregions. The parameters are

m=22 a=11,1=02, |=0.2, «a=0.14, w=1.

XI. CONCLUSIONS

In this work, we constructed a new class of exact twisting solutions to the Einstein-
Maxwell equations of algebraic type D with a non-aligned electromagnetic field. In addition
to obtaining it by an integration of the field equations, we significantly elaborated on the
construction of its several coordinate systems and parameterizations. It turned out that the
most useful coordinates for the physical interpretation are the quasipolar ones, in particular
(136). The parameters describing this solution are the mass parameter m, the acceleration

parameter «, the Kerr parameter a, the NUT parameter [, the “charge” parameter |c|, and

52



the angles § and v generating duality rotations between the electric and magnetic parts of
the aligned part of the electromagnetic field.

From the analysis of the special cases we have found that the interpretation of some of
these parameters is more involved, and admits rich structure of black holes. For example, if
a — 0 while |¢| is kept constant, then one obtains a Kerr-Newman-NUT black hole, and ¢
represents the value of the charges of a black hole itself. However, if @ — 0 while «a/|c| is kept
constant, one obtains a novel class of black holes immersed in a uniform magnetic field B
(see [52]). In this case, |c| is related to the strengths of the external field. Also, for any
nonzero «, in the limit |¢[ — 0 the electromagnetic field vanishes. This allows us to conclude
that in the most general case, |c| is related solely to the electromagnetic field, and represents
its strength. Also, explicit analysis has shown that the parameter v represents the duality
rotation of the whole electromagnetic field, while § represents duality rotation between the
electric and magnetic charges of a black hole itself.

Even though the parameters m, a, [, and « are related to mass, Kerr and NUT twists, and
acceleration, we have to warn that they are not always equal to them. A similar situation
exists for the Plebanski-Demianski class, and for various other metric forms, in which the
corresponding parameters are different [19, 20]. This is a crucial point, because by setting
some parameter to zero (in a given metric form) does not necessarily erase the corresponding
genuine physical parameter. A search of various metric forms and reparametrizations is thus
still required for this solution. This will allow for a better understanding of the physical
properties of the new class.

In addition, we have analyzed various physical properties of the general solution. It turned
out that for a given set of m, a, [, «, c there exist up to 5 different types of black holes
with different positions of horizons, and only one of them corresponds to the accelerating
Kerr-NUT solutions in the ¢ — 0 limit. This fact may indicate that either several black hole
branches exist, or that this is a spurious property of the quasipolar coordinates and specific

parametrization we have chosen. This also has to be investigated in future works.

Supplemental material

Main expressions and derivations related to this paper are contained in the supplementary

Wolfram Mathematica file.
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