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PREFACE

In 1983, I enrolled for the lecture course of Jiří Bičák, then associate professor at the De-
partment of Mathematical Physics, Faculty of Mathematics and Physics, Charles University
in Prague. A two-semester course of general relativity for the 4th year of study, about 160
teaching hours, two credits and two exams, three questions each. 220 stairs to the 11th floor
of the “Trója” building; we were thirteen, ten theorists and three astronomers. We liked it –
the course was interesting, and we had a romantic relation to geometry, to heaven, as well
as to professor’s daughters.1 After a few years, I returned to the course, first assisting with
exercises and later sharing the lecturing as well.

Department has changed to an Institute – of Theoretical Physics – but, hopefully, ge-
ometry, heaven and students still have good times there. Our GR lecturer became a full
professor long time ago, and it may happen that he starts later then “in our times”, including
more about string quartets, new antiquarian catch, Bandipur tigers or about an inspiring per-
son who appeared in TV. Several months ago, I joined our 4th-class student at a lunch table.
I usually take care of the fall semester, while at that time lilacs were already in blossom, so I
asked where they are. He replied: “No, we have not started cosmology yet. ... But we don’t
only concern with physics at the lectures. It even seems like if professor wished to make us
cultured people...”

Unfortunately, the cultural thread is hard to capture. We may once get through to cos-
mology, but the rich branching of digressions to literature and philosophy, historical inter-
mezzi, story from a corridor or from the Learned Society, from Cambridge gallery or from
Australian bush, brief (yet complete) assessments of various “discoverers of truth” (including
American Bush),2 melancholy as well as oddities in paintings (and the latter’s frames, aligned
according to the rules of parallel – well, rather Fermi – transport! –But this I have just cut
in on myself, as usual...), questions we were embarrassed by (because we did not know the
answer), references to R. Penrose, Ya. Zeldovich, Kip (Thorne), B. Russel, A. Whitehead, K.
Popper, trees in Chocerady, Březina and Čapek brothers, quivers of idealism in the political
misery, dramatic pizzicato in Bartók, relaxed fun as well as urgent message about an inspiring
priest – all that must live in remembrances and on textbook edges, it must sound in original.

1 I mean, to their study world-lines xµJ ptq and xµAptq, about which we also learned much during the course; t
denotes cosmic time.

2 Please note this preface was written in 2002. Had Jiří been able to spot today’s reality ...
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After 56 orbits of the Moon, Jirka Bičák will finish 65 orbits around the Sun (as taken
– how else – with respect to distant stars) and a draft of lecture notes to his course might
be a good option for a gift. His course brought the applications of general relativity – the
relativistic astrophysics – to our country in the period when the black-hole theory was almost
completed, but not spoken about in a decent astronomical society. How different the situation
is today! Almost every discussion on the structure and evolution of galaxies, on the fate of
massive stars or on X-ray sources revolves about black holes. The values of cosmological
parameters, not long ago somewhat co�smic due to their error bars, are being finely bounded
by numerous independent studies, and the satellite navigation employs formulas that were
first presented, by Einstein, from Prague in 1911.

People say that in order to learn something, one should write a textbook about it. Before
I manage, gravitational waves may join the electromagnetic ones and begin to bring informa-
tion about the Universe. It may be necessary to rewrite some parts then. In any case, I hope
there’s something to that saying.

OS, end of October 2002

Yes, gravitational waves made it to us. 5 years ago, actually. A new class of massive black
holes has been discovered thanks to them. Also, our Institute dropped from the 11th to the
10th floor. It was not due to the waves; it was due to a coordinate transformation only, our
proper distance from the Earth surface has not changed. More serious (though also not tied
to the waves) is that the LATEX installation has changed several times... Anyway, Jirka is
lecturing as ever, and these lecture notes are half-finished as ever. Within the coronavirus
home-office, I made an unlucky decision to start once more and in English (half-finished was
the Czech version).

OS, end of June 2020

So sadly, on 26th January 2024, Jirka Bičák left us. The whole era closed for us, his stu-
dents. Jiří designed this course in the 1970s, starting from 1972 when he returned from a
half-year stay in Kip Thorne’s group at Caltech. He taught the course for 50 years. Origi-
nally one-semester, from 1980s it was two-semester, and in 2004 the third, advanced semester
was added which Jiří specifically took care of then. We were planning its 2024 run two days
before Jirka’s demise. Now it is on me, and it is a challenge.

OS, end of February 2024
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Exactly as Riemann guessed

“Thus, according to this theory, space is — exactly as Riemann guessed — no longer abso-
lute; its structure depends on physical influences.”
[A. Einstein, in Ideas and Opinions (Crown Publishers, New York 1954)]

Einstein speaks here about his general theory of relativity and about its most fundamental
and new feature – the dynamical role of geometry. However, he surely means space-time,
as he himself joined them in the “special” theory already. He had been forced to do so by the
requirement of equality of all the inertial systems, inspired by Mach’s critics of the absolute
system of Newton, and by the assumption/observation that light propagates with respect to all
the inertial systems with the same, “absolute” speed. Relativity of time, its interconnection
with space as well as geometrical interpretation were already forecasted by Poincaré, but ev-
erything only emerged from æther haze after the “Machian” revision of the concept of time,
at which Einstein arrived during one early-May night of 1905. Two years later, Minkowski
presented the new standpoint in an elegant, geometric form.

While special relativity lives in a “flat” space-time of Minkowski, the general theory of
relativity is tied to curved space-times. Curved spaces were discovered at the beginning of the
19th century, as an alternative to the 2000 years old geometry of Euclid. Riemann generalised
it, extended it to a general dimension, and pointed out its possible factual significance. Non-
Euclidean concepts then became popular, but they only entered the physical world really
after Einstein gave the new meaning to time and Minkowski embedded this new time into the
world geometry.

However, no route would have lead the new theory to the physical world, were not grav-
itation a universal interaction. This aged observation of Galilei and others was generalised
by Einstein, and – as the principle of equivalence – helped to extend his relativity principle
(more accurately, of “covariance”) to non-inertial reference systems. In the field of inertial
forces, physical processes proceed differently than in the Minkowski geometry, and they pro-
ceed in a similar way as in the corresponding gravitational field. Allowing, in addition, for the
field’s non-homogeneity, it turns out that the gravitational effects can be described in terms
of deviation of the space-time geometry from Minkowski. It remains to be specified which
properties of matter curve space-time (or, generate gravitation) and how they curve it. Only
at this moment (1912) the lines of geometry definitively intersect with the physical world:
Einstein learns the results of Riemann and his successors and starts to tackle the gravitational
challenge in their language. Soon he almost has it, but a seeming disagreement between the
requirements of general covariance, correct Newtonian limit and the Machian, “relativistic”
interpretation of inertia postpones the completion of his effort by 3 years.

Einstein was always stating that his theory rests on the equivalence principle and that
it describes the relation between matter and space-time geometry. Such a view will also
accompany us in these lecture notes. You are hardly going to find in them something which
could not be found elsewhere – there are so many books on the relativity theory, on relativistic
astrophysics and cosmology; some of them are mentioned in references. Yet not all of them
are accessible to everyone and, in addition, more of them would be necessary to cover the
topics of the course. It is why we have written this text. We have tried to include all usual
parts, and to explicitly compute everything important, but, at the same time, we focused to
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the basic ideas rather than adding every kind of detail, whether on the geometrical or the
astrophysical side.

Current view on the logical starting points and on the content of the relativity theory
may differ from the original Einstein’s. If only for this reason, it is worth comparing different
presentations. Among the GR textbooks, General Relativity by R. Wald [50] is being highly
acclaimed in the community. In its preface, the author writes: “One of the most difficult
issues which arises during the writing of a book on general relativity is where in the book to
present the rather substantial amount of mathematical material that is needed. Much of this
material (e.g., tensor calculus and curvature) is required even for the formulation of general
relativity. ... If all this material were presented at the beginning of the book, it would comprise
a truly formidable obstacle to learning general relativity.” Yet this obstacle is already part of
the subject – as a geometric theory of space-time, general relativity begins by mathematics, so
the university-level textbooks necessarily start by mathematics as well, whether “only” in the
form of tensors and curvature, or by a full summary of the (pseudo-)Riemannian geometry.

The GR books rather differ in position in which the mathematics is introduced. C.
Møller writes in the preface of [30]: “Certainly the four-dimensional representation, which
is based on the symmetry between the space and time variables revealed by the discovery of
the Lorentz transformation, is the most elegant way of expressing the principle of relativity in
mathematical language, and it has been of the utmost importance for the rapid development
of the general theory of relativity particularly. ... However, in a textbook of today I think it
is useful to stress again the fundamental physical difference between space and time, which
was somewhat concealed by the purely formal four-dimensional representation. In the first
three chapters we have, therefore, avoided any reference to the four-dimensional picture ...
But in the following chapters also, where the elegant methods of the four-dimensional tensor
calculus are developed and applied, a three-dimensional formulation, which gives a better
insight into the physical meaning of the theory, is frequently given.” However, one may
ask: why the four-dimensional tensor approach should be just elegant and important, why it
should not be bona fide natural as well?3 The persuasion that “the world in itself is elegant”
has for many physicists been not only a vague starting point, but also an ongoing criterion for
“correctness” of reasoning, even including concrete calculations.

Whereas Møller introduces the curvature tensor in p. 343, in [46] it already appears in
p. 15. And the author of this latter textbook, J. Synge, also added quite a different preface: “It
is to support Minkowski’s way of looking at relativity that I find myself pursuing the hard path
of the missionary.” Meant is the geometrical view, employing the space-time diagrams (rather
than kinematical figures and dynamical terminology of Newtonian mechanics) as means of
understanding. “When, in a relativistic discussion, I try to make things clearer by a space-
time diagram, the other participants look at it with polite detachment and, after a pause of
embarrassment as if some childish indecency had been exhibited, resume the debate in their
own terms. Perhaps they speak of the Principle of Equivalence. If so, it is my turn to have a
blank mind, for I have never been able to understand this Principle.”

3 If not used in the sense “existing in or derived from nature”, the word natural feels rather vague (“in accor-
dance with the nature of, or circumstances surrounding someone or something”, or “instinctively plausible”),
but those who have studied Einstein know that he was using it as a very strong argument, in (natural) science as
well as generally in the society.
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Synge concedes that the “Principle of Equivalence performed the essential office of
midwife at the birth of general relativity”, but he suggests “that the midwife be now buried
with appropriate honours and the facts of absolute space-time faced”. Just on the contrary, S.
Weinberg gives as the main reason to write the book [51] that he “became dissatisfied with
what seemed to be the usual [i.e., geometric] approach to the subject” – and exactly oppositely
he also recognises Einstein’s position: “Of course, this was Einstein’s point of view, and his
preeminent genius necessarily shapes our understanding of the theory he created. However, I
believe that the geometrical approach has driven a wedge between general relativity and the
theory of elementary particles. ... the passage of time has taught us not to expect that the
strong, weak and electromagnetic interactions can be understood in geometrical terms, and
too great emphasis on geometry can only obscure the deep connections between gravitation
and the rest of physics. ... I have tried here to put off the introduction of geometric concepts
until they are needed [Riemann tensor is put off to p. 133], so that Riemannian geometry
appears only as a mathematical tool for the exploitation of the Principle of Equivalence,
and not as a fundamental basis for the theory of gravitation.” In Weinberg’s book, it is even
possible to read: “Einstein and his successors have regarded the effects of a gravitational field
as producing a change in the geometry of space and time. At one time it was even hoped that
the rest of physics could be brought into a geometric formulation, but this hope has met with
disappointment, and the geometric interpretation of the theory of gravitation has dwindled
to a mere analogy, which lingers in our language in terms like ‘metric’, ’affine connection’,
and ’curvature’, but is not otherwise very useful. The important thing is to be able to make
predictions about images on the astronomers’ photographic plates, frequencies of spectral
lines, and so on, and it simply doesn’t matter whether we ascribe these predictions to the
physical effect of gravitational fields on the motion of planets and photons or to a curvature
of space and time.” Weinberg himself adds in a parenthesis: “The reader should be warned
that these views are heterodox and would meet with objections from many general relativists.”
In the 1970s, such a warning was twice appropriate, as the geometrical approach had brought,
in the preceding decade (“golden years” of relativity), a number of crucial results and also –
almost concurrently with Weinberg’s book – two major textbooks [18] and [29].

One of the authors of [29], K. Thorne, mentions, in “its popular version” [48], another
interpretation aspect, namely two possible perspectives on curvature: (i) the space-time is
curved while rulers (and clocks) measure true (proper) distances; (ii) the space-time stays
flat, but measures are deformed, so the measurement results do not come out “flat”. Read
on: “What is the real, genuine truth? Is spacetime really flat, or is it really curved? To a
physicist like me this is an uninteresting question because it has no physical consequences.
Both viewpoints, curved spacetime and flat, give precisely the same predictions for mea-
surements performed with perfect rulers and clocks, and also (it turns out) with any kind of
physical apparatus whatsoever. ... Which viewpoint tells the ‘real truth’ is irrelevant for ex-
periments; it is a matter for philosophers to debate, not physicists.” Certainly the perspective
(i) has become standard since it is in better tune with the fundamental faith in background
independence. But yes, physicists are used to present their images, humbly, as mere “for-
malisms”, and they are amazed when “it works”, namely when these yield predictions which
agree with the experiment. Actually, it is very non-trivial that it works quite well, as Einstein
himself expressed in his famous quote “The most incomprehensible thing about the world is
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that it is comprehensible.” (cf. the article The Unreasonable Effectiveness of Mathematics
in the Natural Sciences by E. Wigner, 1960). But we beg to claim that Einstein would deem
such a conventionalism standpoint a pragmatic deviation, resigning to access to the deepest
background of phenomena. W. Heisenberg, for example, was remembering how Einstein
did not want to discuss “observables” with him: “You are suddenly speaking of what we
know about nature, and no longer about what nature really does. In science we ought to be
concerned solely with what nature does.”4

It belongs to the local (European, Prague, but – we hope – also our-Institute) tradi-
tion that the questions about “real truth” are also being included in mathematics and physics.
The question whether better insight follows from the four-dimensional “geometry” or the
three-dimensional “physics” is, however, the question of personal intuition, and the answer
also depends on specific situation. The difference between the two standpoints advocated
in the cited classical textbooks, actually, just consists in whether the geometrical formula-
tion is only offered as a handy option after analysing the spatial and temporal measurements
in a traditional, Newtonian field language, or whether it is firmly stated, at the very begin-
ning, that our physical universe is a four-dimensional pseudo-Riemannian manifold, and then
the observations are already interpreted in its geometrical terms. R. Wald characterises his-
textbook position as a “more modern, geometrical viewpoint than Einstein had” (Riemann
tensor he first has in p. 37), but the equivalence principle and the general covariance principle
he discusses thoroughly, with Mach’s principle mentioned as well.

Instead of our own point of view, let us add a quote from the preface of K. Kuchař to his
Czech textbook [24] (Riemann tensor in p. 105): “The reader should learn to easily translate
the geometrized space-time equations to the language of traditional physics which splits time
from space and describes their relation in dynamical terms, so that he can use geometric as
well as physical intuition, the interplay of which is one of the most beautiful features of the
general theory of relativity.”

In order to enjoy and pursue such an interplay, we assume the students/readers know
basics of special relativity in real four-dimensional formalism. Who already knows the math-
ematical foundations of general relativity (tensor analysis on manifolds) will have advantage,
but, in contrast to Platón, we also invite those who have not mastered geometry yet. We
proceed rather inductively and seldom in the definition-lemma-theorem style. We don’t start
from the analysis of observations and experiments, yet emphasising fundamental principles
– as generalised empirical experience, but also as what for Einstein himself was the start-
ing point. The tensor formulation is thus arrived at very soon, but rather than as an a priori
narrative, it is picked as a natural and most economical way of presenting the gravitational
problem; the necessary geometric tools we gather in an opportune and “pragmatic” way. It is
by no means to stress the non-geometrical story, but (i) in order not to substitute neither repeat
the course on geometrical methods (which, at our Faculty, the students of theoretical physics
rather go through later than through the first GR course), and (ii) in order that the lessons be

4 As Heisenberg noticed clearly at this occasion, Einstein had substantially changed his epistemology since
the period of struggle with relativity and gravitation. And Einstein himself admitted that elsewhere: “I began
with a skeptical empiricism more or less like that of Mach. But the problem of gravitation converted me into a
believing rationalist, that is, into someone who searches for the only reliable source of Truth in mathematical
simplicity.”
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also accessible to those whose geometrical background has not yet been completed.
To conclude, let us mention some more recent textbooks. Excellent – friendly yet

modern – is the introductory course [39] by L. Ryder; it uses the same conventions as we.
More advanced chapters are added in [14] by Ø. Grøn & S. Hervik (same conventions as
well), who write in Preface: “We will try to convey the concepts of gravity to the reader as
Albert Einstein saw it. ... He saw upon gravity as curved spaces, four-dimensional manifolds
and geodesics.” And they also warn the reader that – despite the weakness of gravity – it is
dangerous to climb a ladder.

Victoria Ivanova: The envy
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Notation

We use the standard index formalism, Einstein summation rule and notation common in the
relativity theory. Mostly the indices are abstract – they just indicate type of the quantity,
rather than necessarily representing components in any basis. Generally, we adhere to the
conventions of the “canonical” textbook MTW [29]. Let us remind them, plus several others:

• with the exception of introductory parts and of some astrophysically/cosmologically ori-
ented chapters, and if not stated otherwise, the quantities are given in geometrized units in
which the speed of light in a vacuum c and the gravitational constant G are equal to unity

• metric tensor gµν has signature (´+++)

• Greek indices assume the values 0–3, Latin indices (i, j, ...) run 1–3 (spatial range); tetrad
components are denoted by indices with a hat, α̂ etc.

• where the indices are not just abstract, the symbol Xµ represents all components, or any
component, of the quantity X , i.e. Xµ :“ pX0, X1, X2, X3q (similarly for quantities of
arbitrary tensor type and order); particular values of the indices are specified by numbers
0–3, or directly by letters representing the respective coordinates (e.g., u0 ” ut, etc.)

• derivatives:

– partial derivative is denoted by B or by a comma in an index position – e.g.,

BXα

Bxλ
” BλX

α
” Xα

,λ

– covariant derivative is denoted by∇ or by a semicolon in an index position – e.g.,

∇λX
α

” Xα
;λ

– just one comma or semicolon is given, with all the indices which appear after them
indicating derivatives

– absolute derivative (covariant derivative in a specific direction) is denoted by D or –
in the case of time direction, in particular – by a dot over the quantity

– higher mixed derivatives are ordered according to

B

Bxκ

ˆ

BXα

Bxλ

˙

”
B2Xα

BxκBxλ
” BκBλX

α
” Xα

,λκ ∇κ∇λX
α

” Xα
;λκ

• parentheses/brackets in an index position mean symmetrisation/antisymmetrisation in all
the enclosed indices:

Tpµ1... µnq :“
1

n!

ÿ

p

Tµpp1q... µppnq
, Trµ1... µns :“

1

n!

ÿ

p

δpTµpp1q... µppnq
,

where summation goes over all index permutations p, with δp being `1 for even and ´1
for odd permutations (possible other indices of T have not been indicated – those remain
untouched)
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• braces in an index position mean sum of the terms obtained by cyclic permutation in all the
enclosed indices:

Ttµ1... µnu :“ Tµ1... µn ` Tµnµ1... µn´1 ` Tµn´1µnµ1... µn´2 ` ... ` Tµ2µ3... µnµ1 ;

in the three-index case, Tαβγ , it is useful to know that

Ttαβγu “ 3Trαβγs for a tensor antisymmetric in at least two indices ,

Ttαβγu “ 3Tpαβγq for a tensor symmetric in at least two indices

• generally, the order of indices is important and has to be given distinctly; only when the
tensor or matrix is symmetric in some indices, one may – in the mixed version – write
the respective indices above each other; i.e., if T µν is symmetric, one may write its mixed
version as T µν (but both T µν and Tνµ would be OK as well)

• the Riemann tensor Rµ
νκλ is defined according to the Ricci identity

2Vν;rκλs :“ Vν;κλ ´ Vν;λκ “ Rµ
νκλVµ ,

where Vµ is an arbitrary covector

• the Ricci tensor, the Einstein tensor and the field equations read

Rνλ :“ Rκ
νκλ , Gµν :“ Rµν ´

1

2
Rgµν , Gµν ` Λgµν “ 8πTµν .
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Galileo Galilei demonstrating universality of free fall in Pisa.
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CHAPTER 1

Fundamental principles
of general relativity

Old Indians, old Greeks already? No, let’s start by falling from a roof.

If all free bodies fall, in a given gravitational field, with the same acceleration (as Galilei
noticed), their relative acceleration with respect to each other has to vanish. Einstein realised
this in 1907 when looking at roofers working on a building next to his Bern’s office: if a
roofer dropped his hammer while falling, the tool would have no acceleration with respect to
him. Seems trivial, but Einstein was later mentioning this as the luckiest thought of his life.
He inferred from it the principle of equivalence which enabled him to extend his relativity
principle from inertial to accelerated reference frames, and, subsequently, from flat to any
space-time, and thus to formulate the general theory of relativity.

A short story first. If freely falling bodies have zero acceleration relative to the freely
falling roofer, it means that his frame – if spanned by non-rotating Cartesian axes – repre-
sents an inertial frame. And in an inertial frame, we know (from Einstein, 1905) how physics
works: it should obey special relativity. Special relativity only holds in the absence of gravi-
tation, but this simple thought shows that even in a non-zero gravitational field, there exists a
reasonable analogue of inertial frames – freely falling, non-rotating Cartesian frames. Does
it mean that in any space-time (any gravitational field) it is enough to fall freely with non-
rotating Cartesian axes, and just keep using special relativity? Not really. If the gravitational
field were homogeneous, same at every location (and time), then yes, it would be possible,
and sufficient, to go over to any of the freely falling and non-rotating Cartesian frames. All
bodies freely falling at any place (and time) would be, with respect to any such frame, in a
uniform linear motion, so the frames would by definition represent global inertial frames,
and one could resort to special relativity when working in them.

However, real gravitational fields are non-homogeneous, so the state of free fall is dif-
ferent at different points (and possibly times), in other words, the family of “inertial frames”
is different at different points (and times) – it’s impossible to find any single frame that would
be “inertial” everywhere, i.e. with respect to which free bodies moving anywhere in the space-

1
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time would have zero acceleration. Note that this is nothing new, nothing “non-Newtonian”;
in extended bodies, the non-homogeneity of gravitational acceleration is well known to gen-
erate tidal forces. Anyway, for practical reasons, we need global coordinate systems, since it
is not practical to treat physical problems in the whole set of “inertial frames”, each only rea-
sonably valid in a limited neighbourhood of some point. Hence, it is necessary to admit more
general coordinate frames. This will be addressed by the principle of general covariance.

1.1 Principle of equivalence
Galilei found that in a given gravitational field, all free bodies (those only affected by that
gravitational field) move with the same acceleration. Admitting that not just free bodies but
“all physics feels the same acceleration”, one obtains the most elegant formulation of the
equivalence principle:

gravitation is a universal interaction .

Note that the other three fundamental interactions are, in contrast, differential, since they
differentiate between different physical systems. A given electric field, for example, acceler-
ates plus and minus charges in opposite directions, and does not affect neutral particles. In
this language, the above principle thus includes the observation that there are no bodies with
negative mass, because negative masses would be accelerated in the opposite direction than
the positive ones.

What does Newton’s physics say to the Galilei’s finding? Acceleration a⃗ of a body of
mass m in a gravitational field of a spherical body of mass M is given by the equation of
motion

ma⃗ “ ´
GMm

r2
r⃗0 , (1.1)

withG the gravitational constant, r the distance between centres of the bodies, and r⃗0 the unit
directional vector pointing from the large-body centre towards the small body. Dividing the
equation bym, we obtain for a⃗ an expression which is really independent of any characteristic
of the studied body, in particular, it does not depend on its mass. But the quantity m which
we divided by represents totally different properties on the two sides of the equation: on
the left-hand side, m quantifies the resistance of the body against acceleration (call it the
inertial mass, mi), while on the right-hand side, it quantifies the response of the body to the
gravitational field ´GM{r2 of the other body (the gravitational mass, mg). The equality of
mi and mg does not follow from anywhere and it is not at all self-evident. Reasoning in the
opposite, effective way: since the Newton equation works very well, the two masses must
have the same value. The Galilei’s observation can thus be expressed by claiming

mi “ mg ,

more precisely, by claiming that the ratio mg{mi is the same for all free bodies (with its value
“tuned” to unity by choosing the value of the constant G appropriately).
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Figure 1.1: This man has different experience than Galilei.

A footnote: notice that the mass M has, in the expression GMm
r2

for the gravitational
force, a somewhat different role than the mass m – while m reacts to the field, M generates
it, hence m could be called the passive gravitational mass, while M represents the active
gravitational mass. However, this distinction only has a clear meaning in the “instinctive”
limit M "m, with m considered a test mass not affecting the field of M at all. In any case,
whatever are the values of the masses, the bodies exert the same force on each other,

GMactive
1 Mpassive

2

r2
“ |F1Ñ2| “ |F2Ñ1| “

GMactive
2 Mpassive

1

r2
,

so, due to the action-and-reaction law, the active and passive gravitational masses have to be
proportional to each other.

1.1.1 Testing the equivalence principle

As soon as in the first paragraph, Newton himself mentions in his Principia that the equal-
ity mi “mg is not obvious and should be tested experimentally (see Figure 1.2). Naturally,
considered should be such phenomena where inertia and gravity compete. The simplest is
the motion of a mathematical pendulum. If one does not assume that mi “mg for the swing-

ing body, the period of its small oscillations comes out as T “ 2π
b

l
g

b

mi

mg
, where l is
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Figure 1.2 First paragraph of Newton’s Principia, in English translation (from original Latin) and
commented by S. Chandrasekhar. From S. Chandrasekhar: Newton’s Principia for the Common

Reader (Clarendon Press, Oxford 1995).

the length of the massless cord and g is the gravitational-acceleration magnitude. Newton
achieved accuracy of about 10´3 in measuring the mass ratio. More accurately, the accuracy
is being expressed in terms of deviation from unity of the parameter (often called the Eötvös
parameter)

2
rmg{mis1 ´ rmg{mis2

rmg{mis1 ` rmg{mis2
,
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where indices 1 and 2 denote two different bodies (two different weights compared in the
pendulum case). Using the same method, Bessel achieved roughly 100 times better accuracy
than Newton. The accuracy rose significantly when torsion balance began to be employed
by L. von Eötvös (10´8 in 1889, 10´9 in 1908). Later the team lead by R. H. Dicke reached
10´11 in 1963 and the team of V. B. Braginsky reached 10´12 in 1971. Only at the turn of
the century, the precision was increased to 10´13, still following the Eötvös’ method. Current
most accurate bound, 10´15, was obtained by direct comparison, on a satellite, of the motion
of two free bodies of different compositions in an identical (Earth’s) gravity field (the project
was called MICROSCOPE, operated 2016-18).

The idea of the torsion-balance experiments is simple but non-trivial. First, the studied
process has to be governed by inertia and gravity, with the possible inequality of mi and mg

inducing a time-variable effect. (In the opposite, time-independent case, no effect can be
revealed, because then the balance can be put in a stationary equilibrium, independently of
whether mi and mg are identical for the bodies involved or not.) Therefore, the terrestrial
weight field alone (the sum of Earth’s gravity and of centrifugal force due to Earth’s rotation)
is not enough for a test, because, irrespectively of whether the equivalence principle holds or
not for any of the masses, equilibrium once tuned stays satisfied for ever (imagine performing
it with normal scales for simplicity). Now, however, abstract from this stationary part of the
problem, and also notice the second important motion the apparatus undergoes – orbiting
the Sun together with the Earth. This is a free, Keplerian orbiting, governed by equilibrium
between gravitational attraction by the Sun and orbital centrifugal force. If the Sun, the Earth
and the balance stayed on one line all the time (as would be the case were the Earth’s rotation
synchronised with its orbital motion – so called captured rotation or gravitational locking),
there again would not be any effect. But the reality is different – the Earth’s rotation period
is much shorter than the orbital period, having the balance assume an opposite position with
respect to the Sun every 12 hours (see Figure 1.3). Hence, if the equality of mi and mg were
broken for one of the bodies (say), i.e. if the ratio of the Sun’s attraction and orbital inertia
were different for the two bodies, it would not be possible to restore the equilibrium for ever:
the balance would suffer a net torque altering its orientation in a sinus-like 12-hour pace, so
it would oscillate with the 24-hour period.

High accuracy is ever an experimental ideal, yet here it has a deeper importance, be-
cause it enables one to check whether the equivalence principle holds for various subtle (yet
fundamental) ingredients contributing to the macroscopic weights. Practically, the bodies are
made of nucleons and electrons. Most of the chemical elements contain similar number of
protons, neutrons and electrons, hence the estimate of how much these species contribute
to the mass of ordinary bodies. Electrons, for example, contribute by some 0.027%, i.e.
2.7 ¨10´4. Therefore, one needs the precision of at least 10´5 (like Bessel’s) in order to be
able to check whether the equivalence principle holds for them. Further, the microscopic
constituents of the weights are not free, they are subject to several interactions within the
matter. The strong nuclear force keeps the nucleons within atomic nuclei, otherwise these
would break up due to electric repulsion between protons; electromagnetic force holds to-
gether atoms and molecules; a tiny weak force acts there as well; and one might also speak
of non-fundamental, mechanical-like interactions, such as particles’ low-energy collisions,
macroscopically manifested as pressure. Every interaction contributes to the energy of a
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Sun
Earth

rotation

t t+12h

Fg Fi

Fg Fi

Keplerian orbit around Sun

Figure 1.3 A scheme of the classical torsion-balance tests of the equivalence principle (here

depicted on normal balance and somewhat out of scale). Due to the Earth rotation, the balance

arms get into an opposite position with respect to the Sun every 12 hours, so if the equivalence

principle did not hold for one of the weights (the grey one in the plot), the balance would oscillate

with 24-hour period. Please excuse that the Earth’s rotation axis is indicated as perpendicular to

the ecliptic, it is to keep the scheme simple.

given particle, so, according to the Einstein formula E “ mc2, it changes its mass corre-
spondingly: attractive interactions bind the particles in potential wells, thus decreasing their
energy and mass, whereas repulsive interactions lift the particles on potential heights, thus
acting oppositely.

The mass-energy contributions of interactions are hard to quantify, because they depend
on which ingredients one takes as “elementary”. For instance, the strong force acting between
nucleons contributes slightly less than 1% to the masses of all compound atomic nuclei. On
the other hand, it constitutes as much as 99% of the nucleon masses (“pure quarks” only
contribute by about 1%)! And one could continue: the strong force is carried by gluons,
but these have zero rest mass... Now a particular piece of knowledge from special relativity
must have crossed your mind: even zero-rest-mass particles do have (or may have) energy,
so they do have mass, according to the m “ E{c2, hence m“m0γ formula. The latter holds
for any particle or body, and many of the microscopic particles existing within bodies move
very rapidly. Hence another query: does their mi as well as mg rise with velocity according
to that same formula? In other words, does the equivalence principle hold for the kinetic
contribution to mass-energy?
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In order to reduce the probability of accidental cancellations, the tests have been per-
formed with weights of various chemical compositions. The “classical” experiments in the
1960s and 1970s were performed with one weight of aluminium 27

13Al and one weight of
gold 197

79Au. Besides their difference in proton-to-neutron ratio and much bigger contribution
(about 0.5%) to the gold-atom mass of the electrostatic repulsion between protons, gold is
also known as “the most relativistic” of all stable atoms, because its inner electrons orbit
its heavy nucleus with relativistic speeds. Actually, it is 0.53c for the innermost 1s electrons,
making their mass γ .“1.18 times the rest mass. A simple estimate reveals that about 2.2¨10´4

of the gold-atom mass is in electrons. Since not only the 1s, but also the other electrons spend
significant time close to the nucleus, the overall Lorentz-factor effect can be of the order of
10´6˜10´5 of the gold-atom rest mass. In 2010s, 1 kg of gold was being sold for about 40
thousand EUR, of which some 10 cents are due to special relativity.

We have not yet mentioned the contribution of the gravitational interaction itself to the
mass-energy. For ordinary bodies, this contribution, ´Gm1m2

c2r
, is negligible. For example,

the mass of two nuclear protons is diminished, due to their mutual gravitational attraction,
by „10´39 of their rest mass; for two kilogram-mass bodies 1 meter apart, the “gravitational
mass defect” amounts to „ 10´27 of their rest mass. Such an accuracy is not likely to be
ever reached by experiments. However, the share of the gravitational potential energy is
more significant for very massive, astronomical bodies. The Moon, for example, “loses”
about 10´11 of its mass due to the mutual attraction with the Earth.1 Were this contribution
different for inertial and gravitational masses of the Moon, it would affect the Moon’s orbit.
Precise tracking of the Moon’s distance (referred to as the Lunar laser ranging), together with
subtraction of all known effects (such as those due to tides), has supported the validity of the
strong equivalence principle (the statement which also involves the gravitational potential
energy) with the precision of about 10´14.

Recently, further advance in accuracy is mostly being mentioned in connection with
the ongoing effort to find the quantum theory of gravitation. Actually, some of the ap-
proaches predict violations of the gravitation-inertia equivalence with magnitudes just about
to be reached by current technologies. A natural aim, not only restricted to the testing of the
equivalence principle, are measurements from regions involving strong gravitational fields
(rather than such weak ones as in our Solar system). Of course, GR is a non-linear theory (as
we shall see), so significant deviations from Newtonian gravity can be expected where the
field is strong. From the point of view of the equivalence principle, it is certainly much more
interesting if the contribution of the gravitational binding energy is not just of the Newtonian
´Gm1m2

c2r
type, but if it arises under strong-field conditions. The best stronger-field limit has

yet been obtained from long-term observation of the triple stellar system involving a 366-Hz
pulsar (PSR J0337+1715) in close orbit with a white dwarf (1.6-day orbital period) and an-
other white dwarf orbiting the binary at larger distance (yet still below 1 astronomical unit –
with period of 327 days). Current [2020] accuracy of this strong-equivalence test (in which,
specifically, the effect of the outer dwarf on the inner-binary motion is studied) is 10´6.

1 Worth to realise that the exact value depends on the reference system. In the Earth-Moon rest system, we
are done, whereas, for example, in the system in which the Moon orbits with the Keplerian speed given by
v2 “ ´Φ “ GM‘{rK, the potential-energy effect MKΦ is partly compensated by the positive kinetic-energy
contribution 1

2MKv
2 “ ´ 1

2MKΦ.
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1.1.2 Local inertial frame

Imagine you are inside a lift with no window. Therefore, you can only perform quasi-local
measurements, not global ones (such as observing distant stars or a possible Earth residing
below). If the equivalence principle holds, you cannot recognise whether i) the lift is hanging
still in some gravitational field g⃗ (e.g. that of the Earth), or ii) it is in zero gravitational field
(there is no “Earth”) but pulled with the acceleration ´g⃗. In both cases, all free bodies will
fall, with respect to the lift, with the acceleration g⃗.

Imagine now that the lift’s rope snaps, so that the lift is in a free fall (and non-rotating).
As already learnt by our (in fact Einstein’s) roofer, all free bodies move without accelera-
tion with respect to such an (Einstein’s) lift, that is, in the same manner as with respect to
unaccelerated, inertial frames in an empty space (without gravitation).2

Generalising these observations to any physical process, not just the free fall, one ar-
rives at the following reading of the equivalence principle:

• All physical processes run, with respect to a frame kept stationary in a given gravitational
field, in the same way as they do with respect to a frame (suitably) accelerated in an empty
space without gravitation.

• With respect to freely falling and non-rotating frames (“Einstein’s lifts”), the physical pro-
cesses run in the same way as they do with respect to inertial frames in an empty space.

This is the

equivalence between the gravitational field and the field of inertial forces .

The equivalence principle not only states an important feature of the Universe. It also
provides a key for transferring the physical laws from special relativity to a situation where
gravitation is not negligible. Actually, if, even in a generic situation, the freely falling and
non-rotating frames are equivalent to inertial frames of flat space-time, it means that in such
frames one can use special relativity, whatever is the gravitational field.

Well, there still remains one significant flaw to remedy, already touched above: the
gravitational field is non-homogeneous, that is, the gravitational acceleration g⃗ is different at
different places (and possibly times), and thus – among others – it cannot be “eliminated” in
an arbitrarily large region by going over to a single, large freely falling lift. Therefore,

the equivalence principle can only hold LOCALLY,
in a neighbourhood of each particular point.

To summarize, the principle of equivalence can be phrased as an analogue of the 1st
Newton’s law (the definition of inertial frame plus the postulation of its existence), now how-
ever only having local validity, i.e. with the inertial frame replaced with the local inertial
frame:

2 Since 1979, this course has been taught on the 10th floor. Students are kindly asked to employ, for possible
measurements required at practical courses, other than Faculty lifts – best of all if Einstein’s.
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At every (non-singular) point of arbitrary space-time, there ex-
ists a Local Inertial FramE (LIFE), i.e. such a locally Cartesian
coordinate system with respect to which, in a sufficiently small
neighbourhood of the given point, all natural laws hold in the
same form as in special relativity.

“Sufficiently small” neighbourhood in principle means infinitesimally small; practically, it
depends on how much non-homogeneous the field is and on how precise one wants to be. Let
us add that – similarly as in the case of the 1st Newton’s law – the existence of one LIFE
implies the existence of infinitely many such frames at each point; all these (passing through
that point, at a given time, in different directions and with different speeds) are related by
Lorentz transformations.

Figure 1.4 It is not possible to distinguish, by experiments limited to the interior of a lift, whether
[right] the lift is hanging still in a homogeneous gravitational field (exerting an acceleration g⃗),
or whether [left] it is accelerated (with acceleration ´g⃗) by some other force in a space without
gravitation. In both cases, everything having no acceleration with respect to the lift experiences

weight with intensity g⃗.
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Figure 1.5 It is not possible to distinguish, by experiments limited to the interior of a lift, whether
[right] the lift is freely falling in a given homogeneous gravitational field, or whether [left] it is just
standing (or “hanging”) still in a space without gravitation. In both cases, everything having no

acceleration with respect to the lift feels no weight.

1.1.3 Terminology: weak, Einstein’s and strong principle

Often different names are used for the equivalence principle, depending on how general its
statement is understood. The weak equivalence principle claims the equivalence for freely
falling bodies, i.e., it actually summarizes Galilei’s observations. Einstein’s equivalence
principle extends the claim to all matter and fields governed by non-gravitational interac-
tions. The strong equivalence principle also includes the gravitational interaction itself.
In order to stress that the gravitational interaction energy in fact “non-trivially” (in a non-
Newtonian way) contributes in the strong-field regime only, this last term is often reserved
to the strong-field situations, while its weak-field limit (most notably tested by Lunar laser
ranging) is being called the gravitational weak equivalence principle.
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1.1.4 “... I have never been able to understand this Principle.”

Einstein was always claiming that his general theory rests entirely on the equivalence prin-
ciple, but his followers – most notably those with rather geometrical taste – were having
reservations. Illustrative is the preface of the textbook [46]. Its author writes, among others:
“I have never been able to understand this Principle. Does it mean that the signature of the
space-time metric is +2 (or ´2 if you prefer the other convention)? If so, it is important, but
hardly a Principle. Does it mean that the effects of a gravitational field are indistinguishable
from the effects of an observer’s acceleration? If so, it is false. In Einstein’s theory, either
there is a gravitational field, or there is none, according as the Riemann tensor does or does
not vanish. This is an absolute property; it has nothing to do with any observer’s world line.”3

Two responses are immediately at place:

• Synge’s reasoning tacitly uses the equivalence principle! Were the inertial and gravitational
masses different, the intensity could not be ascribed to the observer’s acceleration, and
the gravitational field could not be reduced to the Riemann tensor. Sure, the reference-
frame acceleration can only “mimic” the effects of intensity, not those of the field’s non-
homogeneity (i.e., of the space-time curvature). Yet even zero intensity may mean a certain
gravitational field, even in case when the Riemann tensor vanishes.4 Einstein himself really
understood the field in such a “relativistic” way; also with later hindsight – in an appendix
from 1952 to the English reedition of the book Relativity: The Special and the General
Theory (originally published in 1917 under the title Über die spezielle und die allgemeine
Relativitätstheorie) – he writes: “Judged from the general-relativity standpoint, ds2 “

dx2 ` dy2 ` dz2 ´ c2dt2 does not represent a space without field, but a special case of
the gµν field for which – in a certain coordinate system, which in itself has no objective
significance – the functions gµν have values that do not depend on the coordinates. There
is no such thing as an empty space, i.e. a space without field. Space-time does not claim
existence on its own, but only as a structural quality of the field.”

• The equivalence principle is quite powerful actually and it is by no means automatic that the
equations of a geometric theory of gravitation satisfy it. The point is that if the gravitational
field is non-homogeneous, its derivatives do not vanish, irrespectively of how small a region
one limits to. Hence, should the principle hold, the equations governing physical processes
have to only contain the non-homogeneity in such a way that its effect vanishes locally.
This means that the quantity representing the non-homogeneity either must not appear in
the equations at all, or it has to be multiplied there by some other quantity that does vanish
at a point. (For an example, see the geodesic-deviation equation, Section 6.4.)

Needless to say, the equivalence principle is a principle, so it is only possible to assume
that it holds (and test it experimentally), not to prove it. We will mention some issues

3 The Riemann tensor will be the matter of Section 6. Here it is sufficient to say that it describes the space-time
curvature (in geometrical language), i.e. the gravitational-field non-homogeneity (in physical language).

4 Actually, the vanishing of invariants provided by the Riemann tensor and its derivatives (possibly even of
all such invariants) does not necessarily imply that the space-time is “trivial” (flat); it may in fact even contain
a singularity.
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which are connected with it in Section 9.

Hardly on anything Einstein relied as much as on the equivalence principle when seek-
ing the relativistic theory of gravitation. Yet he himself very soon realised its restrictions.
In his first “gravitational” work from Prague (factually his first work as such fully devoted
to gravitation), On the influence of gravitation on the propagation of light (1911), he writes:
“For through a theoretical analysis of processes taking place relative to a uniformly accel-
erating reference system, we obtain information about the course of processes taking place
in a homogeneous gravitational field.”, and further specifies in a footnote that “Of course,
one cannot replace an arbitrary gravitational field by a state of motion of the system with-
out a gravitational field, just as one cannot transform to rest all the points of an arbitrarily
moving medium by means of a relativistic transformation.” In one of the following Prague
papers – where he attempted, unsuccessfully, to fit together gravitation and special relativity
by considering light speed as a function of position playing the role of gravitational potential
– Einstein explicitly mentions the local validity of the equivalence principle (and he entrusts
the measurement of quantities affected by gravitation to small, “pocket” devices only). Note
that the early – yet “non-geometric” – history of general relativity is depicted in [2] or in the
contribution by J. Bičák in [7] (other contributions therein are devoted to A. Einstein as well).

One more vague caution: we were saying that the LIFE is small, freely falling and
non-rotating. Yet what does it mean to non-rotate? In Newton’s view, it meant to non-rotate
relative to the absolute space (relative to inertial frames); Mach considered (non-)rotation
relative to a certain “weighted average of momentum” of all the matter in the Universe; in
general relativity, what matters is not only all the matter (in fact mass-energy), but also the
behaviour of space-time at its boundaries (usually at infinities). We’ll return to the query of
“non-rotation” in Sections 18 and 16.3.3. Anyway, we did not claim that every freely falling
frame is LIFE, did we? Actually, the above query can well be answered by referring to the
equivalence principle itself: “at every point ..., there exists such a locally Cartesian coordinate
system with respect to which ... all natural laws hold in the same form as in special relativity.”
Those of the freely falling Cartesian frames are “non-rotating” for which this is true.

1.2 Principle of general covariance
OK, so when trying to describe any physical process, happening at an arbitrary point of ar-
bitrary space-time, one can cut one’s rope and . . . locally rely on special relativity. However,
in a non-homogeneous field, every LIFE only represents “correctly” an infinitesimal neigh-
bourhood of that point (actually of the whole world-line of the LIFE’s origin). Anticipating
that the field non-homogeneity (= physical property) is equivalent to the space-time curva-
ture (= geometric property), one can imagine the situation clearly (best on a two-dimensional
surface): LIFE’s axes, similarly as axes of any Cartesian frame, span the tangent space of
the manifold (tangent plane of the surface in the 2D case) at the given point. Therefore, they
are tangent to the manifold (surface), but do not in general “lie” in it. Now, when studying
some process not only happening in a small region, it would be very impractical to constantly
change the LIFE when proceeding from one point to the “following” one ... we need a global
coordinate system! But how to choose global coordinates? This is answered by the general-
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covariance principle: any coordinate system (smooth local map) is fine. Hence the shortest
wording of the principle of general covariance:

Physical laws are generally covariant
– they have the same form (same “content”) in all coordinate systems.

Mathematically, it means the laws have to be expressed in terms of equations which
preserve their form when transformed, by any diffeomorphism, from one coordinate system to
another. Apparently, the form is preserved if both sides of the equation transform in the same
way. We already know from special relativity that one of suitable – and standard – options
is to write the equations so that their both sides have tensorial nature. Actually, tensors are
defined “abstractly”, without a reference to any particular basis (coordinate system), so they
have an invariant meaning and also transform in the same way: a tensor of the pr, sq type,
i.e. r-times contravariant and s-times covariant, is represented, in any particular coordinate
basis, by 4r`s components Tα1... αr

µ1... µs which transform, under the basis change txκu Ñ

tx1λpxκqu, according to

T 1α1... αr
µ1... µspx1

q “
Bx1α1

Bxβ1
¨ ¨ ¨

Bx1αr

Bxβr
Bxν1

Bx1µ1
¨ ¨ ¨

Bxνs

Bx1µs
T β1... βrν1... νspxq , (1.2)

i.e., in such a way that “each upper index transforms via the Jacobi matrix of the transforma-
tion” Bx1¨

Bx¨ , while “each lower index transforms via the corresponding inverse matrix” Bx¨

Bx1¨ .

Immediate notes:

• Tensorial should be equations as whole, not necessarily their individual terms. Naturally,
one also uses quantities which are not of tensorial nature, as e.g. the mass-energy.

• The principle of general covariance does not claim that equations whose sides are not
tensors cannot have a good sense. It only claims that the physical “game rules” are the
same with respect to all reference frames. For instance, the equationE“mc2 is completely
fine, although its sides are not invariants, i.e. p0, 0q-type tensors. (This equation even keeps
its form, because both its sides transform in the same way.)

• How does the statement “tensors have an invariant meaning” go together with the fact
that their components do change under transformation of the reference system? Perfectly:
the transformation changes the components in just the proper way to leave invariant the
result (a number) the tensor should yield when applied to its variables (vectors and co-
vectors). One particular implication: a tensor can never be made vanish by transformation;
if it is non-trivial in some system, it also cannot completely vanish in any other one. For
example, the electromagnetic-field tensor Fµν yields two independent invariants, FµνF µν

and ˚FµνF
µν ; from these it is seen, among others, that for a general EM field, one even

cannot transform out the electric (or magnetic) field.

Hence the recipe for transferring the laws of physics from special relativity to general space-
time and general coordinates:
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• Let a law hold in the absence of gravitation, i.e. in special relativity.

• According to the equivalence principle, it thus holds – in the same form – in any local
inertial frame.

• The general-covariance principle now says: if the law is written in a generally covariant
form, it holds – in that form – in any space-time and in any coordinates.

In this formulation, the covariance principle is extended (to general frames) thanks to the
equivalence principle. It was exactly in such a union how Einstein brought the two principles
to the stage at the end of 1907, in the last section V. The relativity principle and gravita-
tion of his paper On the relativity principle and the conclusions drawn from it, published (in
German) in Jahrbuch der Radioaktivität und Elektronik 4, pp. 411-462. It is worth to note,
once more, that already in this first formulation, Einstein was well aware of the limitations
of the idea of equivalence and spoke explicitly of homogeneous field: “At our present state
of experience we have thus no reason to assume that the systems Σ1 and Σ2 [the system 1 is
accelerated in an empty space and the system 2 is at rest in a corresponding homogeneous
gravitational field] differ from each other in any respect, and in the discussion that follows,
we shall therefore assume the complete physical equivalence of a gravitational field and a
corresponding acceleration of the reference system. This assumption extends the principle
of relativity to the uniformly accelerated translational motion of the reference system. The
heuristic value of this assumption rests on the fact that it permits the replacement of a homo-
geneous gravitational field by a uniformly accelerated reference system, the latter case being
to some extent accessible to theoretical treatment.” (Note that right in that paper Einstein em-
ployed the principle to show that, in a gravitational field, time should be dilated, frequency
should be shifted, and rays should be bending.)

The principle of general covariance extends the principle of special relativity. It is the
last step in the history of refutation of the privileged status of certain reference systems (e.g.
of those given by the Earth surface and the corresponding up/down directions, geocentric and
heliocentric systems, Newton’s absolute space and time, or inertial systems of special rela-
tivity). Needless to say, the principle only concerns the “game rules” – it does not deny that
certain reference systems are more practical than others for representing specific situations;
for instance, a central, spherically symmetric field is certainly best represented in a spherical
system. Nota bene, the configuration of matter and fields in the real world does prefer certain
systems: passing through different scales, one identifies the rest system of some particular
laboratory object, rest system of the Earth, of the Solar-system barycentre, of the Galaxy,
etc. Cosmic microwave background radiation is isotropic in a certain system, and the latter
appears to be also well followed by the large-scale distribution of matter. Still, the physical
rules do not distinguish between systems. Having this in mind, one realises how non-trivial,
strong and in fact unexpected the principle of general covariance is.

1.2.1 This is not the full story, however

Actually, all the above has been just a facade – the brighter side of life. In fact every physical
law can be rewritten in a general covariant form (E. Kretschmann, 1917). Loosely speaking,
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one checks how the equation transforms, and if there is a non-tensorial part, one adds suitable
extra (non-tensorial) terms whose non-tensorial part just cancels out, in transformation, with
the originally present non-tensorial terms. If the extra added terms contain non-homogeneity
of the field (curvature) suitably, they vanish in flat space and the law thus satisfies the special-
relativity (or other “flat-space”) limit. Clearly, in order that the covariance principle possess
factual meaning, one must restrict what is permitted when trying to rewrite a given equation
in a covariant manner. Regarding that the equation might have already originally contained
terms dependent on non-homogeneity of the field, it may not be easy to distinguish them from
those which someone “added by hand in an unguarded moment”. Therefore,

the covariance principle has to be supplemented by a certain restriction
on what kind of quantities may appear in equations.

In order that the principle have physical meaning, this restriction must be expressed in
terms of physical, measurable quantities, rather than just in terms of mathematical ones (ten-
sor components). Quite a reliable criterion is that the theory should not contain any absolute
elements (sometimes called background fields), namely such that affect other elements of
the theory, but, conversely, are themselves not affected by the others; in a sense, such elements
violate the action-reaction principle, or relational reciprocity. This kind of requirement has a
long history, most notably involving the criticism by E. Mach of the absolute reference sys-
tem (and also of the “absolute” property of inertia – see below) of the Newtonian mechanics.
Anyway, these deep layers of “covariance”, “diffeomorphism invariance” and “background
independence” (these notions not being synonyms!) are perhaps the most difficult areas of
the theory (not only of general relativity),5 and we do not attempt to treat them properly. At
least, it will be more effective to recall them only after we “build” the theory.

Besides that, the above fundamental requirements have to be supplemented, as else-
where in physics, by a certain practical restriction referred to as “the principle of simplicity”:
of all conceivable forms a given law or equation may assume in agreement with the above
principles, the simplest should be chosen preferably. We will also return to this point later.

1.2.2 Geometrical objects

In GR, one often wants to stress whether a certain property depends on coordinates or not.
The invariant, “absolute” properties are also called “geometrical” or “physical”. At the same
time, in geometry the authors call “geometrical” a wider class of quantities (wider than just
tensors). In order to avoid confusion, let us add what these represent. In short, the wider class
of objects is useful because they bear some features of the tensors, so, correspondingly, some
operations can be performed with them in a similar manner (as with tensors), while others
may have less sense.

Following chiefly [40] (Chapter III, § 3) and [53] (Chapter II, § 1), we say that a quantity
Ω is a geometrical object (on a given manifold) if it has the following properties:

5 As an evidence, we quote the title of a paper by T. Teitel which was published in 2019 in Studies in His-
tory and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics: Background
independence: Lessons for further decades of dispute.
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• In each coordinate system xµ, it is represented by a certain set of components ΩA which,
under a coordinate transformation x1µ “ x1µpxαq, change to new components which can be
expressed as functions of the old components, of the old and the new coordinates, and of
the transformation matrix x1µ

,κ plus its partial derivatives, i.e.,

Ω1B
“ FB

pΩA, xα, x1µ, x1µ
,κ , x

1µ
,κλ , ...q .

• The functions FB have group properties, namely, they satisfy (without all indices:)
(a) FApΩ1, x1, x2q“FApΩ, x, x2q; (b) FApΩ1, x1, xq“ΩA; ñ (c) FApΩ, x, xq“ΩA.

The geometrical objects can further be classified into several subtypes:

• When the functions FB only depend on ΩA and on the transformation matrix plus its
derivatives, not on x and x1 themselves, the object is called differential.

• When the functions FB depend linearly on ΩA, the object is called linear. When, in ad-
dition, the transformation law is homogeneous (i.e. linear and without the “absolute” term
independent of ΩA), the object is called linear homogeneous.
For example, tensors have all the three properties, so they are differential linear homoge-
neous objects. Indeed, tensors and tensor densities are the only such objects. In particular,
affine connection is only a differential linear object.

1.3 Mach’s principle
Besides criticising Newton’s absolute space and time, Ernst Mach also argued that inertia
should be understood differently – not as an intrinsic property of a body (moreover, only re-
vealing itself if the body is accelerated relative to the “absolute space”), but as a consequence
of a certain interaction between the body and all other bodies in the Universe. In his view,
acceleration of a body – similarly to its velocity – only has a good sense if it is defined and
measured with respect to other bodies. Hence the idea of an inertial frame as the frame which
is not accelerated with respect to a certain (probably distance-weighted) average of momenta
of all masses in the Universe.

Mach’s view is best illustrated on his reinterpretation of the Newton’s rotating-bucket
experiment. Instead of attributing the bending of the water surface to acceleration of the
water with respect to an absolute space, he emphasises acceleration with respect to “distant
cosmic masses”. Not only that: he also says i) that the surface would bend similarly if, on the
contrary, the bucket stayed at rest while the cosmic masses were orbiting around, and ii) that
the water surface would not bend significantly if the walls of the bucket were made “several
leagues thick”. Namely, in that case, it would mainly be the large mass of the bucket itself
what would determine, by its state of motion, what it means to be “non-accelerated”. Well,
we prefer to imagine, rather than the bucket, a dancer under a starry sky: knowing absolutely
nothing about any reference frame, she still recognises in two ways whether she is making a
pirouette or not – stars are whirling around (global experiment) if and only if her hands tend
to rise due to the centrifugal force (quasi-local experiment).
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Einstein was very much influenced by Mach’s view on inertia (it was him who called it
the Mach’s principle) when working on his theory of gravitation. And again, it was in Prague
where he first tested it explicitly: in the paper Is there a gravitational effect which is anal-
ogous to electrodynamic induction?, published in 1912 in the medical journal Vierteljahrss-
chrift für gerichtliche Medizin und öffentliches Sanitätswesen 44, pp. 37-40 (it was dedicated
to his medical-friend birthday), he considered a test particle inside a massive spherical shell,
and asked what the particle “feels” if the shell starts to be linearly accelerated. The answer
was – contrary to Newtonian conclusion – that the particle also starts to be accelerated to a
certain extent, with the following interpretation: if there is no other mass, it is the sphere’s
state of motion what determines which motions are “inertial”; if the particle wanted to stay at
rest relative to the original rest system, it would have to be accelerated relative to the sphere
(in the opposite direction), so it would feel a corresponding inertial force acting on it; but the
particle is inertial, “free”, so it should be dragged, to some extent, along with the sphere. In a
letter sent from Zurich on 25 June 1913, Einstein informed Mach about the above conclusion,
together with that he also considered a rotating shell and found that a Coriolis field arises in-
side (which should carry along the Foucault-pendulum plane, for example). He writes: “...
it follows of necessity that inertia has its origin in some kind of interaction of the bodies,
exactly in accordance with your argument about Newton’s bucket experiment.”

Soon after it had been finished in 1915, general relativity was shown to really predict
“Machian” (dragging) effects. However, already before that, Einstein was much surprised
that his theory is not strictly “Machian”. Yet let’s postpone this story to later stages.

1.4 Gravitation is (a non-trivial) geometry
Due to its universality, the effect of gravitation may be viewed as a property of the space-time
itself. What property it might be can be inferred with the help of the equivalence principle.
The latter claims that the gravitational field (at least the homogeneous one) can be mimicked
by means of inertial forces arising in accelerated systems. What happens if one transforms,
in flat space-time of special relativity, to an accelerated system? The metric tensor ceases to
have the Minkowski form valid in the inertial frames, even in case when the coordinate axes
are kept Cartesian: in the accelerated frame, the space-time appears to be curved, having a
different geometry than the “flat” space-time of Minkowski. If causing the same effect as
the reference-frame acceleration, gravitation should thus change the space-time geometry. In
addition, since the actual fields are non-homogeneous, “switching them on” should corre-
spond to changing over to a system whose acceleration is different at different places (and/or
times). In such a situation, the originally Cartesian coordinates would have to actually be-
come curvilinear, which would still more divert the metric from the Minkowski form. Below,
let us illustrate the transformation to an accelerated system on two simple cases.

1.4.1 Linearly accelerated frame

The simplest type of accelerated motion is that due to a constant force; it is a default illustra-
tion on the special relativistic equation of motion. If the three-force is constant – with respect
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to a given inertial time t – in magnitude (f ) as well as in direction (chosen to be along the x
axis), a particle with rest mass m0 is known to be accelerated along a hyperbolic world-line,

d

dt

m0v
b

1 ´ v2

c2

“ f ùñ v “ c

ft
m0c

c

1 `

´

ft
m0c

¯2
ùñ x “

m0c
2

f

d

1 `

ˆ

ft

m0c

˙2

.

The proper time τ along the accelerated world-line is found to read

dτ

dt
“

c

´
1

c2
ηµν

dxµ

dt

dxν

dt
“

c

1 ´
v2

c2
“

1
c

1 `

´

ft
m0c

¯2
ùñ τ “

m0c

f
arcsinh

ft

m0c
,

where v“vptq from above was used before performing the integration. (Integration constants
are chosen so that τ “ 0, t“ 0 and x“ m0c2

f
at the beginning of acceleration.) Vice versa,

expressing from there

t “
m0c

f
sinh

fτ

m0c
ùñ x “

m0c
2

f
cosh

fτ

m0c
, (1.3)

we can substitute for ft
m0c

“ sinh fτ
m0c

back to the velocity formula,

v

c
“

ft
m0c

c

1 `

´

ft
m0c

¯2
“

sinh fτ
m0c

cosh fτ
m0c

,
1

b

1 ´ v2

c2

“ cosh
fτ

m0c
. (1.4)

Cartesian frame tied to the accelerating particle/observer (with axes T , X , Y , Z) is
related, at every specific moment, to the original inertial system (t, x, y, z) by special Lorentz
transformation given by instantaneous value of the relative velocity (1.4). Hence,6

X `
m0c

2

f
“

x ´ vt
b

1 ´ v2

c2

“

ˆ

cosh
fτ

m0c

˙

x ´

ˆ

sinh
fτ

m0c

˙

ct .

Let the accelerated-frame time T be given, naturally, by the proper time τ , i.e. by the time of
the clock kept at the accelerate-frame origin. Then the second transformation relation follows
directly from (1.3),

tanh
fT

m0c
“ tanh

fτ

m0c
“
ct

x
.

Inverting these two relations, we obtain the dependence of pt, xq on pT,Xq:

ct “

ˆ

X `
m0c

2

f

˙

sinh
fT

m0c
, x “

ˆ

X `
m0c

2

f

˙

cosh
fT

m0c
. (1.5)

6 From now on, t and x no longer stand for particular values on the accelerating world-line, but they represent
a general location in the accelerated frame.



1.4. GRAVITATION IS (A NON-TRIVIAL) GEOMETRY 19

Finally, the space-time interval in the accelerating system follows by substituting for the
differentials

cdt “ dX sinh
fT

m0c
`

ˆ

fX

m0c2
` 1

˙

cdT cosh
fT

m0c
,

dx “ dX cosh
fT

m0c
`

ˆ

fX

m0c2
` 1

˙

cdT sinh
fT

m0c

into the “inertial” form valid in the pct, x, y, zq system,

ds2 “ ´c2dt2 ` dx2 ` dy2 ` dz2 “ ´

ˆ

1 `
fX

m0c2

˙2

c2dT 2
` dX2

` dY 2
` dZ2. (1.6)

In the spatial part, the metric thus remains Euclidean, but the element of proper time of a
clock which stays, in the accelerated system, at rest at a position (X, Y, Z “ const), reads
´

1 `
fX
m0c2

¯

dT , so it only reduces to dT ” dτ at the system’s origin (X “ 0) while it is
´

1 `
fX
m0c2

¯

-times greater at a general position X . In other words, clocks at bigger X run
faster than those at smaller X . According to the equivalence principle, our frame accelerated
in the x-direction is equivalent to an unaccelerated frame in which, instead, gravitation acts in
the p´Xq direction. Hence, the gravitational field affects the passage of time; specifically, the
clocks placed on lower potential (“deeper in the potential well”) run more slowly than those
placed “higher”. In Section 4, we will see this is the case for generic (non-homogeneous)
fields as well.

1.4.2 Rotating frame

The second archetype of acceleration is the purely transversal, rotational one. Let us first
write the flat metric, valid in the Minkowski form in a certain inertial frame pct, x, y, zq, in
terms of polar (cylindrical) coordinates pct, ρ, ϕ, zq given by x “ ρ cosϕ, y “ ρ sinϕ:

ds2 “ ´c2dt2 ` dx2 ` dy2 ` dz2 “ ´c2dt2 ` dρ2 ` ρ2dϕ2
` dz2 .

Now, let us transform to a second cylindrical system pcT, ρ, ψ, zq, rotating with constant
(uniform in time and everywhere same) angular velocity ω with respect to the first one,

t “ T, x “ ρ cospψ ` ωT q, y “ ρ sinpψ ` ωT q .

The metric appears there as

ds2 “ ´pc2 ´ ω2ρ2q dT 2
` 2ρ2ω dTdψ ` ρ2dψ2

` dρ2 ` dz2 “

“ ´c2dT 2
` ρ2pdψ ` ωdT q

2
` dρ2 ` dz2. (1.7)

This is not a flat space-time in usual cylindrical coordinates (this would only be the case
with ω “ 0). The deformation is more complicated than in the linear-acceleration case, in
particular, it also involves non-diagonal component gTψ“ρ2ω.
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Suppose to have a disc tz “ 0, ρ ď Ru which rotates, rigidly, with the above angu-
lar velocity ω with respect to the inertial frame. Imagine observers co-rotating on it (i.e.
having constant ρ, z and ψ) and inspecting its geometry. We can expect their result to be
“non-flat”, because observers orbiting on different radii have different acceleration, and we
expect – without “technical details” yet – such a non-homogeneous inertial field (equivalent
to a non-homogenous gravitational field) to correspond to curved geometry. Let us check
the situation from the inertial system where we know how things work: i) the measuring
rods the co-rotating observers place along the disc’s radius move, at every moment, purely
transversally, so their length remains the same in both systems; ii) the measuring rods the
co-rotating observers place along the disc’s circumference move, at every moment, purely
longitudinally, so their length is γ times contracted with respect to the inertial frame, with
γ “ 1

b

1´R2ω2

c2

. Hence, the co-rotating observers have to find the radius of the disc to be R,

while the disc’s circumference to be 2πRγ (since γ-times more co-rotating rods fit along the
circumference in comparison with those at rest).

The above is known, for historical reasons, as Ehrenfest’s paradox (or rotating-disc
paradox), but it is not in fact paradoxical – it just indicates that for co-rotating observers the
disc is not flat. Remember that these observers are not inertial, so they are not equivalent to the
inertial observers – the two views are not symmetric as one is used to from special relativity.
Actually, in order to treat the situation from the point of view of co-rotating observers, one
needs the formalism of general relativity. Yet to check the basic facts is very simple, it
just requires to realise that every observer performs all spatial measurements in her constant
proper time, i.e. within her local 3D space. Such a space is described by the metric

hµν “ gµν `
1

c2
uµuν ,

where gµν represents a general metric tensor, which, however, reduces to diagp´1, 1, ρ2, 1q

in our case (flat space-time in inertial cylindrical coordinates). Actually, hµν satisfies what
a metric should satisfy: it is a symmetric bilinear form, it satisfies correct relation between
totally contravariant and totally covariant representation,

hµνh
να

“

ˆ

gµν `
1

c2
uµuν

˙ˆ

gνα `
1

c2
uνuα

˙

“ δαµ `
1

c2
uµu

α
” hαµ ,

and its trace equals the dimension,

hµνhµν ” hµµ “ δµµ ´
c2

c2
“ 4 ´ 1 “ 3 .

Besides that, it is by construction orthogonal to uµ,

hµνu
ν

“ uµ ´ uµ “ 0 .

We in fact know most of the above from special relativity.
Now back to our rotating-disc problem: the co-rotating observer has, in the cylindrical

coordinates pct, ρ, ϕ, zq, four-velocity

uµ “ utpc, 0, ω, 0q, uα “ gαµu
µ

“ utp´c, 0, ρ2ω, 0q, ut :“
dt

dτ
“
u0

c
,
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where, from the normalisation gµνuµuν “ ´c2,

putq´2
“ ´gtt ´ gϕϕ

ω2

c2
“ 1 ´

ρ2ω2

c2
.

The proper circumference she founds of the disc is given purely by the azimuthal component
of her metric,

hϕϕ “ gϕϕ `
puϕq2

c2
“ ρ2 `

putq2ρ4ω2

c2
“ ρ2 `

ρ4ω2

c2

1 ´
ρ2ω2

c2

“
ρ2

1 ´
ρ2ω2

c2

,

namely

o “

2π
ż

0

b

hϕϕpρ“Rq dϕ “
2πR

b

1 ´ R2ω2

c2

” 2πRγ . (1.8)

Neither is symmetric the relation between proper time of the inertial observer (t) and
that of the orbiting one (τ ).

• With respect to the inertial one, the orbiting clocks has to be ticking γ-times slower because
of Lorentz time dilation. Hence, during one complete rotation, the inertial clock measures
∆t“2π{ω, whereas the orbiting clock measures only ∆τ “∆t{γ.

• With respect to the orbiting observer, we employ the general relation c2∆τ 2 “ ´∆s2,
where, in the rotating coordinates pcT, ρ, ψ, zq, the co-rotating clock does not move, hence
we are left with c2∆τ 2 “ ´gTT c

2∆T 2 only. In other words, the orbiting-observer four-
velocity has, in the rotating coordinates, only the time component; normalisation yields for
it

uT ”
dT

dτ
“

1
?

´gTT
“

1
b

1 ´
ρ2ω2

c2

” γ .

In passing, the above also implies that with respect to the orbiting clock, the inertial clock
orbits with angular velocity

dψ

dτ
“

dψ

dt

dt

dτ
“

dϕ

dt

dt

dτ
“ ωγ ,

rather than ω. Let us add that this last finding is nothing strange; it is known from the issue
of speed measurement in special relativity: a correct measurement must use rulers and clocks
which are at rest with respect to the reference system (for example, a police lurking in a bush
is supposed to measure correctly your-car speed with respect to the local Earth surface; this
speed cannot exceed the speed of light); a “hybrid” measurement, using – at least partially
– devices at rest with respect to the measured object, does not provide sensible results (for
example, using a clock you have in a car + highway milestones may yield however high
speed, because the miles are Lorentz contracted with respect to your-car system).
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CHAPTER 2

Parallel transport

Intuitively, we treat quantities as if they “lived” directly in the physical space. In the case of
a flat, Euclidean or Minkowski space, this does not bring any practical mistake, but actually
it is not so. The quantities are defined as mappings which have the physical space (or certain
its region) as their domain, but whose “values” (range) are not elements of that space. It is
already clear from units: electric field, for example, does not have the dimension of length, so
it is in fact not correct to depict it as an arrow in the physical space. Such an image, however,
well illustrates the main problem. Consider now a curved space; in particular – due to the
usual 3D limitation of our imagination – consider a curved surface. A vector (the arrow)
pointing from a certain point of the surface directs, locally, along the surface by definition,
but, if the surface is curved and the vector is not infinitesimal, the arrow points out of the
surface (its endpoint does not lie on the surface). All vectors (of some given dimension)
defined at a certain point of the surface thus form a tangent plane of the surface at that point.
In the case of a generic space (manifold), such vectors form a tangent space (to the given
underlying manifold) at that point.

Each such tangent space is a linear vector space, so its elements can be added and
multiplied by a constant. On the other hand, it is not possible to combine vectors defined
at different points, because they belong to different linear spaces. However, one is seldom
interested in just one vector (defined at one particular point), nota bene if considering a field
theory: typically, one wants to know how the field behaves along its host manifold (thus to
know its gradient), or how a certain vector transports along the manifold (for instance, how
velocity or angular momentum of a body transport along its world-line). But the derivative
(gradient) involves difference between the quantity “at x`h” and the quantity “at x”, which
exactly cannot be easily performed on a curved manifold – the quantity defined at “x`h” has
first to be transported somehow to “x”, and only then one can start subtracting. In the flat
space, all reasonable transports reduce to the “self-evident” parallel shift, but in the curved
space there are more options, with possibly rather complicated properties. This chapter is de-
voted to the most fundamental of such transports, the parallel transport. Its properties within
the pseudo-Riemannian geometry were notably derived by T. Levi-Civita in his 1917’ paper,
with E. B. Christoffel factually providing the “Levi-Civita connection” (namely Christoffel

23
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symbols) in 1869 already.
Parallel transport is a solution to the very basic problem of geometry, the transport of

a “given” direction from one point to another. In other words, such a transport of a vector
in which the latter keeps pointing “in the same direction”. In the flat space, the solution
is simple, because tangent spaces at all points are mutually isomorphic (they “coincide”) –
the notion of parallelism is global. In two dimensions, we performed it in an elementary
school (let us draw, through a given point, a straight line which is parallel to the straight
line over there) using a triangle and a ruler. But what if the exercise book was bent? The
direction vector would stick out of the page, so the third dimension would come into the
play. The most natural approach, not using any additional constructions, would then be to
solve the problem in the 3D Euclidean space (in which the exercise book is embedded) while
continuously ensuring – by an orthogonal tilt to the local tangent plane of the page – that the
vector remains tangent to the page after every infinitesimal step along the transport path. Let
us stress we said tilt, not projection to the tangent plane, because any reasonable transport is
required to keep the vector’s length.

manifold M

m

n

TmM

TnM

affin
e co
nne
ctio
n

Figure 2.1 Affine connection connects tangent spaces (e.g. TmM and TnM) to a given manifold at

different points (here m and n). [The manifold are Eureka Dunes at Death Valley – one of amazing

photos by Ian Parker from the Dept. of Neurobiology and Behavior, University of California.]
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Figure 2.2 Intuitive concept of the parallel transport, illustrated on a sphere embedded in the 3D
Euclidean space. Take a vector (red, closer to the pole) which is tangent to the surface at some

point. Shift it to a neighbouring point while keeping its direction in E3 (red arrow more to the

right); after such a shift, it is no longer tangent to the surface, so it has to be tilted (orthogonally)

to the local tangent plane (in order to “live in” the chosen manifold, i.e. the sphere). The transport

introduced in such a way clearly depends on path along which it is carried out. Consequently, it

does not in general yield “identity” along a closed path – see the closed-path transport performed
with the green vector (starting from the pole). Yet another property is also evident: tangent vectors

to curves do not in general transport parallelly; they only do so along meridians and along the

equator – actually along all main circles. These are geodesics of the spherical surface – see the
next chapter.

2.1 Parallel transport of a vector
From the above image, the parallel transport of a vector is e.g. derived in [24]. Here we
follow a simpler way directly using the fundamental principles of the theory. Consider an
arbitrary space-time and in it an arbitrary differentiable curve (with uniquely given tangent
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vector at its every point). Let some vector V µ be defined at a certain point of that curve.
The task is to transport the vector along the curve in such a way that it keeps pointing in the
same direction (in some natural sense). According to the equivalence principle, there exists
a LIFE (infinitely many LIFEs, actually) at every point. Let us consider one such LIFE at
the point where V µ is defined, and denote its Cartesian axes by ξα (α “ 0, 1, 2, 3). Within
an infinitesimal neighbourhood about the given point (LIFE’s origin), the parallel transport
should work like in inertial frames of special relativity, i.e., it should reduce to its “trivial”
Euclidean/Minkowski form (when described with respect to the LIFE). There, however, to
keep pointing in the same direction means to keep fixed the (Cartesian) components,

dV α̂

dp
“ 0 , (2.1)

where the hat denotes the components with respect to the LIFE and p is the parameter of the
curve.1

The equivalence principle claims that in the infinitesimal neighbourhood of the given
point the above equation holds exactly. This is equally true for any point on the prescribed
curve, but always with respect to some local LIFE only. In order to be able to solve the
problem globally, we need some coordinate system which would cover the whole region we
are interested in; any such system must be equally viable. Let us denote its axes by xµ

(µ“ 0, 1, 2, 3), and let us transform there the above LIFE-expressed equation (2.1). On the
left-hand side we obtain, by standard transformation of a vector (from the LIFE to the global
system) and by a composite-function differentiation,

dV α̂

dp
“

d

dp

ˆ

Bξα

Bxλ
V λ

˙

“
Bξα

Bxλ
dV λ

dp
`

B2ξα

BxκBxλ
dxκ

dp
V λ,

which, after multiplication by Bxµ

Bξα
(the inverse-transformation matrix), leads to

dV µ

dp
` Γµκλ

dxκ

dp
V λ

“ 0 . (2.2)

The functions

Γµκλ :“
Bxµ

Bξα
B2ξα

BxκBxλ
(2.3)

represent the components of the affine connection in the xµ coordinates; it is clear from the
definition that they are symmetric in the two lower indices. Note that the affine connection
need not in general have this property (we will return to this point later), but for a theory
satisfying the equivalence principle it is the case.

The formula (2.2) represents four 1st-order ordinary differential equations. Recall what
must be known in order to be able to solve it:

1 Note that it is important that the LIFE is Cartesian, similarly as inertial frames of special relativity: it is
trivial to see that with respect to non-Cartesian axes, a given direction in general has different components at
different locations.
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• the space-time and the (arbitrary) global coordinates, hence the affine-connection compo-
nents Γµκλ

• the curve; in the LIFE it is written as ξα “ ξαppq, while in the global coordinate system it
writes xµ“xµppq; in the equation, the curve appears through its tangent vector dxµ

dp

• the vector V µ at some initial point xµin :“ xµpp“pinq of the curve, V µpp“pinq

By solution of the parallel-transport equation (2.2), one obtains a vector function V µ“V µppq

defined along the prescribed curve; this function is called the parallel vector function since
it arose by parallel transport of a vector (V µ) along that curve.

Let us add that connection in general is, loosely speaking, a certain map between
spaces of quantities living at different points of a manifold. In particular, the one which
connects tangent vector spaces at different points is called the affine connection. There typ-
ically exist many (in fact infinitely many) affine connections on a given manifold, but we
will shortly see that general relativity naturally uses a particular one which exists on pseudo-
Riemannian manifolds, i.e. those endowed with the metric. It is tied to the metric in a special
way and is called the Levi-Civita connection. Let us embark on this issue.

2.2 Metric tensor and Christoffel symbols
We mentioned in passing that any reasonable transport should leave constant the vector’s
length (here rather the invariant given by its space-time inner product with itself). Referring
again to the equivalence principle, we can compute such a quantity, at the LIFE’s origin, in
the same way as in special relativity, i.e. using the Minkowski metric tensor ηαβ , |V |2 “

ηαβV
α̂V β̂ , which can again be expressed in terms of the global-coordinate components V µ

as

|V |
2

“ ηαβV
α̂V β̂

“ ηαβ
Bξα

Bxµ
Bξβ

Bxν
V µV ν

” gµνV
µV ν , (2.4)

where we have denoted

gµν :“ ηαβ
Bξα

Bxµ
Bξβ

Bxν
(2.5)

the object which obviously represents the (covariant) metric tensor (of the given – but ar-
bitrary – space-time) in the global coordinates (also arbitrary). Clearly it inherits symmetry
from ηαβ .

In Minkowski space-time, the same invariant can also be expressed in terms of the
covector Vγ̂ “ ηγαV

α̂ dual to the vector V α̂,

|V |
2

“ ηγδVγ̂Vδ̂ “ ηγδ
Bxρ

Bξγ
Bxσ

Bξδ
VρVσ ” gρσVρVσ, (2.6)

where we have denoted

gρσ :“ ηγδ
Bxρ

Bξγ
Bxσ

Bξδ
(2.7)
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the object which should represent global-coordinate components of the contravariant metric
tensor. The definitions (2.5) and (2.7) are really compatible, as proved by

gµνg
νσ

“ ηαβ
Bξα

Bxµ
Bξβ

Bxν
ηγδ

Bxν

Bξγ
Bxσ

Bξδ
“ ηαβη

γδ Bξα

Bxµ
Bξβ

Bξγ
Bxσ

Bξδ
“ ηαβη

γδ Bξα

Bxµ
δβγ

Bxσ

Bξδ
“

“ ηαβη
βδ Bξα

Bxµ
Bxσ

Bξδ
“ δδα

Bξα

Bxµ
Bxσ

Bξδ
“

Bξα

Bxµ
Bxσ

Bξα
“

Bxσ

Bxµ
“ δσµ .

This has probably been the most spoon-feeding derivation ever made of this automatic result.2

Also easy is to check that the metric really lowers and rises global indices, similarly as
ηαβ does for the LIFE ones,

gµνV
ν

“ ηαβ
Bξα

Bxµ
Bξβ

Bxν
V ν

“ ηαβ
Bξα

Bxµ
V β̂

“
Bξα

Bxµ
Vα̂ “ Vµ ,

gρσVσ “ ηγδ
Bxρ

Bξγ
Bxσ

Bξδ
Vσ “ ηγδ

Bxρ

Bξγ
Vδ̂ “

Bxρ

Bξγ
V γ̂

“ V ρ .

A remark, at last: why we have not been hatting the indices of ξα and ηαβ? Because, in
these two cases, we even have special letters (ξ and η) for the LIFE coordinates and for the
Minkowski tensor, so it is not necessary to hat their indices in addition. On the other hand, it
would not have been any mistake to do it.

A running summary: the metric tensor gµν is a symmetric bilinear form which defines
the inner (scalar) product. In particular, when applied to two infinitesimal coordinate-shift
vectors dxµ, it yields the invariant space-time interval ds2 between the given two events (as
separated by dxµ),

ds2 :“ gµνdx
µdxν . (2.8)

In general relativity, however, this quantity is mostly called just the metric. In such a manner,
the metric completely fixes the local geometry of space-time. (Mathematically, it fixes it up
to a diffeomorphism, because one must always have a possibility to transform to a different
coordinate system, without changing the “true geometry” / “true physics”.)

Now, if the metric tells everything about the local space-time geometry, then every char-
acteristic of space-time should somehow be determined by the metric tensor. In particular,
this should hold for the affine-connection components. Actually, with the definition of both
these quantities in mind, let us write, with the three possible different permutations of free
indices, a relation obtained by differentiation of gκλ,

gκλ,σ “ ηαβ
B2ξα

BxσBxκ
Bξβ

Bxλ
` ηαβ

Bξα

Bxκ
B2ξβ

BxσBxλ
“

2 The Czech equivalent of “spoon-feeding” is “explaining something polopatě” or – originally – po lopatě,
which literarily means “delivering something shovel after shovel” (as opposed to delivering the entire cartload
at one stroke). The Czech Wikipedia adds that such a style of explaining things is instructive, but also degrading
for the listeners. Sorry! –As everyone sees right away, gµνgνσ “ δσµ , so (2.5) and (2.7) are really inverse with
respect to each other.
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“ ηαβ
Bξα

Bxι
Γισκ

Bξβ

Bxλ
` ηαβ

Bξα

Bxκ
Bξβ

Bxι
Γισλ “

“ gιλΓ
ι
σκ ` gκιΓ

ι
σλ :“ Γλσκ ` Γκσλ , (2.9)

gσκ,λ “ gικΓ
ι
λσ ` gσιΓ

ι
λκ “ Γκλσ ` Γσλκ ,

gλσ,κ “ gισΓ
ι
κλ ` gλιΓ

ι
κσ “ Γσκλ ` Γλκσ ,

where we have lowered the first indices of the affine connections.3 Now, for instance, add the
last two equations and subtract the first one: thanks to the symmetry of Γµκλ in the last two
indices and thanks to the symmetry of gµν , two couples of terms cancel out, while the last
couple adds up, so we arrive at

Γσκλ ` Γσλκ “ 2Γσκλ “ pgσκ,λ ` gλσ,κ ´ gκλ,σq (2.10)

and, after “rising the 1st index” by gµσ,

Γµκλ “
1

2
gµσpgσκ,λ ` gλσ,κ ´ gκλ,σq . (2.11)

These expressions given by the first derivatives of the metric are being called the Christoffel
symbols of the first and of the second kind, respectively.

Christoffel symbols represent the already mentioned special way in which the affine
connection is related to the metric in general relativity. The affine connection thus related
is called the Levi-Civita connection. In the following, we will return to this relation many
times, and will also express it in several different (and more elegant) ways.

Let us return to the question of whether the parallel transport keeps constant the invari-
ant “norm” of a transported vector. We will actually address a more general question: let
two arbitrary vectors, V µ and W µ, be parallel transported along some given curve; how does
their scalar product behave? By a simple differentiation, using the parallel-transport equa-
tion (2.2), some summation-index renaming, and finally by employing the relation (2.9), we
obtain

d

dp
pgµνV

µW ν
q “ gµν,ρ

dxρ

dp
V µW ν

` gµν
dV µ

dp
W ν

` gµνV
µdW

ν

dp
“

“ gµν,ρ
dxρ

dp
V µW ν

´ gµνΓ
µ
κλ
dxκ

dp
V λW ν

´ gµνV
µΓνκλ

dxκ

dp
W λ

“

“ pgµν,ρ ´ gινΓ
ι
ρµ ´ gµιΓ

ι
ρνqV µW ν dx

ρ

dp
“ 0 . (2.12)

Since the metric tells how to perform a scalar product while the affine connection tells how to
parallel transport the two vectors, the above result might be presented as showing, geometri-
cally, the special relation we found between those two operations. However, a similar result

3 “Lowering the indices” is only a slang here: we will soon see that Gammas actually do not themselves
represent tensors, so the action of the metric on them does not have its proper geometric sense (mapping between
the corresponding tangent and cotangent spaces/bundles).
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also holds for other reasonable transports, it is not specific to the parallel transport. (We will
e.g. see that the Fermi-Walker transport has this property as well.)

Still it is a very important feature. It implies, in particular (for W µ “ V µ), that the
space-time invariant connected with a given vector, gµνV µV ν , does not change in parallel
transport of that vector along any curve. Since the invariant says whether the vector is time-
like (gµνV µV ν ă 0), space-like (¨ ¨ ¨ ą 0) or light-like (¨ ¨ ¨ “ 0), it means that

in parallel transport of a vector, the latter’s space-time character does not change.

2.3 Parallel transport of a covector and of a generic tensor
So far, we have been transporting vectors. That is the most instructive case, but the parallel
transport applies to any tensor. Let us start with a covector. Since the transport keeps constant
the scalar product of vectors, (2.12), one just lowers the index of one of the vectors there –
say, of W ν – and that’s it,

0 “
d

dp
pgµνV

µW ν
q “

d

dp
pV µWµq “

dV µ

dp
Wµ ` V µdWµ

dp
“

“ V µ dWµ

dp
´ Γµκλ

dxκ

dp
V λWµ “

ˆ

dWµ

dp
´ Γλκµ

dxκ

dp
Wλ

˙

V µ (2.13)

(changing the name of the summation indices λØ µ in the second term). As this holds for
any V µ, we have (for any Wµ) the covector parallel-transport equation

dWµ

dp
´ Γλκµ

dxκ

dp
Wλ “ 0 . (2.14)

Clearly the sign of the affine-connection term is opposite than in the vector case.
Knowing thus “how both the upper and lower indices behave” in parallel transport,

one infers the formula valid for a general tensor. Well, rather than writing a fully general,
cumbersome formula, let us indicate the logic on an example of a (1,2)-type tensor:

dT µαβ
dp

` Γµκλ
dxκ

dp
T λαβ ´ Γικα

dxκ

dp
T µιβ ´ Γικβ

dxκ

dp
T µαι “ 0 . (2.15)

2.4 Parallel transport and the principle of general covariance
It was in fact slightly dogmatic to be presenting the equation (2.2) as the right general rela-
tivistic formula, because we have not yet checked whether it is generally covariant. It defi-
nitely has a correct special relativistic limit – in any inertial system, Γµκλ just vanish and one
ends with the trivial constancy of components (2.1). More involved is to check, explicitly,
whether the equation (2.2) is a tensor equation. In this particular case of the vector transport,
it should be a vector equation.
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Let us write the equation in some primed system tx1µu,

dV 1µ

dp
` Γ1µ

κλ
dx1κ

dp
V 1λ

“ 0 , (2.16)

and try to learn, by transforming all the quantities present, how the left-hand side relates to
its unprimed components.

• The simplest are the terms V 1λ and dx1κ

dp
. The former is a vector by assumption, so

V 1λ
“

Bx1λ

Bxδ
V δ,

and the latter is the tangent vector to the curve,

dx1κ

dp
“

Bx1κ

Bxγ
dxγ

dp
.

• Using the transformation of V µ, we obtain for the first term of the equation

dV 1µ

dp
“

d

dp

ˆ

Bx1µ

Bxα
V α

˙

“
B2x1µ

BxαBxβ
dxβ

dp
V α

`
Bx1µ

Bxα
dV α

dp
.

This is an important observation: total derivative by parameter of a vector is not a vector.
It only behaves as a vector if the first term vanishes, which is the case for linear transfor-
mations (in particular, for the Lorentz transformations of special relativity).

• Finally, from (2.3), we find that the affine-connection components transform as

Γ1µ
κλ ”

Bx1µ

Bξι
B2ξι

Bx1κBx1λ
“

Bx1µ

Bxα
Bxα

Bξι
B

Bx1κ

ˆ

Bξι

Bxσ
Bxσ

Bx1λ

˙

“

“
Bx1µ

Bxα
Bxα

Bξι

ˆ

B2ξι

BxρBxσ
Bxρ

Bx1κ

Bxσ

Bx1λ
`

Bξι

Bxσ
B2xσ

Bx1κBx1λ

˙

“

“
Bx1µ

Bxα
Bxρ

Bx1κ

Bxσ

Bx1λ
Γαρσ `

Bx1µ

Bxα
B2xα

Bx1κBx1λ
. (2.17)

Therefore, these (also) do not represent a tensor quantity. Again, affine-connection compo-
nents only transform as components of a (1,2)-tensor if the second term vanishes, which is
the case for linear transformations. However, as indicated by the latter, they still represent
a geometric object (in the sense of Section 1.2.2).
Important remark: the non-tensorial character of Γαβγ has already been clear before, from
its/their vanishing in the LIFE. Actually, by a coordinate transformation, it is not possible
to make completely vanish a non-trivial tensor. It is because a tensor involves a certain
invariant information, not dependent on the reference frame; for the electromagnetic-field
tensor F µν , for example, this information is embedded in the two invariants FµνF µν and
Fµν

˚F µν .
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Putting together tensor-like and non-tensor-like terms, we have

dV 1µ

dp
` Γ1µ

κλ
dx1κ

dp
V 1λ

“
Bx1µ

Bxα
dV α

dp
`

Bx1µ

Bxα
Bxρ

Bx1κ

Bxσ

Bx1λ
Γαρσ

Bx1κ

Bxγ
dxγ

dp

Bx1λ

Bxδ
V δ

`

`
B2x1µ

BxαBxβ
dxβ

dp
V α

`
Bx1µ

Bxα
B2xα

Bx1κBx1λ

Bx1κ

Bxγ
dxγ

dp

Bx1λ

Bxδ
V δ

“

“
Bx1µ

Bxα

ˆ

dV α

dp
` Γαγδ

dxγ

dp
V δ

˙

`

ˆ

B2x1µ

BxγBxδ
`

Bx1µ

Bxα
B2xα

Bx1κBx1λ

Bx1κ

Bxγ
Bx1λ

Bxδ

˙

dxγ

dp
V δ . (2.18)

The non-tensorial part (the second row) is identically zero thanks to the identity Bx1µ

Bxι
Bxι

Bx1λ “ δµλ .
Actually, differentiation of the latter by xρ yields

B2x1µ

BxρBxι
Bxι

Bx1λ
`

Bx1µ

Bxι
B2xι

Bx1κBx1λ

Bx1κ

Bxρ
“ 0, (2.19)

which, after multiplication by Bx1λ

Bxσ
, confirms vanishing of the parenthesis in the second row of

(2.18). Therefore, we can conclude that the equation (2.2) is generally covariant (specifically,
it is a vector equation), hence it is the correct equation for parallel transport of a vector.

2.5 A few remarks
This chapter is coming to an end, but we will return to parallel transport several times. In
particular, it is crucial for the next chapter about geodesics and for the definition of covariant
derivative, and we will also very much need it in order to understand another central chapter
– on curvature.

Still, parallel transport is definitely not the only reasonable geometrical transport. In
particular, bear in mind that it “keeps the direction” in space-time, which need not correspond
to one’s intuition, because we only understand intuitively keeping direction in space. This is
also the reason why parallel transport is not suitable for a transport of vectors along acceler-
ated world-lines. We will further study this problem in section on Fermi-Walker transport.



CHAPTER 3

Geodesics

Every field theory should provide two major statements: a “passive” law which tells how a
given test charge behaves in a given field (so called equation of motion), and an “active” law
which determines what field is generated by a given distribution of sources (so called field
equations). Usually easier if the equation of motion. For instance, in Newton’s theory, in
a gravitational field described by the potential Φpt, x⃗q, a test mass moves according to the
equation :⃗x “ ´∇⃗Φ. In electrodynamics, in an electromagnetic field described by the vectors
E⃗ and B⃗, a test charge moves according to the Lorentz equation 9⃗p “ qpE⃗ ` v⃗ ˆ B⃗q.

In general relativity, the mass which is only being affected by the gravitational field is
regarded as free – it is freely falling. According to the principle of equivalence, its world-
line should thus be a counter-part of a straight line – a world-line of unaccelerated motions
in the Minkowski space-time. It is rather problematic to define a straight line geometrically
(independently of coordinates), whether in Minkowski or Euclidean space, and often it is just
taken as a primitive object. Anyway, let’s try to identify several basic properties the straight
lines should have, and transfer them from the flat space(-time) to a general one. The resulting
world-lines will be called geodesics.

3.1 Geodesics as straight lines
The most basic property of a straight line is that it is straight :-). In other words, its tangent
vector points constantly in the same direction. Since we already know that “to point in the
same direction” means, in a general space, “to transport parallelly”, we are done:

geodesic is such a world-line whose tangent vector transports along it parallelly .

Hence, it is sufficient to employ the parallel-transport equation (2.2) to the tangent vector of
the curve, V µ ” dxµ

dp
. This yields the equation of geodesic

d2xµ

dp2
` Γµκλ

dxκ

dp

dxλ

dp
“ 0 . (3.1)

33
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Despite this very simple conclusion, one should realise that the above equation represents
quite a different problem than the parallel-transport equation: in parallel transport, the curve
is prescribed and the vector is to be found at every its point, whereas here it is exactly the
opposite – it is the curve what is to be found, while the parallel vector function (the tangent
one) is kind of prescribed.

The geodesic formula represents four 2nd-order ordinary differential equations. As
initial conditions, the initial position xµpp“ pinq and initial tangent vector dxµ

dp
pp“ pinq have

to be specified. One may also recall, as the side constraint, that the tangent vector has to keep
its “normalisation” gµν dxµ

dp
dxν

dp
. Actually, since the parallel transport conserves this quantity

(for any vector), it specifically implies for geodesics that their space-time character is fixed
once for ever (it is e.g. not possible for a geodesic to change from time-like to space-like).

3.2 Geodesics as world-lines of free test particles
In a flat space(-time), zero acceleration means uniform rectilinear motion. Therefore, free test
particles should move on geodesics. On time-like geodesics, to be precise. Although it should
be clear from the above, let us derive this conclusion once more “from scratch”, namely from
the equivalence principle. In any LIFE, every free test particle moves – as known from special
relativity – with zero four-acceleration,

aα̂ “
d2ξα

dτ 2
“ 0 , (3.2)

τ being the particle’s proper time. Transforming the left-hand side to some global coordinate
system txµu, we have

d

dτ

ˆ

dξα

dτ

˙

“
d

dτ

ˆ

Bξα

Bxλ
dxλ

dτ

˙

“
B2ξα

BxκBxλ
dxκ

dτ

dxλ

dτ
`

Bξα

Bxλ
d2xλ

dτ 2
,

which, after multiplication by Bxµ

Bξα
, yields

d2xµ

dτ 2
` Γµκλ

dxκ

dτ

dxλ

dτ
“ 0 .

Since it is natural, in the case of time-like world-lines, to normalise their tangent vector as
four-velocity,

uµ :“
dxµ

dτ
, gµνu

µuν “ ´c2 p” 1 in geometrised unitsq

– and we know that tangent-vector normalisation stays valid along the whole geodesic –, the
equation of time-like geodesics can be “shortened” as

duµ

dτ
` Γµκλu

µuν “ 0 . (3.3)
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3.2.1 Remark on tidal forces

It’s probably clear what “free” and “test” mean, but let us mainly emphasise that the above
only holds for a point-like particle (characterised solely by rest mass). This is nothing new –
in the Newtonian treatment, an extended body moving in a non-homogeneous field is affected
not only by the field intensity, but also by the latter’s gradient (and possibly also higher
derivatives), i.e. by tidal forces. Then it does not move according to the equation :⃗x “ ´∇⃗Φ
which takes but the field intensity into account.

Similarly in general relativity: if a free test body is not point-like, it is also affected by
higher-than-first derivatives of the metric, so it does not move on a geodesic. If the body is
not too large and too deformed, it can be described by a series of multipoles which however
couple with the respective derivatives of the field, making the equation of motion much more
complicated. For example, even if restricting to a “pole-dipole” particle, described by just
mass and spin (meaning classical spin, i.e. rotational angular momentum), the equations con-
tain curvature (the Riemann tensor, see Section 6) and have to also incorporate the evolution
law for the spin tensor. For a 2n-polar body, the problem involves up to n`1 derivatives of
the metric and the evolution equations for tensors describing all the n multipoles. Ugh!

3.3 Geodesics as extremal connecting lines
A straight line may in fact be determined in two different ways: i) by an initial point and
a direction (geometers speak of a local problem in this case), or ii) by two points (a global
problem). The same is also true for geodesics. However, in general space, it seems much
harder to solve the global problem, because there is no global, trivial parallelism, so one
does not know “in which direction to start” (and in which to approach the second point).
Fortunately, the straight line has a third major property, and this also remains true in a general
space: among all curves connecting the given two points, straight line is extremal (it is the
shortest). In space-time, the generalisation of length is the invariant interval (“metric”) ds2 “

gµνdx
µdxν , integrated along a curve. If the curve is time-like, the interval can be expressed in

terms of proper time, ds2 “´c2dτ 2 (”´dτ 2 in geometrised units); if the curve is space-like,
the interval can be expressed in terms of proper distance, ds2 “dl2.

Without the loss of generality, let us solve the variational problem for time-like curves.
In that case, one is looking for a stationary value of the integral for proper time spent between
some given two events (A and B)

∆τ ”

B
ż

A

dτ ”

B
ż

A

a

´gµνdxµdxν .

Since time-like curves are most naturally parametrised by proper time, one varies as

δ∆τ “

B
ż

A

δdτ “

B
ż

A

δ
a

´gµνdxµdxν “ ´

B
ż

A

gµν,ρδx
ρdxµdxν ` 2gµνδdx

µdxν

2
a

´gµνdxµdxν
“
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“ ´

B
ż

A

gµν,ρδx
ρdxµdxν ` 2gµνδdx

µdxν

2 dτ

dτ

dτ
“

“ ´

B
ż

A

ˆ

1

2
gµν,ρu

µuνδxρ ` gµν
dδxµ

dτ
uν
˙

dτ.

To get the basic variation δxρ out of both terms, we integrate the second term by parts,

´

B
ż

A

gµν
dδxµ

dτ
uνdτ “ ´ rgµνδx

µuνs
B
A `

B
ż

A

d

dτ
pgµνu

ν
qδxµdτ,

where, however, the first term is zero, because δxµ “ 0 at both the endpoints A and B (usual
step in variational problems “with fixed endpoints”), so, after renaming the summation index
at δxµ, we continue as

δ∆τ “

B
ż

A

„

d

dτ
pgρνu

ν
q ´

1

2
gµν,ρu

µuν
ȷ

δxρdτ “

“

B
ż

A

„

gρν
duν

dτ
`

ˆ

gρν,µ ´
1

2
gµν,ρ

˙

uµuν
ȷ

δxρdτ .

Since uµuν is symmetric in µ a ν, we can replace, in the parenthesis in front of it, the term
gρν,µ by its symmetrisation 1

2
pgρµ,ν ` gρν,µq (while the second term gµν,ρ we leave without

change, since it is symmetric in itself). In such a manner, the parenthesis becomes
1

2
pgρµ,ν ` gρν,µ ´ gµν,ρq ” Γρµν ” gραΓ

α
µν ... c.f. p2.10q .

Now it’s simple already,

δ∆τ “

B
ż

A

gρα

ˆ

duα

dτ
` Γαµνu

µuν
˙

δxρdτ. (3.4)

The variation δxρ being arbitrary, we find that δ∆τ “ 0 if and only if the geodesic equa-
tion (3.3) holds. Hence, the proper time ∆τ spent between two events is extremal along a
geodesic.

3.3.1 The time spent is maximal, not minimal

In Euclidean space, a straight line is the shortest connection, whereas in space-time, geodesic
is the longest connection. It is due to the indefinite space-time metric. Best to grasp it in a
2D Minkowski space-time (axes t, x): consider a time-like geodesic x “ const and vary it
by δx to the side in its centre (thus obtaining a broken line); in such a variation, the value of
|∆s2|“|∆τ 2| decreases from | ´∆t2| “ |∆t2| to | ´∆t2 ` 4δx2| “ |∆t2 ´ 4δx2|. Similarly,
for a space-like geodesic t “ const, the perpendicular variation by δt in its centre decreases
its proper length |∆s2|“|∆l2| from |∆x2| to |∆x2 ´ 4δt2|.
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3.4 Affine and non-affine parametrisation of geodesics
Time-like world-lines are usually parametrised by proper time, while space-like world-lines
by proper length. Light-like (null) world-lines have to be parametrised differently, because
ds2 vanishes along them. The parametrisation issue can be well illustrated on geodesics.
Changing, in a general case, the parameter p to q“qppq by a sufficiently smooth transforma-
tion, we derive

d2xµ

dp2
` Γµκλ

dxκ

dp

dxλ

dp
“

d

dp

ˆ

dxµ

dq

dq

dp

˙

` Γµκλ
dxκ

dq

dq

dp

dxλ

dq

dq

dp
“

“
d2xµ

dq2

ˆ

dq

dp

˙2

`
dxµ

dq

d2q

dp2
` Γµκλ

dxκ

dq

dxλ

dq

ˆ

dq

dp

˙2

.

Dividing the equation by
´

dq
dp

¯2

, we obtain

d2xµ

dq2
` Γµκλ

dxκ

dq

dxλ

dq
“ ´

dxµ

dq

d2q

dp2

ˆ

dp

dq

˙2

. (3.5)

On the left hand side, we see the analogy of the original “acceleration” expression, while the
right-hand side is no longer zero but proportional to the tangent dxµ

dq
. Therefore, a geodesic

may in general be characterised as a world-line whose “acceleration” (quotation marks!) has
no perpendicular component.

Such parameters for which the right-hand side vanishes are called the affine parame-
ters. In geometry, the term geodesic is sometimes only reserved for the affinely parametrised
case, i.e. such that is “run with a proper speed”. Since the general right-hand side vanishes
when d2q

dp2
“ 0, we see that the affine parametrisation is unique up to a linear transformation.

3.5 Beware of geodesics? (No, rather of LARGE acceleration)
Good to also carry off, from the university, some practical, scalar lesson. Let us open once
more the praise for geometry in the Preface of Synge’s book [46]:
“I know now that if I break my neck by falling off a cliff, my death is not to be blamed on
the force of gravity (what does not exist is necessarily guiltless), but on the fact that I did
not maintain the first curvature of my world-line, exchanging its security for a dangerous
geodesic. To the ironical mind there is little distinction between the mundane and the exalted,
and that is no doubt why Socrates had to drink the hemlock cup.”

Our remarks:

• To defend that charming curve with zero curvature (gµνaµaν “ 0): one’s stomach may not
fully enjoy it, but a really serious problem only arises down there, below the cliff, where
the geodesic is exchanged back for a world-line with the original value of curvature. That
is, gµνaµaν "0 is definitely a bigger issue than the free fall.
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• Synge’s apparent fear of a free fall (and possibly also of a hemlock cup), as well as his
sense of the unity of mundane and exalted, might be related to his dedication of the book
“To my friends J. P. and J. J.”, read “John Power and John Jameson”.

• Irrespectively of all the mundane and exalted influences, including those by J.P. and J.J., or
perhaps thanks to them, J. L. Synge achieved many profound results and lived to the age
of 98.

• Were Socrates alive, he might organise a discussion on whether “what does not exist is
necessarily guiltless”. How is the limit made exactly? Does it also hold in the opposite
direction? (To be “guiltless” means not to influence anything, which in turn implies that
such a thing cannot be detected by any means.) –Interesting point!

3.6 Covariant form of the geodesic equation
The covariant form of the geodesic equation follows immediately from the parallel-transport
formula for covectors (2.14). Substituting there Wλ ”

dxλ
dp

, we have

d2xλ
dp2

“ Γµκλ
dxκ

dp

dxµ
dp

“ Γµκλ
dxκ

dp

dxµ

dp
“

1

2
pgµκ,λ ` gλµ,κ ´ gκλ,µq

dxκ

dp

dxµ

dp
“

“
1

2
gµκ,λ

dxµ

dp

dxκ

dp
. (3.6)

Antisymmetric part of the parenthesis dropped out after being multiplied by the symmetric
term dxµ

dp
dxκ

dp
. Note that if the metric does not depend on xλ, then d2xλ

dp2
“0, that is, dxλ

dp
remains

constant along any geodesic.

3.7 Newtonian limit of the geodesic equation
Whenever a theory is being sought which should encompass a wider range of phenomena
than the old theory, it is natural to demand that it yields the same predictions in situations
where the older theory was working well. Theory of relativity should be more appropriate
than the Newtonian theory in situations involving very high speeds and/or very strong (non-
homogeneous and/or time-varying) gravitational fields; if none of that happens, we want the
new theory to agree with the Newtonian results. In this section, we apply such a requirement
to the geodesic equation, considering the motion of a slow particle in a weak field.

• The field is “weak” if the space-time does not differ much from Minkowski. More accu-
rately, if there exist coordinates in which the metric assumes an almost-Minkowski form,

gµν “ ηµν ` hµν , where hµν are very small, including derivatives . (3.7)

“Very small” means that hµν and their arbitrary derivatives will be left in the equations up
to linear order, Ophq. The contravariant metric must have the form

gαβ “ ηαβ ´ hαβ ,
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as easily verified by requiring it to be the inverse of gµν ,

δαν
!

“ gαµgµν “ pηαµ ´ hαµqpηµν ` hµνq “ δαν ` ηαµhµν ´ hαµηµν ` Oph2q .

We see the requirement reads

hαµηµν “ ηαµhµν ... multiply by ηβν ùñ hαβ “ ηαµηβνhµν .

So hµν behaves like a tensor field living in the Minkowski space-time, namely its indices
are – in the Ophq accuracy – shifted by the Minkowski metric ηµν . (Of course: one can
shift them by the total metric gµν , but the “h¨h” terms are Oph2q and thus drop out.)
–And good to realise right now that Christoffel symbols will be Ophq, because

Γµκλ “
1

2
gµσpgσκ,λ ` gλσ,κ ´ gκλ,σq

.
“

1

2
ηµσphσκ,λ ` hλσ,κ ´ hκλ,σq . (3.8)

• The motion is slow if the coordinate 3-speed is much smaller than the speed of light,
ˇ

ˇ

ˇ

dxi

dt

ˇ

ˇ

ˇ
! c p” 1q. Multiplying this by

ˇ

ˇ

dt
dτ

ˇ

ˇ, we have

ˇ

ˇ

ˇ

ˇ

dxi

dτ

ˇ

ˇ

ˇ

ˇ

!

ˇ

ˇ

ˇ

ˇ

dt

dτ

ˇ

ˇ

ˇ

ˇ

, i.e.
ˇ

ˇui
ˇ

ˇ !
ˇ

ˇu0
ˇ

ˇ . (3.9)

Let us remark that u0 is almost never zero or infinity (such a circumstance would indicate
that the time coordinate t behaves very badly in the given situation).

• The field is also supposed to be stationary in the chosen coordinates, gµν,0 “ 0 (hence
hµν,0 “0). Actually, there is no time derivative in the Newton field equation ∆Φ “ 4πρ, so
we expect general relativity to differ from it if the field is not about stationary.

Now, writing out the geodesic equation (3.3)

duµ

dτ
` Γµ00pu

0
q
2

` 2Γµ0ju
0uj ` Γµiju

iuj “ 0

while keeping in mind that Γs are linearly small, it is reasonable to keep just

duµ

dτ
` Γµ00pu

0
q
2 .

“ 0 . (3.10)

Since the metric is stationary, (3.8) gives

Γµ00 “
1

2
ηµσpHHHhσ0,0 ` ���h0σ,0 ´ h00,σq “ ´

1

2
ηµσh00,σ “ ´

1

2
h00

,µ .

Substituting this into (3.10), we have the time component

du0

dτ
“ 0 , i.e.

d2t

dτ 2
“ 0 , (3.11)
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and the spatial components

dui

dτ
“

1

2
h00

,i
pu0q

2 , i.e.
d2xi

dτ 2
“

1

2
h00

,i

ˆ

dt

dτ

˙2

. (3.12)

Consider now the Newtonian equation for motion of a particle in a gravitational field,

d2xi

dt2
“ ´Φ,i . (3.13)

In order to compare it to the relativistic equation, we express the latter in terms of the coordi-
nate time t as well, using

d2xi

dτ 2
“

d

dτ

ˆ

dxi

dt

dt

dτ

˙

“
d2xi

dt2

ˆ

dt

dτ

˙2

`
dxi

dt

d2t

dτ 2
.

The second term vanishes due to (3.11), so (3.12) assumes the form

d2xi

dt2
“

1

2
h00

,i . (3.14)

Comparing the latter with the desired limiting equation (3.13), we reach the requirement

h00
,i !

“ ´2Φ,i
ùñ h00 “ ´2Φ ` const .

It is natural to assume the constant to be zero, in order that the gravitational perturbation hµν
be normalised in the same way as it is usual for the Newtonian potential Φ, namely that both
these quantities vanish at large distances (“at spatial infinity”).

We thus conclude that in the Newtonian situation it has to hold

g00 “ ´1 ´ 2Φ, or, in standard units, g00 “ ´1 ´
2Φ

c2
. (3.15)

This simple relation brings several layers of knowledge:

• In suitable coordinates (in which gµν “ ηµν ` hµν , with hµν small and time-independent),
the problems not involving large velocities can be treated using g00 “ ´1´ 2Φ, which
mediates the Newtonian intuition. We will, for example, use this limit relation in studying
the time dilation and frequency shift (where g00 is important) in the following section.

• There is a correspondence in physical meaning between the Newtonian potential and the
relativistic metric. This confirms the estimation that the components of affine connection
Γµκλ represent, through Christoffel symbols (i.e., derivatives of the metric), the gravitational-
field intensity. (Recall again that the latter depends on the reference frame, in particular, it
vanishes in freely falling frames such as LIFE.) Let us add in advance that the quantities
given by derivatives of affine connection (second derivatives of metric) will thus correspond
to non-homogeneity of the field intensity. A preferred representative of such quantities will
be the Riemann tensor.
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• The “weak-field” condition is now seen to be ensured by smallness of the potential Φ (more
accurately, of the dimensionless potential Φ{c2) with respect to unity. In Table 3.1, we give
the order-of-magnitude values of |Φ|{c2 on the surface of several objects. They indicate that
the gravitational field may almost everywhere be taken for weak, except in the vicinity of
extremely compact objects (which should form in the final stages of stellar evolution – see
Section 21). One can thus estimate the magnitude of relativistic effects and, consequently,
to estimate where Newton’s theory remains sufficient and where general relativity will have
to be applied.

• A caution at the end: the assumption that the derivatives of hµν (hence of Φ) are negli-
gible as well is non-trivial. Actually, the derivatives may even be large in the vicinity of
low-mass bodies (whose potential well is only shallow), if those bodies are sufficiently
dense. Also, vice versa, even very low-density bodies, with an almost homogeneous field
(as given by the Newton equation ∆Φ “ 4πρ), may be so extended that their total mass
is very large and their potential well very deep. Hence, in order to judge how much rela-
tivistic the situation is, one has to assess, besides the value of Φ{c2, how important are its
derivatives. In particular, one should constantly bear in mind that curvature, i.e. the field’s
non-homogeneity, is the major “general relativistic” feature.

source |Φ|

c2
“ GM

c2R
on its surface

proton 10´39

Earth 10´9

Sun 10´6

white dwarf 10´4

neutron star 10´2

black hole 10´1 ˜ 100

Table 3.1 Order-of-magnitude values of the dimensionless Newton gravitational potential on the

surface of several types of objects. In the black-hole case, we take its horizon as the “surface”,

although it is just a mathematical surface, not a solid one; in the spherically symmetric case, we

will see the horizon is on r “ 2GM
c2
, so the potential assumes the value

|Φ|

c2
“ 1

2
there. The values

indicate that the relativistic effects are significant in the vicinity of neutron stars and black holes.
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CHAPTER 4

Time dilation and frequency shift
in a gravitational field

From the definition of proper time τ it follows... Right, let us define proper time properly –
by referring to the fundamental principles and starting from LIFE again:

dτ 2 “ ´ds2 “ ηαβdξ
αdξβ “ ηαβ

Bξα

Bxµ
Bξβ

Bxν
dxµdxν ” gµνdx

µdxν .

Hence, the relation of τ to any coordinate time t reads

dτ “
?

´ds2 “
a

´gµνdxµdxν “

c

´gµν
dxµ

dt

dxν

dt
dt . (4.1)

The dilation of time consists in the fact that the lapses dτ and dt are not the same, the factor
between them depending on position and on velocity dxµ

dt
of the “carrier” of τ with respect

to the given coordinates xµ. In special relativity where gµν “ ηµν , the relation reduces to the
well known form

dτ “

c

´ηµν
dxµ

dt

dxν

dt
dt “

a

1 ´ δijvivj dt “:
?
1 ´ v2 dt , where vi :“

dxi

dt
.

This implies, in particular, that it is only possible to realise a global time coordinate using
clocks which do not move relative to each other, because those which do move cannot be
synchronised. For a quick look at what general relativity brings as a new, gravitational ingre-
dient, it is best to suppress the special-relativity effect by imagining that the above coordinate
velocity vi is zero: the formula still remains non-trivial,

dτ “
a

´g00pxµq dt .

Not only that it is non-trivial, it even yields different relation at different locations (and times)
– this is why we emphasised the dependence g00pxµq in it. Hence,

43
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Which is your proper time?
Top: Swarnendu Ghosh: Time keeper. Bottom: Sebastian Kisworo: Wasted.
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in a general space-time, even such clocks which are mutually at rest
do not, in general, tick at the same pace.

This observation is an important appendix to our emphasis on LOCAL in the reasoning about
LIFEs. We saw there it is not possible to make the Cartesian system large, because “straight”
axes do not represent well the curved space. Now we add that it is also not possible to realise
physical time in a large area, because clocks which are placed on a different potential tick
differently and, consequently, cannot be synchronised.

How to compare the instantaneous pace of clocks placed at different locations (and
possibly also moving with respect to each other)? It requires a “global” experiment, because
the information must somehow be transferred between the clocks. There’s little doubt that
the best carrier is the “absolute” one – light.

4.1 Gravitational shift of frequency
Let’s have, in some (yet generic) space-time, two observers, A and B, each having her ideal
clock showing proper time τA and τB, respectively. Consider the observer A is sending to ob-
server B a monochromatic EM radiation, denoting by dτA and dτB its proper periods respec-
tively measured by them. Assume that these periods are much shorter than any other time
characterising the space-time; in particular, assume that the space-time, if non-stationary,
only changes negligibly slowly with respect to the above periods, and that the radiation’s
wavelength is negligibly short with respect to the radius of space-time curvature (loosely
speaking, with respect to a scale on which the gravitational field changes significantly). Then
the ratio of the corresponding frequencies, measured by A and B, reads

νB
νA

“

1
dτB
1

dτA

“

b

`

´gµν
dxµ

dt
dxν

dt

˘

A
b

`

´gµν
dxµ

dt
dxν

dt

˘

B

dtA
dtB

. (4.2)

Good to realise two things at this moment:

• Although we consider the “high-frequency limit” (see above), the setting of the problem is
still in general non-stationary, because the space-time may be changing and the observers
may be changing their state of motion. Hence, it is necessary to specify one particular
event of emission and the corresponding single event of reception. However, we will not
complicate the notation beyond “A” and “B”, with A automatically meaning the emission
event and B meaning the reception event in the following.

• There is a fundamental difference between the two proper times and the coordinate time
t: τA and τB are physical, they are really measured by the observers, but they only have
clear sense along their respective world-lines; the coordinate time t, on the contrary, need
not correspond to anybody’s proper time (it’s just a smooth function labelling space-time
events), yet it is supposed to be defined in the whole region we are interested in (perhaps
even on the whole space-time manifold). This means, dτA and dτB are intervals of different
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two times, whereas the corresponding coordinate-time periods dtA and dtB are intervals of
the same time t, with dtA corresponding to dτA in the event of emission of the signal and
dtB corresponding to dτB in the event of its detection.

The relation (4.2) is useless if one does not know anything about dtA{dtB. The simplest
case is solved by the following extremely simple consideration which is the crucial point of
this section: if both the period-defining maxima (or other same-phase points on the wave)
spend the same amount of coordinate time t to travel from A to B, then the coordinate-time
period does not change, dtA “ dtB. It is often difficult to dig this elementary fact from
students, but it is nothing but a tautology. Namely, the coordinate time is – nominally (i.e.
not necessarily on anyone’s clock) – “ticking” in the same pace in the whole region of the
experiment. If the first maximum is emitted at tp1q

A and the second maximum at tp2q

A , and if
both spend the same time ∆t on the way, then one has, for the times when the two maxima
are received, tp1q

B and tp2q

B ,

t
p1q

B “ t
p1q

A ` ∆t, t
p2q

B “ t
p2q

A ` ∆t ùñ dtB :“ t
p2q

B ´ t
p1q

B “ t
p2q

A ´ t
p1q

A “: dtA .

Under the above circumstance, the ratio (4.2) reduces to

νB
νA

“

b

`

´gµν
dxµ

dt
dxν

dt

˘

A
b

`

´gµν
dxµ

dt
dxν

dt

˘

B

. (4.3)

We will realise now when this is true – when the travel between A and B is time-
independent (i.e. the light-travel time remains the same). Along any light-like world-line, we
know the interval vanishes,

0 “ ds2 “ g00dt
2

` 2g0jdtdx
j

` gijdx
idxj .

Here, dt stands for an element of t along that world-line, so we may express it from the above
quadratic equation and compute the total coordinate time spent on the way from A to B by its
integration,

∆t “

B
ż

A

dt “

B
ż

A

´g0jdx
j `

a

pg0jdxjq2 ´ g00gijdxidxj

g00
. (4.4)

This may be a complicated line integral, but we do not actually need to compute it, we just
want to say under which conditions the resulting ∆t does not depend on t. Clearly, in general
it is true when i) metric is independent of time, i.e. stationary, gµν,t “ 0 (at least in the
region involved), and ii) if the spatial elements along the trajectory dxi do not change as
well. This second condition is easy to understand and to satisfy in case that the two observers
have zero coordinate velocities vi, yet such a case is not the only option – for example,
the two maxima may follow slightly different trajectories with respect to the coordinates,
but these trajectories may still be equivalent thanks to certain symmetries of the problem.
More precisely, the condition ii) in fact may not even be automatically fulfilled for the two
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observers static with respect to the coordinates in which the metric is stationary: as it is the
case in gravitational lensing, it may be possible to reach from A to B along two (or more)
different null geodesics, so the two successive photons might follow substantially different
paths. However, this would require to emit each of the photons in a different direction, and it
is clear that we do not consider such a situation here.

4.2 Static case and its Newtonian limit
As already pointed out, the gravitational effect, specific for general relativity, is the most pure
if there is no Doppler effect due to the observers’ motion. Have the observers zero velocities
vi with respect to the coordinates (those in which the metric is supposed to be stationary), the
formula (4.3) reduces to

νB
νA

“

d

p´g00qA
p´g00qB

. (4.5)

Let us stress that this formula is exact, it is only special in that it assumes the metric is
stationary and the observers are at rest. In the Newtonian limit, we can substitute (3.15) and,
since Φ!1, limit ourselves to the linear order,

νB
νA

“

c

1 ` 2ΦA

1 ` 2ΦB

.
“

1 ` ΦA

1 ` ΦB

.
“ 1 ` ΦA ´ ΦB , (4.6)

from where it follows that the relative change of frequency ∆ν ” νB´νA is given by potential
difference (“gravitational tension”) between the place of emission and the place of reception,

∆ν

νA
“ ΦA ´ ΦB . (4.7)

Two examples (given in standard units).
(i) Radiation from a spherical source of radius R is detected at large distance (“at infinity”)
with the redshift equal to the dimensionless potential on the source’s surface,

∆ν

νA
“

ΦA

c2
“ ´

GM

c2R
(4.8)

(one assumes that the potential at the reception point B – e.g. on the Earth – is negligible
with respect to ΦA); for Sun it amounts to ´2.12 ¨ 10´6.
(ii) In a homogeneous field (as e.g. in the classical tower experiment by Pound & Rebka,
1960), the potential is normalised to be zero on the surface of a body (rather than at infinity
like in the spherically symmetric case), Φ“gl, and the relation for relative shift yields

∆ν

νA
“ ´

g∆l

c2
, (4.9)

where g is the gravitational acceleration on the surface and ∆l :“ lB´ lA is the height differ-
ence between the A and B locations.
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Let us check that the last result agrees with common intuition. First, a “lumberjack-
like” reasoning. If a photon falls/rises in a gravitational field, it should be gaining/loosing
energy,1 according to EB “ EA ` ∆Epotential. Writing E “ hν and ∆Epotencial “ ´

EA

c2
g∆l,

we obtain

hνB “ hνA ´
hνA
c2

g∆l ùñ νB “ νA

ˆ

1 ´
g∆l

c2

˙

in agreement with (4.9).
A much more reliable derivation follows from the equivalence principle. Let the two ob-
servers be in an empty space yet placed in an Einstein lift, ∆l from each other. Let the lift
be pulled, while a light is emitted by A, in the direction of ∆l, with acceleration g. The light
has to travel the distance c∆t “ ∆l ` 1

2
gp∆tq2, where ∆t is the travel time. For moderate

∆l the time of flight is extremely tiny (the more that g is small – we simulate a weak field),
so ∆t

.
“ ∆l{c. During this time interval, the lift acquires the speed v “ g∆t “ g∆l{c, so

the observer B receives the light with a frequency shifted by the Doppler-effect (classical)
formula

νB “ νA

´

1 ´
v

c

¯

“ νA

ˆ

1 ´
g∆l

c2

˙

.

4.3 The case with an orbiting satellite
Consider now a satellite orbiting the (spherical) Earth on a circular trajectory, ∆l above the
surface. Let the observer A on the satellite send radiation to the observer B on Earth’s surface
(located exactly below, in the radial direction). In coordinates fixed to the Earth (where B is
at rest), the metric is time independent and the paths of any two subsequent wave maxima
(defining one period), though different, are obviously geometrically equivalent in the leading
order of the exercise. Hence, we can use the formula (4.3), with the dilation factor describing
the B observer simplified to the static form,
d

ˆ

´gµν
dxµ

dt

dxν

dt

˙

B

“
a

p´g00qB
.
“ 1 ` ΦB ,

and the factor describing the A observer written out, in the Newtonian limit (slow satellite in
a weak field), as
d

ˆ

´gµν
dxµ

dt

dxν

dt

˙

A

“

b

p´g00 ´ 2h0jvj ´ gijvivjqA
.
“

.
“

b

p1 ` 2Φ ´ 2h0jvj ´ v2 ´ hijvivjqA .

1 O.S.: When I was attending the GR course, it was in 1983, the lecturer (J.B.) was saying that with the
redshift we must have our own experience: who is climbing is getting red. Still today students tend to smile at
it, but likely because they think the climber gets red due to the toil...
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If the satellite orbits freely on circular trajectory, its speed is given by

mv2A
rA

“
GMm

r2A
ùñ v2A “ ´ΦA ,

so it is of the OpΦ1{2q order. Leaving, in the square root evaluated at A, just terms linear in
ΦA,
b

p1 ` 2Φ ´ 2h0jvj ´ v2 ´ hijvivjqA
.
“

b

p1 ` 2Φ ´ v2qA “
a

1 ` 3ΦA
.
“ 1 `

3

2
ΦA,

we thus have

∆ν

νA

.
“

1 ` 3
2
ΦA

1 ` ΦB

´ 1
.
“

3

2
ΦA ´ ΦB “ ´

3

2

M

R ` ∆l
`
M

R
“ ´

M

2R

R ´ 2∆l

R ` ∆l
. (4.10)

Restoring standard units and substituting Earth values forM andR, we arrive at the numerical
result

∆ν

νA
“ ´

GM

2Rc2
R ´ 2∆l

R ` ∆l
.
“ ´3.47 ¨ 10´10 R ´ 2∆l

R ` ∆l
. (4.11)

For a very distant satellite (∆l Ñ 8), the orbital speed is negligible, whereas the po-
tential difference is maximal, so one obtains the static-case limit, with the maximal possible
blueshift,

∆ν

νA

.
“ 7 ¨ 10´10.

For a satellite just above the Earth’s surface (∆l Ñ 0), the orbital speed has to be highest,
whereas the potential difference vanishes, so one obtains purely Doppler-caused limit, with
maximal possible redshift,

∆ν

νA

.
“ ´3.47 ¨ 10´10.

Between these limiting cases, at the height ∆l “ R{2, the gravitational effect just balances
the transversal Doppler effect and the frequency is not shifted at all.

Time dilation in satellite navigation

The equation (4.11) says how quickly diverge the times on clock on the Earth surface and on
the clock orbiting with the satellite. Returning from frequencies to the proper-time periods,

∆ν

νA
”
νB ´ νA
νA

“

1
dτB

´ 1
dτA

1
dτA

“
dτA ´ dτB

dτB
,

we obtain from there the value by which the two times differ after the dτB interval of terrestrial
proper time,

dτA ´ dτB
.
“ ´3.47 ¨ 10´10 R ´ 2∆l

R ` ∆l
dτB . (4.12)
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For example, after one terrestrial day, i.e. after 86400 seconds, one has

|dτA ´ dτB|
.
“ p3 ¨ 10´5 sq ¨

ˇ

ˇ

ˇ

ˇ

R ´ 2∆l

R ` ∆l

ˇ

ˇ

ˇ

ˇ

. (4.13)

In satellite navigation, the localisation of the receiver is determined from differences
between arrivals of signals from several different satellites orbiting at the same height, so
the error caused by time dilation would by far not be as large as given by the above relation.
Nevertheless, it is interesting to realise that if just one satellite were employed, and the time
dilation were not taken into account, the error in “longitudinal” distance (i.e. in geographical
altitude) caused by wrong interpretation of signal arrival times would amount to

c |dτA ´ dτB|
.
“ p9 kmq ¨

ˇ

ˇ

ˇ

ˇ

R ´ 2∆l

R ` ∆l

ˇ

ˇ

ˇ

ˇ

(4.14)

after a single day. (It simply follows by multiplication of the formula by the speed of light.)
The now classical GPS satellites specifically orbit at the height ∆l“ 20200 km, which leads
to the value

c |dτA ´ dτB|
.
“ 11.52 km in one day .

The above conclusion may not be intuitive, regarding that the Earth is a very “clas-
sical” body. Actually, when the GPS started to operate and the above issues started to be
discussed publicly, even we as relativists were rather sceptical at first sight. The more appre-
ciated should be the design of the positioning systems which already from the very beginning
(1960s) correctly took into account the relativistic effect (a calculation similar to the one we
have done above was published by F. Winterberg in Astronautica Acta, 1955).

4.4 Derivation using photon-observer projections
We add an alternative derivation of the redshift formula. Consider a completely generic
situation – a generic space-time and two observers A and B in arbitrary motion; their four-
velocities we denote pûµqA, pûµqB. Let the photon which A sends to B has four-momentum
ppµqA in emission and ppµqB in reception; and remember that pµpµ “ 0 for photons of course.
(The hats at four-velocities should emphasise that these quantities characterise the observers,
whereas the four-momentum belongs to the photon ... pµ“ℏkµ‰mûµ.)

Energy of a photon as measured by an observer at a given event (where their world-lines
intersect) is given, as known from special relativity, by minus time component of pµ as taken
with respect to the observer (whose time direction is that of ûµ), so it is Ê “ hν̂ “ ´pµû

µ.
Hence, the ratio of the emitted to received proper frequencies reads

ÊB

ÊA

“
ν̂B
ν̂A

“
ppµû

µqB

ppµûµqA
. (4.15)

Restrict now to the special, static situation again, leaving the observers at rest with
respect to some chosen coordinates, ûµ “ pû0, 0, 0, 0q, where, from normalisation

gµν û
µûν “ g00pû

0
q
2

“ ´1 ,
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we have specifically

pû0qA “
1

a

p´g00qA
, pû0qB “

1
a

p´g00qB
.

The redshift formula thus assumes the form

ν̂B
ν̂A

“
pp0qB

pp0qA

d

p´g00qA
p´g00qB

. (4.16)

Finally, let the metric be stationary and let the chosen coordinates be adjusted to this
symmetry, i.e. let gµν,0 “ 0. Then, as it is seen from the covariant form of the geodesic
equation, (3.6), p0 “ dx0{dp is constant along geodesics.2 Consequently, pp0qB “ pp0qA and
(4.16) reduces to (4.5),

ν̂B
ν̂A

“

d

p´g00qA
p´g00qB

. (4.17)

2 Photons are by default supposed to travel on (light-like) geodesics, since an “accelerated photon” is a rather
special concept – possibly the one sliding along a mirror or that interacting with some environment.
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Victoria Ivanova: Stop the time



CHAPTER 5

Covariant derivative

In verifying that the equation (2.2) for parallel transport of a vector,

dV µ

dp
` Γµκλ

dxκ

dp
V λ

“ 0 ,

is general covariant (that it is a vector equation), we encountered two quantities which are not
of tensor type – the total derivative of a tensor (there, specifically, the vector V µ) by parameter
and the affine-connection components Γµκλ. If having at our disposal some extension of V µ to
a neighbourhood of the curve, we can rewrite the total derivative in terms of partial gradient,

dV µ

dp
“

BV µ

Bxκ
dxκ

dp
” V µ

,κ
dxκ

dp
,

and realise that it is the partial derivative which does not behave in a tensor manner (because
the tangent vector really is a vector). Sure, one can check that directly by transforming it,

BV 1µ

Bx1κ
“

B

Bx1κ

ˆ

Bx1µ

Bxα
V α

˙

“
Bx1µ

Bxα
BV α

Bxγ
Bxγ

Bx1κ
`

B2x1µ

BxγBxα
Bxγ

Bx1κ
V α . (5.1)

As expected, partial derivative only behaves in a tensor way in linear transformations (like in
Lorentz transformations in special relativity). However, it would be great to have a derivative
with tensorial behaviour with respect to any transformation of coordinates.

5.1 Covariant derivative of a vector
It is very easy to guess a good option from the very equation (2.2). First, we know that the
left-hand side as a whole is a vector, so why not to define, as a tensor counter-part of the total
derivative dV µ

dp
, the absolute derivative of V µ by p (i.e., along a given curve xµ“xµppq) by

DV µ

dp
:“

dV µ

dp
` Γµκλ

dxκ

dp
V λ . (5.2)

53
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Second, considering some extension of V µ to a neighbourhood of the curve and rewriting the
total derivative in terms of partial derivative, we can rewrite the above as

DV µ

dp
“
`

V µ
,κ ` ΓµκλV

λ
˘ dxκ

dp
.

We know the whole expression is a vector, and the tangent vector dxκ

dp
is a vector as well,

hence the parenthesis has to be a second-rank tensor. It is thus natural to define, as a tensor
counter-part of partial derivative V µ

,κ , the covariant derivative of V µ by xκ,

V µ
;κ :“ V µ

,κ ` ΓµκλV
λ . (5.3)

The correspondence between the derivatives is obvious,

dV µ

dp
“ V µ

,κ
dxκ

dp
ÐÑ

DV µ

dp
“ V µ

;κ
dxκ

dp
.

Remark: More general notation:
The covariant derivative is often being denoted by ∇κV

µ. This notation enables to write
down, economically, the absolute derivative in a general direction (say, W µ),

∇WV ÐÑ V µ
;κW

κ

(in the former, “geometrical” form, it is better to write the vector fields without indices).

5.2 Covariant derivative of an invariant, a covector and a gen-
eral tensor

Since the partial derivative of an invariant [Φ1px1q“Φpxq] is a covector,

BΦ1

Bx1κ
“

BΦ

Bxγ
Bxγ

Bx1κ
,

and the total derivative of an invariant, dΦ
dp

“ BΦ
Bxκ

dxκ

dp
, (thus) remains invariant, it follows that

for an invariant the covariant/absolute derivative coincides with the partial/total one,

Φ1
px1

q “ Φpxq ùñ Φ;κ “ Φ,κ ,
DΦ

dp
“

dΦ

dp
. (5.4)

For covectors, we should define the covariant derivative similarly as we did for vectors,
i.e. using the equation for parallel transport. The absolute derivative for covectors is thus
given directly by the left-hand side of the equation (2.14),

DWλ

dp
:“

dWλ

dp
´ Γµκλ

dxκ

dp
Wµ , (5.5)
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and, correspondingly – after extending Wλ off the transport curve again and rewriting

dWλ

dp
´ Γµκλ

dxκ

dp
Wµ “

ˆ

BWλ

Bxκ
´ ΓµκλWµ

˙

dxκ

dp
,

we define the covariant derivative of Wλ by xκ as

Wλ;κ :“ Wλ,κ ´ ΓµκλWµ . (5.6)

Needless to say, again

dWλ

dp
“ Wλ,κ

dxκ

dp
ÐÑ

DWλ

dp
“ Wλ;κ

dxκ

dp
.

For a general tensor, the logic is clear now. Rather than to be writing down a compli-
cated general formula, let us look at equation (2.15) and exemplify the logic on a (1,2)-tensor:

DT µαβ
dp

:“
dT µαβ
dp

` Γµκλ
dxκ

dp
T λαβ ´ Γικα

dxκ

dp
T µιβ ´ Γικβ

dxκ

dp
T µαι , (5.7)

which, if one can write dTµ
αβ

dp
“ T µαβ,κ

dxκ

dp
, leads to

DT µαβ
dp

“
`

T µαβ,κ ` ΓµκλT
λ
αβ ´ ΓικαT

µ
ιβ ´ ΓικβT

µ
αι

˘ dxκ

dp
“: T µαβ;κ

dxκ

dp
. (5.8)

5.3 Basic properties of the covariant derivative
• Firstly, it is very simple to check that the above operation is a derivative: it is linear in

the derived quantity (V µ, say), it is linear in the direction dxλ

dp
, and it follows the Leib-

niz product rule – e.g., for f some invariant, D
dp

pfV νq “
df
dp
V µ ` f DV µ

dp
, and similarly

D
dp

pV µW νq “ DV µ

dp
W ν ` V µ DW ν

dp
.

• Lemma: The metric is constant with respect to the covariant differentiation, gκλ;σ“0.

Proof: From (5.8), we have gκλ;σ“gκλ,σ´Γισκgιλ´Γισλgκι , which exactly is zero by (2.9).

This means that Dgµν
dp

“0 as well, so the metric is a parallel tensor field (along any curve).
It also implies that lowering and raising of indices commute with the covariant differentia-
tion, i.e. that the indices which are “before the semicolon” can also be standardly shifted by
the metric. Please realise securely that this does not hold for partial differentiation, namely
for indices “before the comma” (very easy to make a mistake in this!), for example,

Vα,β “ pgαµV
µ
q,β “ gαµ,βV

µ
` gαµV

µ
,β ‰ gαµV

µ
,β .

• The constancy of metric with respect to covariant differentiation is the shortest (and deep-
est) expression of the special relation between metric and affine connection which holds in
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Veronika Sekotová: The connection

GR (and which is in detail represented by the Christoffel symbols). This point is worth a
more general geometrical comment:

On a differentiable manifold, there may in general exist neither the affine connection nor
the metric. The second possibility is that there is only an affine connection. In such a case,
it is possible to parallel transport quantities, to speak about geodesics, and also to describe
curvature (tied to that particular connection) – see Chapter 6. On any differentiable man-
ifold (of positive dimension), there exist infinitely many affine connections. When there
also exists the metric (so the manifold is called the pseudo-Riemannian one), it may or
may not be related to the affine connection. However, there exists then a unique affine
connection with the following properties: i) its torsion is zero, and ii) the corresponding
parallel transport is an isometry, i.e. it preserves the scalar product. We note that
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– In general relativity, the second covariant derivatives commute if applied to a scalar,

f;αβ “ pf,αq;β “ f,αβ ´ Γµβαf,µ “ f,βα ´ Γµαβf,µ “ pf,βq;α “ f;βα .

Clearly, it is thanks to the symmetry of the affine connection.
Were this commutator non-zero, the affine connection would be said to have non-zero
torsion, and it would imply the existence of a certain tensor T µαβ such that

f;αβ ´ f;βα “ T µαβf;µ .

This tensor, called the torsion tensor, is a (1,2)-type tensor (standardly viewed as a
two-form with vector values) defined, for a given connection, by

T pV,W q :“ ∇VW ´∇WV ´ rV,W s , (5.9)

for any two smooth vector fields V and W , with rV,W s denoting their commutator
(Lie bracket). In an arbitrary coordinate basis, this reads

T µαβV
αW β :“ W µ

;αV
α

´ V µ
;αW

α
´ W µ

,αV
α

` V µ
,αW

α
“

“ ΓµαβpV αW β
´ WαV β

q “ pΓµαβ ´ ΓµβαqV αW β. (5.10)

Hence, vanishing of the torsion tensor is indeed equivalent to the symmetry of the
affine-connection coordinate components in the two bottom indices.

– The parallel transport is an isometry if

d

dp
pgµνV

µW ν
q “

D

dp
pgµνV

µW ν
q

vanishes. However, since the parallel transport of V µ and W ν means

DV µ

dp
“ 0,

DW ν

dp
“ 0 ùñ necessarily V µW ν Dgµν

dp
“ 0 .

Should this be true for any pair of vectors and along any curve, the metric must be
covariantly constant, gµν;σ “ 0, which in turn implies that (2.9) has to hold. And
we know the latter is equivalent to the fact that the affine-connection components are
represented by Christoffel symbols.

– For those who do not want to study all the above geometrical background, at least
a short useful appendix to parallel transport: viewing the last point from the GR
perspective already (thus with the metric automatically being covariantly constant),
we see that the conservation of scalar product of parallel transported vectors (2.12) is
now obvious immediately:

d

dp
pgµνV

µW ν
q “

D

dp
pgµνV

µW ν
q “ 0 ,

because all the terms gµν , V µ and W ν are parallel (V µ and W ν are parallel along the
given curve by assumption, and gµν is parallel along any curve).
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The above affine connection “compatible with the metric” (or “metric connection”) is
called the Levi-Civita connection. General relativity lives on pseudo-Riemannian (specif-
ically, Lorentzian) manifolds where the metric does exist, and it automatically employs this
kind of affine connection. A historical remark: the covariant differentiation and Christoffel
symbols were already known from E. B. Christoffel (from 1869), but the corresponding
affine connection was only formally established by T. Levi-Civita in 1916/17, about a year
after Einstein had already finished his theory.

• Regarding the short, “geometric” form of the parallel-transport equation, DV µ

dp
“0, it is also

clear that the geodesic equation (in an affine parametrization) reads D
dp

`

dxµ

dp

˘

“ 0. In the
specific case of time-like world-lines, a natural affine parameter is the proper time and

dxµ

dτ
“: uµ pfour-velocityq,

Duµ

dτ
“: aµ pfour-accelerationq,

so the time-like geodesic equation (describing the motion of free test particles) can be
written even shorter, aµ“0. (Remember again that this is exactly the idea we started from
when deriving the geodesic equation, more specifically, we assumed this is the correct
equation for free motion in LIFEs.)
Also clear should be how the equation of motion looks when the test particle is not free,
i.e. when it is affected by some non-gravitational force – simply that force (F µ) appears
on the right-hand side,

m
Duµ

dτ
“

Dpµ

dτ
“ F µ

(pµ”muµ is the four-momentum; we assume forces which do not change the particle’s rest
mass m). In the important case of motion in an electromagnetic field, the particle is driven
by both the fundamental macroscopic interactions – gravitational and electromagnetic, and
it is the Lorentz force which stands on the right-hand side (while gravity is involved in the
definition of aµ, namely in the absolute derivative),

aµ “
q

m
F µνuν , (5.11)

so the crucial characteristic of the particle is its specific electric charge q{m.

• It holds Aν;µ´Aµ;ν “ Aν,µ´Aµ,ν and, similarly, for an antisymmetric tensor (so called
bivector) Fαβ it holds Ftαβ;γu ” Fαβ;γ ` Fγα;β ` Fβγ;α “ Ftαβ,γu, because the terms with
Gammas cancel out due to the latter’s symmetry in the bottom indices.

• The covariant divergence can be written in terms of partial divergence, which is mainly
advantageous for the Gauss law. We will show it using the well known Jacobi formula for
the differentiation of a matrix determinant.

Lemma: Be Mpxq a square matrix depending on λ (it may either be a coordinate, a param-
eter, or just some variable). Then

pdetMq,λ

detM
“ Tr

`

M´1
¨M,λ

˘

. (5.12)
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Proof: Let Mµ
α be a square matrix n ˆ n. Let us differentiate its determinant

detM “ Mµ
αMν

β . . .Mσ
η δrµ

α δ
ν
β . . . δ

σs
η

partially by some variable (we use the notation X,λ , albeit it need not be a differentiation
with respect to a coordinate),

pdetMq,λ “ pMµ
α
q,λMν

β . . .Mσ
η δrµ

α δ
ν
β . . . δ

σs
η `

` Mµ
α
pMν

β
q,λ . . .Mσ

η δrµ
α δ

ν
β . . . δ

σs
η `

` Mµ
αMν

β . . . pMσ
η
q,λ δ

rµ
α δ

ν
β . . . δ

σs
η “

“ n pMµ
α
q,λMν

β . . .Mσ
η δrµ

α δ
ν
β . . . δ

σs
η “

“ pdetMq pM´1
qα
µ
pMµ

α
q,λ ” pdetMq Tr

`

M´1
¨M,λ

˘

. (5.13)

We have only employed suitable renaming of the summation indices (thanks to which
we have got n manifestly same terms) and, between the last two lines, the fact that the
components of the inverse matrix pM´1qα

µ equal co-factors (subdeterminants = minors
with the pertinent signs) corresponding to the components Mµ

α divided by pdetMq, that
is (Cramer’s rule)

pM´1
qα
µ

“
n

detM
δrµ
α δ

ν
β . . . δ

σs
η Mν

β . . .Mσ
η . (5.14)

For a particular dimension of the matrix, it is simple to verify the statement explicitly. For
example, for a matrix 2ˆ2, one can write, in the MAPLE program:

with(linalg):
A:=array([[a(x),b(x)],[c(x),d(x)]]);
dA:=map(diff,A,x);
leftside:=trace(multiply(inverse(A),dA));
rightside:=diff(det(A),x)/det(A);
simplify(leftside-rightside);

it is indeed zero.

Corollary: According to the definition of Christoffel symbols, one obtains

Γµµλ “
1

2
gµσpgσµ,λ ` gλσ,µ ´ gµλ,σq “

1

2
gµσgσµ,λ

(the last two terms in the parenthesis are antisymmetric in the indices [µ,σ], so they drop
out after multiplication by the symmetric gµσ), from where, thanks to the above Lemma,
we have (in our case, the square matrix is the metric tensor and g :“ det gµν)1

Γµµλ “
1

2

g,λ
g

“
1

?
´g

B
?

´g

Bxλ
. (5.15)

1 In Lorentzian manifolds, the metric has an opposite sign in the time direction than in the three spatial
directions – specifically, we use the (´```) metric signature here –, so the metric determinant g :“det gµν is
negative. It is thus necessary to write it with minus when it appears under the square root.
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Owing to this feature, the covariant divergence can be expressed in terms of the partial one:

ñ V µ
;µ “

1
?

´g
p
?

´g V µ
q,µ , (5.16)

ñ T µν ;ν “
1

?
´g

p
?

´g T µνq,ν ` ΓµνιT
ιν , (5.17)

ñ lψ ” gµνψ;µν “ ψ;ν
ν “ pψ,νq;ν “

1
?

´g
p
?

´g ψ,νq,ν , (5.18)

where apparently the second-rank-tensor result reduces to the partial divergence in the case
of an antisymmetric tensor (bivector), because the Γ-term vanishes for such.

5.4 What has been achieved so far
Let us have some drink and summarise shortly what we have done so far.

We started from the universality of gravitation – from the observation/assumption
that the effect of its intensity is independent of the properties of a system on which is acts.
Thanks to this universality, specifically thanks to the universality of free fall, it was possible
to claim that the gravitational-intensity effect is locally transformed out (“cancelled”) in any
local inertial frame (LIFE), i.e. a certain Cartesian frame which is itself freely falling and
non-rotating. This assertion – the equivalence principle – implied, in particular, that in the
LIFE the physics should locally run as in the Minkowski space-time.

In rewriting the laws known from special relativity from the LIFE to general coordi-
nates, we used the principle of general covariance which, at its simplest level, requires that
the resulting law be represented by a general covariant equation, i.e. such equation whose
form is preserved in any diffeomorphic change of coordinates. This requirement we satis-
fied by writing the equations in a tensorial form. In rewriting the equations, it has gradually
turned out that they conceptually did not change from their special-relativistic form, but what
did change is the geometry of space-time in which the given physical process takes place. In
such a way, gravitation – originally a force interaction – has been ascribed to the geometric
properties of the host space-time – it has been geometrised.

However, rather than living directly in space-time, tensors form tangent linear spaces
which are specific for each space-time point/event. It is thus only simple to operate with
tensors at one particular point/event, because all these belong to the same linear space. Yet
generally, it is necessary to work with tensors living in different linear spaces (in tangent
spaces at different points); in particular, in differential equations one needs to specify how
to perform the differentiation, namely how to compare tensors at “neighbouring events”.
The relation between tangent spaces at different events of a manifold is provided by affine
connection. The connection tells how to transport the tensor quantities, and thus determines
a possible “reasonable” (tensorial) concept of differentiation – the covariant derivative.

There exists an infinite number of affine connections, but general relativity uses a spe-
cial one – the one according to which metric transports in a “natural way”, namely remains
constant with respect to it. Such a connection is most easily obtained by considering the
problem of a parallel transport of vectors (this is the transport in which the vector “keeps
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its space-time direction”); it bears the name of Levi-Civita and its special relation to metric
is, in any coordinates, represented by Christoffel symbols.

The covariant derivative is the most important derivative on smooth manifolds, and
the parallel transport is the most important transport over them. However, tensors need not
only transport parallelly, and, correspondingly, there also exist other derivatives with tensorial
character. The most significant other options are the Lie transport/derivative and the Fermi-
Walker transport/derivative. We will come to these later.

Anyway, the crucial task is yet to be tackled. At the present stage, we know (kind of)
how to rewrite the physics we know from special relativity to a general space-time (a space-
time with general metric gµν and covered with some arbitrary coordinates). However, we do
not know yet i) what deforms the space-time to the shape different from Minkowski, ii) how
the space-time is deformed and how that deformation affects its own sources. In short, wanted
is the new gravitational law, new “field equations”. The following chapter on curvature will
bring us pretty close to this goal. And parallel transport will again play an important role...

Time for curvature!
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CHAPTER 6

Curvature of space-time

6.1 About the Karlov hill and about fools on its slopes
From Vyšehrad, the Prague fortification stretched, across the Botíč valley, to the New-Town
walls which still today rise from “Na Slupi” along the western ridge of the Karlov hill. From
there, they broke at right angle towards north and – via Svinská gate (the end of Svinská,
later Ječná street at today’s “Pavlák”) – they headed to Poříčí. East of the Karlov rise, above
Nusle, the southern Botíč hillside undulates; a small vinery reminds the vineyards that once
were founded there by Charles IV and that only went to an end in 1848.1 They were replaced
by a rapid development of Královské Vinohrady (Royal Vineyards) – a town which later (in
1922) joined Prague.

However, we are now mainly interested in the south-eastern corner of the New Town,
the region to the north of the conserved section of city walls, today delimited by Sokolská
street on the east, by Ječná street on the north, and by Vyšehradská street on the west –
the Karlov quarter. Its peeble-paved quiet lanes with gas lamps host respectable buildings
under the roofs of which the service to a patient, to god, to science, to nation as well as to
emperor meant basically the same. In them, several branches of Czech medicine and natural
science experienced their beginnings as well as outstanding moments. The characters who
contributed to such a development were at times walking through Karlov in clothes which
had never been in fashion, and they were not always keeping a logical direction. Whether
heading for their study room, for a seminar, to sketch a picture under the old garden trees, to

1 It may not be known that the whole surroundings of Prague went through similar evolution. Charles IV,
“wishing to breed the Czech Kingdom’s honour, good as well as enjoyment”, “from Rhinelands, France and
Austria had the graceful grapevine conveyed, and, before long, notably the Prague surroundings were a one
whole vineyard, as far as 3 miles. In the 16th and 17th centuries, more than 2000 vineries were still around
Prague, some of them having up to 30 strychs.” (Strych, strich, korec or měřice was an old volume unit used in
Bohemia and in some parts of Germany; it corresponded to approximately 100 litres.) Since there did not exist
computer shooters in those times, a warning had to be posted in 1449 at the entrances to the vineries: “... Did
ladies or maidens come walking in the vineyards, they should eschew mischievous young people.” [Quotations
from F. Ruth: Kronika královské Prahy a obcí sousedních / The Chronicle of Royal Prague and of Neighbouring
Municipalities (Körber, Prague 1903)].

63
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reach their patient or a professional dispute, they were contributing to the atmosphere of an
area whose charm reverberates till present times.

In Figure 6.1 with aerial photo of the Karlov area, the objects are marked which will
be mentioned in the following. The most important of them, the Land maternity hospital,
resided, together with a foundling home, in the former chapter of the St. Apollinaire church
which looks down at the valley for some 640 years already. In 1875 the hospital moved to
new premises built in the neighbourhood by the architect J. Hlávka, in the red-brick pavil-
lon style of English “Gothic Revival” (number 1 in the figure). At its opening, it was the
largest maternity hospital in Europe; it still keeps its original purpose, and it is still being
admired for aesthetic reasons. From the hospital, it is advisable to enter our Faculty (known
as “math-phys”) as soon as possible; the Faculty has its dean’s office just a bit to the south
(number 2). However, the first “graduates” from the hospital could only enrol at our today’s
dean’s office in 1911; in that year, mathematical and zoological departments of the Czech
Charles University moved to the then new building. In its northern neighbourhood, a sim-
ilarly nice workplace had already 4 years before been found by the Physics Institute of the
Czech University. Both buildings were raised in a neoclassicist style, with baroque elements,
opposite to the (few years older) campus of the Children hospital. They became dominants
of the Slupská-garden amphitheatre, where mentally ill worked and which, after 1905, began
to give way to the University campus “Albertov”.2 Further to the south, we are approaching
the edge of the Nusle valley, close to which stands the Church of the Assumption of the Vir-
gin Mary and St. Charles the Great from 1350-77 (number 3 – namely, there are 3 teeth of
that great murderer in its main altar). The nave of this most beautiful Karlov building rises
from the ground in regular-octagonal brickwork, roofed by a cupola of 23m diameter, then
– allegedly – the boldest in Central Europe, being supported by a subtle and – according to
Otto’s encyclopædia – “magnificent above every thought” net vault.

However, those who set out, from the maternity hospital (1), in the opposite direction
(than towards our Faculty), could have ended much worse. Just behind two corners, they
would likely resort to the U kalicha house (number 4 in the map) where, under the brothel of
Mrs. Millerová, there was a smoky pub. Today, after such a visit, one would probably return
somewhat to the south, to a urology clinic (number 5), the structure of which neither fits to-
gether with the Apollinaire hospital on the west, nor with the Prague business hospital on the
south (also neo-gothic, from 1861). Anyway, after the peripeteias undergone, both imaginary
characters might have put themselves in the hands of the Land Institute for Mentally Ill which
had been located in the neighbouring compound of St. Catherine from 1822. The name of
this patron of academy (e.g. of the original Faculty of Liberal Arts of the Charles University)
was given to it by the church erected, in 1355-67, at the northern periphery of the park enclo-
sure and which was in 1737-41 supplied with a baroque nave by K. I. Dientzenhofer. From
the original, gothic body, a slender tower has been preserved (“Prague minaret”), square at
the bottom while higher becoming an octagon (rather typical for Karlov’s churches). From
1840 the Institute was based in a “new house” in the south of the garden (number 6), where,

2 Many voices were heard then regretful about the garden as a reservoir of clean air, and the Club for Old
Prague was asking that “ground plan and, in particular, the silhouettes of the structures should meet the require-
ments of aesthetics and scenic beauty”. (A time machine wanted! Already yesterday it was too late...)
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Figure 6.1: Karlov quarter from above. Numbers denote the objects mentioned in the text.
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under the direction of J. Riedel, it even reached a reputation of one of the best psychiatric fa-
cilities in Europe. After a successful therapy, we may return to the St. Apollinaire church and
from there descend the stairs to Albertov, where we finish our excursion in the Pathological
Institute (number 7).

Yet we are not only mentioning Karlov because of sympathy towards its spiritus loci.
Actually, in the St.-Catherine mental asylum, an intriguing intersection of Czech history prob-
ably happened, as most notably pointed out by our colleague J. Langer and by the Polish as-
trophysicist M. Abramowicz; it is connected to the nuances of spherical geometry. In curved
spaces (not speaking about space-times), even invariant, “geometrical” quantities may behave
in a non-intuitive manner. On a sphere, for instance, the proper circumference of concentric
circles first grows with proper radius, but it grows slower and slower compared to how it
does in a plane, and, after one reaches the main circle (“equator”), the behaviour reverses
– the circumference shrinks with growing radius (even to zero finally). The same is true in
higher-dimensional spherical geometries: in a closed, spherical universe, when expanding
the proper radius from some given point, one first gets larger and larger proper volumes, but
at one moment the volumes start to shrink back.

Now to the story. As recorded by J. Hašek [17] (a Czech writer of the beginning of 20th
century), at the turn of June and July 1914, a Prague servant F. Strašlipka (in the report, he
appears as a dog dealer, under the name J. Švejk) was arrested in the dodgy house U kalicha,
allegedly for political reasons. He was subject to an investigation in the neighbouring St.-
Catherine asylum and, because of somewhat ingenuous behaviour, he spent there a few days.
When later describing the asylum life and patients, he stated, among others: “... One was in
a straitjacket all the time so that he shouldn’t be able to calculate when world would come
to an end. And I also met a certain number of professors there. One of them used to follow
me about all the time and expatiate on how the cradle of the gipsy race was in the Krkonoše
[Giant Mountains, north-east of Bohemia], and the other explained to me that inside the
globe there was another globe much bigger than the outer one.”

Now, the St.-Catherine clinic is also central to another well known statement, by Prof.
A. Einstein, who in 1911-12 was looking down, over a wall, to its park from his office of
the director of the Physics Institute of the Prague German University in Viničná street (thus
from just an opposite side than where lies the U kalicha pub; today the building belongs to
biological departments of the Faculty of Natural Sciences – it is Viničná 8). According to
his successor and biographer P. Frank, Einstein was once showing the people walking in the
garden to one of his guests, pointing from the window (see arrow in the figure) and saying:
“These are those of the fools who do not deal with the quantum theory.” Einstein was troubled
by the quantum theory both before and after, but in Prague he was primarily working on
gravitation, so it seems plausible that he gave a popular talk at the neighbouring institution3

that some of the patients remembered and two years later retold to J. Švejk. Actually, tradition
has it that it was only later (in July 1912) in Curych that M. Grossmann draw Einstein’s
attention to the Riemann geometry, but F. Frank claims that such a hint had already been

3 Actually, contacts between different disciplines were quite lively at those times, in particular, “humanistic”
people were attending physics courses and vice versa, public disputes were being organised, etc. No surprise
that writers of that period were mentioning new scientific ideas in their works, often with decent understanding;
well, sure – if they chiefly wrote them in academic-people bars like Hašek...
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provided in Prague, by the mathematician G. Pick. (Pick was a former assistant of E. Mach.
He headed the committee which appointed Albert Einstein to his Prague chair. 30 years later,
he died in the Terezín camp.)

Besides that, historians should also be alarmed by the first of the above Švejk’s sen-
tences – about the end of the world: namely, at that time, a complete general theory of
relativity was not yet available, let alone the dynamical cosmological models. (Friedmann, in
particular, found his solutions some 8 years later.) In addition, the end of the world may only
happen in closed models, of which the simplest – the homogeneous and isotropic one – has
the geometry of a (3D) sphere in its spatial part! (See Chapter 13.)

6.2 The Riemann tensor
When speaking about parallel transport of a vector, we started from a natural image of how
to preserve a direction in transporting it along a curved surface. Due to the requirement that
the direction stay tangent to the surface, it was necessary, after every step along a chosen
transport path (made in an embedding 3D Euclidean space), to tilt the vector down to the
surface orthogonally. From the necessity of this tilting, it is clear that the parallel transport
in general depends on the path if the surface (or host space in general) is curved. Best to
illustrate this on a 2D sphere – try, for example, the path going from the north pole to the
equator along a meridian, then along the equator and then back to the pole, starting with the
vector tangent to the curve. (The final vector is different from the initial one.)

If covariant derivative is the one in which one of the compared vectors is first trans-
ported to the other’s point by parallel transport, one thus expects, due to the obvious depen-
dence of the parallel transport on path, that the commutator of second covariant derivatives
will not vanish, and that it should provide information about curvature of the manifold at a
given point. In fact it provides information about both curvature and torsion (if there was
any): torsion manifests itself in that a parallelogram formed by parallel transporting its sides
does not close at the opposite vertex (even in an infinitesimal case); and curvature manifests
itself in that the parallel transport of any vector along two different paths about such a par-
allelogram (and thus along any two different paths connecting two points) does not yield the
same results. The torsion tensor T pX, Y q, or T µκλXκY λ, we already introduced in the pre-
vious chapter by (5.9), while the curvature tensor is defined, on an abstract (coordinate-free)
level, by

RpX, Y qZ :“ ∇Xp∇YZq ´∇Y p∇XZq ´∇rX,Y sZ , (6.1)

where X , Y and Z are vector fields and rX, Y s is the Lie bracket (commutator) of two of
them. Both tensors return a vector field. In an arbitrary coordinate basis, the curvature-tensor
definition reads

Rσ
νκλZ

νXκY λ :“

“ pZσ
;λY

λ
q;κX

κ
´ pZσ

;κX
κ
q;λY

λ
´ Zσ

;νpY ν
,λX

λ
´ Xν

,λY
λ
q “

“ pZσ
;λκ ´ Zσ

;κλqXκY λ
` Zσ

;νpY ν
;λX

λ
´ Xν

;λY
λ

´ Y ν
,λX

λ
` Xν

,λY
λ
q “

“ pZσ
;λκ ´ Zσ

;κλqXκY λ
` Zσ

;νT
ν
κλX

κY λ
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ùñ Zσ
;κλ ´ Zσ

;λκ “ ´Rσ
νκλZ

ν
` T νκλZ

σ
;ν . (6.2)

This last relation is called the Ricci identities and we will derive it now, already with zero
torsion, i.e. with the symmetric affine connection of the GR theory.

6.2.1 Ricci identities

Let’s consider an arbitrary covector and compute the commutator of its second covariant
derivatives. Denoting, for lucidity of the first step, Vν;κ “:Wνκ, we have from the covariant-
derivative definition

Vν;κλ ´ Vν;λκ ” Wνκ;λ ´ Wνλ;κ “

“ Wνκ,λ ´ ΓρλνWρκ ´ �����ΓρλκWνρ ´ Wνλ,κ ` ΓρκνWρλ ` �����ΓρκλWνρ .

The indicated terms are identical and thus cancel out, so it remains

Vν;κλ ´ Vν;λκ “

“ pVν,κ´ΓσκνVσq,λ ´ ΓρλνpVρ,κ´ΓσκρVσq ´ pVν,λ´ΓσλνVσq,κ ` ΓρκνpVρ,λ´ΓσλρVσq “

“ pΓσλν,κ ´ Γσκν,λ ` ΓσκρΓ
ρ
λν ´ ΓσλρΓ

ρ
κνqVσ .

The relation can be written as

Vν;κλ ´ Vν;λκ “ Rσ
νκλVσ , (6.3)

where we have introduced4

Rσ
νκλ :“ Γσνλ,κ ´ Γσνκ,λ ` ΓσρκΓ

ρ
νλ ´ ΓσρλΓ

ρ
νκ “ 2

`

Γσνrλ,κs ` ΓσρrκΓ
ρ
λsν

˘

. (6.4)

Though expressed in terms of the affine connection and its partial derivative, this crucial
quantity is certainly a (1,3) tensor thanks to the original commutator. The quantity is called
the Riemann curvature tensor. Note that the relation seems to be slightly different from the
torsion-free version of (6.2), but it is OK actually, because the Riemann tensor will before
long be found anti-symmetric in the first two indices.

The above relation (6.3) we used as a definition of the Riemann tensor is called the
Ricci identities. It can actually be generalised to tensors of any rank,

Tµν...;κλ ´ Tµ...;λκ “ Rσ
µκλTσν... ` Rσ

νκλTµσ... ` ... pas many terms as indicesq . (6.5)

In one of the paragraphs below, specifically the version applying to the 2nd-rank tensor will
be useful, so let us also derive that (it only requires sense of order):

Wµν;κλ ´ Wµν;λκ “

4 We are switching the bottom indices at all the Gammas (which makes no difference), simply because it is
probably easier to remember the indices in the following arrangement. If torsion were non-zero, use the original
order of indices! (The Ricci identity would in such a case contain an additional term T ρκλVν;ρ arising from the
two terms we cancelled out first; T ρκλ being the torsion tensor.)
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“ ` pWµν;κq,λ ´ ΓρλµWρν;κ ´ ΓρλνWµρ;κ ´ ������ΓρλκWµν;ρ

´ pWµν;λq,κ ` ΓρκµWρν;λ ` ΓρκνWµρ;λ ` ������ΓρκλWµν;ρ

“ ` pWµν,κ ´ ΓσκµWσν ´ ΓσκνWµσq,λ

´ Γρλµ pWρν,κ ´ ΓσκρWσν ´ ΓσκνWρσq ´ Γρλν pWµρ,κ ´ ΓσκµWσρ ´ ΓσκρWµσq

´ pWµν,λ ´ ΓσλµWσν ´ ΓσλνWµσq,κ

` Γρκµ pWρν,λ ´ ΓσλρWσν ´ ΓσλνWρσq ` Γρκν pWµρ,λ ´ ΓσλµWσρ ´ ΓσλρWµσq

“ ´ Γσκµ,λWσν ´ Γσκν,λWµσ ` ΓρλµpΓσκρWσν`�����ΓσκνWρσ q ` Γρλνp
XXXXXΓσκµWσρ `ΓσκρWµσq

` Γσλµ,κWσν ` Γσλν,κWµσ ´ ΓρκµpΓσλρWσν`
XXXXXΓσλνWρσ q ´ Γρκνp�����ΓσλµWσρ `ΓσλρWµσq

“ ´ Γσκµ,λWσν ´ Γσκν,λWµσ ` ΓρλµΓ
σ
κρWσν ` ΓρλνΓ

σ
κρWµσ

` Γσλµ,κWσν ` Γσλν,κWµσ ´ ΓρκµΓ
σ
λρWσν ´ ΓρκνΓ

σ
λρWµσ

“ ` pΓσλµ,κ ´ Γσκµ,λ ` ΓσκρΓ
ρ
λµ ´ ΓσλρΓ

ρ
κµqWσν

` pΓσλν,κ ´ Γσκν,λ ` ΓσκρΓ
ρ
λν ´ ΓσλρΓ

ρ
κνqWµσ

(first the last terms of the two lines cancelled out, then the first covariant derivatives were
written out in the parentheses, then all the terms containing derivatives of the tensor cancelled
out, and finally the terms containing Wρσ and Wσρ cancelled out as well). We recognize

Wµν;κλ ´ Wµν;λκ “ Rσ
µκλWσν ` Rσ

νκλWµσ . (6.6)

6.2.2 Fully covariant Riemann tensor

Obviously, the Riemann tensor is purely a property of the affine connection, in particular,
one does not need metric for its definition. (In general, the metric need not even exist on the
manifold.) However, the metric is necessary for the totally covariant form of the tensor, since
one has to lower the first index, Rµνκλ “ gµσR

σ
νκλ. Substituting from (6.4), we have

Rµνκλ “ gµσ pΓσνλ,κ ´ Γσνκ,λq ` gµσ pΓσρκΓ
ρ
νλ ´ ΓσρλΓ

ρ
νκq . (6.7)

Consider the first part first:

gµσ pΓσνλ,κ ´ Γσνκ,λq “ pgµσΓ
σ
νλq,κ ´ gµσ,κΓ

σ
νλ ´ pgµσΓ

σ
νκq,λ ` gµσ,λΓ

σ
νκ “

“ Γµνλ,κ ´ Γµνκ,λ ` gµσ,λΓ
σ
νκ ´ gµσ,κΓ

σ
νλ .

Here we further expand the first two terms by plugging in for the Christoffel symbols,

Γµνλ,κ ´ Γµνκ,λ “
1

2
pXXXgµν,λκ ` gλµ,νκ ´ gνλ,µκ ´ XXXgµν,κλ ´ gκµ,νλ ` gνκ,µλq “

“
1

2
pgλµ,νκ ` gνκ,µλ ´ gνλ,µκ ´ gκµ,νλq ,

and the remaining two terms we join up (after renaming the summation index σÑρ) with the
second half of (6.7):

gµρ,λΓ
ρ
νκ ´ gµρ,κΓ

ρ
νλ ` gµσ pΓσρκΓ

ρ
νλ ´ ΓσρλΓ

ρ
νκq “
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“ pgµρ,λ ´ ΓµρλqΓρνκ ´ pgµρ,κ ´ ΓµρκqΓρνλ “

“ pΓρµλ ` (((((((Γµρλ ´ Γµρλ qΓρνκ ´ pΓρµκ `
hhhhhhhΓµρκ ´ Γµρκ qΓρνλ “

“ ΓρµλΓ
ρ
νκ ´ ΓρµκΓ

ρ
νλ “ gπρpΓ

π
µλΓ

ρ
νκ ´ ΓπµκΓ

ρ
νλq ,

where its was sufficient to use (in the 2nd line) the g Ø Γ relation (2.9). The pure covariant
form of the Riemann tensor thus reads

Rµνκλ “
1

2
pgµλ,νκ ` gνκ,µλ ´ gµκ,νλ ´ gνλ,µκq ` gπρpΓ

π
µλΓ

ρ
νκ ´ ΓπµκΓ

ρ
νλq . (6.8)

The first part is solely given by the 2nd derivatives of the metric (they appear linearly), while
the second part contains the 1st derivatives of the metric (these appear quadratically).

6.2.3 Riemann-tensor symmetries

On any manifold equipped with affine connection, the Ricci identity implies

Rµ
νκλ “ ´Rµ

νλκ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . antisymmetry in rκ, λs . (6.9)

Also straightforward is to check that

Rµ
tνκλu ” Rµ

νκλ ` Rµ
λνκ ` Rµ

κλν “ 0 . . . . . . . . . . . . first Bianchi identities . (6.10)

On (pseudo-)Riemannian manifolds (equipped with the metric), one can add that

Rµνκλ “ ´Rνµκλ .......................... antisymmetry in rµ, νs , (6.11)
Rµνκλ “ Rκλµν ........ symmetry in index pairs prµ, νs, rκ, λsq . (6.12)

These properties can also be verified straightforwardly. (By combination of the last symmetry
and antisymmetries within the two pairs, one also sees that Riemann stays unchanged if
exactly reversing the order of indices, Rµνκλ“Rλκνµ.)

The last symmetry is not independent. Actually, lowering the first index in (6.10) and
writing it up for all four possible permutations of indices,

Rµνκλ ` Rµλνκ ` Rµκλν “ 0 ,

Rλµνκ ` Rλκµν ` Rλνκµ “ 0 ,

Rκλµν ` Rκνλµ ` Rκµνλ “ 0 ,

Rνκλµ ` Rνµκλ ` Rνλµκ “ 0 ,

and adding these equations while using the antisymmetries (6.9) a (6.11) (thanks to which
most of the terms cancel out in pairs), we obtain 2pRµκλν ´Rλνµκq “ 0, i.e. the symmetry
(6.12).

It may also be noticed that thanks to the last property and to the two anti-symmetries,
one may reverse the index order, Rµνκλ“Rλκνµ.

Now independent components of Rµνκλ can be summed up. The antisymmetry in the
first as well as in the second pair of indices implies that each of these pairs can only as-
sume 6 independent and non-trivial arrangements, t01u, t02u, t03u, t12u, t13u and t23u,
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which yields 6 ¨6 “ 36 possibilities in total. From this should be subtracted the number of
independent components of the first Bianchi identities (6.10). Since the expression Rµ

tνκλu is
antisymmetric in all the three bottom indices tν, κ, λu, there are just 4 independent non-trivial
possibilities within this group, t012u, t013u, t023u and t123u; multiplied by the 4 possible
values of the upper index, µ “ 0, 1, 2, 3, the Bianchi identities are thus 16. To sum up, Rie-
mann has 36-16=20 independent components. In passing, this number quickly changes with
the dimension of the manifold d – in general, it amounts to 1

12
d2pd2 ´ 1q; hence, it equals 6

for d“3 and just 1 for d“2 (surfaces) – this function is called the Gauss curvature.

6.2.4 Ricci tensor and Ricci scalar

Due to its antisymmetries, the Riemann tensor can only be contracted in one independent
way. Actually, contraction over the 1-2 or 3-4 indices trivially vanishes, and contraction over
the 1-3 indices yields the same result as contraction over the 2-4 indices, or minus contraction
over 1-4 or 2-3. The only non-trivial contraction provides the Ricci tensor

Rκ
νκλ “ gµκRµνκλ “: Rνλ. (6.13)

This tensor is symmetric thanks to the property (6.12) of Riemann,

Rλν “ gµκRµλκν “ gµκRκνµλ “ Rνλ .

Further contraction of the Ricci tensor is possible and non-trivial,

Rλ
λ ” R . (6.14)

This invariant is called the Ricci scalar or scalar curvature / curvature scalar.

6.3 Parallel-transport integrability, and geometric meaning of
the Riemann tensor

One of the classical mathematical problems often important in physics is the problem of
integrability. Whether literarily or figuratively speaking, the question is whether a certain
quantity/feature, known or given at one point and/or instant, can be uniquely determined
“everywhere” by integration of a known/given rule for its spatial and/or time change. The
problem is not whether one knows how to perform the integration (this is assumed to be
the case), but whether the integration does not give different results when performed along
different paths. Concerning the parallel transport, one can be – even without any formal proof
– sure about the following two facts:

• Parallel transport is integrable on flat manifolds (as Euclidean or Minkowskian). Actually,
there it is possible to establish global Cartesian systems (e.g. ordinary px, y, zq, or inertial
systems pct, x, y, zq of special relativity), and in the latter “to transport a vector parallelly”
(i.e. to keep its direction) means to keep its Cartesian components. Hence, given a certain
vector at an arbitrary single point, its parallel “copies” at all other points are uniquely fixed.
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• Parallel transport is not in general integrable on curved manifolds. In order to prove this,
it is sufficient to give one example – and we already have given that of a sphere –, but, due
to the necessity to keep, during the transport, the vector tangent to the manifold, the lack
of integrability is intuitively clear for any curved surface (we are saying surface, because
geometrical intuition is difficult for higher-dimensional manifolds).

Hence, the integrability/non-integrability of the parallel transport should be equivalent to the
flatness/curvature of the manifold. Should the Riemann represent, exhaustively, the curvature,
it would have to exclusively decide about the generic integrability of parallel transport on any
manifold.

6.3.1 Integrability conditions for a generic differential form

Differential equations typically determine quantities in such a manner that they say how these
quantities change in time and/or space. Consider some generic multicomponent quantity (e.g.
a tensor) T ...... and assume its change to be given by a differential form

δT ...... “ f ......αdx
α , (6.15)

where the “coefficients” f ......α depend on xµ. Specifically, it is a linear differential form (a 1-
form) in exact differentials dxα of independent variables xα. The change of T ...... we denoted
by δ in order to indicate that it may not be an exact differential. Actually, just this is the clue
to an answer: the formula (the differential form) is integrable if and only if it is exact (exact
differential of some quantity).5 Let us derive what this implies for the f ......α coefficients.

Knowing the value of T ...... at some point/event (A), one can obtain its value elsewhere
by the line integral

T ......pBq “ T ......pAq `

B
ż

A

f ......αdx
α . (6.16)

In general, the points A and B are connected by more than one curves (probably even by
infinitely many of them). Should the value at B be unique, the integration along any such
curve has to yield the same result; in particular, if one integrates – along any curve again –
back to the initial point, the initial value T ......pAq would have to be recovered, which means
that the integral would have to vanish along any closed curve. The integrability conditions
for f ......α are found by using the Stokes theorem and translating the integration along a closed
curve (γ) to an integral over the surface (S) enclosed by γ:
¿

γ

f ......αdx
α

“

ż

S

f ......α,βdS
αβ

“

ż

S

f ......α,β pdp1qx
αdp2qx

β
´ dp2qx

αdp1qx
β
q

“

ż

S

pf ......α,β ´ f ......β,αq dp1qx
αdp2qx

β . (6.17)

5 The word holonomic is often used as the synonym of integrable, the former being from Greek and the latter
from Latin, both meaning “makeable whole”, “completeable”.
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Above, dp1qx
α and dp2qx

β stand for the representation in independent variables (typically
coordinates) of some independent elements tangent to S; their “vector product” provides the
surface element dSαβ . The integral has to vanish for any closed curve, hence irrespectively
of the surface S, which is possible if and only if

f ......α,β “ f ......β,α . (6.18)

Linear forms in total differentials dxµ of independent variables xµ (that need not nec-
essarily be coordinates) are known as Pfaffian forms.6 The Pfaff form δT ...... may not be a total
differential; yet even if it is not, there may exist such a non-zero function µ that the form
µδT ...... already is a total differential. The function µ is then called the integrating factor of
the form; the Pfaff forms are usually mentioned in connection with the problem of seeking
the integrating factor – as e.g. in thermodynamics when seeking the total differential of en-
tropy from the heat element, and, in general, when distinguishing between state and process
variables.

Perhaps the most well known case of integrability conditions arises in mechanics, from
the requirement of conservativeness of a force field: in order that the work of a force f⃗ vanish
along any closed path,

ű

f⃗ ¨ dr⃗ “ 0, it must hold rotf⃗ “ 0⃗, in components fj,k “ fk,j . Or, the
integrability conditions assume a self-evident form in the case of the differential formula for
a coordinate transformation, dx1µ “ fµνdx

ν : in that case, fµν “ Bx1µ

Bxν
and the requirement is

that any point correspond to unique values of the new coordinates. The conditions (6.18) say
that it holds if and only if the second partial derivatives commute, B2x1µ

BxρBxν
“ B2x1µ

BxνBxρ
.

6.3.2 Integrability conditions for parallel transport

Rewriting the parallel-transport equation (2.2) in a “growth” form

dV µ
“ ´ΓµκλV

λdxκ (6.19)

and analogizing this to the general equation (6.15), we see that fµκ “ ´ΓµκλV
λ in this case,

so the integrability conditions (6.18) read

pΓµκλV
λ
q,ν “ pΓµνλV

λ
q,κ . (6.20)

By differentiation and substitution of

V λ
,ν “ ´ΓλνιV

ι, V λ
,κ “ ´ΓλκιV

ι

from the parallel-transport equation,7 we obtain, after a suitable renaming of the summation
index (so that V ι factor out of all terms properly),

Rµ
ινκV

ι
“ 0 . (6.21)

Therefore, the parallel transport is integrable if and only if Rµ
ινλ “ 0.

6 To the surname of J. F. Pfaff, “f” contributed by 60%. Still it is less than how much “dark energy” contributes
to the cosmic energy density. (Ð Unsolicited advert for cosmology.)

7 This relation exactly says that V λ;ν “ 0, which is the requirement that V λ be parallel along any curve.
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A B1

B2

C

d(1)x
µ(A)

d(2)x
µ(A)

d(1)x
µ(B2)

d(2)x
µ(B1)

V
µ (A)

V
µ (A→B1)

V
µ (A→

B2)

V
µ (A→B1→C)

V
µ (A→

B2→C
)

Figure 6.2 Illustration of the non-integrability of parallel transport on an infinitesimal parallel-

ogram. A vector (V µ) is transported along two opposite parallelogram branches, and the results

obtained at C (blue and red) are compared.

Let us add a detailed computation of a specific exercise – the parallel transport of some
vector V µ from an arbitrarily chosen point A to some very nearby point C along two opposite
branches (AÑB1ÑC, AÑB2ÑC) of a parallelogram composed of infinitesimal shifts dp1qx

µ

and dp2qx
µ. One may, for example, use geodesic segments as the shifts, but it is not necessary.

In any case, it is assumed that the differences between dp1qx
µpAq and dp1qx

µpB2q, and between
dp2qx

µpAq and dp2qx
µpB1q, are of the order Opd2q.

• The transport AÑB1, i.e. along dp1qx
µpAq:8

V µ
pAÑB1q “ V µ

pAq ´ pΓµαβV
αdp1qx

β
qpAq.

• The subsequent transport B1ÑC, i.e. along dp2qx
µpB1q:

V µ
pAÑB1 ÑCq “ V µ

pAÑB1q ´ pΓµαβV
αdp2qx

β
qpB1q “

“ V µ
pAq ´ pΓµαβV

αdp1qx
β
qpAq ´ pΓµαβV

αdp2qx
β
qpB1q .

• The second Gamma-term we express in terms of the values at A, while restricting to quan-
tities of the order Opd2q at most. Expanding, in a Maclaurin manner from A,

ΓµαβpB1q “ ΓµαβpAq ` pΓµαβ,γdp1qx
γ
qpAq ` Opd2

q,

pdp2qx
µ
qpB1q “ pdp2qx

µ
qpAq ` Opd2

q ,

8 We will write the summing indices at Gammas in an opposite order than we did in the parallel-transport
equation, but that does not matter of course (we assume the affine connection is symmetric).
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and substituting for

V α
pB1q ” V α

pAÑB1q “ V α
pAq ´ pΓαρσV

ρdp1qx
σ
qpAq

from above, we have

V µ
pAÑB1 ÑCq “ V µ

´ ΓµαβV
αdp1qx

β
´ ΓµαβV

α
pdp2qx

β
qpB1q `

` ΓµαβΓ
α
ρσV

ρdp1qx
σdp2qx

β
´ Γµαβ,σV

αdp1qx
σdp2qx

β ,

where everything is evaluated at A, except the dp2qx
βpB1q element in the “linear” term.

• The transport along the other branch AÑB2ÑC proceeds in exactly the same way, just
with dp1qx

µ Ø dp2qx
µ and B1 Ø B2 switched, hence

V µ
pAÑB2 ÑCq “ V µ

´ ΓµαβV
αdp2qx

β
´ ΓµαβV

α
pdp1qx

β
qpB2q `

` ΓµαβΓ
α
ρσV

ρdp2qx
σdp1qx

β
´ Γµαβ,σV

αdp2qx
σdp1qx

β .

• Renaming the summation indices carefully where necessary, the difference between the
vectors obtained by transport along the opposite paths (called the defect of the vector)
comes out

δV µ
” V µ

pAÑB2 ÑCq ´ V µ
pAÑB1 ÑCq “

“ ΓµαβV
α
“

pdp1qx
β
qpAq ` pdp2qx

β
qpB1q ´ pdp2qx

β
qpAq ´ pdp1qx

β
qpB2q

‰

`

` pΓµαβ,σ ´ Γµασ,β ` ΓµισΓ
ι
αβ ´ ΓµιβΓ

ι
ασqV αdp1qx

σdp2qx
β .

However, the paths arrive at the same point (C) by assumption,

pdp1qx
β
qpAq ` pdp2qx

β
qpB1q “ pdp2qx

β
qpAq ` pdp1qx

β
qpB2q ,

so the parenthesis in the first term exactly vanishes, and the result reads

δV µ
“ Rµ

ασβV
αdp1qx

σdp2qx
β . (6.22)

Hence, the exercise does not depend on the path if and only if the Riemann tensor is zero.
(A remark: if transporting along a finite curve of generic shape, one may consider dividing
it into infinitesimal parallelograms. An integral form of the result is derived, for example, in
[24], Chapter 6,1.)

6.3.3 Flat space-time

Intuitively, some features are “seen” clearly, but it may not be that easy to prove them for-
mally. Since we have already many times referred to “flat space-time”, it is worth to make
more precise which major properties it has. Sure, flatness means that there exists such a co-
ordinate system in which the metric has everywhere the Minkowski form, gµν “ ηµν . There
are three other, equivalent statements:
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• The parallel transport is integrable, i.e. independent of path. In particular, for any two given
points and any vector, it does not matter along which connecting curve one transports it,
the result is unique. This is also equivalent to saying that any vector does not change in
transport along any closed curve.

• There exists, globally, a covariantly constant vector field, i.e. a vector field which is parallel
along any curve.

• The Riemann tensor vanishes. (Note that this is an absolute statement, not a coordinate-
dependent one, because it is a statement about tensor.)

It is obvious that the above three properties hold if gµν “ηµν globally, but more difficult is to
prove the converse. We have kind-of shown that the three properties are equivalent, so one
can start from any of them. If the parallel transport is integrable, it is possible to uniquely
distribute over the space-time, from any point, an orthonormal tetrad teµα̂u

3
α̂“0, i.e. such a

tetrad of vectors which will – thanks to the fact that parallel transport keeps constant the
scalar product – everywhere satisfy the relations

gµνe
µ
α̂e

ν
β̂

“ ηαβ . (6.23)

Independently of the original coordinates used, we can now everywhere change to new ones
by the transformation

dx1α̂
“ eα̂νdx

ν .

This is a reasonable transformation since – thanks to the parallel property of the vector fields
eµα̂ along any curve (will write it down with the index positions switched:)

eα̂µ;ρ
dxρ

dp
“ 0, eα̂ρ;µ

dxµ

dp
“ 0,

from where it follows, by combination,

eα̂µ,ρ “ Γιρµe
α̂
ι “ Γιµρe

α̂
ι “ eα̂ρ,µ ,

i.e. the integrability condition

B2x1α̂

BxρBxµ
“

B2x1α̂

BxµBxρ
.

However, according to (6.23), the metric tensor is Minkowskian in these new coordinates.

6.4 Deviation of geodesics, and physical meaning of the Rie-
mann tensor

In Newtonian limit of the geodesic equation, we found the correspondence between the metric
and the Newtonian gravitational potential. From that it follows that the Christoffel symbols,
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given by first partial derivatives of the metric, play the role of “gravitational intensity” (as
they do not represent a tensor, no surprise that they can be locally made vanish in freely
falling systems). The Riemann tensor (6.8) is given by the metric second derivatives (linearly)
and the 1st derivatives (quadratically), with the latter actually being redundant since they
locally vanish in the LIFE. Consequently, speaking in the Newtonian language, the Riemann
tensor should represent non-homogeneity of the gravitational field (gradient of its intensity).
In order to verify whether it represents the latter exclusively (completely), let us analyse
a thought experiment with two close freely falling particles, i.e. acted upon solely by the
given gravitational field. Were the field homogeneous, both particles would feel the same
acceleration, so they would not get accelerated relative to each other; were the field different
along the world-lines of the particles, it would induce some relative acceleration between
them.

The exercise is standardly being presented on the whole one-parameter class of (time-
like) geodesics xµplq“xµpl; τq, where l is a real parameter which, symbolically, “labels” (and
thus identifies) the geodesics, while τ is the time parameter having the meaning of proper time
along one of the geodesics (this will soon be selected as the reference one). An important
assumption is that the mapping pl, τqÑxµpl; τq be a diffeomorphism, so it should be one-to-
one and smooth together with its inverse; in such a case, each point of the pondered region
is passed through by exactly one geodesic, and the generated bunch of curves is called the
congruence of geodesics. (In order to cross all points of some 3D region, it would actually
be necessary to use three parameters instead of just l. We in fact consider a one-parameter
sub-congruence of the whole “bulk” congruence, within which the world-lines are labelled
by l.)

Select now the geodesic along which τ is the proper time as the reference one; with
respect to it some other nearby geodesic will be tracked. Physically, it means sitting on one of
the freely falling particles and tracking the free fall of some other nearby one. Denote by uµ :“
dxµ

dτ
the four-velocity along the reference geodesic, and by δxµ :“ dxµ

dl
the connecting vector

between the geodesics (relative position of the tracked particle with respect to the reference
one). Two basic properties follow immediately from the assumption of diffeomorphism:

• Total derivatives of the mapping by τ and by l commute,

duµ

dl
”

d

dl

dxµ

dτ
“

d

dτ

dxµ

dl
”

dδxµ

dτ
.

Since both uµ and δxµ are actually given as a field, one may remark that the statement
can also be expressed more geometrically as vanishing of the Lie derivative of one of the
vectors with respect to the other – in other words, as vanishing of their commutator (Lie
bracket),

0 “ p£uδxq
µ

” ru, δxs
µ

” δxµ,νu
ν

´ uµ,νδx
ν

“
dδxµ

dτ
´

duµ

dl

(see Section 11 for the Lie-derivative account). Anyway, due to the symmetry of the affine
connection, the commutation property is even inherited by absolute derivatives,

Dδxµ

dτ
“

dδxµ

dτ
` Γµκλu

κδxλ “
duµ

dl
` Γµκλδx

κuλ “
Duµ

dl
.
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• When performing an actual measurement, the position of an object is by definition reg-
istered at given τ (relative position at given τ means that the values at both ends of the
measuring ruler are recorded at the same instant of τ ), so δxµ is by construction orthogonal
to uµ. Such a statement really has a good sense, because it turns out that the orthogonality
automatically stays valid during the motion,

d

dτ
pgµνu

µδxνq “
D

dτ
pgµνu

µδxνq “ gµνu
µ Dδx

ν

dτ
“ gµνu

µ Du
ν

dl
“

“
1

2

D

dl
pgµνu

µuνq “
1

2

d

dl
p´1q “ 0 . (6.24)

Only the covariant constancy of the metric, geodesic property Duµ

dτ
“ 0 of the congruence,

the above equality Dδxµ

dτ
“ Duµ

dl
and the four-velocity normalisation have been employed.

Now, finally, we will compute the relative acceleration between two neighbouring particles,
i.e. the behaviour of the quantity D2δxµ

dτ2
along the congruence. Will proceed similarly as

above, mainly using the equality Dδxν

dτ
“ Duν

dl
, the formula (6.3) for expressing the covariant-

derivative commutator in terms of the Riemann tensor – specifically in the form

uµ;αβ “ uµ;βα ` Rσµ
αβuσ “ uµ;βα ´ Rµ

σαβu
σ ,

and, finally, the fact that the congruence is geodesic, so its four-acceleration uµ;βuβ vanishes:

D2δxµ

dτ 2
“

D

dτ

ˆ

Dδxµ

dτ

˙

“
D

dτ

ˆ

Duµ

dl

˙

“
D

dτ
puµ;αδx

α
q “ uµ;αβu

βδxα ` uµ;α
Dδxα

dτ
“

“ uµ;βαu
βδxα ´ Rµ

σαβu
σδxαuβ ` uµ;α

Duα

dl
“

D

dl
p����HHHHuµ;βu

β
q ´ Rµ

σαβu
σδxαuβ ,

therefore,

D2δxµ

dτ 2
“ ´Rµ

σαβu
σδxαuβ . (6.25)

This equation is called the equation of geodesic deviation. It confirms that the Riemann
tensor really characterises the non-homogeneity of the gravitational field, and thus “tidal
forces” which act within the field due to its non-homogeneity (tidal forces we write in quo-
tation marks, because one should bear in mind that here they also include “tides” in the time
direction). Note that the Newtonian equation for the same problem reads

d2δxi

dt2
“ ´Φ,i

jδx
j , (6.26)

so the Riemann tensor is seen to be the counterpart of the Newtonian tidal tensor Φ,i
j .

The geodesic-deviation equation is in fact one of the most important equations on the
way to the new, geometric theory of gravitation: according to it, the relative acceleration of
particles not affected by any differential influences is not due to gravitational forces, but due
to the curvature of space-time in which the particles move.
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6.4.1 Geodesic-deviation equation in local inertial frame

In order to come closer to “practice”, let us express the geodesic-deviation equation in terms
of directly measurable components. Actually, the measurement would in reality be naturally
made with respect to the LIFE tied to the reference particle (remember that the latter is freely
falling). In the LIFE (components indicated by a hat), gµ̂ν̂ “ ηµν and the reference particle
stays at rest with respect to it, uµ̂ “ p1, 0, 0, 0q, whereas the second-particle position is purely
spatial, δxµ̂ “ p0, δxı̂q. Finally, the tetrad components of tensors (here projections of tensors
to the LIFE) are invariant with respect to the change of global coordinates, so the absolute
derivative acts on them as the total one. Therefore, the equation reads

d2δxı̂

dτ 2
“ ´Rı̂

0̂ȷ̂0̂δx
ȷ̂ . (6.27)

Several observations:

• The correspondence with the Newtonian tidal equation (6.26), hence the one betweenRı̂
0̂ȷ̂0̂

and Φ,i
j , is very clear now.

• This equation can be used to deduce, from actual measurement of the behaviour of δxı̂,
(some of) the Riemann-tensor components.

• The equation can be viewed as a precise answer to the query naturally arising in discus-
sion of the equivalence principle, namely how big an error one makes, due to the non-
homogeneity of the field (due to the gradient of intensity which is even non-zero at a
single point), if not restricting to an infinitesimal LIFE: the deviation solely depends on
curvature, and grows linearly with δxȷ̂.

The linear dependence on δxȷ̂ implies that at one single point the effect of non-homogeneity
still vanishes. This is also true more generally, provided that the motion is purely transla-
tional. On the other hand, rotational degrees of freedom usually couple to non-homogeneity
and give rise to terms which – with the non-zero Riemann tensor – need not even vanish in
the point limit. A simple example of such a behaviour are the Mathisson-Papapetrou-Dixon
equations which describe the motion of a free “pole-dipole” particle, i.e. of a point-like body
which is endowed, besides the mass, by a proper rotational angular momentum (spin). The
equations read

Dpµ

dτ
“ ´

1

2
Rµ

νρσu
νSρσ , (6.28)

DSµν

dτ
“ pµuν ´ pνuµ , (6.29)

where pµ “muµ´uσ
DSµσ

dτ
is the total momentum of the particle, uµ is the tangent vector to

a certain world-line representing the particle, m“´pσu
σ is the particle’s mass in the system

with four-velocity uµ and Sµν is the bivector of spin. The “spin-curvature coupling” term
on the right-hand side of (6.28) does not even vanish at a single point. Well, one should add
that this feature is a consequence of the approximation: physically, one point cannot rotate
to generate non-zero spin – a body with spin must have a certain minimal size of the order
of spin{mass (otherwise rotation with superluminal speeds would be necessary), so it is
understandable that the tidal forces do affect it.
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6.5 Bianchi identities
As a consequence of the Ricci (and the first Bianchi) identities, the Riemann tensor satisfies
important relations called second Bianchi identities. Before long, we will need them in
searching for the Einstein field equations.

Lemma The Riemann tensor satisfies the second Bianci identities

Rµ
νtκλ;ρu “ 0 . (6.30)

Proof:

• Let us apply the Ricci identities for a second-rank tensor (6.6), i.e.

Wµν;κλ ´ Wµν;λκ “ Rσ
µκλWσν ` Rσ

νκλWµσ ,

to the tensor Wµν ” Vν;µ , where Vν is some covector:

Vν;µκλ ´ Vν;µλκ “ Rσ
µκλVν;σ ` Rσ

νκλVσ;µ . (6.31)

• On the other hand, take the Ricci identities for a covector Vν , i.e.

Vν;κλ ´ Vν;λκ “ Rσ
νκλVσ ,

and differentiate them covariantly by xµ,

Vν;κλµ ´ Vν;λκµ “ Rσ
νκλ;µVσ ` Rσ

νκλVσ;µ . (6.32)

Subtracting the two obtained equations, the last terms cancel out right away. Make a cyclic
permutation in the indices pµ, κ, λq of what remains: on the left-hand side, the terms sitting
“above each other” cancel out easily, and on the right-hand side, the Riemann-tensor term
from the upper equation drops out thanks to the first Bianchi identitiesRσ

tµκλu “0. Therefore,
one arrives at

0 “ Rσ
νtκλ;µuVσ .

This, however, are the second Bianchi identities, because the covector Vσ is arbitrary. l

How many independent relations the second Bianchi identities represent? First, due to
the antisymmetry of Riemann in the second pair of indices, the cyclic permutation in rκλ;µs

results in an expression totally anti-symmetric in all the three indices (similarly as Ftκλ;µu in
the second set of Maxwell equations). Hence 4 independent configurations of these indices.
In the first two indices of Riemann, there are 6 possibilities, due to antisymmetry again.
This means 4¨6 = 24. However, the remaining independent symmetry of Riemann (not used
yet), the first Bianchi identities Rσ

tνκλu “ 0, make some of the second Bianchi identities
dependent. In order to see this, consider once more that the cyclic permutation in both the
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Bianchi identities is equivalent to total anti-symmetrization in the enclosed indices (thanks to
the anti-symmetry of Riemann in the second pair of indices),

0 “ Rσ
νtκλ;µu ” 3Rσ

νrκλ;µs , 0 “ Rσ
tνκλu ” 3Rσ

rνκλs .

Because of this, the second Bianchi identities satisfy, automatically, the relation

Rσ
rνκλ;µs ” Rσ

rνrκλ;µss “ 0 ,

which, however, already follows from the first Bianchi identities,

Rσ
rνκλ;µs ” Rσ

rrνκλs;µs “ 0 .

Hence, the number of these relations has to be subtracted (from 24). Since the expression
Rσ

rνκλ;µs is totally anti-symmetric in the bottom four indices, it is only non-trivial if all are
different, and since, in addition, the expression yields zero, there is only one independent way
how to arrange the indices, e.g. [012;3]. Multiplied by 4 options for the upper index σ, we
arrive at 4. Hence, the second Bianchi identities represent 24´4 = 20 independent relations.

Bianchi identities, in combination with the symmetries of Riemann, have a number of
consequences. Let us show one at least:

Observation Rνλ “ Λgνλ pΛ “ constantq ùñ Rσ
νλµ;σ “ 0.

Proof: Let’s write the second Bianchi identities (6.30) in the form Rσν
tκλ;µu “ 0, that is,

Rσν
κλ;µ ` Rσν

µκ;λ ` Rσν
λµ;κ “ 0 .

By contraction in σ
κ one obtains

Rν
λ;µ ´ Rν

µ;λ ` Rσν
λµ;σ “ 0 , i.e. Rσν

λµ;σ “ 2Rν
rµ;λs . (6.33)

Hence the assertion of the Observation. l

Consequence: contracting the above result once more – in ν
λ – we get

R;µ ´ Rν
µ;ν ´ Rσ

µ;σ “ 0 , i.e. R;µ “ 2Rν
µ;ν . (6.34)

This will be crucial in the field equations.
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Figure 6.3 By a careful analysis of Riemann’s memoir from 1861 (on propagation of heat in solid
bodies [sic!]), historians deciphered that he very probably knew of “the second Bianchi identities”.

(They were rediscovered by Ricci in 1889 and finally – by Bianchi – in 1902.) See O. Darrigol:

The mystery of Riemann’s curvature, Historia Mathematica 42 (2015) 47.



CHAPTER 7

Energy-momentum tensor

And now for something completely different: a tensor describing energy (which nobody
knows what it is) as a source of gravitation (which nobody knows what it is).

In Newton’s theory, gravity is generated by mass density, ∆Φ “ 4πGρ. From special rela-
tivity we know that relative mass depends on relative speed, and that it is universally linked
to energy, E “ mc2. The energy is the total energy – it includes, besides the kinetic part,
also possible contributions from interactions, whether they apply to the body as a whole or
to its constituents of any scale (see the story accompanying the equivalence principle). When
seeking the description of sources for a new gravitational law, we thus need a quantity which
would describe, covariantly and for any system including matter and/or non-gravitational
fields, the mass-energy density. This is clearly not that straightforward, because the mass-
energy itself is not invariant: it is contained in the four-momentum of the system, which
already in special relativity transforms in such a way that the mass-energy (time component)
mixes with momentum (spatial components). In addition, the above is still not the full story:
besides fundamental interactions, the elements of the body are also subject to low-energy,
effective, “mechanical” interaction, which is being quantified by the pressure/stress variable.

Regarding all the above, the quantity we are looking for has to include, besides the en-
ergy density, the momentum density (the energy-density flux) and the momentum-density flux
(stresses). For any physical observer, one has to be able to compute from it the energy den-
sity locally measured by him/her. Such requirements are satisfied by the energy-momentum
tensor, Tµν . (A thorough discussion of Tµν can e.g. be found in chapter 5 of [29].)

We will first make generally covariant the treatment of the Tµν of a charged dust cou-
pled to (its) electromagnetic field, known from special relativity. Then we will generalise
the incoherent-dust Tµν to the case of an ideal fluid which is being employed as the first
approximation for interiors of astrophysical bodies and for the “cosmic fluid” in cosmology.

Let us stress there is no abstract “proof” that Tµν is the right description of gravitational
sources. We will see later that it can be derived “canonically” from Lagrangian, but this means
that the problem of the description of source is just shifted to the problem of the knowledge of
Lagrangian. Similarly, in electrodynamics it is also not a priori clear that the current density

83
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Jα is the right description of sources. Like elsewhere in physics, this can only be tested a
posteriori, by i) specifying how the letters which appear in the equations should be measured,
and by ii) actually measuring them in a significant number of situations.

7.1 Physical interpretation of the energy-momentum tensor
In special relativity, the physical content of Tµν is revealed by its components in some (ar-
bitrary) inertial system. In general relativity, coordinates do not have a direct geometrical –
and thus physical – meaning, so one should take the components with respect to some really
physical bases. For such a purpose serves the so-called tetrad formalism: one considers a
suitable family of physical observers, i.e. a congruence of time-like world-lines (with a cer-
tain tangent four-velocity field ûµ), along which it is carried (= transported) a suitable field
of orthonormal spatial bases teµı̂ u 3

ı̂“1. If denoting eµ
0̂
:“uµ, this is summarised by

gµνe
µ
α̂e

ν
β̂

“ ηαβ , ηαβeµα̂e
ν
β̂

“ gµν . (7.1)

The space-time indices are manipulated by gµν , while the indices which number the tetrad
vectors = “tetrad indices” (those with the hat) are manipulated by ηαβ .

If considering some material body or continuum which itself can be characterised by
a certain four-velocity or four-velocity field (will be denoted by uµ), it is reasonable, for
interpretation purposes, to also introduce the relative velocity of that source with respect to
the local observer, v̂µ. This is defined by decomposition

uµ “ γ̂pûµ ` v̂µq , (7.2)

where v̂µ lies in the instantaneous three-space of the observer (ûµv̂µ “ 0). Multiplying the
decomposition by ûµ and by uµ , we thus obtain for the relative Lorentz factor, respectively,

ûµu
µ

“ ´γ̂ and ´ 1 “ γ̂ p´γ̂ ` γ̂v̂µv̂
µ
q ,

so, in a summary,

γ̂ “ ´ûµu
µ

“
1

a

1 ´ v̂µv̂µ
. (7.3)

Also, multiplying the decomposition by eı̂µ, one has the spatial-triad components of uµ,

uı̂ ” eı̂µu
µ

“ γ̂v̂ ı̂ ,

and by projection of the decomposition into the observer’s three-space, one has

pgαµ ` ûαûµquµ “ uα ´ γ̂ûα “ γ̂v̂α .

Needless to say, if the interpretation congruence ûµ locally follows the motion of the
studied body, uµ“ ûµ, then v̂µ“0 and γ̂“1.
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7.2 Charged incoherent dust
Consider an electrically charged continuum without the internal mechanical interaction (with-
out pressure), i.e. such whose “particles” only interact with each other gravitationally and
electromagnetically – a charged incoherent dust. Each of the particles thus moves according
to the equation

Dpµ

dτ
“ m

Duµ

dτ
“ qF µ

νu
ν

“: F µ
L ,

where m and q are the rest mass and charge of the particle.1 For a continuous environment,
one takes a proper density of the equation (considering of course that the four-acceleration is
not an extensive quantity),2

ρ
Duµ

dτ
“ Φµ

L , where ρ :“
dm

dV
, Φµ

L :“
DF µ

L

dV
, V “ proper volume . (7.4)

On the left-hand side, we can write

ρ
Duµ

dτ
“ ρuµ;νu

ν
“ pρ uµuνq;ν ´ uµpρ uνq;ν “ pρ uµuνq;ν ,

where the second term has dropped out due to the conservation of rest mass, expressed by the
continuity equation

pρ uνq;ν “ 0

(counterpart of the continuity equation from electrodynamics, there holding for the electric-
current density). Hence, introducing the energy-momentum tensor

T µνdust :“ ρ uµuν , (7.5)

we may write the equation of motion in the form

pT µνdustq;ν “ Φµ
L . (7.6)

1 Recall that the Lorentz force leaves the rest mass constant, because it is orthogonal to four-velocity,

0 “ qFµνuνuµ “ FµL uµ “
Dpµ

dτ
uµ “

Dpmuµq

dτ
uµ “

dm

dτ
uµuµ `m

�
�

��Z
Z

ZZ

Duµ

dτ
uµ “ ´

dm

dτ

due to the totally general property

uµuµ “ ´1 ùñ
D

dτ
puµuµq “ 2

Duµ

dτ
uµ ” 2 aµuµ “ 0 .

2 The proper density of force is denoted by Φ, unfortunately - hope there will be no confusion with the
Newton’s potential.
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7.2.1 Physical meaning of the dusty T-mu-nu

In order to reveal the physical content of the Tµν we have just introduced, let us project the
tensor onto some observer tetrad we described in Section (7.1). Denoting again by hats the
components locally measured by the observer, we arrive at

T 0̂0̂
dust ” T µνdustûµûν “ ρ uµuν ûµûν “ ρ γ̂2 , (7.7)

T 0̂ȷ̂
dust ” ´T µνdustûµe

ȷ̂
ν “ ´ρ uµuν ûµe

ȷ̂
ν “ ρ γ̂2v̂ȷ̂ , (7.8)

T ı̂ȷ̂dust ” T µνduste
ı̂
µe
ȷ̂
ν “ ρ uµuνeı̂µe

ȷ̂
ν “ ρ γ̂2v̂ ı̂v̂ȷ̂ , (7.9)

which are, respectively,3

• (0̂0̂) ... mass-energy density (one γ̂ is for non-rest mass, the other is for non-proper volume
in the measured density)

• (0̂ȷ̂) ... energy-density flux, or momentum density

• (̂ıȷ̂) ... momentum-density flux, specifically, the flux of the pı̂ component of momentum
in the eȷ̂ direction (in other words, these are the observer-measured components of pres-
sure/stress, because momentum flux = momentum over time = force, and the density of
force corresponds to pressure).

Naturally, all the above quantities (mass-energy, momentum, densities and fluxes) are relative
in the sense that they depend on the observer. In the rest frame of the dust, in particular, v̂µ“0
and γ̂“1, so the energy-momentum tensor reduces just to T 0̂0̂

dust “ρ.

7.3 Electromagnetic field
On the right-hand side of the equation pT µνdustq;ν “ Φµ

L stands the external force (its density),
which indicates that the system under consideration is not closed – it does not only interact
with itself (the agent of the external force is not included). Sure, in

Φµ
L ”

dF µ
L

dV
“

d

dV
pqF µνuνq “

dq

dV
F µνuν “ F µνJν

(with Jµ the electric-current density) appears the electromagnetic field F µν , about which
nothing has been said, though it certainly bears some energy and momentum as well. Phys-
ically the point is clear: the charged dust necessarily generates an EM field, but this has not
yet been included in the description. In order to obtain a self-consistent, closed system, one
has to add an EM field – or, more precisely, exactly the EM field generated by the dust and,
at the same time, producing such a Lorentz force which drives the dust in just the “correct”
motion.

3 In T 0̂ȷ̂
dust, the minus sign is indeed correct, namely, e0̂µ “ η0β

`

eβ̂
˘

µ
“ η00

`

e0̂
˘

µ
” η00ûµ “ ´ûµ.

Actually, in order to extract the time component of some quantity with respect to an observer ûµ, it is necessary
to project it on p´ûµq – see e.g. the relative energy of some particle Ê ” p0̂ “ pµe0̂µ “ ´pµûµ.
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In this part, we will proceed in an opposite way – for the EM field, we will bring from
heaven a certain T µν , about which we will show that it has the same physical meaning as that
found for the dust, and that it also satisfies similar conservation laws. The tensor reads

T µνEM “
1

4π

ˆ

F µσF ν
σ ´

1

4
gµνF ρσFρσ

˙

“
1

8π
pF µσF ν

σ `
˚F µσ˚F ν

σq , (7.10)

the second form including the electromagnetic-bivector dual

˚F µν :“
1

2
ϵµνρσFρσ ,

where ϵµνρσ is the Levi-Civita tensor as introduced in Appendix A.
Notice an important feature of the above tensor: it is traceless,

TEM :“ gµνT
µν
EM “

1

4π

ˆ

F µσFµσ ´
1

4
δµµF

ρσFρσ

˙

“ 0 .

7.3.1 Physical meaning of the EM-field T-mu-nu

The physical meaning of the tensors F µν and T µνEM again follow by computing their time and
spatial components with respect to an orthonormal tetrad tied to some physical observer ûµ.
First, the electric and magnetic fields with respect to that observer are given, covariantly, by

Êµ :“ Fµν û
ν , B̂µ :“ ´

˚Fµν û
ν , (7.11)

which corresponds to the reciprocal relations

Fµν “ ûµÊν ´ Êµûν ` ϵµνρσû
ρB̂σ , ˚Fµν “ B̂µûν ´ ûµB̂ν ` ϵµνρσû

ρÊσ . (7.12)

Let us use the above in the first form of (7.10), remembering that Êσûσ“0 and B̂σû
σ“

0 by definition:

F µσF ν
σ “

´

ûµÊσ
´ Êµûσ ` ϵµσαβûαB̂β

¯´

ûνÊσ ´ Êν ûσ ` ϵνσκλû
κB̂λ

¯

“

“ ûµûνÊ2
´ ÊµÊν

` ûµϵνσκλÊ
σûκB̂λ

` ûνϵµσαβÊσûαB̂β ` ϵµσαβϵνσκλûαB̂βû
κB̂λ

“

“ ûµûνÊ2
´ ÊµÊν

` ûµ
`

E⃗ˆB⃗
˘ν

` ûν
`

E⃗ˆB⃗
˘µ

` gµνB̂2
` ûµûνB̂2

´ B̂µB̂ν , (7.13)

where we used a three-vector notation
`

E⃗ˆB⃗
˘µ

:“ ϵµσαβÊσûαB̂β

for the vector product in the observer’s three-space, and where we employed the product
formula (A.5),

ϵµσαβϵνσκλûαB̂βû
κB̂λ

“

“
`

´gµνδακδ
β
λ ´ gβνδµκδ

α
λ ´ gανδβκδ

µ
λ ` gµνδβκδ

α
λ ` gανδµκδ

β
λ ` gβνδακδ

µ
λ

˘

ûαB̂βû
κB̂λ

“
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“ gµνB̂2
` ûµûνB̂2

´ B̂µB̂ν .

By contraction of (7.13), one easily finds the invariant

F ρσFρσ “ 2B̂2
´ 2Ê2 , (7.14)

so in total the T µνEM comes out as

T µνEM “ ´
1

4π

`

ÊµÊν
` B̂µB̂ν

˘

` ûµŜν ` Ŝµûν ` pgµν ` 2ûµûνq ŵ , (7.15)

where

Ŝµ :“
1

4π

`

E⃗ ˆB⃗
˘µ

is the Poynting vector , (7.16)

ŵ :“
1

8π
pÊ2

` B̂2
q is the EM energy density . (7.17)

Performing now with T µνEM the same projections as we did with T µνdust in Section (7.2.1),
we have

• T 0̂0̂
EM is the energy density of the EM field in the observer’s system,

T 0̂0̂
EM “ T µνEMûµûν “ ŵ . (7.18)

For those more used to the SI units, let us add that in these (µ is the permeability of a
vacuum)

T µνEM “
1

2µ
pF µσF ν

σ `
˚F µσ˚F ν

σq ,

hence

T 0̂0̂
EM “

1

2µ

˜

Ê2

c2
` B̂2

¸

“
1

2
pÊσD̂σ ` ĤσB̂σq “ ŵ .

• In the cross components, only the first of the Poynting terms survives,

T 0̂ȷ̂
EM “ ´T µνEMûµe

ȷ̂
ν “ Ŝνeȷ̂ν “ Ŝ ȷ̂ . (7.19)

This represents the EM-field energy-density flux in the observer’s system.

• The spatial part of T µνEM is also found easily from (7.15),

T ı̂ȷ̂EM “ T µνEMe
ı̂
µe
ȷ̂
ν “ ´

1

4π

´

Ê ı̂Ê ȷ̂
` B̂ ı̂B̂ ȷ̂

¯

` δijŵ . (7.20)

This 3D tensor is known as the Maxwell’s stress tensor; it represents the EM momentum-
density flux in the observer’s frame.
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We have thus shown that the locally measured components of T µνEM are, by physical content,
exact counter-parts of the components of T µνdust.

Before continuing, let us also add, to the above F ¨F matrix (7.13) and its trace (the FF
invariant), also a similar computation for the ˚F ¨F matrix and the ˚FF invariant. Finding,
analogously as for ϵµσαβϵνσκλûαB̂βû

κB̂λ, that

ϵµσαβϵνσκλûαÊβû
κB̂λ

“ gµνÊβB̂
β

` ûµûνÊβB̂
β

´ ÊµB̂ν ,

we obtain

˚F µσF ν
σ “

´

B̂µûσ ´ ûµB̂σ
` ϵµσαβûαÊβ

¯´

ûνÊσ ´ Êν ûσ ` ϵνσκλû
κB̂λ

¯

“

“ B̂µÊν
´ ������
ûµûνB̂σÊσ ` gµνÊβB̂

β
` ������
ûµûνÊβB̂

β
´ ÊµB̂ν , (7.21)

hence

˚F ρσFρσ “ 4 E⃗ ¨ B⃗ . (7.22)

7.3.2 Conservation laws for EM field

Let us calculate the divergence of T µνEM now,

4πpT µνEMq;ν “ F µσ
;νF

ν
σ ` F µσF ν

σ;ν ´
1

2
gµνF ρσ

;νFρσ “

“ F µσ;νFνσ ` F µ
σF

νσ
;ν ´

1

2
F ρσ;µFρσ “

“ F µrσ;νsFνσ ´ F µ
σF

σν
;ν ´

1

2
F νσ;µFνσ “

“ ´F µ
σ 4πJ

σ
`

1

2
pF µσ;ν

´ F µν;σ
´ F νσ;µ

qFνσ “

“ ´4πΦµ
L ´ 3F rµν;σsFνσ “ ´4πΦµ

L ; (7.23)

in the last-but-one row we used the first set of Maxwell equations, F σν
;ν “ 4πJσ, and in the

last row we used their second set, F rµν;σs “0. And remember that F tµν;σu ” 3F rµν;σs.
May be useful to write down the above equations explicitly, in order to see that they

really represent conservation laws (for energy and momentum of the EM field). Projecting
the Lorentz-force density on the right-hand side,

Φ0̂
L ” Φµ

Le
0̂
µ “ ´Φµ

Lûµ “ ´F µ
νJ

ν ûµ “ ÊνJ
ν
`

” E⃗ ¨ J⃗
˘

,

Φı̂
L “ Φµ

Le
ı̂
µ “ F µ

νJ
νeı̂µ “ ´ûνÊ

µJνeı̂µ ` ϵµνρσû
ρB̂σJνeı̂µ ” J 0̂Ê ı̂

`
`

J⃗ ˆ B⃗
˘ı̂
,

and substituting for the locally measured components of T µν , we obtain

pT 0̂ν̂
EMq;ν̂ “ ´Φ0̂

L ðñ
Bŵ

Bτ̂
` ∇⃗ ¨ S⃗ “ ´E⃗ ¨ J⃗ , (7.24)

pT ı̂ν̂EMq;ν̂ “ ´Φı̂
L ðñ

BS⃗

Bτ̂
` ∇⃗ ¨ T⃗

⃗

EM “ ´Φ⃗L , (7.25)

where τ̂ is the reference-observer proper time.
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7.3.3 Self-consistent system of charged dust & its EM field

Hitherto, the charged dust and the EM field need not in fact be however coupled to each other,
they may have been just two different physical systems. Consider now that they are coupled
in the tightest possible way (that they are “self-consistent”) – that

• the dust is exactly the source of the EM field (as fixed by Maxwell equations), so it gener-
ates Jν which stands in ´Φµ

L “ ´F µνJν on the right-hand side of (7.23)

• the EM field in turn determines the motion of the dust elements (according to the Lorentz
equation of motion), so it provides F µν for Φµ

L “ F µνJν on the right-hand side of (7.6).

In short, assume the dust generates the field in which it in turn moves. It is clear from the
above two equations that such a complete system can be described by the tensor

T µν :“ T µνdust ` T µνEM

which satisfies simple equations

T µν ;ν “ 0 . (7.26)

This tensor can be regarded as the energy-momentum tensor of the self-consistent, closed
system of charged dust and its EM field.

7.4 Ideal fluid
Firstly, an ideal fluid is a continuum concept, so it assumes that the mean free path of fluid’s
particles (molecules) is smaller than the “infinitesimal” length of the macroscopic-approach
averaging. Secondly, ideal means that the fluid is incompressible and that one can neglect
the issue of heat and its transport. This in turn requires that there is no dissipation of kinetic
energy into heat within the fluid, which is fulfilled if there is no internal friction between the
fluid’s elements (forces are purely normal to their surfaces), i.e. if the fluid does not at all
resist to shear flow. An effective term for the deviation from this last property is viscosity.
Therefore, ideal fluid is an incompressible non-viscous fluid.

Practically, ideal fluid is a continuum which is characterised, in its rest frame, by two
quantities – proper density ρ and proper pressure P (fully represented by a scalar function
since it has to be isotropic). In short, it is a dust endowed with isotropic pressure. Specifically,
isotropy should hold in the fluid’s instantaneous three-space, so the pressure has to enter the
T µν as Phµν , where hµν “ gµν `uµuν is the metric of that three-space (orthogonal to uµ), as
we already well know. We thus have

T µν “ ρ uµuν ` Phµν “ pρ ` P quµuν ` Pgµν , (7.27)

where uµ is the four-velocity of the fluid (a tangent field to the world-lines of its macroscopic
elements).
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7.4.1 Physical meaning of the ideal-fluid T-mu-nu

As in the case of dust and of the EM field, let us check the components of the above T µν

measured by some physical observer (with four-velocity ûµ and an orthonormal spatial basis
eµı̂ ):

T 0̂0̂
“ pρ ` P quµûµu

ν ûν ` Pgµν ûµûν “ pρ ` P qγ̂2 ´ P “ γ̂2pρ ` v̂2P q , (7.28)

T 0̂ȷ̂
“ ´pρ ` P quµûµu

νeȷ̂ν ´ Pgµν ûµe
ȷ̂
ν “ pρ ` P qγ̂2v̂ȷ̂ , (7.29)

T ı̂ȷ̂ “ pρ ` P quµeı̂µu
νeȷ̂ν ` Pgµνeı̂µe

ȷ̂
ν “ pρ ` P qγ̂2v̂ ı̂v̂ȷ̂ ` Pδ ı̂ȷ̂ . (7.30)

In the fluid’s rest frame (where v̂ ı̂ “ 0, γ̂ “ 1) the tensor naturally reduces to the diagonal
matrix diagpρ, P, P, P q.

7.4.2 Conservation laws and Euler equations of motion for ideal fluid

For an incoherent dust we showed that its equation of motion can be rewritten in terms of
the energy-momentum tensor. Here, on the contrary, we show – for the more general case
of ideal fluid – how the conservation laws T µν ;ν “ 0 imply the equations of motion. The
covariant divergence is easy (remember that gµν;α“0),

T µν ;ν “ pρ ` P q,νu
µuν ` pρ ` P quµ;νu

ν
` pρ ` P quµuν ;ν ` P,νg

µν
“

“
dρ

dτ
uµ ` P,νh

µν
` pρ ` P qaµ ` pρ ` P quµuν ;ν , (7.31)

where aµ ” uµ;νu
ν “ Duµ{dτ is the acceleration of the fluid. Clearly, the first and the last

terms are proportional to uµ, whereas the second and the third terms are normal to uµ, so we
can split the equation into these two independent (orthogonal) components:

dρ

dτ
` pρ ` P quν ;ν “ 0 ... equation of continuity , (7.32)

pρ ` P qaµ “ ´P,νh
µν ... Euler equations of motion . (7.33)

Classical forms of both equations for comparison:

dρ

dt
` ρ div v⃗ “ 0 , (7.34)

ρ a⃗ “ ´ρ gradΦ ´ gradP . (7.35)

The Euler equations fully determine the motion of the fluid subject to a given (in fact its own)
gravitational and pressure-gradient fields. Remember that the gravitational force which of
course appears “explicitly” in the Newtonian equation of motion is in the relativistic equation
“hidden” in the covariant derivative employed in the definition of acceleration.

Note the term pρ` P q which came from T µν and which is new in the relativistic equa-
tions: since what stands in front of acceleration in the Euler equations represents – as in
every equation of motion – the inertial mass (more accurately, the proper density of inertial
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mass here), it means that in relativity, pressure contributes to inertial mass. A ball with pos-
itive internal pressure resists acceleration more than a ball without pressure. No surprise,
right? Pressure describes mechanical interaction between the fluid particles – and the energy
of this interaction necessarily contributes to the fluid’s mass. Recalling the discussion about
the equivalence principle, this must also mean that in general relativity, pressure contributes
to gravitational mass – a ball with (positive) pressure should generate stronger gravitational
field than the one without pressure. We will confirm this in chapter on stellar equilibria. Let
us add that in standard units the inertial term reads pρ`P {c2q, so the pressure contribution is
practically negligible in most situations.

Important remark: When the pressure gradient vanishes, P,ν “ 0, the Euler equations
imply that the fluid motion is geodesic, aµ “ 0. Well, again no surprise... But it will later be
important in understanding Einstein’s equations.

Condition for hydrostatic equilibrium

Though an equation of motion primarily determines what motion results from given forces,
it may also be used in the opposite way – to find conditions which have to hold in order that
a given type of motion can happen. In particular, if one requires that the studied system be
at rest in some sense, one speaks of equilibrium conditions. Let us check what conditions
have to hold for an ideal fluid to stay at static equilibrium. Staticity means that there exists a
coordinate system in which a given source, as well as space-time around, are static.

So suppose there are coordinates in which the fluid is not moving, i.e. having four-
velocity

uµ “ pu0, 0, 0, 0q, where u0 “
1

?
´g00

pfrom normalizationq ,

and in which the metric is static, i.e. satisfying

gµν,0 “ 0 and g0i “ 0, g0i “ 0 pñ g00 “
1

g00
since g0ιgι0 “ g00g00 “ δ00 “ 1q .

In such a case, the covariant components of four-velocity are equally simple,

u0 “ g0σu
σ

“ g00u
0

“ ´
?

´g00 , ui “ giσu
σ

“ gi0u
0

“ 0 .

Now we put the above into the Euler equations (7.33). Slightly more comfortable is to
evaluate them in a covariant version, pρ ` P qaα “ ´P,νh

ν
α :

• Left-hand side, without pρ ` P q:

aα ” uα;κu
κ

” uα,κu
κ

´ Γµκαu
κuµ “ ���uα,0 u

0
´ Γ00αpu0q2 “

1

2

p´g00,αq

p´g00q
“

“
1

2
rlnp´g00qs,α “ pln

?
´g00q,α . (7.36)

(Remember that g00 is negative, typically, so it is right to keep minus at it.)
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• Right-hand side:

´P,νpδνα ` uνuαq “ ´P,νpδνα ´ δν0δ
0
αq .

For α “ 0 both sides are zero, while for α “ i the right-hand side reduces to ´P,i , so the
condition for hydrostatic equilibrium reads

pρ ` P q pln
?

´g00q,i “ ´P,i . (7.37)

Still more illustrative form follows by writing g00 as g00 “ ´e2Φ; the latter is often advanta-
geous, namely in highly symmetric problems – apparently because Φ represents a counter-
part of the Newtonian potential (recall the Newtonian limit g00 “´1́ 2Φ which really follows
from there for small Φ). With the above parametrization, the equilibrium condition assumes
the form

pρ ` P qΦ,i “ ´P,i (7.38)

which clearly reveals that the condition simply requires an equilibrium between the gravita-
tional and the pressure-gradient forces. Note in passing that here pρ ` P q already represents
the density of gravitational mass.

7.5 Null fluid and null dust
Worth to mention are two limits which are often useful in astrophysics – the “isotropic photon
gas”, either with pressure or without. The case with pressure (null fluid) can be obtained
from the T µν of a fluid. However, photons are the EM field actually, so they should also
be described by the EM-field T µν . The latter’s main property is the vanishing trace, so let
us require this for the fluid: one obtains the condition ρ “ 3P . The case without pressure
(null dust) is simply obtained from the incoherent-dust T µν by considering a null vector (kµ)
instead of the time-like uµ, i.e. T µν “ρ kµkν .

7.6 Notice: essential entanglement of sources and geometry
At the beginning of this chapter, we quoted “And now for something completely different”
and announced a tensor describing energy as a source of gravitation. Indeed, the charged dust
and (its) EM field, as well as the ideal fluid, have been supposed to affect the geometry of
space-time. So it is not a different story, right? It is even more entwined than would seem
comfortable. How to specify where the source is and how it moves? How to determine its
density? How to compute (covariant) derivatives, inner products (how to ensure four-velocity
normalization), ...? One needs metric! The energy-momentum tensors for EM field and for
fluid even contain the metric explicitly. As nicely expressed in [38]: “But here we run into a
problem, namely how to treat the sources. For these have no choice but to live in the curved
spacetime which they at least partly generate. ... we need the sources before we can solve for
the spacetime, but we need the spacetime before we can even properly describe the sources.”
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This problem is of course not new – at least in non-linear theories, one may have bad
times trying to link the sources and their (own) fields in a self-consistent way. But in GR,
“field” means geometry, and geometry practically means “world as such”. It means to know
how to handle mathematical quantities, and how to interpret observations. In GR, the problem
is not only with consistency, but already in description: without knowing the “field” (the
metric), one is not able to say when, where and how much. Hence, the gravitational law of
GR cannot be expected to determine what geometry is generated by prescribed sources, and
neither vice versa. Instead, we may only expect equations that provide relations between the
sources and the geometry while leaving a certain freedom on both sides.

7.7 Energy conditions
Besides conservation laws, a physically reasonable source is also usually required to satisfy
the energy conditions. These are Tµν-based restrictions which say, in several different ver-
sions, that “any source of gravitation should be attractive and/or should behave in a causal
way”. They are important assumptions in many classical results of general relativity that
require the usage of Einstein equations. They are expressed in terms of what any physical ob-
server can measure, the observer being represented by four-velocity, i.e. by a future-oriented
time-like vector field ûµ.

• Weak energy condition: every physical observer has to detect non-negative energy den-
sity,

Tµν û
µûν ě 0 . (7.39)

For an EM field, the condition yields ŵ ě 0, for an ideal fluid [see (7.28)], ρ ` v̂2P ě 0.
The fluid’s speed with respect to the observer, v̂, may assume values from the interval
x0, 1q, with the strongest restriction coming from evaluation of the condition at the limit
values: pρ ě 0q ^ pρ ` P ě 0q.
The condition should also hold in the limit of light-like ûµ; often this special case is being
presented separately, as the null energy condition. For the ideal fluid, this limit (v̂ “ 1)
yields pρ ` P ě 0q.

• Strong energy condition restricts tension (= negative pressure):
ˆ

Tµν ´
1

2
Tgµν

˙

ûµûν “ Tµν û
µûν `

T

2
ě 0. (7.40)

For an EM field this condition coincides with the weak one (because TEM “ 0), for an ideal
fluid it implies pρ ` P qγ̂2 ě

ρ´P
2

, or, ρ ` 3P ` pρ ´ P qv̂2 ě 0; combination of the limit
cases v̂“0, v̂Ñ1 thus requires pρ ` 3P ě 0q ^ pρ ` P ě 0q.

• Dominant energy condition: energy-density flux (= density of momentum) measured by
any physical observer, i.e. the vector p´T µν û

νq, has to be future-directed and time-like or
light-like,

gαβT
α
µû

µT βν û
ν

ď 0 . (7.41)
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For an EM field, one writes the T µνEM as (7.15), to obtain

´Tαµû
µ

“ Ŝα ` ûαŵ , (7.42)

hence

gαβT
α
µû

µT βν û
ν

“ gαβpŜα ` ûαŵqpŜβ ` ûβŵq “ Ŝ2
´ ŵ2 (7.43)

and the condition assumes the form ŵ2 ě Ŝ2. Should the flux pŵûα ` Ŝαq be future-
oriented, ŵ ą 0 must hold in addition, so the condition can finally be “square-rooted” to
ŵ ě |Ŝ|.
For an ideal fluid, ´Tαµû

µ “ pρ ` P quαγ̂ ´ Pûα, so, after an easy manipulation,

gαβT
α
µû

µT βν û
ν

“ γ̂2pv̂2P 2
´ ρ2q ď 0 ðñ ρ2 ě v̂2P 2;

the combination of extreme cases v̂“0, v̂Ñ1 gives pρ2 ě0q ^ p|ρ|ě|P |q. The requirement
that the vector p´T µν û

νq be future-oriented, i.e. that pT µν û
νqûα “ γ̂2pρ ` v̂2P q ą 0,

implies, in the extreme cases of v̂, that pρ ą 0q and pρ `P ą 0q. Hence, altogether, the
dominant energy condition for fluid demands pρą0q ^ p|ρ| ą |P |q. As a matter of fact, it
says that the energy density should exceed other Tµν components, i.e. pressures/tensions
(hence “energy dominance”); especially in the fluid’s rest system, ûµ “ uµ, it reproduces
the weak energy condition.

• Relations between the energy conditions: the conditions are independent in general, only
the weak condition follows from the energy-dominance condition and, in its null version,
it also follows from the strong energy condition.
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CHAPTER 8

Einstein field equations

Until now, we have been concerned i) with mathematical properties of the pseudo-Riemannian
geometry (specifically, Lorentzian geometry, “´```”)1 which describes curved space-times;
ii) with how a given geometry enters selected physical problems; and iii) with how gravita-
tional sources could be described in GR (by T µν). Now it’s time to address a crucial physical
query: how the geometry depends on processes which take place in the space-time? The an-
swer is provided by the Einstein field equations – the central point of the relativistic theory
of gravitation; they represent the link between the space-time geometry and the behaviour of
matter and non-gravitational fields.

A fundamental physical law cannot be expected to be provable as a theorem. Such
a “full control” is only possible in working with mathematical structures where statements
are derived by logical deduction from definitions (at least within limitations following from
Gödel’s incompleteness theorems). The meaning of physical quantities is only clarified in
mutual relations in which they are posed by equations, and by saying whether and how they
can be measured. This assignment between “things in themselves” and “letter symbols for
us” belongs to the most non-trivial part of physics.

Neither the Einstein equations can be derived, strictly speaking. They can only be
“found” – on the basis of geometric knowledge, fundamental principles, and Newton’s gravi-
tational law. Actually, the fundamental principles themselves would be useless, because there
is no gravitational law in special relativity, so there is nothing to refer to in the LIFE. Another
thing is that a posteriori, when it is already clear what should come out, the Einstein theory
can be arranged in an axiomatic form. We will show later how to “derive” the theory using
the Hilbert variational principle or a more general, Palatini-inspired method. Similarly, in
electromagnetism, when already knowing Maxwell equations, it is not so difficult to guess
which variational problem (Lagrangian) leads to them.

1 People often write “´ ` ``”, can you see the difference? This is obtained by “$-+++$”, while our version
by “$-$$+$$+$$+$”. Also bearable is “$-$+++”, though plusses (also) appear slightly different in text mode.
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8.1 “Physical derivation”
Our primary goal is to find equations which would determine what gravitational field is gen-
erated by a given configuration of sources. In the Newtonian case, the gravitational law is
represented by Poisson equation for potential Φ with given mass density ρ,

∆Φ “ 4πρ. (8.1)

This works very well in terrestrial physics and within the Solar system, but it has several
features which are clearly not satisfactory:

• It is not causal: it does not contain any time derivative, so the field Φpt, x⃗q does not prop-
agate – it is generated immediately, in the whole space, according to an instantaneous
distribution of density ρpt, x⃗q. Hence, it actually propagates infinitely fast.

• It is not covariant: of course, Laplace operator is not invariant, and neither is the mass den-
sity. Here, immediate remedy might seem to be to change the Laplace for the d’Alembert
operator (which is invariant), and to use proper density of rest mass. However, ...

• ... such a law i) would clearly assume a special form only valid in the rest system of the
source, it could not work in other systems (with respect to which the sources are not at
rest), because it does not contain any information about how contributes the kinetic mass-
energy, or, in other words, how the “rest-mass density” (however effective this notion may
be) changes if the source moves. Actually, often it is not possible to adjust coordinates in
such a way that all the sources stay at rest. Even for a single (extended) source: what about
differential rotation? Also, ii) the concept of “proper density of rest mass” is not very clear
for a source-free EM or other fields, especially if the field is not static.

In the previous chapter, we saw that a plausible representative of gravity sources could be the
energy-momentum tensor – a generalisation of mass-energy density also including kinetic
and stress contributions. We will thus employ it on the source side of the field equations.

8.1.1 Uniqueness of the Riemann tensor

The “field” side of the equations, on the contrary, stems almost inevitably from the Newto-
nian “template” (8.1) and from the properties of the corresponding geometric quantities (and
through these, from fundamental principles of GR). In the Newtonian equation, ∆Φ contains,
linearly, the second derivatives of the potential. From the Newtonian limit of the geodesic
equation, we know the potential is paralleled by the metric in GR, so, following the simplicity
principle, we wish the left-hand side to be determined by gµν and by its first and second par-
tial derivatives, with the latter just appearing linearly. In specifying the concrete form of the
left-hand side, crucial is the property called the uniqueness of the Riemann tensor, meaning
that the Riemann tensor is the unique tensor quantity that involves the above metric features.

Theorem Compose a tensor out of gµν and its first and second partial derivatives, in such
a way that it depends on these three ingredients in the same way in every reference system.
Every such tensor can be expressed in terms of just the metric and the Riemann tensor.
Proof:
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• First, about the first derivatives we know from (2.9) that

gκλ,σ “ Γλσκ ` Γκσλ ,

and we also know that the Christoffel symbols vanish in the LIFE. Hence, the sought tensor
has to depend trivially on gκλ,σ in any other system as well. In more general words, the first
derivatives of the metric in themselves do not, in general, give rise to any non-trivial tensor.
Therefore, they cannot, independently, appear in the tensor we are looking for. (This is not
to say that they cannot be present in such a tensor at all, only that they can at most appear
within some tensorial quantity.)

• From (6.8) it follows that in the LIFE (where the affine-connection components vanish) the
Riemann tensor is solely given by the second derivatives of the metric,

Rµνκλ “
1

2
pgµλ,νκ ` gνκ,µλ ´ gµκ,νλ ´ gνλ,µκq in local inertial frame .

Hence, it is clear that the dependence on the second derivatives of gµν can fully be repre-
sented by the Riemann tensor (technically, it is sufficient to invert the above relation).

• Remark: note that in a general system the Riemann tensor also includes the first derivatives
of the metric (in the quadratic affine-connection terms). So we see the first derivatives are
really present (quadratically), only that they are solely present within the Riemann tensor.
l

Now, should the right-hand side of the Einstein equations be proportional to Tµν , we
have to also form a symmetric second-rank tensor on the left-hand side – out of the metric
and the Riemann tensor. And, finally, should the second derivatives of the metric only appear
linearly, the Riemann tensor has to appear there linearly. Though it can be proved formally, let
us simply refer to the “trial and error” method: it is impossible to invent any other terms which
satisfy such constraints than Rµν , Rgµν and gµν . They can appear in a combination whose
coefficients can only depend on the metric. However, in the LIFE the metric is constant (it
has the Minkowski form), so it should be like that in general – the coefficients have to reduce
to constants. Hence the following important consequence of the Riemann-tensor uniqueness:

Consequence The most general symmetric second-rank tensor i) which depends on gµν and
on its first and second partial derivatives in the same way in all reference systems, and ii)
in which the second derivatives of gµν appear linearly, is given by linear combination of the
tensors Rµν , Rgµν a gµν . Consequently, we shall be looking for the left-hand side of the
Einstein equations in the form

Rµν ` C2Rgµν ` Λgµν “ κTµν , with C2,Λ, κ constants . l

(Clearly the whole equation can be multiplied by a constant freely, which means one of the
coefficients can be chosen; standardly the coefficient at Rµν is being set at unity, C1 ”1.) The
C2 coefficient we will fix from the Bianchi identities and from the requirement that the left-
hand side have zero covariant divergence (in order that the equations imply conservation laws
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for Tµν on the right-hand side). The κ on the right-hand side will follow from the requirement
that the equations yield the classical gravitational law (8.1) in the Newtonian limit. Finally,
the constant Λ will stay in the equations, mysterious ...

8.1.2 Bianchi-identities contraction, and conservation laws

By double contraction of the second Bianchi identities, we found in (6.34) that

R;µ ´ 2Rν
µ;ν “ 0 .

A similar relation is also obtained if demanding that the left-hand side of the field equations
have zero covariant divergence – in order to comply with the conservation laws which should
hold for the right-hand side (Tµν ;ν “ 0):

pRµ
ν

` C2Rgµ
ν

` Λgµ
ν
q;ν “ 0 ðñ Rµ

ν
;ν ` C2R;µ “ 0 .

By combination of these two relations, we get
ˆ

1

2
` C2

˙

R;µ “ 0 ùñ C2 “ ´
1

2
,

so the field equations appear as

Rµν ´
1

2
Rgµν ` Λgµν “ κTµν . (8.2)

The tensor Rµν´ 1
2
Rgµν “: Gµν is called the Einstein tensor.

The equations can also be written in a different way (which actually was the first one
historically): make their trace (contraction over µ, ν), R ´ 2R ` 4Λ “ κT , then substitute
back for R “ 4Λ ´ κT from here, and express Rµν :

Rµν “ κ

ˆ

Tµν ´
1

2
Tgµν

˙

` Λgµν . (8.3)

This form is mainly advantageous for a simple Tµν (e.g. the EM field for which T “ 0),
especially for a vacuum (Tµν “0) when only Rµν “Λgµν remains.

In a general case, still one more thing remains: to fix the coefficient κ between the
geometric and the physical sides.

8.1.3 Lovelock’s theorem, and the chief attraction of GR

Before doing so, let us mention, without proof, a fundamental result which supplements the
above uniqueness property of Riemann: the Lovelock theorem. Let us quote the abstract of
D. Lovelock’s paper (J. Math. Phys., 1972): All tensors of contravariant valency two, which
are divergence free on one index and which are concomitants of the metric tensor, together
with its first two derivatives, are constructed in the four-dimensional case. The Einstein and
metric tensors are the only possibilities. After what we have proved or understood before,
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this seems nothing extra, but consider that this claim does not assume linearity in the second
metric derivatives. Hence, what we presented as a simplicity assumption, originally motivated
by the linearity in Φ of ∆Φ in the Newton gravitational equation, actually is not necessary
– at least not after one has already decided that the right-hand side of the field equations
should be represented by a divergence-free and symmetric second-rank tensor. Needless to
say, this result still more emphasizes that the left-hand side of the Einstein equations is given
uniquely – given the right-hand side (Tµν) with its properties, there is no other option. Einstein
expressed that feature – without of course knowing the Lovelock theorem – in the paper What
is the theory of relativity? which he wrote at the request of The London Times and which
appeared there on 28th November 1919: “The chief attraction of the theory lies in its logical
completeness. If a single one of the conclusions drawn from it proves wrong, it must be given
up; to modify it without destroying the whole structure seems to be impossible.”

8.1.4 Kappa = 8 pi

The coefficient is fixed from the requirement that the field equations go over to ∆Φ “ 4πρ
in the Newtonian limit. In order to perform the latter, it is natural to select some particu-
larly simple case (remember that the equations have to be valid for any physical system and
under arbitrary conditions). First, the Newtonian limit involves stationarity, and second, the
simplest non-trivial source we know is the incoherent dust, T µν “ρ uµuν .

In the Newtonian limit, Christoffel symbols are linearly small, so the two “ΓΓ” terms
in the Riemann tensor can be omitted,

Rι
µκν

.
“ Γινµ,κ ´ Γικµ,ν .

The R00 component of the Ricci tensor thus reduces to

R00 ” Rι
0ι0 “ Γι00,ι ´ ���Γιι0,0 ,

where we have cancelled the second term due to stationarity as the second aspect of the
Newtonian limit. Leaving just spatial derivatives in the first term, and recalling that the
Newtonian limit (Section 3.7) leads to Γi00 “Φ,i , we arrive at

R00 “ Γi00,i “ Φ,i
i ” ∆Φ .

Now we need to compare this with the Newtonian limit of the right-hand side of the
respective field equation

R00 “ κ

ˆ

T00 ´
1

2
Tg00

˙

` Λg00

(we use the second form (8.3)). Provided that such a limit in no way affects Λ, in the second
term one just substitutes g00 “ ´1 ´ 2Φ. In the first term, one realises that ρ is of the same
order of smallness as Φ (as it follows from the equation ∆Φ“4πρ), and that the Newtonian
limit also means slow motion, |ui|!|ut|:

T “ ρ uµuµ “ ´ρ ,
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T00 “ ρpu0q
2

“ ρ pg00u
0

` g0iu
i
qu0

.
“ ρ g00u

0u0 “ ρ g00p´1 ´ uiuiq
.
“

.
“ ´ρ g00

.
“ ρ p1 ` 2Φq

.
“ ρ ,

which makes the field equation (without Λ) look

∆Φ “ κ

ˆ

ρ ´
1

2
ρ

˙

“
1

2
κρ .

However, in the Newton’s theory, the right-hand side is 4πρ, so we conclude that κ“8π, or,
in standard units, κ “ 8πG{c4.

That’s it. As a culmination of the general theory of relativity, we may write

the Einstein field equations (Einstein’s gravitational law):

Rµν ´ 1
2
Rgµν ` Λgµν “ 8πTµν , or Rµν “ 8π

`

Tµν ´ 1
2
Tgµν

˘

` Λgµν . (8.4)

A couple of special cases is worth mentioning when the field equations reduce to a
simpler form. If Λ“ 0 and the energy-momentum tensor is traceless (as e.g. that of the EM
field), the equations reduce to Rµν “ 8πTµν and their trace yields R “ 0. If Tµν “ 0, the
equations reduce to Rµν “Λgµν and their trace yields R“4Λ.

8.1.5 “At such times one sees to what deplorable breed of brutes
we belong.”2

Just as students should learn something about the times when this Prague lecture course was
being developed, it is good to realize that Einstein’s equations are, after all, associated with
certain specific coordinates: 25th November 1915, Berlin. The last part of his eight-year
struggle their author spent in one of the most tragic periods of history, and, in addition, at
the place where he had the roots of most of the horrors in front of his eyes. The waves
of pathologic nationalism, stimulated in Germany from the end of the 19th century already,
were even clearly resonating within the academic community, including Einstein’s close col-
leagues. Besides devotion to “the starry heavens above”, Einstein was keeping “the moral
law within”, but within Berlin he was apparently next to isolated. Military parades he ab-
horred since childhood, and to national patriotism he was saying [letter to P. Ehrenfest from
23rd August 1915]: “Isn’t this little clutch of busy intellectuals our only ‘fatherland’ to which
such as we have any serious attachment? Should even these people have mentalities that are
solely a function of residence?” How strong such an adherent of liberty had to be while
working, in Berlin, side by side with scientists – not seldom his Jewish compatriots – who
were fulminating against “the enemies of white race”, who were encouraging students to go
to a “fair aggression war”, and who were practicing marching on the Academy yard? Ein-
stein was in contact with R. Rolland, published several anti-war articles, he entered a banned
peace circle. After the war, he was trying to persuade the student revolutionary boards not
to declare the “dictatorship of the proletariat” and to preserve the academic freedoms, and he
was also against penalization of Germany included in the Treaty of Versailles.

2 From Einstein’s letter to P. Ehrenfest, 19th August 1914.
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26 years later, from America already – and in spite of usual pacifism –, Einstein was
pushing the world to defend democracy against fascism by every means; however, atomic
explosions over Japan he deemed an unnecessary massacre, and he was calling for nations’
handing over a part of their sovereignty to an international peace administration.

All that also concerns Einstein’s equations. It illustrates the character of their founder,
indispensable in the struggle with gravitation: not only “1% of inspiration and 99% of perspi-
ration”, how he (together with Edison) summarized the scientific outcomes, but also the inner
independence, sensitiveness to the freedom and justice’ getting in jeopardy, and psychic resis-
tance. Actually, you may check the letter Einstein wrote to his Swiss friend, medical doctor
H. Zangger, in April 1915: “Why one could not live in it peacefully, similarly as personnel in
a madhouse?” A. Fölsing adds, in his brilliant biography [11]: “Deep-rooted inner indepen-
dence and harsh humour allowed Einstein to endure the most disgusting human turmoil even
from closest vicinity with an amused reticence.”

However, Germany stayed Nazi-deformed still after the 1st world war, and in 18 years
an even stronger wave of violence evicted Einstein from Europe for ever.

8.1.6 Cosmological term: Einstein’s biggest blunder?

Originally, the field equations did not contain the cosmological constant Λ. Einstein added
it there, at the end of 1916, in order to “save” the possibility of a static cosmological model.
After it became clear that the Universe is expanding, he said the inclusion of the cosmological
term was the “biggest blunder” of his life. Let’s try to understand it a bit.

First, with the cosmological term, the Newtonian limit of the Einstein equations reads
R00 “ 4πρ ` Λg00, so

∆Φ ` 2ΛΦ “ 4πρ ´ Λ .

Experiments (in the Solar system) restrict Λ to some |Λ| ă 10´50{cm2. –Yes, Λ has the
dimension of [cm´2]: if it is non-zero, it mainly pronounces itself in the largest scales (thus
cosmological).

The physical role of Λ is revealed from Einstein equations, the most intuitively in case
when the source is the ideal fluid: shifting the last term on the left-hand side of

Rµν ´
1

2
Rgµν ` Λgµν “ 8π rpρ ` P quµuν ` Pgµνs

to the right, we get there 8πpρ ` P quµuν ` p8πP ´ Λqgµν . Hence, Λ’s role is opposite to
that of pressure – and since pressure acts in the same way as mass density (recall the Euler
equations), we see that Λ ą 0 induces mutual repulsion between different parts of space,
whereas Λă0 induces their attraction. Now we understand that a positive Λ can prevent the
static universe from collapsing: if adjusted suitably, it just balances the gravitational attraction
of the matter living in the universe.

In order to still better understand the nature of the cosmological term, let us consider
the situation with Tµν “ 0 (vacuum) but with non-zero cosmological term. And imagine
we would now understand the cosmological term as a source and would like to interpret it
in the “fluid” language. The energy-momentum tensor solely generated by Λ would read



104 8. EINSTEIN FIELD EQUATIONS

Tµν “´ Λ
8π
gµν . Comparing this with the general ideal-fluid form Tµν “ pρ`P quµuν `Pgµν ,

we see that the “Λ”-fluid would have the equation of state P “ ´ρ and the energy density
ρ“ Λ

8π
. Therefore, such a source only depends on ρ (which is constant in this case), not on

velocity or anything else, and so it only shifts the energy of the system’s “basic state”. The
energy-momentum tensor has trace T “´4ρ and an observer with four-velocity ûµ measures
on it the energy density Tµν ûµûν “ ρ and the energy flux ´Tαµû

µ “ ρûα. Hence, the source
marginally satisfies the null energy condition, and if ρ ě 0 pô Λ ą 0q, it also satisfies
the “time-like” weak condition. It satisfies the energy-dominance condition too, but not the
strong energy condition – namely, Tµν ûµûν ` T

2
“ ´ρ.

There is, however, an opposite possibility: to leave the cosmological term on the left-
hand (“geometric”) side of the equations, do not understand it as a source – and just state that
gravitation is characterized by two constants, G and Λ. Sure, no physics aesthete welcomes
the appearance of a new free constant in a theory, because every free parameter indicates
non-completeness of the theory, or even a complete ignorance of a certain part of reality;
also, the more constants in a theory, the more difficult it is to falsify it. Two free constants is
actually very few, but still Einstein admitted Λ should be refused after it became evident that
the Universe is dynamical.

Yet it has turned out, like many times already, that Einstein was once again right. In the
second half of the 20th century, suggestions first began to arrive from particle physics that
the “cosmic vacuum” (the basic state of the Universe) might not correspond to zero energy
level. The cosmological constant would in such a case describe, as an effective parameter,
the density of that vacuum energy (in line with what we mentioned above). Positive Λ would
thus correspond to a field state with tension (negative pressure). Anyway, there does not exist
any “microscopic theory” for Λ; different particle theories yield different estimates for the
value of Λ, typically much larger than the previously mentioned experimental upper bound
(really MUCH larger, by some 120 orders of magnitude). The second wave of interest came
in the 1980s, together with the hypothesis of cosmological inflation. Again, it was/is tied
to the occurrence of a field in the negative-pressure state, this time specifically the state of
a scalar field (possibly the Higgs field, in particular) just after the Universe had been born.
Due to the possibly large positive value of Λ thus induced, the Universe could have been
“inflated” extremely rapidly by many orders of magnitude, which would have very much
“thinned down” and blurred the cosmological initial conditions. Such an effect could solve
some of the problems of standard cosmology.

Anyway, today what is represented in Einstein equations by the cosmological constant
is usually called the dark energy and it is mainly being addressed by astronomical tech-
niques. Actually, from about mid 1990s, a growing body of evidence has been collected that
if standard (homogeneous and isotropic) cosmological models should reasonably approxi-
mate the Universe, they have to include a positive cosmological constant. Positive seems to
be too strong a word if speaking of the value Λ .

“1.1¨10´56{cm2, but we will see in cosmology
that the dark energy forms as much as almost 70% of all the cosmic mass-energy.
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8.2 Einstein equations and the mass-geometry relation

The Einstein gravitational law (8.4) represents a system of 10 non-linear second-order partial
differential equations for the components of the metric tensor. More specifically, the equa-
tions are quasi-linear, because they are linear in the highest (second) derivatives of gµν . The
number 10 is given by symmetry of their both sides in pµ, νq. For their solution, it is necessary
to know/give the energy-momentum tensor Tµν , describing the matter and non-gravitational
fields present.

It is a novel feature that although the equations are called field equations, they do not
only determine the field (the metric), but also the behaviour of sources. Actually, we know
that thanks to the second Bianchi identities they imply conservation laws T µν ;ν “ 0 (they
have been composed so). The conservation laws do not constrain the metric (this appears
in them just “passively”, in the covariant derivative), they rather constrain the sources. We
illustrated this circumstance on ideal fluid – we were in fact able to obtain the Euler equations
of motion from the conservation laws, plus the equation of continuity. Now, if 4 of the 10
equations constrain sources, we are left with 6 to determine the metric. It is a well known
story that when, at the end of the 19th century, the Czech polymath Jára da Cimrman met
A. P. Chekhov and saw Chekhov writing the play Two Sisters, he queried: “Isn’t it two few,
Anton Pavlovich?” Similarly we should query here: aren’t 6 equations for 10 unknowns too
few? ... [think about it] ... According to the principle of general covariance, it always has
to be possible to freely choose the coordinate system. This effectively means that there must
always remain a freedom to choose 4 of the metric functions. Therefore, 6 equations for 10
components of the metric is just the right amount. (In other words, had we 10 equations for
10 metric components, the equations would yield an absolutely specific result, i.e. they would
even prescribe specific coordinates. But this would be in contradiction with the keystone of
the theory.)

This is an important conceptual point. Contrast the above with electrodynamics: there,
from Maxwell equations only follows the continuity equation (which says that electric charge
has to be conserved), nothing else – in particular not the Lorentz equation of motion. There-
fore, the field equations do not dictate how the sources should move; the sources can be pre-
scribed freely (besides satisfying the continuity equation and besides moving sub-luminal).
Similarly, in Newton’s gravity, the equation of motion a⃗ “ ´∇⃗Φ does not follow from the
field law ∆Φ “ 4πρ. In GR, thanks to the field equations and the Bianchi identities, only
such source configurations are allowed which satisfy the conservation laws, and this typi-
cally means to evolve precisely according to the equation of motion (which can be derived
directly from the conservation laws). Note that the Einstein equations specifically imply,
through Euler equations (7.33), that the incoherent dust, i.e. a continuous source made of free
particles, moves along geodesics. This may seem to be just a “consistency check”, but it is
not (only) so: here the dust is not test, it does generate the field, so the field equations yield a
deeper result than just geodesic motion in a given background.

So the Einstein equations describe a coupled system of mass-energy and geometry. The
sources as well as their field are dynamical variables and their self-consistent configuration
is enforced, by the equations, automatically. In popular words: “The matter tells space-time
how to curve, while the space-time, at the same time, tells matter how to move.” Mathemati-
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cally, this profound power of the equations is also – besides the link with Bianchi identities –
connected with their non-linearity (remember that classical electrodynamics and Newtonian
gravity are both linear). Loosely, one may ponder in the following way: in contrast to elec-
trodynamics (for example), where the fields do not bear any attributes of the sources (the EM
field does not have charge), the gravitational field acts as a source of gravity, because it has
a certain mass-energy – and every energy contributes to gravitation. However confusing the
statement “gravitational field generates gravitation” may sound at first sight, it exactly articu-
lates the non-linearity of the equations: a source acts on itself through a field generated by its
[source’s] field. Non-linear systems always involve such a feedback – and exactly because of
this feedback the space of possible states of non-linear systems is much more restricted than
that of linear ones.

Contrary to the initial Einstein’s understanding, geometry plays partially an autonomous
role in the theory, in the sense that it is not fully determined by matter. Actually, similarly
as the matter, it has its own degrees of freedom, as best exemplified on the vacuum setting
when there is absolutely no source in the space-time, yet the field equations still admit va-
riety of different solutions, not just the flat space-time of special relativity. A natural way
how to distinguish between “pure geometry” and “matter-induced geometry” is provided by
the Einstein equations Rµν “ 8π

`

Tµν ´ 1
2
Tgµν

˘

` Λgµν : matter (and Λ) determines that
part of curvature which is given by the Ricci tensor. This has 10 independent components
in general, so the remaining 10 components of curvature (the Riemann tensor) should corre-
spond to “pure geometry”. If worrying now about how this remaining piece of information
in Riemann is determined, recall the second Bianchi identities. These are “pure geometric”
(independent of the field equations) and clearly contain more constraints than what we em-
ployed in derivation of the Einstein equations. Specifically, the second Bianchi identities are
20, while their twice contracted consequence R;µ“2Rν

µ;ν we used represents 4 relations.

8.2.1 Mass-energy of the gravitational field

Above, we mentioned that gravitational field has a certain mass-energy. Such a remark may
easily provoke a lengthy discussion. Namely, there actually does not exist a good notion
for the “energy-momentum tensor of a gravitational field”, and (thus) for a local density
of “gravitational mass-energy” or “gravitational energy flux”. Such quantities can be defined
globally (in the whole space-time), at least if the space-time is asymptotically flat (approaches
flat space-time at spatial infinity), but it is impossible to say, uniquely, how much mass-
energy is in such and such region. (Hence the frequent statement “gravitational energy is not
localizable”.)

The simplest hint to expect that is to recall the equivalence principle. It says that in
the LIFE, there is locally no gravitational field (affine connection components are locally
transformed away). In other words, “gravitational intensity” cannot in general be described
by a tensorial quantity. From the side of the conservation laws: these typically follow from
symmetries. In special relativity, the symmetry with respect to translation in time implies the
conservation of energy while the symmetry with respect to spatial translations implies the
conservation of momentum. However, in GR, in contrast to SR, neither of these translations
are in general isometries (the space-time is – or may be – different at different times and at
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different locations).
It is thus worth to repeat once more that the energy-momentum tensor on the right-hand

side of Einstein equations really represents just non-gravitational contributions.

8.3 Riemann-tensor decomposition, Weyl tensor, and duals
Now that we know the field equations, it’s right time for an appendix to curvature (Section 6)
– about the degree to which curvature depends on sources (on Tµν). The Riemann tensor can
be decomposed as

Rµνκλ “ Cµνκλ `
1

2
pgµκRνλ ` gνλRµκ ´ gµλRνκ ´ gνκRµλq ´

R

6
pgµκgνλ ´ gµλgνκq “

“ Cµνκλ `
1

2
pgµκSνλ ` gνλSµκ ´ gµλSνκ ´ gνκSµλq

loooooooooooooooooooooooomoooooooooooooooooooooooon

“:Eµνκλ

`
R

12
pgµκgνλ ´ gµλgνκq

looooooooooomooooooooooon

“:Gµνκλ

,

(8.5)

where Cµνκλ is the Weyl tensor and Sµν :“ Rµν ´ 1
4
Rgµν is the traceless part of the Ricci

tensor. The tensorsCµνκλ,Eµνκλ andGµνκλ have the same symmetries as the Riemann tensor.
Besides that, one easily computes their traces,

Eκ
νκλ “ Sνλ, Gκ

νκλ “
1

4
Rgνλ ùñ Cκ

νκλ “ 0 . (8.6)

The traceless property of Cµ
νκλ means another 10 conditions in addition to the symmetries of

Rµ
νκλ, so the Weyl tensor only has 20´10“10 independent components. (Hence, vanishing

is its contraction over any pair of indices.) The Weyl tensor is said to represent a “pure
gravitational field” – whereas Riemann also contains an information about sources; this is
brought to it by the Ricci tensor, as related to the properties of the sources by the Einstein
equations (Section 8). Outside sources, Cµ

νκλ “Rµ
νκλ. In short, Weyl tensor contains that

part of Riemann which is not in Ricci. However, it is not completely free from the sources,
due to the second Bianchi identities. Indeed, in (6.33) we found by contracting the Bianchi
identities that

Rσν
λµ;σ “ Rν

µ;λ ´ Rν
λ;µ , R;µ “ 2Rν

µ;ν .

This in turn implies that the divergence of the Weyl tensor has to satisfy

Cµνκλ
;µ

”

” Rµνκλ
;µ

´
1

2
pgµκRνλ

;µ
` gνλRµκ

;µ
´ gµλRνκ

;µ
´ gνκRµλ

;µ
q `

R;µ

6
pgµκgνλ´ gµλgνκq “

“ Rνλ;κ ´ Rνκ;λ ´
1

2
pRνλ;κ ´ Rνκ;λq ´

1

4
pgνλR;κ ´ gνκR;λq `

1

6
pgνλR;κ ´ gνκR;λq “

“
1

2
pRνλ;κ ´ Rνκ;λq ´

1

12
pgνλR;κ ´ gνκR;λq ” Rνrλ;κs ´

1

6
gνrλR;κs . (8.7)
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The “vacuum case” should however be made more precise. Actually, we know from
Einstein equations that Tµν “0 implies Rµν “Λgµν (thus R“4Λ), so in such a case we have
Sµν ” Rµν ´ 1

4
Rgµν “ 0, the decomposition (8.5) reduces to

Rµνκλ “ Cµνκλ `
Λ

3
pgµκgνλ ´ gµλgνκq ,

and the divergence of the Weyl tensor (8.7) vanishes. One also notices that in the Tµν “ 0
case all statements involving covariant differentiation of curvature (in particular, the second
Bianchi identities) may equivalently be voiced in terms of the Riemann as well as the Weyl
tensors.

Weyl tensor Cα
νκλ is often called the conformal tensor, in order to stress that it stays

invariant under any conformal transformation of the metric, gµνpxq Ñ Ω2pxqgµνpxq. (It is
straightforward but lengthy to verify this feature. It is derived thoroughly in Appendix D of
[50].)

To tensors antisymmetric in more (than one) pairs of indices, one can define more duals
(which are different in general) – see Appendix A.2. For the Riemann tensor, one thus has
the left dual and the right dual (A.28),

˚Rαβ
κλ ”

1

2
ϵαβρσRρσκλ , R˚

αβ
κλ

”
1

2
Rαβρσϵ

ρσκλ . (8.8)

Similarly, one can consider duals to individual terms of its decomposition. In Appendix A,
equations (A.36)-(A.39), it is shown that they satisfy

˚Cαβκλ“C˚
αβκλ ,

˚Eαβκλ“´E˚
αβκλ ,

˚Gαβκλ“G˚
αβκλ ,

˚Rαβκλ“R˚
αβκλ ` 2 ˚Eαβκλ .

8.3.1 “Electric” and “magnetic” parts of Weyl

Analogously to how one can obtain, from the EM-field tensor Fµν , the electric and the mag-
netic fields measured by some observer with four-velocity ûµ (see Section 7.3.1),

Êµ “ Fµν û
ν , B̂µ “ ´

˚Fµν û
ν ,

the tensors

Êµκ ” Cµνκλû
ν ûλ , B̂µκ ”

˚Cµνκλû
ν ûλ (8.9)

are being referred to as the respective electric and magnetic parts of the Weyl tensor. These
two-tensors are symmetric and traceless, and clearly satisfy Êµκûκ “ 0, B̂µκû

κ “ 0; each of
them contains 10´4´1“5 independent components of Weyl.
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CHAPTER 9

Principle of minimal coupling

Time to also listen to how Einstein himself commented on his field equations: their “geomet-
ric” side he appreciated as “marmoreally beautiful”, whereas the other side describing matter
he assessed as “yet unlovely, wood-made”. He thus indicated that the geometry enters the
equations in a way that almost inevitably stems from the fundamental principles, whereas the
exact role of matter cannot be deduced from anywhere.1 From Einstein’s rating it is obvi-
ous that beauty is subjective,2 but if it is voiced by a theoretician in connection with some
thought construction, then they almost always means the same: simplicity of its basic ideas,
inevitability of how conclusions follow from them, “rigidity” of the resulting system (includ-
ing, in particular, minimum of free parameters), and proportions of its formal image – which
means, in the physics case, mathematical elegance.

General relativity is very much esteemed in these respects (and not only in them); it was
actually its aesthetic appeal which maintained the credit of GR during the first decades while
the experimental support was yet only very restricted. From the equivalence and covariance
principles, the physical laws ensue in a way that is hard to alter without challenging the
whole structure of the theory. The resulting construction only contains three constants which
do not follow from the theory – the speed of light c, the gravitational constant G and the
cosmological constant Λ, the first two of which, however, it is hard to understand otherwise
than as “fixed”. And the formal face of GR, geometry, stands for ideal since ancient Greece.

9.1 The role of curvature revisited
Yet it’s worth to stop here for a while and question the “inevitable ensuing” more carefully.
First, as mentioned several times already, it should be clear that statements about Nature
cannot emanate just from pure deduction. Leaving this epistemological aspect aside, there

1 One has to postulate that Tµν is the right representative of gravity sources (of all such sources besides the
gravitational field itself). After Einstein, various other ways have been suggested how to arrive at the field
equations, but none of them is “from scratch” (of course).

2 What about asbestos, bakelite or polystyrene, for example?
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still remains a considerable non-uniqueness in physical theories, which is being solved by
combination of the “simplicity principle” and – of course – of an experimental testing. In
particular, we already admitted, when discussing “general covariance”, that the physical laws
might in fact look differently than we suggested, without necessarily violating any of the
fundamental principles. The non-uniqueness lies in the role of curvature: since it vanishes in
special relativity, it means that any tensor-type term proportional to curvature might be added
to equations without violating the special-relativity limit of the theory. Actually, in Section
7.3.2, when processing conservation laws for the EM field, we rather dogmatically assumed
that Maxwell equations read, in GR,

Fαβ
;β “ 4πJα , Ftµν;ρu “ 0 ,

but there might appear in them curvature terms in various arrangements, e.g.

Fαβ
;β ` FαβR;β “ 4πJα or Fαβ

;β “ 4πJα ` RαβJβ.

Two levels of response to such doubts are at place at this moment:

• We actually do not only demand a correct special-relativity limit, we demand much more
(Section 1.1.2) – that at every point of curved space-time there exists a reference frame
(the LIFE) with respect to which the theory assumes, locally, the special relativistic form.
Curvature of course vanishes in flat space-time of special relativity, whereas in a curved
space-time it does not vanish locally, so, in order that the equations for matter and non-
gravitational fields satisfy the equivalence principle, their curvature terms have to be mul-
tiplied by something that does vanish locally. A good example is the geodesic-deviation
equation (6.25) where the local effect of curvature vanishes due to the limit vanishing of
the relative position δxµ. On the other hand, the above fictional modifications of the first
Maxwell set do not satisfy the equivalence principle, because their curvature terms do not
disappear in LIFE. This shows the non-trivial demands of the principle of equivalence.

A footnote: Exactly after discussing the geodesic deviation, we mentioned the Mathisson-
Papapetrou-Dixon equations (6.28) describing the behaviour of a small test particle with
rotational spin, as an example of a problem which does not satisfy the equivalence prin-
ciple because their curvature term does not vanish in a LIFE in that case (the Riemann
tensor is multiplied by the spin tensor there, and the latter also does not vanish locally).
In that particular case, we understood that the problem actually rests in the approximation
employing a spinning point-like object, which physically is a nonsense.

• Let us accept we can rest assured that we are able to recognize the acceptable curvature
terms (= those whose effect vanishes in the LIFE). However, what if someone came and
claimed that a certain equation should contain some more (tensorial) curvature terms of
the “acceptable” type? Neither the equivalence nor the covariance principles would be
violated, and there are no other arguments for how exactly curvature should enter physical
phenomena...

To such queries replies the principle of minimal coupling, by saying i) that non-
gravitational physics should be coupled to curvature in a minimal way; loosely speaking, this
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means that curvature should not at all enter local physics – that it should only reveal itself
over finite spatial or temporal scales; and ii) that no terms should be added to the (originally
special relativistic) equations, even not such that would satisfy the i) point, besides those
arising by applying the

“comma-goes-to-semicolon” rule :

when generalising any law from special to general relativity, only change ηµν for gµν and
partial derivatives for covariant ones (plus total derivatives for absolute ones, of course).
Sure that the above example of point-like image of a spinning particle does not satisfy this,
because there curvature does couple to purely local physics (to the point-like defined spin
tensor); and, actually, the above MPD equations cannot be derived from special relativity just
by “comma goes to semicolon”.

It is worth to think it over a bit. Have some non-gravitational physics (electrodynamics,
hydrodynamics, etc.) and study it as an exact problem in GR. “Exact” means that the given
physics (the EM field, the fluid, etc.) affects the metric according to the Einstein equations,
i.e. it curves the space-time. At the same time, the space-time geometry of course affects
the behaviour of the physical system in question (the EM field, the fluid, etc.), and we know
this is also encoded in the Einstein equations, through the conservation laws (and Bianchi
identities). However, the principle of equivalence requires that the physical system is not
locally affected by curvature, that is, if there appear any curvature-dependent terms in the
GR equations governing the system, they have to vanish in the LIFE. And this should be en-
sured by the minimal-coupling prescription. When approaching a theory or an equation in a
Lagrangian way, from a variational principle, the minimal-coupling option translates to a re-
quirement that the Lagrangian does not contain terms where the given non-gravitational field
appears multiplied by curvature. Actually, such product terms would yield, when varied with
respect to the field variables, curvature terms in the corresponding Euler-Lagrange equations.

9.2 The issue of higher covariant derivatives
Still there remains one potentially big issue which can hardly be resolved “canonically”.
Partial derivatives commute, whereas covariant derivatives do not – and their commutator
brings curvature. In the special relativistic equations containing higher partial derivatives,
how to order them before changing them to covariant derivatives? Apparently, this is similar
to the quantum-theory problem of ordering of the (classically commuting) quantities before
changing them for operators.

9.2.1 Electrodynamics in general relativity

As an illustration of the problem with higher derivatives, we give the derivation of the wave
equation from Maxwell equations. In special relativity, one substitutes

Fαβ
“ Aβ,α ´ Aα,β into Fαβ

,β “ 4πJα
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and obtains

Aβ,αβ ´ lAα ” Aβ,β
α

´ lAα “ 4πJα .

Using the comma-goes-to-semicolon rule, however, one obtains two versions which of course
are not equivalent:

Aβ;αβ ´ lAα “ 4πJα , or Aβ ;β
α

´ lAα “ 4πJα ... ? (9.1)

In general, such uncertainties have to be tackled ad hoc. In this special case, one may rely on
the initial equation of the first order, rewrite that in the general covariant form, Fαβ

;β “ 4πJα,
and only then substitute Fαβ “ Aβ;α ´ Aα;β . In such a way, one uniquely arrives at

Aβ;αβ ´ lAα “ 4πJα .

Using the Ricci identity (6.3) to commute the covariant derivatives in the first term,

Aβ;αγ “ Aβ;γα ` Rµ
βαγAµ ùñ Aβ ;αβ “ Aβ ;βα ` Rµ

αAµ ,

we thus obtain

Aβ ;β
α

` Rα
µA

µ
´ lAα “ 4πJα ,

which, after applying the Lorenz condition Aβ ;β “ 0, assumes the form

lAα ´ Rα
µA

µ
“ ´4πJα, (9.2)

where the operator acting as

pldRAq
α :“ lAα ´ Rα

µA
µ

is referred to as the de Rham (vector) wave operator – the general relativistic generalization
of the d’Alembert wave operator l ” gαβ∇α∇β .

The above wave equation clearly does not satisfy the equivalence principle (neither
Ricci tensor nor the four-potential vanish locally), and it also does not satisfy the minimal-
coupling prescription, since it cannot be derived from the wave equation of special relativity
just by changing commas for semicolons. Yet it is a correct wave equation for EM field in
GR. To confirm this, let us show that this equation – and not the one lacking the curvature
term – yields the charge conservation. Should this be true (Jα;α “ 0), the divergence of the
left-hand side would have to be zero. Proceed straightforwardly,
`

lAα ´ Rα
µA

µ
˘

;α
“ Aα;ββα ´ Rα

µ;αA
µ

´ Rα
µA

µ
;α , (9.3)

where in the first term we first commute the last two indices while using the Ricci identity
(6.6),

Aα;ββα “ Aα;βαβ ` Rσα
βαAσ

;β
` Rσβ

βαA
α
;σ “ Aα;βαβ ` Rσ

βAσ
;β

´ Rσ
αA

α
;σ “ Aα;βαβ ,
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and in this we commute the second and the third indices while using the Ricci identity (6.3),

Aα;βαβ “ pAα;βαq
;β

“ pAα;αβ ` Rσα
βαAσq

;β
“ l pAα;αq ` Rσ;β

β Aσ ` Rσ
βAσ

;β .

Employing now the Lorenz condition Aα;α “ 0 and plugging the above to (9.3), the 4 terms
cancel out in pairs and one really obtains zero. It is clear too that zero would not come out if
(9.3) did not contain the two Ricci-tensor terms, i.e. if the wave equation did not involve the
curvature term.

In special relativity, the wave equation is also satisfied by the electromagnetic tensor
itself, as can easily be obtained by divergence of the second set of Maxwell equations (and
using the first set then),

Ftµν,ρu “ 0 ùñ lFµν “ 4πpJµ,ν ´ Jν,µq .

One suspects that also here the shift to GR will bring extra curvature terms, not “covered” by
the comma-goes-to-semicolon rule. Actually,

0 “ pFµν;ρ ` Fρµ;ν ` Fνρ;µq
;ρ

“ lFµν ` Fρµ;ν
ρ

` Fνρ;µ
ρ

“ lFµν ` F ρ
µ;νρ ` Fν

ρ
;µρ ,

where in the last two terms we again commute covariant derivatives according to (6.6) and
use the first Maxwell equation,

F ρ
µ;νρ “ F ρ

µ;ρν ` Rσρ
νρFσµ ` Rσ

µνρF
ρ
σ “ ´4πJµ;ν ` Rσ

νFσµ ` RσµνρF
ρσ ,

Fν
ρ
;µρ “ Fν

ρ
;ρµ ` Rσ

νµρFσ
ρ

` Rσρ
µρFνσ “ 4πJν;µ ` RσνµρF

σρ
` Rσ

µFνσ ,

and then in summing the two Riemann-tensor terms we use the first Bianchi identity to
shorten Rσµνρ ` Rσνρµ “ ´Rσρµν ,

RσµνρF
ρσ

` RσνµρF
σρ

“ pRσµνρ ´ RσνµρqF
ρσ

“ pRσµνρ ` RσνρµqF ρσ
“ ´RσρµνF

ρσ .

Hence, we arrive at wave equation

lFµν “ 4πpJµ;ν ´ Jν;µq ` FµσR
σ
ν ´ FνσR

σ
µ ´ F ρσRρσµν . (9.4)

The curvature terms in the wave equations bring the interesting effect of scattering of EM
radiation on space-time curvature.

A warning concerning F-mu-nu with upper indices

We have already been warning that one should be careful when rising/lowering indices “un-
der” partial derivatives (whereas it is no problem with covariant derivatives). A special ad-
dendum is the case of F µν . Namely,

Fαβ “ Aβ;α ´ Aα;β “ Aβ,α ´ Aα,β , BUT F µν
“ Aν;µ ´ Aµ;ν ‰ Aν,µ ´ Aµ,ν . (9.5)

Let us show it in detail:

Aν;µ ´ Aµ;ν “ gµαgνβpAβ;α ´ Aα;βq “ gµαgνβpAβ,α ´ Aα,βq “
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“ gµα
“

pgνβAβq,α ´ gνβ,αAβ
‰

´ gνβ rpgµαAαq,β ´ gµα,βAαs “

“ gµαAν ,α ´ gµαgνβ,αAβ ´ gνβAµ,β ` gνβgµα,βAα “

“: Aν,µ ´ gµαgνβ,αAβ ´ Aµ,ν ` gνβgµα,βAα “

“ Aν,µ ´ Aµ,ν ´ gµαgνβ,αgβιA
ι

` gνβgµα,βgαιA
ι

“

“ Aν,µ ´ Aµ,ν ` gµαgνβgβι,αA
ι

´ gνβgµαgαι,βA
ι

“

“ Aν,µ ´ Aµ,ν ´ 2gµαgνβgιrα,βsA
ι .

Note that it may actually not be clear what the upper index for partial derivative should mean,
but it is natural to define Aν,µ :“gµαAν ,α, i.e. Bµ :“gµαBα.

9.3 Live with the equations
Hence, after all, the GR equations are not always ensuing clearly and uniquely from funda-
mental principles, even with the principle of minimal coupling added. A plethora of papers
exist on the logical structure of GR (not speaking about still more difficult underlying layers
concerning the “ontological” nature of the metric), where these issues are addressed, possibly
together with suggestions how to supplement the principles in order to make the transfer to
curved-stage physics completely axiomatized. On the other hand, having experienced com-
plications of such efforts, many respected authors finally admit that one has to live with that
(with the non-uniqueness), trying to resolve the remaining queries via physical insight and –
ultimately – via experiment. Regarding the almost miraculous strength and richness of gen-
eral relativity and of the Einstein equations in particular, the classical bible MTW [29] nicely
comments on the above issues, in §17.5., by saying, casually:

“In the beginning axioms told what equation is acceptable.
By now the equation tells what axioms are acceptable.”

9.4 A possible summary of general relativity
Einstein’s field equations are the culmination of the general theory of relativity. Let us try,
now when we have reached this turning point, to briefly summarize its message – now already
in a kind-of axiomatic wording:

• Space-time is a four-dimensional pseudo-Riemannian manifold with the Lorentzian metric
(” Lorentzian manifold), that is, it is a four-dimensional smooth manifold,
– on which it is defined a smooth symmetric tensor field g of the (0,2)-type which is non-
degenerate (i.e., it is invertible, which is equivalent to having non-zero determinant) and
has the `2 signature (equivalently, it may also have ´2 signature, but we adhere to the first
option); and
– whose tangent spaces at different points are connected by Levi-Civita connection induced
by the above metric.
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• The (Einstein’s) equivalence principle holds, that is, there exists at every point a local
reference system (called LIFE) with respect to which all matter and non-gravitational fields
behave in the same way as in special relativity. In other words, there exist a reference frame
in which curvature, locally, does not have any effect on non-gravitational physical laws.

• The principle of general covariance and the principle of minimal coupling hold, that is,
– there are no “absolute elements” in the theory (which are not dynamically coupled to
others); somewhat loosely speaking, this is achieved if there appear no other “space-time
properties” than those derivable from the physical metric
– the physical laws are represented by equations whose form is invariant under coordinate
transformations given by general diffeomorphisms
– of all forms compatible with general covariance, the one is chosen which minimally
differs from its special-relativity version, i.e., which only differs by the change ηµν Ñ gµν
and by “comma goes to semicolon” (see above for possible remaining queries).

• The metric is interconnected with the mass-energy content of space-time through the Ein-
stein field equations (8.4).

9.5 Mathematical layers of space-time
In order for a set to be able to represent the underlying “stage” (the space-time), it has to be
equipped with several layers of structure:

• Topological structure

– It must be equipped with topology, i.e. it has to be a topological space. This is also
supposed to be separable (its topology is supposed to have a countable base).

– It must be a topological manifold, i.e. the topological space has to be Hausdorff and
locally Euclidean.

• Differentiable structure
In order that calculus can be performed on it, it has to be a differentiable (smooth) manifold,
that is, it has to be equipped with a differentiable structure (a complete atlas of smooth
coordinate maps).

• Geometrical structure

– An affine connection has to exist on the manifold (which connects its tangent spaces
at different points, thus defining parallel transport and covariant derivative).

– The manifold has to be a (pseudo-)Riemannian manifold, i.e. a smooth manifold on
which a smooth and non-degenerate metric exists of a chosen signature (Lorentzian
in the case of space-time). The affine connection need not necessarily be tied to the
metric. However, in GR, in follows from the equivalence principle that the connection
has to be compatible with the metric and to have zero torsion, i.e. that it has to be the
Levi-Civita connection.
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Of the above structures, only the geometrical one is subject to “field equations”. The field
equations do not constrain topology, in particular. (And GR also does not “comment” on
differentiable structure, because it considers all coordinate maps acceptable.) Interestingly,
we will see in Section 23.5, in the Lagrangian, variational formulation of the theory, that
besides the field equations themselves, one also obtains the requirement that the connection
be the Levi-Civita connection.

Finally, within “geometry”, one may further distinguish the conformal part which is
given by (or which gives) causal structure (as represented by light cones), plus a scaling
factor which practically is represented by the volume element (thus the metric determinant,
see Appendix A).



CHAPTER 10

Introduction

“Of course, the correct theory of gravitation is general relativity.
And if it isn’t, it certainly should be.”

This opinion is being ascribed to I. Robinson, one of the GR protagonists of the second half of
the 20th century. But the precise author is not important. It is for long already that relativity
has been enchanting by elegance of its geometrical formulation, by an inner consistence
within extremely wide range of physical conditions, and by a minimum of free parameters. It
has been admired as an extraordinary triumph almost exclusively achieved by a single person
– and in particularly heavy circumstances.

However, today it’s already justified to also claim firmly that Einstein’s theory is re-
spected for its extraordinary resistance against experimental falsification. To better put it
positively, GR has anticipated previously unknown effects observed in distant cosmic sources
as well as tiny deviations from Newtonian rules recognized in the weak gravitational field
around us; it predicted black holes about which astronomical data have already brought a
variety of convincing evidence, and, in addition, “there is an ace of all aces up its sleeve”
(by R. Blandford) – the cosmic microwave background radiation as a relict of big bang from
which our Universe sprung according to it. The confidence in the last crucial prediction of
GR – the existence of gravitational waves – was, already before decades, so high that many
experts were asking why to build so expensive giant detectors. Actually, it was so obvious
that pulsars lose energy in exact agreement with the relativistic formula. At the same time,
however, it was clear that the point is not just the direct detection itself, but rather the whole
“gravitational window to the universe”, through which astrophysics could hope to acquire
new, direct information about dramatic interactions of extremely compact objects, as well as
about properties of the very early Universe.

10.1 Gravis
It may seem late for an Introduction, but you will enjoy it better if already knowing :-).
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Of the four fundamental physical interactions, gravitation accompanies us on every
step (and penalizes every stumble). No surprise that the word root gravis, presumedly of
ancient proto-Indo-European origin, has stayed unchanged for millennia. It denotes heaviness
(weight), but also seriousness (significance), gravidity (pregnancy) or difficulty1.

However, gravity is very weak. Actually, the four fundamental physical interactions
– strong nuclear, electromagnetic, weak nuclear and gravitational – have different strengths.
As inferred from their coupling constants or, more accurately, from dimensionless parameters
composed from these constants, the “strengths” (intensities) are in order-of-magnitude ratios

strong : EM : weak : G „ 1 : 10´3 : 10´15 : 10´42 .

Several remarks are at place.

• The nuclear interactions are short-range, they only act within “nucleon size” and then fall
of exponentially, so they must be evaluated within such a micro-scale in order to be non-
zero.

• The EM :G proportion is easy to estimate by dividing the EM and G forces which act
between two electrons,

FG

|FEM|
“

Gm2
e

r2

e2

r2

“
Gm2

e

e2
„ 10´40

(in SI units, it has to be multiplied by 4πϵ, with ϵ permitivity).

• Electromagnetism is thus much stronger than gravitation. And it is long-range like grav-
itation (falling off as 1{r2). But it is not universal. The electric force even has an “auto-
neutralizing” character – electric charges of a given sign do not like to be close to each
other, so the plus and minus charges tend to distribute equally. Due to this, cosmic bodies
are electrically close to neutral. With gravitation, it is just the opposite: all massive bod-
ies gravitationally attract each other, and the more mass has already accumulated at some
region, the more it attracts further mass from the surroundings.

Consequently, the physical picture of the universe is – at least on large scales – almost ex-
clusively determined by the gravitational interaction. The best theory of gravitation still is
the Einstein’s one. Plenty of alternative theories have been developed, but GR still passes
the observational and experimental tests with high accuracy. It is by no means automatic.
C. Will, who already for decades keeps updated his “Was Einstein Right?” summary of GR
testing, wrote in the “Centenary-Assessment” version prepared for the 2015 anniversary:
“Having spent almost half of the century of general relativity’s existence being astonished
by its continuing agreement with observation, I might be permitted a personal reflection at
this point on the future of the subject: It would not at all surprise me if general relativity
turned out to be perfectly valid at all scales, from the cosmological to the astrophysical to the
microscopic, failing only at the Planck scale where one naturally expects quantum gravity to
take over.”

1 In an extreme case, the latter even leads to the grave. We apologize for not having told you earlier.
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Leaving unaddressed the Planck scale only means an incredible range of validity. Al-
ready for decades, a fierce struggle is going on at the border of the Planck scale. Still the
numerous arrays of theorists have yet only achieved partial success in their effort to quantize
gravitation.

10.2 What chiefly is new in general relativity
Chiefly new is the role of the space-time “stage” which hosts the physical events. In other
theories, the properties of this stage are decided a priori, not following from the given theory
or from anywhere at all, and they do not depend on what is happening on the stage. In
Newtonian physics, the stage is decided to be the “absolute space and time”; in special
relativity, it is the Minkowski space-time. In GR, “decided” is only that the stage (the space-
time) is supposed be some 4D Lorentz-type manifold, which just means that the stage is
mathematically sufficiently cultivated for handling the physical quantities properly, plus that
it is equipped with the metric (in order to know how to make scalar product). However,
the space-time geometry remains unspecified, it has to be found as a part of the problem
solution, namely as entangled with the distribution and behaviour of matter which is present
in the space-time. The matter-geometry “entanglement” is encoded in the Einstein equations.

We should once again recall E. Mach at this place, because he was criticising any ab-
solute elements in physical theories – such elements which influence, in a conceptional sense
(but possibly even “physically”), other parts of the theory, but themselves remain unaffected
by the rest of the ideological construction. In particular, Mach was criticising absolute ref-
erence systems, “put there by hand”, stressing that the world should itself provide structures
in terms of which it will be described. As mentioned in Chapter 1, he also deemed inertia
to be such an absolute property, and suggested how to understand it in a relational (perhaps
relativistic?) way. Today, this line of thought is being rendered by the notion of background
independence of a theory.

GR is also new in the description (thus understanding) of the interaction. In Newtonian
theory as well as in electrodynamics, the mutual influence between sources is described by
the force – a vector field defined on a given space-time background. In GR, objects do not act
on each other by “gravitational force” (such a notion actually does not exist in the theory), but
through how they curve the space-time. Thus the term geometrization of the (gravitational)
interaction – the interaction is being communicated by geometry of the “stage” itself, so
there is no need to define any additional structure (the force field). We know already that such
a shift has been possible thanks to the universality of gravitation. It should be emphasized
once more, however, that the geometrical language itself is not the crucial point: actually,
we realized that almost any theory (the Newtonian one, for example) can be re-formulated in
geometrical terms. The crucial point is that in GR the geometry is a dynamical part of the
problem.

10.2.1 What does it mean dynamical?
Several words are often used in GR without proper explanation. We think the most important
of them are local (which however should be understandable: it simply is the opposite of
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global) – and dynamical. The latter is less clear: when saying that the Universe is dynamical,
one means that it is not static, that is changes in time. When saying that the geometry (or
metric) is dynamical, it probably also means that it changes with time. But when claiming
that in GR the geometry is a dynamical part of a problem, it means that it is not absolute in
a sense that it mutually interacts with the rest of the problem rather than being “decoupled”.
When something is not a dynamical part of a theory, it need not mean that it is given a priori,
and it even need not mean that it stays fixed (there may exist some “evolution equations”
for it), but it means that it is not “coupled” (mutually interconnected) with the rest of the
theory. In special relativity, for example, the space-time is not dynamical, because it keeps its
Minkowski character irrespectively of what is happening in it, whereas in GR the space-time
is dynamical – it is entangled with every mass-energy through the Einstein equations.

This little section is to stress that the word dynamical represents the most important
feature of GR. And that it is this sense in which GR is very “Machian”, because its ideal is to
be free of “absolute” concepts, in particular of a fixed space-time background (“background
independence”). The properties of being “absolute” vs. “dynamical” can be more formalised,
but let us rather give a few examples, in order to also distinguish the background indepen-
dence from diffeomorphism invariance (covariance); we follow the excellent book [45] by
N. Straumann (section 3.5):

Have a differentiable manifold and consider three metric (g) theories, all of them co-
variant under 4D real diffeomorphisms (having the same covariance group):

• Rµνκλpgq “ 0
... has no dynamical degrees of freedom, because every solution of this theory is equivalent
to the Minkowski metric (it is Minkowski “modulo diffeomorphism”) – only flat space-time
satisfies this theory (and is thus “absolute” according to it).

• Rpgq “ 0 and Cµνκλpgq “ 0 ,
where Cµνκλ is the Weyl tensor. Recall that the Weyl tensor has three properties: i) it has
the same symmetries as Riemann, plus it is trace-free (in all index pairs), so it has only 10
independent components; ii) it is often called conformal tensor, for it behaves very simply
under conformal transformations of the metric – for g̃αβ “Ω2gαβ (with the conformal factor
Ω2 a scalar function), one has C̃µνκλ “Ω2Cµνκλ; and iii) it vanishes for a conformally flat
metric, i.e. for a metric which differs from the Minkowski metric just by a conformal factor
(and possibly a diffeomorphism).
The above theory thus implies that the metric is conformally flat, gµν “ Ω2ηµν , up to a
diffeomorphism, so the only degree of freedom rests in the scalar field Ω (equation R“ 0
yields the flat wave equation for it). Therefore, in such a theory the metric is again not
dynamical – it is “conformally absolute”.

• Rµν “ 0
... the vacuum (and Λ-free) Einstein equations – involving gµν as a completely dynamical
object.
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10.3 Non-Euclidean geometries
Similarly as it seems insufficient to easily state, at the beginning of special relativity, that at
one May night Einstein realized what it means time and simultaneity (while before it was
clear for ages...), one “obvious” page on curved space-time stage cannot convey anything of
more than two millennia during which Euclid’s Elements “absolutely” ruled the geometry,
impressing as kind of a miracle for the admirers of logical and aesthetic perfection.2 During
which their fifth postulate3 was provoking a query whether it could not be proved from the
remaining four axioms, while finally it turned out that this is not possible and that Eukleides
correctly listed it as independent. This finding came at the beginning of the 19th century,
together with the discovery of consistent geometries where the fifth postulate does not hold –
the non-Euclidean geometries.

As it is clear from correspondence, the non-Euclidean geometry was first – during the
first decades of the 19th century – approached by K. F. Gauss. However, he deemed the topic
too controversial to officially publish anything on it. In 1820-25, a similar finding was made,
independently, by a Hungarian graduate from the Vienna University, later an army worker
J. Bolyai; in 1831 he published an essay on that matter as an appendix to the book of his
father. In the meantime (around 1825), the same result was achieved independently by the
rector of the Kazan University N. Lobachevsky; an official paper about the new geometry
he published in the university journal Kazan Messenger. Specifically, Gauss, Bolyai and
Lobachevsky discovered the surface of constant negative curvature.

Gauss then found quantities which permitted to describe generic surfaces and classify
them in terms of their intrinsic properties (independently of how they appear from outside,
as immersed in a three- or higher-dimensional Euclidean space): the metric and the scalar
curvature (called Gauss’ curvature today) determined by the metric tensor and by its first and
second derivatives.

K. F. Gauss was also present at another, definitive breakthrough: he was a chairman
of the committee for habilitation of G. F. B. Riemann. Riemann did not live to 40, but he
left his name in every area he touched. In his doctorate which he worked out, as an assistant
of W. E. Weber, under Gauss’ supervision, he developed the theory of complex manifolds
known today as Riemann surfaces. Then he started working at the Göttingen University and
devoted his habilitation thesis to the relationship between integrability of a function and the
possibility to expand it into a Fourier series (Riemann conditions...). For the habilitation talk,
he had to prepare three different topics [sic]; two concerned electricity and one concerned
geometry. Gauss selected the last one. On Saturday, June 10, 1854, Riemann gave the lec-
ture “On the hypotheses that lie at the foundation of geometry” which opened a pathway to
curved spaces of arbitrary dimension – the Riemann manifolds. The lecture was successful,

2 Einstein was remembering how, when he was 12, a student of medicine Talmud lent him a book on Euclidean
geometry: “Here were assertions, as for example the intersection of the three altitudes of a triangle in one
point which – though by no means evident – could never-the-less be proved with such certainty that any doubt
appeared to be out of the question. This lucidity and certainty made an indescribable impression on me.”

3 Let a straight line intersect two other straight lines, thus forming two interior angles on both sides. Then the
two straight lines, if extended arbitrarily, meet on that side of the intersecting line where the interior angles sum
to less than two right angles.
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though only Gauss was reported to really enjoy it. Actually, according to H. Weyl, the Rie-
mann’s habilitation essay “was not grasped by his contemporaries, and his words died away
almost unheard (with the exception of a solitary echo in the writings of W. K. Clifford)”.
Looking back, one would also mention E. B. Christoffel who further developed Riemann’s
ideas already in 1860s (the curvature tensor if often called the Riemann-Christoffel one).

Riemann discovered that while the 2D-surface curvature can be fully represented by just
one function (the Gauss curvature), for a 3D space 6 functions are needed and for a 4D space
it is 20 functions; they form the components of the Riemann curvature tensor. In the written
version of the lecture, one can also read: “The space of constant curvature is necessarily
finite, if the curvature is positive, even if arbitrarily small... It is conceivable that within very
small scales the space does not satisfy the axioms of [Euclidean] geometry... Properties which
distinguish the space from other 3D entities have to be derived from experience...”

Actually, it was already from Gauss’ times that ideas began to appear about whether
the real world might have something in common with the new geometry, and that it might be
tested by measurement. “Between Riemann and Einstein” it was most notably W. K. Clifford
who, e.g. in his Cambridge talk “On space theory of matter”(1870), considered that matter
and energy may in fact be symptoms of spatial geometry curved in various ways. Clifford’s
view was kind-of a foretaste to unitary theories of the 20th century (Hilbert, Weyl, Einstein)
which attempted at a unified explanation of natural interactions (the gravitational and the EM
ones, in particular). Their aspirations are by far not forgotten;4 today, it has notably been the
string theory which tries to accomplish such a programme in a different, “microscopic” way.
In the unitary theories, primary is the field, the question being how sources are formed out
of that field. GR keeps the view of a classical field theory where sources and the field are
distinct entities, but the questions of how space-time is deformed by the sources and of how
sources are affected by space-time are coupled. The field keeps its own degrees of freedom,
not fully determined by behaviour of the sources.

Einstein was born exactly 11 days after the death of Clifford. It was his 1907-1915 ef-
fort what definitively interlinked the geometrical properties of space-time with physics which
is taking place in it.

10.4 What chiefly is unusual in general relativity
At the beginning of his route to the new theory of gravitation, Einstein had no clue about
such a link. It was at the end of 1907 when he first formulated the principle of equivalence
and predicted, on its basis, the light bending and the gravitational shift of frequency. In
his Autobiographic notes, he then explained: “Why were another seven [in fact eight] years
required for the construction of the general theory of relativity? The main reason lies in the
fact that it is not so easy to free oneself from the idea that coordinates must have an immediate
metrical meaning.”

Still today, for a student coming with the knowledge of “classical physics” and special
relativity, the main “issue” is the non-trivial geometry of space-time. Not so much because

4 See e.g. [29]: “What else is there out of which to build an ‘elementary particle’ except the geometry? And
what else is there to give discreteness to such an object except the quantum principle?”
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one wouldn’t be able to imagine, after reducing the number of dimensions (i.e., typically on a
curved 2D surface), the objects and rules of the Riemann’s theory, rather it is difficult to link
these abstract notions, via their coordinate or basis representations, to measurable physical
quantities. Namely, in special relativity the coordinate components of tensors do in general
have direct physical sense – typically, if a certain quantity has certain components in some
inertial system, then an observer at rest in that system really measures such values. In GR it
is only exceptionally so; the numbers which coordinates assign to quantities at every point of
space-time need not correspond to the measurements of any observer. The physical meaning
only have invariants which can be computed from the coordinate components using the metric
tensor. However, even these sometimes may not indicate “what is much and what is little”,
because in curved space even invariants may not correspond well to our intuition.

If missing the simplicity of special relativity, it’s good to realize it is not entirely at
place. Things were only simple in Cartesian coordinates (denote them by ξα). Whenever
transforming to curvilinear coordinates (xµ; we will assume they are orthogonal), it is neces-
sary – even without any gravity/curvature – to use the metric tensor

gµν “
Bξα

Bxµ
Bξβ

Bxν
ηαβ

to compute scalar products and (thus) invariants. This is in fact even necessary in the 3D
Euclidean space if one does not use Cartesian coordinates. In classical physics, if the coor-
dinates are orthogonal, this point is usually being solved using the Lamé coefficients given
by

phiq
2

“ δjk
Bξj

Bxi
Bξk

Bxi
.

These correspond to the metric tensor through the simple relations phiq
2 “ gii. For example,

in spherical coordinates pr, θ, ϕq one has gij “ diagp1, r2, r2 sin2 θq, while in the cylindrical
coordinates pρ, ϕ, zq one has gij “ diagp1, ρ2, 1q.

As an illustration, let us recall that the covariant divergence and Laplace operators in
an ordinary Euclidean space read

∇⃗¨A⃗ “
1

h1h2h3

“

ph1h2h3A
1
q,1 ` ph1h2h3A

2
q,2 ` ph1h2h3A

3
q,3
‰

,
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`
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while in the language of the metric tensor, we know they appear as

∇⃗¨A⃗ “
1

?
g
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˘
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Translation: realize that for orthogonal coordinates the metric is diagonal, so

?
g “

?
g11g22g33 “ h1h2h3,

?
g gij Ñ

?
g gii “

?
g

gii
“
h1h2h3
phiq2

.
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10.5 New predictions of general relativity
GR brings two main general predictions: that our physical space-time is curved and that

the space-time is not just a passive “stage”, it actively participates in physical events .

Actually, since possessing its own degrees of freedom, it may even be entirely responsible
for certain happenings (like those induced by gravitational waves). Turning to more specific
novelties now, let us mention black holes, dynamical universe and gravitational waves.

In 1783, a polymath J. Michell published, in Philosophical Transactions, a very natural
consideration: given that the speed of light is finite (it was known thanks to Rømer 1676 and
Bradley 1729) and that, according to the corpuscular theory, gravity should also act on the
light corpuscles, some of the celestial bodies might be so compact (massive and dense) that
the escape speed on their surface would exceed the speed of light. Hence, some of the cosmic
objects – and most likely those of greatest mass! – might be unobservable. Newtonian result
is based on comparison of the kinetic and potential energy. So have a spherically symmetric
body of massM and radiusR, and let a particle of massm be launched just radially outwards
from some radius r. It is very simple: the escape speed reads

1

2
mv2 “

GmM

r
ùñ v2esc “

2GM

r
” ´2Φ ,

so it is larger than c if

2GM

r
ą c2 ðñ r ă

2GM

c2
.

In particular, the “star” is invisible (from infinity at least) if its radius is below that value,
R ă 2GM

c2
. To summarize, if a mass M is concentrated in a spherical ball of radius smaller

than 2GM
c2

, photons emitted from its surface do not fly arbitrarily far. The critical value is
nowadays called the Schwarzschild radius, because in GR it comes out exactly the same
(there, however, the whole semester is needed to derive it). Worth to note, however, that in
the Newtonian picture photons can travel at least somewhat outwards from any radius, only
that from some radii they may not be able to reach arbitrarily far. In GR, on the contrary,
the region below the Schwarzschild radius has totally new properties, unknown from the
Newtonian physics.

The regions below the Schwarzschild radius are called black holes. The gravitational
field is so strong there that even the fastest signal, light, cannot travel outwards; not only
that it cannot escape to infinity, it even cannot move to larger radius at all. Actually, even
the photons emitted “outwards” from anywhere there have to move to smaller radii. When
inside a black hole, everything thus has to descend towards its centre. Therefore, a space-
time singularity occurs there – a point-like or ring-like region where mass density diverges,
and consequently also curvature (infinite tidal forces). Such a singularity resembles the one
occurring, in any classical field theory, in the field quantities evaluated at the very point-
like source (“charge”), i.e., in Φ “ ´GM{r, E “Q{r2, etc. However, there (in Newtonian
gravity or electrodynamics in the Minkowski background), the singularity only concerns the
given field, because that field is not considered to affect the properties of the underlying
space(-time), so one can safely study any other physics at that point. In GR, on the contrary,
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the space-time singularity really means a pathology in the underlying manifold, so it is not
possible to pursue any physics there.

Gravitational waves are ripples in the gravitational field (= in the space-time geom-
etry) which can transport energy between distant areas. Again, they may (correctly) be re-
garded as a counter-part of the EM waves, yet in a standard-electrodynamics picture the
latter do not affect the underlying (Minkowski) space-time, so they are not being felt by any
non-EM physics possibly happening in a given region. On the contrary, the gravitational
waves represent oscillation of the underlying “stage” itself, so any physics which may hap-
pen there does feel them. Just to be on the safe side, it should be stressed that within an
exact, self-consistent GR view, both the EM and gravitational waves carry energy (and thus
deform space-time), so they actually induce each other (if there is any EM field present, of
course). Gravitational waves were first predicted in 1916 when Einstein tackled his linearised
equations describing a weak gravitational field.

Finally, the idea that the Universe is dynamical, i.e. that its properties vary in time, has
both the observational and theoretical history, starting about when GR was born. V. Slipher,
G. Lemaître and E. P. Hubble measured, between 1915 and 1929, that most other galaxies
recede from our one (better to say, from each other), evidencing the cosmic expansion. On the
theoretical side, the first example of dynamical solution was obtained by W. de Sitter in 1917,
but the first thorough account of basic, homogeneous and isotropic cosmological scenarios
including matter as well as cosmological constant was given by A. Friedmann in 1922.

Not that the above novelties would have been welcome enthusiastically. At the time
when GR was born, the image was preferred of a static Universe infinite in space as well as
in time, where “suns shine for ever” and nothing is changing. And, suddenly, there came a
dynamical Universe, perturbed by gravitational waves and hosting matter prone to a collapse
to black holes, in whose interiors it is being totally destroyed in singularities... In spite of
these uncomfortable predictions, the theory flattered the theorists. Even S. Weinberg writes
in [52]: “I believe that it was this intrinsic attractiveness that preserved physicists’ belief in
general relativity during the decades when the evidence from successive eclipse expeditions
continued to prove so disappointing.” Apparently, first it worked for Einstein himself; on
February 8, 1916, he wrote to A. Sommerfeld: “Of the general theory of relativity you will
be convinced once you have studied it. Therefore I am not going to defend it with a single
word.”

However, besides the GR’s appeal, Einstein’s faith was – already a week or two before
delivering the final version of the theory – strongly supported by calculation of the perihelion
precession of Mercury. And it is also not fully true that the eclipse expeditions brought but
disappointment...

10.6 Classical tests of general relativity
10.6.1 Advance of pericentre

It is known from Newtonian celestial mechanics that the bound orbits in the potential ´GM{r
are closed ellipses, whereas if the potential is perturbed by some other term, the ellipses rotate
in space. If the field is stronger thanGM{r2, the particle is more attracted towards the centre,
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which results in an advance of the ellipse’s pericentre (shift in the sense of orbital motion).
This is the case in GR, so one might expect such an effect to occur. However, if speaking
of our Solar system, the effect should be very tiny, and it would also be necessary to first
subtract purely Newtonian perturbations due to other planets plus, possibly, that due to the
oblateness of the Sun. A sufficiently accurate calculation was first performed by U. J. Le
Verrier in the middle of the 19th century; it showed that 43 arc seconds per century [sic]
cannot be explained within the Newtonian theory.

Einstein had been thinking about this effect since his first steps towards general relativ-
ity at the end of 1907. From that time, he was testing on it consecutive versions of his theory.
However, only on 18th November 1915 he showed to the Prussian Academy definitively that
the Newtonian limit to GR explains the tiny 43 seconds with great accuracy.5 Einstein’s cor-
respondence reveals that it was this particular result which probably brought him the deepest
professional satisfaction ever. He experienced heart palpitations and on 17th January 1916 he
confirmed to P. Ehrenfest: “I was beside myself with joy and excitement for days.” We will
enjoy this result in Section 17.1.2.

10.6.2 Bending of light, and its frequency shift

Already before Einstein reached his final field equations, there appeared serious efforts to
find whether, during a Solar eclipse, the light of distant stars bends – and how much it bends.
The measurements organized for October 10, 1912 (at Córdoba, Argentina), were – like quite
some others which were to come – spoiled by bad weather. [The crew already included A. S.
Eddington.] At the following occasion, on 21st August 1914, a team of E. Finlay-Freundlich,
also supported by Einstein, prepared for observation at Crimea, but because the First World
War broke out, they were for weeks detained in Odessa on the suspicion of espionage, with
instruments confiscated. [100 years later, they would likely have ended worse.]

Weather was also an issue during the successive eclipse, on 29th May 1919, yet it still
permitted two teams lead by A. S. Eddington and F. W. Dyson, located at Sobral (Brazil) and
at Príncipe island (Gulf of Guinea), to make several photographs. These revealed that the light
rays from distant stars, when passing by the Sun on their way to us, are being bent by Sun’s
gravity according to then novel Einstein’s theory, rather than according to the Newtonian
gravity and corpuscular theory of light (and rather than not being bent at all). For decades,
this result was being quoted then as inconclusive or even biased, but recent re-analysis of the
measurements confirmed high quality of the original expedition judgements [22]. The result,
officially announced on 6th November 1919, was a crucial launch pad for GR. The New York
Times was writing “Lights All Askew in the Heavens”, “but Nobody Need Worry”, and that it
had verified “the prediction of Dr. Einstein, Professor of physics in the University of Prague”
(which had no longer been true for more than 7 years then). When Einstein came to visit
America, he was welcome as a film top star.

Among “classical” experiments, we should also mention the measurements of the light’s
frequency shift. After a series of failures in the early years of GR (often connected with the

5 At that time, the theory still was not finished: “the last fallacies in this struggle” Einstein corrected by the
following Thursday, but these did not affect the Newtonian limit.
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name of enthusiastic E. Finlay-Freundlich), R. V. Pound and G. A. Rebka were finally able to
detect the effect in the Earth’s gravitational field in 1960. The experiment was made in a 22.6-
metre high tower, which corresponded to the relative frequency shift |∆ν{ν|

.
“ 2.46 ¨ 10´15

(!) – see Chapter 4. Recall that the prediction follows just from the equivalence principle,
so no “GR” (the field equations) is actually necessary; the result thus mainly was a technical
achievement.

10.6.3 Dynamical Universe

Another triumph had been coming in the meantime. Though Einstein himself preferred –
because of his Machian view of inertia, seeming staticity of the Universe as well as for curva-
ture reasons – a closed static cosmological model, his field equations clearly prefer dynamical
scenarios. Within the period 1915–1929, the spectroscopy of distant galaxies revealed that
the Universe is expanding (V. Slipher, G. Lemaître, E. P. Hubble). In parallel (in 1922 and
1924), A. Friedmann wrote two papers where general relativistic homogeneous and isotropic
cosmologies were introduced thoroughly, with Einstein’s static universe only appearing as an
(unstable) marginal case.

10.6.4 Cosmic microwave background radiation

Expansion immediately evokes further question: what was in the past? If playing the cosmic-
expansion film backwards, at a certain moment one arrives at a very dense state. From the
1940s, G. Gamow argued that for thermodynamic reasons the Universe had to also be very
hot then, so hot that radiation and matter were coupled in equilibrium. After the temperature
fell below a certain value due to the expansion, radiation decoupled from matter and, from
those times, it should be “left” in the Universe, just cooling down gradually and not any more
interacting with matter effectively. Subsequently, the properties of such a relict radiation were
also estimated by others, most notably by R. Alpher and R. Herman.

Already in 1941, A. McKellar effectively discovered this radiation (at 2.3K) in stellar
spectroscopic data, but interpreted it as a rotational temperature of interstellar molecules. In
the 1950s, several detections were reported by experiments really focused on searching for the
relict microwave background, but they apparently were not deemed convincing enough. In
1964, A. Penzias and R. Wilson were looking for something completely different – a suitable
frequency range for a radio communication by means of bouncing off the metalized spherical-
baloon satellites (project called Echo). After fighting, for some time, with “excess of antenna
temperature at 4080 megacycles per second” (meaning an extra radiation of unknown source
at 3.5K), Penzias was informed by his friend B. F. Burke about a preprint where J. Peebles
was discussing the possibility of detecting the cosmic microwave background radiation
(CMBR) left over from the hot birth of our Universe (the “big bang”). Actually, J. Peebles
together with R. H. Dicke and D. Wilkinson were just at the same time – and just 60km away
from Penzias & Wilson’s antenna – preparing to measure the expected microwave relic of big
bang. The two groups were thus put together and the discovery was out. By the time when
Penzias and Wilson were awarded Nobel Prize (in 1978), Gamow had already been deceased
for 10 years. Yet theorists do not forget about his prediction.
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10.6.5 Black holes

Though leading the light-bending 1919 expedition and though being the author of the first
English textbook on GR, the picture of gravitational collapse was already too much for Ed-
dington. When, due to the Chandrasekhar’s calculation of the maximum mass which can be
supported by degenerate fermion gas (1930), such a picture ceased to be just mathematical
scenario, Eddington protested: “I think there should be a law of Nature to prevent a star from
behaving in this absurd way!” He also added more technical arguments, but these gradually
turned out to be wrong.6 In 1939, J. R. Oppenheimer and H. Snyder calculated, exactly, the
general relativistic gravitational collapse of a spherically symmetric ball of dust. Yet of much
more concern were explosions then, so the study of collapse was postponed.

In the astronomical community, black holes remained an extravagant topic until the
1970s. Despite the “golden years” of black-hole theory (1963-1974, say), eventually it was
thanks to the astronomical discoveries that this status came to an end. X-ray sources were
discovered in 1962, quasars in 1963 and pulsars in 1967. Before long, the unprecedented
luminosity of quasars was connected with accretion onto black holes, pulsars were identified
with fast rotating magnetized neutron stars, and many of the X-ray sources turned out to be
located in binary systems containing a black hole or a neutron star. The ultracompact objects
of GR quickly spread to the astrophysical literature.7

6 The controversy between Eddington and Chandrasekhar was quite harsh. After some years, they met in
Cambridge. At dinner at the high table Chandrasekhar, Eddington, Dirac and Maurice Pryce were seated to-
gether. Chandrasekhar reminiscences follow: Pryce expressed surprise at seeing me and asked me whether I
would join them in discussion with Eddington after Hall on the matter of relativistic degeneracy. After Hall,
we adjourned to Pryce’s room in Neville’s Court. The discussion began with Pryce trying to tell Eddington his
version of Eddington’s arguments against relativistic degeneracy, so that Eddington could be satisfied that he,
Pryce, understood Eddington’s arguments. After Pryce had completed his narration, Eddington remarked that
Pryce’s account was entirely fair and accurate, and asked, ‘What was the argument about? Pryce turned to
Dirac and asked him, ‘Did you agree with any of the things I have said?’ Dirac said, ‘No.’ Pryce added, ‘I do
not either.’ Eddington became very angry – in fact, it was the only occasion when I saw him really angry. He
got up from his chair, walked back and forth, and said, ‘This matter is not for joking!’ He went on finding fault
with Pryce’s argument even though he had agreed with it a moment earlier and, for the next hour of so, it was
Eddington’s monologue. Next day, after Hall, Eddington came up to me and said that he was very disappointed
that Dirac did not seem to understand the implications of his own relativity theory of the electron. I did not
assent or dissent with Eddington’s remark but asked instead, ‘How much of your fundamental theory depends
on your ideas on relativistic degeneracy?’; He replied, ‘Why, all of it!’. Since I did not react to that remark, he
asked me why I had asked the question. My response was, ‘I am only sorry’ – not a polite remark to have made
but by that time I was really enraged with Eddington’s supreme confidence in himself and his own ideas.

7 That year was not only a milestone due to the discovery of quasars, but also due to the discovery by R. P.
Kerr of an exact metric describing a vacuum space-time containing a stationary (rotating) black hole. At the
end of 1963, the 1st Texas Symposium on Relativistic Astrophysics was thus organized in Dallas in order to
link the efforts of relativists and astrophysicists. In his book [48], K. S. Thorne recalls the atmosphere of that
“crossover”: “The astronomers and astrophysicists had come to Dallas to discuss quasars; they were not at all
interested in Kerr’s esoteric mathematical topic. So, as Kerr got up to speak, many slipped out of the lecture hall
and into the foyer to argue with each other about their favorite theories of quasars. Others, less polite, remained
seated in the hall and argued in whispers. Many of the rest catnapped in a fruitless effort to remedy their sleep
deficits from late night science. Only a handful of relativists listened, with rapt attention. This was more than
Achilles Papapetrou, one of the world’s leading relativists, could stand. As Kerr finished, Papapetrou demanded
the floor, stood up, and with deep feeling explained the importance of Kerr’s feat. He, Papapetrou, had been
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The “golden years” of black holes have not in fact ended yet. These objects have been
most probably recognized in most of the galactic nuclei (including that of our Galaxy) and
in many X-ray sources. In 2015, a new, high-mass type of stellar-size black holes has been
discovered thanks to the gravitational waves. In 2019, a first-ever image of a black-hole
silhouette was provided by radio-interferometric study of the supermassive black hole in the
nucleus of the M87 galaxy. A similar image, or even a video, of our-nucleus black hole (Sgr
A˚ source) is awaited.

10.6.6 Gravitational waves

In 1916, Einstein developed a linearized version of his theory, arriving at the wave equa-
tion for a deviation of the metric from the Minkowski form. He also derived the famous
quadrupole formula for a power generated by a source in the form of gravitational waves.
The topic has experienced long evolution vacillating between doubts (also of Einstein him-
self) and keen attempts. Finally, after a long and extensive effort which started at the begin-
ning of 1980s, the first gravitational signal was detected in 2015 by interferometric detectors
of the LIGO-VIRGO collaboration. (The leading personalities of the effort – B. C. Barish, K.
S. Thorne and R. Weiss – were awarded the Nobel Prize in 2017.) The detection was inter-
preted as generated by inspiral and merging of two black holes of about 30Md. The detected
pulse evidenced the most energetic event ever observed, with about 3Mdc

2 turned into the
waves in fraction of a second, producing 3.6 ¨1049 W of peak power in the last milliseconds
(which was estimated to exceed 50 times the combined radiative power of all the stars in
the observable universe).8 As of 2020, an event with even 7.6Mdc

2 energy output has been
recorded, and also one or two events which were interpreted as produced by the merger of
two neutron stars (with not yet clear nature of the resulting object).

10.7 Application range of general relativity
However, in most astrophysical situations the GR deviations from Newtonian predictions are
very small, so Newton’s theory remains a sufficient tool. There are three exceptions:

• Regions of very strong and non-homogeneous gravitational field, typically occurring (per-
manently) in the vicinity of extremely compact objects, such as black holes or neutron
stars.

trying for thirty years to find such a solution of Einstein’s equation, and had failed, as had many other relativists.
The astronomers and astrophysicists nodded politely, and then, as the next speaker began to hold forth on a
theory of quasars, they refocussed their attention and the meeting picked up pace.”

8 Were you more used to ergs per second, the relation reads 1 kW“1010ergs{s. Cannot resist a reminiscence:
some years ago, I (O.S.) was reporting about my master thesis on a seminar of our class. The seminar leader
(our lecturer J.B.) brought a paper and a pen as usual, but was not writing down anything then. When speaking
about power of quasars, I used ergs/s and added the above conversion relation. J.B. suddenly picked a pen
and made a note, asking me to repeat the relation once more. We were laughing, but he responded, seriously:
“Always good to learn something new.”
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• Space-time in a very large scale, i.e. cosmology. Namely, even if deviations from the
Euclidean/Minkowskian geometry are negligible in local scales, the large-scale character
of the manifold may be totally different from the flat case.

• Situations with significantly time-variable gravitational field, as e.g. in the gravitational
collapse or in gravitational waves. This can be expected from the fact that the Newtonian
field equation ∆Φ“4πρ contains no time derivatives at all.

Where, on the other hand, lie the limits of applicability of the “classical” (non-quantum)
GR? These are given by such a small scale on which the classical notions of space (distance)
and time cease to have good sense, because fluctuations of the space-time geometry are no
more negligible. An order-of-magnitude estimate of that scale is given by

lPlanck :“
a

Gℏ{c3
.
“ 1.6 ¨ 10´33cm ... Planck length , (10.1)

tPlanck :“ lPlanck{c
.
“ 5.4 ¨ 10´44s ... Planck time . (10.2)

These “quanta of space and time” are usually incomparably smaller than resolution in which
it is necessary to address problems. The enormous gap between the nuclear scale (1 fermi“

10´13cm) and the Planck scale incites discussions whether it is reasonable, in looking for the
quantum theory of gravitation, to rely on standard tools such as the quantum field theory.
On the other hand, the Planck mass is very large. It is such mass whose reduced Compton
wavelength equals the Planck length,

ℏ
Mc

“

c

Gℏ
c3

ùñ M “
a

ℏc{G .
“ 2.2 ¨ 10´5g :“ MPlanck . (10.3)

Finally, the Planck density naturally follows as

ρPlanck :“
MPlanck

l3Planck
“

c5

G2ℏ
.
“ 5.2 ¨ 1093g{cm3 . (10.4)

This is really an enormous number: the largest density which “usually” appears in physics is
the nuclear density „ 2 ¨1014g{cm3 (present in atomic nuclei and, macroscopically, in neutron
stars). It can be concluded from here that general relativity is valid under extremely broad
range of physical conditions; it only ceases to be adequate in the closest vicinity of what it
regards as space-time singularities – in particular, in the first 10´43 second after the big bang
and in the very final stages of gravitational collapse.



CHAPTER 11

Lie derivative
and space-time symmetries

In order to properly enjoy Einstein’s equations and their solutions, it is worth to insert a
chapter on Lie derivative which is the key to space-time isometries (“symmetries”). Besides,
before addressing this goal, we will first enjoy another type of transport (the transport along
vector fields), different from the parallel transport we know from one of the first chapters.

We began the chapter on parallel transport by stressing the need to know how to trans-
port, reasonably, quantities living in (or acting on) tangent spaces of the manifold (i.e. ten-
sors), between different manifold points. A default example when such a transport is neces-
sary is a derivative, where, according to basic definition, a given quantity has to be subtracted
after evaluation at two different points, and that is not possible without first transporting the
two “values” to the same point, because on a curved manifold the tangent spaces at different
points are different, so the direct subtraction is not a well defined operation. From the pic-
ture of “keeping direction”, we derived the parallel transport as one possible answer to the
transport problem. The corresponding derivative operation is the covariant derivative. Here
we derive another possible transport of tensorial quantities, and the corresponding derivative.
It is more primitive in the sense that it does not require any special structure on the manifold
(whereas the parallel transport requires affine connection).

A simple image first. In chapter on curvature, we physically understood the Riemann
tensor thanks to the equation of geodesic deviation. There, we considered a congruence of
time-like geodesics, given by diffeomorphism xµ“xµpl; τq, where the parameter l identified
the geodesics while the parameter τ specified where on a given geodesic one is. It’s worth
to realize again that for such a construction one needs affine connection (for geodesics as
well as for Riemann); later in the geodesic-deviation section, we also needed the metric in
computing scalar products. Imagine now a bare smooth manifold, not necessarily equipped
with any other structure (it need not be a pseudo-Riemannian manifold). Still there always
exists one simple way how to transport quantities: in every smooth manifold, there exist
congruences of curves, and the quantities can be transported along them, including those
which live in tangent spaces.
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134 11. LIE DERIVATIVE AND SPACE-TIME SYMMETRIES

11.1 Flowing along congruences of curves
So let us have some congruence given by diffeomorphism xµ “ xµpl;λq parametrized by λ;
the latter is a generalization of proper time τ which we used in geodesic deviation, while l
again “labels the curves”, i.e. orbits of the mapping. The mapping is supposed to cover the
whole manifold, or a certain region we are interested in. The diffeomorphism maps from
some real intervals of l and λ to the manifold (which in coordinates means to R4). Recall
that diffeomorphism is one-to-one and smooth, together with its inverse; in such a case, each
point is passed through by exactly one curve (the curves do not intersect and “fill” the whole
region under study).

Imagine now to shift, along any of the curves (any l), by some finite interval of λ, call
it ∆λ. Such a shift represents a different diffeomorphism, now mapping between manifold
points; call it ϕ:

ϕp∆λq : xµpl;λq ÝÑ xµpl;λ ` ∆λq for any real l, λ,∆λ .

Shifts by various possible ∆λ along a given curve (given l) form a one-parameter group of
diffeomorphisms (parameter is the increase ∆λ). Actually,
i) by composition of two shifts, one again gets a shift represented by a given type of diffeo-
morphism: if ∆λ “ ∆1λ ` ∆2λ, then, for any l and λ (we do not write l explicitly)

xµpλ ` ∆λq ” ϕp∆λqrxµpλqs “ ϕp∆2λq tϕp∆1λqrxµpλqsu “ ϕp∆1λq tϕp∆2λqrxµpλqsu ,

ii) the shifting is surely associative (and it is also commutative),
iii) the identity mapping (zero shift) is obtained, for any l and λ, by taking ∆λ“0,
iv) the inverse mapping (reverse shift) is obtained, for any l, λ and ∆λ, by taking ´∆λ.

In analogy with motion along fluid streamlines, such a diffeomorphism group is being called
a flow. There is a unique correspondence between the congruence (the “streamlines”) and its
tangent field

ξµ :“
dxµpl;λq

dλ
,

so one also speaks of the flow of a vector field; the vector field ξµ is the generator of the
flow. (We might actually have started from considering a smooth vector field and only then
draw the congruence as given by its integral curves, and thus arrive at the flow.)

How to naturally transport quantities along such a flow? As expected, scalar functions
will be transported in such a way that, for any curve (l), any λ and any ∆λ, their value at
xµpl;λ ` ∆λq be identical to the “initial” value at xµpl;λq. The transport of tensors requires
a bit more reasoning, but the picture remains simple.

11.2 Mappings of tangent spaces induced by the flow
Having a flow along some congruence in a manifold, i.e. knowing how to transport points,
one also finds easily how to naturally transport objects living in tangent spaces. Imagine to
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Figure 11.1 On a smooth manifold, integral curves to every smooth vector field ξµ form a
congruence xpl;λq along which a one-parameter group of diffeomorphisms (a flow of the field)
exists. It shifts the manifold points, xµpl0, λ0q Ñ xµpl0, λ0 ` ∆λq, thus also inducing a natural

way how to transport geometrical objects. Vectors (V µ), for example, transport as tangent vectors

to smooth curves (here denoted as zpλ; ℓq). The vector given by the field value at a certain point
(blue) differs in general from the vector dragged there from elsewhere by the field flow (green). On

this difference rests the Lie-derivative. [Background image by Andreas Kuehn @ Getty Images.]

have some vector at some particular point. Take any smooth curve such that the vector is its
tangent vector at that point.1 Use the selected flow to shift that curve by some chosen ∆λ, i.e.
shift every its point by applying the diffeomorphism xµpl;λ`∆λq. The transported vector is
given by tangent to the transported curve. And, the transport of any covector from that point

1 This curve does not belong to the congruence, it is given – locally – by the vector one wants to transport.
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is determined by requiring that the action of that covector on any vector at the initial point
yields the same number as the action of the transported covector on the transported vector.
Let us write it down.

11.2.1 Transport of vectors

Given the flow ϕp∆λq and a vector V µ at some point xα0 :“ xαpl “ l0;λ “ λ0q, denote
by zµpλ0; ℓq a certain curve to which V µ is tangent, with zαpλ0; ℓ “ 0q ” xα0 . The vector
transported to xα :“ xαpl0;λ0 ` ∆λq is defined by tangent to the transported curve, i.e.

V µ
pxα0 q “

dzµpλ0; ℓq

dℓ

ˇ

ˇ

ˇ

ˇ

ℓ“0

ùñ V µ
pxαq :“

dzµpλ0 ` ∆λ; ℓq

dℓ

ˇ

ˇ

ˇ

ˇ

ℓ“0

, (11.1)

where zµpλ0 ` ∆λ; ℓq is the curve obtained by transport of zµpλ0; ℓq along the congruence
xµpl;λq by ∆λ. The above mapping of vectors is called push-forward (along a given flow).
Notice that of the curve zµpλ0; ℓq one has to transport at least a small neighbourhood of ℓ“0,
so, contrary to the transport of scalars for which a single curve xαpl “ l0;λq suffices, the
transport of vectors really needs a congruence.

Note that the parameter of the curve zαpλ0; ℓq determined locally by the vector V µ we
denoted by ℓ, which should have suggested that l might in principle be used in this role. Sure,
l would not be a good parameter if V µ was parallel to ξµ, but that case is anyway trivial.

11.2.2 Transport of covectors

Consider now, at our starting point xα0 ” xαpl0;λ0q, some covector Cµ. Its action on any
vector V µpxα0 q yields a real number, Cµpxα0 qV µpxα0 q. The covector transported to xα ”

xαpl0;λ0 ` ∆λq by the flow is defined so that its action on the corresponding transported
vector yields the same number as at the starting point, i.e.

@ V µ
pxα0 q : CµpxαqV µ

pxαq “ Cµpxα0 qV µ
pxα0 q . (11.2)

Now we know how to transport any tensor, since tensors are multilinear mappings
acting on vectors and covectors and returning, at every point, a number as the result.

11.2.3 Geometrical remark

The mappings between tangent spaces are in fact induced by any (smooth) mapping on a
manifold (or between different manifolds), it need not be a diffeomorphism. The difference is
that a generic mapping need not be invertible, so one then has to be careful in which direction
such and such quantity can be transported. It can easily be seen graphically: have some
smooth mapping ϕ from M to N (the image is more distinct if considering two manifolds,
but it may be two regions of the same manifold, or M ” N , of course), and some scalar
functions on each of them (f and g, respectively),

R f
ÐÝ M

ϕ
ÝÑ N

g
ÝÑ R .
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Apparently, it is possible to compose g˝ϕ and thus make a new function onM , different from
f , whereas the opposite suggestion, f ˝ϕ´1, is not guaranteed since ϕ´1 need not exist. In the
former, always existing possibility, the domain of the function (g) originally defined on N is
extended to M thanks to ϕ, so g is factually transported in the direction opposite to ϕ. Such
an induced mapping is being called pull-back (a mapping cotangent to ϕ; standard notation is
ϕ˚). On the other hand, vectors are transported as tangents to curves, so crucial is to transport
the respective curve, which means to transport its points, thus direct mapping ϕ is involved
and the resulting, tangent mapping is being called push-forward (denoted ϕ˚). Covectors
are transported on the basis of giving numbers on vectors, which leads to the transport of a
function, so they are effectively pulled back as well.

However, if the mapping represents a differentiable and invertible flow (diffeomor-
phism), any tensor can be transported in both directions.

11.3 Lie derivative
Lie derivative assumes one has such a flow and employs the above transport in an infinitesimal
version (thus we will use ϵ instead of ∆λ for the parameter shift). Here the idea:

• have some congruence xµpl;λq and its generating smooth vector field ξµ :“ dxµpl;λq

dλ
;

denote by ϕpϵq the corresponding diffeomorphism xµpl;λq ÝÑ xµpl;λ ` ϵq

• take a quantity (a general tensor field) you wish to differentiate, call it T (indices omitted),
and select, arbitrarily, a certain point where to perform the differentiation; let it correspond
to the point xα0 :“ xαpl0;λ0q of the congruence

• take T at xα0 ” xαpl0;λ0q and at xα :“ xαpl0;λ0 ` ϵq, with ϵ small; no transport yet!

• in order to compare the two at the point xα0 , take the tensor at xα and transport it, against
the flow, to xα0 ; let us denote this symbolically as T pxα0 Ð xαq: in the case of scalars,
covectors and covariant tensors, it is natural to interpret it as a pull-back, T pxα0 Ð xαq “

ϕ˚pϵqrT pxαqs, while in the case of vectors and contravariant tensors, it is natural to interpret
it as an inverse push-forward, T pxα0 Ðxαq “ ϕ˚p´ϵqrT pxαqs ” ϕ´1

˚ pϵqrT pxαqs

• compute the difference between T transported to xα0 from xα and the “actual” value of T
at xα0 ,

£ξT :“ lim
ϵÑ0

T pxα0 Ðxαq ´ T pxα0 q

ϵ
. (11.3)

By the above diffeomorphism-induced transport, one spreads the given quantity over the man-
ifold in a way which is “natural under the given flow”. Hence, the Lie derivative quantifies
how such a natural “standard” deviates, in the given direction ξµ, from the actual course of
the quantity (supposed to itself exist as a field).
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11.3.1 Index formulas for the Lie derivative

Let us apply the above generic recipe to quantities of particular types. It will be useful to
realize that the shift now is infinitesimal, so we may write, from the equation for the tangent
vector field ξµ,

ξµ “
dxµpl;λq

dλ
ùñ xµpl0;λ0 ` ϵq “ xµpl0;λ0q `

dxµpl0;λq

dλ

ˇ

ˇ

ˇ

ˇ

λ0

ϵ ` Opϵ2q

which in the abbreviating notation reads

xµ “ xµ0 ` ϵ ξµpxα0 q ` Opϵ2q .

Consider first a scalar function, f . For it, the transport term in (11.3) means to take
fpxαq and pull it back to xα0 in such a way that it has there the same value, that is,

T pxα0 Ðxαq ” ϕ˚
pϵqrT pxαqs ÝÑ ϕ˚

pϵqrfpxαqs ” fpxαq .

Using then the above expansion of the infinitesimal diffeomorphism xµ0 Ñ xµ, correspond-
ingly to which any function expands as

fpxαq “ fpxα0 q ` f,µpxα0 qpxµ ´ xµ0q ` O
`

|xµ ´ xµ0 |
2
˘

“ fpxα0 q ` ϵ pf,µξ
µ
qpxα0 q ` Opϵ2q ,

one finds that the Lie derivative of a scalar function along a vector field ξµ is given by its
directional derivative along that field,

£ξfpxα0 q “ lim
ϵÑ0

fpxαq ´ fpxα0 q

ϵ
“ lim

ϵÑ0

ϵ pf,µξ
µqpxα0 q

ϵ
, i.e. £ξf “ f,µξ

µ . (11.4)

Recall the definition of push-forward now: it says that vectors are transported as tan-
gents to curves. In the special case of the flow-generating field ξµ itself, every such curve
is automatically transported so that its tangent remains parallel to the field, so the transport
simply yields ξµ at the new point. For a vector (V µ), however, the transport term in (11.3)
is interpreted as a push-forward of the vector from xα to xα0 by interval ´ϵ (or inverse push-
forward by `ϵ),

T pxα0 Ðxαq ” ϕ˚p´ϵqrT pxαqs ÝÑ ϕ˚p´ϵqrV µ
pxαqs .

For ξµ itself, the formula (11.3) thus yields

p£ξξ
µ
q “ 0 ... a tautology actually pξµ behaves along itself as it behavesq .

Consider now an arbitrary covector Cµ and an arbitrary generating field ξµ. Since ξµCµ
yields a function, its Lie derivative is

£ξpξ
µCµq “ pξµCµq,νξ

ν
“ ξµ,νCµξ

ν
` ξµCµ,νξ

ν ...
µØ ν

“ ξµ pCν,µξ
ν

` ξν ,µCνq ,

while, on the other hand, we can express the result using the Leibniz rule,

£ξpξ
µCµq “ p£ξξ

µ
qCµ ` ξµp£ξCµq “ ξµp£ξCµq .
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Comparing the two results and regarding that ξµ has been arbitrary, we see that the Lie deriva-
tive of covectors should read

p£ξCµq “ Cν,µξ
ν

` ξν ,µCν . (11.5)

Sorry, this equation is WRONG (or it may be wrong at least)!2 The “tautological” case of ξµ

is really special and one has to be careful. Look at the first result for £ξpξ
µCµq and notice the

term ξµCν,µξ
ν : because of the symmetric term ξµξν , one could have put there, without any

change, Cµ,ν instead of Cν,µ – but these expressions are not equivalent!
However, the above derivation can be employed for one special subclass of covectors –

gradients of functions (Cµ“f,µ). Actually, for those, Cν,µ”f,νµ is symmetric by itself, so its
multiplication by ξµξν does not cancel any information. Substituting above, we thus have

£ξpf,µq “ f,νµξ
ν

` ξν ,µf,ν .

But this exactly equals gradient of the Lie derivative of f ,

p£ξfq,µ “ pf,νξ
ν
q,µ “ f,νµξ

ν
` f,νξ

ν
,µ ,

so we observe that

£ξpf,µq “ p£ξfq,µ . (11.6)

(This in fact is a special consequence of a more general truth that pull-back commutes with
gradient.)

The formula for vectors is now easy, because we know how to differentiate functions
and their gradients. Hence, for any vector V µ, any function f and any field ξµ, we have

£ξpV
µf,µq

1
“ p£ξV

µ
qf,µ ` V µ£ξpf,µq “ p£ξV

µ
qf,µ ` V µ

pf,νµξ
ν

` ξν ,µf,νq

2
“ pV µf,µq,ν ξ

ν
“ V µ

,νf,µξ
ν

` V µf,µνξ
ν .

Comparing the two expressions, the double-derivative terms cancel out and, after factoring
out f,µ (exchange the names of indices in V µξν ,µf,ν), we arrive at

p£ξV
µ
q “ V µ

,νξ
ν

´ ξµ,νV
ν

“ rξ, V s
µ

“ ´rV, ξs
µ

“ ´p£V ξ
µ
q . (11.7)

This result is worth memorizing: the Lie derivative of a vector field with respect to another
vector field is given by Lie bracket (commutator) of those vector fields, in the order how they
are naturally written. Note also that the automatic property p£ξξ

µq “ 0 (which we assumed
above) really conforms with it.

With this knowledge, similarly easy is the general formula for covectors. For any Cµ,
any V µ and any ξµ, we have

£ξpV
µCµq

1
“ p£ξV

µ
qCµ ` V µ

p£ξCµq “ pV µ
,νξ

ν
´ ξµ,νV

ν
qCµ ` V µ

p£ξCµq

2 Tempting to say that it may be a LIE...
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2
“ pV µCµq,ν ξ

ν
“ V µ

,νξ
νCµ ` V µCµ,νξ

ν .

Again, comparison yields

p£ξCµq “ Cµ,νξ
ν

` ξν ,µCν . (11.8)

BTW, we see that equation (11.5) really was a lie...
One more BTW: having already memorized the commutator formula for the Lie derivative of
vectors, one can also infer the covector formula – just by remembering that now there is the
plus sign between the two terms. Actually, the only mistake one might thus make is to write
ξµ
,νCν (or even ξµ,νCν) instead of the second term, but consider that we do not at all know

what ξµ (and Cν) is, because we do not assume the metric to exist on the manifold – we only
know the vector ξµ and the covector Cµ. Hence, there is but one reasonable option of how to
arrange the indices in the second term.

The recipe for the Lie derivative of a general tensor is thus obvious – for a (1,2)-tensor,
for example,

p£ξT
µ
αβq “ T µαβ,νξ

ν
´ ξµ,νT

ν
αβ ` ξν ,αT

µ
νβ ` ξν ,βT

µ
αν . (11.9)

11.3.2 Basic properties of the Lie derivative

• It is clear from construction that generally the Lie derivative results in a tensor of the same
type as was the original one.

• Directly from the introductory ideas, as well as from the coordinate expressions, it is clear
that the Lie derivative is linear in both its arguments,

£ξpS ` βT q “ £ξS ` β£ξT, £η`bξT “ £ηT ` b£ξT,

with S, T arbitrary tensor fields, η, ξ arbitrary vector fields, and β, b constants.

• Also straightforward is to prove that it follows the Leibniz rule. One finds, in particular,
for a scalar f and a tensor T ,

£ξpfT q “ p£ξfqT ` fp£ξT q “ f,µξ
µ T ` f£ξT .

In fact we already assumed the Leibniz-rule in derivation, since we wanted a derivative.

• The Lie derivative satisfies the Jacobi identity,

£ξ prV,W s
µ
q “ r£ξV,W s

µ
` rV,£ξW s

µ (11.10)

(proof is absolutely straightforward, just a bit tedious – one has to write out both sides
carefully). This, together with the linearity and anti-commutativity, means that the space
of vector fields over the manifold, equipped with the Lie bracket, forms a Lie algebra.
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• The Lie derivative satisfies, for every tensor field T , the identity

£rη,ξsT “ £ηp£ξT q ´ £ξp£ηT q , (11.11)

where η and ξ are arbitrary vector fields. Hence, Lie derivative with respect to a commuta-
tor of vector fields is equal to the commutator of Lie derivatives with respect to these fields.
(Proof is again straightforward, just from definitions.)

• The Lie derivative commutes with contraction. Let us verify this, without loss of generality,
on the above (1,2)-tensor. By contraction of (11.9) in µ

α we have

T µµβ,νξ
ν

´ �����ξµ,νT
ν
µβ ` �����ξν ,µT

µ
νβ ` ξν ,βT

µ
µν “ T µµβ,νξ

ν
` ξν ,βT

µ
µν ,

which really is £ξpT
µ
µβq.

• Lie derivative has been introduced as a tensor operation, but from its coordinate expression
this is not obvious, since there appear partial derivatives. However, suppose now the mani-
fold is endowed with the affine connection, so one knows a covariant derivative. Evaluating
(11.9) with covariant derivatives, one has

T µαβ;νξ
ν

´ ξµ;νT
ν
αβ ` ξν ;αT

µ
νβ ` ξν ;βT

µ
αν “

“ pT µαβ,ν ` ������
ΓµνκT

κ
αβ ´

XXXXXXΓκναT
µ
κβ ´ ������XXXXXXΓκνβT

µ
ακ q ξν ´

´ ξµ,νT
ν
αβ ´ (((((((Γµνκξ

κT ναβ ` ξν ,αT
µ
νβ `

hhhhhhhΓνακξ
κT µνβ ` ξν ,βT

µ
αν ` (((((((hhhhhhhΓνβκξ

κT µαν

“ T µαβ,νξ
ν

´ ξµ,νT
ν
αβ ` ξν ,αT

µ
νβ ` ξν ,βT

µ
αν ,

where all the extra six terms with Gammas cancel out in pairs thanks to the symmetry of
Gammas in lower indices. Therefore, all the coordinate expressions for the Lie derivative
can equally well be written with covariant derivatives. (In a space-time with torsion, it thus
would not work. Sure – the torsion tensor expresses exactly the difference between the
covariant and the partial commutator of two vector fields.)

• Smooth manifolds are defined as those covered by (complete atlas of) coordinates. Let
us assume we adapt a coordinate system to the given vector field ξµ so that the field can
be written ξµ “ Bxµ

BxK
“ δµK , where xK is some particular coordinate. In these coordinates,

ξµ,ν “0, so, for any tensor T ,

£ξT “ T,νξ
ν

“ T,νδ
ν
K “ T,K . (11.12)

This result can help in understanding the Lie derivative: it is kind-of covariant expression
for partial derivative (even more basic than the covariant derivative).

11.3.3 More special properties of the Lie derivative

Let us add some more advanced properties of the Lie derivative. They are mutually related,
some of them simple (commutator with the covariant derivative), some of them more in-
volved. For some of them, we will need “knowledge from the future” (of these lecture notes
only), yet still we place them here rather than shifting them to an appendix. A first-semester
(in fact any) reader may skip the section safely and go to Killing vectors.



142 11. LIE DERIVATIVE AND SPACE-TIME SYMMETRIES

• Lie derivative of the Levi-Civita tensor (A.3):

£ξϵµνκλ “ XXXXϵµνκλ;ιξ
ι

` ξι;µϵινκλ ` ξι;νϵµικλ ` ξι;κϵµνιλ ` ξι;λϵµνκι “ ξι;ιϵµνκλ

(it follows just by considering how it works for any particular non-trivial set of indices, i.e.
for all indices different).

• Lie derivative does not commute with the covariant derivative:

p£ξCµq;α ´ £ξpCµ;αq “ pCµ;σξ
σ

` ξσ ;µCσq;α ´ pCµ;ασξ
σ

` ξσ ;µCσ;α ` ξσ ;αCµ;σq “

“ pCµ;σα´ Cµ;ασq ξσ ` �����Cµ;σξ
σ
;α ` ξσ ;µαCσ `

XXXXXξσ ;µCσ;α ´
XXXXXξσ ;µCσ;α ´ �����ξσ ;αCµ;σ “

“ Rι
µσαCιξ

σ
` ξσ ;µαCσ “ pRι

µσαξ
σ

` ξι;µαqCι , (11.13)

p£ξV
µ
q;α ´ £ξpV

µ
;αq “ pV µ

;σξ
σ

´ ξµ;σV
σ
q;α ´ pV µ

;ασξ
σ

´ ξµ;σV
σ
;α ` ξσ ;αV

µ
;σq “

“ pV µ
;σα´ V µ

;ασq ξσ`�����V µ
;σξ

σ
;α ´ ξµ;σαV

σ
´

XXXXXξµ;σV
σ
;α `

XXXXXξµ;σV
σ
;α ´ �����ξσ ;αV

µ
;σ “

“ ´Rµ
ισαV

ιξσ ´ ξµ;σαV
σ

“ ´pRµ
ισαξ

σ
` ξµ;ιαqV ι . (11.14)

For higher-rank tensors, there are more terms (with obvious logic).

• Lie derivative of an affine connection

We will find, in equation (28.8), that the change of a tensorial quantity induced by an
infinitesimal coordinate shift x1µ “ xµ ´ ϵ ξµpxq is related to its Lie derivative by

δψµν...κλ... “ ϵ p£ξψ
...
... ´ ψ......,α ξ

α
q “ δ̄ψµν...κλ... ´ ϵ ψ......,α ξ

α ,

where δψ :“ ψ1px1q ´ ψpxq, while δ̄ψ :“ ψ1pxq ´ ψpxq. Let us define the Lie derivative of
Gammas by the same relation, where δΓµκλ ” Γ1µ

κλpx1q ´ Γµκλpxq on the l.h. side we fix
from the known transformation of Gammas (2.17),

Γ1µ
κλpx1

q “
Bx1µ

Bxι
Bxγ

Bx1κ

Bxδ

Bx1λ
Γιγδpxq `

Bx1µ

Bxι
B2xι

Bx1κBx1λ
.

For the infinitesimal coordinate shift x1µ “ xµ ´ ϵ ξµpxq, one has, specifically,

Γ1µ
κλ “ pδµι ´ ϵ ξµ,ιqpδγκ ` ϵ ξγ,κqpδδλ ` ϵ ξδ,λqΓιγδ ` pδµι ´ ϵ ξµ,ιqpδιλ ` ϵ ξι,λq,κ “

“ Γµκλ ` ϵ
`

ξδ,λ Γ
µ
κδ ` ξγ,κ Γ

µ
γλ ´ ξµ,ι Γ

ι
κλ ` ξµ,κλ

˘

, (11.15)

using which, therefore,

£ξΓ
µ
κλ “

δ̄Γµκλ
ϵ

”
Γ1µ

κλpxq ´ Γµκλpxq

ϵ
“

“
δΓµκλ
ϵ

` Γµκλ,αξ
α

”
Γ1µ

κλpx1q ´ Γµκλpxq

ϵ
` Γµκλ,αξ

α
“

“ ξδ,λ Γ
µ
κδ ` ξγ,κ Γ

µ
γλ ´ ξµ,ι Γ

ι
κλ ` ξµ,κλ ` Γµκλ,αξ

α . (11.16)
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This formula has e.g. been derived by [15], equation (2.77). It is straightforward to arrange
it so as to see, explicitly, that this actually is a tensor. Let us expand, “by definition”,

ξµ;κλ “ pξµ,κ ` Γµκδξ
δ
q,λ ` Γµλγpξγ,κ ` Γγκδξ

δ
q ´ Γικλpξµ,ι ` Γµιδξ

δ
q “

“ ξµ,κλ` Γµκδ,λξ
δ
` Γµκδξ

δ
,λ` Γµλγξ

γ
,κ` ΓµλγΓ

γ
κδξ

δ
´ Γικλξ

µ
,ι´ ΓικλΓ

µ
ιδξ

δ.

After substituting for ξµ,κλ to (11.16), all the terms with the first derivatives of ξµ cancel in
pairs, and one is left with

£ξΓ
µ
κλ “ ξµ;κλ ` Γµκλ,αξ

α
´ Γµκδ,λξ

δ
` ΓικλΓ

µ
ιδξ

δ
´ ΓµλγΓ

γ
κδξ

δ
“

“ ξµ;κλ ` Rµ
κδλξ

δ . (11.17)

This is indeed the result derived, in a similar manner, in the classical books [40] (formula
(5.47)) and [53] (Chapter I, § 2); see e.g. also [21], Exercise 8.4, or [26], end of section
4.4. (A more general formula also includes a torsion term.) It is also good to check the last
points of Section 11.3.2 to see how the present issue relates to the non-commutation of the
Lie derivative with the covariant derivative.

The expression £ξΓ
µ
κλ “ ξµ;κλ ` Rµ

κδλξ
δ found in equation (11.17) clearly is a tensor.

This is not a surprise, because £ξΓ
µ
κλ represents the change between two Gammas com-

puted at the same point (one brought there from elsewhere and one existing there). In such
a case, however, the non-tensorial part of the transformation of Gammas is the same for
both, so it cancels out.

On the contrary, the tensorial character does not apply to

£ξΓακλ “ £ξpgαµΓ
µ
κλq “ pξα;µ ` ξµ;αqΓµκλ ` ξα;κλ ` Rακδλξ

δ . (11.18)

• The above result can be checked from the formula (23.22) we will derive in Chapter (23).
It says how the variation of the Christoffel symbol at a given coordinate point is related to
the same kind of variation of the metric,

δ̄Γµκλ “
1

2
gµν

“

pδ̄gνκq;λ ` pδ̄gλνq;κ ´ pδ̄gκλq;ν
‰

.

At that time, we will already know that if the variation is induced by the infinitesimal
coordinate translation x1µ “ xµ´ ϵ ξµ, then δ̄gµν;ι :“ pδ̄gµνq;ι “ ϵ£ξgµν “ ϵpξµ;ν ` ξν;µq.
Substituting, one obtains

δ̄Γµκλ “
ϵ

2
gµν rpξν;κ ` ξκ;νq;λ ` pξλ;ν ` ξν;λq;κ ´ pξκ;λ ` ξλ;κq;νs “

“
ϵ

2
gµν r2ξν;κλ ` pξν;λκ ´ ξν;κλq ` pξκ;νλ ´ ξκ;λνq ` pξλ;νκ ´ ξλ;κνqs “

“ ϵ ξµ;κλ `
ϵ

2
gµνpRδ

νλκ ` Rδ
κνλ ` Rδ

λνκq ξδ “

“ ϵ ξµ;κλ ` ϵ gµνRδλνκξ
δ

“ ϵ ξµ;κλ ` ϵRµ
κδλξ

δ .
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• A geometrical formula for the Lie derivative of an affine connection is also being offered:
for X , Y and Z smooth vector fields, let it be introduced by

p£X∇qpY, Zq :“ £Xp∇YZq ´∇Y p£XZq ´∇£XYZ “

“ rX,∇YZs ´∇Y rX,Zs ´∇rX,Y sZ . (11.19)

Yes, it somewhat resembles the definition of the Riemann tensor (6.1), and it also involves
the torsion tensor (5.9). Recalling both,

RpX, Y qZ “ ∇Xp∇YZq ´∇Y p∇XZq ´∇rX,Y sZ ,

T pX,Zq “ ∇XZ ´∇ZX ´ rX,Zs ,

we first express, from Riemann, ´∇rX,Y sZ “ RpX, Y qZ ´ ∇Xp∇YZq ` ∇Y p∇XZq, to
obtain, from (11.19),

p£X∇qpY, Zq “ rX,∇YZs ´∇Y rX,Zs ` RpX, Y qZ ´∇Xp∇YZq `∇Y p∇XZq .

Then we express, from torsion, rX,∇YZs ´∇Xp∇YZq “ ´T pX,∇YZq ´∇∇Y ZX and
´∇Y rX,Zs `∇Y p∇XZq “ ∇Y T pX,Zq `∇Y p∇ZXq, to get

p£X∇qpY, Zq “ RpX, Y qZ ´ T pX,∇YZq ´∇∇Y ZX `∇Y T pX,Zq `∇Y p∇ZXq .

Back in indices, we thus have

p£XΓ
µ
κλqY κZλ

“ Rµ
λνκZ

λXνY κ
´T µνλX

νZλ
;κY

κ
´Xµ

;λZ
λ
;κY

κ
`

` pT µνλX
νZλ

q;κY
κ

` pXµ
;λZ

λ
q;κY

κ
“

“ Rµ
λνκZ

λXνY κ
` pT µνλX

ν
q;κZ

λY κ
`Xµ

;λκZ
λY κ ,

that is, since Zλ and Y κ are generic,

£XΓ
µ
κλ “ Rµ

λνκX
ν

` pT µνλX
ν
q;κ ` Xµ

;λκ . (11.20)

An alternative form follows from Ricci identities (6.2), i.e.

Xµ
;λκ “ Xµ

;κλ ` Rµ
νκλX

ν
´ T νκλX

µ
;ν ,

and using Rµ
λνκ ` Rµ

νκλ “ ´Rµ
κλν “ Rµ

κνλ (first Bianchi):

£XΓ
µ
κλ “ Xµ

;κλ ` Rµ
κνλX

ν
` pT µνλX

ν
q;κ ´ Xµ

;νT
ν
κλ . (11.21)

With zero torsion, this formula clearly reduces to (11.17).

• Since gµν,α “ Γναµ ` Γµαν “ Γνµα ` Γµνα , it is easy to learn from above that

£ξgµν,α “ £ξΓνµα ` £ξΓµνα “ £ξ pgνιΓ
ι
µα ` gµιΓ

ι
ναq “

“ Γιµα£ξgνι ` Γινα£ξgµι ` gνι£ξΓ
ι
µα ` gµι£ξΓ

ι
να “

“ Γιµα£ξgνι ` Γινα£ξgµι ` gνιpξ
ι
;µα ` Rι

µδαξ
δ
q ` gµιpξ

ι
;να ` Rι

νδαξ
δ
q “
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“ Γιµαpξν;ι ` ξι;νq ` Γιναpξµ;ι ` ξι;µq ` pξν;µ ` ξµ;νq;α ` (((((((((
pRνµδα ` Rµνδαq ξδ “

“ pξµ;ν ` ξν;µq,α ” p£ξgµνq,α .

Note that a “naive” computation “according to the indices” would not lead to the correct
answer:

r£ξgµν,αsnaive “ gµν,αβξ
β

` ξβ,µgβν,α ` ξβ,νgµβ,α ` ξβ,αgµν,β ‰

‰ pgµν,βξ
β

` ξβ,µgβν ` ξβ,νgµβq,α “

“ gµν,βαξ
β

` gµν,βξ
β
,α ` ξβ,µgβν,α ` ξβ,νgµβ,α ` ξβ,µαgβν ` ξβ,ναgµβ “

“ p£ξgµνq,α “ £ξgµν,α

(the last two terms ξβ,µαgβν `ξβ,ναgµβ of the correct result are missing in the “naive” one).
So, on the metric, the first partial derivative commutes with the Lie derivative. Assuming
that the same also applies to the first partial derivatives of Gammas,3 one finds that

£ξgµν,αβ “ £ξpΓνµα,β ` Γµνα,βq “ p£ξΓνµα ` £ξΓµναq,β “ p£ξgµν,αq,β .

• Notice that £ξΓ
ι
µα of (11.17) exactly represents the commutators (11.13), (11.14):

p£ξCµq;α ´ £ξpCµ;αq “ Cι£ξΓ
ι
µα , p£ξV

µ
q;α ´ £ξpV

µ
;αq “ ´V ι£ξΓ

µ
ια .

Substituting for the £ξΓ terms, one finds that the Lie and the partial derivatives commute
(e.g. on a covector):

pRι
µσαξ

σ
` ξι;µαqCι “ p£ξCµq;α ´ £ξpCµ;αq “

“ p£ξCµq,α ´ £ξpCµ,αq ´ �����
Γιαµ£ξCι ` p£ξΓ

ι
µαqCι ` �����

Γιαµ£ξCι . (11.22)

Note that in the adapted coordinates where ξµ“δµK and £ξCµ“Cµ,K , £ξpCµ,αq“Cµ,αK ,
one has it “naturally” since p£ξCµq,α “ Cµ,Kα “ Cµ,αK “ £ξpCµ,αq.4

11.4 Killing vectors and space-time symmetries
The concept of the vector-field flow and of the Lie derivative permit to decide, invariantly
(without reference to coordinates), whether there exist any symmetries in the space-time. By
symmetry we mean here an existence of such a vector field ξµ along which certain quantities
do not change. To be more accurate, the question is different actually: the mapping of tangent
spaces induced by a given flow (pull-backs and push-forwards) represents the most natural
way how to spread the quantity “without change”. Hence, given some quantity as a field,

3 As e.g. shown in [40] (Chapter II, § 10), this applies to all geometric objects (which Gammas are).
4 However, as e.g. pointed out by [40] (Chapter II, § 10), it is only safe to commute the Lie derivative with the

partial one for geometric objects, while, in addition, bearing in mind that the partial derivative of a geometric
object is mostly not a geometric object any more, so its Lie derivative can only be considered as providing a
set of the latter’s components. Sure, for an invariant it is “safe”, and the commutation works straightforwardly:
p£ξψq,α “ pψ,ιξ

ιq,α “ ψ,ιαξ
ι ` ψ,ιξ

ι
,α “ ψ,αιξ

ι ` ξι,αψ,ι “ £ξpψ,αq.
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one can compare its actual space-time behaviour against the above standard of “constancy”
– this is exactly the message provided by the Lie derivative. A quantity whose Lie derivative
vanishes for some ξµ is said to Lie-transport along ξµ. And if symmetries of the space-time
itself are in question, one naturally turns to the Lie derivative of the metric.

Hence, we suppose to have a Lorentzian manifold again, equipped with every luxury
(metric and the corresponding Levi-Civita connection), and calculate

£ξgµν “ ���gµν;κ ξ
κ

` ξκ;µgκν ` ξκ;νgµκ “ ξµ;ν ` ξν;µ ” 2ξpµ;νq . (11.23)

Important note: in the result, the covariant derivatives can no more be changed for partials,
because we have already used the fact that gµν;κ“0 – with partial derivatives, we would have
had to leave there the term gµν,κ“Γνκµ` Γµκν . So we have a simple result: the metric “does
not change” in the direction of ξµ if

£ξgµν “ ξµ;ν ` ξν;µ “ 0 . (11.24)

This is called the Killing equation.5 If such an equation is satisfied for some ξµ, that vector
field is called the Killing vector field and the corresponding flow is called an isometry – the
metric remains the same along ξµ, i.e., the space-time properties does not change along ξµ,
they are independent of its flow ... thus the term space-time symmetry.

11.4.1 Some properties of Killing vector fields

• Whether written as ϕ˚pϵqrgµνpxαqs “ gµνpxα0 q, or £ξgµν “ 0, or ξpµ;νq “ 0, the Killing
equation represents 10 equations, since it has two indices and it is symmetric in them.
The unknown components of ξµ are only 4, so the set is overdetermined and does not
necessarily have any solution.

• By contraction of the Killing equation one finds that the Killing vector fields have zero
divergence, ξµ;µ“0.

• A linear combination of Killing vector fields (ηµ, ξµ) is also a Killing field,

pηµ ` bξµq;ν ` pην ` bξνq;µ “ ηµ;ν ` ην;µ ` b pξµ;ν ` ξν;µq “ 0 .

• Commutator of Killing fields is again a Killing field,

rη, ξsµ;ν ` rη, ξsν;µ “

5 Don’t be scared... –A. J. Coleman, a Canadian mathematician, documents in his paper The greatest math-
ematical paper of all time [The Mathematical Intelligencer 11 (1989) 29]: “His students loved and admired
Killing because he gave himself unsparingly of time and energy to them, never being satisfied for them to be-
come narrow specialists, so he spread his lectures over many topics beyond geometry and groups.” Still more
interestingly, Coleman shows there how extremely influential were papers “Die Zusammensetzung der steti-
gen, endlichen Transformationsgruppen I, II, III, IV” which W. Killing published in Mathematische Annalen
31 (1888) 252, 33 (1889) 1, 34 (1989) 57, and 36 (1890) 161, respectively. Coleman mainly stresses the paper
II and writes: “... if you can name one paper in the past 200 years of equal significance...” –Well, we would
certainly name Riemann’s habilitation.
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“ pξµ;κη
κ

´ ηµ;κξ
κ
q;ν ` pξν;κη

κ
´ ην;κξ

κ
q;µ “

“ pξµ;κν ` ξν;κµqηκ ´ pηµ;κν ` ην;κµqξκ `
XXXXξµ;κη

κ
;ν ` ����ξν;κη

κ
;µ ´ ����ηµ;κξ

κ
;ν ´

XXXXην;κξ
κ
;µ “

“ p������
ξµ;νκ` ξν;µκ `Rσ

µκνξσ`Rσ
νκµξσqηκ ´ p

hhhhhhhηµ;νκ` ην;µκ `Rσ
µκνησ`Rσ

νκµησqξκ “

“ pXXXXRσµκν ` ����Rσνκµ ´ ����Rκµσν ´ XXXXRκνσµ q ηκξσ “ 0 ,

where the curvature terms have appeared due to Ricci identities (6.3). Note that the
above effort actually was superfluous since the statement follows from the general property
(11.11), i.e. from

£rη,ξsgµν “ £ηp����£ξgµν q ´ £ξp
XXXX£ηgµν q “ 0 .

The linear space of Killing vectors endowed with the commutator (in the role of a multi-
plication operation) thus itself forms a Lie algebra. It is a subalgebra of the Lie algebra of
all vector fields.

• Along the flow of a Killing vector field ξµ, the scalar ξαξα is constant,

pξαξ
α
q,µξ

µ
“ pξαξ

α
q;µξ

µ
“ 2ξα;µξ

αξµ “ 2ξpα;µqξ
αξµ “ 0 .

• If ξµ is a Killing vector field, then, along any geodesic (with dxµ

dp
its tangent), the projection

ξµ
dxµ

dp
remains constant.

Proof: Regarding the geodesic equation D
dp

`

dxµ

dp

˘

“0 and the Killing equation ξpµ;νq “0, we
find

d

dp

ˆ

ξµ
dxµ

dp

˙

“
D

dp

ˆ

ξµ
dxµ

dp

˙

“
Dξµ
dp

dxµ

dp
“ ξµ;ν

dxν

dp

dxµ

dp
“ ξpµ;νq

dxµ

dp

dxν

dp
“ 0 .

The corresponding coordinate version of this statement we already know from Section 3.6.

• Intuitively, if there is some symmetry in space-time and if one chooses coordinates adapted
to it, i.e. so that the respective Killing field be tangent to some of the coordinate lines,
the metric will not depend on that “Killing” coordinate. The two statements are actually
equivalent: the Killing vector field exists if and only if there exists such a coordinate system
in which the metric is independent of some of the coordinates.
Proof: Choose the coordinates adapted to the Killing vector field ξµ, i.e. let ξµ“ Bxµ

BxK
“δµK ,

where xK is some particular coordinate (it actually represents parameter of the isometry).
We know from (11.12) that in these coordinates

£ξgαβ “ gαβ,K . (11.25)

Hence, the field ξµ is Killing if and only if gαβ,K “0.

• When deriving how to transport quantities (vectors in particular) along the ξµ flow, we have
not at all enquired how their norm behaves. Sure: such a question only has sense if one has
a metric on the manifold. If one does, scalar products evolve along ξµ according to

pgµνV
µW µ

q,νξ
ν

“ £ξpgµνV
µW µ

q .
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If both the vectors are Lie-transported along ξµ, i.e. if £ξV
µ“0 and £ξW

µ“0, one is left
with

pgµνV
µW µ

q,νξ
ν

“ p£ξgµνqV µW µ
“ pξµ;ν ` ξν;µqV µW µ ,

which in general is only zero if ξµ is a Killing field.

• Let us also mention an important relation between Killing vector fields and curvature. In
the Ricci identity for ξν ,

ξν;κλ ´ ξν;λκ “ Rσ
νκλξσ,

we anti-commute, by the Killing equation, ν and λ in the second term, and then we write
the relation together with its cyclic permutations:

ξν;κλ ` ξλ;νκ “ Rσ
νκλξσ ,

ξλ;νκ ` ξκ;λν “ Rσ
λνκξσ ,

ξκ;λν ` ξν;κλ “ Rσ
κλνξσ .

Now add the first and the last equation, while subtracting the middle one (for example),

2ξν;κλ “ pRσ
νκλ ` Rσ

κλν ´ Rσ
λνκqξσ “

`

Rσ
tνκλu ´ 2Rσ

λνκ

˘

ξσ “ ´2Rσ
λνκξσ

ùñ ξν;κλ “ ´Rσ
λνκξσ “ Rνκλσξ

σ . (11.26)

– Corollary: by contraction of this equation, one has

ξν;
κ
κ ” l ξν “ ´Rσ

νξσ . (11.27)

If the Ricci tensor vanishes, this correspond to the wave equation (9.2) for the elec-
tromagnetic four-potential (otherwise the signs at the curvature terms are opposite).
Regarding also that the Killing fields automatically satisfy the “Lorenz condition”
ξµ;µ “ 0, one infers the following: in space-times with Rµν “ 0, the knowledge of a
Killing vector implies the knowledge of a possible EM four-potential. (Note that the
corresponding EM field must be a test field, because otherwise the Ricci tensor would
be Rµν “8πT µνEM rather than zero.)

– Another corollary: projecting (11.26) twice on a tangent vector uµ “ dxµ

dτ
of any

geodesic (Du
µ

dτ
“0), we find

ξν;κλu
κuλ “

Dξν;κ
dτ

uκ “
Dpξν;κu

κq

dτ
“

D2ξν
dτ 2

“ Rνκλσu
κuλξσ . (11.28)

That means, the Killing vectors satisfy the geodesic-deviation equation.

– Yet another corollary: differentiating equation (11.26), one obtains an equation sym-
bolically looking as ∇∇∇ξ “ ´ξ∇R´R∇ξ; differentiating once more, one has
∇∇∇∇ξ“´ξ∇∇R´2∇R∇ξ Ŕ∇∇ξ, where∇∇ξ can be expressed from (11.26);
etc etc...: whenever the 2nd derivative arises on the r.h. side, one substitutes from
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(11.26), thus gradually expressing all the derivatives (ě 2nd) in terms of ξµ and its
gradient. In other words, thanks to equation (11.26), the entire Taylor expansion of ξµ

is fully determined by ξµ and its gradient. Hence, the Killing exercise can in principle
have as many independent solutions as the number of the “initial conditions” ξµ and
ξµ;ν ; and these are 4+6, since ξµ;ν is antisymmetric. So, in a 4D space-time, there may
at most exist 10 independent Killing fields. In a general dimension d, it is dpd` 1q{2.

• The existence of Killing fields also brings an important knowledge about the gravitational
sources. The latter need not necessarily follow the symmetries of their gravitational field,
but the conservation laws T µν ;ν “0 imply, in such a case, conserved quantities. Actually, a
divergence of the “current” ξµT µν vanishes,

pξµT
µν

q;ν “ ξµ;νT
µν

` ξµ���T µν ;ν “ ξpµ;νqT
µν

“ 0 (11.29)

(remember that T µν is symmetric), so the corresponding “charge” is being conserved.
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CHAPTER 12

Schwarzschild solution
of Einstein equations

About a month after finishing his theory, Einstein received a letter from K. Schwarzschild.
This German theoretical physicist, professor of the Göttingen University and director at the
Göttingen Observatory, later director of the Potsdam Observatory and member of the Prus-
sian Academy of Sciences, father of 3 children, voluntarily enrolled to the army when the war
started. He headed a meteorological station in Belgium, calculated trajectories for artillery
in France, and then worked at the rear in Russia. It was from there that he wrote, on 22th
December 1915, to Einstein that he found an exact spherically symmetric solution of the field
equations for a point-mass source.1 Einstein was surprised: “I would not have thought that
the strict treatment of the point problem was so simple.” Yet he was more surprised for a
much deeper reason. At that time he shared Mach’s belief that masses have inertia – and thus
also generate gravitation – due to their interaction with all the other masses in the Universe.
If there is just one point mass in the Universe, it has nothing to interact with, so it should
either have no inertia, or the corresponding solution should have no sense.2 Hence, by its
mere existence, the Schwarzschild solution indicated that, for the concept as well as value of
inertia, also important are the conditions at the space-time boundaries or infinities. During
the years to come, Einstein was to discuss this point notably with W. de Sitter, who later even
found a totally vacuum (but with Λ‰0), non-singular, yet still non-trivial (non-flat) solution.
But this we will only return to in the cosmology chapter.

1 At the end of the letter, he writes: “As you see, the war is kindly disposed toward me, allowing me, despite
fierce gunfire at a decidedly terrestrial distance, to take this walk into this your land of ideas.”

2 Actually, in the essay called Cosmological considerations in the General Theory of Relativity (in German)
from 1917, Einstein writes: “In a consistent theory of relativity there can be no inertia relatively to ‘space’, but
only an inertia of masses relatively to one another. If, therefore, I have a mass at a sufficient distance from all
other masses in the universe, its inertia must fall to zero.”

151
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Schwarzschild solution is an exact spherically symmetric solution
to the Einstein equations with T µν “0 and Λ“0.

We will not tackle the field equations right away. It would be a hopeless strategy to
try to find some “generic” solution and only then restrict it to the required properties, while
possibly using the freedom in the choice of coordinates. Practically, the procedure is just
opposite: one first specifies the main features the space-time should have, then chooses the
coordinates well adapted to the prescribed properties, constrains the solution (the metric) as
much as possible on the basis of the required properties (geometrical arguments), and only
then tries to solve the field equations for the thus obtained, restricted form of the metric.
(When solving the equations with pure mathematical motivation, this story can be shortened
to “looking for a solution in a given form”, i.e. for some metric ansatz.) The derivation of the
Schwarzschild solution is a good illustration of such an approach.

12.1 Metric of a spherically symmetric space-time
L. Ryder writes in [39], section 6.6: “We could, however, if we were perverse, re-express the
Schwarzschild solution in a very different coordinate system [than in the spherical one] ...”
Without any intention to degrade our readers, let us settle for the spherical-type coordinates
(usually called the Schwarzschild coordinates in GR). Imagine to have a world-line of the
centre of symmetry, parametrized by its proper time τ . Imagine to send out from there, at any
value of τ , radial geodesics in every spatial direction, i.e. in every direction orthogonal to the
centre’s four-velocity. Assign, to all points passed through by each single of these geodesics,
unique values of θ and ϕ (and τ of course), with θ covering x0, πy and ϕ covering x0, 2πq,
as usual for the angles on a sphere. It is clear that the metric expressed in such coordinates
may contain neither dθ nor dϕ linearly, because the interval between any two events has to
be independent of the signs of these angular shifts. Hence, the metric can be written as

ds2 “ gττdτ
2

` 2gτρdτdρ ` gρρdρ
2

` gθθdθ
2

` gϕϕdϕ
2 .

Note that τ only surely represents proper time at the origin, so gττ has to be left general.
On the other hand, gρρ can be set to unity by assuming that the radial geodesics are (every-
where) parametrized by proper distance (arc length), call it ρ. Formally, one obtains this from
normalization

1 “ gµν
dxµ

dρ

dxν

dρ
“ gµν

Bxµ

Bρ

Bxν

Bρ
“ gµνδ

µ
1 δ

ν
1 “ g11 ” gρρ .

Even more simplification follows for gτρ. Namely, gτρ is certainly zero along the world-line
of the origin, because the radial geodesics have been sent in directions orthogonal to that
world-line. More accurately, orthogonal are – along that world-line˚ – the respective tangent
vectors

Bxµ

Bτ
“ δµτ and

Bxµ

Bρ
“ δµρ : gµν

Bxµ

Bτ

Bxν

Bρ
“ gτρ

˚
“ 0 .



12.1. METRIC OF A SPHERICALLY SYMMETRIC SPACE-TIME 153

Now, the radial geodesics are described by equation

d2xµ

dρ2
` Γµαβ

dxα

dρ

dxβ

dρ
“ 0 ùñ Γµρρ ” Γµ11 “ 0 ,

where the implication follows by regarding that dxα

dρ
“ Bxα

Bρ
“ δαρ p” δα1 q. Writing the Γs in

terms of the Christoffel symbols, we thus have

0 “ Γµ11 “
1

2
gµσpgσ1,1`g1σ,1´���g11,σ q “ gµσgσ1,1 ùñ gαµg

µσgσ1,1 “ gα1,1 “ 0 . (12.1)

This means that the values of gα1 do not change along the radial geodesics, so one can use
everywhere the values they have along the central world-line. In particular, it applies to
g01 ”gτρp“0q and to g11 ”gρρp“1q (the latter is automatic due to the choice of ρ).

To summarize, the spherically symmetric metric can be written as

ds2 “ gττdτ
2

` dρ2 ` gθθdθ
2

` gϕϕdϕ
2 .

Further, we demand that every set tτ “ const, ρ “ constu have the geometry of a two-
dimensional sphere, which means

gθθdθ
2

` gϕϕdϕ
2 !

“ r2pτ, ρqpdθ2 ` sin2 θ dϕ2
q ,

where the function rpτ, ρq plays the role of the Euclidean radius of the sphere, namely, it is
given from proper area of the sphere by the Euclidean formula

2π
ż

0

π
ż

0

b

pgθθgϕϕqτ,ρ“const dθ dϕ “: 4πr2pτ, ρq . (12.2)

Being given by proper area (and thus often called the “area radius”), this radius has a clear,
invariant meaning. It represents “circumferential radius” at the same time, because the proper
circumference of any circle tτ “const, ρ“const, θ“constu reads

2π
ż

0

b

pgϕϕqτ,ρ,θ“const dϕ “ 2π
b

gϕϕpτ, ρq “ 2πrpτ, ρq sin θ ,

especially the equatorial circle (θ“π{2) yields 2πrpτ, ρq.
Finally, the term gττdτ

2 represents proper time of someone standing at rest at constant
ρ, θ and ϕ. Under spherical symmetry, such a contribution has to be independent of θ and ϕ,
so gττ “gττ pτ, ρq. So the result is

ds2 “ gττ pτ, ρqdτ 2 ` dρ2 ` r2pτ, ρqpdθ2 ` sin2 θ dϕ2
q . (12.3)

Wow! The spherically symmetric space-time can be described by mere two functions of time
and radius! This has been found solely from the symmetry requirements themselves, without
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any reference to the field equations, so it even holds more generally than just for general
relativity.

In order to reach the “canonical” form of the spherically symmetric element, we will
perform one more transformation pτ, ρq Ñ pT,R” rq whose reason is to use rp”Rq as the
radial coordinate (instead of the proper distance ρ). In such a step, it may not be obvious that
one can keep the cross-term gTR zero, so let us first write

ds2 “ gTT pT,RqdT 2
` 2gTRpT,RqdTdR ` gRRpT,RqdR2

` R2
pdθ2 ` sin2 θ dϕ2

q .

However, the diagonal form can be restored by adjusting the coordinates to pt, rq by

dt “ fpT,RqpgTTdT ` gTRdRq , dr “ dR ,

with fpT,Rq standing for an integrating factor which ensures that the first expression is really
a total differential of some scalar. The transformation yields

dt2

f 2gTT
´

pgTRq2

gTT
dr2 “ gTTdT

2
` 2gTRdTdR

ùñ gTTdT
2

` 2gTRdTdR ` gRRdR
2

“
dt2

f 2gTT
`

„

gRR ´
pgTRq2

gTT

ȷ

dr2 .

In such a way, one arrives at

ds2 “ gttpt, rqdt
2

` grrpt, rqdr
2

` r2pdθ2 ` sin2 θ dϕ2
q , (12.4)

where

gtt :“
1

f 2gTT
, grr :“ gRR ´

pgTRq2

gTT
.

We may thus summarize the observations of this section in the following

Theorem : The metric of every spherically symmetric space-time can be written in the form
(12.4) containing two undetermined functions, gttpt, rq and grrpt, rq. (These are to be fixed
by particular form of the field equations.) The coordinate r represents the area (and circum-
ferential) radius.

12.2 Schwarzschild solution: Birkhoff theorem
Only now we will require that the spherically symmetric metric satisfy the Einstein equations.
Specifically, let it satisfy vacuum Einstein equations without the cosmological constant. In
such a situation, the equations reduce to Gµν ”Rµν´ 1

2
Rgµν “0 or Rµν “0 (these forms are

equivalent since the scalar curvature R necessarily vanishes as well). Computing, from the
general metric (12.4), the necessary quantities, i.e. gµν Ñ Γµκλ Ñ Rσ

νκλ Ñ Rνλ (possibly
using programs for tensor computations, such as MAPLE or MATHEMATICA), we find that
most of the Einstein tensor Gµν is trivially zero, except for the components

Gt
t “ ´

r Bgrr
Br

` grrpgrr ´ 1q

r2pgrrq2
, Gtr “

Bgrr
Bt

rgrr
, Gr

r “
r Bgtt

Br
´ gttpgrr ´ 1q

r2gttgrr
(12.5)
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✲r

❍❍❍❥
ρ•

✻τ

Figure 12.1 A spherically symmetric hypersurface τ “ const (here depicted as a 2D surface).
The affine parameter of radial geodesics ρ represents length of their arc, so it determines proper
distance in the radial direction. The Schwarzschild radius r is defined as the Euclidean radius of
the sphere tτ “const, ρ“constu.

and Gθ
θ “ Gϕ

ϕ (for these two components, one obtains the same, longer expressions).
From the equation Gtr“0 it follows immediately that grr does not depend on t. There-

fore, in the equation Gt
t“0 we can write total derivative instead of partial,

dgrr
dr

“ ´
grr
r

pgrr ´ 1q . (12.6)

By separation of variables, we get

dgrr
grrpgrr ´ 1q

“ ´
dr

r
ùñ ln

grr ´ 1

grr
“ ´ ln r ` lnpconstq “ ln

const

r
ùñ

ùñ
grr ´ 1

grr
“

const

r
ùñ grr “

1

1 ´ const
r

. (12.7)

Finally, divide the equation Gr
r“0, i.e. Bgtt

Br
“

gtt
r

pgrr ´ 1q , by equation (12.6):

Bgtt
Br

dgrr
dr

“ ´
gtt
grr

ùñ
gtt,r
gtt

“ ´
grr,r
grr

ùñ pln |gtt|q,r “ ´pln |grr|q,r

ùñ pln |gttgrr|q,r “ 0 ùñ pgttgrrq,r “ 0 ùñ gttgrr “ ´fptq.

The integration time function fptq is arbitrary, it is not restricted by the field equations; it
fixes the scaling of the time coordinate. It may be chosen fptq “ 1; in other words, in the
obtained gttdt2 “ ´

`

1´ const
r

˘

fptqdt2, one may rescale the time by fptqdt2 Ñ dt2. So the
resulting metric reads

ds2 “ ´

ˆ

1 ´
const

r

˙

dt2 `
dr2

1 ´ const
r

` r2pdθ2 ` sin2 θ dϕ2
q . (12.8)
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Last step is to interpret the integration constant. Recall Section 3.7 where, by Newto-
nian limit of the geodesic equation, we found that in a weak stationary field, gtt

.
“ ´1´2Φ;

in the spherically symmetric field, it means, specifically, gtt
.
“ ´1 ` 2M

r
, where M is the

mass contained within the given radius r. Comparing with our gtt “ ´1 ` const
r

, we see that
const“2M .

Birkhoff theorem (1923): In general relativity, every vacuum spherically symmetric region
of space-time can be described by the Schwarzschild metric

ds2 “ ´

ˆ

1 ´
2M

r

˙

dt2 `
dr2

1 ´ 2M
r

` r2pdθ2 ` sin2 θ dϕ2
q . (12.9)

In standard units, the metric reads

ds2 “ ´

ˆ

1 ´
2GM

c2r

˙

c2dt2 `
dr2

1 ´ 2GM
c2r

` r2pdθ2 ` sin2 θ dϕ2
q . (12.10)

What about Gθ
θ“0 and Gϕ

ϕ“0?

We have not at all employed the remaining non-trivial Einstein equations Gθ
θ “ Gϕ

ϕ “ 0.
Do not they further restrict the metric functions? No, because they are not independent. In
order to show that, one has to derive them only using the other Einstein equations (so also
without using the relation Gµ

µ “ ´2R“ 0). The only relation the left-hand side of the field
equations satisfies completely generally is Gν

µ;ν “0, so let us start from there:

0 “ Gν
µ;ν “

1
?

´g
p
?

´g Gν
µq,ν ´ ΓκµλG

λ
κ . (12.11)

For µ“1, the first term drops out since Gν
r“0, and the second term we write out

ΓκµλG
λ
κ “ ΓκµλG

λκ
“

1

2
pgκµ,λ ` gλκ,µ ´ gµλ,κqGλκ

“
1

2
gλκ,µG

λκ . (12.12)

If all the other components of Gλκ (other than Gθθ a Gϕϕ) are zero, one has, for µ“1 ” r,

gθθ,rG
θθ

` gϕϕ,rG
ϕϕ

“ 2rpGθθ
` Gϕϕ sin2 θq “

2

r
pGθ

θ ` Gϕ
ϕq “ 0 . (12.13)

However, we know thatGθ
θ “ Gϕ

ϕ directly from computation of the Einstein tensor, so these
components have to be zero individually.

12.2.1 Basic features of the Schwarzschild metric

One-parameter family of metrics

The Birkhoff theorem says that the field outside of any spherically symmetric source is char-
acterized by just one parameter representing mass contained within a given radius. Actually,
when interpreting the integration constant using the Newtonian limit of gtt, one should make
more precise that in the Newtonian case M stands for the mass found below a given radius.
Hence, the field does not depend on an exact radial dependence of density, only on total mass
present in the sphere below the given radius.
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Figure 12.2 Left: Radial light-like world-lines in the Schwarzschild space-time. The values along
both axes are given in the units of M . Black are “ingoing” world-lines, given by the slope dt

dr
“

´ 1
1´ 2M

r

; they start at rÑ8 and everywhere point in the direction of decreasing r, passing through

the horizon r“2M via t“ `8; below r“2M they travel against the direction of t [sic]. Light
green are “outgoing” world-lines, given by the slope

dt
dr

“ ` 1
1´ 2M

r

; they start on the horizon

r “ 2M at t “ ´8 and everywhere point in the direction of increasing time t; below r “ 2M
they also travel against the direction of r (!). Tangents to the outgoing and ingoing world-lines
at a given radius limit the local radial-motion light-cone. It is seen that (i) far from the horizon

(r"M), dt{dr“˘1, so the light-cones are ˘45˝ as in special relativity; (ii) towards the horizon

they narrow down, so that every ingoing time-like and light-like trajectories intersect the horizon at

infinite values of t (the slopes diverge there, dt{drÑ˘8); (iii) below the horizon the future of the

cones points “inwards”; closely below r“2M the cones are widely open, dt{dr“ ¯8, and then

towards r“0 they narrow down to dt{dr“0¯, so all the time-like and light-like world-lines enter

the singularity horizontally.

Right: Example of a radial time-like world-line – a fall of a massive particle to the black hole. The

particle is released from rest from r“ 3M at zero coordinate time t and zero proper time τ . At
the top is the wild behaviour in t, at the bottom is the monotonous behaviour in τ . The plot also
illustrates Section 14.1.4 where we will treat the radial free fall in more detail in order to confirm

that nothing special happens at the horizon.
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Flat limit

If there is no source (M “ 0), the metric (12.9) reduces to the metric of flat space-time
represented in spherical coordinates, ds2 “ ´dt2 ` dr2 ` r2pdθ2 ` sin2 θdϕ2q.

Asymptotic flatness

For any M , the metric (12.9) goes over to the flat metric (in spherical coordinates) at large
distances, r"M .

Nature of the coordinates

This also confirms the spherical nature of the Schwarzschild coordinates. In particular, θ and
ϕ are angles on any sphere tt “ const, r “ constu, with r being proportional to the proper
area of that sphere (and to the circumference of circles on that sphere). A new information
concerns the time t: obviously, it represents the proper time of clocks staying at rest at radial
infinity. Actually, being at rest means dr “ 0, dθ “ 0, dϕ “ 0, so the interval reduces to
ds2 “ ´

`

1 ´ 2M
r

˘

dt2, and this further reduces to ds2 “´dt2 at r Ñ 8.

Metric is static

The Schwarzschild metric is static, namely, it is stationary (gµν,t “ 0) plus it is independent
of the direction of time, i.e. invariant under the change t Ñ ´t, which is equivalent to
g0i“0“g0i (because dt cannot appear in the interval in linear order). In comparison with the
general spherically symmetric metric (12.4), the staticity is the main new feature, only fixed
by the vacuum field equations. Note that we did not assume staticity of the sources – and
actually, they need not be such. For example, a pulsating ball generates static metric outside,
provided it keeps the spherical symmetry. (This means, in particular, that it must not rotate.)
Hence, in passing, a pulsating ball cannot generate gravitational waves (it is the same with
EM waves). This circumstance is a special example of a general fact that the field always has
the same or higher symmetry than its source.

Killing symmetries

We know from Section 11.4 that the space-time symmetries can also be stated in a coordinate-
free language – in terms of the existence of Killing vector fields. The stationarity corresponds
to the existence of a time-like Killing field tµ (at least time-like at radial infinity); this field
can be written tµ“ Bxµ

Bt
, so it has components tµ“δµ0 in the Schwarzschild coordinates.3 The

second apparent symmetry – independence of the metric on the azimuth ϕ – corresponds to

3 The metric is not only stationary, but even static, which in geometrical language means that the field tµ

is hypersurface-orthogonal, namely orthogonal to the hypersurfaces t “ const. Actually, it can be written as
tµ “ gttt,µ. See Section 24.4. Note that “hypersurface” is a name for a submanifold whose dimension is only
by 1 less than that of the host manifold (geometers say it has codimension one). Hence, in the 4D manifolds,
hypersurfaces are 3D; in a space-like case, they correspond to a “space at certain time”, t“const.
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the Killing field ϕµ which is space-like and its integral curves are closed (circles); it can be
written as ϕµ“ Bxµ

Bϕ
and in Schwarzschild coordinates it has components ϕµ“δµ3 .

You may point out now that the main assumption of this whole chapter has been spher-
ical symmetry, so there should actually exist three space-like Killing symmetries. Yes, they
do exist, each corresponding to an invariance with respect to rotation about one of the three
orthogonal spatial axes. Choosing one of these rotations to be parameterized by the azimuthal
coordinate ϕ, thus having the above Killing field ϕµ“ Bxµ

Bϕ
, the two remaining spatial Killing

fields read, in the Schwarzschild coordinates,

ϑµ
p1q

“ p0, 0, sinϕ, cot θ cosϕq , ϑµ
p2q

“ p0, 0,´cosϕ, cot θ sinϕq . (12.14)

Metric only holds outside sources

Let us stress once more that the Schwarzschild metric describes the external field of any
spherically symmetric source – it may be a spherical ball, a spherical shell (or a set of such
shells), thick spherically symmetric layer(s), or a combination of these. In such cases, the
Schwarzschild metric only covers a certain part of the manifold. We will, in the following,
suppose the whole space-time to be vacuum (this will shortly be made more precise).

Light-cones

Basic intuition about a given space-time is provided by light-cones. Since we are in a spheri-
cally symmetric field, radial motion is clearly privileged, so let us find the light-cones for it.
Radial photon world-lines are given by

0 “ ds2 “ ´

ˆ

1 ´
2M

r

˙

dt2 `
dr2

1 ´ 2M
r

ùñ dt “ ˘
dr

1 ´ 2M
r

“ ˘grrdr ” ˘dr˚,

where r˚ “ r ` 2M ln
`

r
2M

´ 1
˘

is often being called the “tortoise coordinate”. The radial
light trajectories are drawn in the left part of Figure 12.2; the behaviour of the light-cones is
clear from there, or just from the above slope: at large radii they are “45˝” as in Minkowski,
while when going down to smaller radii, they get more and more narrow (in the direction
of t); at r “ 2M , the cone shrinks to a vertical line and then, below r “ 2M , opens in the
perpendicular (radial) direction. Towards r“0, the cones narrow in the r direction and finally
shrink to a horizontal line at the very centre.

As the tangential part of the metric is positive, it is also seen that the light-cones for non-
radial motion are narrower than the radial ones (above r“ 2M , their slope |dt{dr| is larger,
while below 2M it is smaller than for radial motion); this is natural – the radial component
of speed has to be smaller then, since there is also some tangential component (and the total
speed is fixed to c).

Singularities of the metric

Two singularities apparently exist in the metric (12.9), at r “ 2M and r “ 0. Their precise
nature we will inspect later (just a coordinate, or a real, space-time singularity, that is the ques-
tion), but already now we can see the following. In order to decide between the coordinate
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and “genuine” singularity, one either turns to some invariants or to some “physical” (really
measurable) quantities. In the case of Schwarzschild, due to the latter’s vacuum character, the
simplest scalarsR andRµνR

µν automatically vanish, so one has to compute the Kretschmann
scalarRµνκλR

µνκλ. Although looking scary, it comes out as simple as 48M2{r6. Clearly r“0
is a true singularity.4 Since the proper area of the surface tt“const, r“constu is 4πr2, hence
it vanishes for rÑ0, one can claim the singularity is spatially point-like.

On the other hand, r“2M (called the Schwarzschild radius, rS) does not seem to make
any problem, at least not on the level of curvature. However, we see from the light-cones that
it is a one-way causal membrane (causal motions can only cross it in the inward direction).
Also, we suspect that it is a light-like hypersurface. In order to check this, consider that
the simplest verification of the space-time character of any hypersurface is to analyse the
character of its normal (rather than of the tangent vectors); namely, normal to a time-like
hypersurface is space-like and vice versa, with an apparent light-like ô light-like limit. The
hypersurfaces r“ const have normal Br

Bxµ
which in the Schwarzschild coordinates reduces to

Br
Bxµ

“ δrµ, so

gµν
Br

Bxµ
Br

Bxν
“ gµνδrµδ

r
ν “ grr “

1

grr
“ 1 ´

2M

r
.

Hence, the hypersurfaces r“ const ą 2M are time-like, the hypersurfaces r“ const ă 2M
are space-like, and r“2M is light-like (null).

Killing horizon; static limit; infinite redshift

The null hypersurface r“ 2M is called a horizon. We have seen already it is a boundary of
the region where causal connection is in principle possible between any two spatial points.
This outer region (rą 2M ) is often called the domain of outer communications, while the
inner region (from where it is not possible to escape and where it is not even possible to stay
in the same place) is called the black hole. The horizon has several further properties. First,
it is a Killing horizon, because the “time” Killing vector field tµ “ Bxµ

Bt
becomes light-like

there (and space-like beneath):

gµνt
µtν “ gµν

Bxµ

Bt

Bxν

Bt
“ gµνδ

µ
t δ

ν
t “ gtt “ ´1 `

2M

r
.

Second, r “ 2M is a bottom boundary of the region where it is possible to stay at rest with
respect to infinity, i.e. to stay at r “ const, θ “ const, ϕ “ const. This is best seen from
the light-cones (Figure 12.2), or by realizing that the four-velocity of the static observer
is proportional to tµ; more specifically, it has Schwarzschild components pgttq

´1{2δµt . The
horizon thus represents the static-limit surface. Finally, the horizon is also an infinite-
redshift surface. Actually, as we know from equation (4.5), in stationary fields the frequency
shift between two observers at rest reads

νprBq

νprAq
“

d

´g00prAq

´g00prBq
ùñ

νprB ą2Mq

νprAq

rAÑ2M`

ÝÑ 0` . (12.15)

4 The result is no surprise: in treating geodesic deviation, we saw the Riemann tensor is a counterpart of the
Newtonian tidal tensor Φ,ij . And in the spherically symmetric case, that yields Φ,ijΦ,ij “ pΦ,rrq

2 “ 4M2{r6.
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Metric is only static above the horizon!

Look once more at the metric (12.9). We were saying above that it is static, but that is not
entirely true. Firstly, it is according to the sign of the gtt and gii terms that one recognizes
whether a given coordinate is time(-like) or space(-like). For Schwarzschild, gtt ă 0 and
grr ą 0 at r ą 2M , so there t and r represent what we have been declaring, BUT inside
the black hole it is gtt ą 0 and grr ă 0, so the roles of t and r reverse! Well, these are just
coordinates, so who cares, but it indicates something important: the metric depends on r, and
this represents time below the horizon, so there the metric is dynamical rather than static. In
a geometrical language, there exists no time-like Killing vector field below the horizon.

12.3 Geodesic motion in the Schwarzschild field
The causal structure of space-time (light-cones) limits what motions are possible in principle.
Another piece of intuition is provided by time-like and light-like geodesics – these tell how
looks the unaccelerated motion, solely driven by the given gravitational field. Central point
naturally is the geodesic equation, supplemented by appropriate initial conditions. Integration
of this equation is necessary when one wishes to find an exact evolution of specific trajecto-
ries. In this section, however, we rather focus on qualitative discussion of generic properties
of free motion. Similarly as in the Newtonian discussion of motion in the central field (the
Kepler problem), this is best addressed using the effective-potential method. Its starting point
is to ask whether there exist any constants of geodesic motion.

12.3.1 Space-time symmetries and constants of geodesic motion

From Section 11.4.1 we know that the projections of the test-particle four-momentum pµ on
Killing vector fields are constant along any geodesic. We also know, from Section 3.6 already,
that the equivalent coordinate criterion is the independence of metric on some (“Killing”)
coordinate. The Schwarzschild metric being independent on t and ϕ, we thus immediately
have two constants of geodesic motion,

pt “ pµt
µ, pϕ “ pµϕ

µ . (12.16)

In order to learn their physical meaning, let us make use of the fact that they are constant, so
that they can be evaluated at any point of the geodesic. In asymptotically flat space-times,
one standardly tries to interpret the quantities at spatial infinity, because there they assume
their special-relativistic form. Important will be the relation for time dilation,

dt

dτ
“

dt
a

´gµνdxµdxν
“

1
b

´gµν
dxµ

dt
dxν

dt

“
1

b

´gtt ´ gij
dxi

dt
dxj

dt

“
1

b

1 ´ 2M
r

´ v2prq
,

where v2prq ” gij
dxi

dt
dxj

dt
is the square of the coordinate three-velocity vi ” dxi

dt
. Now to the

constants pt”mut , pϕ”muϕ:
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• The time component

´ut “ ´gtσu
σ

“ ´gttu
t

“ ´gtt
dt

dτ
“

1 ´ 2M
r

b

1 ´ 2M
r

´ v2prq
(12.17)

yields, very far from the centre, a clear physical meaning,

lim
rÑ8

p´ptq “
m

a

1 ´ v2p8q
” mγp8q “: E . (12.18)

The expression γ represents the Lorentz factor given by speed with respect to a rest ob-
server at radial infinity. Actually, t is the proper time of that observer, so vp8q is really
the speed measured by her. Therefore, E :“ ´pt“ ´mut is the energy of the particle with
respect to the rest observer at radial infinity – particle’s energy at infinity in short. Three
cases may happen:

– E ąm ... the particle reaches infinity having still some velocity vp8q ą 0 there (in
the Newtonian case, such a particle follows a hyperbolic trajectory)

– E “ m ... the particle reaches infinity and exactly stops there, vp8q “ 0 (in the
Newtonian case, such a particle follows a parabolic trajectory)

– E ăm ... the particle does not reach infinity (in the Newtonian case, such a particle
is on an elliptic orbit); in this case, the observer at infinity naturally does not measure
E, she rather could measure the particle’s binding energy m´E which is the energy
that would have to be added to the particle in order that this can reach infinity.

• The azimuthal component

uϕ “ gϕσu
σ

“ gϕϕu
ϕ

“ gϕϕ
dϕ

dτ
“ gϕϕ

dϕ

dt

dt

dτ
“

vϕr2 sin2 θ
b

1 ´ 2M
r

´ v2prq
(12.19)

yields, far from the centre,

lim
rÑ8

ppϕq “ E lim
rÑ8

pvϕr2 sin2 θq “: L , (12.20)

which is the angular momentum with respect to the θ “ 0 axis, as measured by the rest
observer at infinity; standard abbreviation is the angular momentum at infinity.

• Note: the above meaning of ´pt and pϕ does not solely apply to geodesics and to spheri-
cally symmetric fields. However, along a general world-line and/or in a space-time without
the respective symmetries, these quantities need not be conserved. On the other hand, they
may (of course) even be conserved along accelerated orbits, if those orbits “fit in” the
space-time symmetries well, as for example do the stationary circular orbits in stationary
and axially symmetric space-times.



12.3. GEODESIC MOTION IN THE SCHWARZSCHILD FIELD 163

• Still another “constant of the motion” follows from spherical symmetry, similarly as in the
Newtonian case: the motion is planar. Actually, choose the equatorial plane (θ“π{2) to
be the plane defined by the centre of symmetry and by the particle’s momentary (or initial)
velocity. In spherical symmetry, such a plane is surely a main plane of the space, so the
particle has no reason to leave it. In the following, we will thus assume θ“π{2, gϕϕ “ r2,
uθ“0, v̂θ̂“0. In passing, the planarity of motion really follows from the geodesic equation
(of course), as can best be checked from its covariant θ component, with θ“π{2 and uθ“0
inserted,

duθ
dτ

“
1

2
gµν,θu

µuν “
1

2
gϕϕ,θpu

ϕ
q
2

“ r2 sin θ cos θ puϕq
2

“ 0 .

One is in fact interested in the behaviour of contravariant component uθ, but that is similar,
because

uθ “ gθθuθ ùñ
duθ

dτ
“ gθθ,ιu

ι
��uθ ` gθθ

duθ
dτ

“
1

gθθ

duθ
dτ

“
1

r2
duθ
dτ

.

12.3.2 Four-momentum normalization and the equation for radial motion

Since the motion is planar (θ“ const ” π{2), it has just 3 degrees of freedom, pt, r, ϕq. We
thus need not directly solve the geodesic equation, because we have 3 constants of the motion
– E, L, plus the rest mass m, as fixed (for any world-line) by the four-momentum normaliza-
tion gµνpµpν “´m2. Actually, pt and pϕ are obtained immediately from the constants

E ” ´pt “ ´gtσp
σ

“ ´gttp
t , L ” pϕ “ gϕσp

σ
“ gϕϕp

ϕ :

pt “
E

´gtt
“

E

1 ´ 2M
r

, pϕ “
L

gϕϕ
“
L

r2
. (12.21)

Finally, from gµνpµpν “´m2, we have (using gµν “1{gµν given by diagonality of the metric)

gttpptq
2

` grrpprq
2

` gϕϕppϕq
2

“
E2

gtt
` grrpp

r
q
2

`
L2

gϕϕ
“ ´m2 ,

hence

pprq2 “
E2

´gttgrr
´

1

grr

ˆ

m2
`
L2

gϕϕ

˙

. (12.22)

This form is valid for the equatorial motion in any static and axially symmetric space-time.
Specifically for the Schwarzschild metric (in which gttgrr“´1), we obtain

pprq2 “ E2
´

ˆ

1 ´
2M

r

˙ˆ

m2
`
L2

r2

˙

. (12.23)

This formula is the key to the discussion of radial behaviour of time-like as well as light-like
geodesics in the Schwarzschild field. Similarly as it is common in the Newtonian case, the
discussion employs the method of effective potential.
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12.3.3 Radial motion of free massive test particles

For particles with m ‰ 0, following time-like geodesics, it’s natural to divide pµ by m and
go over to four-velocity components uµ ” dxµ{dτ . In the case of equation (12.23), it means

purq2 “
E2

m2
´

ˆ

1 ´
2M

r

˙ˆ

1 `
L2

m2r2

˙

“: Ẽ2
´ Ṽ 2 , (12.24)

where Ẽ :“E{m, L̃ :“L{m, and we have introduced the effective potential (per unit m) by

Ṽ 2
” ´gtt

˜

1 `
L̃2

gϕϕ

¸

“

ˆ

1 ´
2M

r

˙

˜

1 `
L̃2

r2

¸

. (12.25)

Meaning of the effective potential

The right-hand side of (12.24) clearly has to be non-negative, so, at a given radius, the particle
must have Ẽ2 ě Ṽ 2. The effective potential thus represents the minimal value of energy Ẽ
with which the given particle (i.e., the particle with a given angular momentum L̃) can exist
at the given location.

Let us check whether the effective potential corresponds, in the Newtonian limit, to the
classical form known from the Kepler problem. For r " M , r2 " L̃2 („ small tangential
speed),

Ṽ “

c

1 ´
2M

r

d

1 `
L̃2

r2
.
“

ˆ

1 ´
M

r

˙

˜

1 `
L̃2

2r2

¸

.
“ 1 ´

M

r
`
L̃2

2r2
. (12.26)

On the other hand, the classical motion in the central field Φ“´M{r has constants

Ẽ “
1

2

“

pvrq2 ` r2pvϕq
2
‰

` Φ , L̃ “ r2vϕ , (12.27)

from where

vϕ “
L̃

r2
, pvrq2 “ 2pẼ ´ Ṽeffq ; Ṽeff :“ ´

M

r
`
L̃2

2r2
. (12.28)

The Ṽeff exactly coincides with the above limit form of Ṽ , only it does not include the rest
energy Ẽrest ”1 which does not exist in classical physics.

Radial motion of a particular particle

The properties of radial motion we will learn on diagrams where the dimensionless energy
quantities Ẽ and Ṽ will be plotted against the Schwarzschild radius r (given in the units of
M ). In such a diagram, each single particle has its specific curve of effective potential given
by its angular momentum L̃. Radial motion with a given (constant) energy Ẽ is represented
there as the motion along a horizontal straight line (or a certain part of it), above the graph
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of Ṽ pL̃; rq. Where the straight line of given energy “hits” the effective potential (Ẽ“ Ṽ ), the
radial velocity vanishes (ur “ 0), so either it is a turning point of radial motion, or – in the
special case when BṼ {Br “ 0 at that radius – the radial motion asymptotically (at t Ñ 8)
stops there.

In a general situation,5 3 types of trajectories exist about the centre (see the right-hand
plot in figure 12.3:

• 0. Trajectories which have no turning point. These correspond to straight lines with Ẽ ą

Ṽmax which nowhere hit the Ṽ pL̃; rq graph. Along such trajectories, the particle either
arrives from infinity and plunges to the centre, or, on the contrary, it starts from some
radius (rą0) and escapes to infinity.

• 1. Trajectories which have one turning point. These correspond to straight lines with
energy in the interval Ṽmax ě Ẽ ě 1, which, at a certain point, hit the Ṽ pL̃; rq curve; in
addition, they also include trajectories with Ẽă1 entirely lying below the radius of Ṽmax.
Along this type of trajectories, the particles either arrive from infinity, turn back at a certain
radius and return to infinity, or, on the contrary, they travel out from the centre, stop at a
certain radius and fall back.

• 2. Trajectories with Ẽă1 lying above the radius of Ṽmax. These have two turning points –
the corresponding horizontal line Ẽ“const only has a certain limited part above the curve
of Ṽ pL̃; rq. The motion is thus restricted to that radial interval only.

As we have also seen analytically, at large radii Ṽ is very close to Ṽeff (just larger by 1
due to the rest energy). The main difference from the Newtonian situation (left plot of figure
12.3) is found near the centre: the relativistic potential Ṽ has two local extremes in general
– minimum and (on smaller radius) maximum, whereas the newtonian potential Ṽeff has the
minimum only. Towards the centre, Ṽ pr Ñ 2Mq Ñ 0 and Ṽ pr Ñ 0q Ñ ´8, whereas
Ṽeffpr Ñ 0q Ñ `8. Let’s look at what this means for the above types of trajectories:

• 0. These trajectories do not exist in the classical problem! Namely, for a non-zero L̃, the
“centrifugal barrier” of Ṽeff is infinitely high, so it cannot be flown overflown with any
finite energy. Therefore, in the Newtonian case, the particle cannot be captured by the
centre in any other way than by directly hitting its surface (which would only be an option
if the surface lay higher than at r“ 0 and the diagram only held above the surface). For a
point-like centre it simply implies that every particle which is arriving from infinity again
flies away to infinity.

• 1. This case corresponds to the Newtonian hyperbolic trajectories, plus, in addition, it
includes the motions below the potential maximum, within the range 0r“ Ṽ pr “ 2Mqs ă

Ẽ ď Ṽmax. This new feature also indicates that the relativistic centre is stronger, because
in the Newtonian case every particle with Ẽ ě 0 is able to escape.

• 2. This case corresponds to the Newtonian elliptic orbits.

5 More specifically, it is the situation with L̃ ą 2
?
3M , as we will see in a minute.
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r r

Ṽeff Ṽ escape −→ ←− capture

scattering

orbit

•A

•
B

scattering

orbit
•
B

Figure 12.3 Typical course of the Newtonian (left) and relativistic (right) effective potential (Ṽeff
and Ṽ , respectively) for radial motion of a free massive test particle in the field of a spherically

symmetric centre. The angular-momentum value L̃ “ 4.4M is chosen. Indicated in blue are the

main types of motion discussed in the text (in particular, bullets mark the circular orbits . . . A

unstable, B stable), and also the “parabolic” case (horizontal green line at Ẽ “ 0, resp. Ẽ “ 1).
In the right-hand plot, also drawn is the black-hole horizon (vertical red line at r“2M).

Let us notice, in particular, the options for circular orbits, i.e. for such motions in which
Ẽ “ Ṽ permanently. Again there is a difference from the Newtonian treatment: there, only
the circular orbits of type B can exist – the limit case of the 2nd (elliptic) type of trajectories.
From their position at the graph of Ṽ pL̃; rq it is clear that they are bound energetically (Ẽă1)
and stable (they rest at the potential minimum, B2Ṽ {Br2 ą 0). Around the relativistic centre,
there exist type-A circular orbits in addition, which are all unstable, because they lie on
the potential maximum (B2Ṽ {Br2 ă 0); according to the value of the maximum (Ẽ ă 1 or
Ẽ ą 1), they are either bound or unbound. These orbits have no Newtonian analogue, since
the potential Ṽeff does not have any local maximum.

Effective-potential shapes and properties of radial motion

Figure (12.4) shows how Ṽ pL̃; rq depends on the value of L̃. Next we summarize what this
implies for the radial motion:

• The orbits having pericentres at r "M are very “Keplerian”, except for the effect of the
azimuthal pericentre shift (see section 17.1.2). The orbits reaching below r„10M may be
rather different, on the contrary:

• Circular orbits (sitting on the extreme of Ṽ ) may exist in the whole region rą3M , but they
are only stable at r ą 6M where the extreme is a minimum. The circular orbits on radii
4M ă ră 6M correspond to Ẽ “ Ṽmax ă 1, so they are bound (though unstable): subject
to an “inward” perturbation, they change to a spiral trajectory which falls to the centre; if
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r

Ṽ

L̃ = 0
L̃ = 2

√
3M

L̃ = 4M

L̃ = 5M

L̃ = 7M

Figure 12.4 Radial course of the effective potential Ṽ in dependence on the value of the angular
momentum L̃. For L̃ă2

?
3M the potential has no local extremes (it grows monotonously with r);

for L̃“2
?
3M an inflection point occurs at r“6M , Ṽ “2

?
2{3; when further increasing L̃, a

local maximum rises to the left from that point and a local minimum rises to the right; while shifting

down, the maximum rises and for L̃“4M it reaches and then exceeds the value Ṽ pr Ñ 8q“1,
so it becomes a global maximum; for still larger L̃ (than 4M) the maximum shifts from r“4M

to r“3M while increasing further (finally to infinity for L̃Ñ8); the minimum increases as well

(towards zero) and shifts from r “ 12M (for L̃ “ 4M) to infinity. The dotted curve shows the

positions of local extremes of Ṽ (to the left/right of r“6M these are maxima/minima), and also

indicated by vertical lines are the important radii r“ 6M and r“ 2M . Radius is in the units of
M .

perturbed “outwards”, it either ends in the same way (as, for example, if δẼą 0, δL̃“ 0),
or the particle settles to an elliptic orbit to the right of the original circular one (as, for
example, if δẼă0, δL̃“0). The circular orbits on radii 3M ără4M have Ẽ“ Ṽmax ą1,
so they are unstable and unbound, albeit spatially bounded; if perturbed “inwards”, their
particles fall to the centre, whereas if perturbed “outwards”, they fly away to radial infinity.
Under r“3M there exist no circular orbits, because Ṽ never has a local extreme there.

• No trajectory can have pericentre at r ă 3M – any trajectory which reaches there from
above is unavoidably captured by the centre. The trajectories with L̃ă 2

?
3M do not at

all have a pericentre – if they are “ingoing”, they inevitably fall to r“ 2M . On the other
hand, the particles with Ẽě1 can only have apocentre at rď4M .

• A particle arriving from infinity is captured by the centre if Ẽ ą Ṽmax; it winds up to a
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(unbound and unstable) circular orbit if Ẽ“ Ṽmax; and it is reflected back to infinity if Ẽă

Ṽmax. For particles falling from infinity from rest (thus having Ẽ“1), the first/second/third
option happens if L̃ă 4M , L̃“ 4M and L̃ą 4M , respectively. A generic particle coming
from infinity must have Ẽě1, so if L̃ă4M , it is captured in any case.

• The most strongly bound “permanent” orbit is the marginally stable circular orbit on r “

6M which is given by constants L̃ “ 2
?
3M , Ẽ “ Ṽ “ 2

?
2{3, so the corresponding

binding energy (per unit mass) is Ẽ´1
.
“´0.0572.

• Nowhere (outside the horizon) can exist a particle with negative energy E with respect to
infinity. (This justifies that we have not been considering the Ẽ ă 0 option when square-
rooting E2.) In the field of rotating black holes, this will be different!

Expressing constants of the motion in terms of locally measured velocity

The meaning of the constants of motion is clear, yet infinity is not the only place to perform
physical measurements! One would like to link E and L with quantities measured anywhere
along a given world-line. Let’s turn to the class of static observers – those who do not move
relative to observers resting at infinity, which means those who have no spatial motion in
Schwarzschild coordinates. We will denote by hat the quantities relating to these observers
(for instance, τ̂ will stand for their proper time), in order to distinguish them from the char-
acteristics of the followed particle. The world-lines of static observers have as tangents the
four-velocity field

ûµ “
dxµ

dτ̂
“

tµ

|gρσtρtσ|1{2
“

tµ
?

´gtt

which has Schwarzschild components

ûµ “

ˆ

1
?

´gtt
, 0, 0, 0

˙

. (12.29)

Denote by v̂ the three-velocity of the particle with respect to the local static observer.6 Nat-
urally, its coordinate components we denote by v̂i, while its “triad” components (actually
measured by the observer using the locally Cartesian rulers laid along the directions r, θ and
ϕ) we denote by v̂ ı̂; they read

v̂i “
dxi

dτ̂
, v̂ ı̂ “

?
gii dx

i

dτ̂
“

?
gii v̂

i , (12.30)

where no summation is to be performed over i! (the term
?
gii dx

i represents an element of
proper distance in the direction of xi). Now we express

v̂ ı̂ “

?
gii dx

i

dτ̂
“

?
gii

dxi

dτ

dτ

dt

dt

dτ̂
“

?
´gttgii

ui

Ẽ
,

6 Here “local” means “at the same point where the particle is at a given instant”.
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where we have substituted

dxi

dτ

dτ

dt
”
ui

ut
, ut “

Ẽ

´gtt
from p12.21q,

dt

dτ̂
” ût “

1
?

´gtt
from p12.29q .

Expressing, in the v̂ ı̂ above, purq2 from (12.24) and puϕq2 from (12.21), plus the respective
metric components, we thus arrive at

`

v̂r̂
˘2

“
purq2

Ẽ2
“ 1 ´

Ṽ 2

Ẽ2
,

`

v̂ϕ̂
˘2

“ ´
gtt
gϕϕ

L̃2

Ẽ2
“
ℓ2

r2

ˆ

1 ´
2M

r

˙

, (12.31)

with ℓ :“ L̃{Ẽ ” L{E.

Circular orbits

We have seen that neither the unbound and unstable circular orbits can lie arbitrarily close to
the Schwarzschild black hole – the innermost one lies on r “ 3M which is not on the very
horizon. What is its physical nature? Circular orbits are given by two conditions,

ur “ 0 ùñ Ẽ “ Ṽ ,
BṼ

Br
“ 0 ùñ L̃2

“
Mr2

r ´ 3M
(12.32)

(just differentiate the relation (12.25)). Substitution of this L̃2 into Ẽ2 “ Ṽ 2 yields

Ẽ2
“

pr ´ 2Mq2

rpr ´ 3Mq
. (12.33)

Now both the above expressions for L̃2 and Ẽ2 (valid for circular orbits) can be substituted
into (12.31), in order to find the linear velocity with respect to static observers on a given
radius r, as given by v̂2 ”pv̂ϕ̂q2 (for circular orbits, it only has the ϕ component):

v̂2 “
`

v̂ϕ̂
˘2

“
M

r ´ 2M
. (12.34)

Far from the centre (r "M ) the relation gives pv̂ϕ̂q2 “ ´Φ as in the Newtonian case. With
decreasing radius, the orbital speed grows quicker than according to the Newtonian limit,
reaching a maximum pv̂ϕ̂q2 “ 1 on the innermost existing orbit at r “ 3M . Therefore, the
last circular orbit is the orbit of light. It is, of course, energetically unbound (Ẽ Ñ 8) and
unstable (Ṽ “ Ṽmax Ñ 8). At r ă 3M , nothing can however keep on circular orbit, the
centre’s attraction is too strong there.

12.3.4 Radial motion of free massless test particles

For particles having m “ 0 (“photons”),7 one naturally does not introduce E{m a L{m;
however, otherwise the treatment is similar as for massive particles. From (12.23), we have
in this case

pprq2 “ E2
´
L2

r2

ˆ

1 ´
2M

r

˙

“ E2

ˆ

1 ´
ℓ2

λ2

˙

, (12.35)

7 ... though it would be especially attractive to also mention gravitons here, like [29] do in section 25.6.
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where we have denoted

λ :“

c

gϕϕ
´gtt

“
r

b

1 ´ 2M
r

(12.36)

the function which plays the role of an inverse effective potential (the motion can only happen
below its graph), and

ℓ :“
L

E
(12.37)

is a constant of the motion which we already introduced for massive particles. In contrast
to those, however, for photons the ℓ ratio completely determines the motion – it is the only
relevant constant.

Let us remark that if we wished to use locally measured velocity for discussion, it would
be best to express pv̂ϕ̂q2 from (12.31) and then just consider that for photons pv̂r̂q2`pv̂ϕ̂q2 “ 1:

pv̂ϕ̂q
2

“
ℓ2

r2

ˆ

1 ´
2M

r

˙

“
ℓ2

λ2
, pv̂r̂q2 “ 1 ´ pv̂ϕ̂q

2
“ 1 ´

ℓ2

λ2
. (12.38)

Interpretation of ℓ “ L{E

The meaning of the constant ℓ can be understood at large distances from the centre. From the
above relation for v̂ϕ̂, we have

ℓ “
rv̂ϕ̂prq

b

1 ´ 2M
r

rÑ8
ÝÑ rv̂ϕ̂p8q , (12.39)

i.e. ℓ
r

“
v̂ϕ̂p8q

1
(good to realize that the unity is in fact c in standard units). Sketching the situa-

tion “at infinity” (right-hand part of figure 12.5), the obtained relation follows from similarity
of triangles, but mainly we can recognize the sense of ℓ: it represents the smallest distance at
which the photon would fly by the centre if it followed, from infinity, a straight line in a fic-
tive Euclidean space – such a measure is being called the impact parameter in the scattering
theory.

Radial motion under the effective potential λ

For massive particles, the effective potential depended on their angular momentum. The (in-
verse) effective potential λ for photons does not depend on any characteristics of the particle
– it is the same for all photons. And also its behaviour is very simple: it goes to infinity for
rÑ 2M and for rÑ 8, while at r“ 3M it has a global minimum. The expression (12.35)
tells that photons can only move below the radial graph of λ, along a straight line given by
the value of ℓ. Hence, from the left-hand plot of figure 12.5 it is seen that:
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•
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√
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r ℓ

c = 1

v̂r̂
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✇

Figure 12.5 Left: The course of the relativistic (inverse) effective potential λ for the motion
of massless test particles in the field of a spherically symmetric centre. Indicated are the major

types of motion discussed in the main text, in particular the photon circular orbit (B) and its

radius r “ 3M , and also the corresponding limit case of the motion “tangent” to the minimum
of the potential (horizontal straight line |ℓ|“3

?
3M) and the black-hole horizon (vertical red line

r “ 2M). Right: Components of the photon velocity at large distance from the centre and the
meaning of ℓ.

• There exists exactly one light-like circular orbit; it lies on r “ 3M and corresponds to
|ℓ| “ λmin “ 3

?
3M . It is unstable – if perturbed, the photon either falls to the centre or

flies away to infinity.

• No pericentre can occur at ră3M – any trajectory which enters that region from outside is
unavoidably captured by the centre. On the other hand, apocentre can only lie at ră 3M ;
specifically, it applies to photons with |ℓ|ą3

?
3M .

• A photon coming from infinity is captured by the centre if having |ℓ| ă 3
?
3M , winds up

to a circular orbit at r“ 3M if having |ℓ| “ 3
?
3M , and reflects (in fact “bends”) back to

infinity if having |ℓ|ą3
?
3M . A photon outgoing from the centre escapes to infinity if and

only if it has |ℓ|ă3
?
3M .

Photon escape cones

We have learnt that the Schwarzschild centre can capture particles more efficiently than the
Newtonian one. In fact the latter can only capture the particle with non-zero angular momen-
tum if it is extended (has non-zero size) and the particle just hits it. Around the relativistic
centre, there exists a certain region from where particles are captured irrespectively of how
they entered it, and that is even true in the point-like limit (which actually means the black-
hole limit, because there necessarily occurs a horizon then). In more sophisticated terms, the
effective cross section of the Newtonian centre equals its geometric cross section, whereas
for the relativistic centre it is larger. This is nicely illustrated by a radial behaviour of spatial
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angles within which photons escape, from a given location, to infinity. The complements of
these angles are generated by directions in which photons end in/on the centre; in the oppo-
site sense, these are the directions in which no photons can reach the given point, because
such photons could only come from the centre – but the centre is a black hole (therefore, the
complements of the photon escape angles delimit directions in which the centre is seen from
the respective radii).

The photon escape cones we will determine with respect to the privileged class of static
observers, similarly as we did with three-velocities in the preceding discussion. To collect all
photons escaping from a given radius, one has to take i) the photons which start from ră3M
in the outward direction while having sufficiently small ℓ not to fall back, plus ii) the photons
starting from r ą 3M – those which start in the outward direction and those which start in
the inward direction but have so large ℓ that they do not hit the region rď3M and turn back
towards infinity.

• From r ă 3M , a photon escapes to infinity if (v̂r̂ ą 0 ^ |ℓ| ă 3
?
3M ). Substituting from

(12.37), the second constraint yields
ˇ

ˇ

ˇ
v̂ϕ̂
ˇ

ˇ

ˇ
ă 3

?
3
M

r

c

1 ´
2M

r
.

For the radial velocity, this means

v̂r̂ “

b

1 ´ pv̂ϕ̂q2 ą r´3{2
rr3 ´ 27M2

pr ´ 2Mqs
1{2

“

ˇ

ˇ

ˇ

ˇ

1 ´
3M

r

ˇ

ˇ

ˇ

ˇ

c

1 `
6M

r
.

The ratio v̂r̂

|v̂ϕ̂|
represents cotangent of the angle (α) by which the direction of the photon

turns away from radial outward direction (from B{Br), as taken in the space of the local
static observer, so the condition can be written

cot α̂|ră3M “
v̂r̂
ˇ

ˇ

ˇ
v̂ϕ̂
ˇ

ˇ

ˇ

ą
|r ´ 3M |

3
?
3M

c

r ` 6M

r ´ 2M
.

• From rą3M , a photon escapes if either v̂r̂ě0 or (v̂r̂ă0 ^ |ℓ|ą3
?
3M ). The first option

yields the whole half-space lying “away from the centre” while the second option adds a
certain piece of directions towards the centre, as far as

0 ą cot α̂|rą3M “
v̂r̂
ˇ

ˇ

ˇ
v̂ϕ̂
ˇ

ˇ

ˇ

ą ´
|r ´ 3M |

3
?
3M

c

r ` 6M

r ´ 2M
.

The obtained constraints can be joined on r “ 3M ,

cot α̂ ą ´
r ´ 3M

3
?
3M

c

r ` 6M

r ´ 2M
, i.e. cos α̂ ą ´

ˆ

1 ´
3M

r

˙

c

1 `
6M

r
. (12.40)

Radial behaviour of the escape-sector boundary is drawn in figure 12.6. It reveals a rather
big difference from the Newtonian centre which cannot capture the orbiter gravitationally
(so the limit value would everywhere be 180˝ in such a graph). Recall once again that the
complement of the escape cone defines how big the black hole is in the viewing field of the
static observer.
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Figure 12.6 Radial dependence of the spatial angle within which photons escape to infinity from
a given location in the field of the Schwarzschild black hole. The borders of this “escape cone” are

defined with respect to the static observer at the given location. Indicated is the important value

90˝ corresponding to the circular photon orbit on r “ 3M ; for the static observer at r “ 3M it

means that the black hole fills just half of the sky.
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CHAPTER 13

Cosmology:
homogeneous and isotropic models

On the 4th February 1917, Einstein writes to P. Ehrenfest: “... I have perpetrated something
again as well in gravitation theory, which exposes me a bit to the danger of being committed to
a madhouse. I hope there are none over there in Leyden, so that I can visit you again safely. ...”
At the end of 1916, he introduced a cosmological term into the field equations – and, thanks
to it, he was able to find a static solution for the Universe. It was filled, in a homogeneous
and isotropic way, with matter whose mutual attraction was compensated by a repulsive effect
of the newly postulated term; this was the first cosmological model. The tone of Einstein’s
letter is understandable, because there was no other “justification” for the new term than the
assumption of staticity. To tell the truth, the solution mainly impressed Einstein by something
else: its spatial geometry is that of a 3D sphere, so it is closed, having no boundaries, hence
no boundary conditions are needed – in particular, in such a universe, the inertia of bodies
can be interpreted in a totally “Machian” way, as a consequence of mutual interaction of all
the matter present. Besides, the 3D sphere has a positive curvature everywhere, which well
corresponds to the attractive nature of gravitation. However, Einstein’s theoretical colleagues
who believed in mathematical aesthetics did not see much rationale for “putting Λ by hand”
to the theory. W. de Sitter, the director of the Leiden observatory, was the strongest opponent.

Quite ironically, just days after expressing his reservations, on 20th March 1917, de
Sitter sent to Einstein his famous solution, describing a space-time containing only the cos-
mological constant, otherwise vacuum (thus governed by equations Rµν “ Λgµν). Posi-
tive Λ makes it expand (free test particles are accelerated away from each other). After
Schwarzschild’s and Reissner’s (later also Nordström’s) solutions and after Einstein’s static
cosmological model, de Sitter’s universe was historically the 4th exact solution of the Einstein
equations. The de Sitter solution is very important cosmologically, since the cosmological
term dominates on the largest scales, making the de Sitter model a default asymptotic state
of any expanding universe with positive Λ. In 1917, however, it primarily surprised Ein-
stein conceptually, because it showed that the Minkowski solution is not the only vacuum
possibility – that the space-time may be curved “in itself”, not necessarily by matter only.

175
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This was later important for the acceptance of the picture of gravitational waves, but at the
given moment it mainly was another counter-example to Einstein’s Machian faith [to de Sit-
ter, 24th March]: “In my opinion, it would be unsatisfactory if a world without matter were
possible. Rather, the gµν-field should be fully determined by matter and not be able to exist
without the matter. This is the core of what I mean by the requirement of the relativity of
inertia. One could just as well speak of the ‘matter conditioning geometry’. To me, as long as
this requirement had not been fulfilled, the goal of general relativity was not yet completely
achieved. This only came about with the Λ term.” A week later (1st April), de Sitter explicitly
protested against Einstein’s satisfaction with the static model: “I must emphatically contest
your assumption that the world is mechanically quasi-stationary. We only have a snapshot of
the world, and we cannot and must not conclude from the fact that we do not see any large
changes on this photograph that everything will always remain as at that instant when the
picture was taken.”

At the time when K. Schwarzschild was acting as a volunteer on the German side of
the Eastern front, on its opposite side another volunteer, A. A. Friedmann, was working in an
aeronautic navigation service; later he became professor of mathematics, physics and mete-
orology at several Russian universities. In 1922, he wrote a considerable paper on possible
solutions of the field equations containing homogeneous and isotropic incoherent dust (no
pressure) and the cosmological constant. He showed the Einstein and the de Sitter models are
but limits of a wide range of dynamical possibilities with constant positive curvature of space.
He introduced “cosmic time” as “the time since the creation of the world”, pointing out that
such a time may actually be both finite and infinite. And at the end he remarks: “It is left
to remark that the ‘cosmological’ quantity Λ remains undetermined in our formulae, since it
is an extra constant in the problem; possibly electrodynamical considerations can lead to its
evaluation. If we set Λ “ 0 and M “ 5 ¨ 1021 solar masses, then the world period becomes
of the order of 10 billion years.” In another paper (1924), he added a similar discussion of
the constant-negative-curvature models. Friedmann’s papers basically founded the current
theoretical cosmology. In 1927, G. Lemaître confirmed the result by deriving the solution
with matter, radiation (including pressure) and cosmological constant.1

In the meantime, statistics of spectra of “spiral nebulae” were more and more favouring
redshifts, thus recession. V. Slipher actually started with the measurements about 1912, but
only in 1927 G. Lemaître clearly interpreted the data as evidencing the cosmic expansion. In
1928-29, E. P. Hubble confirmed that conclusion. In the meantime (1924), he also found that
rather than belonging to our Galaxy, the “nebulae” were in fact other galaxies, similar to our
one. The data thus showed that A. Friedmann was right – our Universe is expanding. Einstein
admitted the introduction of Λ (actually, insisting on the closed static universe) had been “the
biggest blunder of my life” and accepted the expanding picture.

1 Although he was a catholic priest, he concludes by: “It remains to find the cause of the expansion of the
universe.”
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13.1 Special nature of cosmology

Cosmology deals with the structure and evolution of the Universe as a whole. This is not a
minor plan (K. Popper remarked that “all science is cosmology” in fact), though it focuses
on an object which – at least “the our one” – exists in one issue only. One cannot experiment
with the Universe as with other physical objects, namely to study it under various initial and
boundary conditions. It is even not at all possible to leave it and study it from outside; actually,
our perspective is very much fixed – due to the immense cosmic distances and time intervals,
we can only observe the Universe from a tiny region around the Earth and within only a neg-
ligible interval of its history. Inevitable extrapolations may seem hardly digestible, yet still,
cosmology is a standard scientific field: on the basis of current best knowledge and of certain
assumptions concerning symmetry and/or simplicity, it creates models whose predictions can
be confronted with observations. After all, the extrapolations made in cosmology are only
far-reaching in time and space which need not be the most important respect. And, besides,
consider how they compare to those necessary in the Planck-scale physics: taking 1m“100m
or 10´1m as the scale we have more immediate experience with, the scale of “mega-world” is
1 megaparsec = about 1022m, and the whole observable Universe has the characteristic size of
about 1026m. That is a large difference, if regarding how different conditions exist in micro-
world where 1 angstrom “ 10´10m (atomic scale) or 1 fermi “ 10´15m (nuclear scale) are
used as adequate units. By far the most remote, however, is the Planck scale, „10´35m.

From the mega-scales we have yet much more observations than from the Planck scale:
and the radiation we receive from various astronomical sources show exactly the same pa-
rameters we are used to register on radiation from the neighbouring galaxies, from the Sun or
from a candle. What we see on the sky thus evinces that even at times and places which are
unthinkably remote from us the matter had apparently been subjected to the same physics we
know from now and here. This observation may indeed be the most compelling footing for
seeking the “laws of Nature”.

Entering some new scale of phenomena, extrapolations from the known realm are nat-
ural, yet not the only option. Actually, the Universe as a whole might be also governed by
some specific, “cosmic” laws, which have negligible effect on local scale; one of such “laws”
effectively is the cosmological term in Einstein’s equations. Or, there may be no (other) such
laws, while there also act – besides the celebrated extrapolations – the opposite implications:
the local physics might be influenced by properties of the mega-scale Universe. Mach’s prin-
ciple is an example of such a statement – according to it, the locally acting property of inertia
is determined by interaction between all the matter in the Universe.

A reasonable cosmological model obviously cannot be found among the asymptotically
flat solutions of Einstein equations, describing isolated sources (e.g. black holes), because,
in the observable Universe, matter seems to exist “everywhere”. On largest scales, it seems
to be distributed uniformly, so a certain “principle of uniformity” is being accepted as the
starting idea. One of such principles – the Copernican principle, saying that our location
in the Universe is completely general (not exceptional) – accompanied the dawn of modern
science. Today, a stronger, so-called cosmological principle is being stated as the starting
point of “standard” cosmological models; it claims that the large-scale world is homogeneous
and isotropic.
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13.2 Basic observations
Stars live either alone (as e.g. our Sun), or in multiple, gravitationally bound systems; if
the latter contain many components, they are called star clusters. However, the most distinct
structures in the Universe are galaxies – much larger gatherings containing some 107˜12 stars.
Galaxies have about 104˜6 light years across and are typically more than 106˜7 light years
from each other. In spite of great differences in size and structure it holds for almost all
galaxies that most of their angular momentum is borne by a central disc component, within
which stars as well as interstellar matter strongly concentrate towards the centre – the galactic
nucleus. The galaxies in turn form bigger associations – local groups of galaxies, clusters,
superclusters... This hierarchy seems to have upper limit on the scale of several hundreds
of megaparsecs (Mpc). The largest recognizable structure appears to be like network of
filaments with (super)clusters at its vortices. In the observable Universe, there exist some
1012 galaxies.

13.2.1 Olbers’ paradox

If you believe that the relativistic theory is only necessary in situations where something is
moving very fast or where gravitational field is very strong, try this: throw some thing and
watch how it falls. If you wanted to describe the fall by Newton’s theory of gravity and
the travel of photons to your eyes by Maxwell’s electrodynamics, you would get into trouble,
because these two theories are not compatible. Another similarly simple experiment indicates
very important property of the Universe. If your neck is totally blocked from monitor, it may
not be easy, however it does not do any harm at times: go out to the night and look at the sky.
– Nothing? – Well, it’s dark!

Such an experiment was being made long before general relativity. E. Halley (1720),
P. L. de Chéseaux (1744), and mainly H. W. M. Olbers (1826), considered whether its result
is obvious. They assumed the universe to be Euclidean and static, infinite in both time and
space, with stars distributed roughly uniformly and shining for ever. If the stars were point-
like, each having luminosity Lą 0, a static observer at location r“ 0 would measure, from
each star (lying r apart), the intensity L

4πr2
, so from all stars in the universe it would yield

8
ż

r“0

L

4πr2
4πr2n dr » Ln

8
ż

r“0

dr “ 8 ,

n»const being the number density of stars in space.
In reality, the stars are not point-like, with the nearer ones obscuring those at larger

distance. Hence, the upper limit of the integral is effectively finite and, consequently, also
finite is the result. For extended stars (with same L and size), it holds that a closer star
causes higher intensity, but, on the other hand, it obscures more stars lying behind. Both
these tendencies fall off with r2, so they just cancel mutually. All in all, the intensity from all
stars the observer sees is the same as the intensity from stars placed side by side on a sphere
of some (arbitrary) radius R – and that of course equals the intensity at the star surface!
(Actually, inside a sphere of given brightness, the intensity is independent of the sphere’s
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radius, because the total radiated power grows with R2, whereas the intensity decreases with
R2 on the contrary. In passing, the limit RÑ0` corresponds to an observer just between two
touching stars.)

A thermodynamical consideration leads to a similar result: an infinite static universe
is undoubtedly in the state of thermodynamic equilibrium, that is, every its star emits the
same power as it absorbs. This argument eliminates the explanation suggested by Olbers
himself, namely that the light of stars is being absorbed by an interlaying gas. (The gas
would have to already be in equilibrium as well.) The paradox arises too in a non-Euclidean
static universe, and diminishing the universe to finite spatial size only slightly modifies the
above result (the observer might see less stars than would fit to the celestial sphere, which
would decrease the received intensity accordingly). Neither offers a solution to reduce the
stellar lifetime to a finite value, at least if we allow stars to form in the same rate as they die.
Finally, the assumption of homogeneity of star distribution on large scales is well supported
by observations.

So how on Earth it can be dark at night? Very probably, it is because the Universe is
not static. Actually, if stars recede from (any) observer (the faster the farther they are), the
received flux of energy is lower. (And, still better if the Universe were not infinitely old...)

13.2.2 The Hubble-Lemaître expansion and the “day without yesterday”

By 1929, E. P. Hubble confirmed convincingly that the farther the galaxies, the more their
spectra are redshifted. Lemaître interpreted that as evidencing the expansion of the Universe.
The distance l and the speed of recession v (derived in a Dopplerian way) were found to
satisfy the Hubble-Lemaître relation v“Hl, where H is being called the Hubble-Lemaître
constant. The relation mainly holds accurately for distant galaxies, since for such their “pe-
culiar motion” is relatively less important. Nearby galaxies may in fact move towards each
other, mainly if they are directly gravitationally bound (as e.g. our Galaxy with the well
known galaxy M31 in Andromeda). On the other hand, the relation also does not work ac-
curately for very large distances, since there it is necessary to employ a general relativistic
formula.

Friedmann interpreted the time parameter t of his equations as “the time since the cre-
ation of the world”. Actually, if playing the cosmic-expansion film backwards, the galaxies
would approach each other. If some two galaxies are now l from each other and are receding
with speed v, then before some l{v they must have been very close. According to the Hubble-
Lemaître relation, this equals 1{H , which, if taking H .

“ 70 km{s{Mpc, yields the “Hubble
time” of about 14 billion years. The actual age of the Universe may be somewhat differ-
ent, because the cosmic-expansion rate need not have been constant (the Hubble-Lemaître
“constant” may change in time). Actually, the mutual attraction between all the matter must
slow down the expansion, and even more pronounced may be the effect of the cosmological
constant. In the 1930s, Eddington expressed his aesthetic disgust by the finite-age world,
but his postdoc Lemaître replied [beginning of his “primeval atom” hypothesis published in
Nature, 1931]: “Sir Arthur Eddington states that, philosophically, the notion of a beginning
of the present order of Nature is repugnant to him. I would rather be inclined to think that
the present state of quantum theory suggests a beginning of the world very different from



180 13. COSMOLOGY: HOMOGENEOUS AND ISOTROPIC MODELS

the present order of Nature. Thermodynamical principles from the point of view of quantum
theory may be stated as follows: (1) Energy of constant total amount is distributed in discrete
quanta. (2) The number of distinct quanta is ever increasing. If we go back in the course
of time we must find fewer and fewer quanta, until we find all the energy of the universe
packed in a few or even in a unique quantum.” Also interesting, in connection with the issue
of determinism vs. free will, is the end of Lemaître’s note: “Clearly the initial quantum could
not conceal in itself the whole course of evolution; but, according to the principle of indeter-
minacy, that is not necessary. Our world is now understood to be a world where something
really happens; the whole story of the world need not have been written down in the first
quantum like a song on a disc of a phonograph. The whole matter of the world must have
been present at the beginning, but the story it has to tell may be written step by step.”

Within the Newtonian theory, the Lemaître’s “day without yesterday” would be quite a
daring retrodiction, since the galaxies do not move away from each other in an exactly radial
directions, so they might pass by rather than collide in the backward video. In GR, the picture
is very different: the galaxies do not move in any background, pre-existing space – in fact
they are “at rest” (except their peculiar motions) while the whole space expands or contracts.
Hence, if the space itself collapses, all the matter necessarily gets cumulated (irrespectively
of its own, “peculiar motion”). We will see that with a repulsive (= positive) cosmological
constant, the past is not that certain, because – in dependence on its value (possibly changing
in time?) and on the values of other parameters – the Universe did not have to start in a
singular way. Yet the existence of the cosmic microwave background radiation evidences
that the very hot phase in which matter and radiation were in equilibrium did really happen.

13.2.3 Homogeneity and isotropy

On very large scale (of several hundred of megaparsecs), the Universe appears homogeneous
and isotropic. On smaller scales it is not so, but if one divided it into cells of about 250 Mpc
size and averaged physical quantities (mainly density and pressure) over them, the result
would be approximately the same for all the cells. The above size is not small, but still enough
such cells fit into the observable Universe for statistical purposes. Actually, the observable-
Universe “radius” is roughly c

H

.
“ 4.5 Gpc ( .“ 1.37 ¨1028 cm), so its volume is about 370 Gpc3.

The above “pixels” of 250 Mpc size have volume 0.016 Gpc3, so some 23000 of them fit into
the observable Universe.2

The observation of large-scale homogeneity and isotropy, extended to the whole Uni-
verse (including regions which are unobservable, even in principle), is the fundamental start-
ing point of “standard” cosmological models. It leads to a considerable simplification of
the metric already before that is subjected to Einstein’s equations. First, however, it will be
necessary to make the statements about homogeneity and isotropy more rigorous.

2 As opposed to ordinary life, in cosmology the speed of light seems very small. Since the Universe expands,
it is good to bear in mind that everything we see we see in the past, so the “instantaneous” location and state
of any source is different than how it is given by the observed radiation. The study of the early Universe thus
requires to look as far as possible. -Kind of trivial remark, but it can make things surprising – in particular,
the radiation we are receiving from very distant objects was emitted when the Solar system did not at all exist,
while some of those objects need not exist “now” any more (or they may be very different).
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Let us remark that whereas the isotropy is generally accepted (also thanks to the isotropy
of the CMBR), there is still discussion about homogeneity and its scale. Namely, several
quasar or galaxy structures seem to be larger than the above value. A debate is also go-
ing on whether the inhomogeneities on smaller scales do not significantly affect the cosmic
dynamics as an effective extra source.

13.2.4 Be careful with “relative velocities”

You certainly understand how delicate it is, in a curved space, to try to compare quantities
defined at different points; we notably stressed this before deriving parallel transport. Still we
beg to emphasize it once more here in cosmology, in order for you not to be surprised when
asked: “And so the cosmic expansion is superluminal?”

Yes, it is. But what does it mean “relative velocity”, “distance”? In a curved space(-
time), the proper distance depends on curve along which it is taken. Imagine high mountains
and two expeditions separated by five complicated valleys. What is their distance and what
is their relative velocity? Imagine someone travelling from Fiji to Tahiti. What is their
distance and velocity with respect to someone in Prague? Are they approaching or receding?
And in GR, the geometry may be dynamical, in addition. In cosmology, one standardly says
“galaxies are receding from each other”, but in fact it is space in-between which is expanding;
the galaxies may well “be at rest” in a good sense, like dots marked on a balloon which is
being inflated. In such a case, receding (or approaching) may easily be “superluminal”.
Actually, redshifts greater than unity are commonly being observed at distant cosmic sources,
which formally corresponds to a superluminal recession. This is not in contradiction with the
relativity principles, because the speed of light is defined with respect to an inertial system
– a global one in special relativity, but only a local one in general relativity. In general
relativity, one cannot take (four-)velocity there and (four-)velocity here and subtract them.
One might try to do this carefully and to first transport the vectors to the same point, but how?
–Which transport is “correct” and along which curve? In GR, the only sensible and unique
notion of relative velocity is the velocity between two (point-like) objects located, at the
infinitesimal moment of measurement, at the same space-time point (at the same event). This
velocity must have magnitude smaller than c. Imagine, finally, a one-dimensional equivalent
of what happens in cosmology – a circle whose radius is growing. In the Euclidean case, the
circumference o“2πr evolves according to the equation do

dt
“2π dr

dt
, which for dr

dt
sufficiently

close to c may naturally be superluminal.

13.3 Cosmological principle and the FLRW metric
Vaguely speaking, by homogeneity and isotropy one wishes to say that at any given instant
of time, the Universe is everywhere the same and in all spatial directions the same. However,
we do not have any time coordinate yet, and both homogeneity and isotropy are relative prop-
erties – they depend on an observer. Let us define them more carefully – and geometrically.

Before doing so, it is worth to realize how to formulate the basic coordinate pictures in
a covariant manner.
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• “Time” translates into a parameter (t) such that Bxµ{Bt is a time-like vector (in a given
region).

• “Constant-time slice” translates to a hypersurface (or at least a local hyperplane) which is
orthogonal to some time-like vector-field (or at least vector).

• The notion “time component of something (of a vector)” translates to “projection of that
quantity (of that vector) to some time-like vector” (either arbitrary or at least one).

• Similarly, “spatial part of something (of a vector)” translates to “projection of that quantity
(of that vector) to some space-like vector” (either arbitrary or at least one).

13.3.1 Symmetries of the large-scale Universe – homogeneity and isotropy

Homogeneity of the Universe Through every event in the Universe there passes, uniquely,
such a global space-like hypersurface on which all physical properties are everywhere the
same. It is called the hypersurface of homogeneity. Constancy of physical parameters
means invariance with respect to translations over any given hypersurface of homogeneity, so
homogeneity corresponds to the existence of 3 space-like Killing vector fields.

Isotropy of the Universe There exists, globally, such a family of observers for whom all
spatial directions are equivalent. Isotropy means the existence of 3 space-like Killing vector
fields, which at every point represent generators of rotations about 3 spatial axes.

Immediate corollaries First, since the real Universe is filled with matter and radiation, the
only observers who may see the Universe isotropic are those who move together with matter
(otherwise the relative velocity would fix a privileged direction). Such observers are thus
called the comoving observers, sometimes also the fundamental observers. Second, ra-
diation (thus) has to be isotropic in the rest system of matter. Third, the four-velocity of
the above observers (thus of cosmic matter) has to be always and everywhere orthogonal
to the hypersurfaces of homogeneity (otherwise a privileged direction could be obtained by
projection of the four-velocity on those hypersurfaces).

Worth to realize that isotropy seen from one point and homogeneity are independent
properties, but isotropy valid for all points implies homogeneity. But exactly such an isotropy
we are postulating here: the existence of such a class of observers that for any of them and at
any instant of their time, the space is isotropic to an arbitrary distance. In other words, to the
local three-spaces of comoving observers, there must exist integral hypersurfaces whose all
points have to be equivalent ... and these exactly are the hypersurfaces of homogeneity.

The observationally motivated assumptions of homogeneity and isotropy of the large-
scale Universe – the so-called cosmological principle – forms a fundamental principle of the
“standard”, Friedmann-Lemaître-Robertson-Walker (FLRW) cosmological models.

13.3.2 Synchronous coordinate system

Similarly as in derivation of the Schwarzschild solution, the second step after statements
about symmetry is to introduce such coordinates in which the metric may be expected to
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uµ
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τ (≡ t )
(proper time of cosmic fluid)

τ τ

worldlines of fundamental observers
(≡ streamlines of cosmic fluid)
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of homogeneity

(identified then
as t=const)

Figure 13.1 Geometric implications of homogeneity and isotropy: i) The large-scale Universe is
claimed to be foliated by hypersurfaces of homogeneity, i.e. by a smooth distribution of integral
space-like hypersurfaces which, individually, have the same curvature everywhere (see Section 24.4

and Chapter 25 for a more precise description of a foliation). ii) A family of fundamental observers
is claimed to exist who find the large-scale Universe spatially isotropic; their world-lines have to be

everywhere orthogonal to the hypersurfaces of homogeneity (in order that their four-velocity uµ

does not induce any privileged spatial direction).

have simple form. No hesitation how to introduce the time coordinate in the cosmic case: it
will be exactly the proper time of fundamental observers (thus of the matter itself),

t “ tpτ0q `

τ
ż

τ0

dτ pso dt “ dτq . (13.1)

Such a t is being called the cosmic time; the corresponding metric component is gtt “ ´1.
Let us appreciate, once more, that the possibility to introduce such a privileged global time
(even having perfect physical sense) follows from the postulated existence of the global,
integral hypersurfaces to the local three-sections orthogonal to the world-lines of fundamental
observers. Since all these observers have to be equivalent, their clocks tick at the same pace
and can be synchronized over the hypersurfaces of homogeneity. These hypersurfaces thus
correspond to t“const.

Now, let the hypersurfaces of homogeneity be covered by some (yet arbitrary) spatial
coordinates xi. Imagine, at any point, the four-velocity of the local fundamental observer uµ

and an arbitrary four-vector sµ orthogonal to uµ (thus tangent to the local hypersurface of
homogeneity). In the pt, xiq coordinates, these two vectors read

uµ “ p1, 0, 0, 0q , sµ “ p0, siq .
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Then, however, from their orthogonality it follows

0 “ gµνu
µsν “ gtiu

tsi ùñ gti “ 0 . (13.2)

The metric thus assumes a rather simple form

ds2 “ ´dt2 ` dσ2
“ ´dt2 ` gijdx

idxj , (13.3)

where dσ2 describes the geometry of hypersurfaces of homogeneity.

13.3.3 Metric of the hypersurfaces of homogeneity

By definition, on the hypersurfaces of homogeneity, the Universe has everywhere the same
properties. Hence, these hypersurfaces have themselves to be everywhere the same geometri-
cally: their curvature has to be everywhere the same. The manifolds of constant curvature
represent, at the same time, the so-called maximally symmetric spaces, because they host
a maximal possible number of independent symmetries (Killing fields). In the 3D case, this
number is 6. Sure, we know from above we have 3 translations due to the homogeneity and 3
rotations due to the isotropy. Now “almost everything is clear”, since there are only 3 types of
3D manifolds with constant curvature: those with positive, negative and zero curvature (i.e.,
the 3D sphere, hyperboloid and plane). Within each of these subclasses, the manifolds differ
only by “size”, as it is easy to fathom on the 2D case: there, for instance, the manifolds of
constant positive curvature are spheres which only differ in radius.

The 3D Euclidean space has in the Cartesian and spherical coordinates the well known
metric

dσ2
“ dx2 ` dy2 ` dz2 “ dr2 ` r2pdθ2 ` sin2 θ dϕ2

q . (13.4)

The 3D sphere/hyperboloid can be embedded in the 4D space (R4) with Euclidean/Lorenzian
metric, respectively (the hypersurfaces with negative curvature can only be represented lo-
cally in R4). Let us first write the metrics of these 4D spaces in Cartesian coordinates
px1, x2, x3, x4q,

dΣ2
“

3
ÿ

i“1

pdxiq2 ˘ pdx4q2 ,

where the upper/lower sign correspond to the Euclidean/Lorentzian metric. The embeddings
of the 3D sphere/hyperboloid in the above spaces are given by equations

px4q2 ˘

3
ÿ

i“1

pxiq2 “ a2 pa “ const ą 0q , (13.5)

with the upper/lower sign corresponding to sphere/hyperboloid. The metric describing the
3-sphere/3-hyperboloid is obtained by constraining the elements dx of the above 4D metrics
dΣ2 by the embedding equations (13.5), so by substituting to the metric from the differential
of the equations.
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In order to easily compare the two curved metrics with the Euclidean one (13.4), it is
natural to work in spherical coordinates introduced in the (x1,x2,x3) subspace by

x1 “ r sin θ cosϕ, x2 “ r sin θ sinϕ, x3 “ r cos θ.

In them, the metrics of the embedding spaces read

dΣ2
“ dr2 ` r2pdθ2 ` sin2 θ dϕ2

q ˘ pdx4q
2

and the equations for the 3D sphere/hyperboloid are

px4q
2

˘ r2 “ a2 .

Differentiating the latter and taking the second power, one has

r2dr2 “ px4q
2
pdx4q2 “ pa2 ¯ r2qpdx4q2 ùñ pdx4q

2
“

r2dr2

a2 ¯ r2
.

Substituting this pdx4q2 to the above dΣ2, we obtain

dσ2
“ dr2 ` r2pdθ2 ` sin2 θ dϕ2

q ˘
r2dr2

a2 ¯ r2
“

a2dr2

a2 ¯ r2
` r2pdθ2 ` sin2 θ dϕ2

q.

Hence, all the three 3D metrics (including the flat space) can in the spherical coordinates be
expressed by a single formula

dσ2
“

dr2

1 ´ K r2

a2

` r2pdθ2 ` sin2 θ dϕ2
q, (13.6)

where the curvature parameter K has been introduced by

K :“

$

’

&

’

%

`1 for 3-sphere
0 for 3-plane

´1 for 3-hyperboloid
. (13.7)

The final step is to scale the radial coordinate by the length parameter a,

r “ aΣ , where Σ :“

$

’

&

’

%

sinχ p0 ď χ ď πq for K“`1

χ p0 ď χ ă 8q for K“ 0

sinhχ p0 ď χ ă 8q for K“´1

, (13.8)

after which the metric of the hypersurfaces of homogeneity assumes the form

dσ2
“ a2

“

dχ2
` Σ2

pdθ2 ` sin2 θdϕ2
q
‰

. (13.9)
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Circumference, area and volume on the hypersurfaces of homogeneity

Consider, on some hypersurface of homogeneity, a equatorial (θ“π{2) circle χ“χ0. Its

proper radius “

χ0
ż

0

?
gχχ dχ “

χ0
ż

0

a dχ “ aχ0 ,

proper circumference “

2π
ż

0

b

gϕϕpχ“χ0, θ“π{2q dϕ “

2π
ż

0

aΣpχ0q dϕ “ 2πaΣpχ0q

are in relation typical for curved manifolds: for K “ `1 the circumference (2πa sinχ0) is
smaller then p2π ¨ radiusq, whereas for K “ ´1 the circumference (2πa sinhχ0) is greater
then p2π ¨radiusq; in the flat caseK“0 the relation is Euclidean of course. Similarly behaves
the proper area of the sphere χ“χ0:

proper area “

2π
ż

0

π
ż

0

b

pgθθgϕϕqχ“χ0 dθdϕ “

2π
ż

0

π
ż

0

a2Σ2
pχ0q sin θ dθdϕ “ 4πa2Σ2

pχ0q .

Note in particular that if χ increases above π{2 in the K “ `1 case, both the circumference
and the area decrease (see Section 6.1).

We will also compute the volume enclosed by the sphere χ“χ0,

proper volume “

2π
ż

0

π
ż

0

χ0
ż

0

?
gχχgθθgϕϕ dχ dθ dϕ “

2π
ż

0

π
ż

0

χ0
ż

0

a3Σ2 sin θ dχ dθ dϕ “

“ 4πa3
χ0
ż

0

Σ2dχ . (13.10)

For the volume of the whole universe (of the whole hypersurface of homogeneity, χ0 Ñχmax),
we thus obtain, as expected, finite value for the 3-sphere (this universe is “closed”), whereas
infinite value for the 3-plane and 3-hyperboloid (these are “open” universes):

V “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

4πa3
π
ş

0

sin2 χ dχ “ 2π2a3 for K“`1 pχmax “πq

4πa3
8
ş

0

χ2 dχ “ 8 for K“ 0 pχmax “8q

4πa3
8
ş

0

sinh2 χ dχ “ 8 for K“´1 pχmax “8q

. (13.11)

13.3.4 Friedmann-Lemaître-Robertson-Walker metric

Friedmann-Lemaître-Robertson-Walker (FLRW) metric is the final metric obtained by
substituting the spatial part (13.9) into (13.3),

ds2 “ ´dt2 ` a2ptq
“

dχ2
` Σ2

pdθ2 ` sin2 θdϕ2
q
‰

. (13.12)
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It describes the homogeneous and isotropic universe in the comoving hyperspherical coor-
dinates pt, χ, θ, ϕq. It involves one important novelty: the scale factor a we have written as
depending on time, a“aptq. In order to allow for dynamical solutions, one has to allow a to
be time-dependent, since otherwise nothing in the metric can be such. The parameter a is thus
called the expansion factor. One should make oneself sure that its dependence on time by
no means breaks the assumptions of homogeneity and isotropy: indeed, the factor a stands in
front of the whole spatial metric, isotropically, so it only fixes the overall scale. It may change
with time in an arbitrary way, and the spatial submanifold will still keep constant curvature
everywhere (although the curvature will change in time). In other words, the cosmological
principle does not fix the “size” of the hypersurfaces of homogeneity, and allows for time
variability of this size. The dynamics of FLRW models is fully described by the dependence
a“aptq since there is no other time-depending quantity in the metric. In passing, the depen-
dence of a on time could not have been permitted in the preceding form of the metric (before
introducing the angular radial coordinate χ)

dσ2
“

dr2

1 ´ K r2

a2

` r2pdθ2 ` sin2 θ dϕ2
q ,

because there it did not appear isotropically. Actually, in differentiating the transformation
r “ aptqΣ, one would have obtained in such a case dr “ a,tΣdt ` a dΣ, which would have
brought a,t into the metric.

Let us notice, finally, that the translational symmetry of the FLRW cosmological mod-
els, namely the invariance with respect to shift along any hypersurface of homogeneity, does
not simply imply that the metric would be independent of χ, θ, ϕ. In particular, the metric
does depend on χ, and the vector field Bxµ

Bχ
indeed is not Killing.

13.4 Description of sources: the cosmic fluid
In standard cosmological models, the content of the Universe is being described as an ideal
fluid, i.e. by the energy-momentum tensor

T µν “ pρ ` P quµuν ` Pgµν (13.13)

which we already studied in Section (7.4.2). Recall that uµ denotes four-velocity of the fluid,
and ρ and P are mass density and pressure measured in the rest system of the fluid (thus
by observers with four-velocity uµ). Besides (baryon) matter, also present in the Universe
is EM radiation and EM field. The EM field’s energy density is negligible with respect to
that of matter, perhaps except for very early Universe. Of (EM) radiation, the most important
cosmologically is the relict radiation (CMBR) – its average energy density is about 10 times
greater than that of radiation of all the discrete sources (stars) which has yet lived in the Uni-
verse. The CMBR is very precisely isotropic in the system comoving with the cosmic matter,
so it can be included in the same T µν describing the matter just by adding its contribution to
ρ and P , i.e. by taking

ρ “ ρmat ` ρrad , P “ HHHPmat ` Prad “ Prad “
ρrad
3

. (13.14)
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To more understand the above, imagine that the quantities are measured by an observer who
is comoving with the centre of mass of come cosmic “cell” (of some hundreds megaparsecs
in size). They adds all the mass-energy present in a given element of their proper volume, i.e.
(i) rest energy of the matter particles, (ii) kinetic energy of those particles, and (iii) energy of
the present radiation. With pressure it is similar, however, the matter pressure between the
adjacent cosmic “cells” being negligible. Even the matter pressure within each of the cells
is unimportant as estimated from the so-called peculiar velocities of the galaxies (= their
“proper”, local velocities on the top of the average cosmological flow given by uµ) which are
observed not to exceed xvy „ 300 km{s „ 10´3c. Then, from the equipartition theorem, one
has (in standard units)

P

ρc2
„

3
2
ρ xvy2

ρc2
„ 10´6.

The pressure of every isotropic radiation is one third of its energy density, which for the relict
radiation comes out about 3¨10´4 of the matter energy density (hence, the radiation pressure
is about 100 times more important than that of matter). Neutrinos, though having tiny non-
zero rest mass, are usually included to the radiation part, with contribution to ρ of similar
order (but none to pressure, since they practically do not interact). Finally, there is also some
energy density in gravitational waves, but that is estimated to be only about 5 ¨10´7 of the
matter energy density.

13.4.1 Role of matter and radiation in the cosmic history

In Section 7.4.2, the component of T µν ;ν “ 0 parallel to uµ provided the continuity equation
(7.32),

dρ

dt
` pρ ` P quν ;ν “ 0 .

Here in cosmology, we are using the comoving coordinate system in which proper time of the
fluid is the time coordinate (τ ” t) and the fluid four-velocity only has the time component,
ut “ 1?

´gtt
“ 1, and the only time-dependent quantity is the expansion factor a, so the uν ;ν

term becomes

uν ;ν “ Γννt “
1

2
gνιpgιν,t ` ���gtι,ν ´ HHHgνt,ι q “

1

2

ˆ

gχχ,t
gχχ

`
gθθ,t
gθθ

`
gϕϕ,t
gϕϕ

˙

“
3a,t
a

“ 3H ,

(13.15)

where H is the Hubble-Lemaître “constant”. Actually, considering two galaxies, fixed to the
cosmic stage at χ“0 and χą0, say (and other coordinates same), their relative velocity (the
one solely given by cosmological expansion) is given by the change of their proper distance

lp0, χq “

χ
ż

0

?
gχχ dχ “

χ
ż

0

a dχ “ aχ
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in proper time, so

v “
dl

dt
“

dpaχq

dt
“ a,t χ “

a,t
a
aχ “

a,t
a
l ,

which implies that a,t
a

”H when compared with the Hubble-Lemaître law v“Hl.
Therefore, the continuity equation assumes, in the FLRW cosmology, the form

dρ

dt
` 3Hpρ ` P q “ 0 . (13.16)

Multiplying by V , we have

V
dρ

dt
` ρV,t ` PV,t “ 0 ùñ

dpρV q

dt
“ ´P

dV

dt
,

which is the 1st law of thermodynamics in an adiabatic case.
Now we decompose ρ and P according to (13.14) and thus obtain equation

dpρmatV q

dt
`

dpρradV q

dt
“ ´

ρrad
3

dV

dt
. (13.17)

This can only be integrated if one knows the dependence between ρmat and ρrad as given by
energy exchange between matter and radiation. Such an exchange was definitely important
at the beginning of the cosmic history (when the Universe was hot), but today it is negligible
(with respect to the values ρmat and ρrad themselves). In such a decoupled case, one can
simply divide the equation into a one for matter and one for radiation, without any mutual
dependence or interaction terms,

d pρmatV q

dt
“ 0 , (13.18)

d pρradV q

dt
“ ´

ρrad
3

dV

dt
ùñ

d
`

ρradV
4{3
˘

dt
“ 0 . (13.19)

The first equation says that

ρmatV “ const , i.e. ρmata
3

“ const ,

while the second says that

ρradV
4{3

“ const , i.e. ρrada
4

“ const .

Therefore, the density and pressure evolve according to

ρptq “ ρmat ` ρrad “ ρmatpt0q

„

apt0q

aptq

ȷ3

` ρradpt0q

„

apt0q

aptq

ȷ4

, (13.20)

P ptq “ Prad “
1

3
ρradpt0q

„

apt0q

aptq

ȷ4

, (13.21)

where t0 is an arbitrary specific value of t (usually “now”).

Two immediate implications:
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• Since today ρradpt0q ą 0, there must have been a certain initial period during which radia-
tion was more important than matter ... the radiation era.

• Since ρmatpt0q ą0, the radiation era must end at a certain moment (actually, it ended after
some 50 thousand years), and then matter dominates radiation for ever already (matter
era). Well, not for ever if the Universe will happen to shrink back in the future...

13.4.2 The cosmic-fluid flow is geodesic, vorticity-free and shear-free

It is to be expected that the cosmic fluid is free, because pressure is homogeneous in every its
instantaneous three-space (no gradient of pressure). In other words, each and every flow-line
is a centre of spherical symmetry, so its history must be a geodesic. One could also guess
from symmetry that the cosmic flow should have zero vorticity and shear. We will check
it in the comoving coordinates in which gtt “ ´1, gti “ 0, and four-velocity has but time
component, uµ“p1, 0, 0, 0q and uµ“p´1, 0, 0, 0q. First we compute

uµ;ν “ uµ,ν ´ Γσµνuσ “ ´Γtµν “ ´
1

2
p���gtµ,ν ` XXXgνt,µ ´ gµν,tq “

1

2
gµν,t “

“
a,t
a

pgµν ` uµuνq ” Hhµν , (13.22)

where we have substituted gij,t “ 2Hgij , while gtt,t “ 0. From here, one confirms the result
(13.15),

pΘ ”q uν ;ν “ 3H , (13.23)

so the expansion scalar is non-zero (positive) as expected, and by substituting into the defini-
tions of four-acceleration, of the vorticity tensor ωµν and of the shear tensor σµν (see Section
24.1), one finds

aµ ” uµ;νu
ν

“ 0 , (13.24)
ωµν ” urµ;νs ` arµuνs “ 0 , (13.25)

σµν ” upµ;νq ` apµuνq ´
1

3
uι;ιhµν “ Hhµν ´ Hhµν “ 0 . (13.26)

We will see in Section 24.4 that it is the property ωµν “0 which ensures that there exist inte-
gral submanifolds (the hypersurfaces of homogeneity) to the local three-spaces orthogonal to
uµ. Well yes, our implication was just opposite actually: we assumed the foliation by hyper-
surfaces of homogeneity exists, which implies that the normal flow has to be vorticity-free.
(Very simple argument: normal flow is orthogonal to hypersurfaces, so it is proportional to a
gradient of some scalar function – t in our case. And rotation of a gradient is zero.)

13.5 Geodesic motion in the FLRW metric
Consider now a generic motion of free test3 particles in the FLRW space-time. To grasp it
intuitively, imagine a 2D case: on a sphere, geodesics are main circles. Sphere is a manifold

3 We beg to stress that the cosmic fluid is not test. Sorry...
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of constant curvature, so all its points are geometrically equivalent. Hence, if covering the
sphere with coordinates (obviously by angles θ and ϕ), their origin θ“0 can be chosen at an
arbitrary point. If interested in a certain particular geodesic, it is natural to choose the origin
so that it lies on it ... namely, then dϕ{dp“0 will have to hold along the whole geodesic.

Let us now do it similarly in our 3D manifolds of constant curvature (hypersurfaces
of homogeneity). Since the metric (13.12) is spatially homogeneous and isotropic, all their
points are equivalent, so the origin of hyperspherical coordinates χ “ 0 can be located ar-
bitrarily. Choosing it on the studied geodesic, one easily infers one constant of the motion.
Namely, as the FLRW metric (13.12) does not depend on ϕ, the corresponding angular mo-
mentum is constant,

uϕ “ gϕϕu
ϕ

“ a2Σ2 sin2 θ uϕ “ const .

However, at χ“ 0 one has Σ “ 0, so uϕpχq “ uϕpχ“ 0q “ 0 and, consequently, uϕ “ 0 (we
suppose sin θ‰0).

Also simple then is the θ-component:
duθ
dp

“
1

2
gκλ,θu

κuλ “
1

2
gϕϕ,θpu

ϕ
q
2

“ 0 ,

hence

uθ “ gθθu
θ

“ a2Σ2uθ “ const .

This constant is zero too thanks to the vanishing at χ“ 0, so again uθ “ 0 as well. (Now it
is clear that neither the case sin θ“0 omitted above brings any problems – it is just a special
subcase of θ“const.)

Owing to uϕ“0 and uθ“0, we also find
duχ
dp

“
1

2
gκλ,χu

κuλ “
1

2

“

gθθ,χpuθq2 ` gϕϕ,χpuϕq
2
‰

“ 0 ,

so neither the covariant radial component is changing,

uχ “ gχχu
χ

“ a2uχ “ const .

Finally, the time component is fixed from normalization:

for massive particles : gµνu
µuν “ ´putq2 ` a2puχq

2
“ ´1 ,

for massless particles : gµνp
µpν “ ´pptq2 ` a2ppχq

2
“ 0 .

To summarize, the geodesic motion in the FLRW space-times proceeds, in the hyper-
spherical coordinates, by equations ϕ“const, θ“const, and

a2uχ “ const , putq2 “ 1 ` a2puχq
2

“ 1 `
pconstq2

a2
. . . for m ‰ 0 , (13.27)

a2pχ “ const , pptq2 “ a2ppχq
2

“
pconstq2

a2
. . . for m “ 0 . (13.28)

One may observe that due to the triviality of the angular components of geodesic motion
(without any loss of generality, any geodesic may be viewed as coming from the “pole”, i.e.
as purely radial), the motion of the cosmic fluid itself is in fact only special in having uχ“0
(and thus ut“1).



192 13. COSMOLOGY: HOMOGENEOUS AND ISOTROPIC MODELS

13.6 Cosmological redshift of radiation
In a cosmological jargon, “the farther the galaxy, the faster it recedes from us and thus the
more redshifted its light”. However, it should be clear now that the galaxies do not recede
from each other in an ordinary sense – they are kind-of attached to basically fixed locations
but in space which is itself expanding. We saw that in such a case the “recession speed”
inferred from the Dopplerian logic may well be “superluminal” (the corresponding redshift
may be above unity). Hence, the cosmological-redshift formula should be derived in a proper
way.

Imagine two fundamental observers (comoving with the cosmic fluid), one at χem “

constą0 and the other at χobs “const“0 (this is without any loss of generality, because the
origin of χ can be chosen arbitrarily). From the emitter to the observer, the radiation travels
exactly radially (due to symmetry), so the element along its world-line reads

0 “ ds2 “ ´c2dt2`a2dχ2
ùñ dχ “ ´

c dt

a
ùñ χobs “ χem´

tobs
ż

tem

c dt

aptq
. (13.29)

The locations χem, χobs do not change in time, so if we write the above relation for two
successive wave maxima (say), (1) and (2), and subtract the equalities, we obtain

0 “

t
p2q

obs
ż

t
p2q
em

c dt

aptq
´

t
p1q

obs
ż

t
p1q
em

c dt

aptq
. (13.30)

The course of aptq seems to be needed in order to proceed with the integrals (if possible),
but in fact it is not necessary. Namely, the experiment only has sense as a global one, i.e.,
the radiation has to spend a considerable time “on the road”;4 in such a case, the integration
limits satisfy

tp1q
em ă tp2q

em “ tp1q
em ` dtem ! t

p1q

obs ă t
p2q

obs “ t
p1q

obs ` dtobs .

It is thus advantageous to decompose the integrals as

t
p1q

obs
ż

t
p2q
em

c dt

aptq
`

t
p2q

obs
ż

t
p1q

obs

c dt

aptq
“

t
p2q
em
ż

t
p1q
em

c dt

aptq
`

t
p1q

obs
ż

t
p2q
em

c dt

aptq
,

because the contributions from the common part xt
p2q
em, t

p1q

obsy cancel out (integrand is the same!)
and one is left with

t
p2q

obs
ż

t
p1q

obs

c dt

aptq
“

t
p2q
em
ż

t
p1q
em

c dt

aptq
,

4 Remember that the cosmological principle applies for scales above some 250Mpc, which corresponds to
some 800 million light years; hence, we are typically speaking about light travelling for hundred millions to
billions of years.
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which is already very easy to evaluate, because now the integrations are only performed
over very small elements (dtem and dtobs) during which the universe changes only negligibly.
Hence, it is possible to represent the function aptq in the integrands by mean values aptobsq
and aptemq, respectively. The equation thus assumes the form

cpt
p2q

obs ´ t
p1q

obsq

aptobsq
“
cpt

p2q
em ´ t

p1q
emq

aptemq
ðñ

λptobsq

aptobsq
“
λptemq

aptemq
ðñ

ðñ pνaqtem “ pνaqtobs ðñ νa “ const . (13.31)

The above result could even be reached easier, using the preceding part 13.5 about
FLRW geodesics and the generic formula for frequency shift (4.15),

ν̂B
ν̂A

“
ppµûµqB

ppµûµqA
.

In our case the observers ûµ have, in the comoving coordinates, the four-velocity ûµ “

p´1, 0, 0, 0q, so the formula reduces to ν̂B
ν̂A

“
pptqB

pptqA
. But we found in (13.28) that in the

FLRW models pt“const{a holds along light-like geodesics, so we can conclude by

ν̂B
ν̂A

“
aptAq

aptBq
, i.e. νa “ const . (13.32)

Now we also fully understand the result of Section 13.4.1 that ρrad behaves as 1{a4:
the number density of photons is proportional to 1{a3 as usual, but, in addition, each photon
loses (or gains) energy according to ν „ 1{a. Regarding that hν „ kT , one also checks that
the above result agrees with the Stefan-Boltzmann law ρrad „T 4. Such a behaviour is often
being illustrated on that of a wave drawn on a ball whose radius is changing.

13.6.1 Astronomical redshift: z

“Redshift” means the effect itself, but it also represents a particular quantity which in cos-
mology is one of the most important: z. The latter is defined as the relative change of
wavelength, i.e.

z :“
λobs ´ λem

λem
“
λobs
λem

´ 1

ˆ

“
νem
νobs

´ 1

˙

“
aptobsq

aptemq
´ 1 . (13.33)

In observational cosmology, tobs ” t0 always stands for “today” (t0 is the current age of the
Universe), so the formula represents the dependence z “ zptq “

apt0q

aptq
´ 1, where, naturally,

t” tem. The highest redshifts are being detected at distant galaxies, quasars and some gamma-
ray burst progenitors (the current record being z“11.09).

Redshift is a very useful quantity since it is directly measurable. It is thus natural to
express apt0q{aptq as p1 ` zq everywhere (the expansion factor a is not measurable). Finally,
let us add a useful relation obtained by differentiation of 1 ` z “ a0

a
:

dz

dt
“ ´

a0
a2

da

dt
“ ´p1 ` zqH . (13.34)
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13.7 Friedmann equation and possible histories of the FLRW
universes

Hope you noticed we have not yet employed Einstein’s equations! Really, the above consider-
ations were purely geometrical, not relying on any particular theory of gravitation. However,
being fans of GR, let us substitute now the FLRW metric (13.12) and the ideal-fluid energy-
momentum tensor (7.27) to the field equations (8.4). Two non-trivial equations arise,5

H2
`
Kc2

a2
“

Λc2

3
`

8πG

3
ρ , (13.35)

´2qH2
` H2

`
Kc2

a2
“ Λc2 ´

8πG

c2
P , (13.36)

whereK“`1, 0,´1 again distinguishes between the spherical/flat/hyperboloidal cases,H ”

a,t{a is the Hubble-Lemaître constant as above, and q is the deceleration parameter defined
by

q ” ´
a,tta

pa,tq2
“ ´

a,tt
a

1

H2
“ ´

1

H2

dH

dt
´ 1 “

dpH´1q

dt
´ 1 . (13.37)

We have only framed the first equation, called the Friedmann equation, because the
deceleration equation can actually be obtained from it if also using the conservation laws
T µν ;ν “0, more specifically, using the continuity equation (13.16)

ρ,t ` 3H

ˆ

ρ `
P

c2

˙

“ 0 . (13.38)

Indeed, by differentiating equation (13.35) and using the relation H,t “ ´qH2 ´ H2 from
(13.37), one obtains easily

´2qH3
´ 2H3

´
2Kc2

a2
H “

8

3
πGρ,t ,

which after substitution for ρ,t from (13.38) and division by H reads

´2qH2
´ 2H2

´
2Kc2

a2
“ ´8πG

ˆ

ρ `
P

c2

˙

.

Substituting now to the right-hand side from (13.35) for

´8πGρ “ Λc2 ´ 3H2
´

3Kc2

a2
,

one exactly reaches the deceleration equation (13.36). Note that the opposite reasoning also
works – from (13.35) and (13.36), it is possible to derive the continuity equation (13.38).

5 We will write the equations in standard units (rather than in the geometrized ones) as it is quite common in
cosmology.
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K=+1

K=0

K
=−

1

Figure 13.2 Graphical form of the Friedmann equation (13.39). Potential V paq is drawn for all

the three possible values of K, with several typical values of Λc2{3 shown to indicate the respective
evolutions. For a0 we have chosen the radius of the cosmological horizon, a0 » c{H (a is not an
observable quantity anyway). The dashed blue line corresponds to the case with all the parameters

set at values following from observations (data mainly from the Planck CMBR mission, 2018/20), in

particular,H0
.
“67.4 km{s{Mpc, ρcrit

.
“0.85 1̈0´29 g{cm3, Λ

.
“0.684 8πGρcrit

c2
.
“1.09 1̈0´56 {cm2,

ρmatpt0q
.
“0.315 ρcrit, ρradpt0q

.
“8¨10´5ρcrit. In order that the axis values be of the order of unity,

a is given in the units of a0 and the equation (13.39) has been multiplied by
a20
c2
, therefore, to be

precise, the vertical axis represents the (dimensionless) value of
a20
c2
V paq “ K

`

a0
a

˘2
´

8πGa20
3c2
, with

the horizontal Λ-line lying at a20Λ{3.

Friedmann equation (13.35) is thus the “master” equation of standard cosmological
models. It describes the cosmological dynamics by fixing the time behaviour of the expansion
factor, a“ aptq. Before embarking on any specific solution, it is most useful to look how in
principle such a behaviour may look like. Best to do so using the same method we employed
when studying the properties of geodesic motion in the Schwarzschild field – the method
of effective potential. Though describing different physics, the picture is really very similar
to equation (12.24), i.e. purq2 “ Ẽ2 ´ Ṽ 2, only with H2 now playing the role of purq2 and
with Λc2{3 now playing the role of “constant of the motion” (Ẽ2); the rest is the effective
potential:

H2
“

Λc2

3
´ V paq , where (13.39)

V paq :“
Kc2

a2
´

8πG

3
ρ “

Kc2

a2
´

8πG

3

„

ρmatpt0q
´a0
a

¯3

` ρradpt0q
´a0
a

¯4
ȷ

; (13.40)



196 13. COSMOLOGY: HOMOGENEOUS AND ISOTROPIC MODELS

in the second expression, we substituted for ρ the behaviours (13.20). Obviously, for any
specific value of a, the effective potential V paq represents a minimal value of Λc2{3 for which
a universe of such a size (a) may exist. According to which of the terms on the right-hand
side of (13.39) dominates, one speaks of a universe dominated by cosmological constant, by
curvature, by matter, or by radiation, respectively. Since the cosmological term is constant,
curvature going as a´2, matter term as a´3 and radiation term as a´4, it is clear that the
universes which expand from a “big bang” are typically first dominated by radiation, then by
matter, later by curvature and finally by Λ. (Naturally, this only holds if they live sufficiently
long to experience all the epochs – we will see that sooner or later they may shrink back
instead.)

Equation (13.39) is graphically represented by a graph with V paq and Λc2{3 on the ver-
tical axis and with a on the horizontal one – see Figure 13.2. The graph works in exactly the
same manner as we experienced in geodesic motion in Schwarzschild, just with the cosmic
physics behind now:

• A universe with given Λ moves, above its curve of effective potential V paq (given by the
values ofK, ρmatpt0q, ρradpt0q and a0), along a horizontal straight line given by the value of
Λc2{3, with the “velocity” squared H2 given by how deep below Λc2{3 the potential V paq

momentarily lies. Where the line Λc2{3 hits the curve of V paq, the H2 vanishes – it is a
turning point where expansion changes to contraction or vice versa. If, in addition, dV

da
“0

at such a point, it is an “eternal turning point” – a stationary point where the evolution may
stall for arbitrarily long. (We do not care about stability now.)

• For an empty (ρ “ 0) and flat (K “ 0) universe, the potential is identically zero. In all
non-trivial cases it has a global extreme at a“ 0; this extreme is ´8, with the exception
of the empty case with K “ `1 when it is `8. For a Ñ 8 the potential goes to zero.
For K “ ´1, 0 the potential grows monotonously with a (it has no local extreme and is
everywhere negative), whereas for K “ `1 it has a positive maximum “on the way” and
then decreases to zero. The stationary point we mentioned above is thus unstable. It is
the only possible stationary “equilibrium” (between attractive gravity of the cosmic fluid
and repulsive cosmological term) – it corresponds to the famous Einstein static universe.
The scenarios which have it as their asymptotic (tÑ ˘8) state are called the Eddington-
Lemaître universes.

• The cosmic evolution has either one turning point (if Λc2

3
ă Vmax) or none (if opposite

holds).

• Very small universe is always dominated by radiation (if ρrad ą0 today, of course – which
apparently is the case), whereas curvature has a negligible role in it. Very large universe is
either dominated by the cosmological constant (if Λ‰0), or by curvature (if Λ“0, K‰0),
or by matter (if Λ“0 and K“0); radiation is negligible in it.

In the actual Universe, both matter and radiation as well as cosmological term are
present. However, in order to get some idea of how the individual terms affect the dynamics, it
is illustrative to solve the Friedmann equation (13.39) with each of them present exclusively:
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• for pure radiation (ρ“ρrad),

H2
“

8πGa40
3a4

ρ0 ñ a da “

c

8πGa40
3

ρ0 dt ñ
a

a0
“ 2

ˆ

2πG

3
ρ0

˙1{4

t1{2 (13.41)

• for pure matter (ρ“ρmat),

H2
“

8πGa30
3a3

ρ0 ñ
?
a da “

c

8πGa30
3

ρ0 dt ñ
a

a0
“ p6πGρ0q

1{3t2{3 (13.42)

(called the Einstein-de Sitter universe)

• for pure curvature term,

H2
“ ´

Kc2

a2
ñ

$

’

&

’

%

impossible for K “ `1

a “ const for K “ 0

a “ ct for K “ ´1

(13.43)

• for pure cosmological term (if alone, it has to be non-negative, Λě0),

H2
“

Λc2

3
ñ

da

a
“

c

Λ

3
c dt ñ a “ const ¨ exp

˜

c

Λ

3
ct

¸

. (13.44)

(de Sitter universe).

We have everywhere chosen positive square root of H2, because we are interested in expand-
ing scenarios. Obviously, radiation and matter decelerate the expansion, whereas positive Λ
accelerates it. Note that even the universe with Λ ą 0 need not live to the era of exponen-
tial expansion, because if K “ `1, it need not make it over the potential maximum (may
be reflected back). However, if it does overcome the maximum, it will expand indefinitely.
Namely, the matter and radiation density quickly falls off in expansion and curvature de-
creases as well (although the curvature parameter K stays constant, of course), whereas the
density of vacuum energy does not decay – it is a true cosmological constant.

Note that in a vacuum case (ρ “ 0), the only realizable options are Λ ą 0 (so called
de Sitter models; K may assume any of the three values), or Λ ă 0 and K “ ´1 (anti-de
Sitter model), or Λ“ 0 and K “ 0,´1. One also sees that the universe with Λă 0 cannot be
arbitrarily large (whatever values the other parameters may have).

Histories of the cosmic evolution – i.e. possible courses aptq obtained by solution of the
Friedmann equation – are qualitatively clear from Figure 13.2. Naturally, one only focuses
on those which include an expanding phase.

13.7.1 Dust models with zero Lambda

Before it began to turn out, in 1990s, that on the largest scale the cosmological constant is far
from negligible, the simplest ideal of a cosmological model was the universe containing only
an incoherent dust and nothing else. The Friedmann equation reduces in that case to

pa,tq
2

a2
`
Kc2

a2
“

8πG

3a3
ρ0a

3
0 , i.e. pa,tq

2
` Kc2 “

8πG

3a
ρ0a

3
0 .
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We already solved this equation in the flat, K “ 0 case in (13.42) (the Einstein-de Sitter
universe), but let us also solve it in the remaining, K “ ˘1 cases. It is advantageous to first
introduce a conformal time η by equation

c dt “ a dη .

This makes the metric (13.12) appear

ds2 “ a2pηq
“

´dη2 ` dχ2
` Σ2

pdθ2 ` sin2 θdϕ2
q
‰

,

so it has become conformally static (the time dependence only appears in the conformal factor
a2); and worth to add that in the K“0 case, when Σ“χ, the metric is even conformally flat
(any possible curvature is entirely rendered by the expansion factor).

In terms of η, the Friedmann equation becomes [use a,t “ pc{aq a,η and multiply the
equation by a2{c2]

pa,ηq
2

` Ka2 “ 2Aa , where A :“
4πG

3c2
ρ0a

3
0 .

Notice that A is the mass of a Euclidean ball with radius a0 and density ρ0, given in ge-
ometrized form, i.e. multiplied by G{c2 (in the closed, K “ 1 case, in which the spatial
volume of the universe amounts to 2π2a3, it is 2{p3πq-multiple of the total mass). Denoting

CKpηq :“ cos η , SKpηq :“ sin η for K “ `1 , (13.45)
CKpηq :“ cosh η , SKpηq :“ sinh η for K “ ´1 , (13.46)

the solution can be written as

apηq “ KA r1 ´ CKpηqs ùñ tpηq “
1

c

η
ż

apη1
qdη1

“
KA

c
rη ´ SKpηqs . (13.47)

• In the K“`1 case, this yields a cycloid,

apηq “
amax

2
p1 ´ cos ηq, tpηq “

amax

2c
pη ´ sin ηq . (13.48)

The universe starts from a “ 0 (“big bang”) at η “ 0, t “ 0, it expands to reach a “

2A“: amax at η“π, t“πA{c, and then symmetrically contracts back to singularity (“big
crunch”) at η“2π, t“2πA{c. This is thus a closed model – it has finite volume, and it is
finite in time as well.

• In the K“´1 case, the solution reads

apηq “ Apcosh η ´ 1q, tpηq “
A

c
psinh η ´ ηq . (13.49)

Asymptotically, for η Ñ 8, one has cosh
sinh η “ 1

2
peη ˘ e´ηq Ñ eη

2
, hence apηq Ñ A

2
eη,

tpηq Ñ A
2c
eη, and so aptq „ ct ... sure, for large a the curvature term dominates over the

matter term, so one approaches the third case of (13.43). Therefore, this is an open model
– it has infinite volume, and it lasts infinitely long as well (similarly as the K“0 model).
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13.8 FLRW models in the language of Omega-factors
In standard units, the value H0

.
“67.4 km{s{Mpc of the Hubble-Lemaître constant reads H0

.
“

2.18 ¨10´18{s. Hence, the typical magnitude of the Friedmann-equation terms is 10´36 (in
the units of 1/s2), which is not very practical. The best for discussion is the order of unity
– and that can simply be reached by dividing the equation by H2. The Friedmann and the
deceleration equations, (13.35) and (13.36), thus assume the form

1 ` ΩK “ ΩΛ ` Ωmat ` Ωrad , (13.50)
´ 2q ` 1 ` ΩK “ 3ΩΛ ´ Ωrad , (13.51)

where we have already inserted P “ Prad “ ρradc
2{3. The Ω factors are just the individual

terms of the equations divided by H2, i.e.

Ωmat :“
8πGρmat

3H2
“
ρmat

ρcrit
, (13.52)

Ωrad :“
8πGρrad
3H2

“
ρrad
ρcrit

, (13.53)

ΩΛ :“
Λc2

3H2
“

Λc2

8πGρcrit
, (13.54)

ΩK :“
Kc2

H2a2
, (13.55)

where we have also introduced the critical density

ρcrit :“
3H2

8πG
.
“ 0.85¨10´29 g{cm3 . (13.56)

This density, used as a reference standard, would correspond to the Λ“ 0 and K “ 0 model,
i.e. to a flat universe solely filled with fluid.

The two dynamical equations contain 7 quantities: four of them are measurable in
principle – H , q, ρmat and ρrad; the other 3 are not directly accessible to observation – Λ, K,
a. Translated into the Ω-language, it means that Ωmat, Ωrad and q are measurable, whereas
ΩΛ and ΩK are not. Each of the equations (13.50), (13.51) contains two non-measurable
quantities. If, however, substituting for 1`ΩK from the former to the latter, one obtains
equation

q ` ΩΛ “
1

2
Ωmat ` Ωrad (13.57)

in which only the term ΩΛ is not measurable. Another such relation (with only one “un-
known”) is obtained by adding (13.51) + 3ˆp13.57q:

1 ` q ` ΩK “
3

2
Ωmat ` 2Ωrad . (13.58)
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13.8.1 Values inferred from current observations

Let us add what observations say about the cosmological parameters (in 2020).6 Despite
some 10% discrepancy still existing between different measurements, the current value of the
Hubble-Lemaître constant is about 70 km{s{Mpc. Let us give the valueH .

“ 67.4 km{s{Mpc
.
“

2.18¨10´18{s inferred from the studies of relict radiation (the Planck project), and the value
of the deceleration parameter q .“´0.53. The energy-density components are

Ωmat
.
“ 0.315, Ωrad

.
“ 8 ¨ 10´5

ùñ ΩΛ
.
“ 0.684 ùñ ΩK » 0 . (13.59)

Two main messages arise immediately:

• The deceleration parameter is actually an acceleration one... Certainly, it was natural to
expect that the cosmic expansion decelerates due to the attraction acting within the cosmic
material. However, from the 1990s it has been turning out that the expansion of our Uni-
verse is speeding up rather than slowing down. From there it follows that the cosmological
term, up to the 1990s standardly neglected in physical cosmology, must be there, and must
be positive (“repulsive”); it is actually a dominant term of the Friedmann equation.

• The effective total mass-energy density in the Universe is very close to the critical density,
which implies that the curvature term is very small. This may either mean that the large-
scale curvature of the Universe is zero (K “ 0), or that the Universe is very large (very
large a makes ΩK ” Kc2

H2a2
very small even for non-zero K). Such an option has already

before precise measurements been preferred by theorists – surely for aesthetic reasons, but
mainly because of the inflationary models from 1980s which seem to “converge” to that
case.

In the first version of these lecture notes (from 2002) we wrote: “During the turn of
the 20th and 21st centuries, the knowledge about the large-scale Universe has expanded con-
siderably, making the cosmological textbooks ageing faster than ever since the 1960s, if not
from the 1920s. In particular, much progress has been achieved in the mapping of distribution
and motions of galaxies and their clusters, and in measurements of the properties of CMBR.”
In recent years, the quality of current cosmological data is even being stressed by the term
“era of precision cosmology”.

In cosmological circles, the Λ term is usually being called the dark energy. However,
it is still possible that it does not have a character of source, it may just be an independent
constant characterizing gravitation (besides G). Anyway, even more of the Universe is dark.
Of the matter (Ωmat

.
“ 0.315), only Ωbar

.
“ 0.05 is allotted to baryons (light-emitting matter),

while about Ωdark
.
“ 0.265 („ 84% of all matter) goes to the dark matter – a matter which

has a gravitational effect but practically does not interact otherwise (and is thus invisible).
The nature of this matter is unclear, but it is mostly assumed to be non-baryonic, perhaps
made of some yet unknown “weakly interacting massive particles” (WIMPs) such as those
predicted by certain theories going beyond standard model of particle physics. According to

6 The following values are current ones, so they should be denoted by nought, like H0 etc., but we will omit
it this time.
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how energetic (“hot”) these particles are, the dark matter is being called “cold”, “warm” or
“hot” (it is important in how structures form within such a matter).

Consider, in addition, that about 74% of mass of the cosmic baryon matter is in hydro-
gen, about 24% in helium,7 1% in oxygen and 0.5% in carbon. Other elements together make
just some 6 permille of baryon matter. In terms of the Omega factor, it means

ΩH
.
“0.037, ΩHe

.
“0.012, ΩąHe

.
“0.001.

It is possible to estimate how many photons per 1 baryon exist in the Universe. The
radiation energy density is mainly due to the relict photons, and these have Planck spectrum
with temperature 2.725K („ average energy 10´3eV), while energy of one baryon can be
approximated by the proton rest energy mpc

2 „109eV, so one has

Ωrad

h xνCMBRy

mpc
2

Ωbar

„ 1012
Ωrad

Ωbar

„ 109 photons per baryon . (13.60)

Current “concordance scenario” of cosmology is embodied by the so-called ΛCDM
(Lambda + Cold Dark Matter) model which relies on GR and includes non-zero cosmologi-
cal constant, (cold) dark matter, ordinary matter and radiation. A possible phase of exponen-
tial expansion in the very early Universe (the so-called cosmic inflation) is often included.
Inflation is being discussed since 1980s by particle theorists as a possible consequence of
the transition of a “false vacuum” of some cosmic field (a metastable state which is just lo-
cal minimum of energy, not the global one) to its “true vacuum”. The Higgs field is being
referred to in particular in this respect. Inflation may help to solve several queries of the
standard ΛCDM scenario.

7 Helium cache in the cryogenic pavilion of our Trója campus has been included.
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CHAPTER 14

Schwarzschild space-time:
analytic extension

The main novel feature we met in the Schwarzschild solution is the possible appearance of
the horizon and (thus) of its mysterious interior region – the black hole. Various properties
become strange close to the black hole, not speaking about its interior. However, only some of
these are really strange (in some invariant sense), whereas others turn out to be a consequence
of the choice of coordinates. Actually, though the Schwarzschild coordinates are most natu-
ral for description of the black-hole exterior, they fail at the horizon (and switch their roles
below). In this chapter, we demonstrate the “cons” of the Schwarzschild coordinates, thus
collecting the main reasons why to look for better ones. In particular, we will see – surpris-
ingly at first sight – that the Schwarzschild coordinates do not cover the whole Schwarzschild
manifold. All the “cons” will be remedied by transformation to Kruskal-Szekeres coordi-
nates, possibly followed by compactification of the resulting picture in the Penrose-Carter
conformal diagram.

Let us remind once more that the Schwarzschild solution describes, in GR, any spher-
ically symmetric vacuum region. At large radii (r"M ), the difference from the Newtonian
central field Φ “ ´M{r is only negligible; note that in the case of an extended spherically
symmetric body (a “star”), r"M typically holds everywhere outside it. The more compact
the source is, the stronger is the field in its vicinity – and the more its relativistic shape de-
viates from the Newtonian one. Extreme is the case when the whole body (of mass M ) is
concentrated below its Schwarzschild radius r “ 2M ; the region r ď 2M then becomes a
black hole – it encloses by a horizon and causally separates from the “domain of outer com-
munications” r ą 2M ; and the light cones prevent the body from assuming any stationary
configuration below r“2M – its only possible fate becomes a collapse to the point r“0.

203
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14.1 Invariant and coordinate properties of the Schwarzschild
space-time

14.1.1 Measuring the radial distance

Distances can be measured in two basic ways – by a meter (proper distance) or by a light
signal (radar distance).

• In the radial direction of the Schwarzschild space-time, the proper distance between some
radii rA and rB ąrA computes as

lprA, rBq “

rB
ż

rA

dr
b

1 ´ 2M
r

“

„

a

rpr ´ 2Mq ` 2M ln

ˆ
c

r

2M
´ 1 `

c

r

2M

˙ȷrB

rA

. (14.1)

• The radial radar distance follows from the coordinate time in which light makes it from rA
to rB ąrA (and back), or vice versa. As in determining the light cones, we obtain from the
relation

0 “ ds2 “ ´

ˆ

1 ´
2M

r

˙

dt2 `
dr2

1 ´ 2M
r

that dt “ ˘ dr
1´ 2M

r

“: ˘dr˚, so

tprA, rBq “

rB
ż

rA

dr

1 ´ 2M
r

“

rB
ż

rA

dr˚
“ |r˚

B ´ r˚
A| “

”

r ` 2M ln
´ r

2M
´ 1

¯ırB

rA

. (14.2)

Clearly the result is different than the one found by the meter. However, the coordinate
time is not the final result. Practically, the measurement would proceed in one of two
ways: either an observer would stay at rA and place a static mirror at rB, or vice versa.
For a proper time of any static observer (the one with ûi “ 0) we have ds2 “ ´gttdt

2 “

´dτ̂ 2, hence, in the first/second case (observer/mirror at rA, mirror/observer at rB) the
light returns after

τ̂prA, rBq “ 2
a

´gttprAq tprA, rBq , τ̂prB, rAq “ 2
a

´gttprBq tprA, rBq , (14.3)

respectively.

Far from the centre the above distances almost coincide, but closer they more and more differ
– and in the limit when one of the radii approaches the horizon, they even differ infinitely!
Actually, the proper radial distance of a generic location rB ” r ą 2M from the horizon
(rAÑ2M ) is

lp2M, rq “
a

rpr ´ 2Mq ` 2M ln

ˆ
c

r

2M
´ 1 `

c

r

2M

˙

,

which is finite, while the radar distance goes to zero in the first case (observer approaches
the horizon) whereas it goes to infinity in the second case (mirror approaches the horizon).
Namely, the coordinate time (14.2) diverges in any case, but in the first case the dilation factor
a

´gttprAq goes to zero faster than the logarithm in (14.2) diverges, whereas in the second
case the dilation factor

a

´gttprBq is finite and does not alter the infinity of (14.2).
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14.1.2 Embedding of the equatorial plane in 3D Euclidean space

In GR, intuition is more intricate due to the space-time curvature. If a d-dimensional manifold
is curved, it is curved “to the pd ` 1q-th dimension” (at least), so, in order to depict the
curvature of its small region at least, one has to embed that region in a pd ` 1q-dimensional
Euclidean space.1 Should the embedding Euclidean space be at most 3D, one can maximally
embed 2D sections, i.e. surfaces. A suitably chosen section can however illustrate the space-
time geometry very well. Below, we try to elucidate the curvature of Schwarzschild space-
time by embedding, in E3, its equatorial plane tt “ const, θ “ π{2u (thus in fact any main
plane).

At any constant time t, the equatorial plane has metric

ds2pt“const, θ“π{2q “
dr2

1 ´ 2M
r

` r2dϕ2 . (14.4)

This differs from the Euclidean one in that in the radial direction the proper distance changes
faster than the Euclidean radius r of a circle with proper circumference
ż 2π

0

?
gϕϕ dϕ “

ż 2π

0

r dϕ “ 2πr ,

namely, the radial distance element is dr?
1´ 2M

r

rather than dr. Adding the axial symmetry,

one can well imagine how such a surface has to look when represented in the pr, ϕ, zq flat
cylindrical coordinates, including the fact that at the horizon r“2M the ratio

?
grr between

the element of proper distance and its “projection” dr increases without limit. Vaguely, it
should look like a gradually opening/narrowing funnel.

Let us make it more precise – let us embed the equatorial plane in E3 in such a way that
both the proper azimuthal circumference

ş2π

0

a

gϕϕpθ“π{2q dϕ “ 2πr (thus the correspond-
ing circumferential radius r) and the proper radial distance lprA, rBq be represented faithfully
(isometrically). The metric of E3 in cylindrical coordinates pr, ϕ, zq reads

dσ2
“ dr2 ` r2dϕ2

` dz2 .

An axially symmetric surface is given by some function z“zprq (no dependence on ϕ due to
the axisymmetry), so its embedding is given by substituting for dz the specific dz“

dzprq

dr
dr

given by that zprq function. Comparing the result with what should come out, i.e. with (14.4),
we thus have

dr2 ` r2dϕ2
`

ˆ

dzprq

dr

˙2

dr2 “

«

1 `

ˆ

dzprq

dr

˙2
ff

dr2 ` r2dϕ2 ... “ grrdr
2

` r2dϕ2 ,

1 To explain “at least” and “small region” (at least): in order to be able to globally embed a smooth d-
dimensional real manifold into a Euclidean space En, the dimension of the latter has to be in the least favourable
case n “ 2d [Whitney’s embedding theorem]. Depending on the manifold, less dimensions may be sufficient
(down to n“d ` 1), but in general the embedding is only secure for n“2d. Note just loosely that embedding
is such a representation of a manifold within some larger manifold that it has no irregularities (edges, corners,
spikes; self-intersections). If self-intersections are allowed (but none of the sharp features), the map is called an
immersion.
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Figure 14.1 Left: Embedding to E3 of the equatorial plane around the Schwarzschild black hole

has the shape of rotational paraboloid (14.5). If the source is an extended spherical body (bigger

than its Schwarzschild radius) rather than a black hole, the paraboloid ends on its surface and is

capped there with a kind-of dish which represents embedding of the equatorial plane inside the body.

Right: Illustration of such a matching for a homogeneous body for which the interior embedding is

part of a sphere. For the constant density ρ, the total mass is M “ 4
3
πR3ρ, from where we can

express
3

8πρ
“ R3

2M
(R denotes here the Schwarzschild radius of the body, not the isotropic radial

coordinate as in the main text!). In order that the paraboloid and the spherical cap touch, we set

the constant occurring in the interior embedding (14.7) to pR ` 4Mq

b

R
2M

´ 1 ´ R
b

R
2M
, so

the interior-embedding spherical surface reads r2 `

”

z ´ pR ` 4Mq

b

R
2M

´ 1
ı2

“ R3

2M
. In the

plot, we have specifically chosen R“4M , so the interior is described by r2 ` pz´8Mq2 “ 32M2

and the border circle is at z“4M . The values along both axes are given in the units of M .

from where we obtain the “true shape” of the equatorial plane,

ˆ

dzprq

dr

˙2

“ grr ´ 1 “
2M

r ´ 2M

ùñ zprq “ ˘

ż

c

2M

r ´ 2M
dr “ ˘

a

8Mpr ´ 2Mq p`���constq

ùñ rpzq “ 2M `
z2

8M
. (14.5)

After rotating this in ϕ, we have a rotational paraboloid which is asymptotically flat and has
the circle r“2M as its “throat” (this corresponds to the horizon, see left plot in Figure 14.1).
Each half of the paraboloid is covered by one set of Schwarzschild coordinates pr, ϕq.

Were the source a spherically symmetric star (with surface on r“Rą2M ) rather than
a black hole, the above paraboloid would only apply outside the star (at r ąR). Inside the
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star, the equatorial plane is described by the metric

ds2pt“const, θ“π{2; răRq “
dr2

1 ´
2mprq

r

` r2dϕ2 ,

where mprq is a mass contained inside the sphere of radius r (see Section 20.3.1 later). Sim-
ilarly as above, one obtains the embedding

ˆ

dzprq

dr

˙2

“ grr ´ 1 “
2mprq

r ´ 2mprq
ùñ zprq “ ˘

ż

d

2mprq

r ´ 2mprq
dr (14.6)

which on r“R matches the respective part of the outer paraboloid and whose exact shape is
given by the function mprq, so by the radial profile of density ρprq.2

As an example, consider a star with constant density ρ (in a general case, this at least
holds close to the star centre). In such a case, one has mprq“ 4

3
πr3ρ (Section 20.3.1) and the

integral can be evaluated (with upper sign) to

zprq “

c

3

8πρ
´

c

3

8πρ
´ r2 p`constq ,

or

r2 `

„

z ´

c

3

8πρ
p´constq

ȷ2

“
3

8πρ
. (14.7)

This is a sphere with radius
b

3
8πρ

centred at r “ 0, z “

b

3
8πρ

p`constq. (The constant
has to be chosen so that the exterior and interior embeddings reach the same z and touch
there.) Were the density constant within the whole star, the embedding of its whole interior
would be of that character – it would form a spherical cap which would “close” the outer,
Schwarzschildian paraboloid (see the right part of Figure 14.1). In reality, the star is not
homogeneous, so in general its interior embeds as kind-of “dish” along which zprq grows
monotonously with r and which matches the outer paraboloid on the stellar surface.

14.1.3 Isotropic coordinates

Although this is just a remark to the above embedding, it is worth to present it as subsection,
since it indicates, for the first time, several important points which are central to this chapter.

• First, we saw the complete paraboloid of the equatorial-plane embedding has to be covered
by two symmetric sets of Schwarzschild coordinates. This indicates that the Schwarzschild
manifold probably is (twice?) larger than how it appears in the Schwarzschild coordinates.

2 Equation (14.6) is a generic shape of the embedding actually. Since mpr “ Rq ” M and dzprq{dr is
continuous there for any density profile, the interior and exterior embeddings match on the surface.
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• However, one can also cover the paraboloid by just one set of coordinates. Actually, if
transforming to the so-called isotropic coordinates by a simple, purely radial transforma-
tion

r “ R

ˆ

1 `
M

2R

˙2

, (14.8)

we see that the central circle (r“ 2M ) corresponds to the isotropic radius R“M{2, with
R decreasing (to zero) towards one asymptotically flat region while increasing (to infinity)
towards the other one. (It is easy to check that both the cases R Ñ 0 and R Ñ 8 really
correspond to rÑ 8.) This indicates that even if the Schwarzschild manifold is larger, it
should be possible to cover it by just one set of reasonable coordinates.

• Let us write down the metric in the new coordinates. The standard transformation rule
g1
µν “ Bxα

Bx1µ
Bxβ

Bx1ν gαβ implies but one non-trivial relation,

gRR “
Bxα

BR

Bxβ

BR
gαβ “

ˆ

dr

dR

˙2

grr “

ˆ

1 `
M

2R

˙4

,

where we have used

dr

dR
“

p2R ` Mqp2R ´ Mq

4R2
.

Otherwise it is sufficient to just substitute

1 ´
2M

r
“

p2R ´ Mq2

p2R ` Mq2

into the Schwarzschild metric, and thus obtain

ds2 “ ´

ˆ

2R ´ M

2R ` M

˙2

dt2 `

ˆ

1 `
M

2R

˙4
“

dR2
` R2

pdθ2 ` sin2 θ dϕ2
q
‰

. (14.9)

Now we see why the coordinates pt, R, θ, ϕq are called isotropic: both the radial and the
angular part of the spatial metric share the same coefficient (in contrast to the original
Schwarzschild metric).

Notice an important feature: at the horizon (R “ M{2) the spatial part of the metric is
regular! (Of course, the coefficient gtt is still zero on the horizon, but the metric shows
no divergence there.) This indicates, for the first time, that the horizon is in fact a regular
region, not a singularity as it appears in the Schwarzschild coordinates.

• Isotropic coordinates still have one disadvantage: they do not at all describe the black-hole
interior. Actually, no value of R makes the Schwarzschild radius r less than 2M , so one
only covers by isotropic coordinates the region (actually two regions) rě2M . In particular,
it is thus not possible to say anything about the central singularity at r“0.
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14.1.4 Nature of the Schwarzschild-metric singularities

Actually, we already know how it is: with the Kretschmann invariant reading RµνκλR
µνκλ “

48M2

r6
it is clear that r “ 0 is the true space-time pathology. On the other hand, the horizon

r “ 2M is only a coordinate singularity, as we have just inferred from its regularity in the
isotropic coordinates. However, let us go somewhat more into this issue – let us check how a
test particle crosses the horizon, and what is the dimension (proper volume) of various parts
of the horizon.

Radial free fall of a test particle

Let a particle with m ‰ 0 be dropped from rest from some initial radius rin ą 2M , to fall
freely to the black hole. We know its energy at infinity

Ẽ ” ´ut “ ´gttu
t

is constant during the fall, so it may be evaluated at any point of the geodesic. Natural is
to evaluate it at the starting point, because we know uiin “ 0 and thus utin “ 1?

´gttprinq
there

(from normalization). Hence,

Ẽ “ p´gttu
t
qr“rin “

a

´gttprinq “

c

1 ´
2M

rin
.

Substituting this into the first equation yields
ˆ

dt

dτ

˙2

” putq2 “
Ẽ2

pgttq2
“

1 ´ 2M
rin

`

1 ´ 2M
r

˘2 . (14.10)

The second coordinate which changes in the radial fall is the radius. The pertinent
differential equation we obtain from the generic radial-motion equation (12.24) by using the
above Ẽ and by realizing that purely radial motion corresponds to zero angular momentum,
L̃“0, which reduces the effective potential (12.25) to Ṽ 2 “ 1 ´ 2M

r
:

ˆ

dr

dτ

˙2

” purq2 “ Ẽ2
´ Ṽ 2

“
2M

r
´

2M

rin
. (14.11)

The solution of the above equations (14.10) and (14.11) is usually being expressed in a
parametric form (the parameter η being called conformal time),

r “
rin
2

p1 ` cos ηq “ rin cos
2 η

2
, (14.12)

τ “

c

r3in
8M

pη ` sin ηq , (14.13)

t “ 2M ln

ˇ

ˇ

ˇ

ˇ

ˇ

a

rin
2M

´ 1 ` tan η
2

a

rin
2M

´ 1 ´ tan η
2

ˇ

ˇ

ˇ

ˇ

ˇ

` 2M

c

rin
2M

´ 1
”

η `
rin
4M

pη ` sin ηq

ı

. (14.14)

The radial geodesic is plotted, for rin “ 3M and in dependence on both τ and t, in the
right-hand part of Figure 12.2. Let us check significant locations:
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• Start: r“ rin requires cos η “ 1 which means η “ 0. This in turn implies τ “ 0 and t“ 0.
Therefore, all the times are adjusted in a natural way.

• Crossing the horizon: r“2M requires cos2 η
2

“ 2M
rin

, which in turn implies

τ “

c

r3in
8M

´

η ` 2 sin
η

2
cos

η

2

¯

“

c

r3in
2M

arccos

c

2M

rin
` rin

c

1 ´
2M

rin
.

To compute the corresponding t, it is crucial to compute

tan
η

2
“

sin η
2

cos η
2

“

b

1 ´ 2M
rin

b

2M
rin

“

c

rin
2M

´ 1 .

Plugging this into (14.14) makes the argument of the logarithm infinite, so the logarithm
itself is infinite as well. The second term of t is finite, so it does not change anything on
that divergence.

• Reaching the singularity: r “ 0 requires cos η “ ´1 which means η “ π. This in turn
implies

τ “ π

c

r3in
8M

, t “ 2πM

c

rin
2M

´ 1
´

1 `
rin
4M

¯

(the logarithmic term in t vanishes).

Important is the finding that t goes from zero to infinity at the horizon and than de-
creases back to some finite value at the singularity. We suspected that from the behaviour of
light cones already, the left-hand plot of Figure 12.2.3 Anyway, what is important for any-
thing is its proper time – and that behaves very reasonably: it only assumes finite positive
values; in fact one easily checks that τ increases monotonously during the fall,

dτ

dη
“

c

r3in
8M

p1 ` cos ηq “ r

c

rin
2M

ą 0 ,

where we have used (14.12). Cf. the right-hand plot of Figure 12.2.
The above (infinitely different) representation of the fall in terms of τ and t is popularly

known as the effect of “relativity of immortality”. Its reason is obvious: the clock falling
together with the particle (measuring its proper time) ticks “twice infinitely slower” than the
clock standing at radial infinity – one infinity is because of the gravitational redshift and the
other is because of the Doppler redshift, both diverging on the horizon.

One more remark is worth: comparison with the Newtonian free fall. There, equations
for free radial motion, (12.27) and (12.28), reduce to

L̃ “ 0, Ẽ “ ´
M

rin
, Ṽeff “ ´

M

r
,

ˆ

dr

dt

˙2

” pvrq2 “ 2pẼ ´ Ṽeffq “
2M

r
´

2M

rin
.

3 And remember that t behaves similarly for light as well, as we have seen in Section 14.1.1 – well, we rather
did not see anything, because light only returned from the horizon after infinitely long...
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Comparing this with equation (14.11), we see that the relativistic fall proceeds, when parametrized
by proper time τ , in exactly the same manner as the Newtonian fall (in terms of absolute time
t). Hence, in particular, the total time of fall is the same.

Dimensionality of the horizon

As enforced by the causal structure itself, all the time-like and light-like world-lines cross
the horizon at infinite values of the Schwarzschild time t. (It even applies to most space-like
world-lines.) One thus suspects that the regions tr “ 2M, |t| ă 8u which are not “hit” by
almost any physics are in fact “small” (in terms of dimensionality), whereas the regions tr“

2M, |t|“8u are “large”. In the Schwarzschild coordinates, however, they are represented in
exactly an opposite way: any finite-time segment of the horizon tr“ 2Mu is 3D (because it
is part of a straight-line in the (t, rq plane), whereas the regions tr “ 2M, |t| “ 8u are only
2D (because they are just points there). In order to prove the first part of the above suspicion,
let us compute the 3D “volume” of a generic tr“2M, |t|ă8u region:

V tr“2M, |t|ă 8u “

ż

r“2M, |t|ă8

p´ gtt
loomoon

“0

gθθgϕϕq
1{2 dtdθdϕ “ 0 .

The second part of the suspicion is also well justified, but will only be confirmed clearly
within the analytic extension of the metric.

In Schwarzschild coordinates, the manifold is not geodesically maximal

The following observation will be crucial for our plan of analytic extension. Let us start by
definitions, however:

• A manifold is said to be geodesically complete if every its geodesic can be extended to
infinite values of the affine parameter. Practically, geodesically complete is the manifold
which does not contain space-time singularities. Clearly the geodesic completeness is an
invariant, coordinate-independent notion.

• A manifold is said to be geodesically maximal if every its geodesic can either be extended
to infinite values of the affine parameter or it ends at a space-time singularity. Loosely
speaking, geodesically maximal is the manifold in which no geodesic ends “without good
reason”. Typically, geodesic non-maximality indicates that the manifold is not fully cov-
ered by a given coordinate patch – some geodesics then simply end (at finite values of
their affine parameters) because the coordinate coverage ends (while the manifold itself
continues). The geodesic maximality is thus a coordinate-dependent notion. When seeing
that a manifold is not geodesically maximal, one naturally asks about “better” coordinates
to cover the whole manifold (or at least the part which in the original coordinates was not
covered).

The Schwarzschild manifold is of course not geodesically complete since it does contain a
singularity (r “ 0). Actually, we explicitly treated the radial geodesic fall and saw that the
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singularity is reached in finite value of the proper time. However, in Schwarzschild coordi-
nates the manifold is neither geodesically maximal. Actually, imagine any geodesic t“const
in the region rą2M . Such a geodesic cannot be extended below r“2M . Let us think it over
in detail:

• Consider a purely radial geodesic, we mean the one whose tangent vector has only radial
component in the Schwarzschild coordinates, dxµ

dp
“ δµr

dr
dp

. The geodesic equation thus
reduces to

d2xµ

dp2
` Γµrr

ˆ

dr

dp

˙2

“ 0 .

The Christoffel symbols

Γµrr “
1

2
gµνpgνr,r ` grν,r ´ grr,νq

are clearly zero, except

Γrrr “
1

2
grrgrr,r “

1

2

grr,r
grr

.

Normalizing the tangent vector as

gµν
dxµ

dp

dxν

dp
“ grr

ˆ

dr

dp

˙2

“ 1 ùñ
dp

dr
“ ˘

?
grr

means that the affine parameter p represents arc length (proper length along the geodesic).
Substituting the above with

grr,r “

˜

1

1 ´ 2M
r

¸

,r

“
´2M

r2
`

1 ´ 2M
r

˘2 “ ´
2M

r2
pgrrq

2

to the non-trivial, radial component of the geodesic equation, we have

d2r

dp2
“ ´Γrrr

ˆ

dr

dp

˙2

“ ´
1

2

grr,r
pgrrq2

“
M

r2
.

Hence, there do exist non-trivial geodesics t“const.

• Since the affine parameter p has the meaning of radial proper length, it does not reach
infinite value at the horizon as we know from Section 14.1.1.

• Finally, why such a geodesic cannot be extended below r “ 2M : above that radius,
t“const is a space-like curve, whereas below that radius it would be time-like (remember
how the light cones look like). But such a behaviour is impossible for a geodesic. Actually,
recall that geodesic is a curve along which its tangent vector transports parallelly. And par-
allel transport conserves scalar product, so, in particular, it keeps the space-time character
of the transported vector.

Needless to say, any geodesic t“const existing below r“2M , similarly, cannot be extended
above the horizon.

Conclusion: In Schwarzschild coordinates, the Schwarzschild manifold is not geodesically
maximal, so these coordinates apparently do not cover the whole manifold.
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14.2 Analytic extension of the Schwarzschild metric
Let us summarize first which features we wish to remedy by finding “better” coordinates:

• The metric singularity on the horizon (we have seen this singularity is just a coordinate
one).

• Weird behaviour of world-lines in crossing the horizon (passing via |t|“8).

• Wrong dimensionality of the horizon subsets: tr “ 2M, |t| ă 8u should be 2D, whereas
tr“2M, |t|“8u should likely be 3D.

• Geodesic non-maximality of the manifold (Schwarzschild coordinates almost certainly do
not cover the whole manifold).

Several coordinate systems have been found in which metric is not singular on the horizon
and in which possibly also some other of the above requirements are satisfied. The best turned
out to be the Kruskal-Szekeres system in which all the above issues are remedied. Below,
we go over to that system in several steps. The whole transformation will only concern the
time-radial part of the metric, so we will, for simplicity, denote the (untouched) angular part
as dθ2 ` sin2 θdϕ2 “: dΩ2.

• First the so-called tortoise radial coordinate is introduced by

dr˚ :“ grrdr ùñ r˚
“ r ` 2M ln

ˇ

ˇ

ˇ

ˇ

r

2M
´ 1

ˇ

ˇ

ˇ

ˇ

. (14.15)

• The advanced and retarded times (also called Eddington-Finkelstein coordinates) are intro-
duced then by t˘ :“ t ˘ r˚. Since

dt`dt´ “ dt2 ´ pdr˚
q
2

“ dt2 ´ pgrrq
2dr2

and gttgrr“´1, the metric now reads

ds2 “ gttdt
`dt´ ` r2dΩ2

“ ´

ˆ

1 ´
2M

r

˙

dt`dt´ ` r2dΩ2 . (14.16)

The t˘ times are clearly light (null) coordinates – t˘ “ const correspond to radially
ingoing/outgoing light-like world-lines. (This step is obviously motivated by introduc-
tion of t˘ “ t ˘ r in special relativity, where it brings the metric into the form ds2 “

´dt`dt´ ` r2dΩ2.)

• Crucial step is the introduction of the light Kruskal-Szekeres coordinates,

u :“ ´ϵ exp

ˆ

´
t´

4M

˙

, v :“ exp

ˆ

t`

4M

˙

, (14.17)

where ϵ :“ sign
`

r
2M

´ 1
˘

just tells whether one is above or below horizon. Writing out

exp
r˚

4M
“ exp

ˆ

r

4M
`

1

2
ln
ˇ

ˇ

ˇ

r

2M
´ 1

ˇ

ˇ

ˇ

˙

“

c

ˇ

ˇ

ˇ

r

2M
´ 1

ˇ

ˇ

ˇ
exp

r

4M
, (14.18)
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we can express the transformation explicitly,

u “ ´ϵ

c

ˇ

ˇ

ˇ

r

2M
´ 1

ˇ

ˇ

ˇ
exp

r ´ t

4M
, v “

c

ˇ

ˇ

ˇ

r

2M
´ 1

ˇ

ˇ

ˇ
exp

r ` t

4M
. (14.19)

Let us also prepare

´uv “ ϵ exp
t` ´ t´

4M
“ ϵ exp

r˚

2M
“ ϵ

ˇ

ˇ

ˇ

r

2M
´ 1

ˇ

ˇ

ˇ
exp

r

2M
“

“

´ r

2M
´ 1

¯

exp
r

2M
“

r

2M

ˆ

1 ´
2M

r

˙

exp
r

2M
(14.20)

which will be useful at several places. The first of them is the computation of

du dv “
´uv

16M2
dt`dt´ “

r

32M3

ˆ

1 ´
2M

r

˙

exp
r

2M
dt`dt´ (14.21)

which follows easily from (14.17). From it, one expresses dt`dt´ and substitutes into the
metric (14.16),

ds2 “ ´
32M3

r
exp

´

´
r

2M

¯

du dv ` r2dΩ2. (14.22)

This has been the celebrated moment when the terms
`

1 ´ 2M
r

˘

just cancel out and thus
the horizon singularity completely disappears from the metric.

• Finally, one returns to the “normal”-type coordinates – the Kruskal-Szekeres pV, Uq:

v ” V ` U, u ” V ´ U ùñ V “
1

2
pv ` uq, U “

1

2
pv ´ uq . (14.23)

Just a trivial change in the metric,

ds2 “
32M3

r
exp

´

´
r

2M

¯

p´dV 2
` dU2

q ` r2dΩ2 ; (14.24)

this is its ultimate form, valid both above and below horizon.4 Obviously nothing strange
happens on the horizon. Since gUU “ ´gV V ą 0 everywhere, V and U everywhere have
the character of time and radial coordinates, respectively. The final transformation reads,
explicitly,

V “

c

r

2M
´1 exp

r

4M
sinh

t

4M
, U “

c

r

2M
´1 exp

r

4M
cosh

t

4M
(14.25)

in the region rą2M , while

V “

c

1´
r

2M
exp

r

4M
cosh

t

4M
, U “

c

1´
r

2M
exp

r

4M
sinh

t

4M
(14.26)

in the region ră2M .

4 This “hybrid” form is indeed much more lucid than if we tried to express r in terms of V a U – see below
equation (14.27).
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• From the above expressions for V a U follows the inverse transformation, that is, the
relations which determine t and r as functions of V and U :

V

U
“

#

tanh t
4M

for r ą 2M

coth t
4M

for r ă 2M
,

U2
´ V 2

“ ´uv “

´ r

2M
´ 1

¯

exp
r

2M
“ ϵ exp

r˚

2M
. (14.27)

This is actually the simplest representation of the whole transformation. Its basic informa-
tion is that, in the pV, Uq plane, r“const are hyperbolas with asymptotes V “˘U (which
correspond to r“2M ) while t“const are straight lines passing through the origin.

• Attention! So the horizon is represented by two diagonals V “ ˘U , i.e., there are in fact
two horizons. Similarly, there are two outer regions rą 2M , given by U2 ´ V 2 ą 0, i.e.
Uą|V | and Uă´|V |, and there are also two inner regions ră2M ; in particular, there are
two singularities r“0 – these lie where V 2 “ 1 ` U2, i.e. at V “ ˘

?
1 ` U2.

Therefore, in Kruskal-Szekeres coordinates there appear two new regions of the manifold
which were not covered by the original Schwarzschild coordinates: the second “outer”
region r ą 2M and the second “inner” region r ă 2M . (The two new regions could be
covered by a second set of Schwarzschild coordinates, but just one set does not suffice for
the whole manifold.)

• The new regions are clearly symmetric about the origin pV “0, U “0q with respect to the
“old” ones, so it is simple to add how the final transformations look there: they are the
same as (14.25), (14.26), just with minuses. In total, one thus covers the manifold by 4
sets of transformations pt, rq Ñ pV, Uq. Nicely enough, the inverse transformation (14.27)
works everywhere.

• One of the most favourable features of the Kruskal diagram (= space-time diagram in the
Kruskal-Szekeres coordinates) is how it represents the causal structure: light cones are
everywhere “45˝” like in special relativity. This is clear from the metric (14.24) – setting
the interval to zero, one obtains

dV 2
“ dU2

`
r3

32M3
exp

r

2M
dΩ2

ě dU2
ùñ

ˇ

ˇ

ˇ

ˇ

dV

dU

ˇ

ˇ

ˇ

ˇ

ě 1. (14.28)

Hence, the light cones are 45˝ or narrower, with 45˝ applying to purely radial motion.

• Is the resulting metric (14.24) indeed analytic in the new coordinates? It is (except the true
singularities r“0 of course). Actually, it is much “nicer” than the original, Schwarzschild
metric, and it is also much nicer than the transformations we employed to make it nice.
Naturally, in order to remove some singularity, one has to perform a transformation which
itself is singular. Also “suspicious” might be that we had to cover the manifold by 4 new
coordinate maps and match them along the horizons. However, since everything suspicious
has been related to the horizons and no other location, it is sufficient to check the analyticity
there – and that holds.
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t

r

V

U

r=0

r=0

Figure 14.2 Left: Passage through the horizon of three selected geodesics, plotted in Schwarzschild
coordinates (axes are in the units of M). Red are two massive particles – one is freely falling from
rest from (t“0, rin “2.8M); it hits r“0 at t

.
“6.76M . Shortly after start, its trajectory is crossed

by a massive particle freely falling from a large radius; the latter ends at r“0 at t
.
“3.32M . Blue

trajectory belongs to a radial photon; this ends at r“0 at t
.
“´0.82M . The horizon r“2M and

the singularity r“0 are indicated in bold. Also drawn (in green) are two geodesics t“const, one
(t“3M) above the horizon and the other (t“´2M) below; in Schwarzschild coordinates, neither
of them can be extended over the horizon. Right: The same geodesics plotted in the Kruskal-

Szekeres coordinates; they are easily identifiable. Bold are horizons on diagonals V “ ˘U and
singularities on hyperbolas V “ ˘

?
1 ` U2 . The Schwarzschild-mesh structure follows from the

inverse transformation (14.27): t “ const are straight lines intersecting the origin, with t “ 0
on the axes while t “ ˘8 on the horizons V “ ˘U ; between axes and horizons t increases or
decreases monotonously. It is clear now why the (green) geodesics t“const could not be extended
over the horizon: they enter there the second half of the manifold which is not covered by the

given Schwarzschild coordinates. The mesh of r“const is represented by hyperbolas; specifically,
r “ 0.5M , 1M , 1.5M , . . . are shown. The main weird feature of the left diagram – that almost
all ingoing geodesics cross the horizon at t“8 – is “corrected” in the Kruskal diagram, thanks to

the fact that the “points” (|t| “ 8, r“2M) have been stretched to the whole diagonals V “ ˘U ,
whereas the “straight lines” (|t| ă 8, r“2M) have been compressed to the origin U “V “0. In
the Kruskal-Szekeres coordinates the Schwarzschild manifold is geodesically maximal.
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14.2.1 Kruskal diagram and Penrose-Carter conformal diagram

The Kruskal-Szekeres coordinates satisfy all the points we wished. Metric is regular at the
horizon, and the dimensionality of the regions t|t| ă 8, r “ 2Mu and t|t| “ 8, r “ 2Mu

is just opposite to how it was in Schwarzschild coordinates. Actually, |t| “ 8 is stretched
to the whole diagonals V 2 “ U2, while |t| “ const ă 8 lines only intersect the origin of
the diagram. Thanks to this, also the world-lines which cross the horizons (at infinite times)
are rendered in a natural and smooth way. And, in the new coordinates the manifold is
geodesically maximal – all geodesics which do not end or start at singularities are infinite; in
particular, the geodesics t“ const can now be prolonged across the horizon (while it is seen
that in the Schwarzschild map this was simply not possible because the regions which such
geodesics enter are not covered by the Schwarzschild coordinates).

In addition to this, there is the convenient property of the everywhere “45˝” form of the
radial-motion light cones. This makes causal arguments very easy. Particularly clear is the
null character of the horizons and the space-like character of the singularities. Through the
future horizon (that at V ą0), causal motions can only cross in the “inward” sense, and there
they have no other option than to fall towards the future singularity and to end there. On the
contrary, the past horizon (the one at V ă 0) can only be crossed in the “outward” direction,
and all the causal motions which do so must have started at the past singularity. The region
below the past horizon, representing thus causal reverse of the black hole, is often called
the white hole. Note that the two domains of outer communications (r ą 2M ) are causally
disconnected – the causal world-lines starting on opposite sides (U ą 0 and U ă 0) can only
meet inside the future black hole.

The Kruskal diagram of the Schwarzschild manifold is shown in Figure 14.2. For
illustration, three ingoing geodesics are drawn and their course compared with how they
appear in the Schwarzschild map covering the “top right” half of the manifold.

The Kruskal diagram only has one serious disadvantage: it is infinite. Hence totally
unsuitable for discussion of global properties of the manifold, for the behaviour of things at
infinities. Exactly one week ago (with respect to when I am writing this part), R. Penrose was
awarded the 2020’ Nobel prize for physics. One of the real gurus of mathematical relativ-
ity and geometry. In 1962, he proposed “a new technique for studying asymptotic questions
in (special or) general relativity” ... a conformal transformation after which the manifold’s
infinity becomes a three-dimensional boundary to a finite conformal region. Conformal map-
pings (naturally) do not preserve lengths, but they do preserve angles, hence, in the conformal
space-time, the light cones remain the same as in the original one. In the case of the Kruskal
picture of the Schwarzschild manifold, the conformal transformation reads

ψ “ arctanpV ` Uq ` arctanpV ´ Uq “ arctan v ` arctanu ,

ξ “ arctanpV ` Uq ´ arctanpV ´ Uq “ arctan v ´ arctanu , (14.29)

shrinking the infinite extent of pu, vq to ´π ă ξ ă `π, ´π{2 ă ψ ă `π{2. How these
values arise: first, according to the inverse transformation (14.27), the singularities r “ 0
correspond to uv“1, with u“˘ expp´t{4Mq and v“˘ expp`t{4Mq “ 1{u (for future/past
singularity). And there exists the formula arctanp1{xq “ ˘π{2 ´ arctanpxq, valid for x ą 0
and x ă 0, respectively. Hence, the singularities occur at ψ“˘π{2. Second, consider that the
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ψ

ξ

future singularity r=0

past singularity r=0

i0 i0

i− i−

i+ i+

I − I −

I + I +

Figure 14.3 Penrose-Carter diagram of the Schwarzschild space-time. The figure corresponds

to the Kruskal diagram 14.2, with the same three geodesics depicted as there (a massive particle

falling from rest from rin “ 2.8M , t“ 0, a massive particle falling from infinity, and a radially
ingoing photon). Thanks to their null character, the horizons remained on diagonals, and the space-

time is “covered” by singularities. Again in grey is the Schwarzschild pt, rq-mesh, specifically, we
have drawn the lines t “ ´10M , ´9M , ´8M , . . . , 8M , 9M , 10M (with t “ 3M and t “

´2M emphasized again) and the “dual” lines r˚ “´10M , ´9M , ´8M , . . . , 8M , 9M , 10M .
Future/past time infinities are denoted by i˘, radial infinities by i0, and future/past light infinities
by I ˘. The diagram covers the intervals p´π,`πq on the horizontal axis ξ and p´π{2,`π{2q

on the vertical axis. The time infinities are singular points of the conformal transformation.

left and right I ` (see Figure 14.3) are represented by ψ¯ ξ “ π, i.e. by arctanu “ π{2 and
arctan v “ π{2, respectively. These really correspond to u Ñ 8 and v Ñ 8, respectively.
And similarly for I ´.

The inverse conformal transformation being

V “
sinψ

cosψ ` cos ξ
, U “

sin ξ

cosψ ` cos ξ
, (14.30)

one can substitute to (14.27)

U2
´ V 2

“ ´uv “
cosψ ´ cos ξ

cosψ ` cos ξ
,

V

U
“

sinψ

sin ξ
(14.31)

and obtain simple relations for the shape of the original Schwarzschild coordinates in the
conformal pψ, ξq plot:

cosψ

cos ξ
“

#

´ coth r˚

4M

´ tanh r˚

4M

,
sinψ

sin ξ
“

#

tanh t
4M

for r ą 2M

coth t
4M

for r ă 2M
. (14.32)
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Figure 14.4 Penrose-Carter diagram of the flat space-time. The t, r mesh is grey, with t{M “

´ tanp9π{20q, ´ tanp8π{20q, ´ tanp7π{20q, . . . , tanp7π{20q, tanp8π{20q, tanp9π{20q

(rather “horizontal” lines) and, similarly, r{M “ tanp1π{20q, tanp2π{20q, tanp3π{20q, . . . ,

tanp9π{20q (rather “vertical” lines) shown. Light cones are everywhere 45˝ again. The history

of the origin r“0 is time-like here and it is not singular of course. Horizontal axis goes from 0 to
π, vertical axis goes from ´π to `π.

And one may check that the light cones really stay 45˝ by computing

´dV 2
` dU2

“ ´du dv “
´dψ2 ` dξ2

pcosψ ` cos ξq2
. (14.33)

Conformal diagram of the Schwarzschild manifold is shown in Figure 14.3. Of all
the graphs, it obviously is the most clear, and the illustration geodesics have in it very calm
shape. We see the asymptotic regions are of three types: future/past time infinities i˘, spatial
(radial) infinities and future/past light (null) infinities I ˘:

i˘ “ tt Ñ ˘8, r finite, θ, ϕu ,

i0 “ tt finite, r Ñ 8, θ, ϕu ,

I ˘
“ tt ˘ r Ñ ˘8, t ¯ r finite, θ, ϕu . (14.34)



220 14. SCHWARZSCHILD SPACE-TIME: ANALYTIC EXTENSION

Since being denoted by “script I”, the light infinities are commonly called just “scri”; in
every discussion with a mathematical relativist, you should make this sound at least once. On
the diagram it can also be seen that

• at i`, all time-like world-lines end, except (i) those which enter the future black hole, and
necessarily end at the future singularity, and (ii) those which are accelerated in the radially
outgoing direction as far as t Ñ 8 – those end at I ` (generalization of the hyperbolic
motion from special relativity)

• at I ` – besides the outgoing “hyperbolic motions” – end outgoing photons, except (i)
those which enter the future black hole and thus end at the future singularity, (ii) generators
of the future horizon, and (iii) photons on circular orbit at r“3M (those end at i`)

• for i´ and I ´ naturally hold time-inversions of the above

• at i0 end the hypersurfaces t“const, except those which stretch between the singularities.

It may be illustrative to compare the conformal diagram of Schwarzschild with that of
Minkowski. In flat space-time, the counterpart of Schwarzschild coordinates are spherical
coordinates in which the metric reads

ds2 “ ´dt2 ` dr2 ` r2pdθ2 ` sin2 θdϕ2
q .

They cover the whole manifold (in them, flat space-time is geodesically maximal – and it
is even complete, needless to say), so it is right away possible to compactify (rather than to
introduce Kruskal-type coordinates first),

ψ “ arctan

ˆ

t ` r

M

˙

` arctan

ˆ

t ´ r

M

˙

“ arctan
t`

M
` arctan

t´

M
,

ξ “ arctan

ˆ

t ` r

M

˙

´ arctan

ˆ

t ´ r

M

˙

“ arctan
t`

M
´ arctan

t´

M
, (14.35)

whereM does not represent any mass, it is just some constant of the dimension of length/time
which we put there in order to make the arguments dimensionless. The conformal diagram
of the flat space-time is in Figure 14.4.

Bifurcate horizon

For obvious reason, such an arrangement of horizons as in the above diagrams is called
the bifurcate horizon. The origin of the diagram – the vertex of the horizon light-cone –
represents a two-sphere which is called the bifurcation two-sphere. Its basic characteristic
property can be seen by computing how the time Killing vector field tµ “ Bxµ{Bt looks in
the pV, Uq coordinates. Differentiating (14.25) and (14.26) accordingly, one obtains the same
result both above and below the horizons,

tV “
BV

Bt
“

U

4M
, tU “

BU

Bt
“

V

4M
. (14.36)

It implies vanishing of the Killing field at the bifurcation sphere pV “0, U“0q.
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14.2.2 Dynamics of the Schwarzschild manifold in the time coordinate V

Figure 14.5 A qualitative sketch of embeddings of the surfaces tV “const, θ“π{2u, for |V |ą1
(left), |V | “ 1 (middle) and |V | ă 1 (right). With V growing from V ă ´1 to V ą `1, the
geometry changes from the left to the right surface and back, that is, the two asymptotically flat

regions interconnect via a throat for a certain (short) time. Red are horizons.

The Schwarzschild manifold is stationary (even static) above the horizon and dynami-
cal below. This is an invariant fact – the Killing field t“Bxµ{Bt is time-like above the horizon
and space-like below. This fact is very well reflected in Schwarzschild coordinates, simply
because the time t just corresponds to the parameter of this asymptotically time-like symme-
try (it is the “Killing time”). However, we have just finished the chapter where we showed
that there exist coordinates which in many respects are more natural than the Schwarzschild
ones. In the Kruskal time V , the metric is not stationary (it depends on r which in turn de-
pends on both V and U ). It is thus worth to learn how the space-time evolves in terms of this
time.

It is natural to follow, in particular, how the geometry evolves of the equatorial plane
tV “ const, θ “ π{2u. Imagine such a section on the Kruskal diagram (see Figure 14.5
for a scheme): if V ă ´1, the section consists of two disconnected identical regions, each
having a singularity and a horizon at its centre and an asymptotically flat region around. At
V “ ´1, these two regions touch at their singularities. With V growing above ´1, the now
common central singularity opens into a regular funnel, on which the two horizons are getting
closer and finally pass through each other at V “ 0. At this moment, the embedding exactly
corresponds to the embedding of the equatorial plane tt“ constp“ 0q, θ “ π{2u we studied
in Section 14.1.2. For V growing above zero, the geometry returns back symmetrically, i.e.
the funnel shrinks to “pinch off” at V “`1 and two disconnected regions are left again. The
temporary funnel between the two asymptotically flat regions is called the Schwarzschild
throat, the Einstein-Rosen bridge or – for media even better – a wormhole. Since (some)
people like to cross bridges, the question may arise whether it is possible to cross this one.
Clearly no, since one would have to pass through two horizons on the way. The situation
is best seen on the Kruskal diagram: it is not possible to travel between the two domains of
outer communications (r ą 2M ), the marginal case being that of photon generators of the
horizons which can travel from the past to the future horizons through the bifurcate horizon
at the origin.
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Worth to notice, however, that the absolute futures of the two static Schwarzschildian
regions do have non-empty intersection, namely the black-hole interior. The author of [31]
writes, as an illustration, that astronauts who fall there from the two universes, “can meet,
embrace, and die together”. Well, good to first recall the expression τfall “ π

a

r3in{p8Mq

which we found for the proper time of free fall from rin to r“0. Writing it in standard units
(with rS ”2GM{c2),

τfall “
π

2

rin
c

c

rin
rS

“
π

2

rS
c

ˆ

rin
rS

˙3{2

,

we have for rin “rS

τfall “
π

2

rS
c
.
“ p1.55 ¨ 10´5sq

M

Md

.

So do not hope for any cool trip in stellar black holes (with M of maximally 100Md). Even
the black hole in the nucleus of our Galaxy (M»4.1 ¨106Md) does not offer more than about
a minute of free fall. The only reasonable option are still more massive holes. The one in
the nucleus of the galaxy M87, famous for its “silhouette” revealed, in 2019, by the Event
Horizon Telescope project, has M»6.5 ¨ 109Md, and that already provides 28 hours. For the
most massive black holes known (which appear to have almost 10 times more mass than the
one in M87), the free-fall time comes out about 10 days. This already seems to be enough for
a decent vacation, but only in case one has a very good connection to the site.5

One may add that supermassive black holes are also (perhaps mainly) much more
“favourable” from the point of view of tidal forces (curvature). Actually, the Kretschmann
scalar K2 :“RµνκλR

µνκλ“ 48M2

r6
yields K2

H “ 3
4M4 on the Schwarzschild horizon, which after

making square root and in standard units yields

KH “
2
?
3

r2S

.
“ 3.35 ¨ 1015K‘

ˆ

Md

M

˙2

,

where we have denoted by K‘ the value of the Kretschmann invariant on the Earth surface,

K‘ :“
4
?
3GM‘

c2R3
‘

.
“ 1.2 ¨ 10´22

{m2 .

A human body is said to be able to withstand, temporarily, as much as 108˜10K‘. Hence,
the above formula for KH is a good reason to keep at distance from stellar-mass black holes
(and from all neutron stars). A “habitable” near-horizon zones start from a black-hole mass
of about 1000Md. For the black hole at our Galactic centre, KH

.
“ 200K‘, which is totally

comfortable, and for the black hole in M87 the horizon field is even much more homogeneous
than that on the Earth surface, KH

.
“K‘{12600. Anyway, before any voyage to a horizon,

we recommend to study section 32.6. of [29].

5 In passing, one sees in the Kruskal diagram that in order to meet and embrace (otherwise than by pure
chance), the astronauts would have to make appointment. However, they can only establish a causal connection
(thus get to know of each other) inside the black hole – and only if they entered the hole at sufficiently close
values of U and V . Think it over!
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14.2.3 Physical sense of the extended Schwarzschild solution?

The new half of the Schwarzschild manifold we discovered in Kruskal-Szekeres coordinates
– the one with the “white hole” – can be regarded as exact causal inversion of the original
half (containing a black hole). Such an extension might have been expected on the basis of
time symmetry of the Einstein equations. Actually, it can be understood as an analogy of the
coexistence of retarded and advanced solutions of Maxwell equations (which do not prefer
any specific direction of time either). Both kind of solutions are mathematically equally justi-
fied, though only the retarded ones are being used to describe physical situations, because the
advanced solutions would require very special initial/boundary conditions (incoming waves
would have to be arranged in exactly such a manner to be just absorbed by their “sources”).
The time asymmetry is – to a mathematically symmetrical situation – brought by world-lines
of physical observers: their clocks fix a privileged time direction.

The Schwarzschild solution is very robust, it fully follows from spherical symmetry
and from Einstein equations with Λ “ 0 and Tµν “ 0. It surely cannot represent the real
Universe, but it can very well approximate the gravitational field in a certain region around a
roughly spherical star. However, the maximally extended Schwarzschild manifold certainly
does not have (astro)physical sense, because it is vacuum everywhere. Even if there was just
one “star” in the universe, which would live from i´ and would collapse to a black hole at
certain stage, the only piece of the Kruskal diagram which would be present would be a part
of one outer region rą2M and part of the adjacent black-hole region ră2M . Actually, the
surface of such a star would first follow some of the r“const hyperbolas, and then, during the
collapse, its world-line would become similar to the world-line of the particle freely falling to
the black hole – see Figures 14.2 and 14.3. From the whole Schwarzschild manifold, the only
“realized” would be the region to the right of the surface’s world-line; this does not contain
anything of the new quadrants opened in the Kruskal-Szekeres coordinates, and especially it
does not contain the white hole.

Finally, there also exist more subtle reasons why the maximal Schwarzschild manifold
is not (astro)physically relevant, for instance, an instability against pair creation in the ex-
tremely non-homogeneous field near the past singularity. The generated particles would have
to escape from the white hole, either to I `, to i` or to the black hole, so the white hole
would gradually radiate away. Needless to say, the particle generation itself would break the
assumption of Tµν “0.
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CHAPTER 15

Reissner-Nordström solution
of Einstein equations

Soon after the Schwarzschild solution, in 1916 (Reissner) and 1918 (Nordström), its electri-
cally charged extension has been found. The generalization is simple and the metric has the
same shape, but still it is worth treating in detail, at least for the following reasons:

• First, due to the charge, the solution also involves EM field. Should the solution be exact,
one has to admit that the EM field enters the problem as a source of gravity, through the
corresponding energy-momentum tensor. This means that the solution can no longer be
vacuum, one has to solve non-homogeneous Einstein equations. Still more importantly,
besides Einstein equations, one also has to include in the problem the equations governing
the “non-gravitational physics” of the given source – in our case, the Maxwell equations.
The problem thus becomes more involved, because one has to tackle a coupled set of
Einstein and Maxwell equations.

• Second reason concerns the global structure of the solution. Similarly as in the Schwarzschild
case, the Reissner-Nordström metric describes the gravitational and EM fields outside any
spherically symmetric massive and charged source. In such a case, the difference from
Schwarzschild is typically just tiny, because, as we will see, the effect of charge falls off
with distance faster than that of mass. However, if speaking about situation when the
whole space-time is electro-vacuum (“the black-hole case”), it is no longer true, because
the structure of the innermost parts of the Reissner-Nordström solution turns out to be con-
siderably different from that of the Schwarzschild black hole. This follows from the fact
that Reissner-Nordström in general contains two horizons.

15.1 Metric and interpretation of parameters
The Reissner-Nordström solution is an exact solution of Einstein and Maxwell equations
describing the gravitational and EM fields outside a spherically symmetric (and static) source.
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More accurately, one assumes that cosmological constant is zero, that the only source of
gravity is the EM field (note that it should describe the exterior of a massive charged body),
and that the EM field is source-free (Jµ“0). In such a case, the system of equations reads1

Rµνp“ Gµνq “ 8πTµν , Tµν “
1

4π

ˆ

FµσFν
σ

´
1

4
gµνFρσF

ρσ

˙

, (15.1)

F µν
;ν “ 0, Ftµν;ρu “ 0 . (15.2)

Regarding that the electric field is a source field, whereas magnetic field is a vortex
field, the only EM field compatible with spherical symmetry is the one having just radial
electric component. Namely, even if there existed a spherically symmetric distribution of
current (current outflow or inflow), the magnetic field would be zero. Starting from the
Schwarzschild-type coordinates pt, r, θ, ϕq again, we have the spherically symmetric metric

ds2 “ gttprqdt
2

` grrprqdr
2

` r2pdθ2 ` sin2 θ dϕ2
q (15.3)

(if already supposing independence of time on the basis of experience with Schwarzschild),
and the EM-field tensor together with the corresponding energy-momentum tensor read

Fµν “

¨

˚

˚

˝

0 ´E 0 0
E 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

ùñ 8πT tt “ E2gttgrr “
E2

gttgrr
“ 8πT rr . (15.4)

Two non-trivial field equations have Gt
t and Gr

r on the left-hand sides as in (12.5), and the
above-given 8πT tt “ 8πT rr on the right-hand sides, so they read

dgrr
dr

“ ´
grr
r

ˆ

grr ´ 1 `
E2r2

gtt

˙

,
dgtt
dr

“
gtt
r

ˆ

grr ´ 1 `
E2r2

gtt

˙

. (15.5)

Good to comment more on the assumption of stationarity: in the Schwarzschild case, sta-
tionarity arose from the third independent equation Gtr “0. This equation remains the same
here, because Ttr“0 for the EM field. So stationarity would follow in the same manner as in
Schwarzschild, it is not an extra assumption.

By dividing the two field equations, we have

dgtt
dgrr

“ ´
gtt
grr

ùñ ln |gttgrr| “ const ùñ gttgrr “ const1 . (15.6)

We will now use this in the first set of Maxwell equations. The latter can be written in terms
of partial divergence according to (5.17) (for an anti-symmetric tensor),

0 “ F µν
;ν “

1
?

´g
p
?

´g F µν
q,ν `

XXXXXΓµρσF
ρσ ,

1 Remember that T “0 for the EM field, so R“0 as well, and thus Rµν “Gµν .
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so for µ“0 ” t we have

0 “
`?

´g F tν
˘

,ν
“
`?

´g F tr
˘

,r
“

ˆ?
´g

gttgrr
Ftr

˙

,r

“

ˆ?
´gttgrr r

2 sin θ

´gttgrr
E

˙

,r

“

“

ˆ

r2 sin θ
?

´gttgrr
E

˙

,r

“
sin θ

?
´gttgrr

`

r2E
˘

,r
ùñ Er2 “ const “: Q . (15.7)

Indeed, Er2 of course cannot depend on θ or ϕ, and neither on t since E is “dynamical” (it
is coupled with the metric, which however is static); one can also see the latter explicitly by
differentiating either of (15.5) by t. Consider that the constant really represents the electric
charge, because r is the area radius, linked to the area of the r“const sphere by 4πr2 – and
that is exactly what the Gauss law should involve when computing the flux of E⃗ across such
a sphere. (In particular, the interpretation would not work if r represented proper radius.)

Equations (15.5) are solved by the two-parameter (M , Q) family of metrics

ds2 “ ´

ˆ

1 ´
2M

r
`
Q2

r2

˙

dt2 `
dr2

1 ´ 2M
r

`
Q2

r2

` r2pdθ2 ` sin2 θ dϕ2
q , (15.8)

or in physical units: ds2 “ ´

´

1 ´ 2GM
c2r

`
GQ2

c4r2

¯

c2dt2 ` dr2

1´ 2GM
c2r

`
GQ2

c4r2

` r2dΩ2.

15.1.1 Basic features of the Reissner-Nordström metric

• Schwarzschildian limit: for an uncharged source (Q“ 0), the Reissner-Nordström metric
reduces to the Schwarzschild one.

• Asymptotic behaviour: at large radial distances (r2 " Q2), the metric (15.8) first goes over
to the Schwarzschild one and then, still farther away, to the flat metric. M thus represents
mass of the source again.

• The metric is again static (stationary and diagonal).

• The coordinates pt, r, θ, ϕq have the same meaning as in the Schwarzschild case.

• Three singularities occur in the metric – one truly physical and two coordinate ones. With
experience from Schwarzschild, one guesses r “ 0 to be the physical one, and really the
Kretschmann invariant confirms that,

RκλµνR
κλµν

“
8

r8
p6M2r2 ´ 12MQ2r ` 7Q4

q . (15.9)

Interestingly, withM“0 whileQ‰0, the singularity is even stronger (than in the opposite,
Schwarzschild limit).

Two horizons are present, as given by the coordinate singularities at

∆ :“ r2 ´ 2Mr ` Q2
“ 0 ùñ r “ r˘ “ M ˘

a

M2 ´ Q2 . (15.10)
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They both represent one-way membranes as it will be clear from causal structure. The
normal to r “ const hypersurfaces, Br

Bxµ
, turns light-like on the horizons, so the latter are

themselves null again. The Killing field tµ “ Bxµ

Bt
also becomes light-like on the horizons,

gµνt
µtν “ gtt

rÑr˘
ÝÑ 0, so r˘ are Killing horizons – and they are static limits as well (four-

velocity of a static congruence becomes light-like there, since it is proportional to tµ).
Finally, the horizons again represent infinite-redshift surfaces: between a static observer
close to the horizon and another one at rB ą r`, the frequency ratio amounts to

νprAq

νprB ą r`q
“

d

´g00prB ą r`q

´g00prAq

rAÑr`
ÝÑ 8. (15.11)

[When speaking of singularities, note once more that the source might have bigger radius
than r`, so neither of the singularities need be present. However, we are again mainly
interested in the limit case of “point” source when the central region considerably differs
from flat space-time.]

• Clearly the meaning of the coordinates t and r switches at the horizons, which implies
that the metric is dynamical between the horizons (not in the whole region below the outer
horizon).

• Look at the relation (15.10) once more: if the Schwarzschild centre were gradually being
charged from zero, the outer horizon would go down from r“2M , while the inner horizon
would rise from r“0. When the charge reaches the value |Q| “M , the horizons coalesce
on r“M ; such a case with double-degenerate horizon is called the extreme black hole. If
the charge rose still more, it would not be possible to satisfy ∆“0 any more – this function
would be everywhere positive and there would be no horizons. In such a case, the centre at
r“0 is called the naked singularity (it is not “dressed” in horizons).

• Last but not least, light cones generated by purely radial photon world-lines:

0 “ ds2 “ ´

ˆ

1 ´
2M

r
`
Q2

r2

˙

dt2 `
dr2

1 ´ 2M
r

`
Q2

r2

ùñ
dt

dr
“ ˘

1

1 ´ 2M
r

`
Q2

r2

.

The behaviour of radial light cones is clear from Figure 15.1 where the network of radial
null world-lines is plotted. (Light cones delimited by non-radial photons are “narrower”
as usual.) Compared to the Schwarzschild space-time, the main novelty is the surprising
behaviour below the inner horizon: there, in contrast to the dynamical region between the
horizons, the causal future points in the direction of t back again, so the future-oriented
causal world-lines need not necessarily approach the central singularity, they may even
be radially outgoing there (up to the inner horizon). In particular, the Reissner-Nordström
singularity is time-like in contrast to the Schwarzschild one! Such a circumstance is always
alarming since the time-like singularity can communicate with observers in its vicinity
(here with observers in the region răr´).
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t

r

Figure 15.1 Radial light-like world-lines in the Reissner-Nordström space-time (with charge Q“

0.9M), drawn in the Schwarzschild coordinates (units are that ofM). The horizons at r`
.
“1.44M

and r´
.
“ 0.56M are clearly seen thanks to the behaviour of the world-lines. Black are ingoing

world-lines, with the slope
dt
dr

“ ´ 1

1´ 2M
r

`
Q2

r2

; they cross the horizons in the inward direction – the

outer one via t“`8 and the inner one via t“´8. Green are outgoing world-lines, with the slope
dt
dr

“ ` 1

1´ 2M
r

`
Q2

r2

; at the outer horizon they start at t“ ´8 and at the inner horizon they end

at t“ `8. Between the horizons, both ingoing and outgoing world-lines point “downwards”, and

the ingoing lines go there against the direction of t. At any point, the local light cone is determined
by tangents to the ingoing and outgoing light world-line at that location. Causal future is indicated

by arrows in all the three regions. It is seen that (i) far from the centre (r"M) the light cones
are ˘45˝ like in special relativity (dt{dr“ ˘1); (ii) they narrow down towards the outer horizon
(dt{drÑ˘8), so that all ingoing causal motions cross r` at tÑ`8; (iii) between the horizons,

the ingoing cones are “inward” oriented – just below r` they have dt{drÑ ¯8, so all motions

with dră0 are allowed; on the way to r´ they narrow down, but then widen back to dt{drÑ¯8,

so the inner horizon is also crossed at t“ ˘8 by all motions; (iv) below the inner horizon, the

light cones become “vertical” again, similarly as in the domain of outer communications; towards

the central singularity r“0 they open to dt{drÑ0¯.
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15.2 Analytic extension of the Reissner-Nordström metric
Without repeating the motivation for looking for a coordinate system which would be more
suitable for representation of the central part of the RN space-time, and in which the manifold
would be geodesically maximal (see the detailed discussion at the Schwarzschild solution),
we will just transform to the Kruskal-type coordinates. The only significant difference from
Schwarzschild is that now the metric has coordinate singularities on two horizons (which
are distinct in general), so we will have to repeat the procedure twice – once for removing
the singularity at each of the horizons. One will thus obtain two maps – one covering the
region r ą r´ and the other covering the region p0, r`q – which will then be matched in
the overlapping part pr´, r`q. The transformation again concerns only the pt, rq part of the
metric, the angular part dθ2 ` sin2 θ dϕ2 “: dΩ2 will stay untouched. And, we suppose
throughout the “generic black-hole” case, 0ăQ2 ăM2, with non-degenerate two horizons at
0ăr´ ăr` ă2M .

• Tortoise radial coordinate:

dr˚

dr
“ grr “

1

1 ´ 2M
r

`
Q2

r2

“
1

`

1 ´
r`

r

˘ `

1 ´
r´

r

˘

ùñ r˚
“ r `

r2`
r` ´ r´

ln

ˇ

ˇ

ˇ

ˇ

r

r`

´ 1

ˇ

ˇ

ˇ

ˇ

`
r2´

r´ ´ r`

ln

ˇ

ˇ

ˇ

ˇ

r

r´

´ 1

ˇ

ˇ

ˇ

ˇ

. (15.12)

• Advanced and retarded time (the Eddington-Finkelstein coordinates):

t˘ :“ t ˘ r˚
ùñ t` ` t´ “ 2t , t` ´ t´ “ 2r˚ , (15.13)

ds2 “ ´

´

1 ´
r`

r

¯´

1 ´
r´

r

¯

dt`dt´ ` r2dΩ2
“

“ ´
r`r´

r2

ˆ

r

r`

´ 1

˙ˆ

r

r´

´ 1

˙

dt`dt´ ` r2dΩ2 . (15.14)

15.2.1 Kruskal-Szekeres coordinates above the inner horizon

• Light Kruskal-Szekeres coordinates:

u` :“ ´ϵ` exp

ˆ

´
r` ´ r´

2r2`
t´
˙

“ ´ϵ`

c

ˇ

ˇ

ˇ

r
r`

´ 1
ˇ

ˇ

ˇ

´

r
r´

´ 1
¯

r2
´

2r2
`

exp

„

r` ´ r´

2r2`
pr ´ tq

ȷ

, (15.15)

v` :“ exp

ˆ

r` ´ r´

2r2`
t`
˙

“

c

ˇ

ˇ

ˇ

r
r`

´ 1
ˇ

ˇ

ˇ

´

r
r´

´ 1
¯

r2
´

2r2
`

exp

„

r` ´ r´

2r2`
pr ` tq

ȷ

, (15.16)
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where ϵ` :“ sign
´

r
r`

´ 1
¯

distinguishes whether being above or below r` , and we have
used

exp

ˆ

r` ´ r´

2r2`
r˚

˙

“ exp

ˆ

r` ´ r´

2r2`
r

˙

exp

ˆ

1

2
ln

ˇ

ˇ

ˇ

ˇ

r

r`

´ 1

ˇ

ˇ

ˇ

ˇ

˙

exp

ˆ

´
r2´
2r2`

ln

ˇ

ˇ

ˇ

ˇ

r

r´

´ 1

ˇ

ˇ

ˇ

ˇ

˙

“

“ exp

ˆ

r` ´ r´

2r2`
r

˙

c

ˇ

ˇ

ˇ

r
r`

´ 1
ˇ

ˇ

ˇ

´

r
r´

´ 1
¯

r2
´

2r2
`

.

Like in the Schwarzschild case, we compute the product

´u`v` “ ϵ` exp

„

r` ´ r´

2r2`
pt` ´ t´q

ȷ

“ ϵ` exp

ˆ

r` ´ r´

r2`
r˚

˙

“

“

ϵ`

ˇ

ˇ

ˇ

r
r`

´ 1
ˇ

ˇ

ˇ

´

r
r´

´ 1
¯

r2
´

r2
`

exp

ˆ

r` ´ r´

r2`
r

˙

“

r
r`

´ 1

´

r
r´

´ 1
¯

r2
´

r2
`

exp

ˆ

r` ´ r´

r2`
r

˙

(15.17)

and employ it in derivation of the relation between dt`dt´ and du`dv` ,

du` dv` “ ´u`v`

ˆ

r` ´ r´

2r2`

˙2

dt`dt´

“

ˆ

r` ´ r´

2r2`

˙2 r
r`

´ 1

´

r
r´

´ 1
¯

r2
´

r2
`

exp

ˆ

r` ´ r´

r2`
r

˙

dt`dt´ , (15.18)

thanks to which the metric assumes the form

ds2 “ ´
r`r´

r2

ˆ

2r2`
r` ´ r´

˙2ˆ
r

r´

´ 1

˙

r2´

r2
`

`1

exp

ˆ

´
r` ´ r´

r2`
r

˙

du` dv`

` r2dΩ2 . (15.19)

• Kruskal-Szekeres coordinates pV`, U`q:

v` :“ V` ` U`, u` :“ V` ´ U` ùñ V` “
v` ` u`

2
, U` “

v` ´ u`

2
. (15.20)

We will not be rewriting the metric once more, since one just expresses ´du` dv` “

´dV 2
` ` dU2

` in it; the metric is valid both above and below the horizon r`. The final
transformation reads, explicitly,

V` “

b

r
r`

´ 1

´

r
r´

´ 1
¯

r2
´

2r2
`

exp

ˆ

r` ´ r´

2r2`
r

˙

sinh

ˆ

r` ´ r´

2r2`
t

˙

,
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U` “

b

r
r`

´ 1

´

r
r´

´ 1
¯

r2
´

2r2
`

exp

ˆ

r` ´ r´

2r2`
r

˙

cosh

ˆ

r` ´ r´

2r2`
t

˙

(15.21)

in the rąr` region, while

V` “

b

1 ´ r
r`

´

r
r´

´ 1
¯

r2
´

2r2
`

exp

ˆ

r` ´ r´

2r2`
r

˙

cosh

ˆ

r` ´ r´

2r2`
t

˙

,

U` “

b

1 ´ r
r`

´

r
r´

´ 1
¯

r2
´

2r2
`

exp

ˆ

r` ´ r´

2r2`
r

˙

sinh

ˆ

r` ´ r´

2r2`
t

˙

(15.22)

in the pr´ ăq răr` region.

• From the expressions for V` and U`, one easily gets the inverse transformation, i.e. the
relations which determine t and r as functions of V` and U`:

V`

U`

“

$

&

%

tanh
´

r`´r´

2r2`
t
¯

for r ą r`

coth
´

r`´r´

2r2`
t
¯

for pr´ ăq r ă r`

,

U2
` ´ V 2

` “ ´u`v` “

r
r`

´ 1

´

r
r´

´ 1
¯

r2
´

r2
`

exp

ˆ

r` ´ r´

r2`
r

˙

. (15.23)

Therefore, in the pV`, U`q plane, the r“const hypersurfaces are represented by hyperbolas
with asymptotes V` “ ˘U` (which correspond to r “ r`), whereas t“ const are straight
lines passing through the origin.

• The chapter is titled “analytic extension”, and indeed two new regions open in the new
coordinates, similarly as in the Schwarzschild case – the second outer region r ą r` and
the second inner region r´ ărăr`. From the inverse transformation it is seen that răr`

corresponds to U2
` ă V 2

` and r ą r` corresponds to U2
` ą V 2

`, which means two different
quadrants in both cases, placed symmetrically with respect to the origin and bounded by the
horizons V` “ ˘U`; in particular, radial infinities are reached, in the Kruskal coordinates,
along the directions U` Ñ ˘8, while the inner horizons r Ñ r´ are approached in the
directions V` Ñ˘8.

• The new regions are symmetric by the origin V` “ 0, U` “ 0 with respect to the “old”
ones, so the transformations (15.21,15.22) work there as well, just with minuses in front.
Hence, in total one needs 4 sets of transformations to cover the four quadrants of the region
r´ ără8. The inverse transformation (15.23) remains valid everywhere.
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• Light cones (ds2 “0):

dV 2
` “ dU2

``

r4

r`r´

´

r`´r´

2r2`

¯2

´

r
r´

´ 1
¯

r2
´

r2
`

`1

exp

ˆ

r` ´ r´

r2`
r

˙

dΩ2
ě dU2

` ñ

ˇ

ˇ

ˇ

ˇ

dV`

dU`

ˇ

ˇ

ˇ

ˇ

ě 1 . (15.24)

Therefore, the cones are “45˝” or narrower, with 45˝ applying to purely radial motion.

15.2.2 Kruskal-Szekeres coordinates below the outer horizon

• Light Kruskal-Szekeres coordinates:

u´ :“ ´ϵ´ exp

ˆ

´
r´ ´ r`

2r2´
t´
˙

“ ´ϵ´

c

ˇ

ˇ

ˇ

r
r´

´ 1
ˇ

ˇ

ˇ

´

1 ´ r
r`

¯

r2
`

2r2
´

exp

„

r´ ´ r`

2r2´
pr ´ tq

ȷ

, (15.25)

v´ :“ ´ exp

ˆ

r´ ´ r`

2r2´
t`
˙

“ ´

c

ˇ

ˇ

ˇ

r
r´

´ 1
ˇ

ˇ

ˇ

´

1 ´ r
r`

¯

r2
`

2r2
´

exp

„

r´ ´ r`

2r2´
pr ` tq

ȷ

, (15.26)

where ϵ´ :“sign
´

r
r´

´ 1
¯

distinguishes between above and below r´ , and we have used

exp

ˆ

r´ ´ r`

2r2´
r˚

˙

“ exp

ˆ

r´ ´ r`

2r2´
r

˙

exp

ˆ

1

2
ln

ˇ

ˇ

ˇ

ˇ

r

r´

´ 1

ˇ

ˇ

ˇ

ˇ

˙

exp

ˆ

´
r2`
2r2´

ln

ˇ

ˇ

ˇ

ˇ

r

r`

´ 1

ˇ

ˇ

ˇ

ˇ

˙

“

“ exp

ˆ

r´ ´ r`

2r2´
r

˙

c

ˇ

ˇ

ˇ

r
r´

´ 1
ˇ

ˇ

ˇ

´

1 ´ r
r`

¯

r2
`

2r2
´

.

We again compute

´u´v´ “ ´ϵ´ exp

„

r´ ´ r`

2r2´
pt` ´ t´q

ȷ

“ ´ϵ´ exp

ˆ

r´ ´ r`

r2´
r˚

˙

“

“ ´

ϵ´

ˇ

ˇ

ˇ

r
r´

´ 1
ˇ

ˇ

ˇ

´

1 ´ r
r`

¯

r2
`

r2
´

exp

ˆ

r´ ´ r`

r2´
r

˙

“ ´

r
r´

´ 1

´

1 ´ r
r`

¯

r2
`

r2
´

exp

ˆ

r´ ´ r`

r2´
r

˙

(15.27)

and derive the relation

du´ dv´ “ ´u´v´

ˆ

r´ ´ r`

2r2´

˙2

dt`dt´ “
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“ ´

ˆ

r´ ´ r`

2r2´

˙2 r
r´

´ 1

´

1 ´ r
r`

¯

r2
`

r2
´

exp

ˆ

r´ ´ r`

r2´
r

˙

dt`dt´ ,

which makes the metric (15.14) appear

ds2 “ ´
r´r`

r2

ˆ

2r2´
r´ ´ r`

˙2ˆ

1 ´
r

r`

˙

r2`

r2
´

`1

exp

ˆ

´
r´ ´ r`

r2´
r

˙

du´ dv´

` r2dΩ2 . (15.28)

• Kruskal-Szekeres coordinates pV´, U´q:

v´ :“ V´ ` U´, u´ :“ V´ ´ U´ ùñ V´ “
v´ ` u´

2
, U´ “

v´ ´ u´

2
. (15.29)

Therefore, one just substitutes ´du´ dv´ “ ´dV 2
´ ` dU2

´ in the metric; its form is valid
everywhere within 0ărăr`. The final transformation reads, explicitly,

V´ “ ´

b

r
r´

´ 1

´

1 ´ r
r`

¯

r2
`

2r2
´

exp

ˆ

r´ ´ r`

2r2´
r

˙

cosh

ˆ

r´ ´ r`

2r2´
t

˙

,

U´ “ ´

b

r
r´

´ 1

´

1 ´ r
r`

¯

r2
`

2r2
´

exp

ˆ

r´ ´ r`

2r2´
r

˙

sinh

ˆ

r´ ´ r`

2r2´
t

˙

(15.30)

in the region pr` ąq rąr´, while

V´ “ ´

b

1 ´ r
r´

´

1 ´ r
r`

¯

r2
`

2r2
´

exp

ˆ

r´ ´ r`

2r2´
r

˙

sinh

ˆ

r´ ´ r`

2r2´
t

˙

,

U´ “ ´

b

1 ´ r
r´

´

1 ´ r
r`

¯

r2
`

2r2
´

exp

ˆ

r´ ´ r`

2r2´
r

˙

cosh

ˆ

r´ ´ r`

2r2´
t

˙

(15.31)

in the region răr´.

• Inverse transformation:

V´

U´

“

$

&

%

coth
´

r´´r`

2r2´
t
¯

for pr` ąq r ą r´

tanh
´

r´´r`

2r2´
t
¯

for r ă r´

,
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U2
´ ´ V 2

´ “ ´u´v´ “
1 ´ r

r´

´

1 ´ r
r`

¯

r2
`

r2
´

exp

ˆ

r´ ´ r`

r2´
r

˙

. (15.32)

In the pV´, U´q plane, the hypersurfaces r“ const thus appear as hyperbolas with asymp-
totes V´ “ ˘U´ (which correspond to r “ r´), while t“ const are straight lines passing
through the origin.

• Again two quadrants open newly (uncovered by the original t, r) – one more copy for
each of the two existing ones. The inverse transformation implies that r ą r´ lies where
U2

´ ă V 2
´ while r ă r´ lies where U2

´ ą V 2
´, which in both cases corresponds to two

quadrants situated symmetrically with respect to the origin and bounded by the horizons
V´ “˘U´; in particular, the outer horizon r“r` is approached in the direction V´ Ñ˘8

while the physical singularity r“0 is localized on hyperbolas

U2
´ ´ V 2

´ “ 1 ùñ U´ “ ˘

b

1 ` V 2
´ .

• In the new regions, transformations (15.30,15.31) are valid as well, just with minuses. In
order to cover the whole region 0ărăr`, one again needs 4 sets of transformations, while
the inverse transformation (15.32) holds everywhere.

• Light cones:

dV 2
´ “ dU2

´`

r4

r´r`

´

r´´r`

2r2´

¯2

´

1 ´ r
r`

¯

r2
`

r2
´

`1

exp

ˆ

r´ ´ r`

r2´
r

˙

dΩ2
ě dU2

´ ñ

ˇ

ˇ

ˇ

ˇ

dV´

dU´

ˇ

ˇ

ˇ

ˇ

ě 1 , (15.33)

so they are 45˝ or narrower, with 45˝ valid for purely radial motion.

15.2.3 Kruskal diagram and Penrose-Carter conformal diagram

Kruskal diagram thus consists of two maps, one for the r´ ă ră 8 region and the other for
the 0 ă r ă r` region (Figure 15.2). All the discussed features of radial behaviour of the
Reissner-Nordström geometry are well seen on it. Most notably, let us once more stress the
everywhere-45˝ shape of light cones and the time-like character of singularities. Thanks to it,
there exist more options for where time-like world-lines may go: in Schwarzschild, physical
motions ended at time or light infinity, or at the singularity, whereas here it is also possible
to travel through the whole diagram, without reaching infinity or hitting the singularity – and
even in finite proper time. Wait! –That would mean geodesic non-maximality! Indeed, a
particle which gets below the outer horizon has to continue below the inner horizon; there it
can either reach the singularity, or continue towards the inner horizon of “the other universe”;
in the second case, it has then no other possibility than to reach the corresponding outer
horizon. As we checked in Schwarzschild – and here it is similar – horizons are at finite
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Figure 15.2 Kruskal diagrams for the “outer” and “inner” regions of the Reissner-Nordström

space-time, r´ ă r ă 8 and 0 ă r ă r` – on the left and on the right, respectively. Similarly

as in the Schwarzschild case, the hypersurfaces r “ const appear as hyperbolas with asymptotes
V` “˘U` (outer horizons r`) and V´ “˘U´ (inner horizons r´), respectively. In the left plot,

radial infinity is on the left and on the right, while up and down directions lead to the inner horizons.

In the right plot, up and down directions lead (from below) to the outer horizons, while to the left

and to the right the radii decrease to singular r“0. The hypersurfaces t“const appear as straight
lines passing through the origin (but we are not showing them). In both parts of the diagram, the

light cones for radial motion are 45˝, so the light-like as well as one-way character of the horizons

is seen clearly.

proper distance (and, in accord with that, they are reached in finite proper time). Hence,
even the two Kruskal maps together cannot represent maximal extension of the metric, since
certain non-singular parts of their boundary are at finite distance. At the same time, we have
no other space-time regions at our disposal than those two...

To answer such queries, much more comfortable are conformal diagrams (because in
Kruskal diagram, “the other” horizons are at infinity, although they actually lie at finite dis-
tance). The conformal diagrams are obtained by the same type of transformation as in the
Schwarzschild case, (14.29). The region r´ ă r ă 8 produces a square rhombus, while the
region 0 ă r ă r` looks like the Schwarzschild conformal diagram turned by 90˝ (but here
with outer horizons at places of the Schwarzschild infinities). Now, the non-maximality query
can be answered in two ways:

• Rather than just one pair of the regions, take infinite number of them, and place them above
each other.

• Restrict to only finite number of the diagram pairs (possibly even to the original one pair),
but identify the r´ ăr` region at the very top with the same region at the very bottom, that
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is, roll the whole diagram into a cylinder. Crucial here is to recall that Einstein equations do
not restrict topology of space-time. Actually, by rolling the diagram, its intrinsic geometry
(fixed by the Einstein equations) is not altered, since this does not induce any deformations
within the “plane of the diagram”.

Figure 15.3 (left) shows a part of the Penrose-Carter diagram of the Reissner-Nordström
manifold, as obtained by the first (infinite) way of composition. The radial light cones remain
45˝ everywhere, so it is clear how time-like world-lines can constantly avoid singularities
and traverse the whole diagram. Importantly, all the horizons crossed in such a journey are
distinct – the particle can never return to the same space-time region which it left before via
the respective future horizon.

The right part of Figure 15.3 adds the Penrose-Carter conformal diagrams

in the extreme case Q2 “M2 and in the naked-singularity case Q2 ąM2.

It is important to remind that all the above procedure concerned the “general black-hole” case
Q2 ăM2. The other cases now being added are in fact simpler, because

• For an extreme black hole, the horizon is double degenerate – it corresponds to double root
of the equation ∆ “ 0 (there is no dynamical region), 1 ´ 2M

r
`

Q2

r2
“

`

1 ´ M
r

˘2, so the
coordinate singularity at r“M can be removed by just a single transformation

dr˚

dr
“ grr ùñ r˚

“ r
r ´ 2M

r ´ M
` 2M ln

ˇ

ˇ

ˇ

r

M
´ 1

ˇ

ˇ

ˇ
.

In the same way as in the Q2 ăM2 case, one introduces t˘ :“ t ˘ r˚ and thus writes the
metric as

ds2 “ gtt dt
`dt´ ` r2dΩ2

“ ´

ˆ

1 ´
M

r

˙2

dt`dt´ ` r2dΩ2 .

May be worth to add that the extreme horizon is (also) very different from the non-degenerate
one in that it is at infinite proper radial distance:
ż rąM

M

?
grr dr “

ż rąM

M

dr

1 ´ M
r

“

„

r ` M ln
r ´ M

M

ȷrąM

M

“ 8 .

• For a naked singularity, there are no horizons and the tortoise coordinate is introduced by

r˚
“ r ` M lnpr2 ´ 2Mr ` Q2

q ´
Q2 ´ 2M2

a

Q2 ´ M2
arctan

r ´ M
a

Q2 ´ M2
.

In both cases, the manifold is already completely covered by the advanced and retarded times
t˘ “ t˘ r˚, and the final compactification can be achieved by the same transformation as for
flat space-time,

ψ “ arctan
t`

M
` arctan

t´

M
, ξ “ arctan

t`

M
´ arctan

t´

M
.
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Figure 15.3 Penrose-Carter conformal diagram of the maximal Reissner-Nordström space-time.

Left: the generic black-hole case 0ăQ2 ăM2, as obtained by composing many compactified outer

and inner regions from Figure 15.2. The light cones for radial motion are 45˝, so it is possible to

traverse any finite part of the diagram in finite proper time, without hitting a singularity. Future

inner horizons play the role of Cauchy horizons and the geometry is unstable against perturbations

there (see the main text). Right: the extreme caseQ2 “M2 (top), again obtained by composition of

many analytically extended regions (of only one type here), and the naked-singularity case Q2 ąM2

(bottom) where no extension is necessary. Note that the extreme case is clearly different in that the

singularities do not asymptotically approach infinities.

15.2.4 Physical meaning of the extended Reissner-Nordström solution

Interesting to see how different from Schwarzschild the global structure of Reissner-Nordström
is, however small electric charge it involves. Yet practical significance of the Reissner-
Nordström solution is low. First, due to the differential character of electr(omagnet)ic in-
teraction, the celestial bodies are quite strictly neutral. Second, the “cons” already mentioned
in connection with the extended Schwarzschild metric apply here as well. Still, there is an
important “third” in addition – an important pathology at the inner horizons:

• For a given pair of domains of outer communications (rą r`), their future inner horizons
play the role of the so-called Cauchy horizons, namely they are future boundaries of the
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region where a solution of any Cauchy problem (evolution of any physical system) is de-
termined uniquely by initial conditions given on some space-like hypersurface spanning
between the two spatial (or possibly also light) infinities. Actually, as nicely seen in Figure
15.3, the inner horizons represent boundaries of a region which already has at least one of
the future singularities in its past light cone, i.e. which can be affected by information com-
ing from the singularities (the inner horizons in fact coincide with future light cones of the
past ends of the singularities). But a theory cannot provide any prediction about how sin-
gularities will behave (just because they are singularities of Einstein equations), so future
becomes uncertain above such horizons.2 In fact a more general conclusion arises: Cauchy
horizons necessarily appear in space-times with time-like singularities. Therefore, in such
space-times the ideal of classical determinism – that “the future is uniquely determined by
the past” – has to be given up or at least weakened.

• At the inner horizons, the RN solution is unstable with respect to perturbations which
occurred in some of the corresponding (preceding) domains of outer communications. This
is a complicated mathematical result, requiring to make such a perturbation (here of the
metric and of the EM field), to write down the perturbed field equations, to isolate from
these the equations for the perturbation quantities (namely, to subtract the unperturbed part
of the equations), to linearize the resulting equations in the perturbations (or to simply
cut them at certain desired order), and to solve them. Let us try to at least illustrate the
problem loosely: imagine two colleagues staying at some rą r`. At t“ 0 (V` “ 0), say,
one of them will travel inside the black hole, while the other will stay at rest and will be
shining with a torch into the black hole. Imagine that the shining observer (and the battery
in the torch) live up to future time infinity i`. Now look at the conformal diagram, draw
the world-lines of both observers as well as world-lines of the photons (diagonals parallel
to the corresponding inner horizon). Clearly, before the “black-hole explorer” crosses, in
finite proper time, the inner horizon, it receives infinitely many photons – namely all the
photons emitted during the static-observer infinite life.

[This is clearly nothing more than an indication that the space-time has a tendency to am-
plify every perturbation at the inner horizon. More realistically, the “perturbing” photons
can be (and typically are) generated during the formation of the given black hole by a grav-
itational collapse. In any case, the above instability implies that even if such a collapse
produced an isolated and charged spherical black hole, the latter’s interior would almost
certainly be different from the Reissner-Nordström solution. In particular, the central sin-
gularity would likely be space-like rather than time-like.]

2 Such a conclusion is particularly suggestive if one solved as the Cauchy problem the evolution of the space-
time itself, i.e. if one did not suppose to have a complete RN space-time right at hand, but rather wished to find
it as a result of evolution from some initial data.
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CHAPTER 16

Kerr solution of Einstein equations

Celestial bodies are seldom significantly charged, but what on the contrary is ubiquitous
in astrophysics – and the Schwarzschild solution does not involve it – is rotation, spin.
Including rotation is non-trivial in GR since it represents motion, mass current, which itself
contributes to gravitation (in addition to the scalar mass itself). No surprise that it took
decades before the geometry around a rotating centre was found. It was in 1963 and it was
due to R. P. Kerr. Kerr discovered it when tackling Einstein equations for a metric ansatz
corresponding to a special structure of space-time curvature (the so-called algebraic type D).
In a few years, however, the solution was interpreted as describing a field of a stationary,
rotating black hole or naked singularity. S. Chandrasekhar was quoting this result the most
important astrophysical discovery of the second half of the 20th century.

16.1 Mach, Einstein, Lense & Thirring and dragging.
– And Kerr. . .

When E. Mach was deprecating “absolute” elements of thought constructions – those which
are not mutually interconnected with other elements –, he could not avoid inertia. In New-
tonian physics, this basic property of matter is an intrinsic property, not affected by anything
exterior. It manifests itself if one tries to accelerate a body with respect to an absolute space
(in fact with respect to any inertial system). In the famous Newton’s bucket, rotation makes
the water surface paraboloidal, because the bucket spins with respect to inertial systems, and
thus centrifugal force acts in it. Mach, instead, viewed inertia as resulting from interaction
of a given body with other bodies in the Universe. In his bucket, water also assumes the
parabolical shape, but not because of spinning with respect to any system, but because of
spinning with respect to “distant stars” – more specifically, with respect to a certain average
rest system of the cosmic matter. Mach used to add that the experiment would give the same
outcome if the bucket stayed still while “the Universe around” was rotating. More accurately,
he was saying something slightly different, though following from the same reasoning: that
even in a spinning bucket the water would stay flat if the bucket walls were made very thick

241
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and heavy.
When finishing GR, Einstein was very much referring to Mach’s views. When sup-

plemented with the equivalence principle, they implied that gravitation should not actually
be understood as “generated by this or that body”, but rather as following from mutual in-
teraction between all the matter in the Universe. He thus wondered at Schwarzschild’s early
solution, since it is non-trivial even though generated by one single point. In February 1916,
Schwarzschild added an interior solution for a spherical “star”, and Reissner soon (in March)
generalized the vacuum Schwarzschild metric to the electrically charged case. By that time,
Mach had already been deceased. But not so his (and Einstein’s) principle.

Yet it should be specified how “all the matter” contributes to the determination of an
“inertial field” at a given point. According to every experience, forces fall with distance, so if
inertia is linked to gravity, the inertial field should be dominated by heavy bodies which are
close to the given location. For example, the Foucault-pendulum plane should of course be
kept by “distant stars”, but it should also be slightly dragged by the Earth (which is not that
massive, but very close-by).1

Einstein began to more think about inertia in Prague where he wrote several important
papers on gravitation. In 1912 he published the paper Is there a gravitational effect which is
analogous to electrodynamical induction?2 He studied in it the behaviour of a free particle
inside an isolated massive spherical shell, to conclude – contrary to the Newtonian “no effect”
– that the particle does feel when the sphere starts to be pulled: with respect to the rest system
of the sphere, the particle becomes accelerated, hence inertial force starts to drag it in the
direction in which the sphere is moving. Einstein sent the paper to Mach and on 25th June
1913 added in a letter: “... your brilliant investigations on the foundations of mechanics will
have received a splendid confirmation. For it follows of necessity that inertia has its origin
in some kind of interaction of the bodies, exactly in accordance with your argument about
Newton’s bucket experiment. You will find a first consequence in this sense on the top of page
6 of the paper. Beyond that, the following results have been obtained: 1. If one accelerates an
inertial spherical shell S, then, according to the theory, a body enclosed by it experiences an
accelerating force. 2. If the shell S rotates about an axis passing through its centre (relative
to the fixed stars (‘Restsystem’), then a Coriolis field arises inside the shell, i.e., the plane of
the Foucault pendulum is being carried along (though with a practically immeasurably small
velocity).”

In 1918, Einstein’s prediction was confirmed by J. Lense and H. Thirring, already
within definitive GR, by analysing the behaviour of a free particle inside as well as out-
side a slowly rotating massive sphere. The effect thus bears their names, although it was
chiefly Einstein himself who explained to them the problem in a correspondence. Anyway,
more frequent today may be the term dragging effects (dragging of inertial frames by mat-
ter), or gravito(electro)magnetism, stemming from the analogy with electrodynamics where

1 The Foucault-pendulum experiment was really proposed for the South Pole, but other plans to detect the
dragging effect apparently turned out more promising.

2 It appeared in the journal Vierteljahrsschrift für gerichtliche Medizin und öffentliches Sanitätswesen (En-
glish: Quarterly Journal for Forensic Medicine and Public Health Service) as a birthday present to Einstein’s
friend H. Zangger, a renowned Curych professor of forensic medicine.
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Figure 16.1 All these lecture notes actually are a tribute to Jiří Bičák. However, certain “images”
connected with Jiří’s teaching emerge in my (O.S.’s) mind more often than others, one of those
being the very old and tired “Machian” transparency explaining the rotational dragging on a Foucault

pendulum placed at Earth’s pole: the pendulum’s plane of oscillation is fixed to distant stars basically

(blue little hands), yet the Earth very slightly drags it along (green little hands) by its rotation.
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currents generate magnetic component of the field (while charges generate electric one).
Kerr metric – the exact vacuum solution of Einstein equations describing the gravita-

tional field of a uniformly rotating black hole or naked singularity – provides a prominent
background for the study of rotational dragging, namely of the influence of the centre’s spin
on the motion of particles, on the precession of gyroscopes and on the structure of external
fields.

16.2 Kerr metric
The Kerr solution consists in a family of metrics with two parameters representing mass and
rotational angular momentum (“spin”) of the centre (it is assumed that Λ “ 0). S. Chan-
drasekhar begins, in his monograph [6], the chapter on Kerr solution by saying: “It has been
stated that ‘there is no constructive analytic derivation of the [Kerr] metric that is adequate
in its physical ideas, and even a check of this solution of Einstein’s equations involves cum-
bersome calculations’ (Landau and Lifshitz). Contrary to this statement, we shall find that,
once the basic equations have been properly written and reduced, the derivation of the Kerr
metric is really very simple and proceeds with an adequate base of physical and mathemat-
ical motivations.” Chandrasekhar then proves his reassurance on the following 16 pages
where the reader finds 133 numbered equations (of which, moreover, (3) actually contains 13
equations); in addition, the author enters that chapter already knowing canonical form of the
stationary and axisymmetric metric, as well as the corresponding components of curvature
tensors (all that had been derived in chapter 2 therein).

Indeed, we are not going to derive the Kerr metric. In the cylindrical Kerr-Schild coor-
dinates pT, ρ, z, ψq, it reads

ds2 “ ´dT 2
` dρ2 ` ρ2dψ2

` dz2 `
2Mr3

r4 ` a2z2

ˆ

dT `
rρ dρ ´ aρ2dψ

r2 ` a2
`
zdz

r

˙2

, (16.1)

where r is an oblate radius given by equation

r4 ´ pρ2 ´ a2 ` z2q r2 ´ a2z2 “ 0

and M and a are parameters. The metric reduces to a flat one for M “ 0, so M likely
represents mass of the source (and the Kerr-Schild coordinates generalize standard cylindrical
coordinates).

Mostly the metric is being presented in the Boyer-Lindquist coordinates pt, r, θ, ϕq

which are related to the Kerr-Schild ones by

dT “ dt´
2Mr

∆
dr , dψ “ dϕ´

2Mar

pr2 ` a2q∆
dr , ρ “

?
r2 ` a2 sin θ, z “ r cos θ .

The metric assumes in them the form

ds2 “ ´N2 dt2 ` gϕϕ pdϕ´ω dtq2 `
Σ

∆
dr2 ` Σdθ2 , (16.2)
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where (N below is called the lapse function, it will be important in Chapter 25)

N2 :“ ´gtt ´ gtϕω “
Σ∆

A , gϕϕ :“
A
Σ

sin2 θ , ω :“
´gtϕ
gϕϕ

“
2Mar

A ,

Σ :“ r2 ` a2 cos2 θ , ∆ :“ r2 ´ 2Mr ` a2 ,

A :“ pr2 ` a2q2 ´ ∆a2 sin2 θ “ Σpr2 ` a2q ` 2Mra2 sin2 θ “ Σ∆ ` 2Mrpr2 ` a2q .

Sometimes a different arrangement of the pt, ϕq terms is suitable, for example

ds2 “ ´
∆

Σ

`

dt ´ a sin2 θ dϕ
˘2

`
sin2 θ

Σ

“

a dt ´ pr2 ` a2q dϕ
‰2

`
Σ

∆
dr2 ` Σdθ2 (16.3)

“ ´

ˆ

1 ´
2Mr

Σ

˙

dt2 ´
4Mr

Σ
a sin2 θ dtdϕ `

A
Σ

sin2 θ dϕ2
`

Σ

∆
dr2 ` Σdθ2 (16.4)

“ ´dt2 `
2Mr

Σ

`

dt ´ a sin2 θ dϕ
˘2

` pr2 ` a2q sin2 θ dϕ2
`

Σ

∆
dr2 ` Σdθ2 . (16.5)

16.2.1 Basic features of the Kerr metric

• The Kerr metric is stationary and axially symmetric – there exist two (commuting) Killing
vector fields, of which one is time-like (at least at large radii r) with open integral lines
while the other is space-like with closed integral lines. If parametrizing the time symmetry
by t and the axial symmetry by ϕ, the Killing fields (again) read

tµ “
Bxµ

Bt
, ϕµ “

Bxµ

Bϕ
.

In other words, the t and ϕ included in the Boyer-Lindquist coordinates are directly related
to the space-time symmetries.

• However, as opposed to Schwarzschild, the metric is not static: it contains the non-diagonal
term gtϕ“´2Mra sin2 θ{Σ which makes it depending on the direction of time t.3 Exactly
this term brings the new GR effect of dragging which we focus on in the next section.

• The metric is also reflection symmetric with respect to the equatorial plane θ “ π{2: the
trigonometric functions only occur in it in the second power.

• For a“ 0 the metric reduces to the Schwarzschild form. Hence, M obviously represents
mass, and the Boyer-Lidquist coordinates generalize the Schwarzschild ones. The param-
eter a is clearly connected with rotation.

• The meaning of M is confirmed by the asymptotic behaviour (with respect to a): at radii
r"a, the metric becomes (to linear order in a{r)

ds2 “ Schwarzschild ´
4Ma

r
sin2 θ dt dϕ . (16.6)

3 Geometrically, the non-staticity means that the time Killing field tµ is not hypersurface-orthogonal, i.e. that
it cannot be expressed, globally, as proportional to a gradient of any scalar. (See Section 24.4.1.)
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This also elucidates the meaning of a (as the rotational angular momentum per unit mass
M ), if compared with the generic form of the metric of a stationary quasi-Newtonian
source, derived in Section 22.4.3. At radial infinity, the metric finally reduces to a flat
metric in spherical coordinates.

• However, the Boyer-Lindquist coordinates are not spherical. Actually, if setting M “ 0 in
(16.2), one of course obtains flat metric, but not in spherical coordinates:

ds2 “ ´dt2 `
Σdr2

r2 ` a2
` Σdθ2 ` pr2 ` a2q sin2 θ dϕ2 . (16.7)

Therefore, if a ‰ 0, the Boyer-Lindquist coordinates are ellipsoidal (spheroidal), more
specifically of an oblate type. The latter is best seen from relations

ρ2

r2 ` a2
`
z2

r2
“ 1,

ρ2

a2 sin2 θ
´

z2

a2 cos2 θ
“ 1 (16.8)

which are just another reading of the transformation ρ“
?
r2 ` a2 sin θ, z“r cos θ. Hence,

in the Kerr-Schild axes, the surfaces r “ const are oblate rotational ellipsoids and the
surfaces θ“ const are rotational hyperboloids. All have a common focus at rρ“ a, z“ 0s

which corresponds to rr“0, θ“π{2s.

Note in particular that r thus no longer stands for an area or circumferential radius, because
the r“const surfaces have areas

2π
ż

0

π
ż

0

?
gθθgϕϕ dθdϕ “

2π
ż

0

π
ż

0

?
A sin θ dθdϕ “ 2π

π
ż

0

?
A sin θ dθ (16.9)

and the circumferences of the r“const, θ“const circles read

2π
ż

0

?
gϕϕ dϕ “ 2π

c

A
Σ

sin θ .

These do not even reduce to 4πr2 and 2πr sin θ for M “ 0. Indeed, for M “ 0, one has
A “ Σpr2 ` a2q, hence the integrals yield

2π
ż

0

π
ż

0

?
gθθgϕϕ dθdϕ “ 2π

?
r2 ` a2

π
ż

0

?
Σ sin θ dθ “

“ 2πpr2 ` a2q `
2πr2

a

?
r2 ` a2 arcsinh

a

r
,

2π
ż

0

?
gϕϕ dϕ “ 2π

?
r2 ` a2 sin θ .
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• The metric is invariant with respect to the transformations

pa Ñ ´a, t Ñ ´tq, pa Ñ ´a, ϕ Ñ ´ϕq

(similarly as with respect to the inversion t Ñ ´t, ϕ Ñ ´ϕ), which confirms that a
represents rotation. Its dimension really agrees with the rotational angular momentum
(spin) divided by mass, a “ J{M . Without loss of generality, this parameter is being
considered non-negative, a ě 0, which simply means that the coordinate ϕ is oriented in
the direction of the centre’s rotation.

• Similarly as in the Reissner-Nordström case, the metric has three singularities. The phys-
ical singularity lies where Σ “ 0, as seen from the Kretschmann and the dual (so-called
Chern-Pontryagin) invariants4

K :“ RµνκλR
µνκλ

“
48M2

Σ6
pr2 ´ a2 cos2 θqpΣ2

´ 16r2a2 cos2 θq , (16.10)

˚K :“ ˚RµνκλR
µνκλ

“
96M2

Σ6
ra cos θ p3r2 ´ a2 cos2 θqpr2 ´ 3a2 cos2 θq . (16.11)

The scalars reveal a miraculously symmetric curvature structure of the Kerr space-time
(see Figure 16.2). In addition, it can be verified that even simpler comes out the modulus
of the complex number K´i ˚K,

|K ´ i ˚K| ”

a

K2 ` ˚K2
“

48M2

Σ3
. (16.12)

Horizons (coordinate singularities) are given by ∆“0, similarly as in previous chapter, so
they are two again and given by the same expression, just involving a2 instead of Q2,

r˘ “ M ˘
?
M2 ´ a2 . (16.13)

Also similar are thus the three options – a generic black hole (0 ă aăM , two horizons),
an extreme black hole (a “ M , one double degenerate horizon) and a naked singularity
(aąM , no horizon). Horizons are again light-like, as it is possible to check by evaluating
the norm of the normal to the r“const hypersurfaces,

gµν
Br

Bxµ
Br

Bxν
“ grr “

1

grr
“

∆

Σ
.

• Important difference from the Schwarzschild and Reissner-Nordström space-times: Kerr
horizons are neither static limits nor infinite-redshift surfaces. Actually, as it is clear from
gµνt

µtν “ gtt, the temporal Killing field becomes light-like on surfaces given by gtt“0, so
at

Σ “ 2Mr ðñ r “ r0,1 “ M ˘
?
M2 ´ a2 cos2 θ . (16.14)

4 The Chern-Pontryagin scalar is zero in static space-times, such as Schwarzschild or Reissner-Nordström.
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r sin θ

r cos θ

√
r2+a2 sin θ

r cos θ

Figure 16.2 Curvature of the Kerr space-time represented in the Boyer-Lindquist coordinates

r sin θ, r cos θ (left) and in the Kerr-Schild coordinates ρ“
?
r2 ` a2 sin θ, z“r cos θ (right).

The six/three blue circles indicate zeros of the Kretschmann invariant (16.10) and the four/two

red circles (plus red-coloured horizontal axis) indicate zeros of the Chern-Pontryagin invariant

(16.11). The arrangement is quite miraculous in the Kerr-Schild plot: all the circles intersect

at the singularity pρ “ a, z “ 0q and define a (π{6)-segmentation of meridional planes there; a
remarkable symmetry of the pattern is revealed on tangents to the circles drawn (in green colour)

at the singularity (note, for example, that the tangents only intersect at the circles). In the Boyer-

Lindquist picture (left), the pattern based on circles’ tangents is of course degenerate and the only

other straight lines one can draw are diagonals crossing the circles’ at their leftmost/rightmost

points.

These only touch the horizons at the symmetry axis (θ “ 0, π), whereas elsewhere the
surfaces are arranged as r1 ăr´ ďr` ăr0. The frequency shift between static observers is
given by gtt as well, so the infinite-redshift surfaces coincide with the static limits. From
the above formula, it is seen that the static limits – in contrast to the horizons – exist for
any value of a, even for aąM : when a“M , the inner and outer static limits r1 and r0 join
at the axis and for aąM they are represented by a single toroidal surface which surrounds
the central singularity.
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• Another important difference from static space-times is in topology of the physical singu-
larity. We saw it is given by Σ “ 0 which in Boyer-Lindquist coordinates requires r “ 0
and θ“π{2. Strange situation – a point only singular from the equatorial side. Such direc-
tional singularities usually indicate a certain degeneracy of the coordinate representation.
Actually, in the Kerr-Schild coordinates, the singularity is given by z“ 0, ρ“ a, that is, it
has a ring character. The Kerr-Schild coordinates are also “just coordinates” of course, so
it is at place to compute, for example, a proper radius of that circle,

π{2
ż

0

a

gθθpr“0q dθ “

π{2
ż

0

a

Σpr“0q dθ “ a

π{2
ż

0

cos θ dθ “ a ,

or the proper area of the whole disc r“0,

2π
ż

0

π{2
ż

0

b

pgθθgϕϕqr“0 dθdϕ “

2π
ż

0

π{2
ż

0

a

Apr“0q sin θ dθdϕ “ 2πa2
π{2
ż

0

cos θ sin θ dθ “ πa2 .

We see the quantities are even related in a Euclidean way. In the Kerr-Schild coordinates,
the derivation is still simpler, since gρρpr “ 0q “ 1 and gψψpr “ 0q “ ρ2 (the metric (16.1)
becomes flat on r“ 0). Hence, the proper radius and proper area of the disc are obtained
like

ż a

0

b

gρρpr“0q dρ “

ż a

0

dρ “ a ,

2π
ż

0

a
ż

0

b

pgρρgψψqr“0 dρdψ “

2π
ż

0

a
ż

0

ρ dρdψ “ πa2 .

• Also different has to be discussion of the light cones (for radial motion), because the space-
time is not spherically symmetric and so it is not clear what is the radial direction. If
restricting to the coordinate radial direction, thus taking dϕ“0, one has

0 “ ds2 “ ´

ˆ

1 ´
2Mr

Σ

˙

dt2 `
Σ

∆
dr2 ùñ

dt

dr
“ ˘

Σ
a

∆pΣ ´ 2Mrq
,

so the cones close to the vertical direction at the static limit where Σ “ 2Mr. Well, this
only confirms that if something wants to stay at the static limit, it has to be a photon.
However, the horizon is still more “downtown”, so it is still possible to stay at constant
r below the static limit, or even to travel outwards from there, one only needs a suitable
angular velocity in the azimuthal direction. We will make this claim precise below, but let
us at least add two examples: with the angular velocity dϕ

dt
“ a

r2`a2
(corresponding to the

so-called principal null congruence, see later), one finds from (16.3)

0 “ ds2 “ ´
∆

Σ

ˆ

1 ´
a2 sin2 θ

r2 ` a2

˙2

dt2 `
Σ

∆
dr2 “ ´

Σ∆

pr2 ` a2q2
dt2 `

Σ

∆
dr2

ùñ
dt

dr
“ ˘

r2 ` a2

∆
.
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Similarly, with the angular velocity dϕ
dt

“ ω (corresponding to zero axial angular momen-
tum, see below), one finds from (16.2)

0 “ ds2 “ ´
Σ∆

A dt2 `
Σ

∆
dr2 ùñ

dt

dr
“ ˘

?
A
∆

.

The light cones defined in either of these ways only “close” (and prevent outward travel-
ling) at the horizon.

A generic conclusion is that the light cones behave similarly as in the Reissner-Nordström
field, but, due to dragging, they simultaneously get more and more tilted in the positive-ϕ
direction as the centre is approached.

16.3 Dragging of inertial frames
In Newton’s theory of gravitation, the field of a spherically symmetric source is given by
´GM{r2, independently of whether the source rotates or not – there is no difference be-
tween static and stationary situation. In electrodynamics, there is a difference – rotating
charged bodies generate, besides the electric fieldQ{r2, also a magnetic one, because moving
charges ” current. The notions “electric” and “magnetic” are of course observer-dependent,
but it is in general not possible to transform out any of these components. In GR it works
similarly, only that mass currents play the role instead of charge currents. Two differences
(from electrodynamics) may be mentioned:

• Electric charge is invariant, whereas mass increases with relative speed (m “ m0γ from
special relativity), thus so does the energy E “ mc2. By the equivalence principle, this
should equally hold for inertial as well as gravitational mass. Hence, the scalar (“gravito-
electric”) part of the gravitational field is also affected by motion – actually, a mutual force
between two moving bodies contains the factor γ2 (given by their relative speed).

• Yet GR does not only differ from Newton’s theory in the “(gravito)magnetic” effects known
from electrodynamics: it brings curvature of space(-time) in addition.

According to Mach’s views, the inertial space should behave kind-of like viscous fluid
which is being “mixed” – i.e. dragged along – by matter. Specifically in the case of a rotating
body, free test particles (inertial frames) around should be carried away along the rotation, the
more the closer to the body they are; torque-free test gyroscopes anchored at the axis should
precess in the direction of centre’s rotation, while those placed in the radial direction to the
equatorial plane should precess against the direction of rotation (since dragging should be
differential, it should drop off with distance from the rotating source). It indeed goes like this
in the Kerr space-time (cf. Figure 18.2 later then). However, since the Kerr solution describes
an isolated source, Mach would certainly ask relative to what it actually rotates. It rotates
with respect to an asymptotic inertial frame, defined by test particles resting at radial infinity.
Mach’s “distant celestial masses” are thus represented by boundary conditions at infinity.5

5 Sure, this is a partial retreat from Machian positions. After all, the very notion of inertia of an isolated
source is problematic by Mach – there are no masses which the source might be referred to (and the less so
which it might interact with). In relativity, even a single test particle in Minkowski does have inertia.
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In the following, we show that the Kerr metric really describes geometry dragged along
by rotation of the source.

16.3.1 Comparison with flat metric in rotating coordinates

We already know from Section 1.4.2 that the metric term pdϕ ˘ ωdtq2 is connected with
rotation. Actually, by transforming the Minkowski metric

ds2 “ ´dT 2
` dX2

` dY 2
` dZ2

from some inertial frame pT,X, Y, Zq to cylindrical coordinates rotating with an angular
velocity ´ω“const,

T “ t, X “ ρ cospϕ ´ ωtq, Y “ ρ sinpϕ ´ ωtq, Z “ z ,

one obtains

ds2 “ ´dt2 ` ρ2pdϕ ´ ωdtq2 ` dρ2 ` dz2 .

Now, the Boyer-Lindquist coordinates are “non-rotating”, at least asymptotically – they cor-
respond to an asymptotic inertial system since the Kerr metric written in them goes over, at
r Ñ 8, to a flat metric in spherical coordinates. Hence, we can guess that the Kerr metric
corresponds to a rotating geometry in non-rotating coordinates (anchored to infinity).

Comparison of (16.2) with the above flat metric in rotating coordinates indicates that ω
represents angular velocity with which the inertial space / the geometry is being dragged by
rotation of the centre, taken with respect to the asymptotic inertial frame. The question might
arise naturally: isn’t it possible to perform, analogously as above, a transformation to co-
rotating coordinates which would erase the dragging term? No, it is not possible because in
the Kerr metric ω is not constant (it depends on r and θ) – dragging is differential. Actually,
the transformation T “ t, φ “ ϕ ´ ωt, R “ r, ϑ “ θ does make the desired job,

gTφ “
Bt

BT

Bϕ

Bφ
gtϕ `

Bϕ

BT

Bϕ

Bφ
gϕϕ “ gtϕ ` ωgϕϕ “ gtϕ ´ gtϕ “ 0,

but, on the other hand, it brings a new non-diagonal component (which is time-dependent on
top of that)

gRϑ “
Bϕ

BR

Bϕ

Bϑ
gϕϕ “

Bω

BR

Bω

Bϑ
T 2gϕϕ

ˆ

“
Bω

Br

Bω

Bθ
t2gϕϕ

˙

.

Similar time-dependent terms also arise in another components, gRR “ grr ` pω,rtq
2gϕϕ and

gϑϑ “ gθθ ` pω,θtq
2gϕϕ.

16.3.2 Stationary circular orbits in the Kerr field

Space-time features may very well manifest on families of motions which “very well fit in
a given background”. In our case, such a privileged family is that of stationary circular
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motions, i.e. of observers which orbit with uniform angular velocity Ω :“ dϕ{dt on circles
r “ const, θ “ const. Namely, such observers exactly follow the space-time symmetries
and, consequently, perceive the geometry in their vicinity as stationary.6 The four-velocity of
stationary circular motions is proportional to a combination of the two Killing vector fields,7

uµ “
tµ ` Ωϕµ

|tµ ` Ωϕµ|
“

tµ ` Ωϕµ
a

´gικptι ` Ωϕιqptκ ` Ωϕκq
, (16.15)

so, in the BL coordinates where

tµ “ δµt , ϕµ “ δµϕ , gικptι ` Ωϕιqptκ ` Ωϕκq “ gtt ` 2gtϕΩ ` gϕϕΩ
2 ,

the four-velocity has components

uµ “ utp1, 0, 0,Ωq , ut “
1

a

´gtt ´ 2gtϕΩ ´ gϕϕΩ2
“

1
a

N2 ´ gϕϕpΩ ´ ωq2
. (16.16)

The angular velocity with respect to an asymptotic inertial system, Ω, cannot be arbi-
trary – too large values would correspond to super-luminal (space-like) motion. The interval
of time-like motion has boundaries where uµ can no longer be normalized by any real ut, i.e.
at the roots of

gtt ` 2gtϕΩ ` gϕϕΩ
2

“ 0 :

Ωmax,min “
´gtϕ ˘

a

pgtϕq2 ´ gttgϕϕ

gϕϕ
“ ω ˘

c

ω2 ´
gtt
gϕϕ

“

“ ω ˘

?
´gtϕω ´ gtt

?
gϕϕ

” ω ˘
N

?
gϕϕ

“ ω ˘
Σ

?
∆

A sin θ
. (16.17)

It is illustrated in Figure 16.3. The above simple analysis brings several important observa-
tions:8

• In the spherically symmetric Schwarzschild field (and as well in Reissner-Nordström), ω“

0 and the light cone is of course symmetric about Ω“0 (the ˘ϕ directions are equivalent),

Ωmax,min “ ˘

c

´gtt
gϕϕ

“ ˘

b

1 ´ 2M
r

r sin θ
.

6 These motions are not in general geodesic; there do exist circular geodesics, but only as a special subclass of
equatorial circular orbits. (With one marginal exception, there do not exist circular geodesics off the equatorial
plane.)

7 This combination is even linear, because Ω“const, but only along each single orbit, so it does not represent
a Killing field. Stationary circular orbits are thus sometimes called quasi-Killing trajectories.

8 When looking at the formula, it’s good to realize that, for rą0, it holds Σą0 and Aą0.
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The interval narrows down as 1{r asymptotically, while it also shrinks to just Ω“ 0 at the
horizon where gtt“0. (This limit value corresponds to a photon standing at the horizon.)

In the Kerr field, the whole time-like interval is shifted in the positive-Ω direction, in accord
with how light cones are dragged in the positive-ϕ sense. Apparently it is ω which plays the
role of the central value, so it is interpreted as the angular velocity with which the geometry
(the inertial space) is dragged along by rotation of the source, as taken with respect to an
asymptotic inertial frame.

• Note in particular that it is possible to define the horizon invariantly as the surface where
the interval of permitted Ωs of circular orbiting shrinks to just a single value. This happens
where the lapse function vanishes, N“0 (which agrees with ∆“0), and the value reads

Ωmax “ Ωmin “ ωpN“0q “
2Mr`a

Apr`q
“

2Mr`a

pr2` ` a2q2
“

a

2Mr`

“: ωH . (16.18)

This value is naturally interpreted as angular velocity of the (outer) horizon, it is positive
and constant all over the horizon. Actually, it does not depend on θ (and of course not
on t, r and ϕ). The horizon thus rotates “as a rigid body”; this result (called the rigidity
theorem) holds for all stationary horizons and is very important at many places of the
black-hole theory.

• With the meaning of ω clarified, one can quantify the inertial dragging: it falls off radially
as 2Ma{r3, so much faster than deviation from the flat gtt“ ´1 (i.e. 2M{r). On the other
hand, when approaching the black hole, the azimuthal dragging becomes stronger than the
radial attraction, since it definitively forces everything to co-rotate at r0 (while the radial
attraction only wins definitively at r` which is lower). Actually, the appearance of the
static limit at r0 – of this extreme manifestation of dragging – is very well seen in Figure
16.3, since it lies where Ωmin crosses zero. The formula (16.17) confirms that this happens
where gtt “ 0. In the next chapter, we will see that the region between r` and r0 – the
so-called ergosphere – has remarkable properties.

• Hitherto, we have supposed the black-hole case (a ď M ). If there are no horizons, one
checks the limit behaviour of Ωmax,min at r“0:

ωpθ‰π{2, rÑ0q “ 0 , ωpθ“π{2, rÑ0q “
1

a
,

N
?
gϕϕ

prÑ0q “
1

a sin θ
.

Therefore, there is no dragging over the central disc r “ 0, while its singular rim (r “ 0,
θ“π{2) rotates with the angular velocity 1{a.

Invariance of the Killing part of the metric

Above, we stressed that the properties of circular orbits provide an invariant way how to
localize the horizon – by N“0. This is a suitable moment to also stress that in fact the whole
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Ω

r

Ωmin

Ωmax

ω

ωH

r+ r0

•

Figure 16.3 The interval of angular velocities Ω within which the circular motion in the Kerr field
(with a“ 0.9M) is time-like, plotted for equatorial orbits (θ“π{2) in dependence on the radius
r. The central value ω is in blue. On the horizon r`, the interval shrinks to a single limit value

ωH (which is constant everywhere on it). Radius r0 of the outer static limit is clearly visible (in the
equatorial plane it is r0 “ 2M independently of a. The radius axis is in the units ofM , the Ω axis
is in the units of 1{M . Correspondingly to how light cones are tilted by dragging in the positive-ϕ
direction, the interval of permitted Ωs is shifted towards Ωą0 with respect to Schwarzschild where
it is symmetric about Ω“0.

“Killing” part of the metric has an invariant meaning, because it is completely determined by
scalar products of the Killing vector fields,

gtt “ gικt
ιtκ , gtϕ “ gικt

ιϕκ , gϕϕ “ gικϕ
ιϕκ . (16.19)

Consequently, any quantity solely given by these metric components is invariant as well – to
ω and N it applies in particular.

Finally, let us also derive four-acceleration of the four-velocity (16.16),

aµ “
duµ
dτ

´ Γιµκuιu
κ

“ ´Γιµκu
ιuκ “ ´

1

2
pgιµ,κ`gκι,µ´gµκ,ιqu

ιuκ “ ´
1

2
gκι,µu

ιuκ “

“ ´
1

2
putq2pgtt,µ ` 2gtϕ,µΩ ` gϕϕ,µΩ

2
q “

1

2

gtt,µ ` 2gtϕ,µΩ ` gϕϕ,µΩ
2

gtt ` 2gtϕΩ ` gϕϕΩ2
; (16.20)

we have used the stationarity of the motion, thus constancy of uµ along the orbit, and sym-
metry of uιuκ due to which the term pgιµ,κ ´ gµκ,ιq antisymmetric in pι, κq drops out in the
multiplication. The result holds for any stationary and axisymmetric space-time (at least if it
is also orthogonally transitive, see later), and its main aspect is that the components at and
aϕ are always zero.
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Equatorial circular geodesics

In reflection symmetric space-times where the equatorial plane exists, it is natural to specif-
ically study the motions in that plane. First, the dragging effects are typically the strongest
in the equatorial plane (ω really increases from θ “ 0 to θ “ π{2). Second, such motions
are simpler since their “vertical” acceleration (aθ in the BL coordinates) identically vanishes.
Focusing back on the stationary circular motions, one can now look for equatorial geodesics.
They are given by vanishing of the remaining, radial component of acceleration (16.20),

arpθ“π{2q “ 0 ðñ Ω “ Ω˘ “ ˘

?
M

r3{2 ˘ a
?
M

“
1

a ˘
a

r3{M
, (16.21)

with the upper/lower signs representing the prograde and retrograde senses of orbiting (with
respect to ω). The effect of the centre’s rotation is again revealed by comparing the parameters
of the prograde and retrograde circular geodesics: generally, the prograde geodesics lie closer
to the horizon, so the centre attracts them less then the retrograde ones.9 One may specifically
illustrate this on photon circular geodesics whose radii are determined by equations Ω˘ “

Ωmax,min and which, for aďM , come out as

rph˘ “ 2M

"

1 ` cos

„

2

3
arccos

´

¯
a

M

¯

ȷ*

. (16.22)

The prograde photon orbit always lies below the retrograde one, rph` ă rph´, specifically in
the extreme limit a“M one finds rph` “M , rph´ “4M .

16.3.3 To orbit or not to orbit: ZAMOs

Are you sure about how long the month is? Astronomers offer 5 answers at least, depending
on with respect to what the Moon orbit is taken as “completed” – with respect to “fixed stars”,
with respect to the Sun-Earth connecting line, with respect to the ecliptic plane, with respect
to a fixed ecliptic longitude, or as taken from perigee to perigee...

We see now that in GR there is still another possibility – to orbit (or not to orbit) with
respect to the geometry. For Schwarzschild it is not an issue since the field is spherically
symmetric (no dragging), but for a rotating centre this might undoubtedly be a better option
than to refer to infinity, because “standing with respect to infinity” (i.e. having Ω “ 0) is
not at all time-like below the static limit. However, well justified options (useful down to the
very horizon) are several, either tied to physical parameters or geometric characteristics of the
orbit itself, or, for instance, to the behaviour of gyroscopes carried along it. Without going
into details of these reasonable alternatives, let us only mention the subclass of stationary
circular motions characterized by Ω“ω.

9 This corresponds to the above-mentioned dependence of the attraction between masses on the relative γ-
factor squared. One might also mention the analogy with electromagnetism: parallel electric currents attract
each other magnetically, while anti-parallel ones repel. In gravitation, the signs are opposite, similarly as in
“electric” component of the fields (electric charges of the same sign repel each other, whereas masses of the
same sign attract each other).
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• The angular velocity ω lies right in the middle of the time-like interval pΩmin,Ωmaxq, so it
represents “central line of the light cone”.

• The axial angular momentum (per unit mass)

L̃ ” uϕ “ gϕιu
ι

“ gϕϕu
ϕ

` gtϕu
t

“ gϕϕu
t
pΩ ´ ωq (16.23)

is clearly zero for Ω “ ω, which is why the observers in such circular orbits are called
zero-angular-momentum observers (ZAMOs). For more or less obvious reasons, they
are also sometimes called locally non-rotating.

• Consider the following exercise. Imagine that an observer in stationary circular motion
launches two photons in the opposite directions and forces them to fly along the same
circular orbit (for example by using a waveguide or a cylindrical mirror). The photons
go around the centre and return to the observer. It turns out that they return at the same
moment if and only if the observer’s angular velocity is Ω“ω.

• In special relativity, an observer at rest with respect to a given inertial system has ui “

0; this can be translated in a geometrical language by saying that the four-velocity uµ is
orthogonal to the hypersurfaces t“ const. Now consider the ZAMOs: they have uϕ “ 0,
thus uµ “ put, 0, 0, 0q, so the latter’s scalar product with any vector sµ “ p0, siq tangent to
t“const (t being the Killing time now) is clearly zero, uµsµ “ uts

t`uis
i “ 0. Hence, the

ZAMOs are orthogonal to hypersurfaces (of constant t, specifically), which in itself is a
privilege – it means, for example, that the congruence of such motions has zero vorticity
(see Frobenius theorem in Section 24.4).

• That the ZAMO congruence very well fits into the geometry is also seen from its four-
acceleration: taking the generic circular-orbit formula (16.20) and checking that, for Ω“

ω”´gtϕ{gϕϕ ,

gtt ` 2gtϕω ` gϕϕω
2

“ gtt ` gtϕω “ ´N2 ,

gtt,µ ` 2gtϕ,µω ` gϕϕ,µω
2

“ pgtt ` gtϕωq,µ “ p´N2
q,µ “ ´2NN,µ ,

one obtains

aµ “
1

2

´2NN,µ

´N2
“
N,µ

N
. (16.24)

The lapse is often being expressed in terms of the gravitational potential Φ, asN“eΦ; then
the ZAMO’s acceleration is just aµ“Φ,µ .

• A very intuitive picture, finally: imagine a set of test particles released from rest from
radial infinity, with zero angular momentum L. They freely fall towards the centre, just
following what the field does with them. Since they are geodesic, L is conserved, so it has
to stay zero all along the fall. However, we have seen in (16.23) that zero L necessarily
means Ω “ ω (the formula is general, not restricted to just stationary circular motions),
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so rather than falling radially, they spiral towards the centre.10 This is a sound illustration
of dragging, because in the Newtonian gravity such particles would fall perfectly radially,
irrespectively of whether the centre rotates or not. (The picture is really simple since it
turns out, in addition, that such particles exactly follow θ“const – see Section 17.3.10.)

16.4 More on spatial structure of Kerr
16.4.1 Through the hoop: the second sheet of the metric

z

ρ

r cos θ

r sin θ a

Figure 16.4 Meridional section through the central part of the Kerr space-time with a “ 0.93M ,
in the Boyer-Lindquist (left) and Kerr-Schild (right) coordinates. Blue are static limits and red
are horizons. The inner static limit goes to the singularity which is indicated as a black bullet.

Dotted grey is the BL coordinate mesh, in particular, the ellipsoids r{M “ 0.25, 0.5, 0.75, 1,
. . . and the hyperboloids θ “ 15˝, 30˝, 45˝, . . . are shown. Axes denote the equatorial plane and

the symmetry axis, in the units ofM . The right plot is obtained from the left one by stretching the
central region so that the point r“0 becomes the whole disc ρďa spanned by the singularity.

Figure 16.4 shows the meridional section through the central part of the Kerr space-time with
a “ 0.93M , in the Boyer-Lindquist (left) as well as Kerr-Schild (right) coordinates. The
surfaces r0 ě r` ě r´ ě r1 ě 0 we already know, as well as the ring singularity at z “ 0,
ρ“ a (the fat point in the section; in the BL coordinates it degenerates to the origin). Focus
now on the central disc spanned by the singularity, i.e. r“0, θăπ{2 in the BL and z“0, ρăa
in the KS coordinates. Let us stress once again that this disc is not singular. Actually, it is
easy to find that N“1, gϕϕ“a2 sin2 θ, ω“0, so the metric reduces there to

ds2pr“0, θ‰π{2q “ ´dt2 ` a2
`

sin2 θ dϕ2
` cos2 θ dθ2

˘

,

10 In fact they wind about the horizon indefinitely before plunging into the black hole. Indeed, we know the
angular velocity remains finite at the horizon, Ω ”

dϕ
dt “ ωpr“ r`q ” ωH “ a

2Mr`
, whereas the coordinate

radial velocity dr{dt vanishes there (similarly as in the Schwarzschild case, this is due to an infinite dilation
between t and any proper time at the horizon). Hence, dr{dϕ must vanish there as well, which corresponds to
infinite winding.
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the Kretschmann invariant (16.10) amounts to K “ ´ 48M2

pa cos θq6
and the Chern-Pontryagin in-

variant (16.11) vanishes.
What happens if one crosses that disc? At rÑ0`, the radial derivative gθθ,r “2r goes

to zero, but the normal gradient of other metric components does not vanish,

gtt,r Ñ
2M

a2 cos2 θ
, gtϕ,r Ñ ´

2M sin2 θ

a cos2 θ
, grr,r Ñ

2M cos2 θ

a2
, gϕϕ,r Ñ

2M sin4 θ

cos2 θ
.

Since crossing the r“0 means switching the radial-gradient sign, one experiences jump in the
normal gradient of the metric. Metric gradient means field, so there occurs jump in the normal
field – which implies there has to be a matter layer over the disc! From Einstein equations,
it is possible to compute the corresponding energy-momentum tensor, and if interpreting the
latter as a dust layer, one obtains a negative surface density σ“ ´ M

2πa2 cos2 θ
“ ´ Ma

2πpa2´ρ2q3{2 .
The overall mass in space-time has to come out positive (M ) of course, and this is ensured
by positively infinite density at the very singularity, but the negative-density layer is anyway
not very satisfactory. Is there any solution? The only one is to allow for negative radii r: if r
continued, across the disc r“0, to negative values, there would be no field jump across that
disc – the metric would continue smoothly to the new region. This new “sheet” of the metric
just differs by the sign of r, which however only matters in the terms 2Mr, so if preferring
to keep the radius r non-negative everywhere, we see the new sheet physically differs in that
the source mass M appears there negative (which also means reverse of the sign of dragging
since J “Ma, ω“ 2Mra{A). Anyway, with 2Mr negative, neither ∆ nor gtt can be made
vanish, so the second sheet contains neither horizons nor static limits.

16.4.2 The third horizon, or what?

Still the r ă 0 region is far from boring: notice that it contains a time machine. Wow!!!
Consider the function A, best in the form A “ Σpr2 ` a2q ` 2Mra2 sin2 θ. At r ą 0 it is
everywhere positive, including the r“0 disc where it reduces to a4 cos2 θ; at the singularity,
it vanishes (similarly as Σ). However, the second term, linear in 2Mr, makesA negative in a
certain toroidal region which surrounds the singularity in the second metric sheet. Negative
A (and r) implies N2 ”Σ∆{Aă0, ω”2Mra{Aą0 and, mainly, gϕϕ”pA{Σq sin2 θă0.

Imagine now someone on a circular orbit (the one we studied above). Along such an
orbit,

ds2 “ ´N2dt2 ` gϕϕpdϕ ´ ωdtq2 .

If Aą0, the second term contributes positively, so one needs to also add a sufficiently large
(negative) first term in order that the motion be time-like. But if Aă 0, the second term is
negative and thus itself ensures time-like character of the motion! It is not necessary to add
the first term, so time t may stay constant. Moreover, if t should tick, it is better to have
dtă 0, because ωą 0 and so such an option makes the ds2 more negative than the opposite
one.11 To be on the safe side, the observer’s proper time ticks normally of course, but in

11 Notice that the first term of the interval is positive, because N2 ” Σ∆{A is negative in the Aă0 region –
so the negativity of the second term is really necessary for the motion to be time-like.
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terms of time of an observer at |r| " M such a motion directs towards the past. Now, it
is possible to arrange for the following show: two colleagues stay far from the centre; at a
certain moment, one of them flies “down”, gets into the Aă 0 region and orbits against the
sense of the far-observer time for a sufficiently long period; then this traveller returns to the
distant colleague. During flying down and back, t was ticking onwards of course, but if the
traveller was orbiting in the “time-machine” region for long enough, they can return before
starting the trip. In the naked-singularity case (a ą M ) when there are no horizons, such a
mission can even be accomplished from the rą0 side. The occurrence of time machine plays
a very disturbing role in physics, so in most theorems it is supposed there do not exist any
closed time-like curves (CTCs) in the space-time, at least not outside black holes.

z

ρ
gφφ<0

Figure 16.5 The chronology-violating region where A ă 0 (hence gϕϕ ă 0), surrounding the
singularity (black bullets) in the second sheet (ră0) of the Kerr space-time (here specifically with
a“0.93M). The plot is drawn in the Kerr-Schild coordinates, with the mesh of Boyer-Lindquist
coordinates indicated in dotted grey. Values along the axes (equatorial plane and symmetry axis)

are in the units of M . The region is dynamical, yet mainly very weird (see the main text).

In order to more grasp the nature of theAă0 region, recall the behaviour of the metric
coefficients across the static limits and across the horizons:

• At the static limits, the time Killing field is null, gµνtµtν “ gtt “ 0, turning from time-like
(outside) to space-like (between them). The surfaces are given by Σ “ 2Mr which does
not mean anything so special for the rest of the metric.

• At the horizons, the vector field tµ ` ωϕµ is null,

gµνptµ ` ωϕµqptν ` ωϕνq “ gtt ` 2gtϕω ` gϕϕω
2

“ gtt ` gtϕω “ ´N2
“ 0 ,

turning from time-like (outside) to space-like (between them). When entering between the
horizons, both N2 and grr turn from positive to negative (the “dynamical region”). And
recall that, on the horizons, tµ`ωϕµ is a Killing field, because there ω is constant. Besides
that, horizons are null hyper-surfaces, because gµνr,µr,ν “grr“0 on them. Hence, they are
the Killing horizons.

• Now compare the A“ 0 surface: there, the axial Killing field is null, gµνϕµϕν “ gϕϕ “ 0,
turning from positive (outside) to negative (inside). Similarly as at the horizons, both N2
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and gϕϕ turn from positive to negative (with N2 jumping between ˘8 rather than crossing
zero, however); the Aă0 region is thus dynamical, similarly as that between the horizons.
However, its surface is not a null hypersurface, as verified by computing the norm of the
A“const surfaces,

gµνA,µA,ν “ grrpA,rq2 ` gθθpA,θq2 “
∆

Σ

“

pA,rq2 ` 4a4 cos2 θ sin2 θ
‰

.

This only vanishes in the equatorial plane (we do not consider θ “ 0 since A “ 0 never
extends to the axis), if A,r vanishes there, so A“0 is certainly not a null hypersurface.

Finally, let us repeat once more that in the Aă 0 region, dragging points in the opposite
direction than in the rest of the ră 0 sheet, namely ω is positive there (strangely enough,
jumping between ˘8 across its surface A“0, similarly as N2).

• Finally, just to recall: none of the above surfaces is a physical singularity, because the
curvature invariants (16.10) and (16.11) only blow up at Σ“0.

To summarize, the A ă 0 region is a dynamical region, similarly as the one between the
horizons, yet still its boundary is not null, so it is not a horizon. It rather has similar character
as the static limit, only that it is the Killing field ϕµ (rather than tµ) which becomes null there.

16.4.3 Repulsion at the bottom

Last interesting point. Recall the recipe (16.20) for the four-acceleration of stationary circular
orbits. By computing the metric derivatives, one finds that its non-zero components read

ar “
putq2

Σ2

“

Mpr2 ´ a2 cos2 θqp1 ´ aΩ sin2 θq
2

´ rpΣΩ sin θq
2
‰

, (16.25)

aθ “ ´
putq2

2Σ2

␣

2Mrra ´ pr2 ` a2qΩs
2

` ∆Σ2Ω2
(

sin 2θ . (16.26)

For rą0 and ∆ą0 (i.e., outside the dynamical region where circular orbits are impossible),
we clearly see that aθ ď 0, which means that in the latitudinal direction all test motions on
stationary circular orbits are being pulled towards the equatorial plane. What about radial
pull? Anything static with respect to infinity (Ω“0) has

ar “ M
putq2

Σ2
pr2 ´ a2 cos2 θq ,

which means that in the region r2 ą a2 cos2 θ it is being pulled in the negative radial sense
(ar has to be positive in order to guarantee staying at rest), but inside that region the opposite
holds. One would thus describe the effect of the centre as “attraction” at r2 ą a2 cos2 θ,
whereas as “repulsion” at r2 ăa2 cos2 θ. Note that in the Kerr-Schild coordinates the border
r2 “a2 cos2 θ is given by

ρ2 ` z2 ” pr2 ` a2q sin2 θ ` r2 cos2 θ ” r2 ` a2 sin2 θ “ a2 cos2 θ ` a2 sin2 θ ” a2 ,
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so it is a sphere spanned by the singularity (at ρ“a, z“0). Admittedly, due to dragging, we
know Ω“0 is not the best option for “staying at rest”. However, look at (16.25) once more:
if r2 ă a2 cos2 θ, it is in fact impossible to reach ar ą 0 by any choice of Ω. Note also that
specifically at r“ 0 (where ω“ 0, hence where Ω“ 0 is a very reasonable angular velocity)
the particles at rest have

ar “ ´
M

a2 cos2 θ
, aθ “ 0 ; gµνaµaν “ grrparq

2
“

M2

a4 cos6 θ
.

The “repulsive” effect is clearly connected with what we encountered when trying to interpret
the Kerr space as solely the rě0 region – the negative-mass layer was induced over the circle
r“0.

16.5 Maximal extension: Kruskal and Penrose-Carter diagrams
The space-time structure is almost the same as for the Reissner-Nordström, the only differ-
ence being that now the space-time is not spherically symmetric, so it is different at different
θ. More specifically, the diagrams are exactly the same along θ“π{2, whereas along differ-
ent θs there is not a singularity at r“ 0 – instead, there opens the second sheet of the metric
behind the (now non-singular) line r “ 0; that sheet, however, is simple (like the naked-
singularity one) since it contains no horizons. The conformal diagrams are given in Figure
16.6.

16.6 Kerr-Newman solution of Einstein equations
The Kerr solution might have been called Newman solution if E. T. Newman did not make a
sign mistake in calculations.12 Nevertheless, in 1965 he generalized, together with collabo-
rators, the Kerr solution to a charged case. The resulting metric is the same as (16.2), or also
(16.3), the only difference appearing in the ∆ function. Effectively, the term 2Mr has to be
changed for 2Mr´Q2 everywhere (Q denoting the electric charge as in Reissner-Nordström),

2Mr Ñ 2Mr ´ Q2
ùñ ∆ “ r2 ´ 2Mr ` Q2

` a2 , ω “
a

Ap2Mr ´ Q2
q .

Due to this change, also some of the expressions for A are modified (the first remains the
same)

A :“ pr2`a2q2´∆a2 sin2 θ “ Σpr2`a2q`p2Mr´Q2
qa2 sin2 θ “ Σ∆`p2Mr´Q2

qpr2`a2q .

And one must not forget about the electromagnetic part. Actually, the solution is not
vacuum, there is the EM field as well. The EM four-potential reads, in the BL coordinates
pt, r, θ, ϕq,

Aµ “
Qr

Σ
p´1, 0, 0, a sin2 θq , (16.27)

12 Any lesson?
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Figure 16.6 Penrose-Carter conformal diagram of the analytical extension of some of the surfaces
pt, r, θ‰π{2q of the Kerr space-time. The black-hole case (0ăaăM) is on the left, the extreme
case (a“M) is on the top right and the naked-singularity case (aąM) is on the bottom right.
Light cones for radial motion are 45˝ as usual. Green are domains of outer communications

(outside the horizons), red are dynamical regions between the horizons, rose are regions where one

can communicate with the singularity (either the r´ ą 0 regions in black-hole cases or the rą 0
region in the naked-singularity case), and dark violet are the second sheets (ră0) of the manifolds.
Infinities of the second sheets have similar meaning as those of the first sheet. If we instead plotted

the extended Kerr equatorial plane (θ “ π{2), the diagrams would be the same as for Reissner-
Nordström (Figure 15.3), i.e., they would end at r“0 which from θ“π{2 is singular, and would
not involve the ră0 sheets. [Super enjoyed placing all those labels in LATEX.. .]

and the corresponding EM-field tensor has non-zero components

Ftr “ ´
Q

Σ2
p2r2 ´ Σq , Fϕr “

Q

Σ2
p2r2 ´ Σq a sin2 θ ,

Ftθ “
Qr

Σ2
a2 sin 2θ , Fϕθ “ ´

Qr

Σ2
pr2 ` a2q a sin 2θ . (16.28)

The corresponding invariants come out

F µνFµν “ ´
2Q2

Σ4

“

pr2 ´ a2 cos2 θq
2

´ 4r2a2 cos2 θ
‰

,
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˚F µνFµν “
8Q2ra cos θ

Σ4
pr2 ´ a2 cos2 θq ,

ˇ

ˇF µνFµν ´ i ˚F µνFµν
ˇ

ˇ “

b

pF µνFµνq2 ` p˚F µνFµνq2 “
2Q2

Σ2
.

Note that the EM field does not at all depend on M . For a “ 0 it reduces to the Reissner-
Nordström Ftr“´

Q
r2

and for Q“0 it vanishes of course.
There again exist two horizons given by ∆“0,

r˘ “ M ˘
a

M2 ´ Q2 ´ a2 , (16.29)

two static limits given by Σ ´ 2Mr ` Q2 p“ ∆ ´ a2 sin2 θq “ 0,

r0,1 “ M ˘
a

M2 ´ Q2 ´ a2 cos2 θ , (16.30)

and the ring sigularity at Σ “ 0. The Kretschmann and Chern-Pontryagin invariants are
somewhat longer than in Kerr. Like in the Reissner-Nordström case, they even remain non-
zero for M “ 0 (but Q‰ 0). However unphysical the latter circumstance may be, the metric
does not have problem with it – it corresponds to a naked singularity (∆ ą 0 everywhere)
which induces dragging with angular velocity ω “ ´aQ2{A. In a generic naked-singularity
situation (Q2 ` a2 ą M2), the chronology-violating region Aă 0 also partly reaches to the
rą0 sheet of the space-time.

Yet a remark to the EM field: looking at the above invariants while recalling from
Section 7.3.1 that F ρσFρσ “ 2B̂2 ´2Ê2 with Êµ “ Fµν û

ν and B̂µ “ ´˚Fµν û
ν standing for

fields measured by some (arbitrary) observer ûν , we see that the simplest option how to
design the invariants would be

B̂2
“

4Q2

Σ4
r2a2 cos2 θ , Ê2

“
Q2

Σ4
pr2 ´ a2 cos2 θq

2 .

Could be of interest to learn which particular observer family measures such fields (and
whether it is sensible, at least timelike). Independence of t and ϕ indicates it has to be a
subfamily of stationary circular motions, with ûµ “ utp1, 0, 0,Ωq, for which we compute

Ê2
” gµνFµαû

αFνβû
β

“ gµνputq2pFµt ` FµϕΩqpFνt ` FνϕΩq “

“ grrputq2pFrt ` FrϕΩq
2

` gθθputq2pFθt ` FθϕΩq
2

“

“
Q2

Σ5
putq2

!

∆pΣ ´ 2r2q2p1 ´ Ωa sin2 θq
2

`
“

a ´ pr2 ` a2qΩ
‰2
a2r2 sin2 2θ

)

.

Simple cases – when one of the brackets vanish – are Ω“ 1
a sin2 θ

and Ω“ a
r2`a2

. The former
behaves badly on the axis, so let us try the latter. It corresponds to

putq2 “
1

´gtt ´ 2gtϕΩ ´ gϕϕΩ2
“

“
Σpr2 ` a2q2

pΣ ´ 2Mr ` Q2qpr2 ` a2q2 ` 2p2Mr ´ Q2qpr2 ` a2qa2 sin2 θ ´A a2 sin2 θ
“



264 16. KERR SOLUTION OF EINSTEIN EQUATIONS

“
Σpr2 ` a2q2

AΣ ´ p2Mr ´ Q2qpr2 ` a2qΣ
“

Σpr2 ` a2q2

∆Σ2
“

pr2 ` a2q2

∆Σ
,

hence the electric-field square reads

Ê2
“
Q2

Σ5

pr2 ` a2q2

∆Σ
∆

pΣ ´ 2r2q2Σ2

pr2 ` a2q2
“
Q2

Σ4
pΣ ´ 2r2q2 “

Q2

Σ4
pr2 ´ a2 cos2 θq

2 .

Good. We thus naturally “discovered” another important family of stationary observers in
the Kerr-Newman space-time, known as the Carter (canonical) family. It has four-velocity
ûµ “ 1?

∆Σ
pr2`a2, 0, 0, aq and its main privilege is explained in Section 17.3.7. Experience is

that most of the calculations in Kerr-Newman appear especially simple in the BL-coordinate-
adapted frame attached to these observers.

16.7 True shape of the horizon
In Boyer-Lindquist coordinates, horizons are spherical (they lie on constant r), but that does
not necessarily tell anything about its true, intrinsic geometry. Let us evaluate important
circumferences of the outer horizon: the equatorial circumference is

2π
ż

0

b

gϕϕpr“r`q dϕ “

2π
ż

0

d

A`

Σ`

dϕ “ 2π
r2`` a2

r`

“ 2π
2Mr`´ Q2

r`

“ 4πM

ˆ

1´
Q2

2Mr`

˙

(which for Q “ 0 yields the Schwarzschildian value 4πM irrespectively of the rotational
parameter a), while the meridional (polar) circumference is

2

π
ż

0

a

gθθpr“r`q dθ “ 2

π
ż

0

a

Σ` dθ “ 4
b

r2`` a2 E

˜

a
a

r2`` a2

¸

,

where Epkq :“
π{2
ş

0

?
1 ´ k2 sin2 θ dθ denotes the complete elliptic integral of the 2nd kind.

When gradually spinning up a Kerr horizon (Q“ 0), its polar circumference decreases from
4πM to 4M

?
2 Ep1{

?
2q

.
“ 0.608¨p4πMq, so it apparently gets more and more oblate.

An interesting footnote: when aą
?
3M{2

.
“0.87M (this is still a moderately spinning

black hole), the Gauss curvature of the Kerr horizon (as a 2D surface t “ const, r “ r`)
becomes negative at the axis; the region of negative curvature then spreads with increasing
a. We may try this exercise. If not knowing any “shortcut”, Gauss curvature of a 2D surface
is the only independent component of the (twice mixed) Riemann tensor, in other words,
half of the corresponding Ricci scalar. The outer horizon tt“ const, r “ r`u has – for any
Kerr-Newman black hole – the metric

ds2` “
A`

Σ`

sin2 θ dϕ2
` Σ` dθ2 “

pr2` ` a2q2

r2` ` a2 cos2 θ
sin2 θ dϕ2

` pr2` ` a2 cos2 θq dθ2 ,
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for which non-zero Christoffel symbols read

Γθθθ “ ´a2 sin θ cos θ ,

Γϕϕθ “ Γϕθϕ “ ´Γθϕϕ “
pr2` ` a2q3

Σ2
`

sin θ cos θ .

The Ricci scalar is given by (A“ θ, ϕ)

R “ Rθ
θ ` Rϕ

ϕ “ RAθ
Aθ ` RAϕ

Aϕ “ 2Rθϕ
θϕ “ 2gϕϕRθ

ϕθϕ ,

and this is twice the Gauss curvature. A bit of computation,

Rθ
ϕθϕ “ Γθϕϕ,θ ´ ����Γθϕθ,ϕ ` ΓθθAΓ

A
ϕϕ ´ ΓθϕAΓ

A
ϕθ “

“ Γθϕϕ,θ ` ΓθθθΓ
θ
ϕϕ ´ ΓθϕϕΓ

ϕ
ϕθ “

“
pr2` ` a2q3pr2` ´ 3a2 cos2 θq

Σ4
`

sin2 θ .

Hence,

horizon Gauss curvature “ gϕϕRθ
ϕθϕ “

pr2` ` a2qpr2` ´ 3a2 cos2 θq

Σ3
`

. (16.31)

This most easily becomes negative at cos2 θ“ 1, and that happens if r2` ă 3a2. Substituting
here, for Kerr specifically (Q“0), r` “M`

?
M2´a2, one finds that it indeed corresponds

to aą
?
3M{2. In the extreme limit of a“M , r` “M , the negative-curvature region reaches

from the axis to cos2 θ “ 1{3, i.e. to θ .“ 55˝. From there down to the equatorial plane, the
curvature is always positive.

• Footnote to footnote: Kind of a quick check is provided thanks to the Gauss-Bonnet theo-
rem. For closed surfaces, the theorem says that the integration of the Gauss curvature over
the surface is connected with genus of the surface (“number of handles”, p) by relation
ż

A

pGaussq dA “ 4πp1 ´ pq .

Our horizon is spheroidal, so p“0, and by integration of the above result one obtains

2π
ż

0

π
ż

0

b

pgθθgϕϕq` pGaussq dθdϕ “ 2πpr2` ` a2q2
π
ż

0

r2` ´ 3a2 cos2 θ

pr2` ` a2 cos2 θq3
sin θ dθ “ 4π .

16.8 True shape of the static limit
It is also educative to consider the true geometry of the static limit. Let us again analyse it
for Kerr (Q“0). Recall that the static-limit surface is given by gtt “0, i.e. Σ“2Mr, which
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yields r“ r0 ”M ˘
?
M2 ´ a2 cos2 θ. In still another words, r2 ´ 2Mr “ ´a2 cos2 θ, the

latter implying

pr ´ Mqdr “ a2 sin θ cos θ dθ

ùñ
Σ

∆
dr2

r“r0
“

2Mr0
a2 sin2 θ

dr2 “
2Mr0
a2 sin2 θ

a4 sin2 θ cos2 θ

pr0 ´ Mq2
dθ2 “

2Mr0 a
2 cos2 θ

M2 ´ a2 cos2 θ
dθ2 .

Adding the latitudinal metric term gθθdθ
2 “Σdθ2, now equaling 2Mr0dθ

2, we have

Σ

∆
dr2 ` Σdθ2

r“r0
“

2Mr0 dθ
2

M2 ´ a2 cos2 θ
p�����
a2 cos2 θ ` M2

´ �����
a2 cos2 θq “

2M3r0 dθ
2

M2 ´ a2 cos2 θ
,

and, finally, adding the last non-zero metric term

gϕϕ “
A
Σ

sin2 θ “

ˆ

r2 ` a2 `
2Mr

Σ
a2 sin2 θ

˙

sin2 θ “

r“r0
“ pr20 ` a2 ` a2 sin2 θq sin2 θ “ 2pMr0 ` a2 sin2 θq sin2 θ ,

we arrive at

ds2pt“const, r“r0q “ 2pMr0 ` a2 sin2 θq sin2 θ dϕ2
`

2M3r0 dθ
2

M2 ´ a2 cos2 θ
. (16.32)

An arbitrary circle θ“const on the static-limit surface has proper circumference

2π
ż

0

b

gϕϕpr“r0q dϕ “ 2π
b

gϕϕpr“r0q “ 2π
a

2Mr0 ` 2a2 sin2 θ sin θ .

This amounts to 2π
?
4M2 ` 2a2 in the equatorial plane (where r0 “ 2M ), while it vanishes

(as 2π
?
2Mr0 sin θ) when approaching the axis. On the other hand, proper distance in the

latitudinal direction behaves according to

ż

c

2M3r0
M2 ´ a2 cos2 θ

dθ “
?
2M

ż

g

f

f

e

1 `

b

1 ´ a2

M2 cos2 θ

1 ´ a2

M2 cos2 θ
dθ .

In the small-θ limit, the ratio of these lengths approaches

lim
θÑ0`

2π
?
2Mr0 dθ

b

2M3r0
M2´a2

dθ
“ 2π

c

1 ´
a2

M2
.

Hence, whenever the black hole is rotating, the ratio comes out smaller than 2π, so the static
limit has a conical cusp at the axis (although it is a locally flat surface there in the Boyer-
Lindquist image – see Figure 16.4). In the extreme limit (a Ñ M ), the cusp even becomes
“infinitely long” (the polar-circumference element diverges). Namely, imagining that one
gradually increases a, the extreme case corresponds to the moment when the outer and the
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inner static limits just touch smoothly at the axis, at the horizon radius r“M . For a increased
still more, the horizon disappears and the static-limit surface (now united already) detaches
from the axis and begins shrinking towards the equatorial plane.

Let us stress that the above result has been obtained for the t “ const slices (“snap-
shots”) of the static limit and need not (and really does not) hold if considering different
“constant-time” slices.
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CHAPTER 17

More on motion in black-hole fields

Hitherto, we have only studied geodesic motion in the Schwarzschild field. Two addenda are
worth discussing in some detail:

• Two applications of the geodesic motion in Schwarzschild were particularly important in
the early years of GR, for Einstein himself and for the acceptance of the then new (and then
quite mysterious) theory – prediction (actually explanation) of an anomalous effect in the
apsidal precession of bound orbits and of light bending in the gravitational field. Both these
effects can be derived easily from the relativistic Binet formula which in itself is useful to
know of.

• It turns out, rather surprisingly, that the geodesic motion (even the electro-geodesic one,
including Lorentz force) remains completely integrable in the Kerr-Newman space-time.
This was found elegantly using the Hamilton-Jacobi formalism. Bad tongues say this is the
only example where the HJ formalism has brought something previously unknown, which
in itself is a sufficient reason to go through the derivation.

17.1 Apsidal advance and light bending in Schwarzschild
Pericentre advance and light bending provided historically the first tests of GR, and we also
mentioned them first in Section 10.6. Here we derive the respective GR predictions. The
key ingredient will be the Binet formula which describes the (necessarily plane) motion in
the spherically symmetric field in terms of the rpϕq behaviour, i.e., it yields the orbit shape
(rather than its time evolution).

17.1.1 Binet formula

Equation for rpϕq is obtained by dividing pr ”m dr
dτ

by pϕ ”mdϕ
dτ

, so let us divide equation
(12.23) by the second of equations (12.21), to get
ˆ

dr

dϕ

˙2

“
r4

L2

„

E2
´

ˆ

1 ´
2M

r

˙ˆ

m2
`
L2

r2

˙ȷ

,

269
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where E ” ´pt and L ” pϕ are constants of geodesic motion. Introducing the reciprocal
radius u :“ 1{r, one rewrites
ˆ

du

dϕ

˙2

“

ˆ

´
1

r2
dr

dϕ

˙2

“
1

L2

“

E2
´ p1 ´ 2Muqpm2

` L2u2q
‰

.

Differentiating by ϕ yields

2
du

dϕ

d2u

dϕ2
“

1

L2
p2m2M ` 6ML2u2 ´ 2L2uq

du

dϕ
,

from where, assuming that the orbit is not circular, du
dϕ

‰ 0, follows the relativistic Binet
formula

d2u

dϕ2
` u “

m2M

L2
` 3Mu2 . (17.1)

Compared to its classical form, extra is the last term. In the Newtonian limit of the m ‰ 0
case, this last term is negligible with respect to the term before,

3Mu2

m2M
L2

“
3L2

m2r2
“

3pgϕϕp
ϕq2

m2r2
“ 3pruϕq

2 .
“ 3 pγ̂v̂ϕ̂q

2
! 1 ;

the last expression follows from the second equation in (12.31) which yields

L2

m2r2
“
E2

m2

pv̂ϕ̂q2

1 ´ 2M
r

r"M
ÝÑ pγ̂v̂ϕ̂q

2 ,

where v̂ϕ̂ is the linear tangential velocity of the particle measured by a far static observer and
γ̂ is the corresponding Lorentz factor (energy per unit rest mass m). In short, the term is
small if linear azimuthal velocity is small with respect to the speed of light.

If interested in motion in a weak field such as that in the Solar system, where the
Newtonian limit of GR suffices, one may solve the Binet equation iteratively – first without
the relativistic term, and only then “switch on” that term as a small perturbation.

17.1.2 Perihelium advance

Precession of bound orbits concerns massive test bodies, so let us denote L̃ :“L{m as in the
chapter on Schwarzschild solution. Well, so we first tackle the equation

d2u

dϕ2
` u “

M

L̃2
.

The homogeneous equation is solved by const ¨ cospϕ´ϕ0q, where ϕ0 can be chosen zero by
adjusting the origin of ϕ. By adding the particular solution M

L̃2 we obtain, as zero approxima-
tion, the well known Newtonian solution of the Kepler problem – the conic

up0q “
M

L̃2
p1 ` A cosϕq . (17.2)
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Being interested in bound orbits, we will only focus on the ellipse case (|A| ă 1) in the
following. Comparing the result with the form 1

r
“

1`e cosϕ
p

usual in classical mechanics [in
which p “ b2{a “ ap1 ´ e2q, with a, b and e standing respectively for the semi-major and
semi-minor axes and the numerical eccentricity], we see that L̃2{M“p, A“e.

Now we switch on the relativistic term in the Binet formula and try to solve it in the
form u “ up0q ` up1q, where up1q is a small correction of up0q (we leave it in the equation up
to linear order only). Substituting the splitting to (17.1) and subtracting the already satisfied
part for up0q, we are left with

d2up1q

dϕ2
`up1q “ 3Mu2p0q `

����
3Mu2p1q `

XXXXXX6Mup0qup1q “
3M3

L̃4
p1`2e cosϕ` e2 cos2 ϕq , (17.3)

where the cross term 6Mup0qup1q has been neglected as well, because in the Newtonian (ñ
weak-field) limit the linearly small guy up1q is multiplied there by 6Mup0q “ 6M{rp0q which
is itself small. Actually, it is three times the ratio of the central-object Schwarzschild radius
2M to the radius of the given orbit; specifically for the orbit of Mercury, 6Mup0q » 1.5 ¨10´7.

Planning to apply the exercise to Solar-system planetary orbits (for which e! 1), one
can neglect the e2 term. The homogeneous solution we already know from the zeroth ap-
proximation; the particular solution is easily seen to be 3M3

L̃4 p1 ` eϕ sinϕq, so the complete
solution reads

u “
M

L̃2

„

1 `
3M2

L̃2
` e

ˆ

cosϕ `
3M2

L̃2
ϕ sinϕ

˙ȷ

.

Let us use the small-angle trigonometric trick to put the result in a more elegant form.
Since, in the Solar system,

3M2

L̃2
“

3M

p
»

3M

a
! 1 ,

we may write

3M2

L̃2
ϕ » sin

ˆ

3M2

L̃2
ϕ

˙

, 1 » cos

ˆ

3M2

L̃2
ϕ

˙

,

hence

u “
M

L̃2

"

1 `
3M2

L̃2
` e

„

cos

ˆ

3M2

L̃2
ϕ

˙

cosϕ ` sin

ˆ

3M2

L̃2
ϕ

˙

sinϕ

ȷ*

“

“
M

L̃2

„

1 `
3M2

L̃2
` e cos

ˆ

ϕ ´
3M2

L̃2
ϕ

˙ȷ

. (17.4)

Two relativistic corrections can be noticed: The first is the term 3M2

L̃2 after the unity which,
however, represents only a very tiny modification of the parameter p. More important is the
difference in the argument of cosine. Since the latter is not given merely by ϕ, the cosine now
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does not assume the same value after 2π, but only after 2π ` 2π 3M2

L̃2 . The whole orbit thus
turns, within one revolution, by the angle

δϕ “
6πM2

L̃2
“

6πM

ap1 ´ e2q
, in standard units : δϕ “

6πGM

c2ap1 ´ e2q
, (17.5)

in the “prograde” direction (the direction of orbiting) – hence “pericentre advance”.1 This
value is also tiny, but it cumulates in time, so after many periods it does reveal. The shift
comes out the largest for inner planets (with a small semi-major axis a) with a large eccen-
tricity e (though still small enough relative to unity, in order that the derivation be valid).
The best candidate obviously is the Mercury; the expression (17.5) yields 43 arc seconds per
century for it.

The above value was actually known from 19th century already (the first to point out
the precession excess likely was Le Verrier in 1845; he estimated the value at 35"). This
was quite an achievement since the Mercury orbit seems to precess by 5025"/century due
to the precession of the Earth rotational axis, and it really precesses by some 532"/century
due to the influence of other planets (since they modify the Solar potential ´M{r), so these
major effects have to be subtracted first. One might guess that celestial mechanics of the 19th
century could not have been concerned with such a minute anomaly of 43"/century, but the
truth is contrary: the 10th edition of Encyclopaedia Britannica from 1902 states, for instance,
that “either Mercury must be acted upon by some unknown body or the theory of gravitation
needs modification”.

17.1.3 Apsidal-advance prominenti: double pulsar and the S2 star

Systems have been observed in which the pericentre shift – and relativistic effects at all – are
much larger. Prominent “relativistic laboratories” are double pulsars. To understand pulsars
as such, imagine that a moderately rotating star with a moderate magnetic field collapses to a
neutron star, i.e. to an object having circa 10km and between 1 and 2 solar masses, supported
against gravity by pressure of a degenerate neutron gas. Since nature favours conservation
of angular momentum and conservation of magnetic flux, the neutron stars tend to rotate
extremely fast (today the fastest one spins 716 times per second) and many of them have
extremely strong magnetic fields (from 104 to 1011 tesla). The magnetic field is of roughly
dipole shape and guides the charged particles approaching the star to almost exclusively hit
the surface at the magnetic poles. Besides that, within the magnetic funnels at the poles,
charged particles are being strongly accelerated. The poles thus act as a powerful source
of radiation. In some neutron stars, the rotational axis is misaligned with the magnetic axis,
which makes the “hot spots” gyrate and the object works as a lighthouse – on the cone defined
by the magnetic-axis precession, an observer perceives pulses with the rotational period. The
period is very stable (though modern atomic clocks are still several orders of magnitude more
“precise”).

1 The orbiter is thus pulled towards pericentre more than in the Newtonian case, which intuitively confirms
that the relativistic centre attracts stronger than the Newtonian one. Were the gravitational centre weaker than
according to the Newtonian ´M{r formula, the orbit would precess in the retrograde sense.
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The first pulsar was discovered in 1967 by J. Bell & A. Hewish (Nobel Prize in 1974).
In 1974, R. Hulse & J. Taylor discovered the first double pulsar called PSR B1913+16 (Nobel
Prize in 1993). In it, a pulsar orbits another neutron star. A truly remarkable system was
discovered in 2003 under the name PSR J0737-3039. It consists of two neutron stars (of 1.34
and 1.25 Md) which have both been identified as pulsars (22.7ms and 2.77s). Their orbital
separation is 800 000 km, orbital period is 2.45 hours and orbital speed 300km/s. The orbit
shrinks by 7 millimetres per day, in perfect accordance with GR quadrupole formula for
energy loss in gravitational radiation. The elliptical-type orbit about the common centre of
mass turns by as much as 17˝ per year (which means during some 3600 orbits) due to the
relativistic periapsis advance.

Several more highlights are connected with PSR J0737-3039. The orbital plane of the
system is almost edge-on to us (inclination about 89˝), which makes the faster pulsar subject
to partial eclipses by its weaker companion (lasting for about half minute). Also, due to
the relativistic spin precession, the slower pulsar ceased to be visible in 2008 and has been
predicted to be back with us in 2035.

Another relativistic laboratory has become the orbital dynamics of the innermost stars
orbiting the black hole supposed to exist in our Galaxy nucleus. A particular fame has built
the star called S2 (also S02) which has already been tracked for 27 years in 2020 (Nobel Prize
of 2020 for R. Genzel and A. Ghez). Its orbit indicates the presence of a central mass (the
black hole) of some 4.25¨106Md. S2 passed pericentre in May 2002 and again in May 2018,
which was an occasion to measure the periapsis effect. The pericentre was at 120AU (about
1400 Schwarzschild radii of the central hole) and S2 passed it at 7700km/s. The Doppler
effect as well as gravitational redshift have been confirmed and, very recently, the periapsis
advance has been announced of 12’ per one orbital period. Therefore, if taken per one orbit,
the S2 star presently seems to be a clear record holder.

17.1.4 Light bending

Photons have m“ 0, so only the second, relativistic term appears on the right-hand side of
the Binet formula (17.1). Restricting to the Solar system as above, it is again adequate to
solve the motion iteratively. The zeroth (Newtonian) approximation is given by solution of
the homogeneous equation,

up0q “
cosϕ

rmin

. (17.6)

This is a straight line with rmin denoting its minimal distance from the centre. Therefore, there
is no effect in the Newton theory. Should be emphasized that the Newtonian result exactly
means here the one with infinite speed of light. If, instead, the Newton gravity is combined
with the corpuscular theory of light and the correct speed c, there does arise a non-zero effect
(specifically, it amounts to half of the relativistic result).

The inhomogeneous equation we again solve in the form u “ up0q ` up1q. We thus start
from

d2pup0q ` up1qq

dϕ2
` up0q ` up1q “ 3Mu2p0q ` 6Mup0qup1q ` 3Mu2p1q ,
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which after subtracting the zeroth order d2up0q

dϕ2
` up0q “ 0 yields

d2up1q

dϕ2
` up1q “ 3Mu2p0q ` 6Mup0qup1q ` 3Mu2p1q .

Since up0q " up1q, it holds 3Mu2
p0q

" 6Mup0qup1q " 3Mu2
p1q

. The 3Mu2
p1q

term we clearly
omit, but 6Mup0qup1q is to be omitted as well. Indeed, the latter is not only much smaller than
3Mu2

p0q
, but also than the up1q order of the left-hand side, because up1q is multiplied in it by

6Mup0q ”
6M

rmin

, i.e., in standard units,
6GM

c2rmin

! 1

(the minimal radius rmin is assumed to be much larger than 6GM{c2, i.e. than twice the
radius of the photon circular orbit). Consequently, we have the equation

d2up1q

dϕ2
` up1q “ 3Mu2p0q “

3M cos2 ϕ

prminq2
“

3M

2prminq2
p1 ` cos 2ϕq . (17.7)

This can be satisfied in the form up1q “ A ` B cos 2ϕ ` C sin 2ϕ, specifically, it follows that

up1q “
M

2prminq2
p3´cos 2ϕq – namely, A “

3M

2prminq2
, B “ ´

M

2prminq2
, C “ 0 .

Hence the result

u “
cosϕ

rmin

`
M

2prminq2
p3 ´ cos 2ϕq “

cosϕ

rmin

`
M

prminq2
p2 ´ cos2 ϕq . (17.8)

The bending consists in the difference between directions of the ray far before the centre
and far behind it, where “far” means uÑ0. On the right-hand side, we again use the fact that
in a weak field the effect is very small, so the asymptotic values are ϕ .“˘π{2 and thus

cosϕ “ sin
´π

2
´ ϕ

¯

.
“
π

2
´ ϕ , cos2 ϕ

.
“ 0 .

After multiplication by rmin, we thus have from (17.8), at infinities,

0
.
“
π

2
´ ϕ `

2M

rmin

ùñ ϕ
.
“
π

2
`

2M

rmin

.

The term 2M
rmin

stands for the deflection of the asymptotic ray direction from the direction the
ray has at pericentre rmin. Owing to the mirror symmetry with respect to that central moment,
the total deflection between the asymptotic directions is twice that value,

δϕ “ 4M{rmin , in standard units δϕ “
4GM

c2rmin

. (17.9)

For a ray passing by the Sun and having rmin just above the solar surface, this amounts to
1.75 arc second.

Well yes, bending can reach any amount in a sufficiently strong field, such as that
around black holes. We saw at the end of Section 12.3.4 that if a photon approaches a
Schwarzschild black hole with impact parameter |ℓ| “ 3

?
3M , it “winds up” to the circu-

lar orbit on r “ 3M (suffering indefinite bending in a sense); with |ℓ| less than that, it just
ends under the horizon.
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17.1.5 Gravitational lensing

After confirmation of the GR light-bending prediction in 1919, The New York Times wrote
“Lights all askew in the heavens”... But that was not so much new, right? Things are different
from how they seem to be, and not only due to GR. Already in 1676, O. Rømer provided the
first decent confirmation that light propagates with a finite speed. Hence, this composes –
already by Galilei transformation of course – non-trivially with the relative velocity between
the source and the observer. Several consequences immediately follow:

• aberration: a source is seen in a slightly different direction than where it “really” was at
the moment of light emission (i.e., than where it could have been seen “instantaneously
at distance”, by means of an infinitely fast signal). In the observer system, the radiation
pattern of the source is concentrated to the direction of their relative motion, so an ap-
proaching/receding source is perceived as brighter/dimmer (the co-called beaming effect)

• deformation: in the longitudinal direction (along the relative motion), a source appears
longer/shorter when it is approaching/receding. Besides that, it is seen as slightly rotated:
if, for example, a cube would be flying along a straight line, tangentially with respect to us
and so that one of its walls would be exactly orthogonal to the direction of motion and the
other would just face us, we would still also see the “rear” wall a bit, because the photons
which finally reach us could start from that wall slightly askew “backwards” (with respect
to the cube)

• Doppler effect: a source appear to emit higher/lower-frequency radiation when approach-
ing/receding.

Further modification of the appearance of objects brings special relativity:

• the velocities (of light and of the relative motion) compose in a different, Lorentz way, and
the effects of time dilation and length contraction come into the play (implying the new,
transverse Doppler effect, in particular).

In general relativity, furthermore, the above optical illusions are supplemented by the gravita-
tional shift of frequency (Chapter 4) and by the space-time curvature (most of other chapters).
The gravitational lensing effect is the most intriguing consequence of the latter, directly
stemming from the gravitational light bending. A historical breakthrough date is April 17,
1936. That Friday, Einstein was paid a visit in Princeton by Rudi W. Mandl, a Czech born
in Vsetín who received electrical-engineering education in Wien and who came to US after
quite an eventful life (also including prisoning in Siberia during the 1st World War). He was
washing dishes for restaurants in Washington, D.C., and also had some income from drawing
of eggshells. Besides that, he was interested in GR, and one spring day of 1936 came to Sci-
ence News Letter offices to show his calculations and ideas concerning gravitational lensing:
“You see,” he said, “the light from a distant star will be bent as it passes the nearer star and
the effect will be a great brightening that anyone can see with a small telescope.” Journalists
offered Mandl to pay his trip to Princeton to visit Einstein, and that happened on April 17.

Einstein accepted Mandl cordially, even made some calculations with him, but mainly
to show that the effect is too tiny to be observable. However, Mandl was arguing that if the
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source, the lens and the detector were arranged in a line and at suitable distances, the detector
could see the source considerably brighter, because then there exist more trajectories along
which light can reach it (in an ideal case, the trajectories even form a continuous “spindle”
which should be seen as a ring). In addition, the cosmic bodies are slightly moving relative
to each other, so a passage of three bodies through the roughly aligned configuration should
be observable as a “real time” brightening. Mandl then added several letters in which he tried
to persuade Einstein to publish something on the subject. He was warning that otherwise
astrologists and other charlatans would take up and misuse the topic. He also enclosed several
drafts in which he was explaining, as a result of gravitational-lensing flashes, the evolutionary
breaks in the history of terrestrial life, especially for large extinctions he was suggesting
a “burn down” by a particularly strong lensing effect with Earth “in the focus”. Einstein
advised against trying to publish this “outreach” of the ideas, but finally (in December) he
agreed to publish a short note in the Science journal. The note starts with kind-of apology:
“Some time ago, R. W. Mandl paid me a visit and asked me to publish the results of a little
calculation, which I had made at his request. This note complies with his wish.” And to the
editor of Science Einstein wrote: “Let me also thank you for your cooperation with the little
publication, which Mr. Mandl squeezed out of me. It is of little value, but it makes the poor
guy happy.”

The ideas on tangential effect of gravity on light are centuries older and go to J. Michell
(the same Michell who contemplated about radial effect and “predicted black holes”) and
his friend H. Cavendish who derived a correct Newtonian bending formula in 1802 in an
unpublished note. Similarly, using the corpuscular picture, the bending was derived by J.
G. von Soldner in 1804. Already within GR, several authors discussed the effect after the
Eddington-Dyson 1919 measurements – besides Eddington himself, it was most notably O.
D. Chwolson who seems to have been the first to mention a possibility of multiple images
and of a “halo effect” when the source, lens and observer get nearly aligned. The first (and
thorough) account on gravitational lensing (not just light bending) is due to F. Link and was
published on 16th March 1936. Link wrote two papers on the subject which basically include
all the optics involved (including finite-size effects).

Still Einstein’s late 1936’ Mandl-inspired note is much more taken as “classics” in the
field. Anyway, justice was done actually, only that Einstein did not stress it: he himself was
thinking about the lensing effect in 1911-12 when, in Prague, he was working out his 1907’
conclusion that the principle of equivalence (together with the Newton theory) implies time
dilation, this in turn implies the dependence of the speed of light on potential (Einstein’s
early conjecture), and from that it follows, finally, that the rays which are not parallel to the
direction of weight are being bent. Einstein did not publish anything because he believed the
effect was negligible, but the typical figure of the ray course and an estimate of the intensity
enhancement survived in his notebook (lensing notes are presumably from his journey to
Berlin in April 1912; they still involve just half value of the correct, GR bending angle, since
Einstein did not yet consider curvature at that time).

In 1979, the first double image was observed, of the quasar Q0957+561, and in 1987
the first “Einstein(-Chwolson) ring” (the ideal-alignment consequence) – the quasar image
MG1131+0456 projected by an intermediate galaxy. Having started as a GR curiosity, gravi-
tational lenses quickly became a very valuable tool for the study of distant sources and, in the
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Figure 17.1: Rudi Mandl – electrical engineer, dishwasher, inventor, relativist...

opposite sense, an indicator of distribution of the intermediate (lensing) matter. Analysis of
the images of quasars and far galaxies is crucial for cosmology, e.g. for estimating the amount
and configuration of dark matter. Extensive monitoring programs also focus on microlensing
in which the sources as well as lenses are individual stars.

Gravitational lensing provides an almost exclusive tool in cases when an object is not
visible and only manifests itself through the gravitational influence. Such as dark matter. It
was also in 1930s when F. Zwicky first pointed out, on the basis of studying the Coma cluster
of galaxies, that “dark matter is present in much greater amount than luminous matter”. No
surprise that Zwicky realized that gravitational lensing could reveal the amount of such matter
in various cosmic structures. He also realized that the large-scale objects (other galaxies and
their clusters) “offer a much better chance than stars for observation of gravitational lens
effects”. In 1937 he published two papers on lensing by “extragalactic nebulae”. The first of
them (titled Nebulae as gravitational lenses) begins as follows: “Einstein recently published
some calculations concerning a suggestion made by R. W. Mandl, namely, that a star B may
act as a ‘gravitational lens’ for light coming from another star A which lies closely enough
on the line of sight behind B. As Einstein remarks the chance to observe this effect for stars
is extremely small. Last summer Dr. V. K. Zworykin (to whom the same idea had been
suggested by Mr. Mandl) mentioned to me the possibility of an image formation through the
action of gravitational fields.” :-)

• Impossible to end without the following postscript. Look at Long Beach Independent of
May 2, 1948 (it is easy at the Historical Newspaper Archives website). In a sport page (p.
34), there is a column “Gent will prevent games from being rained out” informing about
a guy who is offering to control the weather over sport stadiums. His letter had been sent
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Figure 17.2 Einstein’s notebook with calculations from April 1912 estimating the gravitational-

lensing effect. From the formulas shown it follows that the angular radius of the Einstein(-Chwolson)

ring is ϑE “

b

4GM
c2

DLS

DSDL
, with M mass of the lensing object, DL distance from observer to the

lensing object, DS distance from observer to the source, and DLS distance between the lens and the

source. Note that in very large scales the distances have to be understood carefully (as the so-called

angular-diameter distances).

to most baseball clubs in the area: “I am an inventor of a machine which will prevent rain
from falling inside your stadium and, therefore, will eliminate rain checks. For information
about me, I refer you to the Science News Letter of December 19, 1936. You will see that
I collaborated with Prof. Einstein then and a few times since that time ...” Signed Rudi W.
Mandl of Los Angeles.

17.2 Shapiro time delay
Consider once more, like in the light-bending section, a photon passing by a gravitating object
while travelling between two points. Take the object to be the Schwarzschild centre, denote
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by r1 and r2 the radii of the emission and detection locations, and denote by r0 the radius
of the photon’s closest approach to the centre. Were the photon’s path straight, its length is
given by the Pythagoras theorem,

a

r21 ´ r20 `
a

r22 ´ r20 , and hence also follows the time of
flight (considering the standard speed of light). In order to compute the GR result, take first
the equation (12.38) at the moment of the closest approach (r“ r0, pv̂ϕ̂q2 “ 1), hence obtain
ℓ2 “ r20{p1 ´ 2M{r0q, and use this, together with E” ´pt “ ´gttp

t, in equation (12.35) for
radial motion of photons:

ˆ

dr

dt

˙2

“

ˆ

pr

pt

˙2

“

E2
´

1 ´
1´ 2M

r

r2
ℓ2
¯

E2

p1´ 2M
r q

2

“

ˆ

1 ´
2M

r

˙2
˜

1 ´
r20
r2

1 ´ 2M
r

1 ´ 2M
r0

¸

.

The corresponding integral for time t leads to a very long expression involving elliptic inte-
grals, so we better solve it with integrand only expanded to linear order in M (thus assuming
rěr0 "M ),

tpr0, rq “

r
ż

r0

dr
`

1 ´ 2M
r

˘

c

1 ´
r20
r2

1´ 2M
r

1´ 2M
r0

»

r
ż

r0

r ` 2M ` Mr0
r`r0

a

r2 ´ r20
dr “

“

b

r2 ´ r20 ` 2M ln
r `

a

r2 ´ r20
r0

` M

c

r ´ r0
r ` r0

. (17.10)

Adding results from the “ingoing” and “outgoing” phases (r“r1 and r“r2), we see that the
first part is the classical term, and that the remaining two terms are positive,

∆tpr1 Ñ r0 Ñ r2q “

“ 2M ln
pr1`

a

r21´r20qpr2`
a

r22´r20q

r20
` M

c

r1´r0
r1`r0

` M

c

r2´r0
r2`r0

ą 0 , (17.11)

so in GR the photon travels longer – hence Shapiro’s delay (result from 1964).
For a round trip of a radar signal from the Earth (r1), by Sun (M “ Md), to some

satellite or celestial body (r2), and back, one obtains twice the above difference. In terms of
the terrestrial-observer proper time, the result still has to be multiplied by the “redshift” factor
?

´gtt »
a

1 ´ 2Md{r1 . –Yes, the mass of the Sun is really correct here, because – maybe
surprisingly – the potential due to the Sun at Earth-orbit radius (GMd{r1) is 8.85 ¨ 108 J{kg,
while the own Earth’s potential on its surface (GM‘{R‘) is only 6.25 ¨ 107 J{kg. Within
Solar system, the effect has a typical order of hundreds of microseconds (for the Earth-Sun-
Mars-Sun-Earth trip, it amounts to 240µs). Together with other effects, the Shapiro delay is
clearly important in precise arrival times of signals from space, in particular of those from
pulsars.

17.3 Motion of test particles in the Kerr-Newman field –
Carter equations

The Kerr(-Newman) metric does not look entirely simple, but it has turned out that many
problems lead in it – though possibly after extensive calculations – to surprisingly elegant
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results. Apparently it is not only connected with Killing nature of the t and ϕ coordinates
included in the Boyer-Lindquist system. People have learned, among others, that several
important physical equations can be solved by separation – e.g. Maxwell equations, wave
equation for scalar field or for gravitational perturbations, or equation of motion for (possibly
charged) test particles. This integrability properties, first seemed miraculous, are connected
with very special multipolar structure of the space-time. There is a deep geometric structure
under these properties, stemming from the existence of the so called non-degenerate closed
conformal Killing-Yano 2-form; we will mention this connection at the end of this section.

Our task will be to demonstrate that similarly as in the Schwarzschild field the (electro-
)geodesic motion in the Kerr-Newman field is completely integrable, i.e. that four indepen-
dent integrals of motion exist. Realize right away that this is not trivial since in Schwarzschild
one of the integrals actually was uθ“0 thanks to the planar character of the motion, valid for
any spherically symmetric field. Here the space is just axially symmetric and the motion is
not planar.

Therefore, our problem is the equation of motion

Dpµ
dτ

p“ maµq “ qFµνu
ν

ðñ
DΠµ

dτ
“ qAν;µu

ν , (17.12)

where Πµ :“ pµ`qAµ is a generalized momentum, aµ :“
Duµ
dτ

is the four-acceleration, m is
the rest mass of the test particle and q is its electric charge. If the particle or the centre are
uncharged, i.e. if qQ“0, the Lorentz force on the right-hand side vanishes and the equation
reduces to the geodesic equation. The complete set of first integrals of this equations was
found by B. Carter in 1968 using the separated solution of the Hamilton-Jacobi equation.
However, two integrals follow immediately from space-time symmetries:

Lemma If there exists in space-time a Killing vector field ξµ, the projection Πµξ
µ is con-

served along the world-lines of charged particles. (This is an extension of the property from
Section 11.4.1 which in general only holds for geodesics.)
Proof:

d

dτ
pΠµξ

µ
q “

D

dτ
pΠµξ

µ
q “

DΠµ

dτ
ξµ ` Πµ

Dξµ

dτ
“ qAν;µu

νξµ ` Πµξ
µ
;νu

ν
“

“ qAν;µξ
µuν ` mXXXXXξµ;νu

µuν ` q ξµ;νAµu
ν

“ q pAν;µξ
µ

` ξµ;νAµquν “

“ q p£ξAνquν “ 0 .

Besides the equation of motion, we also used the Killing property ξµ;νuµuν “ ξpµ;νqu
µuν “ 0

and the fact that the EM field has the same symmetry as the gravitational one, i.e. £ξAν “0.2

If one wanted to check the latter in (BL) coordinates, consider that the Kerr-Newman EM
four-potential has the form Aµ “ pAt, 0, 0, Aϕq while the Killing fields read p1, 0, 0, 0q and
p0, 0, 0, 1q, so

£ξAν “ Aν;µξ
µ

` ξµ;νAµ “ Aν,µξ
µ

` ξµ,νAµ “ 0 . l

2 If the EM field was a test one, it certainly would not need to follow the space-time symmetries (consider,
for example, that of a point electric charge in generic motion), but here the EM field is dynamical, it means
“gravitating”, coupled to the gravitational field.
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The stationarity and axial symmetry of space-time means the existence of the Killing
fields tµ “ Bxµ{Bt and ϕµ “ Bxµ{Bϕ. Regarding again their BL expression tµ“δµt , ϕµ“δµϕ ,
the conserved projections read

E “ ´Πµt
µ

“ ´ppµ ` qAµqtµ “ ´mut ´ qAt penergy at infinityq ,

L “ Πµϕ
µ

“ ppµ ` qAµqϕµ “ muϕ ` qAϕ paxial angular momentum at 8q .

17.3.1 Equations for time and azimuthal components of four-velocity

The “Killing” components of four-velocity thus follow directly by solution of the set

E “ ´mut ´ qAt “ ´mgttu
t

´ mgtϕu
ϕ

´ qAt ,

L “ muϕ ` qAϕ “ mgtϕu
t

` mgϕϕu
ϕ

` qAϕ .

Finding ut: multiply the first relation by gϕϕ while the second by gtϕ, and add the results.
Then compute the factor at ut and the terms involving Aµ,

pgtϕq
2

´ gttgϕϕ “ ∆sin2 θ , gϕϕAt ´ gtϕAϕ “ ´
Qr

Σ
pr2 ` a2q sin2 θ ,

and multiply the resulting equation by Σ
sin2 θ

:

m∆Σut “ AE ´ p2Mr ´ Q2
qaL ´ qQrpr2 ` a2q.

Finding uϕ: multiply the first relation by gtϕ while the second by gtt, and add the results. In
what comes out, the factor at uϕ we already know from above, and the terms with Aµ yield

gttAϕ ´ gtϕAt “ ´
Qr

Σ
a sin2 θ ,

so, by multiplying the result by Σ
sin2 θ

we obtain

m∆Σuϕ “ p2Mr ´ Q2
qaE ` p∆ ´ a2 sin2 θq

L

sin2 θ
´ qQra .

There exists a special case of motion – the one fixed to the equatorial plane, i.e. with
uθ“0, the latter indeed being solution since the equatorial plane is the symmetry plane (such
a motion is even stable in the normal direction). Were we only interested in such a motion,
we would be done, since that is completely fixed by the above equations for ut and uϕ and by
normalization gµνuµuν “´1 (the latter yields the third component ur).

For generic motion (with all components of uµ non-zero), the two constants (E, L)
plus normalization are not enough – one would need some fourth constant to determine uµ

completely. B. Carter really found it in looking for a separated solution of the Hamilton-
Jacobi equation. He thus completed the set of first integrals of the equation of motion (17.12).
In order to show how to derive the result, we have to compose the Hamilton-Jacobi equation,
so we need Lagrangian and Hamiltonian of a charged particle in the Kerr-Newman field. Let
us first recall how the exercise looked in special relativity.
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17.3.2 Hamilton variational principle in special relativistic mechanics

Two basic approaches exist how to understand the variation of the action S“
ş

Lpxµ, uµq dτ .

• Either one strictly respects that proper time is specific for each world-line, so a varied
world-line is parameterized by a varied parameter whose increment dτ˚2 “´ηµνdx

˚µdx˚ν

is different from dτ 2 “ ´ηµνdx
µdxν valid along the actual world-line. This approach

has the advantage that τ and τ˚ really represent proper times along the respective world-
lines, which in turn ensures that the tangent vectors uµ “ dxµ{dτ and u˚µ “ dx˚µ{dτ˚

really represent the corresponding four-velocities (they are properly normalized along all
the world-lines). Thanks to that, ηµνpµpν “ ´m2

0 is the same as well, with m0 thus having
the meaning of rest mass along all the world-lines.

The variational principle reads in this case

0 “ δS “

ż

pδL dτ ` L δdτq

and its Euler-Lagrange equations provide Lagrange equations of the 2nd kind

BL
Bxµ

´
d

dτ

„

BL
Buµ

`

ˆ

BL
Buν

uν ´ L
˙

uµ

ȷ

“ 0 . (17.13)

The Lagrangian of charged particle in the EM field is given by

L “ ´m0 ` qAµu
µ ,

where the rest mass m0 – similarly as the charge q – is not only invariant (and same on all
world-lines), but also constant (thanks to the orthogonality to uµ of the Lorentz force, m0

does not change in time).

• Or one parameterizes the whole bunch of virtual world-lines by proper time of the actual
world-line, τ . Since τ is not proper time on the varied world-lines, the tangent vector
u˚µ“dx˚µ{dτ is not four-velocity on varied world-lines in this case, which in turn implies
that ´ηµνp

µpν only determines rest mass along the actual world-line. This approach thus
requires to be careful when performing gradients in general direction (not necessarily along
the actual world-line), in particular, the usual normalization of four-velocity cannot be
taken as everywhere valid in it.

On the other hand, the corresponding Hamilton principle is of course simpler: the stationary-
action condition

0 “ δS “

ż

δL dτ

leads to the Lagrange equations of the 2nd kind in the “classical” form3

BL
Bxµ

´
d

dτ

ˆ

BL
Buµ

˙

“ 0 . (17.14)

3 Note that the extra term in the Lagrange equations of the first formulation (17.13),
`

BL
Buν u

ν ´ L
˘

, is just the
Hamiltonian; the latter is surely constant of the motion, since the Lagrangian does not depend explicitely on τ .
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The Lagrangian has to somehow reflect that here the variation “spoils”, in the linear order
already, the four-velocity normalization. One settles this by writing out the factor ˘1
standing at m0 as some power of ηµνuµuν with a suitable coefficient, while remembering
that ηµνuµuν “ ´1 is only allowed to be used after substitution in the Lagrange equations
(17.14). (This is allowed since those equations already hold along the actual world-line.4)
Most frequent options for the Lagrangian are

L “
1

2
m0ηµνu

µuν ` qAµu
µ or L “ ´m0

a

´ηµνuµuν ` qAµu
µ .

17.3.3 Transition to general relativity

Comma-goes-to-semicolon rule... We have gµν instead of ηµν , and the rest mass is now
denoted by m. We will employ the second variational method and the Lagrangian

L “
1

2
mgµνu

µuν ` qAµu
µ . (17.15)

The corresponding canonical momentum reads

Πα ”
BL
Buα

“ mgανu
ν

` qAα p“ pα ` qAαq

„

ô uµ “
1

m
gµαpΠα ´ qAαq

ˆ

“
pµ

m

˙ȷ

and hence the Hamiltonian

H “ Hpxµ,Πµq ” Πµu
µ

´ L “ Πµu
µ

´
m

2
gµνu

µuν ´ qAµu
µ

“

“ pµu
µ

´
m

2
gµνu

µuν “
1

2m
gµνpµpν “

“
1

2m
gµνpΠµ ´ qAµqpΠν ´ qAνq . (17.16)

The Hamiltonian does not depend on τ and is thus constant of the motion – sure, the four-
velocity normalization does hold along the actual world-line, soH“´m{2.

Let us check that the Hamilton equations yield the correct equation of motion:

dxα

dτ
“

BH
BΠα

ô
dxα

dτ
“

1

m
pΠα

´ qAαq “ uα , (17.17)

dΠα

dτ
“ ´

BH
Bxα

ô
dpα
dτ

` qAα,βu
β

“ ´
1

2m
gµν,αpµpν `

1

m
gµνqAµ,αpν

ô
dpα
dτ

´
1

2
gµν,αp

µuν “ qpAµ,α ´ Aα,µquµ

ô
Dpα
dτ

“ qFαµu
µ . (17.18)

4 More accurately, it is already allowed after substitution for BL
Bxµ , BL

Buµ , because the derivative by τ already
acts purely along the actual world-line.
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In the second equation, we have used the relation

gµκgκλ “ δµλ ñ gµκ,αgκλ “ ´gµκgκλ,α
ˇ

ˇ ¨ gνλ ñ gµν,α “ ´gµκgνλgκλ,α

to rewrite – later also employing (2.9) –

1

2m
gµν,αpµpν “ ´

1

2m
gκλ,αp

κpλ “ ´
1

2m
pΓλακ ` Γκαλq pκpλ “ ´Γκαλp

κuλ

and thus to obtain the absolute derivative.

17.3.4 The Hamilton-Jacobi equation

The Hamilton-Jacobi equation ´BS
Bτ

“ H
`

xµ, BS
Bxµ

˘

reads, with the Hamiltonian (17.16),

´
BS

Bτ
“

1

2m
gµν

ˆ

BS

Bxµ
´ qAµ

˙ˆ

BS

Bxν
´ qAν

˙

. (17.19)

In the Boyer-Lindquist coordinates, we substitute the four-potential

Aµ “
Qr

Σ
p´1, 0, 0, a sin2 θq (17.20)

and the non-zero components of the inverse Kerr-Newman metric

gtt “ ´
A
Σ∆

, gtϕ “ ´
p2Mr´Q2qa

Σ∆
, gϕϕ “

∆´a2 sin2 θ

Σ∆sin2 θ
, grr “

∆

Σ
, gθθ “

1

Σ
(17.21)

as following from the equations gµσgσα “ δµα. In such a way, we obtain the explicit form of
the HJ equation. By multiplying it by 2mΣ and some shuffling on the right-hand side, one
has

´2mΣ
BS

Bτ
“ ´

1

∆

„

pr2 ` a2q
BS

Bt
` a

BS

Bϕ
` qQr

ȷ2

`
1

sin2 θ

ˆ

BS

Bt
a sin2 θ `

BS

Bϕ

˙2

`

` ∆

ˆ

BS

Br

˙2

`

ˆ

BS

Bθ

˙2

. (17.22)

Thanks to independence of the Hamiltonian of τ , t and ϕ, Carter found that the equation has
the separated solution

S “
1

2
mτ ´ Et ` Lϕ ` Srprq ` Sθpθq .

Actually, by plugging in this ansatz, one has

1

∆

“

pr2` a2qE ´ aL´ qQr
‰2

´m2r2 ´∆

ˆ

dSr
dr

˙2

“

ˆ

aE sin θ ´
L

sin θ

˙2

` pma cos θq2 `

ˆ

dSθ
dθ

˙2

,

where the left-hand side only depends on r while the right-hand side only on θ, so both have
to be constant – let us denote this constant by K:

K “
1

∆

“

pr2 ` a2qE ´ aL ´ qQr
‰2

´ m2r2 ´ ∆p2r (17.23)
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“

ˆ

aE sin θ ´
L

sin θ

˙2

` pma cos θq
2

` p2θ . (17.24)

The existence of this last, fourth independent constant of motion leads to the complete set
of separated first integrals of the equation of motion. We may right notice, from the second
expression, that K cannot be negative, and that it only vanishes if all of the following holds:
i) the particle moves along θ“const; ii) it is tied to the equatorial plane (cos θ“0) or m“0;
iii) L“aE sin2 θ.

17.3.5 Equations for radial and latitudinal components of four-velocity

The remaining two integrals of the equation of motion are simply found by expressing, from
the above forms (17.23,17.24),

∆p2r “ ∆pgrrp
r
q
2

“
pmΣurq2

∆
and p2θ “ pgθθp

θ
q
2

“ pmΣuθq2 .

Finally, we list the full set of Carter equations:

m∆Σut “ pr2 ` a2qR ´ ∆Θa sin2 θ

“ AE ´ p2Mr ´ Q2
qaL ´ pr2 ` a2qqQr ,

m∆Σuϕ “ aR ´ ∆Θ

“ p2Mr ´ Q2
qaE ` p∆ ´ a2 sin2 θq

L

sin2 θ
´ qQar ,

pmΣurq2 “ R2
´ ∆pm2r2 `Kq ,

pmΣuθq2 “ K ´ pma cos θq
2

´ Θ2 sin2 θ ,

(17.25a)

(17.25b)

(17.25c)

(17.25d)

where

R “ Rprq :“ pr2 ` a2qE ´ aL ´ qQr ,

Θ “ Θpθq :“ aE ´
L

sin2 θ
.

Note that the equations are separated (solved with respect to individual components of uµ),
but they remain coupled. In particular, the right-hand sides of ur and uθ only depend on
r and θ, respectively, but the Σ on their left-hand sides depends on both the coordinates.
Fortunately, this factor is the same for both the equations, which makes it possible to rescale
the time accordingly, dτ Ñ dλ :“ dτ{Σ (the so-called Mino time), and thus decouple the
two meridional components of motion.

17.3.6 The case of massless particles

We have assumed massive particles so far, but it should be clear how to obtain equations for
photons: one just writes pµ instead of muµ on the left-hand sides, and puts m“ 0 and q“ 0



286 17. MORE ON MOTION IN BLACK-HOLE FIELDS

on the right-hand sides, i.e.

∆Σpt “ pr2 ` a2qR ´ ∆Θa sin2 θ “ AE ´ p2Mr ´ Q2
qaL ,

∆Σpϕ “ aR ´ ∆Θ “ p2Mr ´ Q2
qaE ` p∆ ´ a2 sin2 θq

L

sin2 θ
,

pΣprq2 “ R2
´ ∆K “

“

pr2 ` a2qE ´ aL
‰2

´ ∆K ,

pΣpθq2 “ K ´ Θ2 sin2 θ “ K ´

ˆ

aE sin θ ´
L

sin θ

˙2

,

(17.26a)

(17.26b)

(17.26c)

(17.26d)

where

R “ Rprq :“ pr2 ` a2qE ´ aL , Θ “ Θpθq :“ aE ´
L

sin2 θ
.

17.3.7 Principal null congruences

When illustrating the dragging phenomenon, we mentioned (uncharged massive) particles
which freely fall from radial infinity with L“ 0. They have E “m and K“ a2m2, and thus
they move exactly along θ “ const, as given by (17.25d). In the azimuthal direction, they
have angular velocity Ω“ω as it is necessary for vanishing of their conserved L.

In the case of massless particles when the term pma cos θq2 is no longer present in the
latitudinal-motion equation (17.25d), it is also possible to permanently annul the right-hand
side of the latter by making vanish both the remaining terms individually – by choosing, in
(17.26d), K“0 and L“aE sin2 θ (where θ is the particular latitude along which the motion
proceeds). These are the photons of the principal null congruences (PNC). Substituting to
the remaining Carter equations, one finds

∆Σpt “ E
“

A´ p2Mr ´ Q2
qa2 sin2 θ

‰

“ EΣpr2 ` a2q ùñ pt “ E
r2 ` a2

∆
,

∆Σpϕ “ E
“

p2Mr ´ Q2
qa ` p∆ ´ a2 sin2 θqa

‰

“ EΣa ùñ pϕ “ E
a

∆
,

pΣprq2 “ E2
pr2 ` a2 ´ a2 sin2 θq

2
“ E2Σ2 , ùñ pr “ ˘E .

The two solutions, only differing in the sign of the radial component, are mostly denoted
by kµ (outgoing) and lµ (ingoing). The normalization factor (the energy E) can be chosen
arbitrarily (but constant), so it can actually be absorbed in the parameter of the respective
congruence. One is thus simply left with

kµ “
1

∆
pr2 ` a2,∆, 0, aq Ø kµ “

ˆ

´1,
Σ

∆
, 0, a sin2 θ

˙

, (17.27)

lµ “
1

∆
pr2 ` a2,´∆, 0, aq Ø lµ “

ˆ

´1,´
Σ

∆
, 0, a sin2 θ

˙

. (17.28)

The motion along such world-lines has azimuthal angular velocity Ω“ kϕ

kt
” lϕ

lt
“ a

r2`a2
; it is

slightly faster than the angular velocity of dragging ω,

ω
a

r2`a2

“

a
Ap2Mr ´ Q2q

a
r2`a2

“
p2Mr ´ Q2qpr2 ` a2q

A “ 1 ´
Σ∆

A “ 1 ´ N2 .
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At the horizon (∆ “ 0), the angular velocity thus becomes ωH, so, if adjusting the normal-
ization suitably, the outgoing PNC photons coincide there with the generators of the horizon,
kµ „ p1, 0, 0, ωHq.

Observers which follow stationary circular orbits with the angular velocity Ω of the
PNC photons (i.e. those who see the principal directions to be purely radial) are the Carter
(canonical) observers we have already met in Section 16.6. They have four-velocity

uµ “
1

?
Σ∆

pr2 ` a2, 0, 0, aq , uµ “

c

∆

Σ
p´1, 0, 0, a sin2 θq (17.29)

which – in passing – is just parallel to the EM four-potential Aµ “
Qr
Σ

p´1, 0, 0, a sin2 θq.
Similarly as ZAMOs, they are time-like everywhere outside the horizon.

The principal null directions are very important in the curvature structure of space-
time – they are eigen-directions of the Riemann (or Weyl) tensor and thus are crucial in its
algebraic classification (see Section 30.5). Curvature of the outer Kerr-Newman space-time
is algebraically special (type D, or II-II), which according to the Goldberg-Sachs theorem
is equivalent to the existence of a shear-free and geodesic null vector field (Chapters 24
and 30). Here in Kerr-Newman, more accurately, two such fields exist, kµ and lµ, each
representing a double eigen-direction of the Riemann (or Weyl) tensor.5 At the same time,
they also fit nicely into a simple coordinate picture of the Kerr-Newman space: in the 3D
Kerr-Schild–type coordinates pρ, ϕ, zq, they are straight-line generators of the hyperboloids
θ“const (within the projection to the coordinate plane pρ, zq, they are of course hyperbolas,
but remember that they also have a certain component in the ϕ direction).

17.3.8 Carter constant and Killing tensor of the Kerr-Newman space-time

From Appendix B we know that the existence of a Killing tensor field ξµ...ν ensures that
the scalar ξµ...νuµ... uν is conserved along any geodesic. And there does exist such a ten-
sor in Kerr-Newman. Actually, the above projection may even be conserved along certain
accelerated world-lines, provided of course that the acting force is “symmetric” as well –
typically in electro-vacuum space-times where the EM field follows the same symmetry as
the geometry. In the case of Kerr-Newman space-time, specifically, there exists the 2nd-rank
Killing tensor ξµν , and the corresponding scalar indeed remains constant along the world-
lines of (Lorentz-force affected) charged test particles; it is exactly the “fourth” constant due
to Carter, K “ ξµνp

µpν . Let us demonstrate it.

Lemma The bivector Yµν of non-zero BL components (ω “ t, ϕ)

Yωr “ a cos θ
`

1, 0, 0,´a sin2 θ
˘

, Yωθ “ r sin θ
`

´a, 0, 0, r2 ` a2
˘

(17.30)

5 If given by (17.27) and (17.28), both the fields are really geodesic (and affinely parameterized) and shear-
free. In the literature, the principal null fields are being normalized in many ways which are not always so clear
in this respect, namely so that at least one of the vectors ceases to be geodesic (or at least affinely parameterized)
and/or shear-free. In particular, as basis vectors of a suitable null tetrad, kµ and lµ are often normalized so that
kµlµ“´1, which is natural for the tetrad-work purposes, but since gµνkµlν “´2Σ{∆, it requires to adjust the
fields using the factor Σ{∆ which however is not constant along the Kerr-Newman geodesics, so such a choice
does not correspond to a “permitted” choice of the energy E in the solution of Carter equations.
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is the Killing-Yano tensor of the Kerr-Newman space-time. (The covariant components are
totally independent of M and Q!)
Proof: To be proved is the equality Yµpν;αq “0. It’s straightforward ... and tedious, so we beg
to leave it to the reader (or to a computer algebra).

Corollary: As shown in Appendix B, the existence of the KY tensor implies the existence of
the 2nd-rank Killing tensor ξµν “ YµαYν

α. Here in Kerr-Newman its BL components read

ξtt “
a2

Σ
p∆cos2 θ ` r2 sin2 θq , ξtϕ “ ´

a sin2 θ

Σ

“

Σ∆ ` p2Mr ´ Q2
qr2

‰

,

ξrr “ ´
Σ

∆
a2 cos2 θ , ξθθ “ r2Σ , ξϕϕ “

sin2 θ

Σ
pr2A` Σ∆a2 sin2 θq .

Another option how to write it is

ξµν “ ∆kpµlνq ` r2gµν , (17.31)

where kµ, lµ are the principal null congruences introduced in the previous subsection. Such a
form makes it very easy to compute basic invariants connected with the tensor:

gµνξµν “ ´2Σ ` 4r2 “ 2pr2 ´ a2 cos2 θq , ξµνξµν “ 2r4 ` 2a4 cos4 θ .

In passing, the invariants directly given by the Killing-Yano tensor are strikingly simple as
well,

Y µνYµν p“ gµνξµνq “ 2pr2 ´ a2 cos2 θq , ˚Y µνYµν “ 4ra cos θ ,
ˇ

ˇY µνYµν ´ i ˚Y µνYµν
ˇ

ˇ “

b

pY µνYµνq2 ` p˚Y µνYµνq2 “ 2Σ .

Lemma In the Kerr-Newman field, the quantity K “ ξµνp
µpν is conserved along the world-

lines of charged test particles. (It is an extension of the knowledge from Appendix B – there
it only refers to geodesics.)
Proof: Using the definition property ξpµν;αq “0 of the Killing tensor and substituting from the
equation of motion (17.12), we find

dK
dτ

“
DK
dτ

“ m2ξµν;αu
µuνuα ` 2m2ξµνu

µ
;αu

αuν “

“ m2ξpµν;αqu
µuνuα ` 2mξµνF

µ
λu

λuν “ 0 ` 0 .

The second term is really zero as well, because the expression ξµνF µ
λ is skew-symmetric in

indices rν, λs:

2ξµpνF
µ
λq “ ∆

`

kpµlνqF
µ
λ ` kpµlλqF

µ
ν

˘

` 2r2Fpνλq “ 0 .

Above, vanishing of Fpνλq is automatic and vanishing of the expression in parenthesis follows
from the relations

Fµνk
µ

“ ´
Q

Σ2
p2r2 ´ Σq kν , Fµνl

µ
“

Q

Σ2
p2r2 ´ Σq lν (17.32)
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which can be checked easily by plugging there (16.28) and (17.27,17.28). l

Finally, we should show that the scalar thus obtained is indeed the Carter constant:

ξµνp
µpν “ ∆ktltpptq

2
` 2∆ktlϕptpϕ ` ∆kϕlϕppϕq

2
` ∆krlrpprq

2
´ m2r2 “

“
1

∆

“

pr2 ` a2qpE ` qAtq ´ apL ´ qAϕq
‰2

´ ∆pprq
2

´ m2r2 “

“
1

∆

“

pr2 ` a2qE ´ aL ´ qQr
‰2

´ ∆pprq
2

´ m2r2 .

17.3.9 Spherical photon orbits

Let us add one more application of the Carter equations which provides another illustration
how the Kerr-Newman geometry works, and also supports r as a privileged radial coordinate.
Consider the question whether there exist photon world-lines that keep r “ const (hence
“spherical”) while orbiting in the ϕ as well as θ coordinate (in the latitudinal direction, the
orbit is only complete if L “ 0, otherwise it is not possible to approach the rotational axis
arbitrarily). For such orbits, pr “0 must hold constantly. By differentiation of (17.26c) with
respect to the affine parameter (assumed to be normalized so that pµ“ 9xµ), we have

2Σprp 9Σpr ` Σ 9prq “ 4
“

pr2 ` a2qE ´ aL
‰

r 9rE ´ 2pr ´ Mq 9rK ,

which, after dividing by 2pr ” 2 9r and (then) substituting pr“0, becomes

Σ2 9pr “ 2rE
“

pr2 ` a2qE ´ aL
‰

´ pr ´ MqK .

Hence, we reach the conditions

pr “ 0 ðñ K “
1

∆

“

pr2 ` a2qE ´ aL
‰2
,

9prppr“0q “ 0 ðñ K “
2rE

r ´ M

“

pr2 ` a2qE ´ aL
‰

.

The option K “ 0 “ pr2 ` a2qE ´ aL is excluded, because (17.26d) would in such a case
reduce to

ppθq2 “ ´
E2

a2 sin2 θ

which is impossible. The non-zero option is solved by

ℓ :“
L

E
“ ´

2r∆ ´ pr ´ Mqpr2 ` a2q

a pr ´ Mq
,

K
E2

“
4r2∆

pr ´ Mq2
. (17.33)

The spherical photon orbits only exist at radii for which the equation (17.26d) offers
some latitudinal interval, i.e. at such radii for which the right-hand side of (17.26d) is some-
where non-negative. By solving this condition, one finds that the limits of latitudinal motion,
symmetric with respect to the equatorial plane, are only non-empty within certain interval
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of radii whose minimal and maximal radii are given by prograde and retrograde equatorial
circular photon geodesics. Actually, for Kerr space-time (Q“ 0), the limit condition pθ “ 0,
i.e. K

E2 “
`

a sin θ ´ ℓ
sin θ

˘2 yields, after inserting the above values of ℓ and K{E2,

pcos2 θqmax “ r
´r3 ` 3M2r ´ 2Ma2 ` 2

a

M∆p2r3 ´ 3Mr2 ` Ma2q

a2pr ´ Mq2

for the latitudinal boundaries. As expected, they go as far as pcos2 θqmax “ 1 (i.e. up to the
axis) when ℓ“0, while they shrink to just pcos2 θqmax “0 at radii satisfying the equation

rpr ´ 3Mq
2

“ 4Ma2 .

This is exactly the equation for equatorial circular photon orbits, with the roots given by
(16.22). Outside them, there is no room for spherical photon motion.

Therefore, there exists the whole continuous class of spherical photon orbits, travelling
at all possible inclinations with respect to the equatorial plane and having the prograde and
retrograde equatorial photon orbits as their limits. Since “spherical” means here that these
orbits stay on constant r, the exercise shows that r is a very plausible radial coordinate.

17.3.10 Radial free fall from infinity

In a sense, the following also confirms that r and θ are preferred coordinates: particles freely
falling from rest from radial infinity with zero angular momentum L (thus having Ω “ ω)
travel along θ “ const. Really, to fall from rest from infinity means to have E “m. Then,
since L“0, and at infinity also pθ “0, we can evaluate (17.24) there and find K“m2a2. To
summarize, our particles have constants

E “ m, L “ 0, K “ m2a2.

Substitution to the Carter equation (17.25d) reveals that uθ “0. If q“0 (uncharged particle),
the remaining Carter equations become

∆Σut “ A , ∆Σuϕ “ p2Mr ´ Q2
qa , pΣurq2 “ p2Mr ´ Q2

qpr2 ` a2q .

One may check, for example, that Ω “ uϕ

ut
“

2Mr´Q2

A a “ ω , as we already knew before from
the conservation of L “ muϕ “ mutgϕϕpΩ ´ ωq (along geodesics). Note that if the particle
is charged, the conserved quantity is L “ muϕ ` qAϕ, which modifies the consequent Ω.



CHAPTER 18

Observer frames and Fermi-Walker
transport

In the theory of relativity, one constantly concerns with what depends on coordinates and
what is invariant. Despite their absolute validity, even invariants may not provide an insight,
since they do not necessarily correspond to anything what some observer could actually expe-
rience. For a simple example, hardly anybody directly experiences the four-velocity invariant
p´c2q.

A direct answer to the question of measurements starts from establishing a family of
“observers” – a congruence of time-like world-lines – and local frames tied to them. In
order to yield plausible data and help intuition, both the observers and their frames should
be “physically natural” and have reasonable (simple) mathematical description. The observer
frames teµα̂uα̂“0..3 (with eµ

0̂
” ûµ) are usually chosen orthonormal,

gµνe
µ
α̂e

ν
β̂

“ ηαβ ô ηαβeµα̂e
ν
β̂

“ gµν .

If the measurement is not just quasi-local (“at one point”), the tetrad needs to be defined along
a finite segment of the observer world-line (or of the whole congruence). Such a definition
should mathematically be provided by a certain transport operating along the congruence.
Since the observer four-velocity uµ is automatically taken as the basic (zeroth) tetrad vector,
and since it is typically chosen a priori, the transport has to be adjusted to it – the four-velocity
has to automatically transport “correctly”. The second requirement is that the transport con-
serves scalar product of vectors, so that the frame remains orthonormal. (This is a rather
obvious requirement: were it not true, the transport would change the vectors’ norm.)

Please notice that parallel transport does not satisfy the first requirement, so it is not
useful for setting up evolution of observer tetrads. Indeed, parallel transport only keeps the
four-velocity tangent to a world-line if the world-line is a geodesic. (This in fact is the defin-
ing property of geodesics: they are such world-lines along which their tangent vector trans-
ports parallelly.) For generic, accelerated world-lines, their tangent vector functions are not
parallel, so – the other way round – if using the parallel transport, what was a tangent vector
at a certain point is generally not tangent further then along the world-line. (See Figure 18.1.)

291



292 18. OBSERVER FRAMES AND FERMI-WALKER TRANSPORT

Figure 18.1 A 2D illustration of the difference between the parallel and the Fermi-Walker transport.
Along the blue world-line xµpτq, the initial, red-depicted orthonormal basis having four-velocity uµ

as the time vector evolves into the same-type basis (the violet one) according to the Fermi-Walker

transport, whereas the basis obtained by parallel transport (the light-green one) is “generic” (its

time vector is no longer tangent to xµ).

Remark: Students somehow often say that the flaw of the parallel transport is that it can only
be used along a geodesic. This is not true! Consider that it can actually be used along any
smooth curve, even a space-like one.

Should not the transport be tied to any special geometric structure or physical element,
the evolution of the four-velocity along its world-line ought to have the form

Dûµ

dτ̂
p“: âµq “ fpûα, âα; gκλq ,

where âα is the corresponding acceleration. Since, due to normalization, ûα can only change
in the (normal) direction of âα, it must perform a rotation in the pûα, âαq plane. Such a
rotation is described by a matrix given by antisymmetrized product of the two vectors, so one
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suggests the transport law1

DV µ

dτ
“ puµaν ´ aµuνqV ν . (18.1)

This formula, called formula for the Fermi-Walker transport, really embodies that the tan-
gent vector automatically satisfies it, since for V µ”uµ it reduces to aµ“aµ. Let us show that
it has all the other desirable properties as well:

• Fermi-Walker transport conserves scalar product. Indeed, for arbitrary two vectors V µ and
W µ,

d

dτ
pgµνV

µW ν
q “

D

dτ
pgµνV

µW ν
q “ gµν

DV µ

dτ
W ν

` gµνV
µ DW

ν

dτ
“

“ gµνpuµaσ ´ uσaµqVσW
ν

` gµνV
µ
puνaσ ´ uσaνqWσ “

“ p
XXXuµaσ ´ ���uσaµ qVσWµ ` p���uνaσ ´

XXXuσaν qVνWσ “ 0 .

• In the case of a geodesic (aµ “ 0), the Fermi-Walker transport coincides with the parallel
transport,

DV µ

dτ
“ 0 .

• Vectors orthogonal to uµ (“purely spatial”) transport according to a shorter formula

DV µ

dτ
“ uµaνVν (18.2)

called Fermi transport. This tells that the projection of an absolute derivative of V µ to the
three-space orthogonal to uµ vanishes,

DV ν

dτ
pδµν `uµuνq “

DV µ

dτ
`uµ

DV ν

dτ
uν “

DV µ

dτ
´uµV ν Duν

dτ
”

DV µ

dτ
´uµV νaν p“ 0q .

Therefore, the parallel transport keeps the “space-time direction” of vectors, irrespectively
of the transport path, whereas the Fermi-Walker transport keeps the direction of vectors with
respect to the tangent vector of the transport world-line.

18.1 Transport of spin and gyroscopes
The tangent vector to any world-line is unique, but the spatial triad may in general be chosen
in many ways and it may also evolve along its host world-line in many ways (of course
while continually satisfying the requirement that its vectors are orthogonal to the tangent

1 Let us omit the hats from now on – we are simply speaking about some world-line, without needing to stress
that we consider an observer on it.
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and mutually orthonormal). Hence, the Fermi-Walker formula must be prescribing a certain
specific behaviour for the spatial triad. Let us show how to understand it.

Consider a gyroscope. Technically, a light, symmetric, torque-free gyroscope (if forces
act on it, they only act at its centre of mass). Anyway, we will basically imagine it naively,
as something which keeps its direction in space, as given by its spin vector sµ. In special
relativity, such a property means that the spin does not change with respect to inertial systems
(in spite of possible acceleration of its centre of mass). Hence, according to the equivalence
principle,2 in a certain local inertial system with respect to which the gyroscope is (at least
momentarily) at rest – i.e. where the four-velocity uµ of its centre of mass has but the time
component – the spatial components of its spin do not change. Bearing also in mind that the
spin is purely spatial with respect to uµ, we may summarize

D system (“hatted”) : uı̂ “ 0, s0̂ “ 0,
dsı̂

dτ
“ 0 .

The covariant content of the above assumptions is that the gyroscope moves along a time-like
world-line, uµuµ “ ´1, that its spin is orthogonal to the four-velocity, uµsµ “ 0, and that the
change of sµ along uµ is purely temporal with respect to uµ, i.e. Dsµ

dτ
“ λuµ, with λ some

scalar. Differentiating the orthogonality condition and using the last relation, we have

0 “
Duµ
dτ

sµ ` uµ
Dsµ

dτ
“ aµs

µ
´ λ ùñ λ “ aµs

µ .

Therefore, the spin vector is subject to equation

Dsµ

dτ
“ uµaνs

ν , (18.3)

which is exactly the equation for Fermi transport.
Hence also the interpretation of the frame imagined at the beginning of this chapter:

the spatial triad whose orthonormal vectors are Fermi-transported physically corresponds to
a basis made of three orthogonal gyroscopes. Among all possible spatial bases which may
be attached to a given world-line, the Fermi-transported ones thus represent those which are
non-rotating in the usual 3D sense.

18.1.1 A rotating basis

Is it possible to write an evolution equation for a generic (“rotating”) spatial basis and see
how exactly it rotates with respect to the Fermi-Walker transported one? Yes, one just has
to add, to the FW formula (18.1), a term representing rotation in a plane orthogonal to uµ

(which may or may not contain aµ). So consider, instead of the FW formula (18.1), a more
general one

DV µ

dτ
“ puµaν ´ aµuνqVν ` ϵµνκλVνΩκuλ , (18.4)

2 The gyroscope is considered to be negligibly small with respect to the curvature length-scale, otherwise it
would be affected by non-homogeneity of the field, i.e. by curvature, so the equivalence principle would not
apply – see Section 18.1.2 below.
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where the angular-velocity vector Ωµ is orthogonal to uµ and specifies the plane of rotation.
The formula remains trivially satisfied for V µ “ uµ, since the added last term is orthogonal
to uµ, so the tangent vector remains transported as it should be. The new term also does not
harm conservation of the scalar product,

d

dτ
pgµνV

µW ν
q “

D

dτ
pgµνV

µW ν
q “ gµν

DV µ

dτ
W ν

` gµνV
µ DW

ν

dτ
“

“ gµνp... ` ϵµσκλΩκuλqVσW
ν

` gµνV
µ
p... ` ϵνσκλΩκuλqWσ “

“ ... ` ... ` ϵµσκλΩκuλpVσWµ ` WσVµq “ 0

(we have denoted by dots the “old” terms we already know to cancel out). The new term
apparently describes rotation of V µ in the plane perpendicular to uµ and Ωµ. The meaning of
this rotation is revealed by considering, besides the above vector V µ, also another one, say
Uµ, which transports along the same world-line in the Fermi-Walker way (thus without the
last term in the equation), and which at a certain moment coincides with V µ. Evaluating the
derivative of their difference just at that moment, the Fermi-Walker terms cancel out mutually
and one is left with

DpV µ ´ Uµq

dτ
“ ϵµνκλVνΩκuλ .

In the special case when V µ and Uµ are spatial-basis vectors (V µ belonging to a general basis
and Uµ to the Fermi-Walker transported one), so when they are both perpendicular to uµ, the
whole equation “lives” in the three-space orthogonal to uµ and one can rewrite the result in a
three-vector notation as

DpV⃗ ´ U⃗q

dτ
“ Ω⃗ ˆ V⃗ ,

with ˆ standing for the vector product in that three-space.
The additional term ϵµνκλVνΩκuλ ” pΩ⃗ ˆ V⃗ qµ is thus called spatial rotation; specif-

ically, it represents rotation which is not restricted to the plane spanned by uµ and aµ, and
so which is not solely forced by the fact that the vectors uµ and aµ themselves rotate in
space-time (namely that they do not transport parallelly).

18.1.2 Applicability of the Fermi-(Walker) formula

The Fermi-Walker transport describes the evolution of a test gyroscope with a certain initial
value of spin (proper rotational angular momentum) along a prescribed world-line – the cor-
responding acceleration is taken as independent of the evolution of the gyroscope. Physically,
this is only adequate for small spin. Namely, the spin magnitude bounds, from below, the size
of the gyroscope – roughly to Á s

m
, where m is its mass, in order that (at least some) gyro

elements would not have to rotate with superluminal speed. (A small body simply cannot
have very large spin, because s “ mrˆv.) If the spin is large, the size of the gyro cannot
be negligible, so tidal forces enter the play, caused by non-homogeneity of the gravitational
field and described by the Riemann tensor. In such a case, the spin behaviour does affect



296 18. OBSERVER FRAMES AND FERMI-WALKER TRANSPORT

the motion, so one has to solve a coupled problem for momentum (equation of motion) and
spin (equation for precession). In the case when the body does not bear significant higher
multipoles, such a problem leads to the equations of the Mathisson-Papapetrou-Dixon type,
see Section 6.4.1.

Below, we focus on three specifically relativistic contributions to the gyroscope pre-
cession, while restricting to the case when the FW description is appropriate, i.e. when the
gyroscope itself does not contribute to the field, and when there is no feedback between the
gyro’s spin evolution and its orbital motion.

18.2 Thomas precession
Consider a gyroscope carried along an accelerated world-line in the Minkowski background.
Consider a continuous sequence of inertial frames with respect to which the gyroscope is
momentarily at rest; components with respect to these will be denoted by a hat. Every such
frame is related to the “laboratory” inertial frame (no special notation) by the Lorentz boost
(c”1)

t̂ “ γ pt ´ v ¨ rq , r̂ “ r `
γ ´ 1

v2
pv ¨ rqv ´ γ tv ... direct boost , (18.5)

t “ γ
`

t̂ ` v ¨ r̂
˘

, r “ r̂ `
γ ´ 1

v2
pv ¨ r̂qv ` γ t̂v ... inverse boost , (18.6)

where v is the instantaneous spatial velocity of the gyro with respect to the laboratory system,
and γ is the corresponding Lorentz factor. Since in every instantaneously comoving frame
the gyro’s spin is purely spatial, sα̂ “ p0, ŝq, its laboratory components sµ “ ps0, sq read

s0 “ γ v ¨ ŝ , s “ ŝ `
γ ´ 1

v2
pv ¨ ŝqv .

Take now the Fermi-transport equation (18.3) in Minkowski, dsµ

dt
γ “ uµaνs

ν , and substitute
there

uµ “ γp1,vq ùñ aµ :“
duµ

dτ
“ γ2

“

γ2pv ¨ aq, a ` γ2pv ¨ aqv
‰

, with a :“
dv

dt
,

aνs
ν

“ ´γ5pv ¨ aqpv ¨ ŝq ` γ2
“

a ` γ2pv ¨ aqv
‰

¨

„

ŝ `
γ ´ 1

v2
pv ¨ ŝqv

ȷ

“

“ γ2
„

pa ¨ ŝq `
γ ´ 1

v2
pv ¨ aqpv ¨ ŝq

ȷ

,

ds0

dt
“ γ3pv ¨ aqpv ¨ ŝq ` γpa ¨ ŝq ` γ

ˆ

v ¨
dŝ

dt

˙

,

ds

dt
“

dŝ

dt
`

pγ´1q2pγ`2q

v4
pv ¨ aqpv ¨ ŝqv `

γ´1

v2

„

pa ¨ ŝqv `

ˆ

v ¨
dŝ

dt

˙

v ` pv ¨ ŝqa

ȷ

.

Next, in order to get rid of the products
`

v ¨ dŝ
dt

˘

, combine from above

v2

γ ´ 1

ds

dt
´

1

γ

ds0

dt
v “

v2

γ ´ 1

dŝ

dt
`
γ ´ 1

v2
pv ¨ aqpv ¨ ŝqv ` pv ¨ ŝqa
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and compare it to the equivalent combination of the right-hand sides of the Fermi-transport
equation,
ˆ

v2

γ ´ 1
´

1

γ

˙

paνs
ν
qv “

1

γ2
paνs

ν
qv “

„

pa ¨ ŝq `
γ ´ 1

v2
pv ¨ aqpv ¨ ŝq

ȷ

v .

One thus arrives at equation

v2

γ ´ 1

dŝ

dt
“ pa ¨ ŝqv ´ pv ¨ ŝqa ” ŝ ˆ pv ˆ aq . (18.7)

Hence, the spin precesses according to the equation
dŝ

dt
“ ´ΩT ˆ ŝ , where ΩT :“

γ ´ 1

v2
pv ˆ aq . (18.8)

Clearly the Thomas precession is only present if the gyroscope moves with respect to
the laboratory (v ‰ 0) along an accelerated world-line (a ‰ 0), if the two vectors are not
parallel (v ˆ a ‰ 0), and if the spin ŝ is not perpendicular to the plane they span (i.e. it
is not parallel to ΩT). It remains to take your right hand now and apply the cross-product
rule twice, or to look at the original form (18.7), in order to see that the spin change i) is
orthogonal to ŝ, ii) lies in the pv,aq plane (thus in the plane of the 3D trajectory), and that its
angular velocity iii) is opposite (retrograde) with respect to an instantaneous orbital angular
velocity (defined using an osculating circle to the spatial trajectory).

18.2.1 With respect to what the gyro precesses?

In derivation of the Thomas precession, this is often “lost in translation” (or rather in rotation).
Actually, the defining assumption that it keeps direction in its proper, comoving frame, may
seem to be in contradiction with that the above equation describes rotation of the locally
measured three-vector, not of the spatial components of the four-spin in the laboratory frame.
The point is that the quantities written in boldface are not measured with respect to the frame
which the gyro carries along (this proper frame has nowhere been used in this section), but –
once more – with respect to a continuous sequence of inertial frames with respect to which
the gyroscope is momentarily at rest. Such frames only instantaneously coincide with the
gyro’s proper frame, of course, because the gyro is accelerated.

Why such a complicated picture? Every “instantaneous inertial frame” of the gyro
is obtained by pure boost (Lorentz transformation without rotation of the spatial coordinate
axes) from the laboratory inertial frame, so it represents, for a given relative three-velocity
v, a benchmark of what is not turned with respect to the laboratory axes. So the sequence
of inertial frames set along the gyro’s world-line realizes, along that world-line, the best
possible counter-part of laboratory axes. Last query: why such a construction, why not to
simply refer the spin behaviour to the laboratory axes trivially transferred to the momentary
position of the gyro? Because the gyro is moving in a general direction (not necessarily along
some of the laboratory-system axes), so its instantaneous-frame axes are contracted relative
to the laboratory ones in the direction of the relative velocity, which makes the frames non-
orthogonal with respect to each other. To summarize very shortly: the precession is to be
understood as happening with respect to the laboratory frame. (Thus, clearly, it depends on
how the laboratory frame is precisely defined.)
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18.3 Geodetic precession
General relativity adds two more important components to the gyroscope precession. In a
generic situation (generic motion in a generic background), the behaviour of the gyro may
be quite a complicated mixture of all the effects, so we will only consider simple settings in
which a given contribution reveals clearly.

Let a gyroscope (with spin sµ) move on a geodesic (with four-velocity uµ) in the
Schwarzschild field. For zero acceleration, the Fermi-Walker transport goes over to paral-
lel transport, so we have equation

dsµ

dτ
“ ´Γµκλu

κsλ .

Imagine the simple case of a circular orbit, which in the Schwarzschild coordinates means

uµ “ utp1, 0, 0,Ωq, ut “
1

a

´gtt ´ gϕϕΩ2
, Ω :“

dϕ

dt

ùñ
dsµ

dτ
“ ´ut pΓµtλ ` ΓµϕλΩq sλ .

Remember that sµ has to be orthogonal to uµ, gκλuκsλ “ gttu
tst ` gϕϕu

ϕsϕ “ 0, so the time
component of spin has to read st “

gϕϕΩs
ϕ

´gtt
. Remember also that it is sufficient to fix this at

one point of the world-line, because parallel transport conserves scalar product. And here are
the non-zero Christoffel symbols for Schwarzschild:

Γrtt “
Mpr ´ 2Mq

r3
, Γttr “ ´Γrrr “

M

rpr ´ 2Mq
, Γrθθ “

Γrϕϕ
sin2 θ

“ ´pr ´ 2Mq ,

Γθrθ “ Γϕrϕ “
1

r
, Γθϕϕ “ ´ sin θ cos θ , Γϕθϕ “

cos θ

sin θ
.

Geodesic motion is planar in the spherically symmetric field, so we choose this plane to be
the equatorial one (θ“π{2) as usual. Components of the transport equation thus read

dst

dτ
“ ´utsrΓttr “ ´

M utsr

rpr ´ 2Mq
,

dsϕ

dτ
“ ´utsrΓϕϕrΩ “ ´

utsr

r
Ω ,

dsθ

dτ
“ 0 ,

dsr

dτ
“ ´utstΓrtt ´ utsϕΓrϕϕΩ “ ´utsϕΩ

ˆ

Γrϕϕ ´
gϕϕ
gtt

Γrtt

˙

“ utsϕΩ pr ´ 3Mq .

• dst

dτ
is not very important, because st is anyway given by st“ gϕϕΩs

ϕ

´gtt
. However, by compar-

ing it with the derivative of this last relation, while substituting for dsϕ

dτ
, one easily obtains

the value of the orbital angular velocity: Ω2 “ M
r3

.

• If erecting the spin exactly perpendicular to the equatorial plane, sλ“p0, 0, sθ, 0q, it clearly
remains such, without any change. Otherwise, in a generic situation, the behaviour of sθ is
“uninteresting”, so let us focus on the remaining components.
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• Since ut” dt
dτ

, it is shorter to write the remaining equations as

dsϕ

dt
“ ´

sr

r
Ω ,

dsr

dt
“ sϕΩ pr ´ 3Mq .

The spin certainly rotates with respect to the coordinates with some constant angular ve-
locity, call it Ωgyro, so we may write

srptq “ srp0q cospΩgyrotq .

Now it is easy to check that the equations are satisfied if

sϕptq “ ´
1

r

Ω

Ωgyro

sinpΩgyrotq ,
Ω2

gyro

Ω2
“
r ´ 3M

r
pă 1q

(zero initial sϕ has been chosen). So the gyro’s rotation is slower than the orbital revolu-
tion: the gyro does not point in the same direction after one full orbit, it somewhat lags
behind. Yes, the sign changes at r“3M , but that is the photon orbit – the last free circular
orbit, where a physical gyroscope can no longer orbit freely. The difference arises due to
curvature and it is called the geodetic precession or the de Sitter effect. (Sometimes even
the word “geodesic” is being used, but that is not the best choice, because the effect does
not only act along geodesics, of course.)

18.4 Lense-Thirring (gravitomagnetic) precession
In Chapter 16 on the Kerr solution, we discussed thoroughly how a rotating massive body
drags the surrounding space-time into co-rotation. We saw that the dragging is strongly dif-
ferential, falling off with distance as 1{r3. This must bring another precession effect to our
collection. It actually brings two effects – one “local”, influencing ordinary gyroscopes along
their orbits (or even possibly staying at rest, as we will see), and the other “global”, making
the whole orbits precess with respect to the asymptotic frame. We will focus on the first, local
effect here, the global one being best studied using the Carter equations (Section 17.3).3

In order to reveal the effect of dragging in a pure form (not coexisting with the Thomas
and/or geodetic precession, if possible), we consider two special cases of motion in the Kerr
space-time – a free radial fall along the rotation axis, and a gyroscope on stationary circular
orbit in the equatorial plane.

18.4.1 Gyroscope freely falling along the Kerr symmetry axis

Consider the Kerr space-time and a gyroscope which freely falls from rest at radial infinity,
with zero orbital angular momentum, uϕ “ 0 (ñΩ“ ω), first along a general θ. For such a
motion, the energy with respect to infinity is just the rest mass,

1 “
E

m
” ´ut “ ´gttu

t
´ gtϕu

ϕ
“ utp´gtt ´ gtϕωq ” utN2

ùñ ut “
1

N2
.

3 Both effects are often studied in the gravito-electromagnetic analogy, see Section 22.7.
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We also saw in Section 17.3.10 that this motion follows θ “ const. From normalization
gµνu

µuν “´1, we thus obtain

´ 1 “ putq2pgtt ` 2gtϕω ` gϕϕω
2
q ` grrpu

r
q
2

“ ´putq2N2
` grrpu

r
q
2

“ ´
1

N2
` grrpu

r
q
2

ùñ uµ “

˜

1

N2
, ´

d

1 ´ N2

N2grr
, 0 ,

ω

N2

¸

“

˜

A
Σ∆

, ´

a

2Mrpr2 ` a2q

Σ
, 0 ,

2Mra

Σ∆

¸

.

The orthogonality of sµ to uµ is satisfied if

0 “ gµνu
µsν “ uts

t
` ��uϕs

ϕ
` urs

r
“ ´st ` grru

rsr

ùñ st “ grru
rsr “ ´

a

2Mrpr2 ` a2q

∆
sr .

The Fermi transport reduces, for free fall, to the parallel transport, so

dsµ

dτ
“ ´Γµκλu

κsλ “ ´ut
`

Γµtλ ` Γµϕλω
˘

sλ ´ Γµrλu
rsλ .

Focus now on the gyroscope just falling along the symmetry axis (θ “ 0). For such a
special case, the four-velocity slightly simplifies,

uµ “

˜

r2 ` a2

∆
, ´

c

2Mr

r2 ` a2
, 0 ,

2Mra

∆pr2 ` a2q

¸

.

It is a quick computer task (the more if your laptop has already reached Quantum Supremacy)
to find that of the Christoffel symbols Γµtλ, Γµϕλ and Γµrλ, the following remain non-zero on
the axis:

Γrtt “
M∆pr2 ´ a2q

pr2 ` a2q3
, Γrrr “ ´

Mpr2 ´ a2q

∆pr2 ` a2q
, Γttr “

Mpr2 ´ a2q

∆pr2 ` a2q
, Γϕtr “

Mapr2 ´ a2q

∆pr2 ` a2q2
,

Γθrθ “ Γϕrϕ “
r

r2 ` a2
, Γϕθϕ “

cos θ

sin θ

ˆ

1 `
2Mra2 sin2 θ

Σ2

˙

, Γϕtθ “ ´
cos θ

sin θ

2Mar

Σ2

(the last two being divergent there, we have better given them in an exact generic form). The
evolution equation thus yields

dst

dτ
“ ´Γttrpu

tsr ` urstq ,
dsr

dτ
“ ´Γrttu

tst ´ Γrrru
rsr “ 0 ,

dsθ

dτ
“ ´Γθrθu

rsθ

(equation for sϕ is considerably longer). So the evolution of sθ is completely decoupled from
the evolution of st and sr. And, of the latter, sr does not change at all during the fall, while
st evolves so as to be constantly related to (the constant) sr by st “ grru

rsr. However, sr is
certainly not the interesting component in this situation, so if it stays constant, why not to
choose it zero? Doing so, one has st“0 as well, so the equations reduce to

dsθ

dτ
“ ´Γθrθu

rsθ ,
dsϕ

dτ
“ ´Γϕrϕu

rsϕ ´ utpΓϕtθ ` Γϕϕθωqsθ ,
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where, however, a very nice thing happens with the uncomfortable two Gammas:

Γϕtθ ` Γϕϕθω “ ´
2Mra3 sin θ cos θ

ΣA
θÑ0
ÝÑ 0 .

Consequently, finally we are only left with

dsθ

dτ
“ ´Γθrθu

rsθ ,
dsϕ

dτ
“ ´Γϕrϕu

rsϕ ùñ
dsϕ

dsθ
“
sϕ

sθ
ñ

sϕ

sθ
“ const .

Admittedly, “azimuthal component” is not the best idea on the axis, so let us add how
nicely the result appears in the (Kerr-Schild–type) Cartesian-like coordinates

x “
?
r2 ` a2 sin θ cosϕ , y “

?
r2 ` a2 sin θ sinϕ , z “

?
r2 ` a2 cos θ .

Transforming the spin vector in a standard way,

sx “
Bx

Br
@@s
r

`
Bx

Bθ
sθ `

Bx

Bϕ
sϕ

θÑ0
ÝÑ

Bx

Bθ
sθ “

?
r2 ` a2 cosϕ sθ ,

sy “
By

Br
@@s
r

`
By

Bθ
sθ `

By

Bϕ
sϕ

θÑ0
ÝÑ

By

Bθ
sθ “

?
r2 ` a2 sinϕ sθ ,

sz “
Bz

Br
@@s
r

`
Bz

Bθ
sθ `

�
�
�By

Bϕ
sϕ

θÑ0
ÝÑ 0 ,

we obtain, for the evolution of sx and sy,

dsx

dτ
“

d

dτ

´?
r2 ` a2 cosϕ

¯

sθ `
?
r2 ` a2 cosϕ

dsθ

dτ
“

“

ˆ

��������rur
?
r2 ` a2

cosϕ ´
?
r2 ` a2 sinϕ uϕ

˙

sθ ´
������������
?
r2 ` a2 cosϕ

rur

r2 ` a2
sθ “

“ ´
?
r2 ` a2 sinϕ utω sθ “ ´utω sy ,

dsy

dτ
“

d

dτ

´?
r2 ` a2 sinϕ

¯

sθ `
?
r2 ` a2 sinϕ

dsθ

dτ
“

“

ˆ

��������rur
?
r2 ` a2

sinϕ `
?
r2 ` a2 cosϕ uϕ

˙

sθ ´
������������?
r2 ` a2 sinϕ

rur

r2 ` a2
sθ “

“
?
r2 ` a2 cosϕ utω sθ “ utω sx ,

which means that the gyro rotates about the axis exactly with the dragging angular velocity
Ωgyro “ω:

dsx

dt
“ ´ω sy ,

dsy

dt
“ ω sx . (18.9)

Note that since ω“ 2Mra
pr2`a2q2´∆a2 sin2 θ

, it increases from the axis towards the equatorial
plane, hence the gyro pointing in the θ direction precesses “along” the centre’s rotation (the
picture is at least clear when close to the axis).
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18.4.2 Gyroscope on circular orbit in the Kerr equatorial plane

Second, we wish to consider a gyroscope “at rest” in the equatorial plane, θ“ π{2. To stay
at rest certainly means to keep constant r and θ, but with ϕ it is rather unclear. Indeed, when
treating the rotational dragging in the Kerr space-time, we argued that it is not clear, in the
field of a rotating source, what it means to “non-orbit” (in the direction of the source rotation,
i.e. ϕ). We also suggested stationary circular motion with zero angular momentum (ZAMO
congruence) as one of sensible options – see Section 16.3.3. However, let us start from the
stationary motion (Ω“const) along a generic circular orbit, as studied in Section 16.3.2. For
such,

uµ “ utp1, 0, 0,Ωq, ut “
1

a

N2 ´ gϕϕpΩ ´ ωq2
, aν “

HHHHuν,λu
λ

´ Γκλνuκu
λ ,

so the Fermi-transport equation Dsµ

dτ
“uµaνs

ν assumes the form

dsµ

dτ
“ ´pδµκ ` uµuκqΓκλνu

λsν ... ˆ
1

ut

ùñ
dsµ

dt
“ ´pΓµtν ` ΓµϕνΩqsν ´ uµ

`

Γttνut ` Γϕtνuϕ ` ΓtϕνutΩ ` ΓϕϕνuϕΩ
˘

sν .

The orthogonality of sµ to uµ implies that st and sϕ have to keep a certain relation,

0 “ uts
t

` uϕs
ϕ (while sr and sθ are not constrained) .

In the equatorial plane, the Fermi-transport formula has special properties:

• The θ-component of the equation vanishes, and sθ disappears from it altogether. Hence, in
particular, if si is chosen perpendicular to the equatorial plane (with only sθ non-zero) at
some point, it stays so forever – it is a permanent solution of the equation, similarly as it
held in Schwarzschild.

• So the equation reduces to the r and ϕ components (with st determined by utst“´uϕs
ϕ),

dsr

dt
“ ´Γrtts

t
´ Γrtϕs

ϕ
´ ΓrtϕΩs

t
´ ΓrϕϕΩs

ϕ ,

dsϕ

dt
“ ´pΓϕtr ` ΓϕϕrΩqsr ´ utΩ

`

Γttrut ` Γϕtruϕ ` ΓtϕrutΩ ` ΓϕϕruϕΩ
˘

sr .

Clearly it describes rotation within the equatorial plane. Actually, abbreviating the equa-
tions as

dsr

dt
“ αprq sϕ,

dsϕ

dt
“ ´βprq sr, r “ const , (18.10)

we may, for example, choose the initial spin as purely radial, srp0q ‰ 0, sϕp0q “ 0, and
solve them in the form

srptq “ srp0q cospΩgyrotq ùñ
dsr

dt
“ ´srp0qΩgyro sinpΩgyrotq ... “ αprq sϕptq
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ùñ
dsϕ

dt
“ ´srp0q

Ω2
gyro

αprq
cospΩgyrotq ... “ ´βprq srptq “ ´βprqsrp0q cospΩgyrotq

ùñ Ω2
gyro “ αβ pmust be ě 0q . (18.11)

Let us analyse in more detail two specific cases, Ω “ ω (gyroscope tied to the ZAMO) and
Ω“0 (gyroscope tied to the static observer):

• For the ZAMO, the orbital dragging effects (and so the geodetic-precession contribution
as well) should be eliminated as much as possible. Ω“ω implies uϕ“0 (this is the angular
momentum), so st “0 (sure: ZAMO’s uµ is orthogonal to t“ const, so st has to vanish in
order that sµ be orthogonal to uµ), and utut“´1. Therefore, the equations reduce to

dsr

dt
“ ´pΓrtϕ ` Γrϕϕωqsϕ “

Ma∆

Ar2 p3r2 ` a2q sϕ ,

dsϕ

dt
“
`

Γttrω ` Γtϕrω
2

´ Γϕtr ´ Γϕϕrω
˘

sr “ ´
Mar2

A2
p3r2 ` a2q sr .

Comparison with (18.10) and (18.11) yields the precession angular velocity

Ω2
gyro “

M2a2∆

A3
p3r2 ` a2q2 . (18.12)

• For the static gyroscope (Ω“0), the precession equations reduce to only

dsr

dt
“ ´Γrtts

t
´ Γrtϕs

ϕ ,
dsϕ

dt
“ ´Γϕtrs

r .

Since uκ“gκλu
λ“gκtu

t, it holds st“´
gtϕ
gtt
sϕ, so we have

dsr

dt
“

ˆ

Γrtt
gtϕ
gtt

´ Γrtϕ

˙

sϕ “
Ma∆

r3pr ´ 2Mq
sϕ ,

dsϕ

dt
“ ´Γϕtrs

r
“ ´

Ma

∆r2
sr ,

which implies that the precession angular velocity is given by

Ω2
gyro “

M2a2

r5pr ´ 2Mq
. (18.13)

The static observer may be considered as “effectively counter-rotating”, because its angular
velocity is smaller than the dragging one, 0 “ Ω ă ω, and, consequently, it has negative
angular momentum,

uϕ “ gϕιu
ι

“ gϕtu
t

“
gtϕ

?
´gtt

“ ´
2Ma

a

rpr ´ 2Mq
.

In spite of that, its (initially purely radial) gyroscope precesses against the centre’s rotation,
which exactly reveals how the differentially rotating geometry drags the origin of the gyro
faster than its end (see Figure 18.2).
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Figure 18.2 Two gyroscopes (green) in the field of a rotating centre, as viewed along the axis

of rotation. The gyroscope fixed to the axis (left one) follows dragging, i.e. it precesses in the

same azimuthal sense in which the centre is rotating. On the contrary, the gyroscope fixed to the

equatorial plane precesses in the opposite sense because dragging falls off with radius.



CHAPTER 19

Gravitational collapse and black holes

Black hole is a very robust concept, because it is given by mere causal structure, it is in-
dependent of anything else. In brief, if sufficient mass concentrates in a sufficiently small
volume, a black hole is formed just because nothing can move arbitrarily fast. However, what
does depend on “microphysics” of matter are conditions under which sufficient concentra-
tion of mass (“gravitational collapse”) can happen. If such a concentration were impossible
in reality, the black holes would still be a robust concept, but just occurring as a mathematical
curiosity in certain solutions of Einstein equations.

Yet physics does know situations in which the formation of a black hole is possible, in
some cases it even does not know of anything which could prevent the gravitational collapse.
Such an assertion might seem surprising, because gravitation is the weakest interaction, so
one might expect that the necessary compression is in all circumstances easily prevented by
structure of the matter – by its internal pressure, in microscopic terms, by the EM interac-
tion, in some limit cases possibly also by strong interaction, by uncertainty relations and by
the Pauli exclusion principle governing the behaviour of fermions. Indeed, the horizon for-
mation requires truly extreme compression: should the mass M be concentrated within its
Schwarzschild radius rS “ 2GM

c2
, its mean density would have to reach

M “
4

3
πr3gρ̄ ùñ ρ̄ “

3M

4πr3S
“

3c6

32πG3M2
“

3c6

32πG3M2
d

M2
d

M2

.
“ 1.85¨1019 kg{m3

ˆ

Md

M

˙2

(Md being mass of the Sun). For moderate-mass stars, the density required is greater than the
nuclear density (rS being about 3km for Sun), while for Earth (it would have to be compressed
under the radius of 9mm!), it comes out about 2 ¨ 1030 kg{m3; for “things of common usage”,
their Schwarzschild radius is deep below the scale of elementary particles. In spite of this,
it turned out, notably in the 1930s, that if the contracting matter has more that some 2Md,
gravitation is able to compress it below its Schwarzschild radius. Again, this is due to its
long-range character and due to its universally attractive character. These two properties
make it – contrary to other interactions – cumulate within the body. Still it looks like matter
has to suffer very extreme conditions which are totally beyond our experience.

305
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Not necessarily. The above mean density depends on 1{M2, and there also exist su-
permassive black holes in galactic nuclei. For M „ 109˜10Md, the necessary density equals
that of the air on the Earth surface. The volume enclosed by the horizon of 109Md is about
100 times larger than the volume of 109 suns (we mean our Sun), so you may imagine to
put together such a number of suns – better having switched off gravity first – while leaving
100 times more empty volume in between them: after switching on gravity, a horizon would
enclose the cluster. (Sure that the suns could not stay at their positions then, they would all
collapse to the central singularity irrespectively of any other physics – the picture is only to
illustrate that black holes need not result from extreme conditions only.) Besides that, as al-
ready stressed in Section 14.2.2, the local physics at such a horizon is very far from extreme –
the gravitational acceleration is 56ˆ bigger than on the Sun surface and 1500ˆ bigger than on
the Earth surface (however the acceleration itself being locally irrelevant thanks to the equiv-
alence principle, i.e. thanks to the possibility to transform it out by going freely falling), and
the field non-homogeneity (curvature) is 75ˆ lower than on the Sun and 300ˆ lower than on
the Earth.

Yes, volume should actually be computed differently in the curved space, but we will
see in Section 20.3.1 (equation for mass) that in GR the mass contained in a spherical ball of
radius r is really given by M “ 4

3
πr3ρ̄ as in the Newtonian case. Also, the “gravitational ac-

celeration” we mentioned refers to the rigorous (and invariant) relativistic quantity of surface
gravity we will introduce later in this chapter, as well as the non-homogeneity of the field
which follows as the square root of the Kretschmann invariant.

Let us focus on the origin of real black holes now. First, when asked about origin of
anything, one may answer in two basic ways: either it is here since the beginning of times,
or it has arisen later. Ad the first option, it is really possible that the Universe started with
some regions already “a priori” containing super-critical amount of matter, thus being born
right enclosed in horizons, but it is very hard to say something more specific in this direction,
simply because this option goes to the very initial conditions of the Universe. One can only
put, on the basis of “anthropic” arguments following from current observations, some upper
bound on how numerous such primordial black holes may be. We will thus focus on the
second option and will ask which processes are able to concentrate enough mass to a small
volume. Current physics is quite certain about one situation in which nothing should be able
to balance gravity: sufficiently heavy nuclei of stars in which all the available nuclear energy
has been exhausted. The region where the thermonuclear chain has terminated either slowly
contracts to a white-dwarf state until the pressure of degenerate electrons counter-balances
gravity, or it rapidly shrinks to a neutron star until the pressure of degenerate neutrons stops
further collapse, or it collapses completely below its horizon. Generally, heavier bodies tend
to be more prone to complete collapse, but in astrophysical reality the picture is very compli-
cated and may in fact also end by explosion and complete disruption of the body. Anyway,
there appears to be a certain mass value called the Chandrasekhar limit (1930, see Section
21.5) which is a fundamental threshold for whether the degenerate fermion gas (the Pauli
principle) is able to counterbalance gravity or not.

Without trying to explain anything more concerning the extremely complicated final
stages of stellar evolution (besides the contraction of the star nucleus also accompanied by
more or less spectacular explosion of the outer star layers), let us at least show that GR can
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describe the complete gravitational collapse to a black hole consistently. We will follow the
famous paper by J. R. Oppenheimer and H. Snyder which was published in Physical Re-
view on 1st September 1939. Regarding the tragedy of that period, no surprise that much
more interest incited then the paper by N. Bohr and J. A. Wheeler “Mechanisms of nuclear
fission” which appeared just next but one to Oppenheimer & Snyder’s. Also rather inter-
estingly, only a month later, in Annals of Mathematics, Einstein himself published a paper,
with the following conclusion: “The essential result of this investigation is a clear under-
standing as to why the ‘Schwarzschild singularities’ do not exist in physical reality.” (At that
time, ‘Schwarzschild singularity’ meant what we now call the black-hole horizon.) Einstein
considered a “star” made of particles orbiting, symmetrically, on circular paths in their own
gravitational field. He found that if the star radius had been below a certain value, the parti-
cles would have had to move faster than light. This result was correct, only the conclusion is
different today...

19.1 Collapse of a spherical ball of incoherent dust
In every problem involving an extended body, one has to solve three issues – behaviour of
the interior, behaviour of the exterior, and matching the two properly on the surface. Oppen-
heimer and Snyder considered the following very simple situation:

• A spherically symmetric “star”. This immediately implies that the exterior has already
been solved – it is Schwarzschild.

• A star made of incoherent dust, i.e. a pressure-free ideal fluid. According to the Euler
equations (7.33), such kind of matter moves on geodesics.

• A star with homogeneous and isotropic interior. Such a body is locally identical to some
homogeneous and isotropic cosmological model.

Hence, we will select a suitable cosmological model and describe the interior of the star ac-
cordingly. In order that the interior and the exterior solution can match on the stellar surface,
we will compare the exterior and interior description of particles freely falling on that surface
and relate the parameters accordingly. Finally, it is to be shown that the matching is conserved
during the collapse. We will at least demonstrate that this holds for the two metrics.

19.1.1 Interior of the ball as a part of the closed FLRW universe

First, we will naturally set Λ “ 0 in order that there is no other effective source than the
dust itself (Λ is not important on stellar scale anyway). Further, if planning to describe a
collapse from an initially static state, it is necessary to employ such a cosmological dust
model which is static at some moment. This only fulfils the closed, spherical model – the
remaining two (the flat and the hyperboloidal one) evolve in a monotonous way, without
any turning point. The history of the spherical model is described by the cycloid (13.48),
according to which the universe expands, from a big bang, to a certain maximal size and then
collapses back symmetrically. Obviously, the collapse will be described as the contraction
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phase of a spherical ball cut out of the closed FLRW universe. The ball will be defined by
χďχ0 păπ{2q. It is important to stress that the angular radius χ0 will remain constant during
the collapse – the ball will collapse as a part (a spherical “cap”) of the whole cosmological
model (technically, due to cycloidal decrease of the latter’s expansion factor a).

The only modification we will perform is to shift the conformal time η by π (back), in
order that η“ 0 now correspond to the moment of maximal expansion (start of the collapse)
rather than to big bang. In equations (13.48), this just reverses signs of the goniometric
functions. As known from Chapter 13, in the FLRW models the cosmic fluid moves on
geodesics, so we can safely use the equations given there to describe the collapse of our star.
Let us write down the equation for the free fall of its surface in terms of the area radius.
The latter is related to χ by r “ a sinχ, so, from (13.48) with shifted η, the surface moves
according to

RF “
amax sinχ0

2
p1 ` cos ηq , τF “

amax

2
pη ` sin ηq , (19.1)

where we have used τ instead of t to remind that the cosmic time actually has the meaning of
proper time of the fluid.

19.1.2 Exterior of the ball as a part of Schwarzschild

The “exterior treatment” is simple – the particles on the ball’s surface move according to the
equations we derived in Section 14.1.4, in the paragraph on radial free fall from rest. From
equations (14.12)–(14.14), we obtain for their area radius and proper time

RS “
Rin

2
p1 ` cos ηq , τS “

c

R3
in

8M
pη ` sin ηq , (19.2)

where Rin naturally stands for the initial value of the radius.

19.1.3 Matching the two solutions

The above Friedmannian and Schwarzschildian equations for R and τ match on the surface
if the parameters of the two solutions are related by

RS “ RF ùñ Rin “ amax sinχ0 , (19.3)

τS “ τF ùñ M “
R3

in

2a2max

“
amax

2
sin3 χ0 . (19.4)

Remark: Does it really has good sense to compare the Friedmann-like interior solution and
the Schwarzschild exterior solution? Actually, one may doubt whether the meaning of what
we call “the conformal time” (η) is the same in Schwarzschild space-time as well as in cos-
mology (which are very different settings). However, the conformal time is only a parameter,
nobody measures it, so one takes is pragmatically and argues the other way round: the con-
sistency of the interior and the exterior solutions is just verified by the fact that equating the
Friedmannian and the Schwarzschildian formulas for R and τ really yields time-independent
relations between constants of the two solutions.

The recipe for gravitational collapse may now be summarized as follows:
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• Take the closed Λ “ 0 dust FLRW universe having (some chosen) a“ amax at the instant
of maximal expansion (η“0). Cut out of it the spherical region χďχ0 pă90˝q – that will
represent the interior of the star – and throw out the rest.

• Take Schwarzschild with mass M“ amax

2
sin3 χ0 at the instant t“0 (ôη“0). Cut out of it

and throw out the spherical region răRin “amax sinχ0; the rest will represent the exterior
of the star.

• Join the two regions on the surface. The result is a momentarily static star with radius
Rin “ amax sinχ0 and mass M “ amax

2
sin3 χ0. Recalling from cosmology that amax “

8π
3
ρ0a

3
0 and that ρ0a30 remains constant during the cosmic evolution, we may evaluate it

just at the maximal-expansion instant, amax “ 8π
3
ρina

3
max, and from there obtain the initial

density of the star ρin “3{p8πa2maxq. Let us also remember that we actually well know the
above picture from Section 14.1.2: there, we were embedding the Schwarzschild equatorial
plane in E3, also considering – besides the pure vacuum Schwarzschild – the case with a
central star of constant density. The exterior Schwarzschild was represented by a rotational
paraboloid, while the interior by a spherical cap just matching the paraboloid on the star
surface. This is exactly what we have now assembled.

• Let it collapse freely, according to the Einstein equations...

Oppenheimer & Snyder showed that the smoothness of surface matching is conserved during
the collapse. Let us at least check the basic requirement that the interior and exterior metrics
match at the surface. On the surface, the FLRW metric reduces to

ds2Fpχ“χ0q “ ´dτ 2F ` a2 sin2 χ0 dΩ
2 , (19.5)

while the Schwarzschild metric reads

ds2Spr“RSq “ ´

ˆ

1 ´
2M

RS

˙

dt2 `
dr2

1 ´ 2M
RS

` R2
S dΩ

2 . (19.6)

Since the area radii are clearly the same, a2 sin2 χ0 “
Rin

2
p1 ` cos ηq “ RS, it also applies

to the whole angular terms. It thus remains to analyse the Schwarzschild pt, rq part. Recall
the equations (14.10) and (14.11) describing the radial free fall from rest from r “ rin in
Schwarzschild, i.e.

ˆ

dt

dτ

˙2

“
1 ´ 2M

rin
`

1 ´ 2M
r

˘2 ,

ˆ

dr

dτ

˙2

“
2M

r
´

2M

rin
.

Applying them to our case r“RS, rin “Rin and dτ “dτS, we can express

dt2 “
1 ´ 2M

Rin
´

1 ´ 2M
RS

¯2 dτ 2S , dr2 “

ˆ

2M

RS

´
2M

Rin

˙

dτ 2S ,
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which, when substituted to the above Schwarzschild-metric part, yields

´

ˆ

1 ´
2M

RS

˙

dt2 `
dr2

1 ´ 2M
RS

“

˜

´
1 ´

�
�2M
Rin

1 ´ 2M
RS

`

2M
RS

´
�
�2M
Rin

1 ´ 2M
RS

¸

dτ 2S “ ´dτ 2S .

However, at the proper-time element dτ , the indices “F” and “S” do not make any difference,
because proper time is unique (the indices only indicate “from which side” we have obtained
it), so the metrics (19.5) and (19.6) really match exactly on χ“χ0 ô r“RS.

19.1.4 Realistic collapse: with pressure and without symmetries

Physicists mostly deemed Oppenheimer & Snyder’s setting to be too simplistic to accept their
result as decisive. However, the need for a more realistic description gave way then to the
study of just the opposite processes – the nuclear-bomb races began. In the 1950-60s, experts
say, the programs simulating the explosions were basically used to model the collapse, only
necessary was to substitute in them more mass (like 10Md) and to switch on its gravity...
They confirmed the occurrence of a horizon.

With non-zero pressure (and non-zero pressure gradient in general), the elements of
the star are not free, so they do not move on geodesics. It is no longer possible to assume
homogeneity and isotropy, even if pressure was constant: at the star surface, it would anyway
jump to zero, so the gradient would be infinite there. Consequently, after the collapse would
have started, the outer layers would be tossed away and a rarefication wave would propagate
inwards, destroying the homogeneity and isotropy. However, with a suitable pressure pro-
file, the surface matching is possible and the results are not significantly different from the
pressure-free case.

More complications may arise if the assumption of spherical symmetry is released.
In the case of large asymmetry – especially with fast rotation – the problem becomes very
complicated. Generally, asymmetries rather act against contraction, in particular, rotation
typically leads to disintegration of the body at a certain stage. The query of whether it is
possible to say, already before horizon is formed, that it will inevitably be formed, turned out
to be quite hard. Several “hoop conjectures” have been stated which answer that question
in terms of how short a hoop has to be which is able to encircle the collapsing body in
every direction. And similar statements have also been suggested which confine the object
by closed surfaces.)

Thanks to the singularity theorems, it is sure that inside a black hole there appears a
singularity. However, in a generic (not spherically symmetric) situation, much less can be
said about how large a fraction of the collapsing matter ends at the singularity.

19.1.5 Cosmic censorship hypothesis

In 1969, in a seminal paper on gravitational collapse and black holes, R. Penrose formulated
a conjecture that a collapse should never produce a naked singularity. A bit more accurately,
in an originally regular space-time, there should not occur any singularity visible from infin-
ity. This opinion still remains plausible, although it is not proved as a theorem, and although
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several counter-examples have been provided. Namely, these counter-examples are numer-
ical evolutions from certain very special (yet not unphysical) initial configurations, like an
“imploding” asymmetric cloud of photons, when no horizon was found while the density had
already reached arbitrarily large values at certain locations. The delicate point is to analyse
generic validity and stability of such scenarios. Cosmic censorship thus stands as one of yet
open questions of general relativity.

Naked singularities anyway pose problems for various types of reasoning, mainly for
those based on causal relations, so in the theorems they are usually assumed to be absent.
Actually, we have seen they prevent a unique solution of the Cauchy problem, and sometimes
also induce the occurrence of a region with chronology or even causality violation. However,
it is of course hard to strictly exclude primordial naked singularities, although these too are
prone to various instabilities (e.g. to being “dressed” due to accretion of matter, or to quantum
polarization). After all, singularities of the classical GR are supposed to be “resolved” by its
quantum counter-part, which should eliminate their unphysical features. Therefore, it is not
unreasonable to even study undressed alternatives in various situations.

Yet aąM is not bizarre

It’s worth to add a remark. The naked singularities are suggested as “over-extreme”, bizarre
options, so it might seem that a decent object should not have a ą M (or |Q| ą M ). The
truth is contrary, it is a rule rather than exception that celestial as well as microscopic bodies
largely exceed the “extreme” limits. Actually, you may check that for Earth a{M „ 880,
similarly as for Jupiter, for example. For stars this ratio tends to be of the order of unity, but
very young stars or protostars may likely be rotating as fast as a{M „104. For neutron stars
(even the fastest, millisecond pulsars), on the contrary, the ratio is below unity. Hence, before
shrinking to a small object, the large bodies must get rid of most of their angular momentum.
This is very easily seen from the classical formula for a spherical rigid rotator: its spin angular
momentum being

J “
2

5
MR2ω “

2

5
MRv ,

it is seen that if this were to be conserved during contraction of the object, the equatorial
linear speed v“Rω would have to increase reciprocally with decrease of the radius R. For
Earth, for instance, the Schwarzschild radius is about 9mm, so to make a black hole from Earth
would require to decrease the Earth radius 710 million times. The Earth rotation is slow, but
still it corresponds to the linear speed v .

“ 460 m{s of the equatorial regions. Shrinking the
radius 710 million times and conserving J would thus require v to increase to 1100c.

However, even more surprising may be to check these values for elementary particles.
For electron, for example – let us calculate it carefully in SI units –, the ratios a{M and Q{M
have extremely large values,

a
c

GM
c2

“

J
Mc
GM
c2

“

ℏ{2
mec
Gme

c2

“
ℏc

2Gm2
e

“ 2.854 ¨ 1044 ,
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?
G|Q|

?
4πϵ0 c2

GM
c2

“
|Q|

?
4πϵ0GM

“
e

?
4πϵ0Gme

“ 2.041 ¨ 1021 .

19.2 Black-hole uniqueness theorems
The stationary black-hole solutions we studied in preceding chapters may seem to represent
just very special, simple examples selected so that they can be managed in an undergraduate
course. It is not entirely so. The assumptions of isolation, high symmetries and asymptotic
flatness certainly make the solutions special, but it is remarkable that if they are satisfied, the
field equations uniquely lead to the metrics of the Kerr-Newman type:

Theorem: Every isolated stationary black hole in an asymptotically flat space-time,
which contains no singularities and no closed time-like curves elsewhere than possi-
bly under the horizon, is necessarily of the Kerr-Newman type, i.e. – among others
– it is axially symmetric, it has a horizon of spherical topology, and it is completely
characterized by at most 3 parameters (M , Q and a). Specially, if it is even static,
then it is of the Reissner-Nordström type, i.e. spherically symmetric and described
by just 2 parameters (M , Q).

Factually this is a “synthetic” form of several theorems which had been derived under slightly
different assumptions, most notably by W. Israel (Schwarzschild and Reissner-Nordström),
B. Carter, D. C. Robinson (Kerr), P. O. Mazur and G. Bunting (Kerr-Newman).
Note: the parameters describing the isolated stationary black hole can actually be four, but
the fourth one would correspond to a not-ever-observed magnetic monopole, so we do not
include it.

Hard to guess the narrative of the years one did not directly experience, but the first
theorem of this type – W. Israel’s proof of uniqueness of the Schwarzschild black hole (1967)
– rather made the community surprised and sceptical, because it seemed like if the complete
gravitational collapse was restricted to the “zero-measure”, exactly spherically symmetric sit-
uation. It was notably R. Penrose who, in the already-mentioned paper from 1969, stressed
that in dynamical situation all the higher multipoles should be radiated away and, conse-
quently, “if an absolute event horizon develops in an asymptotically flat space-time, then
the solution exterior to this horizon approaches a Kerr-Newman solution asymptotically with
time” (Penrose called this the “generalized Israel conjecture”). Within several years, his sug-
gestion was confirmed by detailed calculations. The most important claim here is not the
above theorem itself, but rather the belief that an isolated object – even though suffering such
a violent process as the gravitational collapse – before long settles to a stationary state.

19.2.1 Why and how the collapsing object loses its hair

In official slang, the uniqueness theorems are referred to as “no-hair” theorems; “hair” means
independent parameters which characterize the object. These are certainly being lost in the
collapse, since the progenitor star was undoubtedly characterized by density, pressure, tem-
perature, entropy and luminosity profiles, and by many other quantities describing nuclear
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reactions, radiation transfer, convection, turbulences, eruptions, etc. etc. Why and how this
happens? Very loosely, it is simply because “hairy” object is energetically higher than the
“bald” one. In particular, any deviation from axial symmetry tends to be radiated away since
an object with a changing mass quadrupole emits gravitational waves. Similarly, any object
with changing electric dipole emits EM waves. Both these fundamental interactions propa-
gate with the speed of light, and an object on the verge of becoming a black hole is extremely
small, so the characteristic time of “balding” and “calming down” is not many orders greater
than rS{c, which for stellar-mass objects means fractions of a second. Let us jump to recent
times and refer to the gravitational-wave transient catalog where signals of some 10 clear
events are shown: they were typically generated in collisions of 10˜50Md black holes, and
their characteristic time scale is seen to be 0.1 second.

Yet still, why and how almost all the hair is lost? You know that EM radiation is a
dipole radiation. This means that if you perform a multipole decomposition of an EM field,
then radiative (i.e. transporting energy) can be the components corresponding to dipole or
higher multipoles. Indeed, monopole = charge and that is exactly conserved by the continuity
equation Jµ;µ “ 0, so charge is the only multipole that cannot be radiated away. With grav-
itational radiation it is similar, only that it is a quadrupole one, so gravitational waves can
carry away all the multipoles beyond dipole. Also different in gravity is that mass(-energy)
does not equal monopole, because it also involves contributions from rotation (i.e. dipole)
etc. Similarly, spin (rotational angular momentum) need not only include the “dipole” part.
(Connected with this is also the fact that the centre of mass is not an invariant notion.) So
gravitational radiation can carry away all moments except monopole and dipole parts of mass
and spin.

In the classical theory of radiation, there in fact exists a theorem of that kind which
applies to all “massless fields with integer spin”. This is a particle-like slang for long-range
fields (falling off according to the Coulomb law) with integer helicity. Actually, already on
classical level it is possible to recognize what will be the spin (s) of particles obtained by
quantization of a given field: a plane wave of that field is symmetric under rotation by 2π{s
about the direction of its propagation, and it can be decomposed in two linearly polarized
components whose polarization vectors make the angle π{p2sq. The classical counter-part of
spin, of equal value, is called helicity. Now, the theorem says that, for such fields, radiative
(able to transport energy) are the components corresponding to multipoles lěs. For EM field
s“1 while for gravitational field s“2.

The last “stone in a mosaic” is called the Price theorem and it simply says that what
can be radiated away is indeed radiated away, i.e. that really just the lăs multipoles are left.
Technically, the collapse scenario goes as follows:

• Have an isolated source of gravitation and electromagnetism. Let it only slightly deviate
from the Reissner-Nordström–type centre. (This assumption is necessary for the multipole
expansion to have good sense.)

• Decompose both the fields into spherical harmonics which represent components generated
by the respective multipoles of the source – the EM field decomposes into vector harmonics
and the gravitational field into tensor harmonics. (If scalar field was considered as well, it
would decompose into scalar harmonics.)
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• Let the object begin to collapse. During this, the deviations from spherical symmetry will
tend to grow considerably.

• The growth of higher multipoles will lead to emission of waves of both fields. However,
only the lěs multipoles will be being radiated away, where s“1 for the EM and s“2 for
the G field. (Possible scalar waves, s“0, could involve all the modes.)

• The horizon is formed as an extremely dynamical, non-symmetric object, but in a dy-
namical time-scale of the order of prS{cq it “rings down” to a stationary state. All the lěs
multipoles are completely radiated away, which means that only left are the monopole com-
ponent of the EM field (electric charge is exactly conserved during the collapse) and the
monopole plus dipole components of the gravitational field (the object keeps the monopole
and dipole parts of its mass and the dipole part of its rotational angular momentum). If the
source originally generated a scalar field as well, that would be radiated away completely,
so neither the scalar charge would remain.

• Except for some matter possibly shed during the collapse and now orbiting around, the
object ends as a steadily rotating, axisymmetric black hole.

Also important is to add where the emitted waves go. When pronouncing “radiated away”,
relativists necessarily move their hands in a characteristic way – i.e. along the outgoing
light-like directions in which the radiation aims at future null infinity. However, as the object
approaches the black-hole state, its vicinity is more and more curved, which makes larger
and larger part of the outgoing radiation scatter on curvature, and this in turn makes more
and more of the radiation return back and eventually end below the horizon finally formed.
It was pointed out that in the closest vicinity of the horizon (below the circular photon orbit,
approximately), the outgoing waves partially interfere destructively with the ones just scat-
tered back, so the external observer cannot learn anything (or at least not everything) about
temporal bumps excited on the horizon.

A remark: consider that the conservation of Q and (of certain parts of) M and J “ Ma
well agrees with the fact that exactly these quantities are linked to the Gaussian integrals
of fluxes of the corresponding fields over surfaces surrounding the source. (In fact such
integrals provide a reasonable possibility how to define those quantities, otherwise than from
asymptotic behaviour of the field components.)1 The conservation of these imprints of Q, M
and J in the external fields thus plays the role of boundary conditions of collapse, including
its final stages when the sources of the fields have already disappeared behind the horizon or
have even been destroyed in the singularity (or emerged in other universe). It is true, after all,
that from the point of view of any external observer the sources never cross the horizon...

19.2.2 External-observer experience with collapse

Gravitational collapse is very fast for a comoving clock, but, at the same time, there is dilation
between it and a remote clock which in the final stages diverges (the dilation even approaches

1 A total momentum of the isolated system should certainly be conserved as well. However, one assumes the
whole picture is depicted in the centre-of-mass system where the momentum is zero.
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“double infinity” – due to gravitation as well as due to the Doppler effect). So how the
collapsing star really looks for a remote observer? Let us illustrate it on situation when

• the star surface shines on some frequency which is constant according to a clock comoving
with the surface

• the observer stays at fixed r, θ, ϕ “at infinity” (r"M )

• the star surface collapses by free fall.

Then the observer receives frequency

ν8 9 exp

ˆ

´
t

4M

˙

, (19.7)

and flux corresponding to a total luminosity

L8 9 exp

ˆ

´
2

3
?
3

t

2M

˙

. (19.8)

This result is very intuitive concerning the doubts whether it is at all reasonable to talk (in
astrophysics) about black holes if the matter never crosses the horizon as taken with respect
to the distant clock: the latter is right, but still – even for the distant observer – the object
approaches the black-hole state exponentially quickly. If you evaluate the formulas on com-
puter, you can see that, basically, “the star is shining and then suddenly disappears”. As
already estimated, the characteristic time of “turning off” is

tchar „ 2M „ p10´5sq
M

Md

. (19.9)

19.2.3 Loss of information in collapse

“No-hair” behaviour means almost absolute loss of features – an extreme rise of entropy, ex-
treme simplification of the object. Actually, Chandrasekhar was stressing that black holes are
the simplest objects in the Universe (and we stressed already how nicely he demonstrated it
in [6]). If a complex material reality undergoes gravitational collapse, after the dust settles
(which takes just a moment), you are not able to infer what was the progenitor of the black
hole just formed – it might have been a star, a merger of two black holes, a strong concen-
tration of photons, interaction of gravitational waves, or a dense cloud of anti-matter.2 More
generally speaking, if a black hole has been formed, it is not possible to completely recon-
struct the past, even if knowing the present state arbitrarily precisely. The appearance of black
holes thus implies another restriction of classical determinism (the first was the limitation of
prediction past the Cauchy horizons).

It should be stressed that the above loss of information remains under an intensive
study from the quantum point of view, since it breaks the unitarity of evolution (conservation

2 Another plausible progenitor is a super-critical accumulation of books and reprints (on GR and collapse) in
Jiří Bičák’s office.
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of the Hilbert-space scalar product) which is one of the basic principles of quantum theory.
Practically, some information is of course lost, but this is a fundamental theoretical question
whether in principle it is still not possible to reconstruct the past, precisely, on the basis of
information carried away by the waves and of information released (?) by a black hole later
through quantum processes (“quantum evaporation”).

19.3 Horizons as boundaries of black holes
Horizon is the central concept of the black-hole theory. We have seen that the Kerr-Newman
horizon is a null hypersurface which plays the role of a one-way causal membrane, that in
the static case it coincides with the static limit and the infinite-redshift surface, and we have
also learnt that in some cases it may represent a Cauchy horizon. However, there are actually
several different notions of a horizon in GR:

• We first met, in Schwarzschild, the “future horizon” as the boundary between the region
of outer communications and the black-hole region, i.e. between the regions from where it
is/isn’t possible, at least by one time-like or light-like world-line (or by a combination of
such world-lines), to reach future null infinity. In short, the future horizon is a boundary
of the causal past of I `. Symmetrically, the past horizon is the boundary of the causal
future of I ´. A horizon defined as a causal boundary (thus as a one-way membrane for
physical motions) is called the event horizon. It is a null hypersurface whose generators
are null geodesics. In a generic, dynamical situation, the null generators may enter the
horizon at some point, but once having entered it, they never leave it and neither ever
intersect any other of the generators [Penrose].

Event horizon actually is a more general concept, it does not only represent history of
the black-hole “surface” – more generally, it stands for a boundary of the causal past
of a certain observer. For example, such horizons naturally appear in cosmology (as a
boundary of the region from where signals can ever reach a given observer), and also
within the causal relations of an accelerated observer: in the case of hyperbolic motion
(accelerated by constant force in Minkowski), the event horizon is clearly represented by
the light cone whose generator the observer asymptotically approaches. In these situations,
however, the event horizons bound the causal past of specific observers, whereas as the
boundaries of black (or white) holes they have “absolute” meaning (actually, the black-
hole event horizons have also been called absolute horizons).

Important remark: if you think of a trip towards a black hole, and if you plan to return back,
the event horizon is not suitable for the safety control (although, at the same time, exactly
it is crucial for your future). Namely, it is defined with the reference to future light infinity,
hence, in order to determine its location at any time, one has to know all the future of the
host space-time. Imagine an observer at rest near the horizon of a Schwarzschild black
hole (it may be a huge black hole, so there need not be any problem with tidal forces).
Imagine further that a massive spherical shell falls to that black hole. The region from
where it is impossible to escape to infinity will gradually grow, until the shell crosses its
boundary (i.e. the event horizon). Therefore, the observer may easily find oneself below
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the horizon without any warning – actually, they may even get there before the passage of
the shell, thus without noticing any change (a spherical shell does not generate a field in
its interior). Due to this global, “teleological” nature, the event horizon is not a suitable
concept in self-consistent problems where the future of space-time is typically not known
in advance (in numerical relativity in particular).

• In 1964, R. Penrose shed new light on the black-hole research. K. Thorne writes in chapter
13 of [48]: “Nineteen sixty-four was a watershed year. It was the year that Roger Penrose
revolutionized the mathematical tools that we use to analyze the properties of spacetime.”
New was the usage of the methods of differential topology, new was the quasi-local way
of evaluation of the gravitational-field “strength”, and new and not so much expected was
the implication: inside every black hole, there necessarily occurs some kind of space-time
singularity. To grasp the second point, have a closed space-like two-surface, and imagine
the two congruences of light-like geodesics normal to it (“outgoing” and “ingoing” one).
Calculate the expansion scalar Θ “ kµ;µ for both and evaluate it on the surface. Where
the surface is convex, the outgoing congruence typically is expanding (Θ ą 0) while the
ingoing one is contracting (Θă 0). For a concave surface it is vice versa. Close to a very
strong source of gravity, however, even the outgoing photons perpendicular to a “convex”
surface may converge, simply because even they may be pulled towards the source rather
than escaping outwards. The surfaces for which such a circumstance (Θ ă 0) holds ev-
erywhere for both the normal congruences are called trapped surfaces. The region filled
with trapped surfaces is called the trapped region and its boundary is called the apparent
horizon; the history of the latter is called the trapping horizon. The apparent horizon is
thus a marginally trapped surface – the outgoing null congruence has zero expansion on
it (while the ingoing-one expansion is negative). The Penrose’ implication was that inside
every trapped surface there must be a singularity.

Apparent horizon only depends on how the space-time behaves on a given space-like sur-
face, it does not “depend on future” as the event horizon. On the other hand, it depends
on how one slices the history of the trapped region, so on observer. This is the main
reason why the “absolute” event horizon is more useful in most black-hole theorems. If
the space-time only hosts attractive matter (if weak energy conditions holds), the apparent
(or trapping) horizon generally lies inside the event horizon. In stationary situations, the
horizons usually coincide.

The vanishing of expansion of one of the normal null congruences is also crucial in the
much more recent definition of dynamical horizons and their “locally stationary” ver-
sions – isolated horizons. Dynamical horizons are space-like hypersurfaces, while iso-
lated horizons are light-like. These concepts try to require as little as possible about the
bulk space-time (asymptotic flatness or symmetries).

• If a Killing vector field exists which is time-like in a certain space-time region, it is possible
to define the Killing horizon as the hypersurface on which that field becomes light-like
(though this may nowhere happen of course). Physically, the existence of time symmetry
means stationarity of space-time, and the Killing horizon encloses a region where a certain
class of motions (those with four-velocity proportional to the time Killing field) ceases to
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be physical. If there exist more than one Killing fields, the concept of the Killing horizon
may not be unique, since one may obtain other Killing fields (at least somewhere time-
like) by linear combinations of the original ones, and these new fields may become null
elsewhere than the original ones.

In the black-hole fields we have been studying in recent chapters, all the above definitions
of horizons yields the same outcome. In particular, their horizon is really a Killing horizon,
since the field tµ ` ωHϕ

µ becomes null on it:

gµνptµ`ωHϕ
µ
qptν `ωHϕ

ν
q “ gtt`2gtϕωH `gϕϕpωHq

2
“ ´N2

´pgtϕ`gϕϕωHqpω´ωHq ,

which at r“ r` (thus N ” ´gtt ´ gtϕω“ 0 and ω“ωH) reduces to zero. And tµ ` ωHϕ
µ

is indeed a Killing field since the horizon value of the dragging angular velocity ωH is a
constant. Note that it is not the “original” time field tµ itself – that one already becomes
light-like on the static-limit surface (gtt“0).

19.3.1 Stationary horizons and circular space-times

In the uniqueness theorems we saw that the isolated stationary black hole is necessarily axi-
ally symmetric. This even holds for any black hole, not necessarily an isolated one: in a reg-
ular asymptotically flat space-time containing physically reasonable matter, every stationary
black hole is either static or axially symmetric. This result, due to S. W. Hawking, is known as
the strong rigidity theorem. Namely, its crucial point is that every stationary horizon rotates
with constant angular velocity, thus being a Killing horizon. This is clearly in contradiction
with the possibility to arrange, outside the horizon, some matter in a non-axisymmetric yet
stationary way. Yes, this is indeed impossible: due to the rotational dragging by the black
hole, either the external structure would start rotating and thus – as being non-axisymmetric
– emitting gravitational waves, or, if the external structure were held firmly at its place (from
infinity, say), it would gradually brake the hole’s rotation, on the contrary. Hence, steadily
rotating black holes have to be axisymmetric. It was also shown that in an asymptotically flat
case the stationarity and axial symmetry always commute [B. Carter].

However, one important supplement has to be added. The metric of a stationary and
axially symmetric space-time can only be written in the “Kerr-like” form

ds2 “ ´N2dt2 ` gϕϕpdϕ ´ ωdtq2 ` g11pdx1q2 ` g22pdx
2
q
2

if the space-time is orthogonally transitive in addition. Quite intuitively, this means that
there have to exist meridional planes – there have to exist 2D integral submanifolds which
are everywhere orthogonal to both the existing Killing vector fields tµ and ϕµ. These subman-
ifolds tt“ const, ϕ“ constu can be covered by the remaining two coordinates xp, p‰ t, ϕ,
which implies that the metric does not involve the corresponding cross terms, gtp“0, gϕp“0.

Imagine a 3D version of such a requirement. First, local planes orthogonal to some
vector field are integrable if that vector field has zero rotation; in such a case, it is propor-
tional to a gradient of a scalar function – the scalar function which has the desired integral
surfaces as its level surfaces. Here we have two vector fields and want that their complemen-
tary direction (orthogonal to both) be integrable. This does not necessarily entails that the
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rotations of the fields vanish, only that the rotation of each of them has to be orthogonal to
the other field. In 4D, the rotation (also vorticity or twist) form is defined by (Section 24)
ωµrV s “ 1

2
ϵµνκλV

νV κ;λ , so in our case of tµ and ϕµ the requirements read

ωµrtsϕµ ”
1

2
ϵµνκλϕ

µtνtκ;λ “ 0 , ωµrϕs tµ ”
1

2
ϵµνκλt

µϕνϕκ;λ “ 0 ,

which is mostly being written as

ϕrµtνtκ;λs “ 0 , trµϕνϕκ;λs “ 0 .

The conditions can also be expressed in terms of curvature (as the so-called Ricci circularity).
Let us show it properly.

Theorem [due to A. Papapetrou] The circularity conditions ϕrµtνtκ;λs “0 , trµϕνϕκ;λs “0 are
equivalent to the conditions

ϕrµtλRκsνt
ν

“ 0 , trµϕλRκsνϕ
ν

“ 0 .

Proof: The derivation is the same for both the conditions, and since it starts from properties
which hold for any Killing vector field, we will at this stage denote the latter generically as
ξµ. Multiplying the definition ωµrξs “ 1

2
ϵµνκλξ

ν;κξλ by ϵµβγδ and using the formula (A.5),
i.e., explicitly,

ϵµνκλϵ
µβγδ

“ ´δβν δ
γ
κδ

δ
λ ´ δδνδ

β
κδ

γ
λ ´ δγν δ

δ
κδ
β
λ ` δβν δ

δ
κδ
γ
λ ` δγν δ

β
κδ

δ
λ ` δδνδ

γ
κδ

β
λ ,

we easily obtain

ωµϵ
µβγδ

“ ´ξβξrγ;δs
´ ξδξrβ;γs

´ ξγξrδ;βs
“ ´ξβξγ;δ ´ ξδξβ;γ ´ ξγξδ;β “ ´ξtβξγ;δu .

Differentiation of the latter by xβ yields

ωµ;βϵ
µβγδ

“ ´pξβξγ;δq;β ´ pξδξβ;γq;β ´ pξγξδ;βq;β “

“ ´�
��ξβ ;β ξ

γ;δ
´ ξβξγ;δβ ´

XXXXξδ ;βξ
β;γ

´ ξδξβ;γβ ´
XXXXξγ ;βξ

δ;β
´ ξγξδ;ββ “

“ ´ξβξ
γ;δβ

` ξδ l ξγ ´ ξγ l ξδ “ ´������XXXXXXξβR
γδβσξσ ` ξγRδ

β ξ
β

´ ξδRγ
β ξ

β , (19.10)

where the Killing property and the formulas (11.26), (11.27) have been employed. Multipli-
cation of this relation by ϵανγδ leads to twice the same term on the right-hand side, while on
the left one has

ωµ;βϵ
µβγδϵανγδ “ 2ωµ;βpδµν δ

β
α ´ δµαδ

β
ν q “ 2pων;α ´ ωα;νq ” 4ωrν;αs ,

so we arrive at the formula for gradient of (any) Killing-vector twist,

ωrν;αs “
1

2
ϵανγδ ξ

γRδ
β ξ

β . (19.11)
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Now, let us specify to our ξµ” tµ, ωµ” ωµrts case (with ϕµ the second existing Killing
field) and consider the derivative

pϕνωνq,α “ ϕν ;αων ` ϕνων;α “ ϕν ;αων ` ϕνωα;ν ` 2ϕνωrν;αs “

“ �����
p£ϕ ωαq ` ϵανγδ ϕ

νtγRδ
β t

β . (19.12)

This result confirms that

ϕrµtνtκ;λs “ 0 ùñ pϕνωνrtsq,α “ 0 ðñ ϕrµtλRκsνt
ν

“ 0 .

Similarly one would verify that

trµϕνϕκ;λs “ 0 ùñ ptνωνrϕsq,α “ 0 ðñ trµϕλRκsνϕ
ν

“ 0 .

The opposite implications are also based on the relation (19.12). Since ϕµ “ gµϕ van-
ishes on the symmetry axis,3 also trivial there is ωµrϕs “ 1

2
ϵµνκλϕνϕκ;λ. Consequently, both

the invariants ϕνωνrts and tνωνrϕs vanish on the axis as well. Now, if the space-time is Ricci-
circular, i.e. ϕrµtλRκsνt

ν “ 0 and trµϕλRκsνϕ
ν “ 0, implying that the gradients of both the

invariants are everywhere zero, pϕνω
νrtsq,α “ 0 and ptνω

νrϕsq,α “ 0, then the invariants are
themselves zero everywhere, which is the circularity condition. l

Since the circularity properties trivially hold for the metric tensor,

ϕrµtλgκsνt
ν

“ ϕrµtλtκs “ 0 , trµϕλgκsνϕ
ν

“ trµϕλϕκs “ 0 ,

one may use Einstein equations and translate the Ricci-circularity conditions to

ϕrµtλTκsνt
ν

“ 0 , trµϕλTκsνϕ
ν

“ 0 . (19.13)

Immediately clear is that vacuum stationary and axisymmetric space-times are necessarily
circular. Actually, circular is every space-time in which sources move purely along stationary
circular trajectories (along the Killing directions, i.e. with four-velocity satisfying urνtκϕλs “

0). This is illustrated on an ideal fluid, Tκν “ pρ`P quκuλ`Pgκλ: the second part is circular
automatically and the first one has to satisfy ϕrµtλuκs “ 0, resp. trµϕλuκs “ 0 (which is the
same).

Note that if an EM field is also present and acting gravitationally, the circularity condi-
tions has to also hold for its sources, i.e. the electric current has to only flow, steadily, along
circular orbits, J rνtκϕλs “ 0. In other words, such space-times where the electric or magnetic
fields have non-zero azimuthal component are not circular. Admittedly, often “stationary ax-
isymmetric” space-times are automatically supposed to be circular, while much less is known
about those which are not. However, solenoidal motions are not unlikely around astrophysi-
cal black holes, and electric currents flowing in meridional directions are even crucial for the
putative extraction of their rotational energy (see below the Blandford-Znajek process).

3 On a regular axis, gϕϕ ” ϕµϕ
µ has to vanish since it determines proper circumference about the axis (along

a circular orbit of ϕµ at some given radius). This is not due to ϕµ becoming null (light-like) there, but because
ϕµ“gµϕ shrinks there to zero (while ϕµ“ Bxµ{Bϕ everywhere).
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19.4 Laws of black-hole (thermo)dynamics
In 1972, J. M. Bardeen, B. Carter and S. W. Hawking found that if black holes participate
in physical processes, their suitably defined parameters behave in a way that resembles the
behaviour of thermodynamic quantities. Since, however, the black-hole quantities follow
from pure geometry, the authors were stressing that however lovely the resemblance may be,
it is [in Carter’s words:] “only an analogy whose significance should not be exaggerated”. It
seemed clear in particular that a black hole cannot have temperature: in thermodynamics, a
body with temperature necessarily emits thermal radiation, whereas a black hole cannot emit
anything.

The laws were originally formulated and proved using the notion of the event hori-
zon, so they required the corresponding global behaviour of space-time (asymptotic flatness,
no singularities or closed time-like curves), plus some of the energy conditions for matter
and fields also possibly involved. Later, the laws have been confirmed using the more local
notions of horizon, thus requiring much less from space-time around.

• Zeroth law of black-hole dynamics:
There exists an invariant quantity (called surface gravity and denoted by κH) given by the
first metric derivatives which on a stationary horizon is everywhere the same. On the ex-
treme horizon, in particular, the surface gravity is zero.
Thermodynamical counter-part: the zeroth law of thermodynamics – in thermal equilib-
rium, temperature is constant in the whole volume of the system.

• First law of black-hole dynamics:
If a black hole transfers between two close stationary states, its parameters change accord-
ing to

δM “
κH
8π

δA ` ωHδJ ` φHδQ , (19.14)

where M , J and Q denote mass, rotational angular momentum and electric charge, A is
the proper area of the horizon, ωH is its angular speed with respect to infinity, and φH is its
electric potential. (If other sources were present, M has the meaning of total mass, and on
the right-hand side it is necessary to add contributions from the changes of these external
sources.)
Thermodynamical counter-part: the first law of thermodynamics.

• Second law of black-hole dynamics:
The horizon area A can never decrease. (If more black holes participate in a process and
their merger can happen, it applies to the sum of the horizon areas.)
Thermodynamical counter-part: the second law of thermodynamics — the entropy of an
isolated system cannot decrease.

• Third law of black-hole dynamics:
A generic black hole (the one with κH ‰ 0) cannot be changed to an extreme one (with
κH “0).
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Thermodynamical counter-part: the third law of thermodynamics – a body cannot be
cooled to absolute temperature zero.

The most suggestive role in the laws is being played by the area A and by the surface gravity
κH. If defining the entropy and (thus) temperature of the horizon by

S :“
kc3A

4Gℏ
“

kA

4plPlanckq2
, T :“

ℏκH
2πkc

,

with k the Boltzmann constant, the term κHc
2

8πG
δA on the right-hand side of the first law just

equals TδS.
Below, we illustrate the above laws on the situation with a single, isolated black hole

of the Kerr-Newman type.

19.4.1 Zeroth law in Kerr-Newman

Intuitively, the strength of the field can be characterized by magnitude of four-acceleration
which some suitable observers need in order to “keep themselves at a given orbit”. Such a
concept is of course ambiguous, but remember that the zeroth law applies to stationary hori-
zons. We realized above that stationarity of a rotating horizon implies (in fact requires) axial
symmetry, which in turn means that there do exist certain “invariant” orbits – the stationary
circular ones we studied in the Kerr(-Newman) field. The time-like range of their angular
velocity shrinks, in a limit sense, to a single value ωH “ ωpr “ r`q at the horizon, so it is
natural to define the surface gravity from the magnitude of four-acceleration of such motions,
specifically, from the magnitude of four-acceleration of some particular subclass of these mo-
tions whose angular velocity has ωH as its horizon limit. One of default options is to take the
ZAMO congruence having Ω“ω. [Whereas, for instance, it is not possible to consider static
pΩ“0) congruence for this purpose, since that is only time-like outside the static limit.]

However, the above limit represents the null generator of the horizon – the photon
which just stays on the horizon, keeping constant r and θ while orbiting with Ω “ ωH in
the azimuthal direction. No other time-like or light-like world-line can lie on the horizon.
This means that in the horizon limit (NÑ0), the magnitude of the circular-orbit acceleration
undoubtedly diverges; on the ZAMO acceleration (16.24) which we plan to use it is seen
at first sight. Yet there is a natural way how to regularize such a divergence: multiply the
acceleration by N . This has a clear meaning since N represents the dilation factor between
the proper time of ZAMO and the Killing time t. Since by (16.24) the ZAMO acceleration
reads aµ “ N,µ{N , we have for this congruence

ut ”
dt

dτ̂
“

1

N
ùñ N,µ “ Naµ “

aµ
ut

”
Duµ
dτ̂

dτ̂

dt
.

Therefore, one obtains the ZAMO acceleration taken “with respect to the asymptotic inertial
time”.

So let us define the surface gravity κH by

κ2H :“ lim
NÑ0

pN2gµνaµaνq “ lim
NÑ0

pgµνN,µN,νq . (19.15)
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Finally, the derivation of κH for Kerr-Newman. In the Boyer-Lindquist coordinates, the

lapse reads N “

b

∆Σ
A . Since the horizon (N “ 0) corresponds to ∆pr “ r`q “ 0 and since

∆,µ only has the radial component ∆,r “ 2pr ´ Mq, we obtain, at the horizon,

N,µ “

∆,µΣ`∆Σ,µ

A ´
∆ΣA,µ

A2

2
b

∆Σ
A

∆Ñ0
ÝÑ

«

c

A
∆Σ

∆,µΣ

2A

ff

rÑr`

“

«

c

Σ

∆A pr ´ Mq

ff

rÑr`

δrµ .

Hence,

κ2H “ lim
rÑr`

pgrrN,rN,rq “

„

∆

Σ

Σ

∆A pr ´ Mq
2

ȷ

r“r`

“

ˆ

r` ´ M

r2` ` a2

˙2

“
M2 ´ Q2 ´ a2

pr2` ` a2q2
,

(19.16)

where we have substituted A` “ pr2` ` a2q2. The result is independent of θ, so it is indeed
the same everywhere on the horizon. Note also that it monotonously decreases from the
Schwarzschild value 1

4M
to zero for the extreme horizon at r` “ M . The Schwarzschild

value may also be written M
r2S

, which perhaps is the most cogent argument for calling κH the
“surface gravity”.

19.4.2 First law in Kerr-Newman

The outer Kerr-Newman horizon has proper area

A “

2π
ż

0

π
ż

0

b

pgθθgϕϕqr“r`
dθ dϕ “ 2π

π
ż

0

b

A` sin2 θ dθ “ 2π

π
ż

0

pr2` ` a2q sin θ dθ “

“ 2πpr2` ` a2q

π
ż

0

sin θ dθ “ 4πpr2` ` a2q . (19.17)

Recalling that r` “ M `
a

M2 ´ Q2 ´ a2, we obtain by variation

δA

8π
“ r`δr` ` aδa “ r`

˜

δM `
MδM ´ QδQ ´ aδa
a

M2 ´ Q2 ´ a2

¸

` aδa ,

hence, after multiplication by
a

M2 ´ Q2 ´ a2 “ r` ´ M ,

pr` ´ Mq
δA

8π
“ r2`δM ´ r`QδQ ´ Maδa . (19.18)

Rewriting the last term as Maδa “ aδJ ´ a2δM and solving the equation for δM , we have

δM “
r` ´ M

r2` ` a2
δA

8π
`

a

r2` ` a2
δJ `

r`Q

r2` ` a2
δQ . (19.19)
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You should recognize the surface gravity r`´M
r2``a2

“ κH in the first term and the angular velocity
of the horizon a

r2``a2
“ ωH in the second term. In the third term, what stands in front of

δQ is the electric potential of the horizon. Actually, scalar potential represents the “time
component” of the four-potential Aµ, i.e. the “minus time component” of Aµ; covariantly, it
is the projection of minus Aµ on some time-like vector field. There should be little doubts
which vector to use in circular space-times: nµ :“ tµ ` ωϕµ is time-like down to the horizon
(light-like in a limit), it is solely given by the symmetries, and down there it becomes the
Killing null generator of the horizon. (We denote it by nµ since we know it is orthogonal to
the t“const hypersurfaces.) So, substituting the Boyer-Lindquist components

Aµ “
Qr

Σ
p´1, 0, 0, a sin2 θq , nµ “ p1, 0, 0, ωq with ω “

2Mr ´ Q2

A a ,

we get

φ :“ ´Aµn
µ

“
Qr

Σ
p1 ´ aω sin2 θq “

Qr

ΣA
“

A´ p2Mr ´ Q2
qa2 sin2 θ

‰

“
Qr

A pr2 ` a2q

ùñ φH “ ´pAµn
µ
qH “

„

Qr

A pr2 ` a2q

ȷ

r“r`

“
Qr`

r2` ` a2
. (19.20)

The first law thus indeed reads as given in (19.14),

δM “
κH
8π

δA ` ωHδJ ` φHδQ .

19.4.3 Second law in Kerr-Newman

Using the first law (19.19), one can rewrite the second law δAě0 in the form

δM ě
aδJ ` r`QδQ

r2` ` a2
. (19.21)

Interestingly, it is possible to extract energy from a Kerr-Newman black hole without violat-
ing the second law. Actually, if writing out the area of the horizon (19.17) as

A “ 4πpr2` ` a2q “ 4πp2Mr` ´ Q2
q “ 4π

´

2M2
` 2M

a

M2 ´ Q2 ´ a2 ´ Q2
¯

,

it is seen that the energy of the black hole (i.e. its mass M ) can be diminished, but only if
simultaneously Q and/or a decrease sufficiently. Imagine a sequence of reversible steps in
which the parameters M , Q and a would be decreasing in such a manner that the area A
would stay constant, δA“0. Such a process can only proceed until both Q and a fall to zero.
At that moment, the mass M reaches the lowest possible value capable to generate a horizon
with the given area A – it is the mass of the Schwarzschild black hole with that area A. This
limit value of M , determined by the relation A“16πM2

irr, is called the irreducible mass of
a given black hole (specified by its surface area A). Comparing the two expressions for A,

4π
´

2M2
´ Q2

` 2M
a

M2 ´ Q2 ´ a2
¯

“ 16πM2
irr ,
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yields the relation

4M2
pM2

´Q2
´a2q “ p4M2

irr´2M2
`Q2

q
2

ùñ 16M2
irrM

2
“ p4M2

irr`Q
2
q
2
`4M2a2 ,

and hence the formula showing how the “pure mass” Mirr, EM energy proportional to Q2 and
rotational energy proportional to J “ Ma contribute to the total mass-energy M of the black
hole,

M2
“

ˆ

Mirr `
Q2

4Mirr

˙2

`
J2

4M2
irr

. (19.22)

Clearly the composition is non-linear.

Second law and test-particle motion

One is naturally more interested in breaking the (second) law than in following it. The first
eligible process is to shoot into a black hole a particle with low energy (Ñ small increase of
black-hole mass) but as large as possible charge and/or angular momentum (Ñ large increase
of black-hole charge and/or spin). A generic electro-geodesic motion being described by the
Carter equations (Section 17.3), let us express the particle energy with respect to infinity E
from the meridional-plane equations (17.25c), (17.25d), or, in other words, from equality of
the two expressions (17.23) and (17.24) for K:

AE2
´ 2BE ` C “ 0 ùñ E˘ “

B ˘
?
B2 ´AC
A , (19.23)

where

A “ pr2 ` a2q2 ´ ∆a2 sin2 θ pas aboveq ,

B :“ paL ` qQrqpr2 ` a2q ´ ∆aL “ aLp2Mr ´ Q2
q ` qQrpr2 ` a2q ,

C :“ paL ` qQrq2 ´
∆L2

sin2 θ
´ m2∆Σ ´ m2Σ2

“

purq2 ` ∆puθq2
‰

.

The relation determines the energy as the function of M , Q, a, m, q, r, θ, L, ur and uθ. The
sign is fixed e.g. by considering an uncharged particle (q“ 0) static (ui “ 0, L“ 0) at radial
infinity (rÑ 8). For it, A„ r4, B“ 0, C„ ´m2r4, which yields E˘ “ ˘

a

´C{A Ñ ˘m,
so physically relevant is the upper sign (the lower one corresponds to a particle aiming to
the past). Figure 19.1 shows an example of how the plane of possibilities typically looks.
Of the above listed parameters, M and m serve as scale factors, Q “ 0.1M , a “ 0.8M ,
q “ 0.2m, r “ 1.8M , θ “ π{2, L is the horizontal-axis variable and ur, uθ determine the
“vertical” position (value of E). The latter is just a one-dimensional dependence, since the
four-velocity components are constrained by normalization (and ut, uϕ are uniquely related
to E and L).

Now, we need the energy to be as small as possible. As already mentioned, for a particle
with given m, q and L, at a given location r, θ in the field of a black hole with given M , Q
and a, the value of E is fixed by the values of ur and uθ. Regarding that Aą 0 (everywhere
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L

E

E+
(pµ in future light-cone)

E−
(pµ in past light-cone)

E+<0 !

Figure 19.1 Possible values of energy with respect to infinity of a test particle with charge q“0.2m
at the location r “ 1.8M , θ “ 90˝ in the field of a black hole with parameters Q “ 0.1M ,
a“ 0.8M . The energy is plotted, in the units of test-particle rest mass m, in dependence on the
angular momentum L; the values corresponding to a particle aiming at future/past lie above the
curve Emin

` “ E`pur “ 0, uθ “ 0q / below the curve Emax
´ “ E´pur “ 0, uθ “ 0q, respectively

(these curves are drawn thick). Between the curves, the value of E cannot lie. Dashed are the lines
Emin

` and Emax
´ for photons (m“ 0) – they represent asymptotes of the massive-particle curves.

For a given L, the value of E is given by ur, uθ (of which just one is independent, because E, L,
ur and uθ are bound by the uµ normalization). Note that there exist “plus-states” with negative E
(and, vice versa, “minus-states” with positive energy). These do not exist for a non-rotating centre

(a“0) when the diagram is symmetric with respect to L“0.

at rą 0), to minimalize the energy (19.23) requires to minimalize the square root, which in
turn means to maximalize C – and that is done by setting ur“0, uθ“0.4 The explicit formula
is lengthy, so let us further focus on the moment when the particle enters the horizon, since
at that moment the parameters of the black hole are supposed to be changed. Evaluating the
energy at the horizon (∆“ 0), we see that for E to be minimal, it is sufficient to set ur “ 0:
then, however,

A` “ pr2` ` a2q2, B` “ paL ` qQr`qpr2` ` a2q , C`pur“0q “ paL ` qQr`q
2

ùñ B2
` ´A`C` “ 0 , Emin

` pr“r`q “ E`pr“r`;u
r
“0q “

aL ` qQr`

r2` ` a2
.

4 Note that ur and uθ are bound, together with ut and uϕ (fixed by E{m, L{m), by normalization of uµ, so
only one of them can be chosen in general. However, that is just enough for our purposes, as it will be clear
immediately (namely, ur alone will be relevant).
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Since the parameters of the black hole are altered according to

δM “ E, δQ “ q, δJ “ L, (19.24)

the above result E`pr“r`qěEmin
` pr“r`q can be rewritten

δM ě δM
“

E“Emin
` pr“r`q

‰

“
aδJ ` r`QδQ

r2` ` a2
. (19.25)

But this is exactly the second law, (19.21).
In the above picture, the equality clearly is just an idealized limit, because it would

correspond to a particle injected into the black hole with ur “ 0 at the horizon – but this is
only possible for a null horizon generator (i.e. a photon emitted from there “outwards” and
with L “ 0). In fact the whole consideration has only a certain limit validity, since it is in
fact inconsistent: the Carter equations apply to test particles, those having zero effect on the
geometry, yet we said that once they enter the horizon, they change the black-hole parameters
(which are of course felt by the metric).

Remarks on area and entropy

• Intuitively, a black hole cannot be split, and it would indeed be against the second law:
imagine a Schwarzschild black hole of mass M and two M{2 (Schwarzschild) black holes
– the area before splitting would be 16πM2 and after 2¨p4πM2q. The opposite process is
“OK”, just that the second law restricts the amount of energy which may in principle be
radiated away during the merger.

• The most flagrant violation of the area law would be to destroy a black hole completely,
namely to change an extreme black hole to a naked singularity. Substituting the extreme-
hole properties M2 “ Q2 ` a2, r` “M to (19.21), we have

δM ě
Maδa ` a2δM ` MQδQ

M2 ` a2
ô MδM ě aδa`QδQ ô δpM2 Q́2 á2q ě 0 ,

so such a process is impossible.

• One may write the “intensive quantities” (angular velocity, surface gravity and electrostatic
potential of the horizon) using the horizon area. For Kerr-Newman, specifically,

ωH “
4πa

A
, κH “

4π

A
pr`´Mq , φH “

4πQr`

A
. (19.26)

These relations are good for verifying the Smarr formula – a very useful relation generally
valid for stationary black holes,

M “
κHA

4π
` 2ωHJ ` φHQ . (19.27)
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• Entropy is popularly known as the measure of disorder in the system. Highly disordered is
such a system which is in a very generic state (which can result from a large number of evo-
lutionary paths) and from which thus only little information can be extracted. Hence, one
would expect that black holes have extremely high entropy. Indeed, for a Schwarzschild
black hole,

S “
kc3A

4Gℏ
“

4πkGM2
d

ℏc

ˆ

M

Md

˙2
.
“ 1.05 ¨ 1077k

ˆ

M

Md

˙2

,

which for M „Md yields about 1019-times (!) greater value then is the estimated entropy
of the Sun.

“Quantum evaporation” of black holes

The black-hole area law was discovered by S. W. Hawking in 1971. In 1972, J. Bekenstein
realized that in order that black holes do not transcend or violate the second law of standard
thermodynamics, they must have an entropy. He conjectured that this entropy is proportional
to the horizon area and showed that such a picture can save the controversy. It would then
follow that black holes should, thermodynamically, behave similarly as any other body. In
particular, they should have temperature (proportional to surface gravity) and thus emit ther-
mal radiation. Otherwise, if only absorbing, their equilibrium with the surroundings could
never establish. S. Hawking was particularly dissatisfied with such a flawed image. He set
out to prove that Bekenstein was wrong and that the black-hole temperature is invariably
zero. Using quantum theory on Schwarzschild and later also Kerr(-Newman) background, he
instead proved, in 1974, that black holes indeed emit particles in accord with their tempera-
ture. This discovery confirmed that the laws of black-hole dynamics are not only analogies
to thermodynamics.5

Black hole is an ideal black body, so in order to at least estimate the quantum-evaporation
budget, let us employ the Stefan-Boltzmann black-body formula for the total radiated power
(σAT 4). Plugging there the Stefan-Boltzmann constant σ and the Schwarzschild values for
area A and temperature (surface gravity), i.e. (in physical units)

σ “
π2k4

60ℏ3c2
, A “ 16π

G2M2

c4
, κH “

c4

4GM
ùñ T “

ℏκH
2πkc

“
ℏc3

8πkGM
,

we obtain

´c2
dM

dt
“ σAT 4

“
ℏc6

15360πG2M2

.
“ p9 ¨ 10´22 erg{sq

ˆ

Md

M

˙2

. (19.28)

For black holes resulting from gravitational collapse (whose masses M are at least about
3Md), the Hawking effect is extremely weak. Still, theoretically interesting is the final stage

5 Bekenstein’s 1972 paper ends by the words: “One sees from (1) that the natural unit of area of a black hole
is the Planck length squared. One cannot help wondering about the possible connection between this feature
and the expected quantum structure of space-time at a scale of the order of the Planck length.”
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of evaporation – the radiated power increases as 1{M2 and, simultaneously, heavier and heav-
ier particles are being emitted. Hawking himself titled his seminal 1974 paper “Black hole
explosions?”. It is not yet clear what should be left after complete evaporation: a “Planck-
scale” black hole or naked singularity?, some “Planckian particle”?, nothing? However, if
no black holes exist with masses considerably smaller than Md (primordial?), the Hawking
effect is of zero astrophysical significance, because the total time necessary for complete
evaporation comes out

´

0
ż

Min

M2 dM “

tevap
ż

0

ℏc4 dt
15360πG2

ùñ tevap “
5120πG2M3

in

ℏc4
.
“ p2.1 ¨ 1067 yearsq

ˆ

Min

Md

˙3

. (19.29)

This is only less than the age of the Universe (14 milliard years) for the initial mass Min

smaller than approximately 10´19Md “ 2¨108 tons (5 times less than has a cubic kilometre
of water).

19.4.4 Extraction of energy from a black hole

We saw the area law does not forbid extraction of (rotational and EM) energy from a black
hole. How to practically make it? Concerning the rotational energy, it is fairly clear: one can
construct a suitable rigid frame and place it around a rotating black hole; dragging will pull
it to co-rotate with the hole, so at the other end it can make some work (it may e.g. drive a
dynamo, Figure 19.2).

Let us discuss somewhat more the process which R. Penrose suggested in his famous
paper of 1969. Its core is in the fact that in the Kerr ergosphere (the area between the static
limit and the horizon) there exist orbits with negative energy with respect to infinity. If a
particle with such an energy falls into a black hole, the black-hole energy is diminished.
Imagine a body falling freely from outside to the ergosphere with some energy with respect
to infinity E, and imagine that in the ergosphere the body splits in such a manner that one
part gets on a geodesic with negative energy, E1 ă 0, and is absorbed by the hole, while the
second escapes back with some energy E2. Supposing that four-momentum (and thus energy,
in particular) is conserved in the break up, the escaping part of the body must have greater
energy than the original body, E2 ąE. And, keeping the energy of the whole system (hole +
bodies), it is clear that the energy gain goes to the expense of the black hole. Why ergosphere
is important: energy with respect to infinity is given by E “ ´pµt

µ, where the momentum
pµ is necessarily (everywhere) time-like, so the scalar product pµtµ may only yield positive
result (thus makingE negative) in a region where the time Killing vector field tµ is space-like.
The latter holds below the static limit.6

6 Note that the possibility of negative energy was already seen in Figure 19.1. Negative energy may sound
strange, but keep in mind that it is an energy with respect to a distant observer while the orbits with E ă 0
must entirely lie below the static limit. Every physical measurement, performed at the point where the particle
momentarily is, would find positive local energy of course.
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Figure 19.2 A scheme of how dragging can do its job by driving a dynamo rotor. (The dynamo
is of course firmly fixed to infinity.)

It can be verified that the particles with E ă 0 have to be counter-rotating pL ă 0q.
Consider general relations (valid for any motion in any circular space-time) directly given by
definition of the angular momentum and energy, and substitute from the former to the latter,

L “ pϕ “ gϕσp
σ

“ gtϕp
t

` gϕϕp
ϕ

ñ pϕ “
L

gϕϕ
` ωpt ,

E “ ´pt “ ´gtσp
σ

“ ´gttp
t

´ gtϕp
ϕ Ó

“ p´gtt ´ gtϕωqpt ` ωL “ N2pt ` ωL.

The quantities N2 ” ´gtt´gtϕω, pt and ω “
´gtϕ
gϕϕ

are positive outside the horizon, so E may
only be made negative by Lă0.

Exactly due to its key role in the energy extraction the ergosphere got its name (from
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Greek ϵργoν – work). Note that for a charged particle in the Kerr-Newman field,

E “ p´pµ ´ qAµqtµ “ ´pt ´ qAt “ ´pt `
qQr

Σ
,

so if qQ is negative/positive, the region where E may be negative is larger/smaller than the
ergosphere.

The Penrose process also has its wave counter-part – the so-called superradiance ef-
fect. Loosely speaking, if illuminating a rotating black hole, the scattered radiation may carry
more energy than the original, incident radiation. The gain again goes to the expense of the
black hole. Both the mechanical and the EM effect might even work practically, but since
they require rather special initial conditions, it is unlikely that they have an astrophysical sig-
nificance. On the contrary, a serious astrophysical discussion is already going on for decades
concerning the relevance of the Blandford-Znajek mechanism (1977) which is based on
interaction of a rotating black hole with an external EM field in a sufficiently dense “mag-
netosphere” (ionized environment). The key ingredient is the so-called unipolar induction
– the effect of separation of charges of different signs on a conducting sphere which rotates
in a magnetic field [M. Faraday, 1851]. If the magnetic field is parallel to the spin of the
sphere, negative charges concentrate around the poles while positive charges in the equatorial
region of the sphere.7 If attaching electrodes to the pole and the equator, one obtains volt-
age which might be used somehow if a circuit closes. It was shown (notably by [49]) that a
black-hole horizon can be regarded as a conducting sphere (its impedance is the same as that
of free space, i.e. around 377Ω) and that a similar induction effect should work there pro-
vided there is some external magnetic field (this really is supposed to exist around accreting
black holes, being generated by current loops in an accretion disc). If there is a sufficiently
dense charged-particle environment around in order that the circuit could be established, the
rotational energy of the hole might be, by means of the described “battery”, invested in mat-
ter through which the current would flow like through a machine. The Blandford-Znajek
mechanism is most often being considered in connection with the acceleration of cosmic jets
emanating from some active galactic nuclei and also from several binaries involving an ultra-
compact body. It indeed seems that jets rather occur in systems whose central objects rotate
very rapidly.

19.5 Black holes in astrophysics
6th November, 1919. London, Piccadilly, Burlington House, plenary meeting of the Royal
Society and, in particular, of the Royal Astronomical Society. A. S. Eddington and F. W.
Dyson report on the results of their two expeditions which measured positions of stars around
Sun disc during solar eclipse of 29th May. The purpose was to decide whether and how much
the light rays bend in passing by the Sun. Eddington interpreted the results as confirming
Einstein’s prediction and the society accepted that. (It was not that automatic, the less at those
times, concerning that Newton was English while Einstein was German.) An observation was
however also resonating in the hall that GR is hardly comprehensible. After the meeting, L.

7 The surface density of induced charge is σ “ BRω
8π p5 sin2 θ ´ 2q in obvious notation.
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Silberstein – considered to be one of the experts in GR – was reported to approach Eddington
in putting on cloaks, provoking: “Eddington, people have been murmuring, however, there
only exist 3 persons in the world who really understand Einstein’s theory.” [silence] “Well,
Arthur, don’t be so modest...” Then Eddington replied: “Oh no, I was just wondering who
the third one might be.”

We mentioned already, in Section 10, how less expectedly Eddington – such an early
proponent of GR – refused the picture of the gravitational collapse. He was not alone. L. D.
Landau – such a proponent of quantum theory – checked Chandrasekhar’s ideas on limited
possibilities of degenerate-gas pressure in supporting stars against their gravity, confirmed
the argument, yet concluded: “All stars more massive than 1.5Md contain regions where the
laws of quantum mechanics are violated.” He was rather willing to restrict the validity of
quantum theory than to accept the gravitational collapse.8 Actually, still at the beginning of
1970s when one of us (J.B.) started teaching this course, the black holes were not the best
conversation topic for an astronomical conference. How different the situation is today. It is
hard to follow even a narrow part of relativistic astrophysics. Black holes have become yet
another celestial bodies, rather boring in comparison with wormholes, loops, strings, branes,
time machines...

Above, we quoted Thorne on how 1964 was a watershed in the history of black holes
thanks to the new mathematical approach suggested by Penrose. Just at the same period,
several astronomical discoveries (X-ray sources 1962, quasars 1963, pulsars 1967) made an
even stronger kick. Besides, in 1963, Kerr found his solution later included in models of
many of these high-energy sources. Already in 1964 people (Zel’dovich, Salpeter) suggested
accretion onto black holes as a possible strong and long-term source of energy for quasars
and X-ray sources. In 1969, Lynden-Bell described the picture of active galactic nuclei driven
by supermassive black holes. In 1973, Shakura & Sunyaev provided a Newtonian model of
an accretion disc, and Novikov & Thorne added its relativistic version living in the Kerr
space-time. This is a very short sketch of the beginning of a new research area – relativistic
astrophysics.

For an astrophysical study of black holes, it is crucial whether they have anything to

8 Also symptomatic is to follow A. Silberstein’s world-line somewhat further. He actually started studying
relativity years before Eddington – he already wrote “The Theory of Relativity” textbook in 1914, later expand-
ing it by the GR part. On Wikipedia, Silberstein is thus acknowledged as a “Polish-American physicist who
helped make special relativity and general relativity staples of university coursework”. Still later, facing pre-
dictions of the theory, he became doubtful, and finally wrote to Einstein, in 1935, that he had found a solution
the theory admits but which apparently was wrong. It was the static and axially symmetric configuration of two
particles fixed at some distance from each other. Such a configuration was not supposed to exist (as a static solu-
tion), because the particles would certainly fall towards each other due to their mutual attraction. Einstein tried
to explain the point, but Silberstein, unconvinced, did not resist publishing the paper “Fatal blow to relativity
issued here” in Toronto’s newspaper The Evening Telegram (!) of March 7, 1936. The solution in fact highlights
the cleverness of the field equations: they do recognize that such a system cannot stay in equilibrium and add a
supporting “strut” between the particles (a singularity along their connecting line); one actually can adjust the
metric so that the axis between the particles remains regular, but then, on the contrary, the parts of the axis lying
“behind” the particles turn singular – physically, the particles “hang from infinity” (instead of being supported
by the strut lying in-between). However, L. Silberstein also contributed positively in many respects, especially
to clear mathematical formulation of physical topics. For example, J. L. Synge about whom we mainly wrote in
section on geodesics, was apparently much influenced by Silberstein’s lectures in Toronto.
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interact with. Namely, a black hole is the deepest possible potential well, so everything
incoming there has a huge potential – and then kinetic – energy. Being driven by the hole’s
strong gravity and by its own orbital angular momentum (thus by centrifugal force), such a
matter typically forms an accretion disc. Since, at least around stellar-mass black holes, the
field is very non-homogeneous, the orbital velocity of matter quickly falls off with radius,
which leads to an efficient viscous release of binding energy due to a significant friction
between neighbouring orbits.9 The matter thus heats up to high temperatures; for stellar-
mass black hole, inner parts of the disc have about 107K and shine strongly in the X-ray band;
for supermassive black holes, the field is much more homogeneous and the temperature only
reaches about 105K. Another effect of viscous torques is that the angular momentum of
matter is transported out and the matter gradually spirals towards the centre. From about the
innermost stable circular orbit (which in Schwarzschild is on r“6M , for example), it rather
quickly falls to the hole (if it is not expelled away due to some local release of energy).

Therefore, although the black holes are mainly known by their tendency to capture
everything, in modern astrophysics they operate as engines of the most energetic sources.
X-ray sources are widely interpreted as black holes or neutron stars accreting matter from
their “ordinary” stellar companions due to a stellar wind or a Roche-lobe overflow. Nuclei
of galaxies showing extraordinary activity (their luminosity may be as high as 104˜5 normal
galaxies although chiefly generated in a region smaller than the Solar system) are very likely
driven by supermassive (106˜10Md) black holes accreting gas from the environment of the
nucleus and (from) stars of the central cluster. Several subclasses of active galactic nuclei
(AGNs) have been recognized, probably differing mainly in angle under which the active
nucleus is observed – blazars (lacertids), quasars, Syfert galaxies and radiogalaxies. Some
of the hole-disc systems produce jets of matter and radiation leaving the core – often in
relativistic speeds – along its rotational axis, and typically reaching far into the intergalactic
space without losing their collimation. Besides hydrodynamics, jets (and accretion discs
themselves) are probably governed by magnetic fields. Actually, though without considerable
global charge, discs appear to be able to maintain very strong azimuthal electric currents as a
result of magneto-rotational instability. Thus generated magnetic field is supposed to play a
role in the Blandford-Znajek mechanism (rather “electrodynamism”) already outlined above.
Advanced MHD simulations support the belief that the above accretion mechanism can be
efficient on stellar as well as galactic scales.10

The accreting- black-hole (or neutron-star) interpretation, first just based on energy-
budget considerations and the phenomenon of jets, has since been supported by a number of
detailed observations and arguments: short variability of the active sources evidences their
small size, broader velocity distribution evidences the presence of a compact object, charac-
teristic shape of the spectrum with lines deformed by Doppler effect, gravitational redshift,
aberration and lensing evidences the presence of a very strong field, or quasi-periodic oscil-
lations whose frequencies reasonably agree with characteristic times of a system dominated

9 The efficiency may indeed reach several tens percent, much more than that of nuclear burning.
10 However, jets as such rather seem to be tied to rotating structures than necessarily to a magnetic field.

Actually, directional outflows following the rotational axis are also known from protostars or from pulsars (a
suggestive time-lapse video can be found of an outflow from the Crab-nebula pulsar).
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by a compact body. Polarimetric measurements map the flow of plasma and magnetic fields
in the systems. Different aspects of behaviour of the studied sources are typically time-
correlated, which indicates that the sources switch between several accretion regimes, mainly
in dependence on supply of the material to the black-hole vicinity.

However, some black holes are not interacting strongly and some factually live com-
pletely isolated. Most of “normal” (inactive) galaxies turned out to also likely have super-
massive black holes in their centres. Actually, it is the fairly calm nucleus of our Galaxy (the
Sagittarius A˚ source) where the presence of a black hole (of mass 4.25 ¨ 106Md) has been
most clearly evidenced observationally – on the basis of direct tracking of star orbits in its
vicinity. In recent years, a new family of “dark” black holes has been discovered thanks to the
detections of gravitational waves: most of the GW events yet recorded have been interpreted
as emitted during the last phases of inspiral (merger) of two rather massive black holes (tens
to almost hundred Md). The events were not observed in EM radiation, so it is clear that
the black holes involved were not surrounded by an environment, so the gravitational signal
was the only chance to discover them. Still there is one possibility how to come across even
a completely isolated black hole – via gravitational lensing. Not speaking about how highly
improbable such an event would be, it is possible in principle that some lensing events will
be detected without a visible lensing object.

The above accretion scenario with energetic jet outflow is also mostly accepted as a
model of gamma-ray bursts (GRBs), first detected in 1967 but only properly interpreted
in the 1990s. These flashes of gamma radiation are registered to happen isotropically over
the sky, obviously (luckily) coming from cosmological distances and (thus) belonging to the
most energetic events in the Universe (in which up to about a solar-mass equivalent of energy
can be released). Interestingly, two families of these phenomena clearly exist, one typically
lasting just fractions of a second while the other being longer (sometimes even of the order of
weeks to months, though in softer-than-gamma bands in later times), with the dividing line
lying around 2 seconds. The longer GRBs are being explained as produced in a gravitational
collapse of a massive-star nucleus: due to gravitation and centrifugal force, a central region
where thermonuclear reactions have halted collapses to a dense disc of some 100 km with a
black hole (or maybe a neutron star) occurring at its centre; the disc partially falls to the hole
just formed but partially is ejected in jets along the rotational axis; these jets break through
the outer stellar envelope, which leads to an extreme heating detectable in gamma radiation
(later gradually softening) if observed just in counter-direction. The short GRBs are being
interpreted as final phases of a merger of two neutron stars (or of a neutron star and a
black hole): in such an event, the neutron star deforms/disintegrates in an ultra-dense neutron
“accretion disc” which in a fraction of a second collapses to a black hole, with a certain
part again ejected – with extreme energy – along the rotational axis of the system; from
counter-directions, the collimated explosions appear as gamma-ray flashes. The scenario
just described is chiefly celebrated as a strong source of gravitational waves (the waves are
however mainly emitted along the plane orthogonal to the rotational axis of the system).

Thanks to current computer facilities, the accretion-ejection models already involve
many MHD, radiation-transfer and chemical details. What still remains to be provided is
a more accurate answer to where and how jets are formed, in particular, how important is
the Blandford-Znajek and/or other electrodynamic mechanisms, as e.g. those of magnetic
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reconnection. It is also to be clarified how exactly pure hydrodynamics, electromagnetism
and radiation effects co-operate in the collimation of jets over such an enormous range of
scales. In general, the questions of stability of accretion flow (and actually of the accreting
objects as well) against various possible perturbations are neither answered completely. The
second group are the evolution problems. Had the first black holes been generated solely by
collapse of nuclei of the first generation of stars? Or were there (also) any “primordial” black
holes? How such a huge black holes could already exist less than a milliard years after the
big bang? How frequent are/were such black holes and how often they were interacting and
merging? Did these black holes act as seeds for galaxies, or did most of the supermassive
holes rather form together with their galaxies (or even later)? How exactly the nuclear black
holes interact with their galactic surroundings over the cosmic ages? How so many young
stars may have occurred in the vicinity of the black hole in our Galactic centre (if it was
thought that in galactic nuclei conditions are not favourable for star formation)? Has our
Galactic centre always been “quiet”, or has is ever gone through an active period? How
(un)common are intermediate-mass black holes (with 100 ˜ 10000Md)?

New input into the above queries is expected from gravitational-wave observations.
Actually, the waves have already brought a surprise in how massive black holes apparently
float, otherwise hardly detectable, out there in empty space. Of several dozens of existing
gravitational-wave events, almost all have been interpreted as mergers of stellar black holes
of larger masses than those yet identified through EM (mostly X-ray) observations, with an
almost 150Md hole announced to result from one of the events.

And hard not to mention the last big observational result – the 2019’ publication of the
first silhouette of the black hole in the nucleus of the M87 galaxy. In fact nothing new was
discovered, the extreme-resolution radio measurements just confirmed what was expected,
but this observation had a great symbolic meaning – in a sense, it culminated one whole
period of black-hole research. And, undoubtedly – similarly as the detection of gravitational
waves (plus many others) – it further confirmed Einstein’s incredible legacy.
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CHAPTER 20

Relativistic stellar models

Preceding chapters were devoted to extreme implications of GR – the black holes. However,
relativistic effects can also play a role in the physics of stars, especially at the end of their
thermonuclear evolution when their central part typically contracts to a very dense object.
These compact remnants – white dwarfs and neutron stars (if not black holes) – will be
discussed in the next chapter. Here we’ll go through the main items of the relativistic theory
of stellar structure. This part is widely based on Kip Thorne’s exposition [47], and the radial-
oscillation section 20.4 follows section 26 of [29].

20.1 Separation of short-range and long-range forces
Speaking of stellar structure means speaking of stellar interior, thus of non-vacuum region.
This in itself implies that the problem will be more complicated (than the vacuum problem),
because the field equations will be non-homogeneous, with some energy-momentum tensor
on the right-hand side. However, more important is that the “interior solution” is not only
governed by gravity – it brings other branches of physics on scene: thermodynamics, hy-
drodynamics (or kinetic theory), electrodynamics and radiation, nuclear and particle physics.
Sure that one need not “support” all these properly, but crucial is that the “microphysics”
might be coupled to gravitation in a complicated way. Imagine, for example, that the equation
of state, thermonuclear reactions or Compton-scattering cross section depend on curvature.
In such a case, Einstein equations would already be involved in the “microphysics” and the
problem would be hopelessly entangled.

You should remark now that at the beginning of GR we assumed, in the equivalence
principle, that this is not the case – that curvature does not enter physical laws (otherwise
it would not in general be possible to transform out gravity completely by going over to
the local inertial frame). Exactly. Now we can check what such an assumption physically
means. Clearly it is the question of scales: curvature would be coupled to microphysics if
its characteristic length scale were not large in comparison with the micro-scale(s). It is thus
important to compare the length scale of curvature with those of physical processes going on
in the matter.

337
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• Nuclear forces:
Characteristic length of nuclear forces is given by classical size of nucleons, i.e. „ 10´13cm.

• Compton wavelength:
For a particle of rest mass m, the (reduced) Compton wavelength reads λ̄C “ ℏ

mc
. This

scale is a natural unit (of reciprocal mass) in the quantum theory, but in the theory of
relativity it plays an important role as well. Namely, from the Heisenberg uncertainty
relations ∆x∆p Á ℏ one knows that if something is more and more restricted in space, its
momentum uncertainty has to grow, and thus the mean value of momentum has to grow
either. If a particle is confined down to the size of its reduced Compton wavelength, one
finds

∆x „
ℏ
mc

ñ ∆p Á
ℏ
∆x

„ mc ñ p Á mc ,

so the particle becomes relativistic.

• Electromagnetic interaction:
For a globally neutral matter (in which atomic nuclei and electrons are distributed roughly
uniformly, without accumulation of charges of the same sign), the characteristic length of
EM interaction is approximated by the distance between nuclei. Denoting by mN the mass
of nuclei and by ρ the rest-mass density, then pρ{mNq represents the number of nuclei in a
unit volume, so pmN{ρq is the volume per one nucleus and pmN{ρq

1{3 is the characteristic
distance between nuclei.

• “Macroscopic element” of matter:
“Infinitesimal elements” of the macroscopic theory should correspond to sufficiently large
real elements of matter, in order that the quantities come out properly smooth after averag-
ing over them and in order that they do not suffer significant fluctuations (the fluctuations
are known to be proportional to 1{

?
N , where N is the number of particles in a system).

Hard to decide precisely what already is a sufficiently “macroscopic” piece, but let us take
an element containing 1021 atoms (for hydrogen this represents some 1{600 of gram). From
previous estimate, we obtain the characteristic size p1021mN{ρq

1{3
“ 107 pmN{ρq

1{3.

• Gravitation (curvature):
The characteristic scale of curvature is the radius of curvature, given by 1{

?
R , with R

the curvature. For Λ “ 0, the Einstein equations are traced to ´R “ 8πG
c4
T , which for

T „ ´ρc2 (exactly valid for incoherent dust) yields R„ 8πG
c2
ρ, so thus the curvature radius

1?
R

„ c?
8πGρ

.

With growing density, the curvature radius decreases the fastest, yet still only reaches the
micro-scales at extremely high densities. The “quantum” length scales (nuclear-force scale
and reduced Compton wavelength) are density-independent. Of the micro-scales, for ρ Á

1028 g{cm3 the largest is the reduced Compton wavelength of an electron λ̄Cpeq „ 10´11cm,
while for ρÀ1028 g{cm3 the largest is the “macroscopic element” 107 pmN{ρq

1{3, so these are
to be compared to the curvature radius within the respective density ranges. The comparison
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ρ [g/cm3]

length
[cm]

reduced Compton
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Figure 20.1 Comparison of the length scales in a logarithmic graph ranging from cosmological

values of density („ 10´29g{cm3) to extremely high values. Curvature radius is seen to be safely

greater then the micro-scales up to some 1035˜40g{cm3.

is summarized in Figure 20.1, with the nuclear mass represented by that of a proton (mN “

mp).

Conclusion For ρ! 1047g{cm3, the length-scales of “short-range” forces are (really) much
shorter than the curvature length-scale, so in local reasoning it is absolutely fine to use or-
dinary results of non-gravitational physics, and to only take into account GR in a global
scale. The opposite only holds at very initial moments after the big bang and at the very final
moments of a complete gravitational collapse.

Remarx: When speaking of the characteristic length of an EM interaction, the Debye length
may have occurred to you, which quantifies a characteristic scale of the exponential (Yukawa-
type) cutoff describing shielding of the electrostatic potential of a charged particle placed in
an overall neutral plasma. The formula is

λD “

c

kT

4πn̄e2
»

d

m̄BkT

4πρe2
,

with n̄ the mean number density of electrons and protons. (For a degenerate charged gas, one
uses its Fermi energy instead of kT .) One can thus estimate that λD is of the order of 10´12cm

in a neutron star, 10´10cm in a white dwarf, 10´9cm in the solar core, 10´4cm in the solar
atmosphere, 10 m in an interstellar space, and 105m in an intergalactic space. Comparing with
Figure 20.1, one sees that λD is generally orders of magnitude shorter than the macroscopic
element.

Another length-scale, important as an indicator of “how much quantum” is the gas, is
the thermal de Broglie wavelength

λdBth “
h

?
2πmE

,
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E standing for a typical kinetic energy of a given kind of particles. If it is much smaller
than the typical inter-particle separation, the gas behaves as a classical, Maxwell-Boltzmann
gas. In the opposite case, the wave functions of the particles overlap and quantum effects
are important; such a gas follows the Fermi-Dirac or the Bose-Einstein description. The
formula generally yields very small values: À 10´12cm for neutrons in a neutron star, about
10´10cm for electrons in a white dwarf (again, the pertinent Fermi energy is important instead
of thermal energy kT for these degenerate objects), about 10´9cm for electrons in the Sun,
and 5 ¨10´8cm for an interstellar medium. (For an intergalactic space, it varies a lot, since
the temperature of plasma there ranges from 1 to some 108 K.) Anyway, the de Broglie wave-
length does not depend on density (or only indirectly, like in objects supported by degenerate
gas).

20.2 Description of a static spherically symmetric star
As often admitted, there is little hope that an analytical solution of Einstein equations will
ever be found which would describe a realistic, rotating extended body. Even a stationary
and uniform (rigid-body) rotation has yet been exactly solved in a thin-disc limit only. Hence,
no surprise that this introductory chapter on relativistic stars will restrict to non-rotating,
spherically symmetric case. The star will be allowed to really act like a star, i.e. to generate,
transport and release energy in non-stationary processes, but its gravitational field (metric)
will be assumed to be static. Remembering the result (12.4), we can state right away that the
metric will have the form

ds2 “ gttprqdt
2

` grrprqdr
2

` r2pdθ2 ` sin2 θ dϕ2
q , (20.1)

where we will parametrize

gtt “ ´e2Φprq, grr “
1

1 ´
2mprq

r

, (20.2)

with Φ representing Newtonian-like gravitational potential (in the Newtonian limit, i.e. for
Φ!1, one has gtt “ ´1 ´ 2Φ as it should be) and mprq representing mass in the sphere with
radius r (this follows from the experience with Schwarzschild). The gravitational field will
thus be described by two functions of radius, Φprq and mprq, with the latter having the value
M for rěR (radius of the star).

In total, the structure of the static, spherically symmetric star containing B types of
baryons will be described by 16`3B quantities depending on the radial coordinate (area
radius) r and on proper time τ of clocks staying at rest at a given r. Note that the “differ-
ent types of baryons” does not mean protons and neutrons, but nucleons in different nuclei.
Therefore, B“ 2 for a star containing just hydrogen and helium, while Bą 2 for a star also
containing higher elements.

20.2.1 Basic numbers

• A p“constq is the total number of baryons in a star,
Ak is the total number of “type-k” baryons (k “ 1, . . . , B) and
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Zk :“Ak{A is the corresponding fractional abundance.
Naturally,

ř

k Ak“A and
ř

k Zk“1.

• The number of baryons in a sphere of radius r will be denoted by aprq and the proper
number density of baryons by n, so

aprq “

ż

V

n dV “

2π
ż

0

π
ż

0

r
ż

0

n
?
grrgθθgϕϕ drdθdϕ “

r
ż

0

4πr2n dr
b

1 ´ 2m
r

ðñ
da

dr
“

4πr2n
b

1 ´ 2m
r

. (20.3)

The assumed conservation of the baryon number A is locally ensured by the continuity
equation

pnuµq;µ “
dn

dτ
` nuµ;µ “ 0 . (20.4)

20.2.2 Thermodynamic quantities

• m̄k ... mean rest mass of type-k baryons, equal to the rest mass of the type-k nucleus (in a
ground state) divided by number of nucleons in that nucleus

• m̄b ... mean rest mass of baryons,

m̄bA “
ÿ

k

m̄kAk ùñ
ÿ

k

m̄kZk “ m̄b .

In a thermonuclear synthesis, the nuclei get over their mutual Coulomb repulsion and are
bound by strong nuclear force. Synthesis provides energy if the nucleons get in a deeper
potential well in it, which is the case from hydrogen up to iron and nickel. This means that
the mass defect per nucleon grows during the thermonuclear evolution, so m̄b decreases.

• ϵ ... proper density of internal energy

• ρ ... proper density of total energy, ρ “ m̄bn ` ϵ (rest + internal)

• P ... pressure (P “0 identifies the stellar surface, r”R)

• T ... temperature (also supposed to vanish at the surface)

• s ... entropy per baryon ... for instance, according to statistical definition, s “ k lnW ,
where k is the Boltzmann constant and W is the number of all possible (quantum) states
of a baryon (of given type) divided by the number of those baryons; hence, for type-k
baryons,

W “
1

Ak

phase-space volume
volume per one fermionic quantum statep“ h3q

p2s ` 1q ,

where p2s` 1q is the number of fermions (with all possible different projections of spin s)
which can occupy the elementary cell h3.



342 20. RELATIVISTIC STELLAR MODELS

20.2.3 Nuclear & radiation characteristics

• nuclear chemical potentials ... µkpρ, n, s, Z1, ..., ZBq

• rates of nuclear-abundance change ... αkpρ, T, Z1, ..., ZBq :“ dZk

dτ

pclearly
ř

k Zk “ 1 ùñ
ř

k αk “ 0q

• rate of thermonuclear-energy generation ... q :“ ´
dm̄b

dτ
“ ´ d

dτ

ř

k m̄kZk “ ´
ř

k m̄kαk
(remember that m̄k do not change – they denote baryons in different nuclei)

• q generated in the form of neutrinos ... qpνq

• total luminosity at r (power which passes the sphere of radius r) ... Lr

(total energy which crosses the sphere of radius r, measured by static observers at that
radius, in a unit of their proper time τ ; it includes all kinds of energy transport – radiation,
conduction, convection, neutrinos)

• neutrino luminosity (neutrino part of Lr) ... Lpνq
r

• radiative absorption coefficient (per unit mass) ... κradpρ, T, Z1, . . . , ZBq.
When multiplied by ρ, it represents the fractional attenuation per unit proper distance of
the intensity of a beam of light, i.e., as expressed by the equation of radiative transfer,

dIrad
dl

“ ´κradρIrad ,

where the radiation intensity Irad represents radiative Lr per unit proper area and dl is the
proper-distance element.

• thermal conductivity coefficient ... λcondpρ, T, Z1, . . . , ZBq

It relates the heat-conduction energy-flux density (intensity of conductive luminosity) to
the temperature gradient,

I⃗cond “ ´λcond∇⃗T .

(Note: in the introduction of the above coefficients, no gravitation is taken into account.)

20.2.4 Description summary

The structure of a static and spherically symmetric star containing B types of baryons has
been described by 16 ` 3B quantities:

Φ, m; n, a, m̄b, ϵ, ρ, P , T , s, q, qpνq, Lr, L
pνq
r , κrad, λcond; Zk, µk, αk (k “ 1, . . . , B) .

The equilibrium behaviour of these quantities is governed by 16`3B equations. Some of the
equations follow directly from definition of the respective quantities (like that for the number
of baryons aprq, or

ř

k Zk “ 1 and
ř

k αk “ 0), some are algebraical (e.g. ρ “ m̄bn` ϵ) and
some (seven, exactly) are differential. The latter are treated in the following section.
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20.3 Equations of stellar equilibrium
20.3.1 Equation for mass and equation for gravitational potential

From the GR point of view, we are mainly interested in the gravitational field. It is described
by the metric functions m, Φ and these are determined by the Einstein equations. We already
know how their left-hand side looks in the spherically symmetric case from the chapter about
Schwarzschild solution – non-zero are the components (12.5) of the Einstein tensor; here,
assuming staticity, we can omit time derivatives in addition, so Gtr is zero trivially and only
two relevant equations are left. We will describe the stellar matter as ideal fluid, so T µν “

pρ ` P quµuν ` Pδµν , where the fluid’s four-velocity has spherical-coordinate components

uµ “

ˆ

1
?

´g00
, 0, 0, 0

˙

“
`

e´Φ, 0, 0, 0
˘

, uµ “ p´
?

´g00 , 0, 0, 0q “
`

´eΦ, 0, 0, 0
˘

.

The “tt” and “rr” field equations thus read

Gt
t “ 8πT tt : ´

r dgrr
dr

` grrpgrr ´ 1q

r2pgrrq2
“ ´8πρ ,

Gr
r “ 8πT rr :

r dgtt
dr

´ gttpgrr ´ 1q

r2gttgrr
“ 8πP .

Substituting here (20.2), i.e. dgrr
dr

“ 2pgrrq
2
`

1
r
dm
dr

´ m
r2

˘

, dgtt
dr

“ 2gtt
dΦ
dr

, grr ´ 1 “ 2grr
m
r

,
one arrives at equations

dm

dr
“ 4πr2ρ ... equation for mass , (20.5)

dΦ

dr
“
grr
r2

pm ` 4πr3P q “
m ` 4πr3P

rpr ´ 2mq
... equation for potential . (20.6)

Equation for mass is clear at first sight – it is just the same as in the Newtonian case
–, but exactly because of this it is unclear at second sight: in GR, one would expect in it the
element of proper radial distance

?
grr dr rather than just the coordinate element dr! Namely,

one would expect the mass mprq to be related to its proper density ρ in a similar manner as
the number of baryons aprq is related to its proper density n through equation (20.3). Let us
rewrite the mass equation in an integral form and try to understand it in terms of integration
over proper volume V :

m “

r
ż

0

4πr2ρ dr “

r
ż

0

4πr2ρ
b

1 ´ 2m
r

c

1 ´
2m

r
dr “

ż

V

ρ

c

1 ´
2m

r
dV “

“

ż

V

ρ

˜

1 ´ 1 `

c

1 ´
2m

r

¸

dV “

ż

V

ρ dV ´

ż

V

ρ

˜

1 ´

c

1 ´
2m

r

¸

dV .

The first term represents the rest + internal energy of gravitationally non-interacting baryons.
The second term becomes understandable in the weak-field limit (r " m) when one can
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approximate
b

1´ 2m
r

.
“ 1´ m

r
and rewrite

´

ż

V

ρ

˜

1 ´

c

1 ´
2m

r

¸

dV
.
“ ´

ż

V

ρm

r
dV .

This is clearly the gravitational potential energy of the baryons integrated over the given
sphere. Hence, the density ρ is “in fact” integrated over proper volume, which naturally
yields greater result than in the Newtonian case (because grr ą 1), but this excess is exactly
compensated by the (negative) contribution of the gravitational binding energy.

20.3.2 Tolman-Oppenheimer-Volkoff equation

This chapter is about stellar equilibria, so central should be the equilibrium equation. Since
we describe the stellar matter as ideal fluid, we know how such an equation should look – it is
the equation for hydrostatic equilibrium (7.38), expressing balance between gravitational
and pressure-gradient forces. In the spherically symmetric case, the equilibrium equation
reads ´dP

dr
“ pρ ` P qdΦ

dr
. Substituting there the potential gradient from (20.6), we arrive at

the Tolman-Oppenheimer-Volkoff (TOV) equation

´
dP

dr
“

pρ ` P qpm ` 4πr3P q

rpr ´ 2mq
. (20.7)

Comparison with the classical equilibrium equation

´
dP

dr

ˆ

“ ρ
dΦ

dr

˙

“
ρm

r2

evinces that the GR equation involves three extra terms:

• There appears pρ` P q instead of just ρ. This comes from the Tµν and we already know its
meaning from the Euler equations of motion (7.33) – the pressure contributes to the density
of inertial mass.

• There appears pm ` 4πr3P q instead of just m. This term comes from equation (20.6)
for the gravitational field, from where it is clear that it tells that pressure also contributes
to the density of gravitational mass – pressure generates gravitation. That has been ex-
pected actually, certainly from the equivalence principle, but “naively” as well: pressure
is an effective term for mechanical interaction between elements of the fluid, and the cor-
responding interaction energy has to generate gravitation, similarly as any other kind of
energy. A positive pressure corresponds to “repulsion” between the fluid particles (the
corresponding interaction energy is positive), so it generates attractive gravity similarly
as positive density. A negative pressure (tension) induces gravitational repulsion on the
contrary.
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• There appears rpr´2mq instead of just r2 in the denominator. This factor we already know
from the Schwarzschild metric, it represents curvature of space – in changing the surface
of a sphere r“const, the sphere’s proper radius changes p1 ´ 2m{rq´1{2-times more than
if the space were flat (see Section 14.1.2).

All the three terms make the right-hand side of the equation bigger, which means that

the life of a relativistic star is heavier than that of a classical star :

to balance its gravity, it needs larger pressure gradient. Not only that. We see that larger
gradient implies larger value of pressure after every successive step towards the stellar interior
– and larger value of pressure makes the pressure gradient still larger, etc. The pressure is
sometimes said to be playing a regenerative role in the TOV equation (its value and gradient
stimulate each other). Consequently, the pressure has to grow towards the star centre steeper
than in classical physics. The question arises naturally whether the equilibrium is always
possible at all. To answer it, one has to integrate the TOV equation and compare the result
with the corresponding integration of the classical equilibrium equation. This typically is
far from easy, because the TOV equation is in general coupled to other equations of stellar
structure in a rather complicated way.

Integration of the TOV equation for uniform density

However, let us perform a very rough check: how the relativistic and classical equilibria differ
for a uniform density, ρ“constą0 for 0ďrďR and ρ“0 for rąR). In such a case, there is
no coupling between equations, because the mass is found immediately as

mprq “
4

3
πr3ρ , especially M :“ mpRq “

4

3
πR3ρ ,

which makes (20.7) read

´
dP

dr
“

pρ ` P q
`

4
3
πr3ρ ` 4πr3P

˘

r
`

r ´ 8
3
πr3ρ

˘ “
4

3
πr

pρ ` P qpρ ` 3P q

1 ´ 8
3
πr2ρ

ùñ ´
ρ dP

pρ ` P qpρ ` 3P q
“

4
3
πrρ dr

1 ´ 8
3
πr2ρ

. (20.8)

After substitution

x2 ”
8

3
πr2ρ and denoting x2pr“Rq “

8

3
πR2ρ “: X2 ,

the integration from the surface (r“R, given by P “ 0) to a given radius (0ď rďR, P ě 0)
appears as

´

0
ż

P

ρ dP

pρ ` P qpρ ` 3P q
”

P
ż

0

ρ dP

pρ ` P qpρ ` 3P q
“

1

2

X
ż

x

x dx

1 ´ x2
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and results in

1

2
ln
ρ ` 3P

ρ ` P
“

1

4
ln

1 ´ x2

1 ´ X2
ùñ P “ ρ

?
1 ´ x2 ´

?
1 ´ X2

3
?
1 ´ X2 ´

?
1 ´ x2

. (20.9)

This result was reported to Einstein by K. Schwarzschild on 6th February 1916, still from
Russia, after one of his “walks into your [Einstein’s] land of ideas”. Its most important
feature is that it may come out infinite. The latter would happen if

P prq Ñ 8 ô 3
?
1 ´ X2 “

?
1 ´ x2 ô 9X2

“ 8 ` x2 .

The most endangered is the star centre (x“0), where the condition gives

X2
“

8

9
ô R “

1
?
3πρ

, in physical units R “
c

?
3πGρ

. (20.10)

Hence, a star with a given constant density cannot be arbitrarily big – if its radius exceeded
the above value, it would not be possible to balance its gravitation by any finite pressure
profile. We are not saying that exactly this value is crucial for real stars, because ρ“const is
not a very realistic circumstance (besides other, it is called non-causal, since it corresponds
to infinite speed of sound

a

BP {Bρ ) and because it turns out that GR more affects stability
that equilibrium itself, but it is interesting to check whether real stars at least “feel” this limit
– whether it is not orders of magnitude larger than actual size of stars. It is not – for a neutron
star, for example, the typical density is the nuclear one, ρ .

“ 2.3 ¨ 1014g{cm3, and the above
limit reads

R
.
“ 25km

ˆ

ùñ M “
4

3
πR3ρ

.
“ 7.5Md

˙

.

Real neutron stars have about R»10km, M»1.5Md. For normal stars the limit is very large,
and even white dwarfs almost do not “feel” it – for their typical density ρ .

“ 106g{cm3, the
critical radius is R .

“ 3.8 ¨ 105km and the corresponding mass about 1.1 ¨ 105Md (real white
dwarfs have about 7000 km and 1Md).

Last but not least, we should show that the above limitation is really new in GR, that
it does not happen in classical equilibria. Substituting ρ “ const (thus m “ 4

3
πr3ρ) to the

classical equilibrium condition ´P,r “ ρm{r2, we have

´
dP

dr
“

4

3
πρ2r ùñ P prq “

2

3
πρ2pR2

´ r2q . (20.11)

Therefore, inside a finite classical star, the equilibrium pressure is everywhere finite.
Anyway, a more serious limit for the mass of white dwarfs and neutron stars will be

mentioned in Section 21.5 when we will better know how the pressure is being maintained in
these extremely dense objects.
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20.3.3 Equations of state and integration of the stellar-equilibrium equa-
tions

In reality, one cannot prescribe ρprq (the less ρ“const), it should be given as a part of solution
of the equilibrium problem. One thus has three unknown functions – ρprq, mprq and P prq –
while only two equations (the TOV equation and the equation for mass). The remaining input
is standardly provided by an equation of state for P . However, besides ρ, the pressure also
depends on n, s andZk, so all the thermodynamical side of the problem (eventually dependent
on temperature) comes into the play. Let us have a look how to describe the thermodynamic
state of matter in GR. It can be done in two basic ways:

• Fundamental equation ρ “ ρpn, s, Zkq.
This is the equation whose differential is the 1st law of thermodynamics. The latter’s usual
form

dU “ ´PdV ` TdS `
ÿ

k

µkdAk

can in terms of our quantities be written, for some macroscopic element containing δA“

const baryons, as

d

ˆ

ρ
δA

n

˙

“ ´Pd

ˆ

δA

n

˙

` Tdps δAq `
ÿ

k

µkδA dZk ,

where we have used that 1
n

is the proper volume per one baryon, so δA
n

is the total volume
of the element and ρ δA

n
is its total energy. Since δA is supposed to be constant, we may

divide by it and obtain

dρ “
ρ ` P

n
dn ` Tnds ` n

ÿ

k

µkdZk . (20.12)

The first law implies pB ` 2q equations
ˆ

Bρ

Bn

˙

s,Zk

“
ρ ` P

n
,

ˆ

Bρ

Bs

˙

n,Zk

“ Tn ,

ˆ

Bρ

BZi

˙

n,s,Zk‰i

“ nµi . (20.13)

The first of these equations is tightly connected with adiabatic indices. Adiabatic index is
defined as the ratio of the heat capacity at constant pressure to heat capacity at constant vol-
ume. In the stellar theory, definitions introduced by Chandrasekhar are usually employed
(which all reduce to the ratio of heat capacities in the ideal-gas case),

Γ1 :“

ˆ

B lnP

B lnn

˙

s,Z1,...,ZB

“

ˆ

B lnP

BP

BP

Bn

Bn

B lnn

˙

s,Z1,...,ZB

“
n

P

ˆ

BP

Bn

˙

s,Z1,...,ZB

or
“

or
“
n

P

ˆ

BP

Bρ

Bρ

Bn

˙

s,Z1,...,ZB

“
ρ ` P

P

ˆ

BP

Bρ

˙

s,Z1,...,ZB

, (20.14)

Γ2 :“

«

1 ´

ˆ

B lnT

B lnP

˙

s,Z1,...,ZB

ff´1

, (20.15)
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Γ3 :“ 1 `

ˆ

B lnT

B lnn

˙

s,Z1,...,ZB

“ 1 `

ˆ

B lnT

BT

BT

Bρ

Bρ

Bn

Bn

B lnn

˙

s,Z1,...,ZB

“

“ 1 `
ρ ` P

T

ˆ

BT

Bρ

˙

s,Z1,...,ZB

.

• pB ` 2q equations of state

P “ P pρ, n, s, Zkq , T “ T pρ, n, s, Zkq , µi “ µipρ, n, s, Zkq . (20.16)

The thermodynamical equations are in general coupled to other stellar-structure equations in
a complicated way. Sure: in particular, the P “ P pρ, n, s, Zkq equation of state can only
be simplified to P “ P pρq if knowing the relations ρ “ ρpnq “ ρrn, spnq, Zkpnqs and P “

P rn, spnq, Zkpnqs, but that requires to know how exactly are connected the thermonuclear
reactions, energy generation, energy transport and entropy distribution. This is given by
equations for thermonuclear energy generation, for thermal equilibrium, for the transport of
energy... Some of these we will address below.

However, from the GR point of view, the most interesting stars are dead stars, i.e. those
whose nuclei have already finished their thermonuclear evolution. The lack of energy gen-
eration leads to a significant decrease of radiation pressure, which results in a considerable
gravitational contraction of such a nucleus. The final destination of the nucleus mainly de-
pends on its mass, but there appear to be three robust options – contraction to a white dwarf,
collapse to a neutron star, or total collapse to a black hole. In white dwarfs as well as in neu-
tron stars, basically no thermonuclear reactions take place, and the pressure-gradient which
has halted further contraction is maintained, thanks to the Pauli exclusion principle, by a de-
generate fermion gas (of electrons or neutrons) rather than by thermal motion of particles. In
very short, in such a stage “temperature is not important”, and thus “thermodynamical” equa-
tions become trivial (or at least decoupled from the other equations). This approximation is
being called the state of cold catalysed matter – it is the matter which has exhausted all the
energy resources available under given conditions and which resides in an energetic mini-
mum. In such a matter, the relative baryon abundances are not changing (Zk“const, αk“0),
thus no thermonuclear energy is generated (q“0, qpνq “0), so there is also no energy output
(Lr “ 0, Lpνq

r “ 0); and provided that the Fermi-type energy resulting from compression of
fermions dominates kT (which is largely satisfied in white dwarfs and neutron stars), one can
also neglect temperature and entropy (T “ 0, s“ 0). Consequently, the above equations of
state reduce to just P “ P pρq and the whole system of differential equations reduces to the
TOV equation, the equation for mass and the P pρq equation of state for the functions P prq,
mprq and ρprq as unknowns.

Even in the limit approximation of cold matter, the problem remains rather difficult, be-
cause – mainly in conditions likely present in neutron-star interiors – the equation of state is
not completely clear (in the very nuclei, it basically remains unknown). Anyway, the integra-
tion of the above three equations typically starts from the centre (r“0) and is parameterized
by central density; integration is finished when pressure drops to zero, which identifies the
stellar surface. The sequence of the resulting equilibrium configurations is usually plotted in
terms of the mass M against the radius R. The next step is to analyse stability of the obtained
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equilibria, in order to recognize which parts of the equilibrium curves are really relevant
astrophysically. We postpone further discussion to the next chapter on degenerate objects.

20.3.4 TOV equation from a variational principle

Interestingly, the TOV equation can also be derived from a variational principle, namely by
requiring that the total mass of the star M “

şR

0
4πr2ρ dr be stationary with respect to all

variations of ρprq which leave unchanged the total number of baryons A “
şR

0
4πr2n

?
grr dr

and which do not change s and Ak (adiabatic variation). Having two main constraints (on M
and A), we use the Lagrange multiplier (λ) and write

δM ´ λδA “

8
ż

0

4πr2δρ dr ´ λ

8
ż

0

4πr2δn
b

1 ´ 2m
r

dr ´ λ

8
ż

0

4πr2n
`

1 ´ 2m
r

˘3{2

δm

r
dr . (20.17)

For adiabatic variation, the 1st thermodynamical law (20.12) yields

δρ

δn
“
ρ ` P

n
ùñ δn “

n δρ

ρ ` P
,

and from the mass equation we have

mprq “

r
ż

0

4πr12ρ dr1
ùñ δm “

r
ż

0

4πr12δρ dr1 ,

which are now plugged to the main formula. The term containing δm can be integrated by
parts. Indeed, despite we write the upper integration limit as 8 for simplicity, all the integrals
of course have compact support r ď R ` δR, so one finds

8
ż

0

4πrn
`

1 ´ 2m
r

˘3{2

»

–

r
ż

0

4πr12δρ dr1

fi

fl dr “

8
ż

0

4πr2δρ

»

–

8
ż

r

4πr1n dr1

`

1 ´ 2m
r1

˘3{2

fi

fl dr (20.18)

by standard scheme, namely by using the per-partes formula

8
ż

0

dU

dr
V dr “ rUV s

8
0 ´

8
ż

0

U
dV

dr
dr

for the functions

uprq :“
4πrnprq

´

1 ´
2mprq

r

¯3{2
, Uprq :“ ´

8
ż

r

upr1
q dr1

ùñ uprq ”
dUprq

dr
,

vprq :“ 4πr2δρprq , V prq :“

r
ż

0

vpr1
q dr1

ùñ vprq ”
dV prq

dr
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(differentiation by the lower and upper integration limit, respectively). So introducing every-
thing into the basic equation (20.17), we have

δM ´ λδA “

8
ż

0

4πr2δρ

$

&

%

1 ´ λ

»

–

n

ρ ` P

1
b

1 ´ 2m
r

`

8
ż

r

4πr1n dr1

`

1 ´ 2m
r1

˘3{2

fi

fl

,

.

-

dr .

Now, we want the above variation to vanish, which can only be the case if 1{λ equals the
bracket r...s. This however means that the bracket has to be constant (independent of r), i.e.
r...s,r “ 0, which we write out as

n,r
ρ ` P

1
b

1 ´ 2m
r

´
n

pρ ` P q2

ρ,r ` P,r
b

1 ´ 2m
r

`
n

ρ ` P

m,rr ´ m

r2
`

1 ´ 2m
r

˘3{2
´

4πr3n

r2
`

1 ´ 2m
r

˘3{2
“ 0 .

Multiplication by
b

1 ´ 2m
r

pρ`P q2

n
and using the equation for mass m,r “ 4πr2ρ leads to

��������ρ ` P

n

dn

dr
´

dρ

dr
´

dP

dr
`

ρ ` P

rpr ´ 2mq

”

HHHH4πr3ρ ´ m ´ 4πr3pSρ ` P q

ı

“ 0 .

Finally, the first two terms give zero due to adiabaticity, and the rest precisely yields the TOV
equation,

´
dP

dr
“

pρ ` P qpm ` 4πr3P q

rpr ´ 2mq
.

20.3.5 Equation of thermal equilibrium

This equation follows from an energy balance for an infinitesimal spherical shell of the star.
Let us call δV the proper volume of the shell, δa the number of baryons in the shell, τ the
proper time of a clock staying at rest on the radius r (which marks the bottom surface of the
shell), and δr the (small) radial thickness of the shell. Assuming that the volume of the shell
changes slowly (quasi-statically), so that no energy is expended in acceleration of its matter,
the energy conservation can be expressed as

dpϵ δV q “ q δa dτ ´ PdpδV q ´ rLrpr ` δrq|
r
r ´ Lrprqs dτ , (20.19)

where d means the change of the energy contributions within an infinitesimal interval of τ .
Clearly the left-hand side represents the change of internal energy, while on the right-hand
side one places the energy generated (during dτ ) in thermonuclear reactions, the work spent
in the volume change, and the luminosity balance given by difference between the power
which leaves the outer surface of the shell and the power entering the shell from inside. The
clumsy notation Lrpr` δrq|rr indicates that the power leaving the top surface, Lrpr` δrq, has
to be converted with respect to the radius r (so that all the quantities were compared at r).

The main “issue” is to compute the luminosity term properly. Since Lr represents
power (energy per time), the conversion of Lrpr ` δrq to r involves two corrections – hence
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the two r indicated at Lrpr ` δrq|rr : (i) the time ticks differently at those two radii (usual
dilation factor between two clocks at rest), and (ii) the energy is shifted between the two radii
(in the same manner as frequency, i.e. reciprocally with respect to time). Proper times of
clocks at rest at r ` δr and r are related by

dτpr ` δrq

dτprq
“

d

´gttpr ` δrq

´gttprq
“
eΦpr`δrq

eΦprq
,

which means that

Lrpr ` δrq|r

Lrpr ` δrq
“

dτpr ` δrq

dτprq
“
eΦpr`δrq

eΦprq
,

and the energy shift brings once more the same factor (energy transforms reciprocally to time,
and it is in numerator of the definition of power), so, altogether,

Lrpr ` δrq|rr

Lrpr ` δrq|
r`δr
r`δr

”
Lrpr ` δrq|rr

Lrpr ` δrq
“
e2Φpr`δrq

e2Φprq
“ e2Φpr`δrq´2Φprq .

The luminosity term thus reads

Lrpr ` δrq|
r
r ´ Lrprq “ Lrpr ` δrqe2Φpr`δrq´2Φprq

´ Lrprq .

Expanding the first part in δr, we have (without repeating the arguments, all will be taken at
r from now)

Lrpr ` δrq “ Lr `
dLr
dr

δr ` Opδr2q ,

e2Φpr`δrq´2Φprq
“ e2rΦ`dΦ

dr
δr`Opδr2q´Φs “ e2

dΦ
dr
δr`Opδr2q

“ 1 ` 2
dΦ

dr
δr ` Opδr2q ,

their product yields

Lrpr ` δrqe2Φpr`δrq´2Φprq
“

„

Lr `
dLr
dr

δr ` Opδr2q

ȷ „

1 ` 2
dΦ

dr
δr ` Opδr2q

ȷ

“

“ Lr `
dLr
dr

δr ` 2Lr
dΦ

dr
δr ` Opδr2q ,

and hence the result

Lrpr ` δrq|
r
r ´ Lrprq “

ˆ

dLr
dr

` 2Lr
dΦ

dr

˙

δr ` Opδr2q
.
“ e´2Φ d

dr

`

Lre
2Φ
˘

δr .

In the remaining terms of (20.19), we will assume that δa“const (number of baryons in the
layer does not change). Writing δV “ δa

n
, the equation assumes the form

e´2Φ d

dr

`

Lre
2Φ
˘

δr dτ “ δa

„

q dτ ´ d
´ ϵ

n

¯

´ P d

ˆ

1

n

˙ȷ

.
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Multiplying by e2Φ{dτ , we have

d

dr

`

Lre
2Φ
˘

δr “ e2Φ
δa

n

ˆ

qn ´
dϵ

dτ
`
ϵ ` P

n

dn

dτ

˙

.

Finally, we express δa using equation (20.3),

δa “
da

dr
δr “

4πr2n
b

1 ´ 2m
r

δr ,

and divide by δr, thus obtaining

d

dr

`

Lre
2Φ
˘

“
4πr2e2Φ
b

1 ´ 2m
r

ˆ

qn ´
dϵ

dτ
`
ϵ ` P

n

dn

dτ

˙

. (20.20)

Still somewhat shorter version of the parenthesis can be achieved by employing ρ ” m̄bn` ϵ
instead of just ϵ,

ρ ` P

n

dn

dτ
´

dρ

dτ
”
m̄bn ` ϵ ` P

n

dn

dτ
´

dpm̄bn ` ϵq

dτ
“

“
�
�
��

m̄b
dn

dτ
`
ϵ ` P

n

dn

dτ
` qn ´

�
�

��
m̄b

dn

dτ
´

dϵ

dτ
“ qn `

ϵ ` P

n

dn

dτ
´

dϵ

dτ
,

which puts the equation in the form

d

dr

`

Lre
2Φ
˘

“
4πr2e2Φ
b

1 ´ 2m
r

ˆ

ρ ` P

n

dn

dτ
´

dρ

dτ

˙

. (20.21)

Under usual conditions, neutrinos do not interact with matter and, consequently, do
not enter the thermodynamics. Their luminosity contribution is thus given solely by qpνq,
according to

d

dr

`

Lpνq
r e2Φ

˘

“
4πr2ne2Φ
b

1 ´ 2m
r

qpνq . (20.22)

20.3.6 Equation for energy transport

Energy is transported in a star by radiation (actually photon diffusion), conduction, convec-
tion and by neutrinos (the last one is “trivial” in that it is just an escape). If convection
contributes comparably to the other channels, the analysis is very difficult, so we will only
indicate the derivation in situations when convection is either negligible or dominant (which
fortunately is far from rare in astrophysics).

• The case when convection is negligible
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Crucial is the relation for radial gradient of the radiation pressure (which is almost isotropic,
however). First, we know from special relativity already that the T 0j components of the
energy-momentum tensor represent (energy-flux density)/c which is the same as pressure
(momentum per time per area), and that also equals radiation intensity (also called irradia-
tion) divided by speed of light = (luminosity per area)/c, that is,

Poynting flux

c
“ Prad “

Irad
c

“
Lrad
r

4πr2c
.

The pressure gradient is due to two reasons, gravitational field and interaction with matter
(absorption). The first part is described by the standard equation of hydrostatic equilibrium,

dPrad

dr
“ ´pρrad ` Pradq

dΦ

dr
,

while the second is described by the equation of radiation transfer (with c”1)

dPrad

dr?
1´ 2m

r

“ ´κradρPrad ” ´κradρ Irad .

The third ingredient is the well known Stefan-Boltzmann law for power radiated by a black
body, which in terms of energy density reads

ρradp
.
“ 3Pradq “ 4σT 4

ùñ
dPrad

dr
“

16

3
σT 3 dT

dr
,

with σ the Stefan-Boltzmann constant and with the ρrad
.
“3Prad relation valid for isotropic

radiation (our flux is very nearly isotropic, with just tiny radiation gradient). Using the last
relation, one obtains for the sum of the two contributions to the radiation-pressure gradient

dT

dr
“

3

16σT 3

dPrad

dr
“ ´

3

16σT 3

»

–pρrad ` Pradq
dΦ

dr
` κradρ Irad

1
b

1 ´ 2m
r

fi

fl .

By substituting pρrad ` Pradq “ 4
3
ρrad “ 16

3
σT 4, one obtains the equation

dT

dr
“ ´

3

16σT 3

¨

˝

16

3
σT 4 dΦ

dr
` κradρ Irad

1
b

1 ´ 2m
r

˛

‚“ ´T
dΦ

dr
´

3κradρ

16σT 3

Irad
b

1 ´ 2m
r

,

which can be written in a more concise way as

d

dr

`

TeΦ
˘

“ ´
3κradρ

16σT 3

Irade
Φ

b

1 ´ 2m
r

. (20.23)

However, the conduction (and neutrino) parts are yet to be included. In non-relativistic
physics, the intensity (energy-flux density) due to the conductive luminosity, Icond ”
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Lcond
r {p4πr2q, is related to the temperature gradient through the thermal-conduction co-

efficient λcond,

Icond “ ´λcond
dT

dr
.

In GR, one takes radial proper-distance element instead of just dr, and also has to account
for the energy redshift. Actually, the Newtonian case of constant Lr (independent of r)
corresponds, in GR, to constant Lr

?
´gtt ” Lre

Φ since energy is redshifted by eΦ, and the
same modification follows for temperature from the relation “energy “ kT ”. Hence, the
equation of conductive energy transport reads

d

dr

`

TeΦ
˘

“ ´
1

λcond

Iconde
Φ

b

1 ´ 2m
r

. (20.24)

Finally, introducing the conductive absorption coefficient κcond and the total absorption
coefficient κ by

κcond :“
16σT 3

3ρλcond
,

1

κ
:“

1

κrad
`

1

κcond
,

and writing Lrad
r ` Lcond

r “ Lr ´ L
pνq
r , thus Irad ` Icond “ I ´ Ipνq for the corresponding

intensities, the sum of the equations (20.23) and (20.24) yields

d

dr
pTeΦq “ ´

3κρeΦ

16σT 3

I ´ Ipνq

b

1 ´ 2m
r

ùñ
dT

dr
“ ´T

dΦ

dr
´

3κρ

16σT 3

I ´ Ipνq

b

1 ´ 2m
r

. (20.25)

Most important implication of this result is that if there is no other luminosity than the
neutrino one (which does not interact with the star matter at all), I“Ipνq, there still remains
a certain gradient of temperature in the star due to the gravitational redshift,

dT

dr
“ ´T

dΦ

dr
“ ´T

m ` 4πr3P

rpr ´ 2mq
.

If mprq and P prq are known, one thus obtains T prq in the “cold-star” case.

• The case when convection is dominant

Convection transport is difficult and is usually treated in some approximation. In the adi-
abatic approximation, the temperature gradient is related to the pressure gradient through
the adiabatic coefficient (20.15)

Γ2 “

«

1 ´

ˆ

B lnT

B lnP

˙

s,Z1,...,ZB

ff´1

,

so if this coefficient is known, one can write

1

Γ2

“ 1 ´

ˆ

B lnT

B lnP

˙

s,Zk

“ 1 ´

ˆ

B lnT

BT

BT

BP

BP

B lnP

˙

s,Zk

“ 1 ´
P

T

`

dT
dr

˘

s,Zk
`

dP
dr

˘

s,Zk

,
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from where
ˆ

dT

dr

˙

s,Zk

“
Γ2 ´ 1

Γ2

T

P

ˆ

dP

dr

˙

s,Zk

. (20.26)

• When convection is important? -The question of convection stability

The equilibrium configuration is stable against convection if every its element, when per-
turbed from the equilibrium location, returns back. So let us shift an element from its
equilibrium radius rA to a nearby radius rB ą rA, and wait until its pressure matches that
in the surroundings. Denoting by A and B the equilibrium values at the respective radii,
and leaving without any index the values which establish in the displaced element, the total
force acting on the (unit-volume) element in the outward radial direction is

FB “ F grav
B ` F press

B “ ´pρ ` P q

ˆ

dΦ

dr

˙

B

´

ˆ

dP

dr

˙

B

,

where however P ” PB by assumption and the gradients are linked by the hydrostatic-
equilibrium equation,

´

ˆ

dP

dr

˙

B

“ pρB ` PBq

ˆ

dΦ

dr

˙

B

,

so the force comes out as

FB “ pρB ´ ρq

ˆ

dΦ

dr

˙

B

. . . ă 0 ðñ ρ ą ρB

ˆ

since
dΦ

dr
ą 0

˙

. (20.27)

Yes, we might have consulted Archimedes – it is nothing but standard answer about floating
of bodies.

Let us suppose now that the thermodynamic process which leads to the matching of pres-
sures (P ÑPB) is adiabatic. Writing the above stability condition as

ρ ” ρA ` δρ ą ρB ” ρA ` δρA , i.e. δρ ą δρA ,

with δρA given by expansion of the equilibrium profile,

δρA “

ˆ

dρ

dr

˙

A

δr ,

and with δρ given by adiabatic profile from the 1st law of thermodynamics (and using the
definition (20.14) of the adiabatic index Γ1)

δρ “

«

ˆ

Bρ

BP

˙

s,Z1,...,ZB

δP

ff

A

“

«

ˆ

Bρ

BP

˙

s,Z1,...,ZB

dP

dr

ff

A

δr “

„

ρ ` P

PΓ1

dP

dr

ȷ

A

δr ,

we obtain
ˆ

ρ ` P

PΓ1

dP

dr

˙

A

ą

ˆ

dρ

dr

˙

A

ùñ

ˆ

dP

dr
´

PΓ1

ρ ` P

dρ

dr

˙

A

“: SprAq ą 0 , (20.28)
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where Sprq is called the Schwarzschild discriminant (yes, it is the same K. Schwarzschild,
he derived the condition within the Newtonian theory in 1906).

The convection-stability condition δρąδρA can also be written in terms of the temperature
gradient. From the equation of state (for ideal gas) P „ρ T it follows (at rA again)

δP „ TAδρ ` ρAδT , δPA „ TAδρA ` ρAδTA ,

from where – because δP ” δPA by assumption –

pδρ ´ δρAqTA „ pδTA ´ δT q ρA ,

so the star is stable (δρą δρA) if δTA ą δT . Remember now, from (20.25) (which exactly
is valid if the star is convectively stable), that dT

dr
ă ´T dΦ

dr
ă 0, so both δTA and δT are

negative – hence the conclusion: stable is the star in which temperature decreases outwards
more slowly than according to an adiabatic profile. And hence also the recipe how to decide
between the non-convective and convective alternatives of the energy-transport equation:
it is to be done according to whether (20.25) yields sub-adiabatic or super-adiabatic tem-
perature gradient (respectively).

20.3.7 Boundary conditions

As a part of the stellar-equilibrium problem, we derived 7 first-order differential equations
– equation for the number of baryons aprq (20.3), equation for mass mprq (20.5), equation
for potential Φprq (20.6), TOV equation of hydrostatic equilibrium (20.7) which determines
the pressure profile P prq, equation of thermal equilibrium (20.21) which determines the lu-
minosity profile Lrprq, its counter-part (20.22) for neutrino part of the luminosity Lpνq

r , and
equation for energy transport (20.25) which determines the temperature profile T prq. These
equations are being tackled under boundary conditions

ap0q“0, apRq“:A; mp0q“0, mpRq“:M ; Φp8q“0; Lrp0q“0; P pRq“0, T pRq“0 .

It is worth to notice that the equations imply da
dr

ą 0, dm
dr

ą 0, dΦ
dr

ą 0, dP
dr

ă 0, dT
dr

ă 0. The
luminosities Lr and Lpνq

r have to grow with r at least for small r (since they are zero at the
very centre).

You may have noted that there is no equation for the radial profile of density ρ. Indeed,
density is obtained “indirectly” in integration of the equilibrium equations, usually from pres-
sure via an equation of state. Normally it decreases from the centre towards the surface, as it
is consistent with floating of a light fluid on a heavier one rather than vice versa. Hence, we
may also add dρ

dr
ă0.

20.4 Radial oscillations and stability of stars
This section is on the response of a star to a small radial perturbation too, but the treatment
will be dynamical. A star, similarly as every non-trivial system, may be subjected to many
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types of perturbations, and the problem of its stability is very difficult in general, even in case
when the perturbations are very small (important in linear order only). The GR treatment, in
addition, is considerably more complicated in that the perturbation of a source automatically
brings on perturbation of the whole space-time as well, including generation of gravitational
waves. The only case when one need not be solving for the exterior is a purely radial pertur-
bation of a spherically symmetric equilibrium. Namely, in that case we know from Birkhoff
that the exterior space-time remains Schwarzschild (irrespectively of the perturbation dy-
namics, it is sufficient if the star remains spherically symmetric). In addition, keeping the
spherical symmetry inside the star ensures that also there the metric remains diagonal.

Besides the above geometrical constraint and limitation to linear perturbation order, we
will assume that the perturbation is adiabatic, which in the ideal-fluid case means that it is
isentropic, i.e. s “ 0 and δs “ 0. Note that such an assumption is not in general correct, as
e.g. in the case of the most well known pulsating stars – cepheids.

• Parameterization of the problem
We know from Section 12.1 that the metric of every spherically symmetric space-time may
in spherical- type coordinates (t,r,θ,ϕ) be expressed in the form

ds2 “ gttpt, rqdt
2

` grrpt, rqdr
2

` r2pdθ2 ` sin2 θ dϕ2
q ,

so we will naturally keep this as it is. Outside the star, such coordinates go over to the
Schwarzschild ones. As in the treatment of equilibria, we will write gtt “ ´e2Φ, and grr
we will also write in the exponential form,

grr “ e2λ instead of grr “
1

1 ´ 2m
r

.

• Perturbation equations
Generally, we will perturb the relevant equilibrium equations, restrict to the linear pertur-
bation order and subtract the equilibrium (unperturbed) part of the equations. Relevant
quantities will be n, ρ, P , Φ and λ. From the baryon conservation, the 1st law of ther-
modynamics and the field equations we will obtain the so-called initial-value equations
through which the perturbation of these quantities will be expressed in terms of the primary
perturbation – the radial displacement ξ. Then, Euler equations for ideal fluid will provide
dynamical equations for ξ as an independent degree of freedom.

20.4.1 Eulerian and Lagrangian perturbations

We will decompose all the relevant quantities Xpt, rq into their equilibrium profile X̄prq
(vertical-bar notation) plus a perturbation. The only exception from this notation rule will be
the prime cause of perturbation of all the quantities – the spherically symmetric displacement
of star elements which will be called ξpt, rq (so the displacement goes from the equilibrium
position r to r ` ξ).

Every continuous medium may be followed up by two basic family of observers:
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• Eulerian observers are (and remain) at rest in some pre-defined sense, typically with re-
spect to some space-time features (e.g. infinity), with respect to some special configuration
of the continuum studied (e.g. the “equilibrium” one) or with respect to coordinates. In
the case of our perturbation problem, they remain at rest in all the senses – with respect
to infinity, with respect to the equilibrium configuration of the star and with respect to the
coordinates (r, θ, ϕ). Perturbations measured by Eulerian observers will be denoted by δ,
i.e. Xpt, rq “ X̄prq ` δXpt, rq.

• Lagrangian observers comove together with matter, so – in our perturbation problem –
they follow the displacement r Ñ r`ξpt, rq (and possible further evolution). Perturbations
measured by Lagrangian observers will be denoted by ∆.

In order to write down, as usual, equations at a given r, we will generally try to use Eulerian
perturbations, but sometimes Lagrangian approach will be necessary – typically in quantities
which are based on derivative with respect to proper time of the fluid and when a quantity
changes as a result of a thermodynamic process (the latter does not happen at given r, but
along the world-line of a given fluid element). In the linear approximation, the two kinds of
perturbations are related by

∆Xpt, rq :“ Xpt, r ` ξq ´ X̄prq
.
“ Xpt, rq `

BXpt, rq

Br
ξpt, rq ´ X̄prq

“: δXpt, rq `
BXpt, rq

Br
ξpt, rq

.
“ δXpt, rq `

dX̄prq

dr
ξpt, rq . (20.29)

20.4.2 Four-velocity of the perturbed fluid

With respect to the pr, θ, ϕq coordinates, the perturbation gives the fluid a small radial com-
ponent of velocity, so

uµ “ put, ur, 0, 0q, where ur “
dpr ` ξq

dτ
“

dξ

dτ
“ ξ,tu

t .

The radial component being small of the Opξq order, the four-velocity normalization

´1 “ gµνu
µuν “ gttpu

t
q
2

` grrpu
r
q
2

“ gttpu
t
q
2

` Opξ2q

yields

ut
.
“

1
?

´gtt
“ e´Φ, ur “ ξ,tu

t .
“ ξ,te

´Φ. (20.30)

At a given r, we thus have, to first order,

ut “ e´Φ̄´δΦ .
“ e´Φ̄

p1 ´ δΦq
`

” ūt ` δut
˘

, (20.31)

ur “ ξ,te
´Φ̄´δΦ .

“ ξ,te
´Φ̄

p” δurq . (20.32)
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20.4.3 Initial-value equations

• Determination of δn from baryon conservation
The conservation of baryons pnuµq;µ“0 we write out as n,µuµ“´nuµ;µ.
On the left-hand side, equilibrium function n̄ does not depend on τ , so we get, if substitut-
ing (20.31,20.32) for four-velocity and restricting to the first order,

n,µu
µ

“
dn

dτ
“

dpn̄ ` ∆nq

dτ
“

d∆n

dτ
“ p∆nq,µu

µ .
“ p∆nq,t u

t .
“ p∆nq,t e

´Φ̄ (20.33)

(Lagrangian perturbation has to be used, since the quantity is differentiated by τ !).
On the right-hand side,

nuµ;µ “
n

?
´g

p
?

´g uµq,µ “
n

?
´g

”

`?
´g ut

˘

,t
` p

?
´g urq,r

ı

(20.34)

is to be “equipped with”

?
´g “ eΦ`λr2 sin θ

.
“ eΦ̄`λ̄

p1 ` δΦ ` δλq r2 sin θ

(perturbation is Eulerian here, at a given location, so we keep r rather than shifting to
r ` ξ). In the second term of (20.34) we only use the unperturbed part of

?
´g , because

ur” δur is itself of the Opξq order,

?
´g ur

.
“ peΦ̄`λ̄r2 sin θq ξ,te

´Φ̄
“ eλ̄r2ξ,t sin θ .

The first term of uµ;µ isOpξq as well, because it is given by time derivative (and equilibrium
values are time-independent),

`?
´g ut

˘

,t

.
“

”

eΦ̄`λ̄
p1 ` δΦ ` δλq r2 sin θ e´Φ̄

p1 ´ δΦq

ı

,t

.
“

.
“ eλ̄r2 sin θ rp1 ` δΦ ` δλqp1 ´ δΦqs,t

.
“ eλ̄r2 sin θ pδλq,t .

Therefore, the expression (20.34) has the structure a ϵ
b`ϵ

.
“ a ϵ

b
, so up to the first order one is

left with

1
?

´g
p
?

´g uµq,µ
.
“
eλ̄r2 sin θ pδλq,t ` peλ̄r2ξ,t sin θq,r

eΦ̄`λ̄ r2 sin θ

.
“
eλ̄r2pδλq,t ` peλ̄r2ξ,tq,r

eΦ̄`λ̄ r2
“

“
1

eΦ̄

«

δλ `
peλ̄r2ξq,r

eλ̄r2

ff

,t

“
1

eΦ̄

ˆ

δλ ` λ̄,rξ `
2ξ

r
` ξ,r

˙

,t

. (20.35)

Now we can plug both sides to the conservation equation n,µuµ“´nuµ;µ
.
“´n̄uµ;µ :

p∆nq,t “ ´n̄

ˆ

δλ ` λ̄,rξ `
2ξ

r
` ξ,r

˙

,t

.
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This can be integrated right away; the arbitrary integration function fprq we set to zero in
order that ∆n vanish for ξ“0, hence the result

∆n “ ´n̄

ˆ

δλ ` λ̄,rξ `
2ξ

r
` ξ,r

˙

.

Using the relation (20.29), one also finds the corresponding Eulerian version,

δn “ ∆n ´ n̄,rξ “ ´n̄

ˆ

δλ ` λ̄,rξ `
2ξ

r
` ξ,r

˙

´ n̄,rξ . (20.36)

• Determination of δP from adiabatic character of the perturbation
Under the assumption of adiabaticity, the pressure swing can be expressed easily in terms
of ∆n and the adiabatic index Γ1 (20.14),

Γ1 :“

ˆ

B lnP

B lnn

˙

s

“
n

P

ˆ

BP

Bn

˙

s

”
n

P

∆P

∆n

(remember that the thermodynamic process happens along the trajectory of a given ele-
ment, not at a given r). Hence, restricting to first order again,

∆P “
P

n
Γ1∆n

.
“
P̄

n̄
Γ1∆n ,

from where

δP “ ∆P ´ P̄,rξ “ ´P̄Γ1

ˆ

δλ ` λ̄,rξ `
2ξ

r
` ξ,r

˙

´ P̄,rξ . (20.37)

• Determination of δρ from the first thermodynamic law

In the absence of nuclear reactions, the first law (20.12) reads dρ “
ρ`P
n

dn, i.e., to the first
order in our case (and notation),

∆ρ
.
“
ρ̄ ` P̄

n̄
∆n ,

hence

δρ “ ∆ρ ´ ρ̄,rξ “ ´pρ̄ ` P̄ q

ˆ

δλ ` λ̄,rξ `
2ξ

r
` ξ,r

˙

´ ρ̄,rξ . (20.38)

• Determination of δλ and δΦ,r from Einstein equations

Introducing our parameterization gtt” ´e2Φpt,rq, grr ” e2λpt,rq to the spherically symmetric
Einstein tensor (12.5), we obtain

Gt
t “

1 ´ e2λ ´ 2rλ,r
r2e2λ

, Gtr “
2

r
λ,t , Gr

r “
1 ´ e2λ ` 2rΦ,r

r2e2λ
.
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Expanding again up to the first order,

Gt
t
.
“

1 ´ e2λ̄p1 ` 2δλq ´ 2rλ̄,r ´ 2r δλ,r

r2e2λ̄p1 ` 2δλq

.
“

.
“

”

1 ´ e2λ̄p1 ` 2δλq ´ 2rλ̄,r ´ 2r δλ,r

ı

p1 ´ 2δλq

r2e2λ̄
.
“

.
“

1 ´ 2δλ ´ e2λ̄ ´ 2rλ̄,r ` 4rλ̄,rδλ ´ 2r δλ,r

r2e2λ̄
“

” Ḡt
t ´

2
“

δλ ´ 2rλ̄,rδλ ` r δλ,r
‰

r2e2λ̄
“ Ḡt

t ´
2

r2

´

re´2λ̄δλ
¯

,r
, (20.39)

Gtr
.
“

2

r ��̄λ,t `
2

r
pδλq,t “

2

r
pδλq,t

`

Ḡtr “ 0
˘

, (20.40)

Gr
r
.
“

1 ´ e2λ̄p1 ` 2δλq ` 2rΦ̄,r ` 2r δΦ,r

r2e2λ̄p1 ` 2δλq

.
“

.
“

”

1 ´ e2λ̄p1 ` 2δλq ` 2rΦ̄,r ` 2r δΦ,r

ı

p1 ´ 2δλq

r2e2λ̄
.
“

.
“

1 ´ 2δλ ´ e2λ̄ ` 2rΦ̄,r ´ 4rΦ̄,rδλ ` 2r δΦ,r

r2e2λ̄
“

” Ḡr
r ´

2
“

δλ ` 2rΦ̄,rδλ ´ r δΦ,r

‰

r2e2λ̄
. (20.41)

For the corresponding components of T µν “ pρ`P quµuν `Pδµν we find, to the first order,

T tt “ pρ ` P qutut ` P “ pρ ` P qp´1 ´ ���urur q ` P
.
“ ´pρ ` P q ` P “

“ ´ρ “ ´ρ̄ ´ δρ ” T̄ tt ´ δρ , (20.42)
Ttr “ pρ ` P qutur “ pρ ` P q gttgrru

tur
.
“ pρ̄ ` P̄ q ḡttḡrrū

tδur
.
“

.
“ ´pρ̄ ` P̄ q e2Φ̄e2λ̄e´Φ̄ ξ,te

´Φ̄
“ ´pρ̄ ` P̄ q e2λ̄ξ,t , (20.43)

T rr “ pρ ` P q ���urur ` P
.
“ P “ P̄ ` δP ” T̄ rr ` δP . (20.44)

Plugging this to the Einstein equations Gµν “ 8πTµν , one obtains three equations for the
equilibrium state (from zeroth-order terms) and three perturbation equations (from the first-
order terms). The equilibrium equations yield

λ̄,r “
1

2r

´

1 ´ e2λ̄
¯

` 4πre2λ̄ρ̄ , (20.45)

λ̄,t “ 0 , (20.46)

Φ̄,r “ ´
1

2r

´

1 ´ e2λ̄
¯

` 4πre2λ̄P̄ . (20.47)

The middle one is automatic and the remaining ones we of course know – these are the
equations for mass and for potential, (20.5,20.6), just expressed in terms of λprq instead of
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mprq. The perturbation equations read, in the same succession,

2

r2

´

re´2λ̄δλ
¯

,r
“ 8πδρ ,

2

r
pδλq,t “ ´8πpρ̄ ` P̄ q e2λ̄ξ,t ,

´
2
“

δλ ` 2rΦ̄,rδλ ´ r δΦ,r

‰

r2e2λ̄
“ 8πδP . (20.48)

The perturbation δλ can be obtained from the second one,

pδλq,t “

”

´4πr pρ̄ ` P̄ q e2λ̄ξ
ı

,t
ùñ δλ “ ´4πr pρ̄ ` P̄ q e2λ̄ξ “ ´pλ̄ ` Φ̄q,rξ , (20.49)

where, first, we have chosen the free integration function of r zero, in order that δλ vanish
for ξ“0, and second, we have used the (sum of) equations (20.45) and (20.47),

λ̄,r ` Φ̄,r “ 4πre2λ̄pρ̄ ` P̄ q .

From the third perturbation equation, we derive

δΦ,r “
1

r

`

1 ` 2rΦ̄,r

˘

δλ ` 4πre2λ̄δP , (20.50)

which should be further elaborated by submission of δλ and δP . However, notice first that
the “important parenthesis” which already accompanies us from ∆n can be shortened by
using the result (20.49), namely,
ˆ

δλ ` λ̄,rξ `
2ξ

r
` ξ,r

˙

“

ˆ

´Φ̄,rξ `
2ξ

r
` ξ,r

˙

. (20.51)

Employing this and the equation for hydrostatic equilibrium ´P̄,r “ pρ̄`P̄ qΦ̄,r in (20.37),
we have

δP “ P̄Γ1

ˆ

Φ̄,rξ ´
2ξ

r
´ ξ,r

˙

` pρ̄ ` P̄ qΦ̄,rξ “

“ pρ̄ ` P̄ ` P̄Γ1qΦ̄,rξ ´
1

r
P̄Γ1p2ξ ` rξ,rq . (20.52)

Inserting now the first expression of δλ from (20.49) into the first term of (20.50) and
(20.52) into the second term of (20.50), we reach, after some shuffling,

δΦ,r “ ´4πe2λ̄
“

pρ̄ ` P̄ ´ P̄Γ1qp1 ` rΦ̄,rq ξ ` P̄Γ1p3ξ ` rξ,rq
‰

. (20.53)

20.4.4 Dynamical equations for the displacement

Dynamical equations will be derived from the Euler equations of motion

pρ ` P quµ;νu
ν

“ ´P,νpδνµ ` uµu
ν
q.

For our four-velocity (20.31,20.32), the only non-trivial information is provided by their ra-
dial component; let us compute its left-hand and right-hand sides separately:
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• On the left-hand side,

ar ” ur;νu
ν

” ur,νu
ν

´ Γρνru
ρuν ” ur,νu

ν
´

1

2
pgρν,r ` grρ,ν ´ gνr,ρqu

ρuν “

“ ur,νu
ν

´
1

2
gρν,ru

ρuν
.
“ ur,tū

t
´

1

2
gtt,rpu

t
q
2

“ pgrru
r
q,tū

t
`

1

2

`

e2Φ
˘

,r
putq2 “

“
`

e2λ̄ξ,te
´Φ̄

˘

,t
e´Φ̄

` e2ΦΦ,re
´2Φ .

“ ξ,tt e
2λ̄´2Φ̄

` Φ̄,r ` δΦ,r .

• On the right-hand side,

´P,νpδνr ` uru
ν
q “ ´P,r ´ ���P,turu

t
´ P,r

HHHuru
r .

“ ´P,r
.
“ ´P̄,r ´ δP,r .

Submitting the above to the Euler equation pρ ` P q ar “ ´P,νpδνr ` uru
νq, we have

pρ̄ ` P̄ ` δρ ` δP q

´

ξ,tt e
2λ̄´2Φ̄

` Φ̄,r ` δΦ,r

¯

“ ´P̄,r ´ δP,r .

Now neglect the Opξ2q terms pδρ ` δP q

´

ξ,tt e
2λ̄´2Φ̄ ` δΦ,r

¯

and subtract the equilibrium

condition pρ̄ ` P̄ qΦ̄,r “ ´P̄,r . The equation thus assumes the form

pρ̄ ` P̄ qe2λ̄´2Φ̄ξ,tt “ ´δP,r ´ pρ̄ ` P̄ qδΦ,r ´ pδρ ` δP qΦ̄,r . (20.54)

Time for some ideal liquid.1

However, we need an equation containing, besides the equilibrium terms, only ξ. Sure,
it is necessary to submit above δP , δΦ,r and δρ from the “initial-value” equations (20.52),
(20.53), (20.38) [with their “important parenthesis” rewritten according to (20.51)]. Equation
(20.54) thus becomes less pretty, but – using the hydrostatic-equilibrium condition and the
Einstein equations for λ̄,r and Φ̄,r – it can still be arranged in several acceptable forms. One
of them reads

pPζ,rq,r `Qζ ´Wζ,tt “ 0 , ζ :“ r2e´Φ̄ξ , (20.55)

1 Just one more remark. It may have seemed too careless to say, without a check, that the only non-trivial
information is provided by radial component of the Euler equations. Let us compute the time component,

at ” ut;νu
ν ” ut,νu

ν ´ Γρνtu
ρuν ” ut,νu

ν ´
1

2
pgρν,t ` gtρ,ν ´ gνt,ρquρuν “

“ ut,νu
ν ´

1

2
gρν,tu

ρuν
.
“ ut,tū

t ` ūt,ru
r ´

1

2
gtt,tpu

tq2 “

“ ´eΦ̄δΦ,te
´Φ̄ ´ eΦ̄Φ̄,re

´Φ̄ξ,t ` e2ΦδΦ,te
´2Φ “ ´δΦ,t ´ Φ̄,rξ,t ` δΦ,t “ ´Φ̄,rξ,t .

The right-hand side reduces to

´P,νpδνt ` utu
νq “ ´P,tp1 ´ 1q ´ P,rutu

r “ P̄,re
Φ̄ξ,te

´Φ̄ “ P̄,rξ,t .

Therefore, the time component of the Euler equations reads pρ̄`P̄ qΦ̄,rξ,t “ ´P̄,rξ,t , which holds automatically
thanks to the unperturbed hydrostatic-equilibrium condition.
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with “coefficients”

P “ Pprq :“ P̄Γ1r
´2eλ̄`3Φ̄ ,

Q “ Qprq :“ pρ̄ ` P̄ q r´3eλ̄`3Φ̄
”

rpΦ̄,rq
2

` 4Φ̄,r ´ 8πrP̄ e2λ̄
ı

,

W “Wprq :“ pρ̄ ` P̄ q r´2e3λ̄`Φ̄ .

The main advantage of the new variable ζ is that it permits to write very concisely the “im-
portant parenthesis” of equations (20.36), (20.37) and (20.38),

ˆ

δλ ` λ̄,rξ `
2ξ

r
` ξ,r

˙

“

ˆ

´Φ̄,rξ `
2ξ

r
` ξ,r

˙

“ r´2eΦ̄ζ,r .

Boundary conditions: physically acceptable can only be solutions satisfying

δρ ă 8, δP ă 8 for r Ñ 0 ðñ

ˇ

ˇ

ˇ

ˇ

lim
rÑ0

ξ

r

ˇ

ˇ

ˇ

ˇ

ă 8 , (20.56)

∆P “ 0 for r “ R ` ξpt, Rq psurfaceq ðñ lim
rÑR`ξ

´

P̄Γ1r
´2eΦ̄ζ,r

¯

Ñ 0 . (20.57)

The first two clearly follow from equations (20.37) and (20.38) by realizing that the only
term dangerous at the very centre is ξ{r in the “important parenthesis”, and the comoving
(Lagrangian) condition for vanishing of P on the surface follows from (20.37) as well. Let
us add that one can everywhere take just R instead of R ` ξ to specify the surface, because
the quantities in question are themselves small, so the error thus made is Opξ2q.

20.4.5 Separated solution and the Sturm-Liouville problem

Let us look for the solution to (20.55) in the separated harmonic-oscillation form ζpt, rq “

ζprqe´iωt, with ω a constant representing frequency. One immediately obtains an equation
for ζprq,

d

dr

ˆ

P dζ

dr

˙

`Q ζ ` ω2Wζ “ 0 , (20.58)

the so-called Sturm-Liouville equation; it often follows by solution of linear partial dif-
ferential equations by separation of variables. (Actually, all second-order linear ordinary
differential equations can be reduced to the Sturm-Liouville form.) It is assumed that within
the applicable domain of r (0ďrďR in our case) the three coefficient functions are real and
sufficiently differentiable and that they satisfy P ą 0 and W ą 0 (which is clearly fulfilled
in our case). The main aspect of the Sturm-Liouville problem is to find such values of ω for
which the equation has a real solution ζprq.

The search for the eigen-frequencies of the problem starts as a variational problem for
the lowest, fundamental frequency. Multiplying by ζ and integrating over the stellar radius,
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one has2

ω2
“

´
R
ş

0

ζ d
dr

`

P dζ
dr

˘

dr ´
R
ş

0

Q ζ2 dr
R
ş

0

Wζ2 dr

.

The first term can be integrated per partes,

R
ż

0

ζ
d

dr

ˆ

P dζ

dr

˙

dr “

Z
Z
Z
Z
ZZ

„

ζP dζ

dr

ȷR

0

´

R
ż

0

P
ˆ

dζ

dr

˙2

dr ,

where one can forget about the boundary term, because i) by condition (20.56), ξ must van-
ish at r “ 0 at least as r, hence ζ must vanish there at least as r3 and thus

“

ζP dζ
dr

‰

“

P̄Γ1e
λ̄`3Φ̄ ζ

r2
dζ
dr

at least as r3 as well; ii) by condition (20.57), the same expression vanishes
on the surface. In such a way, equation (20.58) implies

ω2
“

R
ş

0

”

P
`

dζ
dr

˘2
´Q ζ2

ı

dr

R
ş

0

Wζ2 dr

. (20.59)

The fundamental frequency of stellar oscillations is obtained by minimization of this func-
tional (which may physically be interpreted as the potential energy of the perturbation). Since
the bottom integral is always positive, the crucial issue is the sign of the top integral. There
are two alternatives:

• The minimal ω2 is positive, so ω is real. In such a case, the star can oscillate, with this
basic frequency, in a stable manner. Not only that. As every musical instrument, it also
oscillates at higher frequencies called overtones (harmonic partials). The Sturm-Liouville
(and Fourier) theory says that there in fact exists a whole discrete infinite sequence of
eigen-frequencies, pωminq2 ” pω0q

2 ă pω1q
2 ă pω2q

2 ă . . . pÑ 8q. The corresponding
eigen-functions ζnprq form, on the radial interval x0, Ry, a complete system of functions, so
any function satisfying the boundary conditions can be “decomposed into normal modes”
there, ζpt, rq “

ř

ζnprqe´iωnt. The eigen-functions ζnprq have exactly n nodes (zeros)
within the range p0, Rq.

• The minimal ω2 is negative, so ω is pure imaginary. The corresponding solution then reads
ζpt, rq “ ζprqeImpωqt, so if Impωq ą0, the displacement grows exponentially and the star is
unstable, whereas if Impωqă0, the star is “damped” and cannot be excited to any musical
performance. Astrophysically, these two options are not so interesting, because they do
not imply any observational consequences: the damped stars do not provide any signal,
and had there been any unstable ones, they are gone.

2 Note that we can again take just R (instead of R ` ξ) for the surface, because the integrands are Opξ2q.
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Remark on string equation

So we have seen a star may behave like a musical instrument, hosting the whole infinite
sequence of oscillation modes (fundamental plus “overtones”). Such a behaviour is best
known from string – and indeed the string equation is of the same type. Specifically, small
(both transversal and longitudinal) vibrations of a string can be described by equation (20.55),
pPζ,rq,r `Qζ´Wζ,tt “ 0, with P representing the string tension,Q“0 andW representing
linear mass density of the string. (Gravity and other external forces acting upon the string are
neglected.) For constant tension (perfectly elastic string) and constant density, obviously the
one-dimensional wave equation remains, ζ,rr ´ W

P ζ,tt “ 0.



CHAPTER 21

Degenerate fermion gas and
final stages of stellar evolution

Star is a cosmic body in which, at least for a certain period, thermonuclear reactions run
spontaneously. In these reactions heavier nuclei are being synthesized from lighter ones, with
the strong-force potential energy of nucleons gradually converted into photons and neutrinos.
The neutrinos directly escape from the star, whereas photons diffuse to the surface for „

104˜5years, undergoing scattering every À 1cm. In dependence on how high a temperature
can be achieved in the stellar interior (which mainly depends on mass of the star), the fusion
may proceed – as a source of energy – up to iron and nickel where the binding energy per
nucleon reaches its minimum (it is maximally negative). The era of thermonuclear reactions
is the longest part of stellar life; in astronomy, it is then said to be “on the main sequence” in
the Hertzsprung-Russel diagram which shows luminosity against spectral temperature. The
thermonuclear life of stars typically ends by rather violent processes in which the centre
(where the reactions have ceased) contracts into a very dense object, while the outer layers
expand or even explode into the interstellar space.

Hence, stars are kind of natural thermonuclear reactors which are driven by their own
gravity. Gravitation puts the star together and through compression generates a sufficient
temperature to ignite the reactions, then it also regulates the reaction rate (if the energy re-
lease decreases, gravitation overwhelms pressure and squeezes the star, which leads to the
rise of temperature and thus acceleration of the reactions, which in turn rises the pressure and
leads to expansion, thus making work and inducing temperature falloff which slows down the
reactions, etc.), yet finally let the star explode anyway. From the GR point of view, interesting
are the compact remnants which are left after the central regions of stars have depleted their
thermonuclear resources and, consequently, underwent a substantial contraction. These rem-
nants – white dwarfs or neutron stars (if not black holes) – are very dense and generate
very strong and non-homogeneous gravitational field. In this chapter, we abstract from all
the complex physics driving the stellar evolution, only focusing on these compact remnants,
specifically on how and to what extent they can resist their own gravity. Yet even the com-
plex physics of the compact object we largely ignore, only focusing on the role of degenerate

367



368 21. DEGENERATE FERMION GAS AND FINAL STAGES OF STELLAR EVOLUTION

fermion gas in the support of their equilibria. (For more details, see e.g. [42, 4].)1

The fermion gas is called degenerate if the kinetic energy of its particles is dominated
by the Fermi energy due to the Pauli exclusion principle rather than by thermal energy kT .
Degeneration naturally appears in extremely dense astrophysical objects resulting as final
evolutionary states of stars, because there the fermions (electrons and nucleons) are forced, by
gravity, to assume very close positions in the configurations space – and thus to differentiate
in the momentum direction accordingly. In the state of degeneracy, the properties of the gas
only little depend on temperature, in particular, its pressure remains non-zero even at absolute
zero temperature.

Basic parameters, notation

As in the previous chapter, we denote by A the total number of baryons (practically, of nu-
cleons), by Z the number of protons (thus of electrons as well), and by N the number of
degenerate fermions; these will be either electrons (N “ Z), or neutrons (N “ A ´ Z). In
both cases, it often would not bring a large error to consider all these three numbers the same.
However, we will try to distinguish them, if only for the reason that it is interesting to realize
how they change during the life of a star (only A remains the same).

For early stars, the particle composition corresponded to abundances of elements pro-
vided by primordial big-bang nucleosynthesis, i.e. 75% of hydrogen and almost 25% of he-
lium (42He), plus very small amount of deuterium and 3

2He, plus negligible amount of lithium.
Today (in fact in the corresponding past), thanks to the higher elements produced by stars, the
abundances of baryon matter estimated in our Galaxy are 74% of hydrogen, 24% of helium,
1% of oxygen, 0.5% of carbon, 0.1% of neon, iron and nitrogen, etc. The above are mass
fractions, so 75% of 1

1H and 25% of 4
2He correspond to 12 nuclei of hydrogen to 1 nucleus of

helium, hence 7 protons to 1 neutron. Starting from 4
2He up to 56

26Fe, the fraction of protons to
neutrons in the nuclei is very close to unity, so if the star ends as a white dwarf, it contains
quite the same number of protons and neutrons, irrespectively of whether it has evolved up
to helium, to carbon and oxygen, to oxygen + neon + magnesium, or even to a trace of iron.
If the star ends as a neutron star, then, after experiencing wild changes of the proton/neutron
ratio during the final collapse, the ratio (determined by equilibrium between the direct and
inverse β decay) freezes at about 1/8. In short, evolution from the primordial matter to white
dwarf and to neutron star means, respectively,

protons

neutrons
”

Z

A ´ Z
:

7

1
Ñ

1

1
pwhite dwarfq ,

7

1
Ñ

1

8
pneutron starq .

However, the most important ratio will be that between the number of degenerate
fermions and the number of baryons – this we will need to convert the quantities related
to degenerate fermions and those related to baryons. The degenerate fermions being either

1 May seem strange to speak of gas if its density may reach 1015g{cm3... The degenerate fermions are being
described as ideal fluid (see section 21.2.3). It is called gas since it tends to fill all the available space (it can be
squeezed while it can also expand to fill “larger space than before”). A liquid, on the contrary, does not adjust
to the size of its container.
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electrons or neutrons, the following two ratios are being employed

Ye :“
Z

A
...

7

8
Ñ

1

2
pwhite dwarfq

„

Ñ
1

9
pneutron starq

ȷ

, (21.1)

Yn :“
A ´ Z

A
...

1

8

„

Ñ
1

2
pwhite dwarfq

ȷ

Ñ
8

9
pneutron starq . (21.2)

By definition, the above ratios satisfy Ye ` Yn “ 1 at any moment (for electrically neutral
matter, of course), irrespectively of any possible degeneracy.

The conversion is mainly important in relating number density to mass density. Namely,
below we will call n the proper number density of degenerated fermions, so the proper num-
ber density of baryons has to be written as n{Y˚; in particular, the relation ρ “ m̄bn ` ϵ for
total mass density has to be modified to ρ “ m̄bn{Y˚ ` ϵ. Actually, it is not necessary to take
into account electrons, since their mass contribution is just tiny. (In spite of this, the electron
pressure can be crucial, as we will see below.)

21.1 Gravitational and thermal energy. Virial theorem
In this section we derive a relation between the total gravitational binding energy and kinetic
energy of a fluid system, which is often very helpful in astrophysics – the virial theorem.

• Consider the classical hydrostatic-equilibrium condition

Gρmprq

r2
“ ´

dP

dr
.

Multiplying by r and integrating over the star (in a Euclidean way), we have

R
ż

0

Gρmprq

r
4πr2 dr “ ´

R
ż

0

r
dP

dr
4πr2 dr

p.p.
“ ´�����

r4πr3P s
R
0 ` 3

R
ż

0

4πr2P dr , (21.3)

where the boundary term vanishes for obvious reasons. On the left-hand side, we have
(minus) total gravitational potential energy of the star (“:AŪg, with Ūg denoting its mean
amount per baryon), while the right-hand side can be written in terms of a mean pressure
P̄ as 4πR3P̄ . Since the star volume can be expressed as A{n̄, with n̄ the mean number
density of baryons (baryons indeed in this section, not degenerate fermions), we rewrite

4πR3P̄ “
3A

n̄
P̄ ,

and hence (21.3) yields the “equation of state”

´Ūg “
3P̄

n̄
.
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• In Section 21.3, we will derive a significant relationship which gives the macroscopic gas
pressure as a momentum integral over microscopic properties of its particles (momentum
p, velocity v and momentum distribution function nppq),

P “
1

3

8
ż

0

p v nppq dp ùñ P̄ “
1

3
Ěpvn , so, from above, ´ Ūg “ Ďpv

(here the mean values have been taken over the momentum distribution, yet one assumes
they are not much different from the above, volume-averaged ones). For a non-relativistic
gas, v“ p{m, hence Ďpv “ spp{m “ 2Ēkin, while for an ultra-relativistic gas, v̄“ c, hence
Ďpv “ p̄c “ Ēkin, and so we obtain

P̄ “

#

2
3
n̄Ēkin ... for a non-relativistic gas

1
3
n̄Ēkin ... for an ultra-relativistic gas

. (21.4)

Comparison of the above two results yields

´Ūg “ 2Ēkin for non-relativistic gas , ´Ūg “ Ēkin for ultra-relativistic gas . (21.5)

This quite generic observation can be used at many places, yet let us only employ it
here for a simple derivation of how the mean thermal kinetic energy of particles Ēkin depends
on their number density. We simply find it for the corresponding binding energy Ūg instead:
substituting in it

mprq “
4

3
πr3ρ̄ , M “

4

3
πR3ρ̄ ñ R “

ˆ

3M

4πρ̄

˙1{3

,

we have

´Ūg “
1

A

R
ż

0

Gρmprq

r
4πr2 dr “

4πG

A

R
ż

0

ρmr dr “
16π2G

3A
ρ̄2

R
ż

0

r4 dr “
16π2G

15A
ρ̄2R5

“

“
16π2G

15A
ρ̄2

ˆ

3M

4πρ̄

˙5{3

“
p36πq1{3

5A
Gρ̄1{3M5{3

»
p36πq1{3

5A
Gpm̄bn̄q

1{3
pAm̄bq

5{3
“

“
p36πq1{3

5
GA2{3m̄2

bn̄
1{3 .

“ GA2{3m̄2
bn̄

1{3. (21.6)

Therefore, the thermal kinetic energy of particles typically goes with density as n̄1{3. Re-
member that n̄ denoted the baryon number density in this section, so if one needed to express
the result in terms of the density of some specific fermions (electrons or neutrons in our case),
as e.g. when comparing it with the other energy formulas given in terms of the electron or
neutron density in the following sections, one would have to take n{Y˚ instead of n̄, with Y˚

representing the respective abundance ratio (Ye= electrons over baryons, Yn= neutrons over
baryons).
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21.2 Pauli principle, Fermi momentum, and degeneracy
In 2020 COVID period, figures contrasting the behaviour of fermions and bosons in a poten-
tial well appeared, with captions like “keeping safe distance” [fermions] vs. “bunch of degen-
erates” [bosons]. Actually, Pauli exclusion principle says that in a single cell of the phase
space, with h3 “p2πℏq3 volume, at most p2s`1q fermions with spin s can live, p2s`1q being
the number of possible different projections of the spin to some fixed direction. If fermions
are pushed together in space, they differentiate in momentum direction, populating all pos-
sible levels up to the so-called Fermi momentum pF (we neglect thermal momentum now).
From the total number of elementary cells in such a phase space (where, in the fundamental
state, all momentum levels are occupied up to pF, without vacancies), pV 4

3
πp3Fq{p2πℏq3, it is

easy to derive the number density of fermions n”N{V (N denoting the total number of the
given type of fermions) and, vice versa, to express pF in terms of the density:

n “
N

V
“ p2s ` 1q

4
3
πp3F

p2πℏq3
“

2s ` 1

6π2

p3F
ℏ3

ùñ pF “

ˆ

6π2n

2s ` 1

˙1{3

ℏ . (21.7)

For s “ 1{2 (ñ 2s ` 1 “ 2) which holds for all stable fermions – electrons, protons and
neutrons (neutrinos as well), the Fermi momentum reads pF “ p3π2nq1{3ℏ. Note that the re-
lation can also be obtained, without precise numerical factors, from the uncertainty relations,
pF „ ℏ{∆x „ ℏn1{3. Similarly, regarding that the particle size is well approximated by its
de Broglie wavelength h{p (i.e. by the length of the corresponding wave packet), we get, by
comparing h

p
„ 1

n1{3 , that p„hn1{3.
If the momentum the particles have due to temperature, p2{p2mq„kT , does not provide

sufficient volume 4
3
πp3 for their momentum differentiation, at least some of the fermions

have to assume larger momentum than it would correspond to the local temperature. In such
a situation the fermions start to become degenerate (p2F{2mÁkT ). The statement can also be
voiced in terms of energy, with the energy corresponding to the Fermi momentum given by
the usual special-relativity formula

EF “ c
b

m2c2 ` p2F

#

Ñ
p2F
2m

“ ℏ2
2m

p3π2nq2{3 . . . in non-relativistic limit
Ñ pFc “ ℏc p3π2nq1{3 . . . in ultra-relativistic limit

. (21.8)

(Note that in the non-relativistic limit the rest energy mc2 is omitted.) Naturally, the degree
of degeneracy typically grows with density, and the non-relativistic relation (the 1{m depen-
dence) also implies that, in compression, lighter fermions (electrons) degenerate earlier than
more massive ones (nucleons).

Good to check what actually is the value of temperature when the gas becomes de-
generate, and how much degenerate the fermions in white dwarfs and neutron stars are. We
will use the fact that mean energy of non-relativistic degenerate fermions is p3{5qEF [for
ultra-relativistic fermions it is p3{4qEF] – cf. Section 21.4.

• For a non-relativistic electron gas, one compares kT „ 3
5
EF “ 3ℏ2

10me
p3π2neq

2{3 and ex-
presses ne “

ρYe
m̄b

, which yields, after evaluating the constants and Ye “1{2,

T

109 K
„

ˆ

ρ

106 g{cm3

˙2{3

. (21.9)
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One sees that inside the white dwarf (where ρÁ106 g{cm3), the Fermi energy is dominant
up to temperatures above 5 ¨ 109 K. Such temperatures possibly may occur in the cores of
white dwarfs just born, but typical central temperatures are 106˜7 K.

• For a non-relativistic neutron gas, one compares analogously kT „ 3
5
EF “ 3ℏ2

10mn
p3π2nnq2{3,

so, expressing nn “
ρYn
m̄b

and Yn “8{9, one obtains

T

1012 K
„

ˆ

ρ

1015 g{cm3

˙2{3

. (21.10)

At the typical density ρ„1014g{cm3, the dominance of degenerate neutrons could only be
compromised by temperatures T Á 2 ¨ 1011 K; such may only occur, rather temporarily, in
the core of a neutron star just born.

In Section 20.1 we noticed, from the uncertainty relations, that if a particle is confined
in a cell of the order of its reduced Compton wavelength, its momentum reaches mc, so the
particle becomes relativistic. Now when we have a formula for pF, we may check whether
this corresponds to pF “ mc:

p3π2nq
1{3ℏ “ mc ðñ n “

1

3π2

m3c3

ℏ3
“

1

3π2

1

λ̄3C
“

8π

3λ3C
“: n0 , (21.11)

where λC “ h
mc

” 2πλ̄C is the Compton wavelength of the given type of fermions.

21.2.1 Degeneracy occasions in stellar interiors

Let us stress again that the system of degenerate fermions behaves very differently from the
“normal”, non-degenerate system, namely, its properties only weakly depend on temperature.
In astrophysical bodies, degeneracy mainly means that the system cannot cool efficiently (its
particles cannot lose their kinetic energy, because the latter is kept on its level by Pauli). And,
vice versa, if a system is being heated, its pressure does not grow, at least while the kinetic
energy of its particles is dominated by Fermi energy, so a given region does not expand
(and thus does not cool). In passing, the state of degeneracy does not only occur in white
dwarfs and neutron stars. In some crystalline solids (metals), for instance, electrons are at
least partially degenerate. In stars, degeneracy may also occur when a certain thermonuclear
session is completed in a central region. If temperature is not enough for igniting a successive
level of the thermonuclear chain, the core made of “ashes” of the preceding reaction level
contracts, which may lead to at least partial degeneracy of electrons.

The most famous peripeteia of the above type concerns the end of the first thermonu-
clear stage, when hydrogen has been turned into helium in the stellar core. The cores of
the lowest-mass stars just stop at that stage, slowly contracting to a white dwarf, whereas
high-mass stars can provide enough temperature to right ignite the following, helium Ñ car-
bon thermonuclear stage. In moderate-mass stars (M À 2Md), the helium ash is not ignited
immediately, they rather gradually condense towards the centre, down to a density when its
electrons become more or less degenerate. Yet when the helium core grows to about 0.45Md,
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its central density reaches some 104˜5g{cm3 and the kinetic energy of its electrons reaches
the equivalent of 108K, enough to start the helium Ñ carbon burning. Thus generated en-
ergy is supplied to the stellar core which however is chiefly supported by degenerate-electron
pressure (like in white dwarfs), so the energy goes to heating of the other particles, without
any significant change of pressure (and thus without subsequent expansion accompanied by
cooling). Since the 3α process which leads to the synthesis of carbon is extremely sensitive
to temperature (its rate is proportional to the 40th power of temperature!), the helium burn-
ing quickly turns into a runaway process called helium flash in which all the helium turn
to carbon in a few seconds, generating peak power of some 108˜10Ld, i.e. comparable to
a supernova. Still basically none of that is enjoyed by an external observer: all the energy
is consumed to making the core non-degenerate again (dominated by thermal pressure) and,
subsequently, expanding back to roughly the original size.

Still more violent is an analogous process which may happen “one level higher” on
a thermonuclear ladder – the carbon detonation. It consists in an ignition and runaway
burning of carbon core in a carbon-oxygen white dwarf which has previously been slowly
cooling, but whose central temperature rose above the critical temperature due to an accretion
of material (typically from a binary companion). In seconds, the carbon (and oxygen) fusion
generates enough energy for the white dwarf to explode as the type Ia supernova. Since
the critical temperature is tightly bound to a certain critical mass (of about 1.44Md, fairly
close to the Chandrasekhar limit mentioned at the end of this chapter), the type-Ia supernovas
are believed to produce very uniform peak luminosity (of about 4 ¨ 109Ld) and are thus
used as one of astronomical “standard candles”. (This property can e.g. be employed to
infer the time profile of cosmic expansion from the statistics of the Ia-supernova distance-
redshift relations. In 1998, such a line of research culminated in the discovery that the cosmic
expansion accelerates rather than decelerates – see Chapter 13.)

21.2.2 Intermezzo: the 3α-process story

At the beginning of 1950s, it was a mystery how any carbon can exist in the Universe, because
no process of non-negligible yield was known that might produce it in stars. Even worse,
carbon is also a key to the synthesis of heavier elements, so without such a process, all stars
would have to end at helium (beryllium is unstable). A propos, beryllium: it originates from
two heliums (2α) and decays back in 8 ¨ 10´17s, only if a third helium fuses with it by that
time, it might form “kind of carbon” (A and Z are correct). Yet the probability of such a
process – the 3α process – is extremely low, since the fusion of the third α particle does
not yield carbon in any of the then known energy states (including resonant states). In 1953,
F. Hoyle, the founder of the modern theory of stellar nucleosynthesis, took it the other way
round – there is carbon, and there appears to be no other way how to produce it than out
of three heliums in stars; so there must exist a special resonant state of the carbon nucleus,
through which the stable, base carbon arises. He predicted the values of the energy, of the
nuclear spin and of the parity of that state. The state was there, at 7.656 MeV. Almost always
decaying back to three alpha particles, but once in about 2421 times “cooling” into a stable
carbon. The road to heavier elements was open.
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21.2.3 Is the stellar Fermi gas ideal? –Coulomb and nuclear interactions

Before embarking on equations of state for the degenerate gas, we should check whether the
gas which specifically exists in compact astrophysical objects is ideal, that is, non-interacting
otherwise than “mechanically” (thus generating pressure), on the basis of kinetic energy of
its particles. Such a check consists in comparing the typical kinetic energy (the Fermi energy
in the case of the degenerate gas) with the energy of relevant interaction acting between the
particles.

• In the case of the degenerate electron gas, the strongest interaction is the electromagnetic
one of the electrons with nuclei and with other electrons. Both can be expected to have
similar effect, since the interaction with nuclei containing Z protons is Z times stronger
than the electron-electron interaction, but such nuclei are Z times rarer at the same time.
For the electron-nucleus electrostatic (Coulomb) contribution, one has

EC „
´Ze2

typical distance
„

´Ze2
`

Z
n

˘1{3
“ ´Z2{3e2n1{3 , (21.12)

where we have expressed the typical distance between the nuclei as (volume per nucleus)1{3 “

pZ{nq1{3, n being number density of electrons (thus also of protons). A more thorough cal-
culation also including the electron-electron contribution leads to almost the same result,

EC “ ´
9

10

ˆ

4π

3

˙1{3

Z2{3e2n1{3 .
“ ´1.45 ¨ Z2{3e2n1{3 . (21.13)

It grows with n1{3, whereas the Fermi energy grows with n2{3 in the non-relativistic regime,
so, in this regime, the gas is the more ideal the higher is the density (!). In the ultra-
relativistic regime, both the energies grow with n1{3 (recall that EF “ ℏc p3π2nq1{3 then),
so it is necessary to compare the coefficients:

|EC| » EF ðñ Z2{3
»

10
9

`

9π
4

˘1{3

e2

ℏc

.
“

2.13

α
.
“ 292.2 ðñ Z » 4995 .

Z of the nuclei really present in white dwarfs is 1000 times lower, so EF also dominates in
the ultra-relativistic limit.

• In the case of the degenerate neutron gas, the strongest interaction is the strong nuclear
force. It acts attractively between the nucleons from about 3 ¨ 10´13cm ” 3 Fermi of
distance, peaked (or “bottomed”) at about 1 Fermi, and below some 0.8 Fermi sharply
switching strongly repulsive. (Note that the radius of nucleons is about 0.8 Fermi and that
in normal situation corresponding to “nuclear” density ρ » 2.3 ¨1014g{cm3 their centres
are about 1.9 Fermi from each other. A classical “density of a nucleon” amounts to some
6 ¨ 1014g{cm3.) The nuclear binding energy per nucleon is about 8 MeV, while the Fermi
kinetic energy, as given by the non-relativistic formula, is about 50 MeV at nuclear density.
The degenerate gas of non-interacting neutrons dominates the pressure within the density
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range 5 ¨1013g{cm3 À ρ À 1015g{cm3; the above numbers indicate that at several times the
nuclear density (i.e. around 1015g{cm3), the (repulsive) strong force becomes significant
and the situation turns very uncertain – also because nucleons “touch each other” at such a
density, so the image of a gas of particles itself ceases to have good sense.

21.3 The pressure integral

z

d(area)=
2π sin θ dθ

unit sphere

area = 4π

θ

θ + dθ

p, v

unit
area

Figure 21.1 An outline of parameterization of the pressure-integral computation. Computed is the
momentum which the particles arriving from one half-space pass on, in a unit time, to a unit-area

panel through an elastic bounce. Total number of incoming particles is determined, under the

assumption of isotropy, from the fraction which the pθ, θ`dθq interval accounts for within the 4π
of all possible directions.

In order to find the desired equations of state, we will first derive the pressure inte-
gral, a generic relation which evaluates the pressure from particles’ momentum, velocity and
distribution function. We will simply start from definition: pressure is the force with which
the gas pushes a unit-area panel (from one side), as a result of particles’ hitting the panel and
transferring to it their momentum. So, have a generic ensemble of free particles and immerse
such a panel in it in an arbitrary way (assuming that the pressure is isotropic). Denote the
Cartesian axis normal to the panel as z and the spherical-type angle measuring deviation from
this axis as θ (Figure 21.1). Denote by npp, θq the number density of particles which move
with momentum magnitude p in the direction θ, thus with npp, θqdpdθ counting the number
density of particles whose momentum is in the pp, p ` dpq interval and which are arriving in
directions lying between the cones pθ, θ ` dθq.
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Then, the number of such particles hitting the panel from one half-space in unit time is
given by the corresponding flux vznpp, θqdpdθ, where, naturally, vz “ v cos θ. In an elastic
reflection, each particle imparts to the panel the momentum 2pz “2p cos θ pą 0q (because, in
the elastic case, pz of the particle turns to ´pz). Hence,

P “

8
ż

0

π{2
ż

0

2p cos θ v cos θ npp, θq dθdp .

Simple, yet crucial observation: the momentum distribution being (assumed) isotropic,
the particles are coming uniformly from all directions, hence the number of particles having
momentum in pp, p`dpq and approaching within pθ, θ`dθq is, to the total number of particles
which have momentum in pp, p` dpq (and arbitrary direction), in the same proportion as the
area of the spherical annulus delimited on the unit sphere by the cones pθ, θ`dθq (“spherical
annulus”, because it is the difference between two spherical caps rather than between two
discs) to the total area of the unit sphere,

number of pp, p ` dpq particles approaching from pθ, θ ` dθq

total number of pp, p ` dpq particles (coming from any direction)
“

“
npp, θq dpdθ

nppq dp
“

2π sin θ dθ

4π
,

where nppq is the density of particles with momentum magnitude p of course. Expressing
from here npp, θq dpdθ “ 1

2
nppq sin θ dθdp and using it in the pressure integral, we have

P “

8
ż

0

π{2
ż

0

2pv cos2 θ npp, θq dθdp “

8
ż

0

π{2
ż

0

2pv cos2 θ
1

2
nppq sin θ dθdp “

“

π{2
ż

0

cos2 θ sin θ dθ

8
ż

0

p v nppq dp “
1

3

8
ż

0

p v nppq dp .

Hence the important formula

P “
1

3

8
ż

0

p v nppq dp . (21.14)

We may check whether it really yields what expected in some notorious case – say of
a classical Maxwellian distribution, i.e. for a classical ideal gas of free particles described by
the Boltzmann distribution

nppq “ p2s ` 1q
4πp2

h3
exp

ˆ

´
E ´ µ

kT

˙

rwhere E´µ " kT is assumeds , (21.15)
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specifically when the chemical potential is totally negligible, µ“0. “Classical” and “free” is
consistent with E“p2{p2mq and v“p{m relations, so, taking s“1{2, we have

nppq “
8πp2

h3
exp

ˆ

´
p2

2mkT

˙

.

The pressure integral gives

P “
8π

3mh3

8
ż

0

p4 exp

ˆ

´
p2

2mkT

˙

dp “
π3{2

mh3
p2mkT q

5{2 ,

while

n “

8
ż

0

nppq dp “
8π

h3

8
ż

0

p2 exp

ˆ

´
p2

2mkT

˙

dp “
2π3{2

h3
p2mkT q

3{2 ,

which really are in the ideal-gas relation P “nkT .

21.4 Equations of state of a degenerate fermion gas
After the star-nuclear resources languish, the pertinent region of the star contracts, because
the radiation pressure falls down and the weight of the material overwhelms the buoyant
force. The matter pressure, normally linked to the thermal motion of particles, gradually
(or quite quickly) becomes dominated by quantum-mechanical resistance of fermions against
compression, because the corresponding characteristic energy (the Fermi energy EF) grows
with density faster (as n2{3) than the thermal energy kT (which grows as n1{3 as we know
from (21.6)) – the fermions become degenerate. Below, we focus on this state of matter
whose pressure of fundamental origin is the only able to resist gravity (at least to a certain
extent) at this stage of stellar evolution.

Have an ideal gas of fermions / bosons – i.e., a grand-canonical ensemble of free parti-
cles with half-integer / integer spin. The number density of particles with momentum magni-
tude p is given by the Fermi-Dirac / Bose-Einstein distribution

nppq “ p2s ` 1q
4πp2

h3
1

exp
`

E´µ
kT

˘

˘ 1
, (21.16)

whereE is the energy of individual particles and µ is their chemical potential. ForE µ́"kT ,
the formula goes over to the Boltzmann distribution for a classical ideal gas (21.15). Yet we
are now rather interested in the limit T Ñ0 of the Fermi-Dirac distribution,

nppq “

#

p2s ` 1q
4πp2

h3
for E ă µ “: EF

0 for E ą EF

, (21.17)

i.e. when all the states with Eăµ“:EF are occupied by p2s`1q particles and the states with
EąEF are unoccupied. In such a case, the ensemble is said to represent a totally degenerate
fermion gas in a fundamental state.
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Approximating the white-dwarf electrons or neutron-star neutrons as the totally degen-
erate fermion gas with s “ 1{2, i.e. taking

nppq “
8πp2

h3
for p ă pF and nppq “ 0 for p ą pF ,

we thus obtain for pressure

P “
8π

3h3

pF
ż

0

p3v dp “
1

3π2ℏ3

pF
ż

0

p3v dp . (21.18)

In a non-relativistic case we substitute v“ p{m, while in the ultra-relativistic case v“ c, so
by integration and insertion of the Fermi momentum pF “ p3π2nq1{3ℏ, we have

P “

$

’

’

&

’

’

%

1
3π2ℏ3m

pF
ş

0

p4dp “
p5F

15π2ℏ3m “
p3π2q2{3ℏ2

5m
n5{3 “ 2

5
nEF

c
3π2ℏ3

pF
ş

0

p3dp “
p4Fc

12π2ℏ3 “
p3π2q1{3ℏc

4
n4{3 “ 1

4
nEF

, (21.19)

where finally the expressions (21.8) for EF have been used respectively. By comparison of
these relations with the mean-values relations (21.4), we confirm that the Fermi energy is a
typical rather than exceptional peak energy of the particles – specifically, Ēkin “ p3{5qEF in
the non-relativistic gas and Ēkin “ p3{4qEF in the ultra-relativistic gas. (Let us emphasize
that in the non-relativistic case Ekin and EF really concern just the kinetic part of energy, the
rest energy is not included.)

Besides mentioning the limits, let us give a precise and generic result. Actually, using
the general momentum-velocity relation

p “
mv

b

1 ´ v2

c2

ùñ v “
pc

a

m2c2 ` p2

in the pressure integral for degenerate gases (21.18), it is still possible to integrate it analyti-
cally,

P “
8πc

3h3

pF
ż

0

p4 dp
a

m2c2 ` p2
“
πm4c5

3h3

”

χ
a

1 ` χ2 p2χ2
´ 3q ` 3 arcsinhχ

ı

, (21.20)

where χ :“ pF
mc

quantifies how much relativistic the fermions are. The above non-relativistic
limit corresponds to χ!1; restricting to the leading term of the expansion at χ“0,
”

χ
a

1 ` χ2 p2χ2
´ 3q ` 3 arcsinhχ

ı

„
8χ5

5
,

one really obtains the limit expression. Similarly, the ultra-relativistic situation χ" 1 really
yields the latter limit expression if restricting to the leading term of the asymptotic expansion,
”

χ
a

1 ` χ2 p2χ2
´ 3q ` 3 arcsinχ

ı

„ 2χ4 .
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Finally, in order to express the obtained equations of state in terms of the total density ρ
(instead of the number density of degenerate fermions n), we will neglect the internal energy
„kT and the mass contribution of electrons, and then use the relations for nppFq (21.7) and
n0 (21.11) to write

n

n0

“

p3F
3π2ℏ3
m3c3

3π2ℏ3
“

p3F
m3c3

” χ3 .

Therefore, the total density can be expressed as
“

recall that Y ”
density of degenerate fermions

total density of baryons

‰

ρ “ m̄b
n

Y
“
m̄b

Y

n

n0

n0 “
m̄bn0

Y
χ3

“: ρ0 χ
3 , (21.21)

where, explicitly,

ρ0 :“
m̄bn0

Y
“

m̄b

3π2Y

m3c3

ℏ3

is the total (in fact baryon) density corresponding to the typical number density n0 of de-
generate fermions of the relevant type (electrons or neutrons). In astrophysical reality, this
density amounts to

ρ0 » 2.0 ¨ 106 g{cm3 for a degenerate electron gas
„

m“me, Y ” Ye “
1

2

ȷ

, (21.22)

ρ0 » 6.8 ¨ 1015 g{cm3 for a degenerate neutron gas
„

m“mn, Y ” Yn “
8

9

ȷ

(21.23)

(we have inserted values of Y typical for the white dwarfs and for neutron stars, respectively).
The former value is really deemed typical for white dwarfs, whereas the latter value rather
seems to correspond to a peak core value for neutron stars, at least for baryon stars (not
dominated by quark fluid in the core).

The limit equations of state (21.19) gain by the change from n to ρ. Writing out in
them, respectively,

n5{3
“ n

ˆ

n

n0

˙2{3

n
2{3
0 “

ρY

m̄b

ˆ

ρ

ρ0

˙2{3
m2c2

p3π2q2{3ℏ2
,

n4{3
“ n

ˆ

n

n0

˙1{3

n
1{3
0 “

ρY

m̄b

ˆ

ρ

ρ0

˙1{3
mc

p3π2q1{3ℏ
,

we arrive at

P

ρc2
“

$

’

&

’

%

mY
5m̄b

´

ρ
ρ0

¯2{3

. . . in the non relativistic limit

mY
4m̄b

´

ρ
ρ0

¯1{3

. . . in the ultra-relativistic limit
. (21.24)

Let us repeat again that m is the mass of the degenerate fermion; for white dwarfs, it is
the electron mass (and Y ” Ye “ 1{2), while for neutron stars, it is the neutron mass (and
Y ”Yn “8{9).
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21.5 Cold-star equilibria and the Chandrasekhar limit
Arising by such a fundamental and inescapable reason, the degenerate-fermion pressure
might seem to be able to withstand any burden. If under pressure, the gas just adjusts its
own pressure by stretching over the momentum space accordingly. Still it is not always suffi-
cient. Later, we will mention practical limitations, but even if those did not work, one might
expect a fundamental limit to exist. Indeed, larger momentum means larger energy – and
energy is the source of gravity. In other words, pressure contributes to gravity, as we know
from the equation for potential. When the typical speed of the fermions approaches that of
light, their own weight grows quickly, so their pressure gradually loses efficiency as an oppo-
nent of gravitation. And really, we saw that in the ultra-relativistic regime the adiabatic index
is lower (4/3) than in the non-relativistic regime (5/3), so with rising momentum range, the
gas gradually becomes softer (less resistant to compression). Besides that, gravity has two
inherent aces on its side: it is long-range, and it is universal. The more massive the object,
the more weight it feels (because gravity goes as mprq), and the smaller it is, the yet more
weight it feels (because gravity goes as 1{r2). Actually, we saw that the gravitational binding
energy (21.6) grows with A2{3 and in addition with n1{3.

We will derive the “fundamental core” of the Chandrasekhar mass limit, simply from
the balance between the gravitational binding energy and the kinetic energy, the former being
dominated by baryons, while the latter by degenerate fermions. The binding energy per
baryon Ūg was computed in (21.6), while the kinetic (Fermi) energy EF in (21.8). Remember
that the binding energy was expressed as a function of the mean number density of baryons,
wheres the Fermi energy naturally involves the number density of degenerate fermions, so,
in comparing them, the latter should be multiplied by the respective Y ratio. Also, in the
relativistic case, the mean energy of degenerate gas is p3{4qEF. However, the binding-energy
calculation anyway stemmed from a classical equation of hydrostatic equilibrium, which may
not be fully adequate in our problem of finding the maximal possible mass of a degenerate
object, so, in order to identify the fundamental part of the result only, let us just omit all
numerical factors. In the ultra-relativistic regime, the balance ´Ūg „EF thus means
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where
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p
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ˆ
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˙

is the gravitational analog of the fine-structure constant of electrodynamics. The values are

αg
.
“ 5.9 ¨ 10´39

ùñ MC
.
“ 2.2 ¨ 1057mp

.
“ 1.85Md .

–Nice result, just given by fundamental constants. In particular, it does not depend on the
mass of degenerate fermions, so it indicates the existence of a certain universal limit for mass
of an object supported against gravity by pressure of degenerate fermions.
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What about non-relativistic regime? Making similar comparison with the non-relativistic
alternative of (21.8) and omitting small numerical factors again,
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. (21.26)

The story can now be read as follows: have an object supported by degenerate fermions
and look for its equilibrium configuration. With density rising, the resulting mass of the
equilibrium grows as

?
ρ. However, as the gas gradually becomes relativistic, the density

dependence weakens, that is, it is more and more difficult to reach higher mass. Finally
the mass saturates to some limit value which is proportional to the above fundamental result
MC. Taken in the other way round, increasing the mass of a degenerate object makes its
density higher, but when the object already contains more than about 2.2 ¨ 1057 baryons,
it can no longer stay in equilibrium – it has to either collapse or explode (?). Of course,
this has been “fundamental estimate” only, details have to be added if aiming for realistic
predictions. With the details incorporated, the limit mass comes out slightly below 1.5Md

for white dwarfs (degenerate electrons), while for neutron stars the actual limit is less certain
and may probably lie higher (about 2 ˜ 3Md), mainly due to the possibly important effects
of spin and of magnetic field.

21.5.1 Stable and unstable branches of the cold-matter equilibria

Results of integration of the TOV equation together with the equation of mass and equation of
state P “P pρq are being plotted in the pR,Mq diagram, as equilibrium curves parameterized
by central density. The main issue is the equation of state, mainly in the heavier neutron-star
case when “strong-field” chromodynamics becomes crucial. However, it has been observed
that the resulting equilibrium curves M “ MpR; ρcq typically show three main features,
relatively independently of the state equation (see Figure 21.2):

• For a non-degenerate matter, the equilibrium objects (“planets”) have bigger mass and
bigger radius with growing central density. When the density reaches about 104˜5g{cm3,
electrons gradually become degenerate and the curve sharply bends – with rising density,
the equilibrium objects are more massive but smaller now. This behaviour also applies –
under much greater densities – to objects supported by degenerate neutron gas.

• There exist two regions where the degenerate-gas dominated equilibria are stable, one at
the central-density range p105 1̃09qg{cm3 (white dwarfs, dominated by degenerate electron
gas) and one at the range p4 ¨1013 ˜ 3 ¨1015qg{cm3 (neutron stars, dominated by degenerate
neutron gas). For other central densities, the degenerate equilibria are unstable, which
practically means that they have no physical relevance (if a star does have such a central
density, it is not in equilibrium – it is undergoing contraction or expansion, likely a very
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Figure 21.2 Top: Typical map of the cold-matter equilibria in the radius-mass pR,Mq axes

and parameterized by central density. Besides the standard stable branches (solid line) of white

dwarfs and neutron stars, a possible quark-star branch is also indicated. Bottom: Detail of the
neutron-star branch, computed for different equations of state (marked by different abbreviations).

The “causality limit” is where sound speed exceeds that of light. Possible stars with quark cores are

also included – see the curves denoted by “SQM”. Masses of three well studied pulsars are indicated.
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dynamical one). The stars with quark cores seem to be a likely third stable possibility
which might/should occur at central densities Á1015g{cm3.

• All the two/three branches of stable equilibria culminate at mass values close to the Chan-
drasekhar limit. Indeed, it is not necessarily so that white dwarfs are lighter than neutron
stars and these in turn are lighter than quark stars – the three kinds of cold objects rather
differ in central density and radius (the neutron and quark stars only slightly, however).

Theoretical minimum mass is about 0.05Md for white dwarfs and about 0.1Md for neutron
stars. For white dwarfs, smaller mass simply would not ensure sufficient electron degeneracy.
For neutron stars, smaller mass would mean such a low density that neutrons could β decay,
because electrons would not be so highly degenerate, so the extra ones arising from the decay
would be able to find their niche in the phase space (Pauli blocking is not that strict then).
Therefore, the matter would not get sufficiently neutronized. Let us emphasize that this is
not to claim that, say, 0.5Md of matter should always give rise to a white dwarf or a neutron
star; it only says that an already made, static configuration of that mass should be able to stay
as a white dwarf or as a neutron star. Good to mention observations as well: white dwarfs
are known with masses between 0.17Md and 1.33Md, with majority lying in p0.5˜0.7qMd.
Their radii are mostly estimated at p5500 ˜ 14000qkm, with the two parameters inversely
proportional (in the non-relativistic regime, they are related as M „ 1{R3). Known (and
precisely measured) neutron stars have masses between 1.17Md and 2.14Md, with majority
lying around 1.4Md. Radii are being estimated at p9.5 ˜ 12qkm. Again the two parameters
should be inversely proportional. Hence, there exists an overlap in mass ranges of the two
types of degenerate objects.

21.6 Limits of dominance of the degenerate fermion gas
We were emphasizing that the Chandrasekhar limit represents a fundamental message rather
than an accurate value. The maximal mass of real degenerate objects clearly is close to the
Chandrasekhar limit, but several physical circumstances make the practical reach slightly
lower than would correspond to a total dominance of the degenerate ideal fermion gas.

Generally, close to the surface of the objects the density is much lower and the mat-
ter tends to condense to a rigid structure with a considerably different equation of state. On
the other hand, in the direction towards higher densities where the fermion Fermi energy in-
creases rapidly, there typically open interaction channels through which the relevant fermions
are spent, their energy being converted to some form in which it no longer generates pressure
effectively or even completely escapes from the star (neutrinos). It is however very difficult
to assess the importance of different possible processes, the more that there is very little labo-
ratory experience with similar states of matter (energy is within reach, but density only very,
very temporarily).

21.6.1 The electron-gas case

• We saw that most of the white-dwarf volume is very well dominated by the degenerate
electron gas. Typically only a thin surface layer (about 1/100 of radius) is non-degenerate.
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In the surface layer, Coulomb interaction is important as well, so the gas is not ideal there
and its pressure is lower accordingly.

• A different story are the nuclei. They are far from degenerate, their kinetic energy is
dominated by kT , but mainly the Coulomb interaction between them is important, due to
which the nuclei tend to arrange in a rigid lattice. When, in the direction of decreas-
ing density, the electron gas finally loses degeneracy (at about 104˜5 g{cm3), the pressure
falls rapidly and the curve of equilibria turns towards smaller radii as well as masses (the
behaviour of “planetary” type). The turn-over roughly corresponds to p10´3 ˜ 10´2qMd,
which may thus be regarded as the minimal mass of white dwarfs. For lower masses (and
densities), one approaches the realm of condensed-matter physics. When the density falls
to some 500 g{cm3, electrons gradually get bound to the nuclei (atoms recombine) and the
substance differentiates chemically. At densities around 50 g{cm3, even the valence or-
bitals are populated, so all the electrons are bound and the matter properties are chiefly
determined by chemical elements involved.

• There is one clear limit for the dominance of the degenerate electron gas: when its Fermi
energy exceeds a certain value, electrons start to be spent in the inverse β decay (electron
capture, or “neutronization”)

p ` e´
ÝÑ n ` νe .

For a mixture of free protons, electrons and neutrons, the threshold value is simply given
by the difference between the rest energies of proton and neutron,

pmn ´ mpqc2 “ c
b

m2
ec

2 ` p2F “ c

d

m2
ec

2 ` ℏ2
ˆ

3π2ρYe
m̄b

˙2{3

ðñ ρ
.
“

1.2

Ye
¨ 107 g{cm3

(with the neutrino energy gone), but in the conditions really existing in the white dwarf the
question is much more complicated: for a mixture of certain nuclei AZX and free electrons,
is it energetically more favourable (= lower) to keep status quo, or to go for A

Z´1Y by
electron capture and release the corresponding neutrino energy,

A
ZX ` e´

ÝÑ
A
Z´1Y ` νe ,

or to fuse some “higher”, neutron-rich nuclei (while typically spending some electrons and
releasing neutrino energy)?

Just to have an idea of how strongly the answer depends on the white-dwarf composition,
we give several typical nuclei AZX and [approximate density threshold for their neutroniza-
tion]: for 4

2He [Á1011g{cm3], 12
6C [4 ¨ 1010g{cm3], 16

8O [2 ¨ 1010g{cm3], 20
10Ne [6 ¨ 109g{cm3],

24
12Mg [3 ¨ 109g{cm3], 28

14Si [2 ¨ 109g{cm3], 32
16S [Á 108g{cm3], 56

26Fe [109g{cm3]. Generally,
however, up to some ρ „ 4 ¨ 1011 g{cm3, advantageous are bigger nuclei, even as big as
A
.
“ 120, Z .

“ 40.
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A remark: combination of the inverse β decay with the direct one, n Ñ p ` e´ ` ν̄e,
yields the so-called URCA process, which normally may cool the stars efficiently through
releasing neutrinos and antineutrinos. However, in the “bath” of degenerate electrons, it
is not easy for “the (N+1)-st” electron to “return from the nucleus”, because there is no
space for it in the extremely densely populated phase space (the return is said to be “Pauli-
blocked”).

• We have reached densities where stable equilibrium is not possible (Á 109˜10g{cm3). Be-
sides some of the inverse-β-decay channels, another serious issue in the life of an ultra-
dense star is the neutron drip. Namely, when the density rises to some ρ„4.3 ¨1011 g{cm3,
the big nuclei formed by the inverse β decay start releasing neutrons. The abundance of
neutrons rises quickly to about pA ´ Zq{Z » 400 at ρ „ 1012 g{cm3. With the density
growing further, the ratio decreases back and finally approaches 8. Good to add that the
contribution of neutrons to pressure behaves in quite an opposite way: around “drip” it is
negligible, which induces strong instability (large contribution to density and, at the same
time, small contribution to pressure means an easily compressible object), but then it rises
rapidly as the neutrons start to become degenerate. Indeed, at ρ „ 4 ¨ 1011 g{cm3 the de-
generate electrons still dominate, whereas at ρ„ 1013 g{cm3 almost all pressure is due to
degenerate free neutrons. But this is already a situation applying to neutron stars...

Hence, whereas the mass ranges for white dwarfs and neutron stars overlap, in central
density there exists quite a broad “forbidden zone” between 109˜10 and 1013 g{cm3. The
above mentioned processes of neutronization and of neutron drip thus happen in seconds,
while the object rapidly collapses.

• In higher densities, white dwarfs are general relativistic objects as well – their interior
pressure contributes to gravitation non-negligibly, which restricts the equilibrium prospects
according to the TOV equation. However, more sensitive to GR effects than equilibrium
is stability. An analysis similar to what we performed in Section 20.4 shows that, contrary

to the Newtonian treatment, the white dwarfs denser than roughly 2.65 ¨ 1010
´

1{2
Ye

¯2

g{cm3

at their centre may be prone to a collapse.

• If an object possesses spin and/or magnetic field, it may intuitively be more protected
against collapse, and papers that take them into account really conclude that the limit mass
may then be as high as about 3Md. However, details remain uncertain, for example, it is
not known how strong magnetic fields really occur inside white dwarfs.

21.6.2 The neutron-gas case

• It is estimated that density is roughly higher than the nuclear “saturation” value ρ „ 2.3 ¨

1014g{cm3 in the central half of the neutron-star radius. The behaviour of matter at densities
Á4 ¨ 1014g{cm3 remains largely unknown because of uncertain behaviour of strong nuclear
force at distances where it sharply turns negative. Let us briefly mention some further
issues occurring there (besides this basic uncertainty).
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• With the strong force turned extremely strong, the nucleon gases cease to be ideal. At
hyper-nuclear densities, another types of baryons may occur, namely hyperons and baryon
resonances (which under normal conditions decay quickly, but here they might live longer).
Also possible is the analog of the β decay with π-mesons (pions) in place of electrons,
n Ñ p ` π´. Actually, mesons have zero spin, so they are bosons and do not block each
other in the phase space. Under very low temperatures, they may even hand over of all
their momentum and settle down to a Bose-Einstein condensate. Pions also may enter
further interactions, for example a cooling cycle analogous to the URCA process, in which
neutrons convert into pions and back while generating neutrinos and antineutrinos. (Under
the given high densities, neutrinos already do slightly scatter on matter, mainly on some of
the possible hyperons.) Also, by interaction with hyperons, the π-mesons may generateK-
mesons (kaons) which have non-zero strangeness. The appearance of such extra particles
generally softens the equation of state.

• When the nucleons start to touch each other, the model of “particles” moving in a certain
interaction potential loses sense – it should be replaced with the model of a nucleon liquid
dominated by strong interaction. The neutron liquid may be superfluid (zero viscosity) and
the proton liquid may be superconducting (zero resistance).

• Around 1015g{cm3 when nucleons start to coalesce, the nuclear liquid begins to turn into
the quark phase; one can call this “quark drip” in analogy with the neutron one. Quarks
are asymptotically free, so they only achieve freedom when under extreme pressure. The
“quark-gluon plasma” likely preceded the formation of hadrons in the early Universe; this
state of matter has already been identified in collision experiments with heavy nuclei for
tiny instants. The quark-matter equation of state turns out (from quantum chromodynam-
ics) to be rather similar to that of non-interacting massless particles, P „ρ{3, which means
considerably higher compressibility than has the hadronic liquid. Therefore, neutron stars
with quark core are smaller then the pure-hadron ones. It is believed that the quark phase
occurs in the core of stars heavier than about 1.2Md.

21.7 Stellar fates
An observation exists (made in Amsterdam) that Good girls go to heaven, bad girls go to
Amsterdam. With stars it is not that simple. Traditionally, we were taught that the cores of
the lightest stars (À 10Md) end as white dwarfs, those of moderate-mass stars (10 ˜ 30Md)
become neutron stars, and the heaviest stars (Á 30Md) give rise to black holes. In reality, the
stellar fates rather interlace in a complicated (in fact chaotic) pattern, only very approximately
following the above tendency. Relevant are various subtleties of stellar evolution and mass
loss (chiefly dependent on mass and nuclear composition), the star’s spin and magnetic field,
and surely profound is the influence of a possible involvement of the star in a binary or
multiple system.2 However, modern simulations mainly point to the extreme complexity

2 Astronomical statistics indicates that solar-mass stars almost in 50% exist in multiple systems (mostly bina-
ries); for Á 16Md stars it is even more that 80%.
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of supernova explosion – the spectacular ejection of outer stellar layers which typically
accompanies the collapse of the core into a neutron star and sometimes also into a black
hole.3 Several mechanisms are supposed to perturb the above simplistic scheme:

• A neutron star need not only be formed directly – it may also arise from a white dwarf if the
latter accretes enough matter to exceed the Chandrasekhar limit. However, it is believed
that such an accretion mostly leads to a violent (carbon) fusion which completely disrupts
the white dwarf in a thermal runaway (in supernova Ia) before the mass limit is reached.
Neither a black hole needs to arise directly – if an explosion leaving a neutron star down
there is not “successful” enough and a significant amount of the expelled material falls
back, the neutron-star remnant may collapse into a black hole (of course, this may also
happen due to a later accretion episode).

• In dependence on how massive is the burnt-out nucleus of the star, some massive stars
may collapse to a black hole without significant explosion of the outer layers (astronomers
speak of “failed supernovae”).

• In very massive stars (140 ˜ 250 Md), the electron-capture picture of neutronization and
collapse is supplemented or even substituted by instability against the production of electron-
positron pairs. Actually, the core of such massive stars being extremely hot (Á 3 ¨ 108K),
photons generated there are mostly in the gamma band and thus able to produce electron-
positron pairs. Such a production may become unstable, because more pairs generated ñ

less photons left to support the stellar core ñ contraction ñ rise of temperature ñ nuclear
burning speeds up + still harder photons generated ñ still more pairs created ñ etc. The
e´ and e` also annihilate back of course, but if the instability grows quickly, they simply
do not make it and the runaway completely disrupts the star, i.e. no remnant is left.

• In the most massive stars (Á 250Md), the radiation generated in the core is so hard that it is
even able to photo-disintegrate the nuclei. Similarly as pair-creation, this process consumes
energy and can also turn into a runaway which however seems to result in a core collapse
into a black hole rather than disintegration; behaviour of the outer layers remains rather
unclear.

• If the dying star has significant spin, its collapsing core may form a disc which accretes
onto a just-born central compact object. Such a system may evolve similarly as accreting
compact objects known from X-ray binaries and microquasars, i.e. it may produce jets
ejected along the rotational axis and colliding with the outer stellar envelopes, thus gen-
erating hard radiation mainly emitted in the jet direction. This is a standard scenario for
gamma-ray bursts, with the object sometimes called a collapsar and the whole event a
hypernova.

3 These supernovae are called the core-collapse supernovae, in contrast to the thermal-runaway (type
Ia) supernovae caused by a nuclear-fusion outburst in a white dwarf subsequently burdened with an accreted
material.
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• A remark: a supernova-like event could also result from the conversion of a neutron star
into a quark star (quark deconfinement in the core), most likely due to a gradual spin-down
(and thus larger weight experienced by the core).



CHAPTER 22

Linearized theory of gravitation
and gravitational waves

It is common in physics that a problem would be simple(r) if this or that parameter were
negligible. It is thus crucial to identify “difficult” dimensions of a problem and, assessing
their factual significance, consider whether a suitable approximation could help to overcome
theoretical complications. A usual approach is the perturbation theory, in which a certain
parameter is assumed to be small and the equations are expanded in it.

In GR, there may occur various such parameters linked to specific situations, but one
aspect is always difficult, at least in a sufficiently generic situation: the non-linearity of the
theory in the “field” (affine connection, i.e. metric derivatives). Consequently, a very im-
portant position within the theory has the approach which assumes the field to be weak and
linearizes the equations in it. Since the field non-linearity fully shows itself in extreme situa-
tions only, such a linearized theory can adequately describe most of the problems arising in
astrophysics.

One particular application of the linearised theory is worth a special mention: gravita-
tional waves. Namely, imagine a generic space-time, possibly curved in a complicated way,
and a gravitational wave propagating in it. It is a very difficult idea in fact, because how to
uniquely distinguish the curvature belonging to the “background” and the one carried by the
wave? In the linearised theory it is simple, because the background is flat.

22.1 Metric, affine connection, curvature, and conservation
laws

We know how to parameterize the assumption of a “weak field” from Section 3.7 on the
Newtonian limit of geodesics. There have to exist such coordinates in which the metric
assumes an almost-Minkowski form,

gµν “ ηµν ` hµν , where hµν are very small (against 1), including derivatives . (22.1)

389
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“Very small” means that hµν and their arbitrary derivatives will be left in the equations up to
linear order only, Ophq. For the contravariant metric perturbation we found

hαβ “ ηαµηβνhµν ,

observing that hµν behaves like a tensor field living in the Minkowski space-time. And also
simple was to learn that Christoffel symbols are Ophq, specifically

Γµκλ “
1

2
ηµσphσκ,λ ` hλσ,κ ´ hκλ,σq . (22.2)

When performing the Newtonian limit, we assumed, besides the weakness of the field,
its stationarity, and also slow motion (for the special relativistic effects to be negligible).
The linearized theory does not restrict speeds, although the point is in fact a delicate one,
because the derivatives of the metric have to remain small. (We will more comment on it
later.) Neither stationarity of the metric will be assumed, though, again, the time derivatives
of the metric have to remain small as well.

The Riemann-tensor formula (6.8), yields, to the linear order,

Rµνκλ “
1

2
pgµλ,νκ ` gνκ,µλ ´ gµκ,νλ ´ gνλ,µκq ` gπρ p�����ΓπµλΓ

ρ
νκ ´

XXXXXΓπµκΓ
ρ
νλ q “

“
1

2
phµλ,νκ ` hνκ,µλ ´ hµκ,νλ ´ hνλ,µκq , (22.3)

so the Ricci tensor, Ricci scalar and Einstein tensor read

Rνλ ” ηµκRµνκλ “
1

2

`

hκλ,κν ` hκν,κλ ´ h,νλ ´ lhνλ
˘

, (22.4)

R ” ηνλRνλ “ hκλ,κλ ´ lh , (22.5)

Gµν ” Rµν ´
1

2
Rηµν “

1

2

“

hκν,κµ ` hκµ,κν ´ h,µν ´ lhµν ´ ηµνphκλ,κλ ´ lhq
‰

, (22.6)

where clearly l is the flat-space d’Alembert. Acting by divergence on the last guy, we get
zero,

Gµν
,ν

“
1

2

“

����hκν,κνµ `
HHHH
lhκµ,κ ´ lh,µ ´ XXXXlhµν

,ν
´ ����hκλ,κλµ ` lh,µq

‰

“ 0 ,

so the Einstein equations (we will not take into account the cosmological term)

hκν,κµ ` hκµ,κν ´ h,µν ´ lhµν ´ ηµνphκλ,κλ ´ lhq “ 16πTµν (22.7)

imply that the energy-momentum tensor satisfies conservation laws in the special relativistic
form,

Gµν
,ν

“ 0 ùñ Tµν
,ν

“ 0 .

Note that the above should have been expected: similarly as it is clear that hµν has its indices
handled by ηµν (because in fact it is being done by gµν , yet the “hh” term is already Oph2q
and thus omitted), the conservation laws may also be understood as “actually” involving
covariant divergence, yet since Gµν and (hence) Tµν are Ophq, the “ΓT ” terms are Oph2q and
thus omitted.
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22.2 Applicability of the linearized theory
When trying to understand, physically, the non-linearity of the Einstein equations (Section
8.2), we spoke about the effect of a source on itself through its own field. Exactly this
information can be expected to be missing in the linearized description. Imagine, for example,
a binary system in which two massive bodies orbit about a common centre of mass. Such a
system generates gravitational waves; these carry away energy, which makes the bodies’
orbital radii shrink. The field strength thus increases, and thus the gravitational emission –
so the radii shrink faster; etc. Unless the bodies are very compact and we enquire about
their close vicinity, the linearized theory can be expected to provide a good approximation of
how the metric looks in the whole space-time, including its non-stationary, wave component.
However, one does not expect to obtain information about the “back-consequences” of the
emission for the source motion.

Technically, such an image should follow from conservation laws (because these con-
strain the behaviour of sources), and it is indeed so. In Section 7.4.2 we showed, for example,
that for the ideal fluid the covariant conservation laws T µν ;ν “ 0 imply the Euler equation of
motion. If pressure in the fluid can be neglected, the equation reduces to the geodesic equation
aα ” uα;βu

β ” Duα
dτ

“ 0. This means that the fluid elements move freely in the total gravita-
tional field that the fluid itself generates (were some other sources present around, they would
also contribute to the field, of course). So it is a self-consistent description: the sources move
in the field that they themselves generate. The linearized conservation laws only contain par-
tial divergence, so in the same situation (without pressure) they yield aα ”uα,βu

β ” duα
dτ

“0,
i.e. uα“const – in the nearly-Lorentz system there is no gravitational influence.

A query might arise here: how is it possible that (even) in the Newtonian limit of the
geodesic equation we did obtain some gravitational effect (described by Φ,i), whereas now
it seems we have switched off the gravitation completely? When studying geodesic motion,
we considered a test particle reacting on an external field whose origin was not part of the
problem, it was simply given (by Γµκλ). In the Euler equations, on the contrary, the fluid is
not test, every its element contributes to the field – while, at the same time, reacting on the
total field generated by the whole fluid body. However, the field equations say that in order
that the curvature be small, the mass of every source element (the density) has to be such –
and hence in this case the “Γ-terms” of the equation have to be omitted, since “ρ ¨Γ” is already
Oph2q.

From the Newtonian limit of the geodesic equation, we obtained an estimate that a
“weak field” means that the dimensionless Newtonian potential is much smaller than unity.
Let us check whether such an estimate also follows from the linearised field equations, sym-
bolically written as BBh« 16πG

c4
T . Estimating, in the spirit of the mean-value theorem, that

|BBh|«|h|{R2, whereR is the characteristic size of the source, and approximating the energy-
momentum tensor using its dominant, density term, T « T00 « ρc2 « Mc2{R3, we have

|h|

R2
«

16πG

c4
Mc2

R3
ùñ |h| «

16πGM

c2R
«

16πΦ

c2
,

which confirms the previous guess.
A special note are worth the time derivatives. In their case, one should rather write

|BBh| « |h|{pc∆tq2, with ∆t a characteristic time-scale of the source (in which the source
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can significantly change). However, since any change can only spread within the source
with subluminal speed, v « R{∆t À c, it must hold c∆t Á R, which means that the time
derivatives are typically À the spatial derivatives. Let us stress that this is an expectation, it is
not an assumption, so we are not otherwise restricting the velocities occurring in the source,
in particular, we are not requiring that the time derivatives be much smaller than the spatial
ones.

In dynamical situations, especially in the case of gravitational radiation, which we will
address mainly using the linearised theory, the sources often change periodically or quasi-
periodically, typically in connection with their rotation. Such cases can be parameterized by
characteristic frequency (ω) instead of the time interval ∆t. The gravitational radiation is of
quadrupole level (dipole component does not exist due to conservation of total momentum),
so, in analogy with electromagnetism, we expect a reasonable estimate for radiative |h| to be
analogous to the quadrupole term in the expansion of EM potential,

|h| «
1

c4r

d2D

dt2
«

1

c4r

GMR2

p∆tq2
«
GM

c2r

R2ω2

c2
,

where r is the distance from the source. Substituting there values describing the Crab-nebula
pulsar, for example, one gets |h| À 10´23. This roughly corresponds to the “design” sensi-
tivity of current top interferometric detectors of gravitational waves, with the strongest astro-
physical signals (from compact-binary mergers) reaching about 100 times that level.

The question of time change can also be discussed on the energy-momentum tensor.
For that of incoherent dust, for example, T µν “ ρuµuν , it holds |T ij| ă c |T 0j| ă c2T 00

since |ui| “ |vi||ut| ă c|ut|, but it is not necessary to neglect any of the components. The
considerations are also valid for an ideal fluid, because pressure P has to be less then energy
density ρc2, in order that the sound speed remain below the speed of light, P {ρ « dP {dρ ”

v2s ă c2. Actually, the most “stiff” equation of state in usage reads P “ ρc2; an isotropic
radiation (or ultra-relativistic gas) has P “ρc2{3.

22.3 Covariance properties of the linearised theory
One of the most important properties of a theory is its (possible) invariance under a certain
family (group) of transformations. Actually, such symmetries have turned out to probably
reach down to a deep “underground” of the physical world, similarly as e.g. the extremum
properties on which the variational principles build. Mainly in microphysics it is common
to characterize, compare and classify a theory by identifying (or right by starting from) its
symmetry group. Sure that in relativity – a theory in which so much attention goes to distin-
guishing “absolute” from “relative”, i.e. to the transformation properties – it all the more so
cannot be otherwise.

22.3.1 Infinitesimal-diffeomorphism freedom

In full GR, the “issue” is right from the beginning answered by the principle of general co-
variance: the theory has to be invariant under any diffeomorphism, i.e. any map – from (a
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certain region of) the manifold to itself or to (certain region of) some other manifold – which
is a C8 bijection together with its inverse, bijection meaning that it is “one-to-one” (injec-
tive) and “onto” (surjective). The two manifolds connected by a diffeomorphism are “the
same (isomorphic) as concerns their differential structure”. (Note that they still may/may not
be equipped with different affine connections and/or different metrics.) However, although
“differential structure” standardly means complete atlas of coordinate charts, the diffeomor-
phisms of GR need not only be understood as coordinate transformations, i.e. in a “passive”
sense (as “leaving everything as it is, just changing the coordinates”). They may equally well
be understood in an “active” sense, as indeed shifting points (one thus speaks of flow), while
providing, automatically, a natural way how to pull back functions (to its domain Ð from its
range, simply by composition) and how to push forward vectors (from tangent spaces of the
domain Ñ to tangent spaces of the range), which already is sufficient to know how to trans-
port any tensor. We followed the active view in Chapter 11 on Lie derivative, since it more
naturally leads to a coordinate-independent picture, yet the two perspectives are equivalent.
In particular, the components of the transported tensors in coordinates there are, technically,
just the components of tensors in the “new” coordinates of the passive view. Or, in different
words, the matrix of the tangent map (of the active view) just equals the Jacobi matrix of the
corresponding coordinate transformation. We have stopped for a while at this point, because
to grasp the above equivalence was once important in understanding the lower floors of GR
(philosophers, you may look at Einstein’s hole argument).

However, it is also important in understanding how the linearised theory differs from
the full GR. The linearised theory cannot have general diffeomorphism covariance, because
under a generic transformation the components hµν might not remain small. They only do if
the transformation is “infinitesimal” (take the “active” view now),

xµ Ñ x1µ
“ xµ ` ξµpxq , where ξµ,ν À Ophq . (22.8)

The sense of this smallness requirement should be clear, since the tensor components trans-
form via the Jacobi matrix

Bx1µ

Bxα
“ δµα ` ξµ,α ,

Bxα

Bx1λ
“ δαλ ´ ξα,ι

Bxι

Bx1λ
“ δαλ ´ ξα,ι

ˆ

διλ ´ ξι,κ
Bxκ

Bx1λ

˙

“ δαλ ´ ξα,λ ` Opdξ2q . (22.9)

The metric thus transforms as

g1
µν “

Bxα

Bx1µ

Bxβ

Bx1ν
gαβ “ pδαµ ´ ξα,µqpδβν ´ ξβ,νq gαβ “

“ gµν ´ gµβξ
β
,ν ´ gανξ

α
,µ ` Opdξ2q , (22.10)

of which the first smallness order reads

h1
µνpx1

q “ hµνpxq ´ ηµβξ
β
,νpxq ´ ηανξ

α
,µpxq :“ hµν ´ ξµ,ν ´ ξν,µ , (22.11)

ùñ h1
” h1µ

µ “ h ´ 2ξµ,µ . (22.12)
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It’s worth noticing that the smallness of ξµ itself has actually nowhere been employed, only
that of its derivatives (and that of hµν , of course).

From the transformation behaviour of the metric, one easily derives

Γ1µ
κλ “

1

2
ηµσphσκ,λ ´ ξσ,κλ ´ ���ξκ,σλ ` hλσ,κ ´ HHHξλ,σκ ´ ξσ,λκ ´ hκλ,σ ` ���ξκ,λσ ` HHHξλ,κσ q “

“ Γµκλ ´ ηµσξσ,κλ “ Γµκλ ´ ξµ,κλ , (22.13)
R1
µνκλ “ Rµνκλ´ ���ξµ,λνκ ´

HHHξλ,µνκ ´ ���HHHξν,κµλ ´ ξκ,νµλ` ���ξµ,κνλ ` ξκ,µνλ` ���HHHξν,λµκ `
HHHξλ,νµκ “

“ Rµνκλ . (22.14)

So the Riemann tensor is invariant with respect to the infinitesimal diffeomorphisms (it is
“gauge invariant”), and thus all the quantities computed from it. This however is not any
special property of Riemann – in transformation of any tensorial quantity which is itself
Opξq, only the Kronecker-delta term of the transformation matrices (22.9) contribute to that
order, so the quantity remains unchanged. (Gammas do change, because they are not tensors.)

22.3.2 Understanding the infinitesimal diffeomorphisms

Worth to realize that the above paragraph actually was about the Lie derivative. Indeed,
the Lie derivative was derived from the flow defined by an infinitesimal diffeomorphism
xµ Ñ xµ ` ξµ in Section 11.3.1 – there, however, written as xµ0 Ñ xµ0 ` ϵξµ, with ϵ ensuring
its infinitesimality (because ξµ itself did not have to be small there).1 Subsequently, we found
in Section 11.4 – equation (11.23) – that the metric changes under such a flow according to

£ξgµν “ gµν,ιξ
ι

` ξι,µgιν ` ξι,νgµι “ ξν;µ ` ξµ;ν .

Comparison with (22.10) reveals that2

g1
µνpx1

q ´ gµνpxq “ ´£ξgµν ` gµν,ιξ
ι .

After the decomposition gµν “ηµν` hµν , with hµν small including derivatives, one obtains

��ηµν ` h1
µνpx1

q ´ ��ηµν ´ hµνpxq “ ´£ξηµν ´ XXXX£ξhµν ` ���HHHηµν,ιξ
ι

` XXXXhµν,ιξ
ι

ùñ h1
µνpx1

q ´ ��ηµν ´ hµνpxq “ ´£ξηµν “ ´ξν,µ ´ ξµ,ν ,

where the terms crossed out XXXXXthis way have been cancelled because they are “small squared”
(being given by “hξ” products).

1 We apologize for such a notation difference. Namely, in the section on Lie derivative, it is necessary to
keep ϵ explicitely, as a primary infinitesimal shift of parameter along the flow of a vector field ξµ. Actually, ϵ
sometimes appeared alone there, without ξµ, as e.g. in the very definition of the Lie derivative (11.3). In the
present chapter, on the contrary, ϵ would everywhere appear together with ξµ, so it is simpler to omit it and to
bear in mind, instead, that ξµ has to be small, including all its derivatives.

2 Yes, the Lie-derivative term is with minus in front, because in the Lie derivative one made the difference
between the object pulled from x ` ξ “back” to x and the object “existing” at x, see (11.3), whereas in the
present chapter the primed quantities mean those pushed forward from x to x ` ξ and the unprimed quantities
mean those at x.
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This in fact is a special case of a theorem describing the behaviour, under infinitesimal
transformations, of tensor perturbations induced by small perturbation of the host space-
time (with our perturbation specifically being described by η Ñ η ` h): if, as a result of
such a perturbation, some tensor T changes as T Ñ T ` δT (indices omitted), then in the
transformation (22.8) the perturbation part changes according to

δT 1
“ δT ˘ £ξT ,

with T denoting the tensor in the original space-time (in our case, gµν ”ηµν , δgµν ”hµν and
h1
µν “ hµν ´ £ξηµν , for example). The ˘ signs just distinguish whether one understands

the transformation in the “active” way, as a shift (upper sign), or in the “passive” way, as a
coordinate change (lower sign) – cf. footnote.

The behaviour of quantities under the infinitesimal coordinate translations – but also
under “intrinsic” variations, independent of the coordinates – will again be important in Chap-
ters 23 and 28.

22.3.3 Global Lorentz covariance

The linearised theory lies somewhere “between special and general relativity”, so it may be
expected to also involve some of the symmetries of special relativity. Actually, it possesses
the full, global Lorentz (or in fact Poincaré) covariance. Applying to the metric tensor the
Poincaré transformation

x1µ
“ Λµνx

ν
` bµ , xα “ Λµ

α
px1µ

´ bµq , where ηµνΛ
µ
αΛ

ν
β “ ηαβ ,

we have

ηαβ ` h1
αβ ” g1

αβ “
Bxµ

Bx1α

Bxν

Bx1β
gµν “ Λα

µΛβ
ν

pηµν ` hµνq “ ηαβ ` Λα
µΛβ

ν hµν

ùñ h1
αβ “ Λα

µΛβ
ν hµν . (22.15)

Often not stressed enough in textbooks is the precise meaning of the above. Namely, it is in
fact possible to decompose any metric as gµν “ ηµν ` hµν , even globally – and irrespectively
of whether hµν is small or not. Also always possible is to make a Lorentz or even Poincaré
transformation (satisfying the orthogonality relations). Such transformation indeed holds be-
tween different possible locally orthonormal frames of observers moving through some (one
and the same) space-time point. To be stressed here is that, in the linearised theory, the
special-relativity properties are global, not just local as in GR (as ensured there by the equiv-
alence principle): the quasi-Minkowskian coordinates – those in which the metric is almost
Minkowskian (i.e. in which h’s are small) – are global, and the Poincaré transformations
between different such coordinates are global as well (not specific for every point).

Since hµν behaves like a flat-space tensor, it is also true for the curvature tensors, thus
for the energy-momentum tensor, which in turn requires that the matter and non-gravitational
fields behave like in special relativity as well. (Note that even affine connection behaves in
a tensorial manner under Lorentz transformations, as under any linear transformation.) This
feature offers an alternative way how to understand the theory of weak gravitational fields:
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not as an approximation to some non-linear theory (GR), but as an autonomous theory of a
symmetric tensor field hµν on the Minkowski background. Such a view is sometimes called
field-theoretical, as opposed to geometrical, since the gravitational field has no relation to
the space-time geometry in it. The geometrical view is natural when one wants to employ
the tools of the full GR, mainly when wishing to compare these theories, while the field-
theoretical view is useful for comparison with electrodynamics (to which linearised theory is
similar in many respects), and also in the “field” approach towards quantization of the theory.

22.4 Einstein equations as a wave equation
The practical value of the diffeomorphism freedom is that one is often able to “transform
out” spurious, purely coordinate-dependent features of the theory, arriving thus at its simple
and physically sound account. In electromagnetism, one makes use of the gauge freedom
which consists in the possibility to add to the four-potential a gradient of any scalar function,
Aα ÑAα` χ,α . In order to obtain, from the 1st set of Maxwell equations, a simple form of
the wave equation, lAα “ ´µJα, the gauge freedom is most often being fixed by requiring
the Lorenz condition Aα,α “ 0; this can be ensured by taking such a χ which satisfies the
equation lχ“ ´Aα,α. The last equation shows immediately that the Lorenz condition does
not fix the gauge freedom completely, specifically, one may still change Aα by gradient of
any function whose d’Alembertian vanishes, lχ“0.

22.4.1 Harmonic condition, Lorenz condition

In GR, the Lorenz condition is the linearized version of the harmonic coordinate condition.
Harmonic coordinates are such which satisfy lxµ“0, where xµ are understood here as a set
of four scalars, hence

pxµq
;α

“ gαβpxµq;β ” gαβpxµq,β “ gαβδµβ “ gαµ .

Now attention is at place: further covariant derivative might simply seem to give zero on
the metric, gαµ;α “ 0, but this is not the case here, because thus obtained gαµ should not be
considered a tensor, specifically, µ is not a tensor index – it only labelled the coordinates, it
does not transform properly. Hence, one does not know how to perform a covariant derivative
of such a quantity. However, a partial derivative certainly works “on anything”, so we simply
write the d’Alembert in terms of the partial derivative and continue,

0 “ lxµ ” pxµq
;α
α “

1
?

´g
r
?

´g pxµq
;α

s,α “
1

?
´g

p
?

´g gαµq,α

ùñ p
?

´g gαµq,α “ 0 .

Finding the linear approximation of the metric determinant (directly from gµν “ ηµν ` hµν),

g “ p´1 ` h00qp1 ` h11qp1 ` h22qp1 ` h33q ` Oph2q “

“ ´1 ` h00 ´ h11 ´ h22 ´ h33 ` Oph2q “

“ ´1 ´ h00 ´ h11 ´ h22 ´ h33 ` Oph2q ” ´1 ´ hιι ` Oph2q ” ´1 ´ h , (22.16)
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we have

?
´g gαµ “

?
1 ` h pηαµ ´ hαµq “

ˆ

1 `
h

2

˙

pηαµ ´ hαµq ` Oph2q “

“ ηαµ ´ hαµ `
h

2
ηαµ ` Oph2q ,

hence the harmonic condition yields
ˆ

hαµ ´
h

2
ηαµ

˙

,α

“ 0 , i.e. γαµ,α “ 0, where γαµ :“ hαµ ´
h

2
ηαµ . (22.17)

In GR, the harmonic condition is also called the de Donder or the Hilbert condition. In
the linearized theory, it is usually called the Lorenz condition due to its form clearly similar
to that of Aα,α “ 0 known from electrodynamics. The condition was first used by Einstein
himself in his Zürich Notebook likely dated August 1912. Einstein in fact derived the correct
linearized theory there, the same we are presenting here (at that time testing the Ricci tensor
as the left-hand side of the field equations). Later, however, he abandoned this direction due
to a seeming disagreement with the Newtonian limit of the theory; he only returned to it in
1915, shortly before finishing GR. See The Collected Papers of Albert Einstein, Vol. 4, p.
201 – document 10 (Princeton Univ. Press, online thanks to the Einstein Papers Project).

Figure 22.1: The harmonic condition, as first written by Einstein, in almost “our” notation.
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22.4.2 Simplification of the Einstein equations

With the hint provided by the above Lorenz condition, let us check how the Einstein equations
(22.7) look in terms of γµν . Substituting

h “ ´γ, hµν “ γµν `
h

2
ηµν “ γµν ´

γ

2
ηµν

into (22.7), we obtain, on the left-hand side,

γκν,κµ´
�
�
��1

2
γ,νµ `γκµ,κν ´

�
�
��1

2
γ,µν `���γ,µν ´l γµν `

HHHHH

1

2
ηµν l γ ´ηµν

˜

γκλ,κλ ´
@

@
@@

1

2
l γ ` HHHl γ

¸

,

so we have

l γµν ´ γκν,κµ ´ γκµ,κν ` ηµνγ
κλ
,κλ “ ´16πTµν . (22.18)

The left-hand side would simplify to just l γµν if the Lorenz condition γκµ,κ “ 0 held. The
only possibility to ensure that is to make a suitable infinitesimal transformation xµ Ñ xµ`ξµ.
Regarding that hµν changes in such a transformation according to (22.11), we have for γµν

γ1
µν ” h1

µν´
h1

2
ηµν “ hµν´ ξµ,ν´ ξν,µ´

h

2
ηµν ` ξι,ιηµν “

“ γµν´ ξµ,ν´ ξν,µ` ηµνξ
ι
,ι (22.19)

ùñ γ1κ
µ,κ “ γκµ,κ ´ l ξµ ´ ���ξκ,µκ `

����δκµξ
ι
,ικ , (22.20)

so, quite like in electrodynamics, the Lorenz condition is achieved by the transformation with
ξµ satisfying the wave equation

l ξµ “ γκµ,κ . (22.21)

We have thus simplified the Einstein equations into the wave-equation form

l γµν “ ´16πTµν . (22.22)

• The analogy with electrodynamics is pretty clear now. The solutions will undoubtedly have
very similar properties as their electromagnetic counterparts. In particular, if there are no
incoming waves, the solution to the above equation can in analogy with electrodynamics
be written as

γµνpt, x⃗q “ 4

ż

Tµνpt ´ |x⃗ ´ x⃗1|, x⃗1q

|x⃗ ´ x⃗1|
d3x1 , (22.23)

where pt, x⃗q fixes location where the field is being computed and x⃗1 scans through the
source volume (support of Tµν).
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• In particular, it is clear now that weak gravitational disturbances propagate with the speed
of light. One might query whether the “generic” Einstein equations (22.18) (not involving
the Lorenz condition) do not yield solutions with different speeds of propagation (we will
fix this in detail later), yet one can give a coordinate-independent answer now already: in a
vacuum, the Einstein equations reduce to l γµν “0, thus also l γ“0, and so the Riemann
tensor (22.3) satisfies lRµνκλ“0 as well. Since Riemann is a Lorentz tensor and since it is
gauge independent, this wave equations manifests that the curvature disturbances propagate
with the speed of light. Note that in the flat-space-time source-free electrodynamics, the
EM-field tensor also satisfies lFµν “0.

• At this stage, without any further restrictions, the metric has 6 degrees of freedom: as a
symmetric tensor, γµν has 10 independent components, and the Lorenz condition γκµ,κ “ 0
represents 4 constraints. The residual freedom (to change the coordinate system while
still complying with the Lorenz condition) is as wide as the space of solutions of the
equation l ξµ “ 0. Such a solution can be written as an integral linear combination of
ξµ“ ξ̂µ sinpkσx

σq over all possible null kµ vectors, where the amplitude ξ̂µ may be chosen
arbitrarily. This means 4 free components. Therefore, we expect to be able to fix 4 more
degrees of freedom.

• Note the difference between the nature of the gauge freedom in electrodynamics and the
diffeomorphism freedom in gravitation: in electrodynamics, it is the potential Aα which
can be “gauged”, while in gravitation the “potential” (the metric) is only “gauged” indi-
rectly by an infinitesimal adjustment of coordinates. We will more think about it in Section
28.2.3.

22.4.3 Field of a quasi-Newtonian finite stationary source

As an example of how to evaluate the solution (22.23), and, at the same time, as a supplement
to what we learned by Newtonian limit of the geodesic equation (that g00 “ ´1´2Φ), we will
find the linearised metric generated by a quasi-Newtonian finite stationary source (a “star”).
Assuming that stationarity means that the source is unchanging in the nearly-Minkowskian
coordinates consistent with the Lorenz condition, we can omit the time dependence and ne-
glect the retardation in (22.23),

γµνpx⃗q “ 4

ż

Tµνpx⃗1q

|x⃗ ´ x⃗1|
d3x1 .

Consider now a quasi-Newtonian body, i.e. a weak source (thus within the scope of the
linearised theory) whose all elements move, with respect to the pt, x⃗q coordinates, so slowly
that the terms of the order Opv2q can be neglected. Neglecting also stresses in the source, we
have for its energy-momentum tensor the incoherent-dust form Tµν “ρuµuν , i.e. (see Section
7.2.1, with quadratic terms in velocity neglected and with hats omitted)

T00 “ ρ , T0j “ ´ρvj , Tij “ ρvivj “ Opv2q ,
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so the integral(s) yield

γ00 “ 4

ż

ρpx1q

|x⃗ ´ x⃗1|
d3x1

“ ´4Φ , γ0j “ ´4

ż

ρpx1qvjpx
1q

|x⃗ ´ x⃗1|
d3x1

“: ´4Aj , γij “ Opv2q ,

where the Aj notation has been employed in analogy with electrodynamics. Computing

γ ” ηµνγµν “ ´γ00 “ 4Φ

and returning to hµν “ γµν ´
γ
2
ηµν , we find

h00 “ γ00 `
γ

2
“ ´2Φ , h0j “ γ0j “ ´4Aj , hij “ ´

γ

2
ηij “ ´2Φδij , i.e.

ds2 “ ´p1 ` 2Φqdt2 ´ 8Ajdt dx
j

` p1 ´ 2Φqpdx2 ` dy2 ` dz2q . (22.24)

Besides confirming the already known Newtonian-limit relation g00 “´1´ 2Φ, we have thus
newly learned how the remaining metric components are perturbed from their Minkowskian
values.

At large distances from the source, where |x⃗| " |x⃗1|, we may resort to a monopole +
dipole approximation

1

|x⃗ ´ x⃗1|
“

1

r
`
x⃗ ¨ x⃗1

r3
` Op1{r3q ,

plugging the monopole term in the electrostatic-like scalar potential,

monopole:
1

r
ùñ Φ „ ´

1

r

ż

ρpx1
q d3x1

“ ´
M

r
, (22.25)

and the dipole term in the magnetostatic-like vector potential (we assume to be in the centre-
of-mass system where the monopole term does not contribute to A⃗),

dipole:
x⃗ ¨ x⃗1

r3
ùñ A⃗ „

1

r3

ż

px⃗ ¨ x⃗1
q ρpx1

qv⃗px1
q d3x1

„
J⃗ ˆ x⃗

2r3
, (22.26)

where J⃗ “
ş

x⃗1 ˆ ρpx1qv⃗px1q d3x1 is the rotational angular momentum (“spin”) of the source,
as evaluated in the latter’s centre-of-mass coordinates.

To be on the safe side, let us support the dipole formula for A⃗ by the derivation known
from computation of the field of a magnetic dipole moment. Rewrite first the integrand using
the “BAC-CAB” rule,

x⃗ ˆ px⃗1
ˆ ȷ⃗ 1

q “ x⃗1
px⃗ ¨ ȷ⃗ 1

q ´ ȷ⃗ 1
px⃗ ¨ x⃗1

q ùñ px⃗ ¨ x⃗1
q ȷ⃗ 1

´ x⃗1
px⃗ ¨ ȷ⃗ 1

q “ px⃗1
ˆ ȷ⃗ 1

q ˆ x⃗ ,

where ȷ⃗ 1 :“ρpx1qv⃗px1q. The left-hand side actually yields twice the original integral,
ż

px⃗ ¨ x⃗1
q ȷ⃗ 1 d3x1

´

ż

x⃗1
px⃗ ¨ ȷ⃗ 1

q d3x1
“ 2

ż

px⃗ ¨ x⃗1
q ȷ⃗ 1 d3x1 ,
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while the right-hand-side term yields the announced result, so
ż

px⃗ ¨ x⃗1
q ȷ⃗ 1 d3x1

“
1

2

ż

px⃗1
ˆ ȷ⃗ 1

q ˆ x⃗ d3x1
“

1

2

ż

px⃗1
ˆ ȷ⃗ 1

q d3x1
ˆ x⃗ ”

1

2
J⃗ ˆ x⃗ .

It remains to prove the former assertion. Consider the divergence

∇⃗1
¨px1ix1j ȷ⃗ 1

q ”
B

Bx1k
px1ix1jj1k

q “

“ δikx
1jj1k

` x1iδjkj
1k

` x1ix1j Bj1k

Bx1k
“ x1jj1i

` x1ij1j
` x1ix1j

p∇⃗1
¨ȷ⃗ 1

q .

Assume now conservation of charge (here mass) as in magnetostatics (stationary Ampère’s
law ∇⃗ ˆ B⃗ “ 4πJ⃗ implies ∇⃗ ¨ J⃗ “ 0), i.e. ∇⃗1 ¨ ȷ⃗ 1 “ 0, and integrate the rest over d3x1, using
the Gauss law for the first term,
ż

∇⃗1
¨px1ix1j ȷ⃗ 1

q d3x1
“

¿

px1ix1j ȷ⃗ 1
q¨ dS⃗ 1

“ 0

(it vanishes for any finite body since the integration surface may always be chosen far enough,
where ȷ⃗ 1 “ 0). Finally, multiply by xj the relation thus found,

ş

px1jj1i ` x1ij1jq d3x1 “ 0,
obtaining
ż

pxjx
1jj1i

` x1ixjj
1j

q d3x1
“ 0 , i.e.

ż

px⃗ ¨ x⃗1
q ȷ⃗ 1 d3x1

“ ´

ż

x⃗1
px⃗ ¨ ȷ⃗ 1

q d3x1 ,

which is exactly what needed to be proved.
To summarize, in the centre-of-mass coordinates, the far field of the stationary source

can approximately be described by

ds2 “ ´

ˆ

1 ´
2M

r

˙

dt2 ´
4

r3
ϵjklJ

kxl dt dxj `

ˆ

1 `
2M

r

˙

pdx2 ` dy2 ` dz2q . (22.27)

We may check this result against the far-field of the Kerr source (Section 16.2). At large radii,
r"M p„aq, one has, in the Boyer-Lindquist coordinates (far away becoming spherical),

gtt “ ´1 `
2Mr

r2 ` a2 cos2 θ
„ ´1 `

2M

r
, gtϕ “ ´

2Jr sin2 θ

r2 ` a2 cos2 θ
„ ´

2J

r
sin2 θ ,

grr “
r2 ` a2 cos2 θ

r2 ´ 2Mr ` a2
„

r2

r2 ´ 2Mr
“

1

1 ´ 2M
r

„ 1 `
2M

r
.

To properly compare the non-diagonal term ´ 4
r3
ϵjklJ

kxl, one adjusts the Cartesian coordi-
nates so that J⃗ “ p0, 0, Jq and then transforms to the corresponding spherical coordinates,
x “ r sin θ cosϕ, y “ r sin θ sinϕ, z “ r cos θ (in terms of which xdy´ydx “ r2 sin2 θ dϕ):

´
4

r3
ϵjzlJ

zxldxj “ ´
4

r3
Jϵzxypxdy ´ ydxq “ ´

4

r3
Jr2 sin2 θ dϕ “ ´

4J

r
sin2 θ dϕ .
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22.5 Plane harmonic gravitational waves
The wave solution of the linearised gravitational law also proceeds in the same manner as in
electrodynamics. Considering the vacuum situation, Tµν “0, one starts from the ansatz for a
monochromatic plane harmonic wave,

γµν “ γ̂µν cospkσx
σ
q , with γ̂µν (amplitude) and kα (wave vector) constant

ùñ γµν,α “ ´γ̂µν sinpkσx
σ
q kα , γµν,αβ “ ´γµνkαkβ , l γµν “ ´γµνη

αβkαkβ .

Therefore, the wave equation dictates that the wave vector has to be null, while the Lorenz
conditions dictates that it has to be orthogonal to γ̂µν ,

l γµν “ 0 ùñ ηµνk
µkν “ 0 , γµκ

,κ
“ 0 ùñ γ̂µκk

κ
“ 0 . (22.28)

The wave thus propagates with the speed of light and is transversal with respect to kα.
From the covariant equation lRµνκλ “ 0 we inferred that only the waves travelling

with the speed of light can have physical relevance. On the other hand, it is clear that without
the Lorenz condition the gravitational law does not reduce to the d’Alembert equation, so it
should also have solutions propagating with different speeds. Let us check what exactly is
the nature of those solutions. Plugging γµν “ γ̂µν cospkσx

σq into the generic form (22.18) of
the linearised field equations (not involving Lorenz condition), we get, in the vacuum case
again,

´γµνη
αβkαkβ ` γκν kκkµ ` γκµkκkν ´ ηµνγκλk

κkλ “ 0 . . . multiply by ηµν (22.29)

ùñ ´γµµ η
αβkαkβ ´ 2γκλk

κkλ “ 0 . (22.30)

• With kα null, (22.30) implies γκλkκkλ“0 and thus (22.29) implies γκν kκkµ ` γκµkκkν “ 0.
The former relation can hold if γκλkκ is either zero or proportional to kλ. The latter is
impossible, however, because the second relation γκν kκkµ ` γκµkκkν “ 0 would in such a
case require kµkν “ 0, which only has trivial solution kµ“0. Hence, if kαkα“0, there also
holds γκµkκ“0, i.e., the light-speed solution satisfies the Lorenz condition automatically.

• If kα is not null (the wave does not propagate with the speed of light), it is still possible to
ensure the Lorenz condition. Actually, regarding that this requires to perform a transforma-
tion xµ Ñ xµ` ξµ with ξµ satisfying (22.21), i.e. l ξµ“γµκ,κ , and that the wave form of
γµκ satisfies l γµκ “ ´γµκηαβkαkβ , we see that the right generator reads ξµ “ ´

γµκ
,κ

ηαβkαkβ
.

Now look how γµν itself behaves under such a transformation: according to the rule (22.19)
and thanks to the above relations

γµν,αβ “ ´γµνkαkβ ùñ ξµ,ν “ ´
γκµ,κν

ηαβkαkβ
“

γκµ kκkν

ηαβkαkβ
,

one finds

γ1
µν “ γµν ´ ξµ,ν ´ ξν,µ ` ηµνξ

ι
,ι “ γµν ´

γκµ kνkκ ` γκν kµkκ ´ ηµνγ
ικkιkκ

ηαβkαkβ
.
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Multiplying this by ηαβkαkβ and using the field equations (22.29) on the right-hand side,
we obtain

γ1
µνη

αβkαkβ “ 0

Since ηαβkαkβ ‰ 0 by assumption, γ1
µν must vanish – the waves have been transformed

out. The waves which do not travel at the speed of light are thus of mere coordinate nature,
they have no physical significance. (Which also confirms that the Lorenz condition can be
posed without losing any important solutions.)

Identically vanishing γµν obviously implies vanishing Riemann tensor (which is gauge
invariant, so if it has been found zero in one system, it has to be such in general). The
situation is similar to that in electromagnetism: the waves which do not travel with the
speed of light can be transformed out by a suitable gauge transformation (of potential), and
their Fµν tensor vanishes.

22.5.1 Physical degrees of freedom: fixing the coordinates

Since the coordinate freedom still remaining after imposing the Lorenz condition is spanned
by solutions to the equation l ξµ “ 0, it is four-dimensional. A canonical option how to
fix it is through the so-called transverse and traceless (TT) condition – an analogy of the
radiation gauge (or Coulomb gauge) A0 “0 from electrodynamics.

• Transverse means that the potentials satisfy γ0ν “ 0; in a covariant way, this is expressed
in terms of projection on some time-like vector field, say uµ: let an observer with four-
velocity uµ exist such that γµνuµ “ 0. Since one projection of γµν is already fixed by
the Lorenz condition, γµνkν “ 0, the new requirement only represents three independent
constraints (γµνuµ“0 are four, but they are bound by the relation γµνuµkν “0).

• Traceless means that the tensor γµν has zero trace, ηµνγµν “ 0. This is clearly one con-
straint. From the transformation behaviour (22.19) of γµν , i.e. γ1

µν “ γµν ´ ξµ,ν ´ ξν,µ`

ηµνξ
ι
,ι , we easily see that to achieve tracelessness γ1µ

µ “ 0, we need ξµ which fulfils
ξι,ι “ ´γ{2. Plugging this to the transversality requirement γ1

µνu
µ “ 0, one obtains for

ξµ the equation

pξµ,ν ` ξν,µquµ “ pγµν ` ηµνξ
ι
,ιqu

µ
“

´

γµν ´
γ

2
ηµν

¯

uµ ” hµνu
µ .

Multiplying this by kν and using the Lorenz condition γµνkν “0 (supposed to be satisfied
by the original γµν), one has

pξµ,ν ` ξν,µquµkν “ ´
γ

2
kµu

µ .

• Explicit derivation of how ξµ has to look uses the fact that it must satisfy l ξµ “ 0.
Choosing it in the form ξµ “ ξ̂µ sinpkσx

σq, with ξ̂µ the amplitude again, one has ξµ,ν “

ξ̂µkν cospkσx
σq, so the transformation (22.19) of γµν assumes, in terms of the correspond-

ing amplitudes, the form

γ̂1
µν “ γ̂µν ´ ξ̂µkν ´ ξ̂νkµ ` ηµν ξ̂

ιkι ,
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and the above derived conditions thus appear as

ξ̂ιkι “ ´
γ̂

2
(tracelessness) ÝÑ pξ̂µkν ` ξ̂νkµquµ “ ĥµνu

µ (transversality) .

Multiplying the second relation by uν , one obtains prescription for

ξ̂µu
µ

“
ĥµνu

µuν

2kλuλ
,

so substituting this back to the same transversality relation yields

ξ̂ν “
ĥµνu

µ ´ kν ξ̂µu
µ

kιuι
“
ĥµβu

µ

kιuι

ˆ

δβν ´
uβkν
2uλkλ

˙

. (22.31)

• If ξµ is not the question, one may achieve the TT-condition metric from a more geometrical
perspective:

Lemma A transverse and traceless metric satisfying the Lorenz condition can be obtained,
from a generic metric γαβ , by

γTT
µν “

ˆ

Pα
µ P

β
ν ´

1

2
PµνP

αβ

˙

γαβ , (22.32)

where Pα
µ :“ δαµ ` uαuµ ´ nαnµ , nα :“

pδαλ ` uαuλqkλ
a

gρσ pδρι ` uρuιqkι pδσκ ` uσuκqkκ
.

In order to prove the claim, consider that the above realizes a straightforward geometrical
way how to satisfy the three requirements

γTT
µν k

ν
“0 pLorenz conditionq , γTT

µν u
ν

“0 ptransversalityq , ηµνγTT
µν “0 ptracelessnessq .

For a given kµ and a chosen uµ, one first defines the unit spatial vector nµ along the pro-
jection of kµ to the 3D space orthogonal to uµ (the square-root denominator just ensures
that gρσnρnσ “1); nµ thus represents a direction (of wave propagation) in the space of the
observer with four-velocity uµ. To be normal to both uµ and kµ means to be normal to the
plane spanned by uµ and nµ, hence the projection of γαβ by the corresponding two-metric
Pα
µ . Finally, the standard operation how to make a tensor traceless is to simply subtract its

trace multiplied by the pertinent metric,

(traceless tensor)µν “ tensorµν ´
trace of the tensor
trace of the metric

metricµν .

From the automatic properties

uαu
α

“ ´1, nαn
α

“ 1, uαn
α

“ 0, Pα
µ P

βµ
“ Pαβ, P β

ν u
ν

“ 0, P β
ν n

ν
“ 0, Pα

α “ 2 ,

one immediately confirms the tracelessness and transversality, and by expressing (from the
definition of nα)

kν “
?
... nν ´ uνuλk

λ ,

one also sees that P β
ν k

ν “0, so the Lorenz condition is satisfied as well. l
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Since the traces of γµν and hµν satisfy γιι “ ´hιι , in the traceless case γµν directly repre-
sents deviation from the Minkowski metric (hµν), γµν ” hµν ´ h

2
ηµν “ hµν . The usual

parameterization of the remaining, physical two degrees of freedom (two “polarizations”) is

hµν “

¨

˚

˚

˝

0 0 0 0
0 hxx hxy 0
0 hxy ´hxx 0
0 0 0 0

˛

‹

‹

‚

. (22.33)

This form represents a plane harmonic wave travelling in the z-direction. Actually, for such
a wave the wave vector reads kµ “ ωp1, 0, 0, 1q, so the Lorenz condition hµνkν “0 is clearly
satisfied. The “TT” properties are obvious as well, in particular, the transversality hµνuµ“0
holds (e.g.) for the time-like vector field uµ “ put, 0, 0, 0q. Let us add, from (22.3), that there
are only two non-trivial and independent components of the Riemann tensor (we perform the
calculation in the TT coordinates, yet recall that linearised Riemann is gauge independent!),

Ri0j0 “
1

2

´

���HHHhTT
i0,0j `

�
��Z
ZZ

hTT
0j,i0 ´ hTT

ij,00 ´ ���HHHhTT
00,ij

¯

“ ´
1

2
hTT
ij,00 , (22.34)

Ri3j3 “
1

2

´

���HHHhTT
i3,3j `

�
��Z
ZZ

hTT
3j,i3 ´ hTT

ij,33 ´ ���HHHhTT
33,ij

¯

“ ´
1

2
hTT
ij,33 “ ´

1

2
hTT
ij,00 “ Ri0j0 , (22.35)

Ri0j3 “
1

2

´

���HHHhTT
i0,3j `

�
��Z
ZZ

hTT
3j,i0 ´ hTT

ij,03 ´ ���HHHhTT
03,ij

¯

“ ´
1

2
hTT
ij,03 , (22.36)

Ri3j0 “
1

2

´

���HHHhTT
i3,0j `

�
��Z
ZZ

hTT
0j,i3 ´ hTT

ij,30 ´ ���HHHhTT
30,ij

¯

“ Ri0j3 , (22.37)

where in the second line the wave equation was used,

ηαβhTT
µν,αβ “ ´hTT

µν,00 ` ���HHHhTT
µν,11 ` ���HHHhTT

µν,22 ` hTT
µν,33 “ 0 ,

with the middle terms vanishing since hTT
µν,1 „ ĥµνk1, hTT

µν,2 „ ĥµνk2, and kµ does not have
the k1 and k2 components. The Riemann-tensor wave equation lRµνκλ “ 0 clearly holds,
because lhTT

µν “0.

TT condition and real gravitational fields

So far, we have everywhere been talking about monochromatic wave. However, thanks to the
linearity of the theory, the conclusions also apply more generally, because one can decompose
a generic wave to monochromatic plane waves, namely to perform the Fourier decomposition

γµνpxq “
1

4π2

ĳ

γµνpω, k⃗q cospkρx
ρ
q d3k dω ,

and then to apply the procedure accordingly for every mode (for every frequency) and sum
the results. Yet the hµν tensor cannot be arranged in a simple form (22.33) if the superposition
contains waves with different directions of propagation.

This is not to claim, however, that every gravitational field could be transformed to
the TT coordinates. Actually, the TT condition is very useful for radiating fields (typically
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reducing to plane waves far from isolated sources), but it may not be reached for rather
stationary fields. We know already that for such fields the deviation from Minkowski is
represented by terms of the 2M{r and 2J{r types, which already brings a problem on the
level of Fourier integral, since 1{r is not an integrable function. In particular, it is not possible
to write Schwarzschild solution in the TT coordinates.

Finally, let us stress that everything we have done above – and the feasibility of the
TT/radiation condition in particular – holds for source-free regions only, i.e. those where
the waves are described by the equation l γµν “ 0. It is similar with the radiation gauge in
electrodynamics.

22.6 Effect of gravitational waves on test particles
It is common to say that waves sway the matter which they pass through. Such a statement
may be natural within the field-theoretical presentation of the linearised theory, relying on
fixed Minkowski “barracks”,3 where it is clear, in any inertial frame, what it means to “stay
at a given place”. Within the geometrical story, one should listen to Mach: that we have no
“rigid” reference at our disposal, so we can only speak of relative relations between more-
than-one bodies, and that one thing is coordinate picture and the other is what someone really
could measure. Let us try to contrast these views.

Suppose to have some TT-condition metric (22.33); it actually suffices to have any
metric of the form ds2 “ ´dt2 ` pδij ` hijqdx

idxj , i.e. with g00 “ ´1, g0j “ 0, hence
g00 “ ´1 and g0k “ 0 as well. Consider now to have two free test particles; before the wave
arrival, let they sit at rest (ui “ 0) at xi “ 0 and at some nearby xi “ δxi (in the coordinates
fixed by the requirements of the TT condition). In order to learn the wave effect, look at the
geodesic equation. At any moment when particles are at rest, this reduces to

duµ

dτ
“ ´Γµκλu

κuλ “ ´Γµ00pu0q
2 ,

where, however, for the above metric we have

Γµ00 “
1

2
gµνpgν0,0 ` g0ν,0 ´ g00,νq “ 0 ,

so the four-velocity uµ “ put, 0, 0, 0q of the particles does not change even if the wave has
arrived – the particles stay at fixed coordinate locations anyway.

In order to see that still proper distance of the particles does change, suppose to tie a
local inertial frame (LIFE) to the first and inspect the position of the second with respect to
it. The proper equation to describe such a situation is the equation of geodesic deviation –
see Section 6.4 and in particular the LIFE-form of the equation (hatted indices), (6.27), i.e.

d2δxı̂

dτ 2
“ ´Rı̂

0̂ȷ̂0̂δx
ȷ̂ .

3 H. Weyl is said to once have thus expressed the constraint of the rigid, non-dynamical flat background.
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Since the Riemann tensor is gauge invariant, we can use its TT components found in the
previous section (vertical position of the index ı̂ is irrelevant),

d2δxı̂

dτ 2
“

1

2
hı̂ȷ̂,0̂0̂δx

ȷ̂
“

1

2

B2hı̂ȷ̂
Bτ 2

δxȷ̂ , (22.38)

where we have also regarded that x0̂ ”τ . So the relative acceleration of the particles is really
non-zero (if the curvature has arrived). The equation closely corresponds to the Newtonian
tidal-force formula

d2δxi

dt2
“ ´Φ,ijδx

j .

Looking at the TT metric (22.33), one further crucial point can be seen: the particles’
relative acceleration is zero in the ẑ-direction, because h3̂ȷ̂”hẑȷ̂“0, whereas it is non-zero in
the directions x̂ and ŷ. The wave is thus transversal – only acting in the plane perpendicular
to k⃗, similarly as the plane EM wave. Indeed, by integrating equation (22.38), one has

δxı̂pτq “ δxı̂pτinq `
1

2
hı̂ȷ̂pτqδxȷ̂pτinq , (22.39)

which, for the TT wave (22.33), only means change in the x̂ and ŷ directions. In general each
of δx̂pτq, δŷpτq depends on both δx̂pτinq and δŷpτinq, yet it is more illustrative to decouple
them by decomposing the wave into two (linear) polarization states.

22.6.1 Decomposition into independent polarization states

The two physical degrees of freedom of the waves correspond to two independent polar-
izations in which they can be decomposed. Two types of such a decomposition are being
considered standardly, the one into two linear polarized modes and the one into circular
polarized modes. The first case reads

hµν “ h`
µν`hˆ

µν , with h`
µν “ diagp0, hxx,´hxx, 0q, hˆ

µν “ antidiagp0, hxy, hxy, 0q,

where the individual modes can be written explicitly as

h`
µν “ Re

!

ĥ`eikσx
σ “

pe⃗pxqqµpe⃗pxqqν ´ pe⃗pyqqµpe⃗pyqqν
‰

)

,

hˆ
µν “ Re

!

ĥˆeikσx
σ “

pe⃗pxqqµpe⃗pyqqν ` pe⃗pyqqµpe⃗pxqqν
‰

)

,

ĥ` and ĥˆ denoting the respective two amplitudes and e⃗pxq and e⃗pyq standing for two mutually
orthogonal unit vectors spanning the plane normal to k⃗. The decomposition into two circular
polarized modes works similarly, just involving the unit vectors

e⃗L “
1

?
2

pe⃗pxq ` i e⃗pyqq , e⃗R “
1

?
2

pe⃗pxq ´ i e⃗pyqq

instead of the vectors e⃗pxq, e⃗pyq.
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Let us check how the above polarization modes affect test particles. For the linear-
polarization “plus” mode (solely described by hxx), equation (22.39) gives

δx̂pτq “

„

1 `
1

2
hxxpτq

ȷ

δx̂pτinq , δŷpτq “

„

1 ´
1

2
hxxpτq

ȷ

δŷpτinq .

The effect is better seen on a circle of test particles (rather than on just two of them). Imagine
to have a circle of particles, initially at rest, given by

δx̂pτinq “ a cosϕ , δŷpτinq “ a sinϕ ùñ rδx̂pτinqs
2

` rδŷpτinqs
2

“ a2 .

Plug these to the above evolution equations, solve the latter for cosϕ and sinϕ, and then use
these in the identity cos2 ϕ ` sin2 ϕ “ 1:
«

δx̂pτq

a
`

1 ` 1
2
hxxpτq

˘

ff2

`

«

δŷpτq

a
`

1 ´ 1
2
hxxpτq

˘

ff2

“ 1 . (22.40)

This is an ellipse with changing semi-axes a
`

1 ˘ 1
2
hxxpτq

˘

, centred at the origin. Still more
specifically, let us we choose, in

hxx “ Re
´

ĥ`eiωτ
¯

“ pRe ĥ`
q cospωτq ` pIm ĥ`

q sinpωτq

(remember that e⃗px,yq and k⃗ are orthogonal, so k⃗ ¨ r⃗“0), the amplitude ĥ` having Repĥ`q “

0 and Impĥ`q ” ĥ ‰ 0. In such a case, the semi-axes of the ellipse evolve according to
ar1˘ ĥ sinpωτqs, so the ellipse periodically pulsates, in a counter-phase, quadrupole manner,
along the x and y axes – see Figure 22.2.

The “cross” mode (fully described by hxy) has the same effect, only that the pattern
is rotated by π{4, so the ellipse pulsates along the diagonals between the x and the y axes.
Finally, the circularly polarized modes rotate the ellipses with constant angular velocity ω{2,
the L mode in the counter-clockwise sense and the R mode in the clockwise sense with respect
to k⃗.

22.6.2 Helicity: a window to the quantum realm

Have a generic long-range field (i.e. such that after quantization yields massless particles)
ψ and consider its plane-wave configuration. The helicity of the field is a number h (this
is a standard notation, it has nothing in common with the hµν tensor) with such a value that
the plane wave behaves, under rotation by an angle ϕ about its direction of propagation,
according to the relation

ψ1
“ eihϕψ .

Helicity of a given field can thus be read off from the symmetry of its plane waves – they are
symmetric with respect to rotation by 2π{h. The EM wave is symmetric under rotation by
2π, so the EM-field helicity is hEM “ 1. The gravitational wave – as best seen from Figure
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polarization + polarization ×

ωτ=π

ωτ= 3
2
π

ωτ = 2π ≡ 0

ωτ = 1
2π

+ : semiaxes = a[1± ĥ sin(ωτ)]

× : same but rotated by π/4

x

y

x

y

z z

Figure 22.2 Effect on a circle of test particles of the two linearly polarized components (` and

ˆ) of a plane harmonic gravitational wave propagating in the z direction.

22.2 – is symmetric under rotation by π, so the helicity of the gravitational field is hg “2. It
also holds that if the plane wave is decomposed into two linearly polarized components, their
polarization directions make an angle of π{p2hq (thus π{2 in the EM case, while π{4 in the
case of gravitation).

Interestingly, although given by purely “classical” properties of the field, the helicity
brings information about an important quantum property, namely it equals spin of the parti-
cles obtained by quantization of the field, more accurately, it equals the component of spin
along the particle’s direction of flight. In fact, such an interconnection is usually deemed ob-
vious, because, in a quantum theory, spin is represented by Pauli (spin) matrices, which stand
for generators of the rotation group SO(3) (or, in the spin-1/2 case, of SU(2)). However, as
notably pointed out by [39] (section 9.1.1), such a view is only adequate for non-relativistic
particles actually, whereas for light-like ones (like photon or graviton), spin is not described
by a rotation group but by the group E(2) of the Euclidean-plane isometries. The helicity of
massless particles is thus associated with the rotational degree of freedom of E(2) and rather
follows from the gauge invariance than from the spin-matrices O(3)-type symmetry.

22.7 Gravitoelectromagnetism
We saw the linearized GR can (in the “field-theoretical account”) be formulated as a theory of
the symmetric tensor field hµν (or γµν) in the Minkowski space-time, i.e. without ever men-
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tioning space-time curvature. Such a theory has to necessarily behave in a special relativistic
way, like electrodynamics, and we have really confirmed at many places that the analogy
is very strong. There in fact exist two levels of analogy between gravitation and electrody-
namics – one starting from the correspondence between the metric and the electromagnetic
potentials, in general valid exactly for weak fields only (linearized theory), and one involving
curvature on the contrary, namely the similarity between the Riemann tensor and the EM-field
tensor Fµν (thus between quantities given by different order of derivatives of the potentials –
by the 2nd derivatives in gravitation whereas by the 1st derivatives in electrodynamics). In
this section, we describe the first analogy, arising on the metric level and very useful in weak
gravity.

In Section 22.4.3, in describing a weak quasi-stationary source, we denoted, on the
basis of writing the energy-momentum tensor as

T00 “ ρ , T0j “ ´ρvj , Tij “ ρvivj “ Opv2q ,

the components of the corresponding solution γµν as

γ00 “ ´4Φ , γ0j “ ´4Aj phence γ0j “ 4Ajq , γij « 0 ùñ γ “ 4Φ ,

where Φ and A⃗ were defined in analogy with the EM potentials. If the source is confined
around the coordinate origin, then far from it the potentials are given by

Φ « ´
M

r
, A⃗ «

J⃗ ˆ x⃗

2r3
.

Although the above followed from solution of the linearized field equations in special coordi-
nates (ensuring the Lorenz condition), and although, in addition, the potentials Φ and A⃗ were
introduced to describe such a solution in a special, stationary case, we will show now that
they are useful in general. The point is that they behave similarly as the EM potentials in all
the basic respects.

22.7.1 Wave equations

Standardly, one obtains wave equation(s) from the field equation(s), but here it is natural to
do it in the opposite way, since the Einstein equations are equations for the metric (and metric
plays the role of potentials). In a generic coordinates, they were presented in (22.18); let us
repeat it for convenience,

l γµν ´ γκν,κµ ´ γκµ,κν ` ηµνγ
κλ
,κλ “ ´16πTµν .

Substituting the above potentials for the components of γµν , we obtain, on the left-hand sides,

l γ00 ´ 2γ00,00 ´ ���2γk0,k0 ´ γ00,00 ´ ����2γ0l,0l ´ ���HHHγkl,kl “ l γ00 ´ γ00
,0
0 “ ∆γ00 “ ´4∆Φ ,

l γ0j ´ γ0j,00 ´ �
��Z
ZZγkj,k0 ´ γ00,0j ´ γk0,kj “ ∆γ0j ` pγ00,0 ´ γk0,kq,j “

“ 4
”

´∆Aj ´ pΦ,0 ´ divA⃗q,j

ı

,
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���HHHl γij ´ γ0j,0i ´ �
��Z
ZZγkj,ki ´ γ0i,0j ´ �

��Z
ZZγki,kj ` δijγ

00
,00 ` 2δijγ

0l
,0l ` ����XXXXδijγ

kl
,kl “

“ ´4
´

Aj,i ` Ai,j ` δijΦ,0 ´ 2δijdivA⃗
¯

,0
,

so the field equations yield

∆Φ “ 4πρ , ´∆Aj ´ Φ,0j ` divA⃗,j “ 4πρvj , (22.41)
´

Aj,i ` Ai,j ` δijΦ,0 ´ 2δijdivA⃗
¯

,0
“ 0 .

By contraction of the last equation, one has

p3Φ,0 ´ 4 divA⃗q,0 “ 0 . (22.42)

22.7.2 Lorenz condition

The Lorenz condition γµν,ν “0 yields

µ “ 0 : ´Φ,0 ` divA⃗ “ 0 , µ “ i : A⃗,0 “ 0 .

The first relation differs from its EM counter-part in the sign of Φ (in electrodynamics, Φ“

Q{r, whereas here we take Φ“ ´M{r). The second relation just reflects our assumption of
a quasi-stationary situation. Under the Lorenz condition, the field equations of the preceding
subsection reduce to

∆Φ “ 4πρ , ∆Aj “ ´4πρvj , (22.43)
´

Aj,i ` Ai,j ´ δijdivA⃗
¯

,0
“ 0 ùñ pdivA⃗q,0 “ 0 . (22.44)

22.7.3 Gravitoelectric and gravitomagnetic fields

Having the potentials at one’s disposal, we can define the gravitoelectric and the gravito-
magnetic fields in analogy with how the electric and the magnetic fields are related to the
potentials in electrodynamics,

E⃗ :“ ´gradΦ ´ A⃗,0 , B⃗ :“ rotA⃗ .

22.7.4 Field equations

The field equations can now be written in a Maxwellian form,

rotB⃗ “ gradpdivA⃗q ´ ∆A⃗ “ gradΦ,0 ´ ∆A⃗ “ ´E⃗,0 ´ �
��A⃗,00 ` 4πρv⃗ , (22.45)

divE⃗ “ ´∆Φ ´ ����divA⃗,0 “ ´4πρ , (22.46)

rotE⃗ “ ´rotA⃗,0 “ ´B⃗,0 , (22.47)

divB⃗ “ 0 . (22.48)
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Good to recapitulate what we have (or have not) neglected and why. First, in Section 22.2 we
saw that the energy-momentum tensor typically satisfies |Tij| ă |T0j| ă T00 “ ρ. Therefore,
it should hold |γij| ă |γ0j| ă |γ00|. In all of the above, we in fact neglected the γij components
and left just γ00 and γ0j . Also, we neglected divA⃗,0 and A⃗,00 finally (they are crossed out
explicitly), whereas we did not neglect rotA⃗,0 (although A⃗,0 was claimed negligible by the
Lorenz condition). Admittedly, the “GEM” analogy is often being restricted to the strictly
stationary case, when all these terms are omitted, and possibly even E⃗,0. However, notice
how the terms combine in the equations: divA⃗,0 appears next to the “classical” 4πρ which is
the largest term of all, and A⃗,00 appears next to E⃗,0 which is only linearly small (similarly as
4πρv⃗); on the contrary, rotA⃗,0 is the only term of the equation for rotE⃗, so it is not necessary
to neglect it with respect to anything larger (though one might of course say that rotE⃗“ 0⃗).

Needless to say, from the first two equations it follows the continuity equation: by
divergence of the first one with divE⃗,0 substituted from the time derivative of the second one,
one has

ρ,0 ` divpρv⃗q “ 0 .

22.7.5 Lorentz-like equation of motion

Let us check how the equation of motion of a free test particle in a gravitational field (the
geodesic equation) appears in terms of the GEM quantities. Omitting the terms quadratic
in spatial velocity components (but leaving the terms linear in spatial velocity, in contrast to
when the Newtonian limit was made in Section 3.7), and restricting to a stationary situation
(hµν,0 “0), the geodesic equation reads

d2xµ

dτ 2
“ ´Γµ00

ˆ

dt

dτ

˙2

´ 2Γµ0j
dt

dτ

dxj

dτ
“

“ ´
1

2
ηµνphν0,0 ` h0ν,0 ´ h00,νq

ˆ

dt

dτ

˙2

´ ηµνphν0,j ` hjν,0 ´ h0j,νq
dt

dτ

dxj

dτ
“

“
1

2
h00

,µ

ˆ

dt

dτ

˙2

´ ηµνphν0,j ´ h0j,νq
dt

dτ

dxj

dτ
.

The zeroth component reduces to

d2t

dτ 2
“ h00,j

dt

dτ

dxj

dτ
,

and so the left-hand side of the spatial components can easily be rewritten in terms of the
t-derivative,

d2xi

dτ 2
“

d

dτ

ˆ

dxi

dt

dt

dτ

˙

“
d2xi

dt2

ˆ

dt

dτ

˙2

`
dxi

dt

d2t

dτ 2
“

d2xi

dt2

ˆ

dt

dτ

˙2

` h00,j
dt

dτ

Z
Z

Z
ZZ

dxj

dτ

dxi

dt
.

Dividing the spatial components of the geodesic equation by putq2, they thus read (denoting
dxi

dt
“: vi)

dvi

dt
“

1

2
h00

,i
´ δikphk0,j ´ h0j,kq v

j .
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Now introduce the GEM potentials, h00 “γ00 `
γ
2

“ ´2Φ and h0j “γ0j “´4Aj , to get

dvi

dt
“ ´Φ,i

` 4δikpAk,j ´ Aj,kq v
j

“ Ei
` 4δikϵjklB

lvj “ Ei
´ 4ϵijl v

jBl

ÐÑ
dv⃗

dt
“ E⃗ ´ 4 v⃗ ˆ B⃗ (22.49)

(remember that A⃗,0 “0 in a stationary situation, so E⃗“´gradΦ).

22.7.6 Gravitomagnetic moment and the Lense-Thirring precession

The GEM analogy is not only helpful conceptually, in understanding the levels of non-
Newtonian behaviour. It may allow one to predict phenomena which might otherwise re-
main hidden within the GR complexity. As an example, consider the Larmor precession
– the precession of a body having magnetic (dipole) moment if placed in a magnetic field.
Denoting by µ⃗ the magnetic moment and by B⃗ the magnetic field, the body experiences the
torque (moment of force) τ⃗ “ µ⃗ˆ B⃗, similarly as an electric dipole experiences a torque in an
electric field. In this “passive” way, the magnetic moment scales how strong a magnetic field
an object itself generates at a dipole level, i.e. at the level corresponding to two equal but op-
posite magnetic poles at an infinitesimal separation. Among objects which possess magnetic
moment are permanent magnets, particles (electrons, atomic nuclei, atoms, molecules), and
also current loops – and thus various astronomical objects (stars, planets, pulsars, etc.).

The magnetic moment due to a current-density distribution j⃗ is defined as

µ⃗ “
1

2

ż

r⃗ ˆ j⃗ dV .

Specifically for a planar circular current loop, we place the spherical-coordinate origin at its
centre and set its plane at θ“π{2, so r⃗ “ pr, 0, 0q, j⃗ “ p0, 0, pI{aqδpr ´ aqδpθ ´ π{2qq, and
hence

µ⃗ “
In⃗

2a

2π
ż

0

π
ż

0

a
ż

0

r δpr ´ aqδpθ ´ π{2q r2 sin θ dr dθ dϕ “ πa2In⃗ ,

where n⃗ is the unit normal to the loop defined so that the current is “clock-wise” if you look
along n⃗.

If taking mass current instead of the electric one, the magnetic moment clearly becomes
angular momentum. Let us fix the relation exactly. Consider an axially symmetric body
spinning about its symmetry axis. Take its element of mass m and charge q orbiting on a
circle of radius r with speed v. The time average of current due to such a motion equals
charge over period, i.e. qv{p2πrq, so the corresponding magnetic moment is

µ “ πr2I “ πr2
qv

2πr
“
qvr

2
“
qL

2m
ùñ µ⃗ “

q

2m
L⃗ , (22.50)

where L“mvr is the orbital angular momentum of the element and the coefficient q{p2mq is
called the gyromagnetic ratio. The relation applies to any classical body or a classical system
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of particles, provided that the ratio is the same for every its element (for every particle). For
a single body, the sum of all orbital angular momenta of its elements represents its spin
(rotational angular momentum) s⃗, so the relation is then written as µ⃗“qs⃗{p2mq.

For a classical body, the angular frequency of the Larmor precession – the Larmor
frequency – amounts just to q

2m
B, but for relativistic or/and quantum systems it is different

usually. The deviation from the classical formula is being expressed in terms of the gyromag-
netic factor (g-factor) – the factor by which the gyromagnetic ratio has to be multiplied in or-
der to reach the correct Larmor-type formula, g ¨

q
2m
B. For an isolated electron, for example,

this factor is known to be about ´2.00231930436, for an isolated neutron it is ´3.82608545,
while for an isolated proton it is `5.58569469. For atomic nuclei, it has various values of
the same order, depending on the nuclear spin. Interestingly, the gyromagnetic factor of the
Kerr-Newman solution (Section 16.6) is 2, so it is very close to that of electron (which has
lead to its suggestion as a “classical model” of an electron). Indeed, in a flat space-time, the
dipole magnetic field – the leading component of the magnetic field – is known to read

B⃗ “
1

r3
“

3pµ⃗ ¨ e⃗prqq e⃗prq ´ µ⃗
‰

, r⃗ “: re⃗prq .

Remembering the value of the Kerr-Newman EM invariant (see Section 16.6)

F µνFµν “ ´
2Q2

Σ4

“

pr2 ´ a2 cos2 θq
2

´ 4r2a2 cos2 θ
‰

... ” 2B̂2
´ 2Ê2

(Êµ “ Fµν û
ν and B̂µ “ ´˚Fµν û

ν are field magnitudes measured by some physical observer
– see Section 7.3.1), we see that for a stationary observer

2B̂2
ÐÑ

2Q2

Σ4
4r2a2 cos2 θ ùñ B̂ “

2Qar

Σ2
| cos θ|

rÑ8
ÝÑ

2Qa

r3
| cos θ| .

Comparing this with the above generic dipole formula on the symmetry axis (θ“ 0), where
µ⃗ ¨ e⃗prq “ µ (the magnetic moment exactly points in that direction), we have

“

3pµ⃗ ¨ e⃗prqq e⃗prq ´ µ⃗
‰r

“ 2µ ùñ Bpθ“0q “ Br
pθ“0q “

2µ

r3
ÐÑ

2Qa

r3
.

Hence, for Kerr-Newman,

µ “ Qa ”
Q

M
J ” g

Q

2M
J ùñ g “ 2 .

So far, everything has concerned electrodynamics. Concluding from above that the
gravitational analogue of the magnetic dipole is half the body’s spin, s⃗{2, and remembering
the extra factor of 4 at the magnetic term in the Lorentz-like equation of motion, we infer from
the GEM analogy that a test gyroscope of spin s⃗ should experience, in a gravitomagnetic field
B⃗, the torque

τ⃗ “
s⃗

2
ˆ 4B⃗ “ 2s⃗ ˆ B⃗ .
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In GR, the Larmor-like precession is called the Lense-Thirring precession (see Section
18.4). For a massive spinning body (with spin J⃗), the gravitomagnetic field reads, again
in analogy with the above formula from electrodynamics (with µ⃗ Ñ J⃗{2)

B⃗ “
1

2r3

”

3pJ⃗ ¨ e⃗prqq e⃗prq ´ J⃗
ı

.

From the torque equation, we see that its double stands for the Larmor-like (Lense-Thirring)
angular frequency of precession. In the Kerr space-time, for example, the formula yields

θ “ 0 : Ωgyro “ 2Br
“

2J

r3
, θ “

π

2
: Ωgyro “ 2Bθ

“ ´
J

r3
.

These values really correspond to the weak-field (i.e. large-radius) limit of what we found in
Sections 18.4.1 and 18.4.2, respectively. In the first case (gyro on the symmetry axis), it is the
limit of (18.9), namely of the dragging angular velocity, Ωgyro “ω«2J{r3, and in the second
case (gyro “at rest” in the equatorial plane), it is the limit of the result (18.12) obtained for
a gyro fixed to a ZAMO, as well as of the result (18.13) obtained for a gyro fixed to a static
observer (with the minus sign indicating that the precession is retrograde).
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CHAPTER 23

Lagrangian (variational) formulation
of Einstein equations

It’s one of the wonders of nature that physical processes generally happen in a way which
has extremal properties – in which a certain quantity is minimized or maximized. Most of
the physical problems thus can be posed and solved in a variational way, that is, by finding
such a behaviour of relevant quantities which minimizes or maximizes a certain functional.
Variational (Lagrangian) formulation, in connection with symmetry requirements, has been
particularly successful in the analysis and classification of different classes of field theories
describing fundamental interactions. Standardly employed is the Hamilton’s variational
principle, applicable for conservative systems subject to holonomic constraints. According
to it, the evolution of a system is identified by a stationary value of action – a time integral
of the Lagrangian (or space-time integral of the Lagrangian density).

To any real thinker on physics and gravitation, one should recommend J. L. Anderson’s
Principles of Relativity Physics [1]. The variational approach is thoroughly treated there
(symmetry groups and variations begin on p. 84 [!]), and the author also fittingly cite, in
this respect, from another notable account on the relativity theory [34] by W. Pauli. When
mentioning Hilbert’s variational derivation of Einstein’s equations (see below), Pauli – then
in 1921 – added: “His presentation, though, would not seem to be acceptable to physicists,
for two reasons. First, the existence of a variational principle is introduced as an axiom.”
Anderson remarks to this (in 1960s): “Today most physicists would be not only willing to ac-
cept as axiomatic the existence of a variational principle but would be also loath to accept any
dynamical equations that were not derivable from such a principle.” The more today, in 3rd
millennium, it is taken as a merit if a theory can be derived from a nice Lagrangian. Actually,
æsthetic sentiments have proved to be “unreasonably effective” as criteria for truthfulness.
Below, we present two main versions of the variational formulation of GR, the historically
first one due to D. Hilbert (supplemented by the part of Lagrangian which yields the energy-
momentum tensor), and the one by A. Einstein (yet often called Palatini’s) which provides
the metric-connection relation in addition.

417
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23.1 Action and the functional derivative
The Lagrangian formulation, as well as the Hamiltonian formulation, are too important to
leave them on intuitive grounds and immediately start varying. We will at least summarize
first how the problem stands in general (we use the same language and notation as [50]).

• Imagine to have a theory represented by a certain collection of tensor fields – let us sym-
bolically denote it by just one letter ψ (many various indices may be around, but we omit
them now) – living on a given manifold M . (The metric field of the underlying manifold
is included in the set of fields ψ.)

• Let ψp denote a smooth family of configurations of ψ satisfying certain prescribed condi-
tions on a boundary of some fixed region of M which is under consideration (will denote
it by Ω), with p denoting a smooth parameter which distinguishes between those different
configurations. (The configurations need not satisfy any particular equations.)

• Infinitesimal smooth deformation of the configuration ψ is called the variation of ψ, for-
mally δ̄ψ :“ dψp

dp
pp“p0q, where p0 corresponds to some particular, selected configuration.

• Let a functional exist Srψs, i.e. a map from the configurations of ψ to real numbers, for
which dS

dp
exists (at least at p“p0) for all relevant families of configurations ψp, and suppose

that for all these it holds

dS

dp
“

ż

Ω

χ δ̄ψ pnatural measure on M employed tacitlyq ,

where all the possible indices at δ̄ψ are contracted against the same (dual) indices occurring
at χ (supposed to be a smooth tensor field). Then S is said to be functionally differentiable
at ψ0 ” ψpp“ p0q, with χ called the functional derivative (or variational derivative) of
S with respect to ψ and denoted as

χ :“
δ̄S

δ̄ψ
pψ“ψ0q .

• Consider now, specifically, a real functional of the form

Srψs “

ż

Ω

Lrψs ,

where L is a local function of the field variables ψ and of a finite number of their (partial
or covariant) derivatives (“local” meaning that all the fields including their derivatives are
taken at the same space-time point). Suppose that S is functionally differentiable and that
the configurations ψ which make S stationary, i.e. for which δ̄S

δ̄ψ
“0, exactly correspond to

the solutions of the pertinent field equations (known from the theory describing ψ on the
given M ). Then L is called the Lagrangian density of the theory, S is the corresponding
action, and the whole construction reproducing (or just yielding – perhaps even predicting)
the field equations is called the Lagrangian formulation of the theory.
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23.1.1 What kind of change does the “variation” represent?

The Lagrangian densities depend on coordinate location xµ and on the fields of a given theory
ψ together with their derivatives by xµ. Two kinds of transformations may occur: coordi-
nate diffeomorphisms (xµ Ñ x1µpxq) (which naturally induce a certain transformation of
the fields, according to the latter’s mathematical type), and “direct” transformations of the
fields (usually called gauge transformations). In principle, both may act simultaneously in
changing a configuration of a given system to some other close configuration. Considering
both the coordinate diffeomorphisms and the gauge transformations to be only infinitesimal,
it is useful to introduce two types of variations. First,

δψpxq :“ ψ1
px1

q ´ ψpxq ... total change of the field value .

This is an extension of the notation we use everywhere else: ψ1px1q etc. we generally denote
the result of a coordinate transformation “alone”, whereas here it possibly stands for the result
of both the coordinate and the gauge shifts. Besides the total variation δψpxq, it is useful to
also define

δ̄ψpxq :“ ψ1
pxq ´ ψpxq ... field-value change due to the change of the field form .

This is also caused by both shifts, yet it is determined at the same coordinate values. Worth
to realize that such a definition does not represent the change of the field at a given point (had
it any clear meaning), but rather the difference between the original components of ψ at x
and the transformed components ψ1 at the point that is mapped onto x by the coordinate shift.

Independently of how transform the fields, the two variations are related by shift be-
tween the points in which the final field is evaluated,

δ̄ψ ” ψ1
pxq ´ ψpxq “ ψ1

px1
´ δxq ´ ψpxq

.
“ ψ1

px1
q ´ ψ1

,αpx1
q δxα ´ ψpxq ”

” δψ ´ ψ1
,αpx1

q δxα
.
“ δψ ´ ψ,αpxq δxα ” δψ ` ϵ ψ,αξ

α (23.1)

This is the well known relation between the Lagrangian and Eulerian variations (if under-
standing the diffeomorphism as a passive shift of coordinates, it is natural to view δ̄ψ as a
Lagrangian variation and δψ as an Eulerian variation).1 Exactly the same characterization we
will repeat in Chapter 28 (Section 28.3) where a clear distinction between δψpxq and δ̄ψpxq

will be especially important.
In the present chapter, all the variations mean those at the same coordinate position,

so we denote them by δ̄ (as it is much more usual than the opposite convention). Since we
will only consider this type of variations, it would make no harm to call them simply δψ
(or however), yet we have decided to keep consistency with Chapter 28. Anyway, really
important will be one point: since δ̄ψpxq is defined at the same xµ, it commutes with partial
derivative (whereas δψ does not). This will be used at several places below.

1 We have met similar language in the analysis of stellar pulsations in Section 20.4. However, the variations
considered now are “off-shell” (“virtual”) in the sense that they need not lead along the actual evolution of the
system. In the pulsation problem, on the contrary, the changes of the quantities described real motion of the
star’s fluid. Also, the attributes “Lagrangian” and “Eulerian” (denoted by ∆ and δ, respectively) meant the
opposite than in the present chapter, because the shift r Ñ r ` ξ was active (thus with the plus sign at ξ),
following the real fluid motion. Hence, the Lagrangian deflection was tied to r ` ξpt, rq, whereas the Eulerian
one was measured at fixed r.
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23.2 Euler-Lagrange equations
To approach our specific task, take the 4D space-time and consider – as an example yet
– an invariant Lagrangian density depending on a vector field ψµpxq and its first (partial)
derivatives. (The field in general depends on the space-time metric gµν .) We wish to find
when the corresponding action is stationary with respect to the variation δ̄ψµ of the field,

δ̄S “ δ̄

ż

Ω

L?
´g d4x “

ż

Ω

„

Bp
?

´gLq

Bψµ
δ̄ψµ `

Bp
?

´gLq

Bψµ,α
δ̄ψµ,α

ȷ

d4x . (23.2)

In problems with “fixed boundary” – when the field variation δ̄ψµ is fixed to vanish on the
boundary of Ω (denoted by BΩ) – a standard method is to rewrite the second term as total
divergence minus the term thus extra added, to use the Gauss theorem to express the total
divergence as the flux of its vector argument over BΩ, which however vanishes due to the
fixed boundary, and so to be left with the subtracted “extra added” term:
ż

Ω

Bp
?

´gLq

Bψµ,α
δ̄ψµ,α d

4x “

ż

Ω

„

Bp
?

´gLq

Bψµ,α
δ̄ψµ

ȷ

,α

d4x ´

ż

Ω

„

Bp
?

´gLq

Bψµ,α

ȷ

,α

δ̄ψµ d4x “

“

ż

BΩ

Bp
?

´gLq

Bψµ,α
Z

ZZδ̄ψ
µ nα d

3x ´

ż

Ω

„

Bp
?

´gLq

Bψµ,α

ȷ

,α

δ̄ψµ d4x .

The variation of S thus comes out as

δ̄S ”

ż

Ω

δ̄p
?

´gLq

δ̄ψµ
δ̄ψµ d4x “

ż

Ω

#

Bp
?

´gLq

Bψµ
´

„

Bp
?

´gLq

Bψµ,α

ȷ

,α

+

δ̄ψµ d4x .

Demanding that the action remain stationary, δ̄S“0, under arbitrary field variation δ̄ψµ, we
thus arrive at the Euler-Lagrange equations of the variational problem,

δ̄p
?

´gLq

δ̄ψµ
“

Bp
?

´gLq

Bψµ
´

„

Bp
?

´gLq

Bψµ,α

ȷ

,α

“: rELp
?

´gLqs
µ

“ 0 ,

where rELs with the appropriate index is called the Euler operator. These equations provide
(or, are equivalent to) the field equations of the given field theory. They are standardly re-
quired to contain at most the second derivatives of the fields, because the theories with higher
derivatives may yield non-causal propagation.

If the Lagrangian density depends on higher derivatives of the field(s), the above recipe
generalizes straightforwardly, at least if the variations of all the derivatives of the field except
the highest ones vanish on the boundary BΩ (this is of course not necessarily true, this is
just the simplest case, because than the “divergence trick” can also be employed for the
higher terms accordingly). For example, consider the next level of a Lagrangian density also
depending on the second derivatives of ψµ. Then, besides the above, one also has in (23.2)
the third term
ż

Ω

Bp
?

´gLq

Bψµ,αβ
δ̄ψµ,αβ d

4x “

ż

Ω

„

Bp
?

´gLq

Bψµ,αβ
δ̄ψµ,α

ȷ

,β

d4x ´

ż

Ω

„

Bp
?

´gLq

Bψµ,αβ

ȷ

,β

δ̄ψµ,α d
4x “
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“

ż

BΩ

Bp
?

´gLq

Bψµ,αβ

HHHδ̄ψµ,α nβ d
3x ´

ż

Ω

„

Bp
?

´gLq

Bψµ,αβ

ȷ

,β

δ̄ψµ,α d
4x “

“ ´

ż

Ω

#

„

Bp
?

´gLq

Bψµ,αβ

ȷ

,β

δ̄ψµ

+

,α

d4x `

ż

Ω

„

Bp
?

´gLq

Bψµ,αβ

ȷ

,βα

δ̄ψµ d4x “

“ ´

ż

BΩ

„

Bp
?

´gLq

Bψµ,αβ

ȷ

,β

Z
ZZδ̄ψ
µ nα d

3x `

ż

Ω

„

Bp
?

´gLq

Bψµ,αβ

ȷ

,βα

δ̄ψµ d4x .

If the variations δ̄ψµ as well as δ̄ψµ,α vanish on the boundary, the variational problem thus
leads to the Euler-Lagrange equations

δ̄p
?

´gLq

δ̄ψµ
“

Bp
?

´gLq

Bψµ
´

„

Bp
?

´gLq

Bψµ,α

ȷ

,α

`

„

Bp
?

´gLq

Bψµ,αβ

ȷ

,αβ

“: rELp
?

´gLqs
µ

“ 0 .

(23.3)

23.2.1 Euler-Lagrange equations in terms of covariant derivatives

In cases when the field variables ψ of the Lagrangian density L does not depend on the
space-time metric, it is often appropriate to use their covariant derivatives in the procedure.2

Besides others, this is the straightest way how to obtain an invariant L, as required.
Imagine again the case of L depending on a vector field ψµ and its first derivatives, but

now the covariant ones. The variation of ψµ then induces the variation of the derivatives

ψµ;α Ñ ψµ;α ` δ̄ψµ;α ,

where the variation is again supposed to commute with the derivative, similarly as for the
partial derivative. Hence δ̄pψµ;αq “ pδ̄ψµq;α. The corresponding variation of the action with
respect to the field ψµ reads

δ̄S “ δ̄

ż

Ω

L?
´g d4x “

ż

Ω

„

BL
Bψµ

δ̄ψµ `
BL

Bψµ;α
δ̄ψµ;α

ȷ

?
´g d4x ,

where the Γµαλψ
λ terms involved in ψµ;α are not to be differentiated partially with respect

to ψµ within the first term (here ψµ and the whole ψµ;α are the independent variables). In
order to reach the Euler-Lagrange equations, one has to “liberate” δ̄ψµ from the derivative
in the second term. Proceeding similarly as in the partial-derivative case, one employs the
divergence trick (“per partes”) as
ż

Ω

BL
Bψµ;α

δ̄ψµ;α
?

´g d4x “

ż

Ω

„

BL
Bψµ;α

δ̄ψµ
ȷ

;α

?
´g d4x ´

ż

Ω

„

BL
Bψµ;α

ȷ

;α

δ̄ψµ
?

´g d4x ,

2 Lmay still depend on gµν (and possibly its partial derivatives), just that this dependence is not coupled with
the dependence on ψs.
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rewriting the first (total-divergence) guy in terms of partial divergence,
ż

Ω

„

BL
Bψµ;α

δ̄ψµ
ȷ

;α

?
´g d4x “

ż

Ω

1

���
?

´g

„

?
´g

BL
Bψµ;α

δ̄ψµ
ȷ

,α
���
?

´g d4x ,

and cancelling it, as above, on the basis of the Gauss theorem and of the fixed-boundary
assumption. We thus end with

δ̄S ”

ż

Ω

δ̄L
δ̄ψµ

δ̄ψµ
?

´g d4x “

ż

Ω

#

BL
Bψµ

´

„

BL
Bψµ;α

ȷ

;α

+

δ̄ψµ
?

´g d4x ,

so the Euler-Lagrange equations now read

δ̄L
δ̄ψµ

“
BL
Bψµ

´

„

BL
Bψµ;α

ȷ

;α

” rELpLqs
µ

“ 0 . (23.4)

Mathematically, the difference clearly is that when using covariant derivatives, one dif-
ferentiates the Lagrangian density L alone which is an invariant, whereas when using partial
derivatives, one differentiates the expression

?
´gL which is a scalar density of weight `1.

Now, after the above introductory summary, let us directly jump to our central gravitational
problem.

23.3 The theorem
• Einstein equations are Euler-Lagrange equations for the action

S “

ż

Ω

pLg ` 16πLngq
?

´g d4x , where Lg “ R ´ 2Λ (23.5)

is the Lagrangian density for a gravitational field3 and Lngpgµν , gµν,ιq is a scalar represent-
ing Lagrangian density of matter and non-gravitational fields. Ω is a chosen space-time
region and Λ is (cosmological) constant.

• Lng yields the energy-momentum tensor by prescription

1

2

?
´g Tµν ” ´

BpLng

?
´gq

Bgµν
`

B

Bxι

„

BpLng

?
´gq

Bgµν,ι

ȷ

, (23.6)

which reduces to Tµν “ gµνLng ´ 2BLng

Bgµν in case when Lng does not depend on derivatives
of gµν .

• From the diffeomorphism invariance ofLng (which one demands) it follows that the energy-
momentum tensor satisfies conservation laws T µν ;ν “ 0.

3 The crucial part
ş

R
?

´g d4x is being called the Hilbert action, since D. Hilbert was the first to derive
from it the vacuum part of the Einstein equations.
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Remarks:
‚ Basic quantities to be varied independently are gµν a gµν,ι (similarly as xi and pi in classical
mechanics), with variations of both assumed to vanish on the boundary of Ω.
‚ Sure that the “non-gravitational Lagrangian” Lng also depends on the non-gravitational
fields. Variation with respect to these (while taking the metric as a fixed background) would
yield equations governing the respective fields (e.g. Maxwell equations). Here, however, we
focus on the behaviour given by the space-time geometry.

23.4 The proof
23.4.1 Variation of the metric determinant

Let us first remind the lemma (5.12) for the differentiation of determinant of a square matrix
(M ),

pdetMq,λ

detM
“ Tr

`

M´1
¨M,λ

˘

.

The derivative indicated by “λ” can actually represent differentiation with respect to any
variable (not necessarily a coordinate), so we may employ the relation for the derivative (of
the covariant-metric determinant) with respect to gµν ,

Bp´gq

Bgµν
“ p´gqgικ

Bgικ
Bgµν

“ p´gqgικδµι δ
ν
κ “ p´gqgµν , (23.7)

which permits to calculate the variation

δ̄
?

´g “
1

2
?

´g

Bp´gq

Bgµν
δ̄gµν “

1

2

?
´g gµν δ̄gµν . (23.8)

The relations can also be expressed in terms of the inverse metric:

gµνgβν “ δµβ ñ pδ̄gµνqgνβ `gµνpδ̄gνβq “ 0
ˇ

ˇ ¨gαµ ñ δ̄gαβ “ ´gαµgβν δ̄g
µν . (23.9)

Mind the different signs – the indices of the metric variation can not be simply risen and
lowered by the original metric! (Sure: metric is not constant with respect to variation.) We
thus arrive at alternative expression

δ̄
?

´g “ ´
1

2

?
´g gµν δ̄g

µν
ñ

Bp´gq

Bgµν
“ ´p´gqgµν ,

B
?

´g

Bgµν
“ ´

1

2

?
´g gµν .

(23.10)

23.4.2 Variation of curvature: the Palatini equation

We vary the Riemann tensor straightforwardly,

δ̄Rκ
µλν “ δ̄Γκνµ,λ ´ δ̄Γκλµ,ν ` δ̄ pΓκλιΓ

ι
νµq ´ δ̄ pΓκνιΓ

ι
λµq ,
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and after switching variation and partial derivatives, one easily verifies to obtain the Palatini
equation

δ̄Rκ
µλν “ pδ̄Γκνµq;λ ´ pδ̄Γκλµq;ν . (23.11)

Indeed, “from definition”,

pδ̄Γκνµq;λ ´ pδ̄Γκλµq;ν “ δ̄Γκνµ,λ ` Γκλιδ̄Γ
ι
νµ ´ ������

Γιλν δ̄Γ
κ
ιµ ´ Γιλµδ̄Γ

κ
νι

´ δ̄Γκλµ,ν ´ Γκνιδ̄Γ
ι
λµ ` ������

Γινλδ̄Γ
κ
ιµ ` Γινµδ̄Γ

κ
λι

equals δ̄Rκ
µλν exactly (even with index order at Gammas, so it can also be used with torsion).

By contraction in pκλq, one finds the Ricci-tensor variation

δ̄Rµν “ pδ̄Γλνµq;λ ´ pδ̄Γλλµq;ν . (23.12)

Important remark: although the covariant-derivative rules can of course be applied “mechani-
cally”, it might seem improper to apply that derivative to δ̄Γκµν , because the affine-connection
components are not tensors. However, the variation δ̄Γκµν means the difference between the
original and varied Gammas at a given point, and at a given point the second, non-tensorial
term in the transformation relation (2.17) is the same for both, so it drops out by subtraction
– the variations δ̄Γκνµ are tensors.

23.4.3 Variation of the gravitational part of action

Employing the above skills, let us tackle the gravitational integral,

δ̄

ż

pR ´ 2Λq
?

´g d4x ” δ̄

ż

pgµνRµν ´ 2Λq
?

´g d4x “

“

ż

“

δ̄gµνRµν

?
´g ` gµν δ̄Rµν

?
´g ` pR ´ 2Λq δ̄

?
´g

‰

d4x “

“

ż
ˆ

Rµν ´
1

2
Rgµν ` Λgµν

˙

δ̄gµν
?

´g d4x `

ż

gµν δ̄Rµν

?
´g d4x . (23.13)

In the second integral, substitute for δ̄Rµν and then try to rewrite it as a partial divergence of
the vector

?
´g

`

gµν δ̄Γλνµ ´ gµλδ̄Γννµ
˘

:
ż

gµν
“

pδ̄Γλνµq;λ ´ pδ̄Γλλµq;ν
‰?

´g d4x “

ż

“

pgµν δ̄Γλνµq;λ ´ pgµν δ̄Γλλµq;ν
‰?

´g d4x “

“

ż

pgµν δ̄Γλνµ ´ gµλδ̄Γννµq;λ
?

´g d4x “

ż

“?
´g pgµν δ̄Γλνµ ´ gµλδ̄Γννµq

‰

,λ
d4x .

(23.14)

By the Gauss theorem, this equals the integral of the flow of that vector over the boundary
BΩ, which however is zero since δ̄Γ vanish there by assumption. Hence, variation of the
gravitational part of the action yields

δ̄Sg ” δ̄

ż

Ω

Lg

?
´g d4x “

ż

Ω

ˆ

Rµν ´
1

2
Rgµν ` Λgµν

˙

δ̄gµν
?

´g d4x . (23.15)
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23.4.4 Variation of the non-gravitational part of action

Now let us vary the non-gravitational action,

δ̄

ż

Lng

`

gµν , gµν,ι
˘?

´g d4x “

ż
„

B pLng

?
´gq

Bgµν
δ̄gµν `

B pLng

?
´gq

Bgµν,ι
δ̄gµν,ι

ȷ

d4x “

“

ż

#

BpLng

?
´gq

Bgµν
δ̄gµν `

�����������
„

BpLng

?
´gq

Bgµν,ι
δ̄gµν

ȷ

,ι

´

„

BpLng

?
´gq

Bgµν,ι

ȷ

,ι

δ̄gµν

+

d4x .

The middle term has been crossed out, because it can be expressed, due to Gauss, as the
integral of BpLng

?
´gq

Bgµν,ι
δ̄gµν over the boundary BΩ, where however δ̄gµν “ 0. Therefore, if

defining a symmetric tensor Tµν according to (23.6), we can write

δ̄Sng ” 16π δ̄

ż

Ω

Lng

?
´g d4x “ ´8π

ż

Ω

Tµν δ̄g
µν

?
´g d4x , (23.16)

which is what is wanted for the Einstein equations. In particular, if Lng does not depend on
gµν,ι , the formula (23.6) reduces to

1

2

?
´g Tµν “ ´

BLng

Bgµν
?

´g ´ Lng
B

?
´g

Bgµν
,

from where it follows, by (23.10),

Tµν “ gµνLng ´ 2
BLng

Bgµν
. (23.17)

Example 1: scalar (Klein-Gordon) field

For a scalar field (in general a massive one), for instance, the Lagrangian density reads

Lscalar “ ´
1

2
pgαβψ,αψ,β ` m2ψ2

q ,

so, according to the above recipe,

Tµν “ ψ,µψ,ν ` gµνLng . (23.18)

Example 2: electromagnetic field

For a source-free EM field, the Lagrangian density reads

LEM “ ´
1

16π
FαβFαβ “ ´

1

16π
gακgβλFκλFαβ ,

so

Tµν “ ´
1

16π
gµν F

αβFαβ `
1

8π
gβλFνλFµβ `

1

8π
gακFκνFαµ “

“
1

4π

ˆ

FµβFν
β

´
1

4
gµνFαβF

αβ

˙

.
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Example 3: ideal fluid

For an ideal fluid, the Lagrangian density is at times said to be given by pressure, Lfluid “P .
It is not that simple (for dust it would then be zero, right?), at least not in connection with the
above “canonical” prescription. However, it is simple to verify that

Lfluid “ ´
1

2
pρ ` P qgαβuαuβ ´

ρ

2
`
P

2
ùñ Tµν “ pρ ` P quµuν ` Pgµν .

So the Lagrangian has to be taken “off-shell” in the sense that one may only use gαβuαuβ “

´1 after making derivatives.

23.4.5 Conservation laws for T-mu-nu

The variation of the metric has yet been generic, we only demanded that it vanish, along
with derivatives, on the boundary of the relevant space-time region. Let us consider now
a special case – a variation purely caused by an infinitesimal coordinate change. Such a
variation cannot (in fact must not) induce any physical change, so, in particular, the action
has to remain the same. Interestingly, this requirement leads to the conservation equation for
the energy-momentum tensor.

First, from (23.9) we know that Tµν δ̄gµν “´T µν δ̄gµν , so (23.16) can also be written as

δ̄Sng “ 8π

ż

Ω

Tαβ δ̄gαβ
?

´g d4x . (23.19)

Now, in Section 11.4 we saw that under a shift x1µ “ xµ ` ξµ the metric changes according
to g1

µν “ gµν ´ ξµ;ν ´ ξν;µ , which means that the corresponding variation reads

δ̄gµν :“ g1
µν ´ gµν “ ´ξµ;ν ´ ξν;µ .

Submitting this to δ̄Sng above, we obtain 8π times

´

ż

Tαβpξα;β ` ξβ;αq
?

´g d4x “ ´2

ż

Tαβξα;β
?

´g d4x “

“ ´2
XXXXXXXXXXX

ż

pTαβξαq;β
?

´g d4x ` 2

ż

Tαβ ;βξα
?

´g d4x .

In the first term, one rewrites the covariant divergence to the partial one and expresses the
integral, by the Gauss theorem, as a surface integral of

?
´g Tαβξα over the boundary; there,

however, the coordinate variation ξα has to vanish (in order to be consistent with the general
formulation of the variational problem), so we are only left with the second integral.

Finally, a coordinate shift cannot change the physics, so the variation δ̄Sng induced by
an arbitrary ξα has to vanish,

δ̄Sng “ 16π

ż

Ω

Tαβ ;βξα
?

´g d4x “ 0 ðñ Tαβ ;β “ 0 . (23.20)

This concludes the proof. l
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Note that the same result can also be obtained for the Einstein tensorGµν (of course, we
know it from the Bianchi identities, but here we do not employ the latter). Actually, writing,
similarly, (23.15) as

δ̄Sg “

ż

Ω

pGµν ` Λgµνq δ̄gµν
?

´g d4x “ ´

ż

Ω

pGµν
` Λgµνq δ̄gµν

?
´g d4x

and using δ̄gµν “ ´ξµ;ν ´ ξν;µ, we have

δ̄Sg “

ż

Ω

pGµν
` Λgµνqpξµ;ν ` ξν;µq

?
´g d4x “ 2

ż

Ω

pGµν
` Λgµνq ξµ;ν

?
´g d4x “

“ 2
hhhhhhhhhhhhhhhh

ż

rpGµν
` Λgµνq ξµs;ν

?
´g d4x ´ 2

ż

pGµν
;ν ` Λ���gµν ;ν q ξµ

?
´g d4x ,

so should δ̄Sg vanish (no change of physics by the coordinate shift), it has to hold Gµν
;ν “0.

23.4.6 Boundary term

The derivation can also be performed in a more natural case when solely the metric itself is
kept fixed on the boundary of Ω, but the metric derivatives are left unconstrained (δ̄gµν,ι‰0).
The integral

ş

gµν δ̄Rµν

?
´g d4x in variation of the gravitational action (23.15) – the one

which we translated into an integral (23.14) from partial divergence of a vector and threw out
thanks to Gauss and vanishing of δ̄gµν,ι (and thus δ̄Γλνµ) on a boundary – is not zero then.
Its contribution thus has to be subtracted from Sg in order that the field equations come out
correct. Let us treat this term more properly here.

• Starting from (23.14), we first use the Gauss law,
ż

Ω

gµν δ̄Rµν

?
´g d4x “

ż

Ω

`

gµν δ̄Γλνµ ´ gµλδ̄Γννµ
˘

;λ

?
´g d4x “

“

ż

Ω

“?
´g pgµν δ̄Γλνµ ´ gµλδ̄Γννµq

‰

,λ
d4x “ ϵ

¿

BΩ

`

gµν δ̄Γλνµ ´ gµλδ̄Γννµ
˘

nλ
?
h d3y ,

where nλ is the unit normal to the boundary BΩ (with ϵ :“ gµνnµnν “ ¯1 its norm; we
suppose the boundary is nowhere null), h is the determinant of the 3D metric induced on
the boundary and yi are some 3D coordinates there.

• Now we write out the variation of the Christoffel symbols in more detail:

δ̄Γινµ “
1

2
δ̄pgιν,µ ` gµι,ν ´ gνµ,ιq “

1

2

“

pδ̄gινq,µ ` pδ̄gµιq,ν ´ pδ̄gνµq,ι
‰

“

“
1

2

“

pδ̄gινq;µ ` pδ̄gµιq;ν ´ pδ̄gνµq;ι
‰

`

`
1

2

`XXXXXΓσµιδ̄gσν ` Γσµν δ̄gισ ` Γσνµδ̄gσι ` �����Γσνιδ̄gµσ ´ �����Γσιν δ̄gσµ ´
XXXXXΓσιµδ̄gνσ

˘

“

“
1

2

“

pδ̄gινq;µ ` pδ̄gµιq;ν ´ pδ̄gνµq;ι
‰

` Γσνµδ̄gσι , (23.21)
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hence for the second-kind Gammas we obtain

δ̄Γλνµ “ δ̄gλιΓινµ ` gλιδ̄Γινµ “

“ ´((((((((
δ̄gρσ g

ρλgσιΓινµ `
1

2
gλι

“

pδ̄gινq;µ ` pδ̄gµιq;ν ´ pδ̄gνµq;ι
‰

` ������
gλιΓσνµδ̄gσι “

“
1

2
gλι

“

pδ̄gινq;µ ` pδ̄gµιq;ν ´ pδ̄gνµq;ι
‰

, (23.22)

where in the first term we have used the relation (23.9).

• Thanks to the last formula, we can simplify

`

gµν δ̄Γλνµ ´ gµλδ̄Γννµ
˘

“
1

2
pgµνgλι ´ gµλgνιq

“

pδ̄gινq;µ ` pδ̄gµιq;ν ´ pδ̄gνµq;ι
‰

“

“
1

2
pgµνgλι ´ gµλgνιq

“

pδ̄gινq;µ ´ pδ̄gνµq;ι
‰

“ pgµνgλι ´ gµλgνιq pδ̄gινq;µ

(only employed has been the anti-symmetry in rµ, ιs of the parenthesis and, then, that of
the bracket as well). Therefore, in the above Gauss-integral argument, we get

pgµν δ̄Γλνµ ´ gµλδ̄Γννµq nλ “ pnιgµν ´ nµgνιqpδ̄gινq;µ “

“
“

nιphµν ` ϵ´1nµnνq ´ nµphνι ` ϵ´1nνnιq
‰

pδ̄gινq;µ “

“ nι������
hµνpδ̄gινq;µ ´ nµhνιpδ̄gινq;µ ,

where hµν “ gµν ´ ϵ´1nµnν stands for the 3D metric of BΩ, with ϵ :“ gµνn
µnν (note

that the boundary has different character at different parts, so ϵ generally does not have
the same sign everywhere on it). The term hµνpδ̄gινq;µ dropped out regarding that i) on
BΩ the covariant derivatives in fact reduce to partial derivatives, because their Γ-terms are
proportional to δ̄gιν which vanish on BΩ, and that ii) δ̄gιν vanishes everywhere on BΩ, hence
also vanishes its partial derivative in the direction tangent to BΩ, given by hµνpδ̄gινq,µ .

• Now we show that the above result can be expressed in terms of variation on BΩ of the
quantity

K :“ Kν
ν :“ hνκn

κ
;ν “ nν ;ν

(Kµν will be called the extrinsic curvature [and its trace K the mean curvature] and more
thoroughly discussed in Chapter 25; it will play a crucial role in Chapter 27). Since δ̄gµν “0
on BΩ, the same must also hold for δ̄hµν , for δ̄nα and for the latter’s tangent derivative
hνκδ̄pn

κ
,νq “ hνκpδ̄nκq,ν (the region Ω is fixed, it does not change under variation, so the

metric decomposition is also not varied). Hence, we have

δ̄K “ δ̄phνκn
κ
;νq “ δ̄phνκn

κ
,ν ` hνκΓ

κ
νµn

µ
q “ hνκpδ̄Γκνµqnµ “

“
1

2
hνκg

κι
“

pδ̄gινq;µ ` pδ̄gµιq;ν ´ pδ̄gνµq;ι
‰

nµ “

“
1

2
hνι

“

pδ̄gινq;µ ` pδ̄gµιq;ν ´ pδ̄gνµq;ι
‰

nµ “
1

2
hνιpδ̄gινq;µn

µ .
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We have thus learned that
ż

Ω

gµν δ̄Rµν

?
´g d4x “ ´ϵ

¿

BΩ

hνιpδ̄gινq;µn
µ

?
h d3y “ ´2ϵ

¿

BΩ

δ̄K
?
h d3y . (23.23)

Footnote: why, in computing δ̄K, we have employed the expressionK“hνκn
κ
;ν rather than

the simpler one K “ nν ;ν? The latter would lead to δ̄K “ δ̄pnν ;νq “ δ̄pnν ,ν ` Γννµn
µq,

which is simpler but its first term δ̄pnν ,νq “ pδ̄nνq,ν can not be claimed to vanish, because
here the gradient of δ̄nν is taken in general direction, rather than in the direction tangent to
BΩ as in the term hνκn

κ
,ν occurring above.

The above result is known as the Gibbons-Hawking-York boundary term. Since it is extra
to what has been obtained from (23.5), the corresponding part of the Lagrangian has to be
subtracted from the original L in order that the latter yield the correct field equations. The
action thus has to be modified to

S “

ż

Ω

pLg ` 16πLngq
?

´g d4x ` 2ϵ

¿

BΩ

K
?
h d3y , where Lg “ R ´ 2Λ . (23.24)

Boundary-term normalization

One unfavourable feature still remains. Imagine the host manifold is Minkowski, take spher-
ical coordinates pt, r, θ, ϕq there and choose Ω to be a 3D “cylinder” with some radius r“R
and with bases at t “ const “ tin and t “ const “ tfin. The 4D metric and the 3D metric
induced on the cylinder (actually a history of the spherical surface r“R) are

ds2 “ ´dt2 ` dr2 ` r2pdθ2 ` sin2 θ dϕ2
q ùñ ´g “ r4 sin2 θ ,

dσ2
`

” hijdy
idyj

˘

“ ´dt2 ` R2
pdθ2 ` sin2 θ dϕ2

q ùñ h “ R4 sin2 θ .

The unit normal to any r“const surface and the corresponding mean curvature read

nλ “ r,λ “ δrλ , nκ “ gκλδrλ “ gκr “ δκr ùñ ϵ ” nλn
λ

“ δrλδ
λ
r “ 1 ,

K ” nκ;κ “
1

?
´g

p
?

´g nκq,κ “
1

?
´g

p
?

´g δκr q,κ “
1

r2 sin θ
pr2 sin θq,r “

2

r
.

The bases of the cylinder do not contribute to the integral, because K “ 0 on them, so the
surface term amounts to

2ϵ

¿

BΩ

K
?
h d3y “ 4

tfin
ż

tin

2π
ż

0

π
ż

0

R sin θ dθ dϕ dt “ 16πRptfin ´ tinq .

Unfavourable is that this diverges for RÑ8. This is not an issue for the variation and for the
field equations, nevertheless the action itself behaves badly in infinite (non-compact) spaces,
even if taken between two finite times.
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The above numerical feature is simply being remedied by subtracting the divergent term
from the result, i.e. by taking, instead of (23.24),

S “

ż

Ω

pLg `16πLngq
?

´g d4x`2ϵ

¿

BΩ

pK´Kflatq
?
h d3y , where Lg “ R´2Λ , (23.25)

where Kflat is the K term computed for BΩ embedded in flat space-time. This behaves as
fixed in variation, so it does not affect the field equations (the additional Kflat term is thus
being called a non-dynamical term).

23.5 “Palatini’s” variational principle [due to Einstein, 1925]
A. Palatini obtained his formula for variation of the Ricci tensor in 1919. Several people
were asking, subsequently, whether it was possible to form an action only depending on
the dynamical field (the metric) and its first (not second) derivatives, similarly as it is in
electrodynamics, for example. (There, the Lagrangian depends on the EM-field tensor, i.e.
on the first derivatives of the four-potential.) An elegant way how to achieve this was finally
provided by Einstein in 1925:4 one must release the link between the metric and connection –
then actually the metric only enters the Lagrangian without any derivatives. A more general
formulation of the variational problem thus arises, in which it is not supposed that the affine
connection is of the Levi-Civita type (represented through Christoffel symbols). In fact metric
and connection are supposed to be totally unrelated (the connection is only assumed to be
torsion-free), and the variation is made with respect to them as independent variables. If the
connection only appears in the curvature term, which is the case if the non-gravitational part
of action does not depend on gµν,ι , we may omit the treatment of the cosmological and source
terms (no change occurs there) and only show the novelty of the present formulation on the
Hilbert’s term.

So consider the vacuum-case action

Svacpgµν ,Γ
ι
µν ,Γ

ι
µν,κq ”

ż

R
?

´g d4x ”

ż

gµνRµνpΓιµν ,Γ
ι
µν,κq

?
´g d4x .

By varying with respect to the dynamical variable (the metric), one obtains (not even neces-
sary to evaluate it in detail)

δ̄Svac “

ż

δ̄pgµν
?

´gqRµν d
4x ... “ 0 ðñ Rµν “ 0 . (23.26)

One thus immediately reaches the field equations (for vacuum).

4 “Einheitliche Feldtheorie von Gravitation und Elektrizität”, Sitzungsberichte der Preußischen Akademie
der Wissenschaften XXII (1925) 414. We are giving full reference since this is the crucial paper, despite the
approach is incorrectly being referred to as “Palatini’s variational method” in most textbooks. See M. Ferraris,
M. Francaviglia & C. Reina, Gen. Rel. Grav. 14 (1982) 243.
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23.5.1 Variation with respect to connection (as an independent variable)

Varying, on the other hand, with respect to the affine connection, one obtains

δ̄Svac “

ż

gµν δ̄Rµν

?
´g d4x .

One can substitute here the Palatini equation (23.12) as we did already since that was derived
just using affine connection (not metric),

δ̄Svac “

ż

gµν
“

pδ̄Γλνµq;λ ´ pδ̄Γλλµq;ν
‰?

´g d4x , (23.27)

but then one cannot “absorb” the metric inside the covariant derivative as automatically as in
(23.14). Neither is one allowed to employ the relation

?
´g V λ

;λ “ p
?

´g V λq,λ , since that
we derived for the Levi-Civita connection.

In the paper mentioned in the footnote, Einstein writes: “After a very hard research
during the last two years I now think I have got the correct solution...” So it must be worth a
theorem.

Theorem Vanishing of the variation of Svac with respect to Γλνµ (as an independent variable)
implies that if the affine connection is torsion-free, it has to be of the Levi-Civita type.

Proof:

• We can certainly rewrite the above variation, just using the Leibniz rule, as

δ̄Svac “

ż

`

gµν δ̄Γλνµ
?

´g
˘

;λ
d4x ´

ż

δ̄Γλνµ pgµν
?

´gq;λ d
4x ´

´

ż

`

gµν δ̄Γλλµ
?

´g
˘

;ν
d4x `

ż

δ̄Γλλµ pgµν
?

´gq;ν d4x . (23.28)

• Consider now the formula (A.22), pV ρ
?

´gq;ρ “ pV ρ
?

´gq,ρ , valid for any torsion-free
connection. It implies that the integrals of covariant divergences in (23.28) drop out, since
by Gauss they equal the corresponding fluxes over the boundary, which are zero since they
contain δ̄Γ.

• The remaining terms of (23.28) can be rewritten

δ̄Svac “

ż

δ̄Γλνµ

”

δνλ pgµκ
?

´gq;κ ´ pgµν
?

´gq;λ

ı

d4x .

Assuming symmetric connection (without torsion) as above, this vanishes, for a general
variation δ̄Γλνµ , if and only if the symmetric-in-pµ, νq part of the bracket vanishes,

1

2
δνλ pgµκ

?
´gq;κ `

1

2
δµλ pgνκ

?
´gq;κ ´ pgµν

?
´gq;λ “ 0 .
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Contracting this in µ{λ yields5

1

2
pgνκ

?
´gq;κ ` 2 pgνκ

?
´gq;κ ´ pgµν

?
´gq;µ ”

3

2
pgνκ

?
´gq;κ “ 0 ,

which implies, when used back in the equation before, pgµν
?

´gq;λ “ 0.

• Applying now the relation p
?

´gq;ρ “ 1
2

?
´g gαβgαβ;ρ derived in (A.21), we thus have

condition

0 “
1

?
´g

pgµν
?

´gq;λ “ gµν ;λ `
1

2
gµνgαβgαβ;λ .

Multiplication of this equation by gµν tells that its second term has to vanish,

0 “ gµνg
µν

;λ ` 2gαβgαβ;λ “ ´gµν;λg
µν

` 2gαβgαβ;λ ” gαβgαβ;λ ,

so one finally arrives at the condition gµν ;λ“0 ... the connection has to be of the Levi-Civita
type. l

The strength of this variational method – using such a simple Lagrangian (R)! – thus has
been confirmed: not only that it yields the field equations, but it even prescribes what is the
correct affine connection of the theory.

5 Gratefully acknowledged is the suggestion by Jonáš Dujava of how to best proceed here.



CHAPTER 24

Vector fields and their integral
congruences

It is often beneficial to study the space-time on the properties of its lower-dimensional sec-
tions. As a classical geometrical problem, the study of submanifolds is a solid part of every
differential-geometry textbook. In fact a given family of lower-dimensional sections may
not be integrable into a family of global submanifolds, with the exception of the 1D case –
there does exist a congruence of integral curves to every smooth (and nowhere vanishing)
vector field. This is the topic of the present chapter. We will first describe a vector field (a
congruence) in a suitable geometrical language, while emphasizing the difference between
the time-like and light-like cases, and then will derive how the space-time geometry enters
the properties of congruences. From physical side, the topic is mainly useful in problems
involving continuous media (hydrodynamics).

24.1 Kinematics of time-like congruences
Let’s have a congruence of time-like world-lines, parameterized in the same way as in Section
6.4 on geodesic deviation: xµ “ xµpl; τq, where l and τ are real parameters; l “numbers” the
curves (but it is continuous), while τ runs along them. Two vectors can thus be introduced
immediately,

uµ :“
dxµ

dτ
... tangent field (four-velocity: we assume uµuµ “ ´1q , (24.1)

δxµ :“
dxµ

dl
... relative position vector; uµδx

µ
“ 0 . (24.2)

The relative position (between “neighbouring” world-lines) is prescribed as being orthogo-
nal to uµ, because exactly this corresponds to an actual measurement (the position on the
neighbouring world-line is measured at given time τ of a certain selected “reference” world-
line). In the chapter on geodesic deviation, we first reminded that the relative-position vectors

433
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(“connecting vectors”) have zero Lie derivative along the reference world-line,

p£uδxq
µ

“ pδxµq,νu
ν

´ uµ,νδx
ν

“ pδxµq;νu
ν

´ uµ;νδx
ν

“ 0 , (24.3)

in other words,

dδxµ

dτ
“

duµ

dl
, or

Dδxµ

dτ
“

Duµ

dl
“ uµ;νδx

ν . (24.4)

For the evolution of the transversal properties of the congruence, the crucial quantity is thus
the tensor uµ;ν – it says how the transport of δxµ along the reference world-line differs from
parallel transport (under which the right-hand side would vanish). The tensor uµ;ν is going
to be the main character of this whole chapter.

Let us denote, as already previously, by hµν the tensor

hµν :“ gµν ` uµuν (24.5)

which at any point projects on the three-space orthogonal to the local uµ, and by aµ :“ uµ;νu
ν

the four-acceleration of the tangent field uµ. By double projection of the uµ;ν , one has

hκµh
λ
νuκ;λ “ pδκµ ` uκuµqpδλν ` uλuνquκ;λ “ pδλν ` uλuνquµ;λ “ uµ;ν ` aµuν ,

because uκuκ;λ “ 0 due to the normalization of uµ.
Now the main point: in analogy with the decomposition of the velocity field in classical

hydrodynamics, we can write

uµ;ν “ ωµν ` σµν `
1

3
Θhµν ´ aµuν , (24.6)

where

ωµν ” hκµh
λ
νurκ;λs “ hκrµh

λ
νsuκ;λ “ urµ;νs ` arµuνs (24.7)

is the antisymmetric vorticity (or twist) tensor, and

Θµν ” hκµh
λ
νupκ;λq “ hκpµh

λ
νquκ;λ “ upµ;νq ` apµuνq

ˆ

“
1

2
£uhµν

˙

(24.8)

is the symmetric expansion tensor, its trace

Θ ” hµνΘµν “ uµ;µ (24.9)

being called the expansion scalar and its traceless part

σµν “ Θµν ´
1

3
Θhµν (24.10)

the shear tensor. All the terms of the decomposition (24.6) are individually normal to uµ

(naturally, since they are defined by the hµν projection),

uµaµuν “ uµωµν “ uµσµν “ uµhµν “ 0 . (24.11)
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Note also that the multiplication of (24.6) by uν just confirms aµ“aµ.
The decomposition (24.6) is covariant, its terms characterize the transversal properties

of the congruence independently of the coordinate system. And they have a clear geometric
meaning. Submitting the decomposition to the evolution equation (24.4), we get

Dδxµ

dτ
“ pωµν ` Θµ

νq δxν “ pωµν ` σµνq δxν `
1

3
Θ δxµ . (24.12)

Imagine a 3D element of the flow (3D means “occupying a certain volume in the three-space
of uµ”). The scalar Θ describes the isotropic expansion/contraction of the element, while the
remaining two terms do not change its volume – ωµν describes vorticity (how world-lines
“entwine” like fibres of a rope within the element) and σµν describes shear (deformation ball
Ñ ellipsoid due to a different speed of the flow in different directions).

The tensor ωµν is antisymmetric (it is a bivector) and it fulfils 3 constraints ωµνuν “ 0
(only 3 of them are independent, because due to the antisymmetry they are automatically
bound by ωµνuµuν “ 0). Therefore, it has 6-3=3 independent components and its content
may be fully represented by a (pseudo-)vector – the vorticity (twist) vector

ωµ :“
1

2
ϵµνιλωνιuλ “

1

2
ϵµνιλuν;ιuλ “

1

2
ϵµνιλuν,ιuλ ðñ ωνι “ ϵνιλµω

λuµ . (24.13)

Clearly this vector, lying in the three-space orthogonal to uµ (ωιuι“0), is a direct counterpart
of the angular-velocity vector ω⃗ “ 1

2
∇⃗ˆ v⃗ known from classical mechanics.

Similarly as for the expansion, one can also find scalars for acceleration, vorticity and
shear,

κ2 :“ aµa
µ , (24.14)

ω2 :“
1

2
ωµνω

µν
“ ωιω

ι
“

1

2

`

urµ;νs ` arµuνs

˘

puµ;ν ` aµuνq “
1

2
urµ;νsu

µ;ν
`
κ2

4
, (24.15)

Θ :“ uµ;µ , (24.16)

σ2 :“
1

2
σµνσ

µν
“

1

2

ˆ

Θµν ´
1

3
Θhµν

˙ˆ

Θµν
´

1

3
Θhµν

˙

“
1

2
upµ;νqu

µ;ν
`
κ2

4
´

Θ2

6
(24.17)

(κ, the magnitude of aµ, plays the role of the first curvature of a world-line in the Frenet-Serret
formalism of the intrinsic geometry of curves).

Remarks

• One would actually need three parameters (instead of just l) to parameterize a congruence
penetrating the whole 3D volume, yet we in fact consider a “sheet-filling” sub-congruence
with the δxµ vector always being its space-like tangent.

• Thanks to the basic property Dδxµ

dτ
“ Duµ

dl
, one finds

d

dτ
puµδx

µ
q “

D

dτ
puµδx

µ
q “

Duµ
dτ

δxµ ` uµ
Dδxµ

dτ
“ aµδx

µ
`

Z
Z

Z
Z

uµ
Duµ

dl
.

So δxµ remains orthogonal to uµ if and only if it is also normal to aµ. (Or if aµ “ 0 as in
Section 6.4.)
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• In introducing Θµν , we added 1
2
£uhµν rather quickly as an alternative expression. Really,

£uhµν “ phµν;ιu
ι

` uι;µhιν ` uι;νhµιq “ puµuνq;ιu
ι

` uι;µpδιν ` @@u
ιuνq ` uι;νpδιµ ` @@u

ιuµq

“ aµuν ` uµaν ` uν;µ ` uµ;ν “ 2Θµν ,

where the cancellations do not apply to uι itself, but they indicate that uι;µuι“0.

• In Section 24.4, we will see that ωµν “ 0 if and only if uµ is proportional to a gradient of
some scalar, i.e. if uµ is orthogonal to hypersurfaces given as isosurfaces of that scalar.
The expression uµ;ν ` aµuν “ Θµν is then symmetric automatically; it becomes the so-
called extrinsic curvature Kµν of the hypersurfaces, which will be important in Chapter
25 on foliation of space-time by hypersurfaces and on the thus induced “3+1” splitting.

• The expansion scalar Θ evidently vanishes for Killing vector fields. For non-accelerated
congruences (aµ“0), this also holds in the opposite direction: Θµν “0 implies that uµ is a
Killing field.

24.2 Kinematics of light-like congruences
Consider a congruence of light-like (null) world-lines now. Denote the tangent field by kµ;
it is null, so kµk

µ “ 0. (This property implies kµ;νkµ “ 0, as for any vector normalized
to a constant.) We will assume the congruence is geodesic (and affinely parameterized),
kµ;νk

ν “0, as it is usual in the case of photon world-lines.
Null congruences are somewhat less comfortable in that they do not fix uniquely the

“tangent” and “normal” directions. Actually, the relation kµδxµ“0 does not exclude that δxµ

has a component proportional to kµ. If we introduced the projector to the normal space in the
same way as in the time-like case, hµν “ gµν`kµkν , we would have hµνk

ν “ pδµν `kµkνqkν “

kµ ‰ 0, so it would not work.1

A standard recipe how to remedy the situation is to consider one more null vector, call
it lµ, which is not normal/parallel to kµ (which in the null case means that it is “linearly
independent”, so the two vectors locally form a plane); one may always normalize it so that
kµl

µ “ ´1. “Purely transversal” are then considered such vectors which are orthogonal to
both kµ and lµ. The projection to that plane ensures the tensor

hµν “ gµν ` kµlν ` lµkν , (24.18)

which (really) satisfies

hµσh
σ
ν “ hµν , hµνk

ν
“ hµν l

ν
“ 0 , hσσ “ 2 . (24.19)

1 With null directions one should also be careful on an intuitive and pictorial level. If, for example, drawing a
(2D or 1D) light cone in Minkowski as usual, its normal should not be drawn perpendicular to it. Really, having
a vector kµ “ p1, 1, 0, 0q in such a plot, its space-time normal does not read lµ “ p1,´1, 0, 0q – will you check
that ηµνkµlν “ ´2. Unfortunately :-), the normal of kµ is kµ. (Well, it is not the only normal – one may play
with the remaining components arbitrarily.)
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The last relation confirms that it represents a 2D metric (this will be one of important dif-
ferences from the time-like case where hσσ “ δσσ ` uσuσ “ 3, naturally). To conclude the
introductory part, let us summarize all the properties we have got up to now:

kµk
µ

“ 0 pñq kµ;νk
µ

“ 0 , kµ;νk
ν

“ 0 , kµδx
µ

“ 0 , (24.20)
lµl

µ
“ 0 pñq lµ;νl

µ
“ 0 , kµl

µ
“ ´1 , hµνk

ν
“ hµν l

ν
“ 0 . (24.21)

Intending to describe the transversal properties of a null congruence, we again use the
evolution equation δxµ;σkσ “ kµ;σδx

σ, yet in order that the latter contain purely transversal
quantities only (which it does not, because kµ;σkµ“0, but kµ;σlµ‰0), we have to use hµν at
several places:

hµαphαρ δx
ρ
q;σk

σ
“ hµαphαρ;σδx

ρ
` hαρ δx

ρ
;σq kσ “

“ hµαpkα;σlρ ` kαlρ;σ ` lαkρ;σ ` lα;σkρq δx
ρkσ ` hµρδx

ρ
;σk

σ
“

“ hµρδx
ρ
;σk

σ ,

from where it follows, by plugging the original (unprojected) equation δxρ;σkσ “ kρ;σδx
σ,

hµαphαρ δx
ρ
q;σk

σ
“ hµρk

ρ
;σδx

σ
“ hµρk

ρ
;σphσι δx

ι
q “ hµρk

ρ
;σh

σ
ν phνι δx

ι
q . (24.22)

Evolution of the transversal separation hαρ δx
ρ is thus determined by the tensor hµρh

σ
νk

ρ
;σ.

Explicitly,

hρµh
σ
νkρ;σ “ kµ;ν ` kµl

ρkρ;ν ` kνl
σkµ;σ ` kµkνkρ;σl

ρlσ (24.23)

(it is often convenient to realize that the 2nd-4th terms are all orthogonal to the first).
Now we are ready to introduce similar kinematical quantities as in the time-like case.

They are going to contain the “auxiliary” vector field lµ which is by far not fixed uniquely by
the relations lµlµ“0, kµlµ“ ´1, but the scalars we will define at the end will not depend on
it. So let us decompose hρµh

σ
νkρ;σ like we did with uµ;ν in the preceding section:

hρµh
σ
νkρ;σ “ ωµν ` σµν `

1

2
Θhµν , (24.24)

where the vorticity (twist) tensor ωµν is the skew-symmetric part,

ωµν :“ hρ
rµh

σ
νskρ;σ “ krµ;νs ` lρkρ;rνkµs ` lρkrνkµs;ρ “

“ krµ;νs ` kµkrρ;νsl
ρ

` kνkrµ;ρsl
ρ , (24.25)

while the expansion tensor Θµν is the symmetric part,

Θµν :“ hρ
pµh

σ
νqkρ;σ “ kpµ;νq ` lρkρ;pνkµq ` lρkpνkµq;ρ ` kµkνkρ;σl

ρlσ “

“ kpµ;νq ` kµkpρ;νql
ρ

` kνkpµ;ρql
ρ

` kµkνkρ;σl
ρlσ ; (24.26)

the expansion scalar is again given by trace

Θ :“ hιρhσι kρ;σ “ hρσkρ;σ “ kσ ;σ (24.27)
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and, finally, the shear tensor represents the traceless part of Θµν ,

σµν :“ Θµν ´
1

2
Θhµν . (24.28)

Naturally, ωµνkµ“σµνk
µ“hµνk

µ“0, and also ωµνlµ“σµνl
µ“hµνl

µ“0. (Hence, on purely
spatial quantities the projector hµν again acts as a metric.)

Remark: in the time-like case, we saw Θµν could also be expressed as Θµν “ 1
2
£uhµν .

In the null case, one also finds straightforwardly that

1

2
£khµν “ kpµ;νq ` kpµ£klνq , hence

1

2
hµαh

ν
β £khµν “ hµαh

ν
βkpµ;νq ” Θαβ . (24.29)

Similarly as for the time-like congruence, it is possible to introduce the vorticity (twist)
vector,

ωµ “
1

2
ϵµνιλωνιkλ “

1

2
ϵµνιλkν,ιkλ ðñ ωνι “ ϵνιλµω

λkµ , (24.30)

obviously normal to kµ, and also to form scalars

ω2 :“
1

2
ωµνω

µν
“ ωιω

ι
“

1

2
krµ;νsk

µ;ν , σ2 :“
1

2
σµνσ

µν
“

1

2
kpµ;νqk

µ;ν
´

1

4
Θ2 . (24.31)

For the null congruence, these are (together with the expansion scalar Θ) often called the
optical scalars. You may check that the only differences with respect to the time-like case
are in the absence of acceleration and in the metric trace now being 2 instead of 3 (this yields
the factor ´1{4 instead of ´1{6 in front of Θ2 in the shear scalar). The scalars are clearly
independent of the vector lµ.

24.3 Congruences as probes of the space-time geometry
The properties of congruences are surely connected with the geometry of the host space-time
(they are even fully determined by the latter in the unaccelerated, geodesic case), which can
be used for implications in both directions. We will now try to learn how the transversal
characteristics introduced in previous paragraphs evolve, in a given space-time, along the
given congruence. The answer will be derived by differentiating, along the congruence, the
crucial tensor uµ;ν or hρµh

σ
νkρ;σ, while decomposing the latter as in (24.6) or (24.24). The

equation for the derivative of this whole tensor is typically quite long, but the formulas it
yields for the individual kinematical quantities (mainly for the scalar ones) are very useful.

24.3.1 The time-like case

From the Ricci identities and by definition of acceleration aµ”uµ;λu
λ, we have

Duµ;ν
dτ

“ uµ;νλu
λ

“ uµ;λνu
λ

` Rι
µνλuιu

λ
“ aµ;ν ´ uµ;λu

λ
;ν ´ Rµινλu

ιuλ . (24.32)
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Substituting the decomposition (24.6) to the left-hand side and to the second (quadratic) term
on the right-hand side, we get

Dωµν
dτ

`
DΘµν

dτ
´

D

dτ
paµuνq “ aµ;ν ´ ωµλω

λ
ν ´ ΘµλΘ

λ
ν ´ ωµλΘ

λ
ν ´ Θµλω

λ
ν `

` ωµλa
λuν ` Θµλa

λuν ´ Rµινλu
ιuλ , (24.33)

or, after also decomposing Θµν “ σµν ` 1
3
Θhµν ,

Dωµν
dτ

`
Dσµν
dτ

`
1

3

DΘ

dτ
hµν `

1

3
Θp���aµuν ` uµaνq ´

D

dτ
paµuνq “

“ aµ;ν ´ ωµλω
λ
ν ´ σµλσ

λ
ν ´ ωµλσ

λ
ν ´ σµλω

λ
ν ´

1

9
Θ2hµν ´

2

3
Θωµν ´

2

3
Θσµν `

` ωµλa
λuν ` σµλa

λuν `
1

3
Θ���aµuν ´ Rµινλu

ιuλ . (24.34)

Before proceeding further, it is good to notice that the terms pωµλω
λ
νq and pσµλσ

λ
νq are

symmetric in (µ,ν), e.g.

ωµλω
λ
ν “ ´ωλµω

λ
ν “ ´ωλµωλν “ ωλµωνλ ” ωνλω

λ
µ ,

and also symmetric is the curvature term Rµινλu
ιuλ, whereas the term2

´ωµλσ
λ
ν ´ σµλω

λ
ν “ ωλµσ

λ
ν ´ σµλω

λ
ν “ ωλµσλν ´ σµλω

λ
ν “ σνλω

λ
µ ´ σµλω

λ
ν

is anti-symmetric.

• By tracing the equation (24.34), i.e. multiplying it by gµν (remember that the metric can
pass through the absolute derivatives), we obtain the (Landau-)Raychaudhuri equation

DΘ

dτ
”

dΘ

dτ
“ aν ;ν ` 2ω2

´ 2σ2
´

1

3
Θ2

´ Rιλu
ιuλ . (24.35)

This equation is useful at many places, most notably it is crucial in the singularity theorems.

• Before extracting the remaining information, it may be good to write, in (24.34),

D

dτ
paµuνq ` aµ;ν “ aµ;λu

λuν ` aµaν ` aµ;ν “ hλνaµ;λ ` aµaν .

Then the symmetric and traceless part of (24.34), i.e. (24.34)pµνq´ 1
3
hµν (24.34)κκ , yields

Dσµν
dτ

“ hλpνaµq;λ ` aµaν ´
1

3
Θupµaνq ´

1

3
hµνa

κ
;κ ` upνωµqλa

λ
` upνσµqλa

λ
´

´ ωµλω
λ
ν ´ σµλσ

λ
ν ´

2

3
Θσµν `

2

3
hµνpσ2

´ ω2
q ´

2 This is, indeed, brutely slow, how the indices we low...
Are you thick with all that dough? -Hang up, go to under-row...
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´ Rµινλu
ιuλ `

1

3
hµνRιλu

ιuλ , (24.36)

while the anti-symmetric part of (24.34) appears as

Dωµν
dτ

“ hλrνaµs;λ ´
1

3
Θurµaνs ` urνωµsλa

λ
` urνσµsλa

λ
´

´ ωµλσ
λ
ν ´ σµλω

λ
ν ´

2

3
Θωµν . (24.37)

These equations are rewarding for an exam, but otherwise they are only used in the acceleration-
free case when their first rows vanish (the second one is fairly short in that case!). Note also
that only in the acceleration-free case all their terms are orthogonal to uµ. Apparently, cur-
vature does not explicitly enter the equation for the evolution of ωµν , yet it still does affect
vorticity through other quantities (Θ and σµν), because the three equations are coupled.

• However, both the equations are much simpler in the scalar version: multiplying (24.34),
or the equations (24.36) and (24.37), by 1

2
σµν and by 1

2
ωµν , one finds, respectively,

σ
Dσ

dτ

ˆ

“
1

2

Dσ2

dτ
“

1

2
σµν

Dσµν
dτ

˙

“

“ ´
2

3
Θσ2

`
1

2
σµν

`

aµ;ν ` aµaν ´ ωµλω
λ
ν ´ σµλσ

λ
ν ´ Rµινλu

ιuλ
˘

, (24.38)

ω
Dω

dτ

ˆ

“
1

2

Dω2

dτ
“

1

2
ωµν

Dωµν
dτ

˙

“ ´
2

3
Θω2

`
1

2
ωµν

`

aµ;ν ´ 2ωµλσ
λ
ν

˘

. (24.39)

24.3.2 The light-like case

The procedure is similar in the light-like case. The only differences are that i) the acceleration
kµ;νk

ν is zero now (it would correspond to aµ present in the time-like case), and ii) the trace of
hµν is 2 rather than 3 now, so instead of upµ;νqu

µ;ν “ 2σ2` 1
3
Θ2 one has kpµ;νqk

µ;ν “ 2σ2` 1
2
Θ2

for the shear deformation. Therefore, it should suffice to change all the factors 1/3 to 1/2 in
the equations, and to delete the acceleration. In particular, the Raychaudhuri equation really
has the form

Θ,µk
µ

“ 2ω2
´ 2σ2

´
1

2
Θ2

´ Rιλk
ιkλ (24.40)

now. However, let us better derive the equations, rather than just guessing. Recall that the
transversal properties of the congruence are determined by the tensor hρµh

σ
νkρ;σ (24.23) in

the light-like case (a counterpart of uµ;ν from the time-like case), so we are now interested
in evolution of that tensor along the congruence. Using again the commutator of covariant
derivatives, we have
`

hρµh
σ
νkρ;σ

˘

;λ
kλ “

`

hρµ;λh
σ
νkρ;σ ` hρµh

σ
ν;λkρ;σ ` hρµh

σ
νkρ;σλ

˘

kλ “

“ pkρ;λlµ ` kρlµ;λ ` lρ;λkµ ` lρkµ;λq kλhσνkρ;σ `
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Does not seem to be a diffeomorphism.

` pkσ ;λlν ` kσlν;λ ` lσ ;λkν ` lσkν;λq kλhρµkρ;σ `

` hρµh
σ
ν

`

kρ;λσk
λ

` Rι
ρσλkιk

λ
˘

“

“
`

lρ;λk
λkµh

σ
ν ` lσ ;λk

λkνh
ρ
µ

˘

kρ;σ `

` hρµh
σ
ν

”

p
HHHHkρ;λk

λ
q;σ ´ kρ;λk

λ
;σ

ı

´ hρµh
σ
νRρισλk

ιkλ .

On the left-hand side, we just substitute the decomposition hρµh
σ
νkρ;σ “ ωµν ` σµν ` 1

2
Θhµν ,

while on the right-hand side we compute, with the same substitution,

hρµh
σ
νkρ;λk

λ
;σ “ phρµh

ι
λkρ;ιqphλκh

σ
νk

κ
;σq “

“

ˆ

ωµλ ` σµλ `
1

2
Θhµλ

˙̂

ωλν ` σλν `
1

2
Θhλν

˙

“

“ ωµλω
λ
ν ` σµλσ

λ
ν ` ωµλσ

λ
ν ` σµλω

λ
ν ` Θpωµν ` σµνq `

1

4
Θ2hµν ,

thus arriving at

ωµν;λk
λ

` σµν;λk
λ

`
1

2
Θ,λk

λhµν ` Θkpµlνq;λk
λ

´
`

lρ;λk
λkµh

σ
ν ` lσ ;λk

λkνh
ρ
µ

˘

kρ;σ “

“ ´ωµλω
λ
ν ´ σµλσ

λ
ν ´ ωµλσ

λ
ν ´ σµλω

λ
ν ´ Θpωµν ` σµνq ´

1

4
Θ2hµν ´ hρµh

σ
νRρισλk

ιkλ .

Note the symmetries: as in the time-like case, the term rωµλσ
λ
ν ` σµλω

λ
νs is anti-symmetric

in pµνq, whereas pωµλω
λ
νq, pσµλσ

λ
νq and phρµh

σ
νRρισλk

ιkλq are symmetric. Trace of the
equation (thus) easily yields (24.40) indeed.
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Before extracting evolutions of ωµν and σµν , it is suitable to somewhat fix the choice
of the auxiliary null vector lµ, namely to demand that it parallel transports along kµ, i.e. that
lµ;λk

λ “ 0. Such a choice is natural actually, since kµ (of course) transports parallelly along
itself (it is geodesic), and parallel transport conserves scalar product, so it keeps satisfied our
normalization kµlµ “ ´1. With that choice, the terms explicitly containing lµ drop out,3 so
the symmetric trace-free and antisymmetric parts of the equation read, respectively,

σµν;λk
λ

“ ´ωµλω
λ
ν ´ σµλσ

λ
ν ` pσ2

´ ω2
qhµν ´ Θσµν

´ hρµh
σ
νRρισλk

ιkλ `
1

2
hµνRιλk

ιkλ , (24.41)

ωµν;λk
λ

“ ´ωµλσ
λ
ν ´ σµλω

λ
ν ´ Θωµν . (24.42)

The correspondence with (24.36) and (24.37) is obvious – it is indeed sufficient to replace
1/3 with 1/2 and delete acceleration in the time-like equations.

2D character of the light-like case revisited

Still there is one point to fully exploit: recall that both σµν and ωµν are normal to both kµ and
lµ, that is, they “live” on a certain 2D surface (in adapted coordinates, they would be 2x2).
In 2D, a symmetric traceless matrix has only two independent components, and an anti-
symmetric matrix even has but one. In other words, a symmetric matrix in 4D has 10 compo-
nents, but the conditions σµνkν “0 (four), σµνlν “0 (three, because now already kµσµνlν “0
holds automatically) and σµµ “ 0 (one) reduce them to two; similarly, an anti-symmetric ma-
trix in 4D has 6 components, but the conditions ωµνkν “0 (three, because σµνkµkν “0 holds
automatically due to anti-symmetry) and ωµνlν “0 (two, because ωµνlµlν “0 holds automati-
cally due to anti-symmetry and now already kµωµνlν “0 holds automatically as well) reduce
them to a single scalar. Besides that, of all the coordinates adapted to the surface orthogonal
to both kµ and lµ, we can choose such in which the 2D metric is diagonal (a 2x2 matrix is
always diagonalisable). In these, the tensors could be written pA,B “ 1, 2q

hAB “

ˆ

h1 0
0 h2

˙

, σAB “

ˆ

h2σ` σˆ

σˆ ´h1σ`

˙

, ωAB “

ˆ

0 Ω
´Ω 0

˙

,

σCB “ hACσAB “

ˆ

h1h2σ` h1σˆ

h2σˆ ´h1h2σ`

˙

, ωCB “ hACωAB “

ˆ

0 h1Ω
´h2Ω 0

˙

,

σCD “ hBDσCB “

ˆ

h2h
2
1σ` h1h2σˆ

h2h1σˆ ´h1h
2
2σ`

˙

, ωCD “ hBDωCB “

ˆ

0 h1h2Ω
´h1h2Ω 0

˙

,

so one would have

σµλσ
λ
ν ÝÑ σADσ

D
B “

ˆ

h1h
2
2σ

2
` ` h2σ

2
ˆ 0

0 h2h
2
1σ

2
` ` h1σ

2
ˆ

˙

,

ωµλω
λ
ν ÝÑ ωADω

D
B “

ˆ

´h2Ω
2 0

0 ´h1Ω
2

˙

,

3 Exactly those terms, in addition, are proportional to kµ or kν , so they are not transversal (i.e. not relevant).
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ωµλσ
λ
ν ÝÑ ωADσ

D
B “

ˆ

h2Ωσˆ ´h1h2Ωσ`

´h1h2Ωσ` ´h1Ωσˆ

˙

,

σµλω
λ
ν ÝÑ σADω

D
B “

ˆ

´h2σˆΩ h1h2σ`Ω
h1h2σ`Ω h1σˆΩ

˙

,

from which, finally,

σ2
”

1

2
σµνσ

µν
ÝÑ

1

2
σADσ

D
Bh

AB
“ h21h

2
2σ

2
` ` h1h2σˆ ,

´ σµλσ
λ
ν ` σ2hµν ÝÑ ´σADσ

D
B ` σ2hAB “

ˆ

0 0
0 0

˙

,

ω2
”

1

2
ωµνω

µν
ÝÑ ´

1

2
ωADω

D
Bh

AB
“ h1h2Ω

2 ,

´ ωµλω
λ
ν ´ ω2hµν ÝÑ ´ωADω

D
B ´ ω2hAB “

ˆ

0 0
0 0

˙

,

and also

´ωµλσ
λ
ν ´ σµλω

λ
ν ÝÑ ´ωADσ

D
B ´ σADω

D
B “

ˆ

0 0
0 0

˙

.

We have thus found that in the case of light-like congruences, it is always possible to “trans-
form out” the terms

´σµλσ
λ
ν ` σ2hµν , ´ωµλω

λ
ν ´ ω2hµν , ´ωµλσ

λ
ν ´ σµλω

λ
ν

in equations (24.41) and (24.41) by choosing suitable coordinates. These terms are thus
unnecessary, so we may conclude that the equations are in fact very short,

σµν;λk
λ

“ ´Θσµν ´ hρµh
σ
νRρισλk

ιkλ `
1

2
hµνRιλk

ιkλ , (24.43)

ωµν;λk
λ

“ ´Θωµν . (24.44)

Last point to notice: from the definition (8.5) of the Weyl tensor, i.e. (with the same
arrangement of indices as the above Riemann bears)

Cρισλ “ Rρισλ ´
1

2
pgρσRιλ ` gιλRρσ ´ gρλRισ ´ gισRρλq ´

R

6
pgρσgιλ ´ gρλgισq ,

one finds by multiplication by hρµh
σ
νk

ιkλ that

hρµh
σ
νRρισλk

ιkλ ´
1

2
hµνRιλk

ιkλ “ hρµh
σ
νCρισλk

ιkλ ,

so the final form of the shear equation is

σµν;λk
λ

“ ´Θσµν ´ hρµh
σ
νCρισλk

ιkλ . (24.45)
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For evolution of the scalars ω2 and σ2, we multiply the above equations by 1
2
σµν and

1
2
ωµν , respectively:

σ,λk
λ

“ ´Θσ ´
1

2σ
σµνCµινλk

ιkλ , ω,λk
λ

“ ´Θω . (24.46)

Together with the Raychaudhuri equation (24.40), they are often called the Sachs equations.
Note that, in contrast to the time-like case, the equations (24.44) and (24.45) are not directly
coupled (only through Θ, thus through the Raychaudhuri equation). The equation for ω
is obviously independent of lµ. In order to see this for the σ equation as well, recall that
σµν “ h

pµ
ρ h

νq
σ kρ;σ´ 1

2
Θhµν , and that due to the anti-symmetries of Weyl, the only non-zero

contributions to σµνCµινλkιkλ may arise from those terms of σµν which do not contain kµ or
kν ; there are two such terms only, kµ;ν from the first part of σµν and ´1

2
Θgµν from the second

part. But the Weyl tensor is trace-free, gµνCµινλ“0, so the equation actually reads

σ,λk
λ

“ ´Θσ ´
1

2σ
kµ;νCµινλk

ιkλ . (24.47)

24.3.3 Remark on the singularity theorems

As an illustration of the congruence-knowledge usage, let us take the Raychaudhuri equation
(24.35)

dΘ

dτ
“ aν ;ν ` 2ω2

´ 2σ2
´

1

3
Θ2

´ Rιλu
ιuλ

determining the evolution of the expansion scalar along a time-like congruence. Substituting
for the Ricci tensor from the Einstein equations (8.4),

Rιλu
ιuλ “ 8π

ˆ

Tιλ ´
1

2
Tgιλ

˙

uιuλ ` Λgιλu
ιuλ “ 8π

ˆ

Tιλu
ιuλ `

T

2

˙

´ Λ , (24.48)

we can see that if Λ“0 and if the strong energy condition Tιλuιuλě´T
2

holds, the curvature
term will contribute negatively. Especially in the case when the congruence is geodesic and
non-twisting (thus hypersurface orthogonal), such as e.g. the flow of the cosmic fluid in
the FLRW cosmologies, negative will surely be the whole right-hand side of the equation,
because one is left then with

dΘ

dτ
`

1

3
Θ2

“ ´2σ2
´ Rιλu

ιuλ ď 0 .

This tells that the expansion of a twist-free geodesic congruence always diminishes in time:
a diverging congruence diverges slower and slower (perhaps even becoming convergent one
day), while a converging congruence converges faster and faster. It is consistent with intu-
ition, namely with the universal attractive nature of gravity (assumed here through the energy
condition) – imagine, typically, a congruence outgoing from a gravitating body as the diver-
gent one, and that ingoing towards the body as the convergent one.
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We may rewrite the equation as

´Θ2

„

d

dτ

ˆ

1

Θ

˙

´
1

3

ȷ

ď 0 ùñ
d

dτ

ˆ

1

Θ

˙

ě
1

3
ùñ

1

Θpτq
ě

1

Θp0q
`
τ

3
.

If the congruence is converging initially, Θp0qă0, then its Θ´1 necessarily reaches zero value
(so Θ reaches minus 8) within the time τ ď 3

|Θp0q|
. Similarly, if a congruence is diverging at

some time, Θp0q ą0, its Θ must have been infinite at some past moment (τ ă0). Therefore,
in both cases, some kind of singularity (“caustic”) occurs in the congruence. This does not
necessarily mean that the space-time itself becomes singular there, but if such a conclusion
is obtained for any congruence, or for some sufficiently representative one, it also indicates
something about the space-time background. The first (converging) situation is crucial for
the black-hole singularity theorems (inside every trapped surface, there exists a singularity
of some kind), while the second (diverging) situation is the case in cosmology (the past
singularity is the big bang).

However, in the actual Universe Λ ą 0 and the above argumentation may not work,
because then (24.48) need not be positive. On the scale of black holes, the realistic Λ only
plays a marginal role, but one guesses that the positive Λ may allow for cosmological models
without the initial singularity. Well, in fact we know this already from Chapter 13.

24.3.4 Remark on cosmology

In Chapter 13, we showed that in the FLRW universes the cosmic-fluid flow is geodesic
(aµ “ 0), vorticity-free (ω “ 0), shear-free (σ “ 0), yet of course expanding – in (13.15) we
computed that its expansion is Θ ” uν ;ν “ 3H , with H the Hubble constant. Substituting
this into the Raychaudhuri equation (24.35), one has

3
dH

dt
` 3H2

“ ´Rιλu
ιuλ .

From Einstein’s equations Rιλ “ 8π
`

Tιλ ´ 1
2
Tgιλ

˘

` Λgιλ, we have, for ideal fluid,

Rιλu
ιuλ “ 4πpρ ` 3P q ´ Λ ,

and expressing here the density term from the Friemann equation (13.35), i.e.

4πρ “
3

2
H2

`
3

2

K

a2
´

Λ

2
,

we obtain

3
dH

dt
` 3H2

“ ´
3

2
H2

´
3

2

K

a2
`

Λ

2
´ 12πP ` Λ ,

which after multiplication by 2{3 yields

2
dH

dt
` 3H2

`
K

a2
“ Λ ´ 8πP .

This is exactly the deceleration equation (13.36) (only that there we wrote it in standard
units).
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24.4 Hypersurface-orthogonal fields; the Frobenius theorem
Have a smooth vector field defined in a certain space-time region. To such a field, there
always exists a unique congruence of integral curves – each point is passed by exactly one
curve which has the field as its tangent, i.e. exactly one solution of the equation dxµ

dp
“ V µ.

Higher-dimensional counter-parts of this problem are not any more trivial, and they may not
have a solution.

Have now two independent smooth vector fields. At every point, it is possible to rise a
plane spanned by the corresponding two vectors – a 2D subspace of the local tangent space.
Do there exist integral surfaces to such local planes, i.e. 2D submanifolds which at every
point have the given planes as their local tangent planes? In the 2D case, the answer can still
be imagined: if you make a commutator of the vector sum of the fields, i.e. you add them in
two opposite orders, the difference between the two results has to be a vector again lying in
the plane spanned by the two fields. In particular, if the integral congruences had non-zero
vorticity, they probably could not span 2D surfaces globally.

Consider the above exercise in a small neighbourhood of some point. So have two
infinitesimal vector fields, vµ, wµ. Their integral curves will, in a neighbourhood of the
chosen point, form a surface if and only if the commutator of their vector sum will also lie in
the plane defined by vµ and wµ, i.e. if

rvµpxαq ` wµpxα ` vαqs ´ rwµpxαq ` vµpxα ` wαqs

is a linear combination of vµ and wµ. Expanding this difference to the first order, we have

r����vµpxαq `
XXXXwµpxαq ` pwµ,νv

ν
qpxαqs ´ r

XXXXwµpxαq ` ����vµpxαq ` pvµ,νw
ν
qpxαqs “

“ wµ,νv
ν

´ vµ,νw
ν

“ p£vwq
µ

“ rv,ws
µ .

Hence, the commutator of the fields has to be a linear combination of the same fields,

ϵµνρσv
νwρ p£vwq

σ
“ 0 . (24.49)

The vector fields which do have this property are called surface-forming.
Within the surface-forming fields, especially “nice” are those which commute, of course.

In such a case, it is totally same if going, from a given point, first along vµpxαq and then along
wµpxα ` vαq, or first along wµpxαq and then along vµpxα ` wαq – one anyway arrives at the
same point. This feature remains also true integrally, i.e. if you make finite shifts along the
fields. In particular, commuting have to be the coordinate fields (B{Bxµ) – in their case, the
vanishing commutator means interchangeable partial derivatives.

The above finding naturally generalizes to higher dimensions. Let’s have a manifold
M of dimension d and npădq independent smooth vector fields on it. At every point mPM ,
the fields determine an n-dimensional subspace nTmM of the local tangent space TmM .
The union of all these subspaces, nTM ”

Ť

mPM

nTmM , is called the smooth distribution (or

subbundle) on the manifold M (obviously it is a subset of the tangent bundle TM of the
manifold). The distribution is called involutive if a commutator of arbitrary pair of its fields
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“belongs” to it, i.e. if any such commutator can be expressed as a linear combination of some
fields of the distribution.4

Coming to the central question: when does a family of integral submanifolds exist to a
given smooth n-dimensional distribution on a smooth manifold M?

Frobenius theorem A smooth n-dimensional distribution on a smooth manifold M is tan-
gent to a family of integral submanifolds of M if and only if the distribution is involutive.
Every point of the manifold is then passed by exactly one integral submanifold – the manifold
is said to be foliated by integral submanifolds.5 l

Now we return to space-time (d“4) and focus on the n“3 case.

Above, we have been considering the n-dimensional submanifolds as defined by an (involu-
tive) smooth distribution spanned by certain n independent vector fields. However, besides
defining the (n-dimensional) tangent subbundle, such vector fields also define the subbundle
(of dimension d´n) which is normal to all of them. Actually, one may equally well pose
the integrability problem in the sense of orthogonal complement: does there exist a family of
pd´nq-dimensional submanifolds which are everywhere orthogonal to a given distribution of
n smooth vector fields? We have in fact met such a formulation already – it was in the issue
of orthogonal transitivity in stationary and axially symmetric space-times (Section 19.3.1),
when we asked whether integral meridional planes exist, i.e. such 2D integral submanifolds
which are everywhere orthogonal to both the Killing vector fields tµ and ϕµ (the problem
lead there to the requirement of circularity). Below, we consider the “(1+3)”-dimensional
analogue of this problem (in a generic space-time).

Let a smooth vector field V µ be defined in some space-time. At every space-time point
m, a 3D hyperplane is thus defined in the local tangent space TmM which has V µ as its
normal. When do integral submanifolds (hypersurfaces) exist to a 3D distribution given in
this way? Quite naturally, such a vector field V µ for which the 3D foliation does exist is
called the hypersurface-orthogonal vector field. An example of a field with such a property
was the four-velocity field of the ZAMO congruence in circular space-times (the orthogonal
submanifolds were given there by t“ const, with t the Killing time). Intuitively, the crucial
property should be the vanishing vorticity of the field...

Theorem The following three statements are equivalent:

• (i) The vector field V µ is hypersurface-orthogonal, i.e. there exists such a scalar function
Φpxαq whose isosurfaces are orthogonal to V µ,

Vµ “ ´fΦ,µ , (24.50)

4 Adjectives integrable or holonomic are often used as synonyms of involutive, although they are in fact
consequences of the latter. Integer is a Latin word, while holos is a Greek word, both meaning whole. Hence, as
already mentioned in Section 6.3.1, integrable or holonomic means “makeable whole”, “completeable”. In GR,
these adjectives are however often reserved for the special case of vanishing commutator, when going along
different paths makes no difference at all, like in the case of coordinate fields.

5 Clearly foliation is a higher-dimensional analogue of the 1D term congruence.
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where the “coefficient” fpxαq is a scalar function as well.

• (ii) It holds Vtrµ;νsVρu “ 0, where

2Vtrµ;νsVρu ” 6Vrµ;νVρs ” pVµ;ν´Vν;µqVρ ` pVρ;µ´Vµ;ρqVν ` pVν;ρ´Vρ;νqVµ . (24.51)

• (iii) The field V µ has zero vorticity,

ωµν ” hρ
rµh

σ
νsVρ;σ “ 0 . (24.52)

Proof (i) ñ (ii)

• From (i) we compute Vµ;ν ´ Vν;µ “ Vµ,ν ´ Vν,µ “ f,µΦ,ν ´ f,νΦ,µ and submit it to the
explicit form of (ii):

2Vtrµ;νsVρu “ pf,νΦ,µ ´ f,µΦ,νqfΦ,ρ ` pf,µΦ,ρ ´ f,ρΦ,µqfΦ,ν ` pf,ρΦ,ν ´ f,νΦ,ρqfΦ,µ “

“ 0 .

Proof (ii) ñ (iii)

• Assume first that V µ is time-like, call it uµ, so uµuµ“ ´1 and ωµν “urµ;νs `arµuνs, where
aµ ”uµ;σu

σ is the acceleration of uµ. Writing out 0“2utrµ;νsuρu and multiplying it by uρ,
one has

0 “ puµ;ν ´ uν;µquρu
ρ

` puρ;µ ´ uµ;ρquνu
ρ

` puν;ρ ´ uρ;νquµu
ρ

“

“ ´uµ;ν ` uν;µ ´ aµuν ` aνuµ “ ´2ωµν .

• Assume now that the field V µ”kµ is null, kρkρ “ 0 (and geodesic, kρ;σkσ“0). In Section
24.2 on null congruences we introduced the second, “auxiliary” null field lρ normalized by
kρl

ρ“´1. Multiplying 0“2ktrµ;νskρu by lρ this time, we have

0 “ pkµ;ν ´ kν;µqkρl
ρ

` pkρ;µ ´ kµ;ρqkνl
ρ

` pkν;ρ ´ kρ;νqkµl
ρ

“

“ ´2
`

krµ;νs ` kρ;rνkµsl
ρ

` krνkµs;ρl
ρ
˘

“ ´2ωµν

according to (24.23) and (24.25).

Proof (iii) ñ (i)

• If ωνι“0, the vorticity vector ωµ “ 1
2
ϵµνιλωνιVλ “ 1

2
ϵµνιλVν;ιVλ “ 1

2
ϵµνιλVν,ιVλ vanishes

as well. This vector represents rotation (curl) of Vν within the (hyper)surface orthogonal
to Vλ; if that rotation is zero, the field Vν has to be proportional to a gradient of some
scalar field. Writing it out in components, ωµ “ 0 means Vν,ι “Vι,ν , which are exactly the
integrability conditions for the equation ´fdΦ “ Vνdx

ν , i.e. ´fΦ,ν “ Vν . (see Section
6.3.1). l
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24.4.1 Geometric identification of stationary and static space-times

Quite some times already, we have needed to distinguish between stationary and static situa-
tion. Intuitively, we specified staticity as such a special case of stationarity (i.e., independence
of a certain time, gµν,t“0) when, in addition, the direction of time does not matter (so gti“0).
This picture is completely correct and complete, yet let us characterize these two properties
geometrically.

Stationarity of course means that there exists a non-trivial Killing vector field which
at least in some region (typically in the asymptotic one) is time-like. The static subcase is
the one in which that Killing field is hypersurface-orthogonal. From equation (11.25) we
know that the existence of a time-like Killing field is equivalent to the existence of such a
time coordinate on which the metric does not depend. It thus remains to be shown that the
property gti “ 0 is equivalent to the hypersurface orthogonality of tµ “ Bxµ{Bt. Assume first
we have gti “0. Then tα “ gαβt

β “ gαt only has the α“ t component, which however means
that it can be written as tα “ gttt,α – so it is orthogonal to the hypersurfaces t“const.

Conversely, assume that tµ is hypersurface orthogonal. From the preceding section, we
know this implies that it satisfies

tµ;νtρ ´ tν;µtρ ` tρ;µtν ´ tµ;ρtν ` tν;ρtµ ´ tρ;νtµ “ 0 .

Now use the Killing equation, tν;µ “ ´tµ;ν , in the second and the third pair of the 2trµ;νstρ
terms,

ptµ;ν ´ tν;µqtρ ` 2tρ;µtν ` 2tν;ρtµ “ 0 .

Multiplying by tρ and writing

2tρ;µt
ρ

“ ptρt
ρ
q;µ , 2tν;ρt

ρ
“ ´2tρ;νt

ρ
“ ´ptρt

ρ
q;ν ,

we thus obtain

ptµ;ν ´ tν;µqtρt
ρ

` ptρt
ρ
q;µtν ´ ptρt

ρ
q;νtµ “ 0 .

After division by ptρt
ρq2, this can be written as

ˆ

tµ
tρtρ

˙

;ν

´

ˆ

tν
tρtρ

˙

;µ

“ 0 ðñ

ˆ

tµ
tρtρ

˙

,ν

´

ˆ

tν
tρtρ

˙

,µ

“ 0 ,

which means that tµ
tρtρ

has vanishing rotation. It thus must represent a gradient of some scalar
(call it Φ),

tµ
tρtρ

“ Φ,µ ùñ tµ “ ptρt
ρ
qΦ,µ .

Plugging here tρtρ “ gρσt
ρtσ“gtt (and tµ“gµt), we have

gµt “ gttΦ,µ ùñ i) git “ gttΦ,i , ii) gtt “ gttΦ,t ñ Φ,t“1 ñ Φ “ t ` fpxiq .
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Finally, perform the time transformation exactly given by t1 “ Φ “ t` fpxiq (and x1j “ xj).
This means t “ t1 ´ fpxiq, so

Bxj

Bx1i
“ δji ,

Bt

Bx1i
“ ´

Bf

Bxj
Bxj

Bx1i
“ ´

Bf

Bxi
“ ´Φ,i ,

Bt

Bt1
“ 1,

and thus the induced metric transformation reads

g1
it “

Bxα

Bx1i

Bxβ

Bt1
gαβ “

Bt

Bx1i

Bt

Bt1
gtt`

Bxj

Bx1i

Bt

Bt1
gjt “ ´

Bf

Bxj
Bxj

Bx1i
gtt`

Bxj

Bx1i
gjt “ ´Φ,i gtt`git “ 0 .

One may also check that the time symmetry tµ keeps its coordinate components,

t1µ “
Bx1µ

Bxν
tν “

Bx1µ

Bt
“

Bx1µ

Bt1
“ δµ0 ,

so gµν remains independent of time (now of t1).

24.5 Vector fields and adapted coordinates
In GR, the choice of coordinates seems to be irrelevant, but we know very well – from
Schwarzschild already – that this is not the case actually, because i) usually just a few co-
ordinate systems are practical in specific situations, and ii) different coordinates generally
cover different parts of a given manifold, and they may offer its considerably different in-
terpretation. Unfortunately, in a sufficiently generic case it may be very difficult to check
whether some two metrics (written in two different coordinates) describe the same geometry.

For practical work, usually such coordinates are chosen which are adapted to some
important vector fields. Specifically, it is natural to let one of the coordinates be given by
parameter of the integral lines of the field. If the field is time-like (uµ), that is the case
of the time coordinate (t); in such an adapted system, often called comoving, the field has
components uµ “ put, 0, 0, 0q.

If the field uµ is hypersurface-orthogonal, it is natural, on the contrary, to put the corre-
sponding covector uα to a one-component form. It is sufficient to select, as the time coordi-
nate, the scalar function Φ whose gradient is proportional to uα: one thus has uα“ ´fΦ,α“

´ft,α , which in the pt, xiq coordinates reduces to uα “ ´fδ0α, i.e. uα “ put, 0, 0, 0q (with
ut “ ´f ). For time we have used the same letter (t) as in the preceding paragraph, but note
that the two choices need not be the same: the contravariant spatial components of the field
ui “ giαuα “ gitut will only vanish in the Φ-adapted coordinates if git “ 0 (which does not
hold for the Kerr space-time, for example). Vice versa, if one succeeds in selecting the coor-
dinates so that both uα and uµ have but the time components, it means that the metric lacks
the mixed “time-space” terms,

ds2 “ p´uµuν ` hµνqdxµdxν “ ´putq
2dt2 ` hijdx

idxj .

We may recall the four-velocity field of the ZAMO congruence in circular space-times as an
example of the hypersurface-orthogonal field. In asymptotically flat space-times, this field
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is orthogonal to isosurfaces of Killing time which at infinity corresponds to the proper time
of observers standing there at rest. The contravariant spatial components of the ZAMO’s
four-velocity, ui, only vanish if the space-time is static; in that case, the ZAMO congruence
coincides with the static congruence, integral to the time Killing vector field B{Bt.

Further simplification is possible in the case of a geodesic congruence, aα “0. If such
coordinates exist in which both ui“0 and uj “0, i.e. gti“0“gti, one has

0 “ ai “ p��ui,σ ´ Γρiσuρqu
σ

“ ´Γtitutu
t

“ Γtit “
1

2
gttgtt,i “

gtt,i
2gtt

,

hence gtt can only depend on t. In such a case, however, it is possible to adjust the time
(just by rescaling) in such a way that gtt “ ´1. Then t stands for the proper time tied to
the congruence uµ. This is the situation in homogeneous and isotropic cosmological models.
Their privileged field (geodesic and orthogonal to the hypersurfaces of homogeneity) is the
four-velocity field of the cosmic fluid, and the corresponding metric is the FLRW metric (see
Chapter 13).
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CHAPTER 25

3+1 splitting of space-time

It may be heard, occasionally, that general relativity is “just kind of kinematics where every-
thing is determined once for ever”. Reality is just the opposite. Everything is only fixed in
exact solutions (such as that of Kerr, or in a specific FLRW cosmological model, for example).
These, however, stem from very special (symmetry) assumptions and thus can only describe
the virtual world approximately. In general, GR is the most dynamical (classical) theory,
because it even treats as dynamical (and having its own degrees of freedom) the space-time
which hosts any physical process; in fact the space-time actively participates in all processes,
if one does not resort to some kind of approximation. The related deep methodological issues
will mainly emerge in chapter on Cauchy problem (Chapter 26), but already from Section 7.6
we know how inherently problematic the GR problems are due to the entanglement between
the sources and the geometry, namely, due to the circumstance that one does not know the
space-time a priori, so actually does not know terms in which the situation should be de-
scribed. How problematic it is to say “now”, for instance, if one does not know what was
before and what will happen after!

Such aspects are seldom uncomfortable in the Lagrangian approach, because there one
assumes to know the boundary conditions (and seeks how the physical configuration should
look “in-between”, relying on extremization of the postulated action). But the Hamiltonian
approach (Chapter 27) is just the opposite – there, one assumes to know the configuration
(plus possibly its time gradient) at a certain moment, and seeks how the given initial condi-
tions evolve according to the prescribed law (Einstein equations in the GR case). For such
an approach, it is necessary to understand and describe properly what it means to take the
space-time “at a given time”, to prescribe its momentary tendency for change, and to evolve
such “initial conditions” to “the next instant”.

25.1 Foliation of space-time by space-like hypersurfaces
It is by no means automatic that it is possible to “have a space-time at some instant of time”.
Namely, although there do exist time-like world-lines passing through any event, and to every

453
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such world-line one can in general assign a certain time parameter t, the local hyperplanes
t“ const need not be extendible (integrable) to hypersurfaces spanning the whole manifold.
Actually, we saw in Chapter 24 (Section 24.4) that such a nice property only holds if the
world-lines form a congruence with zero vorticity. In such a case, the tangent field of the
congruence can be written as proportional to a gradient of a scalar function – and that function
may be used to define time, i.e. a global function which monotonously increases along any
time-like world-line. Note (again) that this function need not correspond to proper time of
any physical observer. (Extremely nice is the situation in the FLRW cosmologies where
hypersurfaces of homogeneity stand for isochrones of the time which even represents proper
time of the cosmic fluid everywhere.)

So we will assume to have such space-time where it is possible to say, globally, “now
and then”: let a space-time (whether already known or yet virtual) be foliated by a smooth
family of space-like hypersurfaces Σt, where t is some continuous parameter “numbering”
the hypersurfaces (it will be identified as time later). More specifically, the notion hyper-
surface means a 3D smooth submanifold (a subset of space-time which has no cusps, edges
or self-intersections), and the notion foliation means that each point of the space-time (”
each event) is passed by exactly one of the hypersurfaces. The existence and description of
submanifolds – and specifically hypersurfaces – is a classical part of differential geometry
and has been exposed in many textbooks (though mostly for Riemannian manifolds, with the
``` . . . metric signature).

Let us denote by nµ the future-oriented (and necessarily time-like) unit normal to Σt.
Since t“const on each of the hypersurfaces, the normal has to read

nα :“ ´N
Bt

Bxα
, (25.1)

where N is a normalization factor. By definition, this vector field is hypersurface-orthogonal,
so it has zero vorticity.1

Let some congruence also exist defining what it means to “stay at rest” (it is thus usually
assumed to be time-like, factually representing a family of observers). Along this congruence,
we will identify the spatial coordinate positions on different hypersurfaces Σt: having some
coordinates ympt“ t0q on one of the hypersurfaces (Σt0), on other hypersurfaces Σt we assign
the same coordinate values ymptq to the points which are threaded by the respective same
“streamlines” of the congruence. Let tµ stand for the tangent field to the latter congruence,
thus indicating the “direction of time”,

tµ :“
Bxµ

Bt
“

Bxµ

Bym
Bym

Bt
. (25.2)

It follows immediately that

´nαt
α

“ N
Bt

Bxα
Bxα

Bt
“ N .

1 It is also possible to start the whole picture from assuming one has a time-like congruence with unit tangent
nα which has zero vorticity. We know from Frobenius theorem that in such a case the orthogonal local spaces
are integrable into a foliation of space-time by 3D space-like hypersurfaces (Σt). You may meet the notions
slicing / threading point of view which indicate whether the space-like foliation or the time-like congruence is
the primary ingredient of the splitting.
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This function is called the lapse; we have already met it in Sections 16 and 19.4 (we will see
the correspondence before long). It will also be useful to decompose tµ, with respect to Σt,
into the normal and tangent part,

tµ “ δµαt
α

“ ´nµnαt
α

` pδµα ` nµnαq tα “ Nnµ ` Nµ , (25.3)

where the “pure spatial” vector

Nµ :“ pδµα ` nµnαq tα “: hµαt
α

representing projection of tµ on Σt is called the shift. We have denoted by hµν the metric of
Σt as usual, hµν :“ gµν ` nµnν . A scheme of the decomposition is given in Figure 25.1.

Note that tµ is really not in general orthogonal to Σt (i.e. proportional to nµ): in
coordinates adapted to the decomposition, pt, xiq (with xi covering the hypersurfaces Σt),
one has

tµ “ δµ0 , whereas nµ “ gµαnα “ ´Ngµαδ0α “ ´Ngµ0 .

See, for example, the stationary and axisymmetric (in fact circular) space-times where tµ is
the time Killing field, whereas nµ “ N´1ptµ ´Nµq “ N´1ptµ `ωϕµq is the vector field with
zero angular momentum (ϕµ is the axial Killing field). Only in the static case (g0i “ 0“ g0i,
i.e. ω“0) it holds tµ“Nnµ, i.e. Nµ“0.

Denote, once more, by ym some intrinsic coordinates in the 3D manifold Σt. The
embedding of this manifold as a hypersurface in the 4D space-time is described by relations
xµ “ xµpt, ymq. By differentiation, we have

dxµ “
Bxµ

Bt
dt `

Bxµ

Bym
dym ,

where Bxµ

Bt
” tµ and Bxµ

Bym
are coordinate vectors tangent to Σt (more precisely, their components

in the “space-time” coordinates xµ). Substituting there for tµ the decomposition (25.3), we
obtain

dxµ “ Nnµdt ` Nµdt `
Bxµ

Bym
dym “ Nnµdt `

Bxµ

Bym
pNmdt ` dymq ,

where Nm ” Nµ Bym

Bxµ
represent components of Nµ in the intrinsic coordinates ym (the vector

Nµ is tangent to Σt, so its decomposition in the basis ym is complete). The metric decompo-
sition immediately follows

ds2 “ gµν

„

Nnµdt `
Bxµ

Bym
pNmdt ` dymq

ȷ „

Nnνdt `
Bxν

Byn
pNndt ` dynq

ȷ

“

“ ´N2dt2 ` hmnpNmdt ` dymqpNndt ` dynq , (25.4)

where just the definition properties have been employed

gµνn
µnν “ ´1 , gµνn

µBxν

Byn
“ 0 ,

gµν
Bxµ

Bym
Bxν

Byn
“ phµν ´ nµnνq

Bxµ

Bym
Bxν

Byn
“ hµν

Bxµ

Bym
Bxν

Byn
” hmn .
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25.1.1 Normal, shift and metric in adapted coordinates

The decomposition holds for any space-time coordinates xµ, but the “3+1” splitting naturally
suggests to choose x0 ” t and xi covering Σt, in which case one identifies xi”δimy

m and thus
obtains

ds2 “ ´N2dt2 ` hijpN
idt ` dxiqpN jdt ` dxjq . (25.5)

Let us find the components of the above quantities in such adapted coordinates. First, we
have tµ“ δµ0 and nα“ ´Nδ0α directly from definitions. The shift is purely spatial, so it reads
Nµ“p0, N iq in the adapted coordinates. From (25.3) we thus have

nµ “ N´1
ptµ ´ Nµ

q “ N´1
pδµ0 ´ Nµ

q “ N´1
p1,´N i

q .

Multiplying (25.3) by Nµ, it also follows ptµNµ“qN0 “NµNµ“N jNj and, from its covari-
ant form,

tα “ Nnα ` Nα “ ´N2δ0α ` Nα “ p´N2
` N0, Niq “ p´N2

` NjN
j, Niq .

Finally, the contravariant metric can be found by comparing the above components
of nµ with the expression nµ “ gµαnα “ ´Ngµ0, from where gµ0 “ 1

N2 p´1, N iq, plus
(spatial components) by substituting ni into gik “ ´nink ` hik “ ´N´2N iNk ` hik. Let us
summarize the decompositions:

• Normal and the time vector:

nα “ ´Nδ0α , nµ “
1

N
p1,´N i

q , tµ “ δµ0 , tα “ p´N2
` NjN

j, Niq .

• Covariant-metric decomposition:

gµν “ ´nµnν ` hµν “

ˆ

´N2 ` h00 “ ´N2 ` NjN
j h0k “ Nk

hi0 “ Ni hik

˙

. (25.6)

• Contravariant-metric decomposition:

gµν “ ´nµnν ` hµν “

˜

´ 1
N2 ` h00 “ ´ 1

N2
Nk

N2 ` h0k “ Nk

N2

N i

N2 ` hi0 “ N i

N2 ´N iNk

N2 ` hik

¸

. (25.7)

From the components of gµν it is seen that h0µ“0, so hik is the inverse to the purely spatial
metric hik,

hijhjk “ hiσhσkp“ hiσgσkq “ hik “ δik ` ni��nk “ δik .

• Mixed components hµν :

hµν “ hµιgιν “ hµιhιν “ �
�hµ0h0ν ` hµjhjν ,

from where we see, besides the already known hik“δik, that

h0ν “ 0 , hi0 “ hijNj

`

“ giιNι

˘

“ N i .

• Relation between the metric determinants is most easily obtained from the well known
formula gtt “

minorpgttq

detpgµνq
“ h

g
:

´g “
h

´gtt
“ N2h . (25.8)
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25.1.2 Physical sense of lapse and shift

Besides their geometric meaning, the lapse and shift also have clear physical sense. The
normal field nµ obviously plays the role of four-velocity, so one can introduce a “proper time”
accordingly, nµ ” dxµ

dτ
. Comparing this to the components of nµ in the pt, xiq coordinates,

we have

nµ ”
dxµ

dτ
“

dxµ

dt

dt

dτ
“

dt

dτ

`

1, vi
˘

ÐÑ
1

N

`

1,´N i
˘

. (25.9)

Therefore, the lapse N represents the dilation factor between the proper time of observers
with four-velocity nµ and the global time t; in other words, N is the Lorentz factor be-
tween the observers nµ and those static with respect to the coordinates (the latter having
four-velocity proportional to tµ); well, this was clear from the beginning – from the relation
N “ ´nσt

σ. And the shift N i represents spatial velocity with which the “static” observers
move relative to the observers orthogonal to the hypersurface.

tµ Nnµ

Nµ

xi(t) (xi+dxi)(t)

Σt

Σt+dt

hαβ(t)

hαβ(t+dt)

Dnµ=Kµ
ν dx

ν

n
µ
(x
)

n µ
(x
+
dx

)

dx

(M, gµν)

Figure 25.1 A scheme of the 3+1 decomposition based on the foliation of the space-time manifold
pM, gµνq by a family of space-like hypersurfaces Σt.

25.1.3 Acceleration of the hypersurface-orthogonal field

It will certainly be useful to know how the hypersurface-orthogonal field nµ evolves along
itself, i.e. to know its four-acceleration. Directly from the definition nµ“´Nt,µ we obtain

nµ;ν ´nν;µ “ nµ,ν ´nν,µ “ ´N,νt,µ´���Nt,µν `N,µt,ν `���Nt,νµ “
N,ν

N
nµ´

N,µ

N
nν . (25.10)
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Multiplying the above by nν and putting nν;µnν “ 0 (from normalization), we further have
nµ;νn

ν “ pnµ,ν ´ nν,µqnν , so

aµ ” nµ;νn
ν

“ pnµ,ν ´ nν,µqnν “

ˆ

N,ν

N
nµ ´

N,µ

N
nν

˙

nν “
N,ν

N
hνµ “:

N|µ

N
, (25.11)

where we have denoted by the vertical stroke the spatial gradient (the one which acts within
Σt) – see Section 25.3 below. In the adapted coordinates, one thus obtains

aµ ”
N,ν

N
hνµ “

N,ν

N
pNν , hνi q “

1

N

`

N,jN
j, N,i

˘

.

In the circular space-times, for example, N ν “ ωϕν , so N,νN
ν “ 0 and one is left with the

Kerr-like form of the acceleration of ZAMOs, aµ“N,µ{N .

25.2 Extrinsic curvature: the second fundamental form
We have been suggesting that the vector field tµ represents time flow and hypersurfaces Σt

represent “spatial geometry at given time t”. However, if employing the 3+1 picture to treat
the Cauchy initial problem, the bulk space-time is not known (it does not exist) at the mo-
ment when the problem is being formulated. In such a case, it is more natural to consider
the hypersurfaces Σt as identified by the flow of tµ, and to speak about the evolution of the
spatial geometry hik on a certain hypersurface Σ, rather than about the evolution of a hyper-
surface Σt in certain space-time. The dynamical variable will be the intrinsic geometry of
that hypersurface, as described by the metric hikptq, also called the first fundamental form
of the submanifold. In order to be able to compute the evolution hikptq (as given by Einstein
equations which are second-order in its derivatives), the initial conditions have to also include
the time derivative hik,t. Unfortunately, the latter is clearly not a tensorial quantity.

It turns out that a suitable tensorial quantity is the derivative of hik in the direction of
spatial normal nµ. We have already met this tensor in Chapter 24.1 (see remarx at its end), it
was called the expansion tensor there, Θµν (24.8),

Θµν “ hαµh
β
νnpα;βq “ hαpµh

β
νq
nα;β “ δαpµh

β
νq
nα;β “ hβ

pνnµq;β “ npµ;νq ` apµnνq “
1

2
£nhµν ,

where aµ :“ nµ;βn
β is the acceleration of the field nµ (please note that we denoted there the

tangent field of the time-like congruence by uµ, while in the present chapter it is usual to use
nµ). Expansion tensor was introduced as the symmetric part of the projected gradient of the
tangent field; its skew-symmetric counterpart was called the vorticity (or twist) tensor (ωµν).
Now, recall that if a field is hypersurface-orthogonal (which our nµ“´Nt,µ is by definition),
it is vorticity-free, ωµν “0 (and vice versa) – in other words, its projected gradient hαµh

β
νnα;β

is symmetric, just represented by the above expansion tensor. If you do not want to return to
the Frobenius theorem, just show it easily from (25.10) and (25.11):

nµ;ν ´ nν;µ ` aµnν ´ nµaν “
N,ν

N
nµ ´

N,µ

N
nν `

N,σ

N
hσµnν ´

N,σ

N
hσνnµ “ 0 ,
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where you only rewrite, in pairs,

N,ν

N
nµ ´

N,σ

N
hσνnµ “

nµ
N

pδσν ´ hσν qN,σ “ ´
nµnν
N

N,σn
σ ,

´
N,µ

N
nν `

N,σ

N
hσµnν “ ´

nν
N

`

δσµ ´ hσµ
˘

N,σ “
nνnµ
N

N,σn
σ .

Just to stress this simple result once more, for a hypersurface-orthogonal field, the expansion
tensor Θµν is symmetric. In such a case, and especially when dealing with the 3+1 decompo-
sition, this tensor is canonically denoted by Kµν ,

Kµν :“ nα;βh
α
µh

β
ν “ pnµ;β ` XXXXnα;βn

αnµqhβν “ nµ;βh
β
ν “ nµ;ν ` aµnν “

1

2
£nhµν , (25.12)

and called the extrinsic curvature or the second fundamental form of the submanifold (its
mixed components represent what is called the shape operator or the Weingarten map).2

Needless to say, this tensor lives on Σt (as Θµν in general), so we may summarize

hµνn
ν

“ 0 , aµn
µ

“ 0 , Kµνn
ν

“ 0 ; K :“ hµνKµνp” gµνKµνq “ Kµ
µ “ nµ;µ .

Why “extrinsic curvature” or “shape operator”? Because, while hµν describes the in-
trinsic geometry of the hypersurface, Kµν says how the hypersurface is curved as a subman-
ifold of a given manifold – what is its shape when viewed from the bulk. Indeed, consider
that the equation nµ;βV β “ 0 generally means that the (co)vector nµ is parallel transported
in the direction V α. On the other hand, nµ;βhβν “ 0 means that nµ is parallel transported in
any direction orthogonal to nα. Hence, nµ;βhβν itself says how much the nµ is not transported
parallelly along Σt – that is, to what extent it “points in a different direction” at different
locations of Σt (see Figure 25.1). This, however, tells about curvature of the manifold Σt as
a hypersurface embedded in the 4D space-time. The trace K has a clear geometrical sense
as well: as it is given by the expansion of nµ (by Θ), it means that K ą 0 (normal field is
diverging) when Σ is convex, whereas Kă0 (normal field is converging) when Σ is concave.
(The shape-operator trace K divided by dimension of Σt is being called the mean curvature
of Σt.)

We already know from Θµν the elegant definition in terms of 1
2
£nhµν . Let us also

check how it is related to the Lie derivative of hµν in the “purely temporal” direction tα “

Nnα ` Nα. Since

tα;µ “ N;µn
α

` Nnα;µ ` Nα
;µ ùñ tα;µhαν “ pNnα;µ ` Nα

;µqhαν ,

the Lie-derivative definition simply yields the “linear” relation

£thµν “ hµν;αt
α

` tα;µhαν ` tα;νhµα “

2 More rigorously: the extrinsic curvature = the second fundamental form is a symmetric (0,2) tensor field on
Σt, so at some specific point it yields a real number for any two vectors tangent to Σt, while the shape operator
= Weingarten map is a mapping from a tangent space of Σt (at some point) to itself, so for any vector (sµ)
tangent to Σt it gives the change of nµ in that direction, nµ;νsν “Kµ

νs
ν .
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“ hµν;αpNnα ` Nα
q ` pNnα;µ ` Nα

;µqhαν ` pNnα;ν ` Nα
;νqhµα “

“ Nhµν;αn
α

` Nnα;µhαν ` Nnα;ν hµα ` hµν;αN
α

` Nα
;µhαν ` Nα

;νhµα “

“ N£nhµν ` £Nhµν . (25.13)

In short,

Kµν “
1

2
£nhµν “

1

2N
p£thµν ´ £Nhµνq .

In the above relation, we surely know that Kµν lives on Σ, whereas the terms on the right-
hand side need not be such individually. If we preferred to strictly work on the hypersurface,
we can project there both the terms – the relation will stay the same:

Kµν “
1

2
£nhµν “

1

2N
hαµh

β
ν p£thαβ ´ £Nhαβq . (25.14)

The second term can also be expressed as

£Nhαβ “ hαβ;σN
σ

` Nσ
;αhσβ ` Nσ

;βhασ “ hαβ;σh
σ
ρ t
ρ

` Nσ;αh
σ
β ` Nσ;βh

σ
α

ùñ hαµh
β
ν£Nhαβ “ ���hµν|ρ t

ρ
` Nν|µ ` Nµ|ν , (25.15)

so the relation becomes

Kµν “
1

2N
hαµh

β
ν p£thαβ ´ £Nhαβq “:

1

2N

´

9hµν ´ Nµ|ν ´ Nν|µ

¯

. (25.16)

25.3 Covariant derivative on a hypersurface
Projection by the hµα tensor ensures a unique and geometric transition between the tensors liv-
ing in space-time and those living/acting on the hypersurface Σt. Let us inquire now whether
a similarly simple relation holds between the covariant derivatives acting in space-time and
on the hypersurface. Sure, the latter will only have sense for tensors which themselves live/act
on tangent and cotangent spaces of Σt. However, let us stress right away that even if acting
on such “purely spatial” quantities, it would be incorrect to define it only by projecting the
space-time gradient on Σt, i.e. in the T ......;σhσρ style, because the tensor field thus obtained
need not be purely spatial any more. This point may not be totally intuitive, so let us illustrate
it on the 3D metric hµν itself (so on a quantity which is tied to Σt more tightly than anything
else): making its space-time gradient and projecting on the normal nµ, one does not obtain
zero,

phµα;σh
σ
ρqnµ “ ����nµ;σnµnαh

σ
ρ ` nµnµnα;σh

σ
ρ “ ´nα;σh

σ
ρ “ ´Kαρ .

Indeed, in order that the derivative map all 3D tensors to 3D tensors again, the result of the
4D gradient has to be projected on Σt in all its indices.

Lemma: The operation defined by

T µ...α...|ρ :“ T ν...β...;σ h
µ
ν . . . h

β
α . . . h

σ
ρ (25.17)
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is a covariant derivative corresponding to the Levi-Civita connection of the metric hµν .
Proof: The projection modifies nothing on that the operation is linear and satisfies the Leibniz
rule. Besides that, it corresponds to the Levi-Civita connection of the metric hµν , because,
first, hµν is constant with respect to it,

hµν|ρ ” hκλ;σh
κ
µh

λ
νh

σ
ρ “ pnκ;σnλ ` nκnλ;σqhκµh

λ
νh

σ
ρ “ 0 ,

and, second, it is torsion-free: for an arbitrary scalar field (f ), we have

f|µν ”
`

f;κh
κ
µ

˘

|ν
” pf;κh

κ
ι q;λ h

ι
µh

λ
ν “

“ f;κλh
κ
µh

λ
ν ` f;κpnκ;λnι ` nκnι;λqhιµh

λ
ν “ pf,κq;λh

κ
µh

λ
ν ` f,κn

κnι;λh
ι
µh

λ
ν “

“ pf,κλ ´ Γακλf,αqhκµh
λ
ν ` f,κn

κKµν “ pf,λκ ´ Γαλκf,αqhκµh
λ
ν ` f,κn

κKνµ “

“ f;λκh
λ
νh

κ
µ ` f,κn

κKνµ “ f|νµ . l

Remark (important actually): Offering itself was to use hκµ|ν “ 0 at the very beginning, and
write

`

f;κh
κ
µ

˘

|ν
“ pf;κq

|ν h
κ
µ , but the expression pf;κq|ν is not well defined, since the 3D

derivative only acts on the hypersurface Σt – and the 4D gradient f;κ may stick out of it.
Actually, one has to always be sure that the 3D derivative is only employed for 3D quantities.
(Still important:) This does not mean that a generic 4D gradient could not be totally projected
on Σt, but if the differentiated quantity is 4D (not tangent to Σt), one should not claim that the
operation has the meaning of its 3D gradient. Nota bene, exactly such an operation appears
in the definition of extrinsic curvature, doesn’t it – and we did not call it nµ|ν .

25.3.1 Relation between the 3D and 4D covariant derivatives

On tangent spaces of the Σt hypersurface, both the 3D and the 4D derivative can operate,
naturally. We will compare their result on a vector Vµ and a covector V γ (co)tangent to Σt:

Vµ|ν ” Vα;βh
α
µh

β
ν “ Vµ;βh

β
ν `Vα;βn

αnµh
β
ν “ Vµ;βh

β
ν ´Vαn

α
;βnµh

β
ν “ Vµ;βh

β
ν ´VαK

α
ν nµ ,

(25.18)

V γ|δ
“ Vµ|νh

µγhνδ “ Vµ;βh
µγhβδ “ V µ;βhγµh

δ
β “ . . . “ V γ;βhδβ ´ V µKδ

µn
γ . (25.19)

By contraction, we also find several expressions for the 3D divergence,

V ν
|ν “ hµνVµ|ν “ hµνVα;βh

α
µh

β
ν “ hαβVα;β “

“ V β
;β ` nαnβVα;β “ V β

;β ´ nα;βn
βVα “ V β

;β ´ aαVα . (25.20)

25.4 Decomposition of curvature: Gauss, Codazzi and Ricci
equations

Knowing the covariant derivative acting on Σt, we can find the 3D Riemann tensor from
commutator (6.3),

Vν|κλ ´ Vν|λκ “
p3qRµ

νκλVµ ,
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where Vν is an arbitrary covector field on Σt (so remember that Vµnµ“0). –Yes, we can:

Vν|κλ ” pVµ;γh
µ
νh

γ
κq

|λ ”
`

Vµ;γh
µ
αh

γ
ρ

˘

;σ
hανh

ρ
κh

σ
λ “

“ Vµ;γσh
µ
νh

γ
κh

σ
λ ` Vµ;γh

µ
α;σh

γ
κh

α
νh

σ
λ ` Vµ;γh

µ
νh

γ
ρ;σh

ρ
κh

σ
λ “

“ Vµ;γσh
µ
νh

γ
κh

σ
λ ` Vµ;γpnµ;σnα ` nµnα;σqhγκh

α
νh

σ
λ ` Vµ;γh

µ
ν pnγ ;σnρ ` nγnρ;σqhρκh

σ
λ “

“ Vµ;γσh
µ
νh

γ
κh

σ
λ ` Vµ;γn

µnα;σh
γ
κh

α
νh

σ
λ ` Vµ;γh

µ
νn

γnρ;σh
ρ
κh

σ
λ “

“ Vµ;γσh
µ
νh

γ
κh

σ
λ ` Vµ;γn

µhγκKνλ ` Vµ;γh
µ
νn

γKκλ “

“ Vµ;γσh
µ
νh

γ
κh

σ
λ ´ Vµn

µ
;γh

γ
κKνλ ` Vµ;γh

µ
νn

γKκλ “

“ Vµ;γσh
µ
νh

γ
κh

σ
λ ´ VµK

µ
κKνλ ` Vµ;γh

µ
νn

γKκλ ,

from where

p3qRµ
νκλVµ :“ Vν|κλ ´ Vν|λκ “ Vµ;γσh

µ
ν phγκh

σ
λ ´ hγλh

σ
κq ´ Vµ pKµ

κKνλ ´ Kµ
λKνκq “

“ pVµ;γσ ´ Vµ;σγqhµνh
γ
κh

σ
λ ´ Vµ pKµ

κKνλ ´ Kµ
λKνκq “

“ Rα
µγσVαh

µ
νh

γ
κh

σ
λ ´ Vµ pKµ

κKνλ ´ Kµ
λKνκq “

“
`

Rµ
βγδh

β
νh

γ
κh

δ
λ ´ Kµ

κKνλ ` Kµ
λKνκ

˘

Vµ .

The covector Vµ is arbitrary yet tangent to Σt, so the relation holds irrespectively of it, one
just has to project it on Σt (by hµα):

Rα
βγδh

µ
αh

β
νh

γ
κh

δ
λ “

p3qRµ
νκλ ` Kµ

κKνλ ´ Kµ
λKνκ . (25.21)

This equation relates the Riemann tensor of the hypersurface Σt to the “purely spatial” pro-
jection of the space-time Riemann tensor. It is known from geometry as the Gauss equation.

The 4D Riemann tensor can also be projected in two other ways, pRα
βγδnαh

β
νh

γ
κh

δ
λq

and pRα
βγδnαh

β
νn

γhδλq (projections involving more than two nµ are zero due to the Rie-
mann’s antisymmetries), so let us find how these are related to the quantities of the 3+1
decomposition. Both relations can be obtained from projection of the 4D Ricci identity
Rα

βγδnα “ nβ;γδ ´ nβ;δγ . On the right-hand side, one may surmise the “commutator” of
the swapped first derivatives of extrinsic curvature, so let us first compute

Kβγ;δ ´ Kβδ;γ “ pnβ;γ ` aβnγq;δ ´ pnβ;δ ` aβnδq;γ “

“ nβ;γδ ´ nβ;δγ ` aβ;δnγ ´ aβ;γnδ ` aβpnγ;δ ´ nδ;γq “

“ nβ;γδ ´ nβ;δγ ` aβ;δnγ ´ aβ;γnδ ´ aβpaγnδ ´ aδnγq “

“ nβ;γδ ´ nβ;δγ ` paβ;δ ` aβaδqnγ ´ paβ;γ ` aβaγqnδ .

Substituting to the “hh-projected” Ricci identity for nβ , we thus have

Rα
βγδnαh

β
νh

δ
λ “ pnβ;γδ ´ nβ;δγqhβνh

δ
λ “ pKβγ;δ ´Kβδ;γqhβνh

δ
λ ´ paν|λ ` aνaλqnγ . (25.22)

Projecting the latter by hγκ, we arrive at the Codazzi(-Mainardi) equation

Rα
βγδnαh

β
νh

γ
κh

δ
λ “ pKβγ;δ ´ Kβδ;γqhβνh

γ
κh

δ
λ ” Kνκ|λ ´ Kνλ|κ , (25.23)
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while projecting the same relation on nγ yields the Ricci(-Kühne) equation

Rα
βγδnαh

β
νn

γhδλ p“ Rανγλn
αnγq “ pKβγ;δ ´ Kβδ;γqhβνn

γhδλ ` aν|λ ` aνaλ “

“ aν|λ ` aνaλ ´ Kβγh
β
νn

γ
;δh

δ
λ ´ Kβδ;γh

β
νn

γhδλ “

“ aν|λ ` aνaλ ´ KνγK
γ
λ ´ hβνh

δ
λKβδ;γn

γ
“ (25.24)

“ aν|λ ` aνaλ ` KνγK
γ
λ ´ £nKνλ . (25.25)

The last expression – involving the Lie derivative of Kνλ – is obtained by

hβνh
δ
λKβδ;γn

γ
“ Kνλ;γn

γ
` nδnλKνδ;γn

γ
` nβnνKβλ;γn

γ
` nβnδKβδ;γn

γnνnλ “

“ Kνλ;γn
γ

´ aδnλKνδ ´ aβnνKβλ “

“ Kνλ;γn
γ

´ pKδ
λ ´ nδ ;λqKνδ ´ pKβ

ν ´ nβ ;νqKβλ “

“ £nKνλ ´ 2KνγK
γ
λ . (25.26)

We actually know equation (25.24) from previous chapter already: it is the equation
(24.33) for evolution of the expansion tensor Θµν along uγ , one only has to realize that i)
now uγ is denoted by nγ , ii) it has automatically zero vorticity ωµν (since it is defined as
hypersurface-orthogonal), iii) Θµν thus assumes the role of Kµν ; and, finally, iv) the equation
has now been projected by “hh”, so the terms proportional to uν disappeared.

25.4.1 Decomposition of the Ricci tensor

... follows directly from the latter’s definition,

Rβδ :“ gαγRαβγδ “ hαγRαβγδ ´ nαnγRαβγδ “ hµκRαβγδh
α
µh

γ
κ ´ nαnγRαβγδ . (25.27)

Three different projections are possible, apparently. For the first two we obtain, from above,

Rβδh
β
νh

δ
λ “ hµκRαβγδh

α
µh

β
νh

γ
κh

δ
λ ´ Rανγλn

αnγ , (25.28)

Rβδn
βhδλ “ hµκRαβγδh

α
µn

βhγκh
δ
λ “ ´hνκRαβγδn

αhβνh
γ
κh

δ
λ , (25.29)

which yields, after substituting from equations (25.21), (25.23) and (25.24),

Rβδh
β
νh

δ
λ “

p3qRνλ ` KKνλ ´ aν|λ ´ aνaλ ` hβνh
δ
λKβδ;γn

γ , (25.30)

Rβδn
βhδλ “ Kκ

λ |κ ´ K|λ . (25.31)

The remaining, third projection is best derived by contraction of (25.24) or (25.25), i.e. by
their multiplication by hνλ,

Rαγn
αnγ “ aλ|λ ` aλaλ ´ Kλ

γK
γ
λ ´ hβδKβδ;γn

γ
“ aδ ;δ ´ Kλ

γK
γ
λ ´ K,γn

γ
“ (25.32)

“ aδ ;δ ` Kλ
γK

γ
λ ´ hνλ£nKνλ . (25.33)

Don’t you recognize this equation? It is the Raychaudhuri equation (24.35), describing the
evolution of expansion of the vector field nµ – here without the vorticity term, however (bear
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in mind that nµ is hypersurface-orthogonal). We have employed the relation (25.20) for
V µ ” aµ, specifically,

aλ|λ “ hνλaν|λ “ hνλaβ;δh
β
νh

δ
λ “ hβδaβ;δ “ aδ ;δ ´ aβaβ , (25.34)

and the very advantageous arrangement

hνλhβνh
δ
λKβδ;γn

γ
“ hβδKβδ;γn

γ
“ pgβδKβδq;γn

γ
` nβnδKβδ;γn

γ
“

“ K;γn
γ

´ aβ����nδKβδ ´ aδ����nβKβδ . (25.35)

25.4.2 Decomposition of the Ricci scalar

... follows directly from definition by substituting (25.28),

R ” gβδRβδ “ hβδRβδ ´ nβnδRβδ “ hνλRβδh
β
νh

δ
λ ´ Rαγn

αnγ “

“ hµκhνλRαβγδh
α
µh

β
νh

γ
κh

δ
λ ´ 2Rαγn

αnγ . (25.36)

In the first row, use (25.30) and (25.32), while in the second row just rewrite the first term
using (25.21),

R “
p3qR ` K2

` KνγK
νγ

´ 2aδ ;δ ` 2K,γn
γ

“ (25.37)

“
p3qR ` K2

´ KνκK
νκ

´ 2Rαγn
αnγ . (25.38)

This equation generalizes the Gauss’ famous result called Theorema Egregium (remarkable
theorem). Gauss felt it remarkable since it links the extrinsic properties of Σt (characterised
by Kµν) to its intrinsic properties (represented by the 3D Ricci scalar). Gauss actually ob-
tained this result for a 2D surface in a Euclidean space, so his “bulk” Ricci was zero and the
equation reduced to p3qR`K2 ´KijK

ij “ 0 (to be precise, we should have written opposite
signs at the K-terms here, since E3 is a Riemannian rather than Lorentzian space).

25.4.3 Decomposition of the Einstein tensor

... comes out, consequently,

Gβδh
β
νh

δ
λ “ Rβδh

β
νh

δ
λ ´ R

2
hνλ “

p3qGνλ ` KKνλ ´ aν|λ ´ aνaλ ` hβνh
δ
λKβδ;γn

γ
`

´
1

2

`

K2
` KβγK

βγ
´ 2aδ ;δ ` 2K,γn

γ
˘

hνλ , (25.39)

Gβδn
βhδλ “ Rβδn

βhδλ “ Kκ
λ |κ ´ K|λ , (25.40)

Gαγn
αnγ “ Rαγn

αnγ ` R
2

“
1

2

`

p3qR ` K2
´ KνγK

νγ
˘

. (25.41)

The last relation can be inferred best from the equality (25.36), if expressing from it

hµκhνλRαβγδh
α
µh

β
νh

γ
κh

δ
λ “ 2

ˆ

Rαγn
αnγ `

R

2

˙

“ 2Gαγn
αnγ

and employing (25.21) on the left-hand side.
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25.5 Decomposition of Einstein equations to constraints and
evolution equations

Everything is thus ready for 3+1 decomposition of the Einstein equations Gµν “ 8πTµν ´

Λgµν . Submitting them in the projections (25.40) and (25.41), we get the momentum and
Hamiltonian constraints,

Kκ
λ |κ ´ K|λ “ 8πTβδn

βhδλ p” ´8πjλq , (25.42)
p3qR ` K2

´ KνγK
νγ

“ 16πTαγn
αnγ ` 2Λ p” 16πρ ` 2Λq . (25.43)

All the quantities on the left-hand sides are bound to Σt, without involving any information
about their evolution, so these are constraints, i.e. relations which have to be fulfilled at a
given moment (” on Σt).

Evolution equations can most easily be reached by submitting the “dual” form of the
field equations Rβδ “ 8π

`

Tβδ ´ 1
2
Tgβδ

˘

` Λgβδ to the “hh-projection” of Ricci (25.30):
p3qRνλ ` KKνλ ´ aν|λ ´ aνaλ ` hβνh

δ
λKβδ;γn

γ
“ 8πTβδh

β
νh

δ
λ ` pΛ ´ 4πT qhνλ . (25.44)

“Cross-check” of the validity of p3qRνλh
νλ“ p3qR leads to a condition which is just ensured by

equation (25.32), namely (after substitution for Rαγ)

aδ ;δ ´ KνγK
νγ

´ K,γn
γ

“ 8πρ ` 4πT ´ Λ . (25.45)

Nevertheless, the equations (25.44) describe the change (of the extrinsic curvature)
in the direction of nγ , whereas by “evolution” one usually understands the change in the
direction of tµ ” Bxµ{Bt. In the case of hµν , we solved such a “transformation” by relation
(25.13). But Kµν is normal to nµ as well, so it holds

tα;µKαν “ pNnα;µ ` Nα
;µqKαν

analogously as for hµν , and hence one also ends up with the same relation as (25.13),

£tKνλ “ . . . “ N£nKνλ ` £NKνλ . (25.46)

In order to write this quantity in terms of “spatial” quantities only, one substitutes for £nKνλ

the expression (25.26),

£tKνλ “ N hβνh
δ
λKβδ;γn

γ
` 2N KνγK

γ
λ ` £NKνλ ,

and then plugs here hβνh
δ
λKβδ;γn

γ expressed from the hh-projection of the field equations
(25.44):

£tKνλ “ N
“

aν|λ ` aνaλ ´ KKνλ ` 2KνγK
γ
λ ´

p3qRνλ ` 8πTβδh
β
νh

δ
λ ` pΛ ´ 4πT qhνλ

‰

`

` £NKνλ . (25.47)

Let us remark that (25.11) implies

aµ|ν “

ˆ

N|µ

N

˙

|ν

“
N|µν

N
´
N|µN|ν

N2
“
N|µν

N
´ aµaν ,

so one can everywhere abbreviate

Npaµ|ν ` aµaνq “ N|µν . (25.48)
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25.6 In adapted coordinates. . .
Although the background picture of the 3+1 splitting naturally is Σptq ” tt “ constu, we
have not yet employed specific coordinates. Let us realize now how the important equations
appear in the coordinates pt, xiq adapted to the decomposition. The normal has components

nµ “
´t,µ

?
´gtt

” ´Nt,µ “ ´N δ0µ ùñ hµj “ gµj , hµj “ δµj , h00 “ 0 , h0µ “ 0

and, according to (25.18) and (25.19), the “spatial” derivative of “spatial” quantities satisfies
Vj|k“Vj;k , yet in general V j|k‰V j;k . From the Gauss-Codazzi equations it follows

Rijkl “
p3qRijkl ` KikKjl ´ KjkKil , (25.49)

R0
jkl “ ´N´1

pKjk;l ´ Kjl;kq “ ´N´1
`

Kjk|l ´ Kjl|k

˘

. (25.50)

It also holds a0 “ 0, K0
µ “ 0, K0µ “ 0, so the remaining projections of the Riemann tensor

(25.24) have spatial components

Rαjγln
αnγ “ aj;l ` ajal ´ KjkK

k
l ´ Kjl;γn

γ (25.51)

and the Ricci-tensor projections (25.30)–(25.32) appear as

Rjl “
p3qRjl ` KKjl ´ aj|l ´ ajal ` Kjl;γn

γ , (25.52)

Rβln
β

“ Kk
l |k ´ K|l p“ ´R0

lNq , (25.53)

Rαγn
αnγ “ al;l ´ KjkK

jk
´ K,γn

γ
p“ R00N2

q . (25.54)

Other equations from preceding paragraphs do not simplify significantly.



CHAPTER 26

Initial (Cauchy) problem

The space-times of isolated stationary black holes or homogeneous & isotropic cosmolo-
gies (Chapters 12–19) are very simplistic – assuming such high symmetries, they can only
roughly approximate situations in the real Universe. There exist much more families of exact
analytical solutions of Einstein equations, but also these rest on special assumptions. Most
of them are even less realistic, if possessing interpretation at all. “Reality” can somewhat
be approached by perturbation of known exact solutions. However, perturbation techniques
can only render solutions which just slightly differ from the original ones, so their compass
is rather limited. Most of the realistic situations thus remains a challenge either for approxi-
mation techniques such as the post-Newtonian or the post-Minkowskian expansions, the self-
force approach or the “effective-one-body” formalism, or for purely numerical solution of the
Einstein equations. This especially applies to the situations most interesting from the point
of view of GR as well as astrophysics, i.e. to highly non-stationary processes involving very
strong field, such as collisions of compact objects. In these cases, one can expect a compli-
cated time evolution about which it is difficult to assume anything in advance. The problem
is formulated then as the initial-value problem (Cauchy problem): the system is supposed
to be known at a certain instant of time, and its subsequent evolution is being sought.

In order that a given theory permit to solve evolutions from initial conditions, several
features have to be fulfilled which we – vaguely, first – mention below:

• The theory has to permit the formulation of the problem, i.e. stating of the initial con-
ditions which determine further evolution of the system uniquely. If the theory involves
constraints, the initial conditions have to satisfy them. Needless to add, good if the solution
of the problem at all exists :-).

• The initial-value problem has to be well posed, i.e. stable and causal. By stability we
mean that the evolution must not depend on the initial conditions sensitively, at least for
a certain early time – a small change of the initial conditions has to only invoke a small
change of the system’s “trajectory”. One then speaks of a continuous dependence of the
solution on initial conditions.

467
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And by causality we mean that a change of the initial conditions within any spatial region
must not invoke any change out of the causal future of that region, i.e. out of the union
of future light cones of points of that region. (Otherwise the perturbation might propagate
with a superluminal speed.)

In GR, initial conditions involve the metric and its first time derivative specified on some
space-like hypersurface.1 If it is not a vacuum problem, the initial data has to also be given
for the present matter and non-gravitational fields; besides Einstein’s equations, it is then
necessary to simultaneously solve the coupled equations for the pertinent quantities. (In the
following, we will mainly focus on the vacuum case.) The Cauchy problem is a notorious
physics problem. In GR it has certain peculiarities:

• Standardly, the Cauchy problem is being solved in a given space-time. When, for exam-
ple, we were discussing the motion of free test particles, we had to know the space-time
(specifically, the affine connection in that case). The motion was found as the solution of
the geodesic equation, from initial conditions including the initial location and three com-
ponents of four-velocity (the fourth being fixed by normalization). Similarly one can seek
the evolution of a test EM field in a given space-time by treating the Maxwell equations.
When, however, the matter or fields present are not test, i.e., when they do themselves affect
the space-time geometry, it is necessary to compute, together with their behaviour, the (cou-
pled) evolution of the space-time geometry. Yet in GR every kind of energy-momentum
represents a source, so an exact, consistent solution (of every Cauchy problem in fact)
should be obtained solely from the metric and other quantities and their first derivatives
only known on a certain hypersurface – the whole future of space-time has to be found,
together with the evolution of “non-gravitational” dynamical variables.

• The above brings a number of “philosophical postscripts”. The “world” does not at all exist
at the beginning of the solution (one only assumes to know a certain “initial”, “spatial”
Riemannian manifold and its normal behaviour), so the usual picture is not actually at
place: it is not clear, a priori, in which space-time the initial manifold should represent
a Cauchy hypersurface; it is not clear in which region we seek the solution (because the
region only arises by the very evolution of the initial 3D manifold); and it is of course not
clear how to represent the initial hypersurface within the searched space-time (lapse, shift)
and which coordinates might be convenient...

26.1 Cauchy problem in flat space-time
Actually, in classical mechanics first... Consider p mass points, mutually interacting, whose
evolution is described by equations

d2q⃗i
dt2

“ Fi

´

q⃗1, ..., q⃗p; 9⃗q1, ..., 9⃗qp

¯

, i “ 1, ..., p .

1 It is also possible to fix the initial conditions on a null hypersurface or on a light cone, i.e. on characteristic
surfaces of the gravitational equations. In such a case, one speaks of a characteristic initial-value problem –
see Section 26.2.
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The theory of (ordinary) differential equations says that such a system provides a unique
solution for any set tq⃗1, ..., q⃗puin, t 9⃗q1, ..., 9⃗qpuin of initial conditions, at least for some time
interval ∆t ą 0. However, this interval may be limited, even in very simple cases: consider,
for example, just one particle (p “ 1) in one spatial dimension, described by the equation
9q “ qα, with q ą 0 and α ‰ 1 (here standing for power, not for an upper index). If α is a
constant and time is assumed to increase from t“ 0, one can separate variables as (C ą 0,
upper/lower sign applying for α ă 1 {α ą 1)

dq

qα
“ dt ùñ

´q´pα´1q

α ´ 1
“ t ˘ C ùñ

1

qα´1
“ ´pα ´ 1qpt ˘ Cq

ùñ α ă 1 : q “ rp1 ´ αqpt ` Cqs
1

1´α , α ą 1 : q “

„

1

pα ´ 1qpC ´ tq

ȷ
1

α´1

.

For α ă 1, the solution is finite for any t, whereas for α ą 1 it diverges for t“C.

26.1.1 Maxwell in Minkowski

Maxwell equations include six evolution equations (with curls) for the components of the
fields, and two constraints for their divergences. Imagine we know E⃗ and B⃗ at some initial
instant of time t“ t0. They have to satisfy the constraints divE⃗“0, divB⃗“0 of course (in a
source-free case). If they are really known “everywhere” at the initial time, one can compute
all their spatial derivatives, in particular rotE⃗ and rotB⃗. Imagine, further, that one makes the
Taylor expansion of the fields in time from the initial instant,

E⃗pt “ t0 ` δt, x⃗q “ E⃗pt0q `
BE⃗

Bt

ˇ

ˇ

ˇ

t0
δt`

1

2

B2E⃗

Bt2

ˇ

ˇ

ˇ

t0
pδtq2 ` ... , B⃗pt “ t0 ` δt, x⃗q “ likewise .

With rotE⃗ and rotB⃗ at t“ t0 known, the evolution equations provide

BE⃗

Bt

ˇ

ˇ

ˇ

t0
“ rotB⃗pt0q ,

BB⃗

Bt

ˇ

ˇ

ˇ

t0
“ ´rotE⃗pt0q

(we assume vacuum and source-free case, Jµ “ 0, and set c “ 1). Second terms of the
expansions can be found by time derivative of the Maxwell equations: we calculate rotBE⃗

Bt
,

rotBB⃗
Bt

at t0 and thus find

B2E⃗

Bt2

ˇ

ˇ

ˇ

t0
“ rot

BB⃗

Bt

ˇ

ˇ

ˇ

t0
,

BB⃗

Bt

ˇ

ˇ

ˇ

t0
“ ´rot

BE⃗

Bt

ˇ

ˇ

ˇ

t0
.

The procedure leading to determination of the whole expansion – and thus of the fields’
evolution – is clear now.

Note that the constraints are automatically preserved by the evolution equations,

pdivE⃗q,t “ divpE⃗,tq “ divrrotB⃗pt0qs “ 0 , pdivB⃗q,t “ divpB⃗,tq “ ´divrrotE⃗pt0qs “ 0 .

Formal proof of that the above works is based on the existence and uniqueness of Taylor
expansion with finite radius of convergence. The only assumption is the analyticity of the
initial data – the viability of their Taylor expansion. (It is a very strong assumption in fact:
were the world analytic, it would not be possible to get up from bed and go to the lecture...)
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26.1.2 Klein-Gordon in Minkowski

The Klein-Gordon equation

lψ ´ m2ψ “ 0 ðñ
B2ψ

Bt2
“ ∇⃗2ψ ´ m2ψ

describes the evolution of a massive (m) scalar field ψ in Minkowski. The initial data to
be supplied are ψ and ψ,t at the instant t0 of some inertial time. The field equation in fact
determines ψ,ttpt0q just from ψpt0q, without the need to also know ψ,tpt0q. However, ψ,tpt0q
has to be provided for the second step of the “Taylor ladder” in a second. (It may even
be needed for the first step in the case of more general initial hypersurface, not given as
t0 “const, or in a curved background.) The solution again relies on analyticity of the initial
data, yet now analyticity in the spatial directions (i.e. over the initial hypersurface) is more
important. First, if the initial data are analytic there, ψ,ttpt0q is too, so one can also compute
all its spatial derivatives pψ,ttq,i . Then, by time derivative of the KG equation, one finds
ψ,tttpt0q from ψ,tpt0q and ∇⃗2ψ,tpt0q, etc... Knowing, finally, all the time derivatives, one can
write the Taylor series of ψpt0 ` δt, x⃗q, thus finding ψ after δt at any x⃗. Therefore, there exist
as many analytic solutions of the KG equation as the number of pairs of (arbitrary) analytic
functions ψpt0q, ψ,tpt0q of the spatial variables x⃗.

26.1.3 The Cauchy-Kowalevski theorem

Let pt, x1, ..., xmq “: pt, x⃗q be coordinates in R1`m. Let a system of linear partial differential
equations for n unknown functions ϕi (i “ 1, ..., n) defined on R1`m have the form

B2ϕi
Bt2

“ Fi

ˆ

t, x⃗;ϕj,
Bϕj
Bt

,
Bϕj
Bxa

,
B2ϕj

BtBxa
,

B2ϕj
BxaBxb

˙

, (26.1)

where all the functions Fi are analytic in all variables. Let fipx⃗q, gipx⃗q be analytic, too. Then
there is a certain open neighbourhood of the hypersurface t“ t0 such that there exists a unique
analytic solution tϕiptqu, such that ϕi assume on t“ t0 the initial values fipx⃗q and gipx⃗q,

ϕipt0, x⃗q “ fipx⃗q ,
Bϕi
Bt

pt0, x⃗q “ gipx⃗q .

Instead of a proof, let us quote a nice, didactic Prague story from Wikipedia:

In August 1833 Cauchy left Turin for Prague to become the science tutor of the thirteen-year-
old Duke of Bordeaux, Henri d’Artois (1820–1883), the exiled Crown Prince and grandson
of Charles X. As a professor of the École Polytechnique, Cauchy had been a notoriously bad
lecturer, assuming levels of understanding that only a few of his best students could reach,
and cramming his allotted time with too much material. Henri d’Artois had neither taste nor
talent for either mathematics or science. Although Cauchy took his mission very seriously, he
did this with great clumsiness, and with surprising lack of authority over Henri d’Artois. [...]
Cauchy’s role as tutor lasted until Henri d’Artois became eighteen years old, in September
1838. Cauchy did hardly any research during those five years, while Henri d’Artois acquired
a lifelong dislike of mathematics.
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The theorem by Cauchy and Kowalevskaya (1842 and 1874) however does not address
the well-posedness of the problem. Actually, in order to say something on stability of the
solution, one would have to know how to assess “distance” between different sets of initial
conditions and between the respective different solutions. This requires to know/introduce a
certain norm in the space of functions acting on Σ0 ” tt“ t0u, such as, for example (for a 3D
space, with x, y, z),

∥f1 ´ f2 ∥kě0
Σ0

:“
ÿ

k1,k2,k3ě0

sup
xPΣ0

ˇ

ˇ

ˇ

ˇ

Bk1`k2`k3pf1 ´ f2q

Bxk1Byk2Bzk3

ˇ

ˇ

ˇ

ˇ

k1`k2`k3ďk

,

where “sup” stands for supremum (the least upper bound).
The theorem also does not address the causality of propagation of the fields. Actually,

it even cannot do so, because it considers analytic functions. Namely, analytic functions are
uniquely given by their value and all derivatives in an infinitesimal neighbourhood of a certain
point, so to change them at one point necessarily means to change them everywhere on Σ0

(and consequently within the whole solution region). In order to judge causality, one has to be
able to follow the propagation of a certain “feature”, i.e. of some non-analyticity in the initial
data. For example, one may consider δ-function data, “rectangle” (compact-support) data, or
– the “nicest” non-analytical option – the “bump”-type data (given by C8 yet non-analytical
functions) for such a study.

26.1.4 Well posedness from energy estimates

In the modern treatments of stability of particular GR space-times (Minkowski, Kerr, etc.)
against small perturbations, “energy estimates” are often applied, which we will try to at
least shortly taste now. Consider, as an example, a scalar field in Minkowski. Minkowski
space-time possesses 10 Killing vector fields. Let the initial and final hypersurfaces Σ0 and Σ
be chosen orthogonal to the time-translation symmetry tµ “ Bxµ{Bt. We know from (11.29)
that in GR pTαβξαq;β “ 0 for any Killing field ξα, hence

pTαβtαq;β “ 0 ... (in Minkowski coordinates:) pTαβtαq,β “ 0 .

Aiming at the Gauss theorem, let us fix the integration domain precisely. Denote

Σ0 ... space-like hypersurface on which initial conditions are assigned pt “ t0q

Σ ... space-like hypersurface “shortly after Σ0” pt ą t0q

S0 ... 3D ball within Σ0

D`
pS0q ... future domain of dependence of S0

... :“ tq P M: every past causal curve from q intersects S0u

S ... 3D ball within Σ, given by S “ D`
pS0q X Σ

J´
ppq ... causal past of point p P M

... :“ tq P M: there exists a causal curve connecting q with pu

J´
pSq ... causal past of S, J´

pSq “
Ť

pPS J
´ppq

Ω ... Ω :“ D`pS0q X J´pΣq ... our integration domain
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H ... light-like “side” boundary of Ω
ℓα ... future-directed normal to H (i.e. “generator of H”: it is also tangent to H) .

Σ0

Σ

S0

S

Ω

H

ℓα

D+(S0)

J−(S)

fluxesfluxes

Figure 26.1 Illustration of the above-defined regions. The integration domain Ω is defined as
D`pS0q X J´pΣq, because D`pS0q alone continues above Σ and J

´pΣq continues below Σ0.

Energy (and other quantities) may outflow from Ω acrossH , but cannot inflow across there, because
H is a shrinking light-cone.

By Gauss theorem, we now express the integral of pTαβt
αq,β over Ω in terms of the

integrals of the respective fluxes across the boundaries of Ω (bear in mind that tα is unit in
Minkowski, ηαβtαtβ “ ηtt “ ´1),

0 “

ż

Ω

pTαβt
α
q,β dΩ “

ż

S

Tαβt
αtβ dV `

ż

H

Tαβt
αℓβ dω ´

ż

S0

Tαβt
αtβ dV , (26.2)

where the opposite sign of the last term reflects that tµ is the inward normal to S0 (whereas
the outward one to S), and dω is the element on the null sides of Ω (called H).

Invariant 2-content on a null cone

The element dω needs more introduction. At some point xµ“aµ, consider a light cone as the
limit of the hyperboloids representing constant time-like interval measured from aµ,

ηρσpxρ ´ aρqpxσ ´ aσq “ ´T 2
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(the light cone is obtained for T Ñ 0). Let tµ be a unit future-pointing time-like vector at
xµ“aµ (necessarily orthogonal to the constant-time hyperboloids), and let nµ be an arbitrary
other vector of that type, not parallel to tµ; the two may be considered four-velocities of
two different observers crossing the given point xµ “ aµ. The trajectories of both tµ and
nµ are orthogonal to all the hyperboloidal time contours (similarly as all radial straight lines
outgoing from some point are orthogonal to all the spheres drawn about that point in E3).
Take an infinitesimal element dSH on arbitrary nearby hyperboloid, at the point where nµ

intersects the latter. This element is orthogonal to nµ, but not to tµ. However, it may be
projected on any of the planes orthogonal to tµ easily, because the angle between the element
dSH (orthogonal to nµ) and the local plane orthogonal to tµ is the same as the angle between
nµ and tµ themselves, i.e. nµtµ: the K tµ -projection of the element dSH we denote by

dSΣ :“ |tµn
µ
| dSH .

With aµ and T chosen, one has a specific hyperboloid, and with nµ chosen one also has the
point where the latter intersects the chosen hyperboloid – that is xµ in the above equation.
Since nµ is unit, it holds Tnµ “ xµ ´ aµ, hence the projected element can be written

dSΣ :“
|tµpxµ ´ aµq|

T
dSH .

Now the announced limit T Ñ 0 is performed and the 2D element dSH{T obtained in that
limit is denoted by dω,

dω :“ lim
TÑ0

dSH

T
“

dSΣ

|tµpxµ ´ aµq|
. (26.3)

The result is in fact independent of the choice of nµ (as it should have been expected). It is
being called the invariant 2-content on a null cone (or on a null hypersurface in general).

Dominant energy condition

In Section 7.7, the main energy conditions for Tµν were listed, requiring/claiming/ensuring
that “gravity is attractive and causal” in different ways. In the initial problem discussion,
it is natural to demand the dominant energy condition which states that for any future-
directed time-like vector (for any “observer”) ûµ, the momentum density (energy-density
flow) ´Tαβû

β is a future-directed time-like or null vector,

gαβT
α
µû

µT βν û
ν

ď 0 ,

i.e. that the energy cannot propagate faster than light. On illustrations provided in Section
7.7 we also saw that from the dominant energy condition there also follows the weak en-
ergy condition stating that every observer ûµ has to measure a non-negative energy density,
Tαβû

αûβ ě 0.
Now, if ´Tαβt

β is a future-directed time-like or null vector, then for ℓµ a future-directed
null vector their scalar product must satisfy

ℓαp´Tαβt
β
q ď 0 ùñ Tαβℓ

αtβ ě 0 .
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Back to equation (26.2), finally

The last inequality means that the null-boundary term
ş

H
Tαβt

αℓβ dω in equation (26.2) is
certainly non-negative, hence the equation implies
ż

S

Tαβt
αtβ dV ´

ż

S0

Tαβt
αtβ dV ď 0 ,

where it has become obvious why such bounds are being called “energy estimates”.
Let us illustrate the importance of this result on scalar field, with

Tαβ “ ψ,αψ,β ´
1

2
ηαβpψ,γψ

,γ
` m2ψ2

q . (26.4)

In adapted coordinates in which tµ “ δµt , we have

integrand “ pψ,tq
2

´
1

2
ηtt

“

ηttpψ,tq
2

` ψ,iψ
,i

` m2ψ2
‰

“
1

2

“

pψ,tq
2

` ψ,iψ
,i

` m2ψ2
‰

,

so the inequality assumes the form
ż

S

“

pψ,tq
2

` ψ,iψ
,i

` m2ψ2
‰

dV ď

ż

S0

“

pψ,tq
2

` ψ,iψ
,i

` m2ψ2
‰

dV . (26.5)

Interpretation of the result is clear: energy contained in S is smaller than or equal to the
energy contained in S0. It is due to the “leakage of energy” across the null surface H (which
has been shown to be positive). It is perfectly intuitive, because a region whose sides are null
and “shrinking” (with the speed of light) clearly cannot be entered by anything propagating
with at most the same speed. This ensures, at the same time, causality of the initial-value
problem, because D`pS0q cannot be influenced by anything outside S0.

Uniqueness of the solution

Unique determination of the solution by the initial data can be proved by contradiction: as-
sume ψ1 and ψ2 are two solutions (supposed to be C2 at least, in order that the derivatives
involved in the Klein-Gordon equation exist), both arising from the same initial conditions
on S0 (or possibly the whole Σ0). Since the Klein-Gordon equation is linear, the difference
∆ψ :“ ψ2 ´ ψ1 also satisfies it. But ∆ψ“0 on S0 (Σ0), so the initial-value integral in (26.5)
is zero. The inequality (26.5) thus implies
ż

S

“

p∆ψ,tq
2

` ∆ψ,i∆ψ
,i

` m2∆ψ2
‰

dV ď 0 ,

which can only be satisfied if the integral vanishes, because the integrand cannot be negative.
And that can only be satisfied with ∆ψ also vanishing on any future hypersurface. (Form‰0
it is immediate. With m“0, one has that ∆ψ,t “0 and ∆ψ,i “0 in D`pS0q, which, together
with ∆ψ being zero on S0, implies that ∆ψ has to vanish in D`pS0q.)
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Continuous dependence on the initial data

Proof of the continuous dependence on initial conditions is more involved, yet let us at least
give a glimpse. First, take the KG equation

B2ψ

Bt2
“

B2ψ

Bx2
`

B2ψ

By2
`

B2ψ

Bz2
´ m2ψ

and differentiate it by xµ. The equation is linear, and the differentiation is linear, so all the
derivatives of ψ satisfy the same KG equation as well. Therefore, by the same procedure
as above, one obtains for them similar “energy” inequalities as (26.5). In these inequalities,
one can express – by the KG equation – all terms computed on S0 with more than one time
derivative in terms of the initial data ψ and ψ,t and their spatial derivatives along Σ0. Putting
all these terms (integrals over S0) to the r.h. sides, their sum can schematically be written as

Ck
|||ψ |||

k
S0

` Ck
t |||ψ,t |||

k´1
S0

, where |||ψ |||
k
S0

:“

»

–

ż

S0

ˆ

|ψ|
2

` ... `
ÿ

ř

kiďk

|B
ki
xj
ψ|

2

˙

fi

fl

1
2

,

where Ck and Ck
t are some constants (depending on the maximal differentiation order k) and

the Sobolev norm of the k-th order |||ψ |||kS0
only includes spatial derivatives B

ki
xj
ψ andψ,t on the

initial hypersurface. On the left-hand sides of the inequalities of the (26.5) type, one cannot
express higher time derivatives of ψ in terms of the spatial-derivative terms (without having
a particular solution at disposal), so the sum of the left-hand sides schematically appears as

∥ψ∥kS :“

»

–

ż

S

ˆ

|ψ|
2

` ... `
ÿ

ř

kiďk

|B
ki
xµψ|

2

˙

fi

fl

1
2

,

where now higher (than first) derivatives by t are present, so the partial derivatives B
ki
xµ do

include those with respect to xj as well as those with respect to t (as well as all kind of mixed
ones). The “energy inequality” (26.5) thus assumes the form

∥ψ∥kS ď Ck
|||ψ |||

k
S0

` Ck
t |||ψ,t |||

k´1
S0

.

Last point is to employ the following result, valid for domains in Rd satisfying the
uniform interior cone condition, i.e. such that at every their point, including the boundary
ones, a cone of certain (uniformly prescribed) height and vertex angle can be drawn entirely
lying within the given domain.2 The property is that for k ą d{2 the ∥ψ ∥ norm bounds the
numerical values which |ψ| reaches in the domain. Connecting the results for D`pS0q as the

2 Wald [50] states the result on the basis of this concept. It has in fact been shown (later) that it is equivalent
to the requirement that the domain be a Lipschitz domain, i.e. a domain whose boundary is sufficiently regular
(without too sharp spikes); more precisely, it has to be possible to represent the boundary in terms of a Lipschitz-
continuous function (= function “with a limited slope”).
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domain and for k “ 3 as the least k for which the property works (in the d“ 4 domain), we
have

sup
xPD`pS0q

|ψ| ď ∥ψ∥3S ď C3
|||ψ |||

3
S0

` C3
t |||ψ,t |||

2
S0
.

Thanks to the KG equation, similar “bounds by initial data” can be claimed for the derivatives
of ψ, so one confirms the continuous dependence of ψ and its derivatives on initial conditions.

Continuity is also the basis to prove the existence of smooth solution for arbitrary
smooth initial data, which we however omit.

26.2 Generalizations
26.2.1 Characteristic initial-value problem

The initial-value problem is more problematic for hypersurfaces which are characteristics of
the given field equations, and also for normals to these called bicharacteristics. Generally,
the problem then has either no solution, or infinite number of solutions.

As a simple example, consider the (1+1)-dimensional wave equation ψ,tt ´ ψ,xx “ 0.
Characteristics correspond to the speed of propagation (involved in the equation), which has
been chosen “unity” here (c“1), so they are given by t “ ˘x ` const. Let ψ“0 and ψ,t“0
on some “initial” characteristic (e.g. t “ x). Clearly ψ “ apt ´ xq2 is a possible solution
which satisfies such initial conditions. It is not unique, since the constant a is totally free.

Same equation, different example: in null coordinates u “ t ´ x, v “ t ` x (retarded
and advanced time), the equation assumes the form ψ,uv “ 0. Indeed,

ψ,t “ ψ,uu,t ` ψ,vv,t “ ψ,u ` ψ,v , ψ,x “ ψ,uu,x ` ψ,vv,x “ ´ψ,u ` ψ,v ,

ψ,tt “ ψ,uuu,t ` ψ,uvv,t ` ψ,vuu,t ` ψ,vvv,t “ ψ,uu ` ψ,uv ` ψ,vu ` ψ,vv ,

ψ,xx “ ´ψ,uuu,x ´ ψ,uvv,x ` ψ,vuu,x ` ψ,vvv,x “ ψ,uu ´ ψ,uv ´ ψ,vu ` ψ,vv

ùñ ψ,tt ´ ψ,xx “ 4ψ,uv .

Let the initial conditions be fixed on the u“0 characteristic, ψpu“0, vq “ ψ0pvq, ψ,u`pu “

0, vq “ ψ1pvq. Now, in order that ψ,uv“0 be satisfied at u“0, we have to satisfy there

pψ,u`q,v “ pψ1q,v “ 0 ,

which however implies ψ1pvq “ const. This means the problem in general has no solution,
because we are not allowed to choose the initial condition ψ1pvq freely. On the other hand, if
we do choose ψ,u`pu“ 0, vq “ ψ1pvq “ const “: A (and ψ,uv “ 0 is thus satisfied at u“ 0),
one can integrate it to

ψpu, vq “ ψ0pvq ` Au ` χpuq ,

where χpuq is (only) constrained by the conditions χpu“0q “ 0 and χ,upu“0q “ 0 required
for the initial conditions to hold. Therefore, in this very special case when ψ,u`pu“ 0, vq “

const, the solution contains arbitrary function χpuq (satisfying the above initial behaviour),
so it is far from being unique.
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26.2.2 Cauchy-Kowalevski theorem for higher-derivative equations

The Cauchy-Kowalevski theorem has also been generalized to equations of higher derivative
order. Let us represent such, as a generalization of (26.1), in the form (for just one “field” ϕ)

Bnϕ

Btn
“ F

ˆ

t, x⃗;ϕ, ...,
Bkϕ

Btk0Bxk11 ... Bx
km
m

, ...

˙

, where k0 `k1 ` ...`km ď n and k0 ă n ,

with the initial conditions

ϕpt“ t0, x⃗q “ F0px⃗q , ϕ,tpt“ t0, x⃗q “ F1px⃗q , ... ,
Bn´1ϕ

Btn´1
pt“ t0, x⃗q “ Fn´1px⃗q .

The statement: if F on the right-hand side is analytic in all its variables in the neighbourhood
of the initial state (at t “ t0), and all the initial-value functions Fk are also analytic in the
neighbourhood of x⃗pt “ t0q, then there exists a neighbourhood of pt0, x⃗pt0qq (of the initial
hypersurface) in which the solution exists, and it is analytic and unique.

26.2.3 Curved initial hypersurface

The initial (space-like) hypersurface from which the evolution of a given system starts may of
course be different from flat (from a hyperplane). Specifically in GR, it is impossible typically
to even consider such a case. However, if the initial hypersurface is sufficiently regular (which
is standardly being assumed), then it is possible – at least locally – to transform to adapted
coordinates in which the hypersurface corresponds to t“ const. Such a generalized Cauchy
problem is relevant in GR.

26.2.4 Generalized Klein-Gordon in generic background

Let us consider a generic (i.e. non-flat) 4D space-time now, and on it a test scalar field
described by the generalized Klein-Gordon equation

lψ ` Aµψ;µ ` Bψ ` C “ 0 , lψ :“ gµνψ;µν ,

where gµν is a given smooth Lorentzian metric and Aµpxq, Bpxq and Cpxq are some smooth
functions of xµ. It has been proved that, provided the background described by gµν is globally
hyperbolic (see next section), the equation admits a well-posed initial-value problem based
on giving, on a certain initial Cauchy hypersurface Σ0, the initial functions ψ|Σ0 and nαψ;α|Σ0

(with nα the future-pointing normal to Σ0).
The above has been shown to also hold in a still more general case of a system of n

equations for n functions,

lψpiq `

n
ÿ

j“1

Aµ
piqpjq
∇µψpjq `

n
ÿ

j“1

Bpiqpjqψpjq ` Cpiq “ 0 , i “ 1, ..., n ,

where the requirements on functions involved are the same, and the initial conditions are
fixed similarly as above.
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However, although the equations mentioned in this section are more general than the
problems considered before, they are still linear (unknowns ψpiq and their derivatives only
appear in the first power). With the Einstein equations, one has to consider a system of
non-linear partial differential equations.

26.3 On Cauchy problem in general relativity
Einstein equations represent a quasi-linear system of partial differential equations (the highest
derivatives of unknowns are linear, but not the lower ones). In order to reproduce and under-
stand crucial theorems and results of this area, we first give definitions of several concepts
from the theory of causal structure of a manifold (M).

• Chronological future of a subset Ω ofM is the set I`pΩq of events that can be reached
by some (at least one) future-directed time-like curve from some (at least one) point of Ω.
It is a “future light cone of Ω” without its lateral surface (thus it is open).

• Causal future of a subset Ω ofM is the set J`pΩq of events that can be reached by some
(at least one) future-directed causal (time-like or light-like) curve from some (at least one)
point of Ω. It is a “future light cone of Ω” including its lateral surface (thus it is closed, if
there are no missing points etc.).

• Achronal set is such a subset Ω ofMwhose no points (events) can be connected by a time-
like curve, i.e. which is completely disjunct from its chronological future, I`pΩqXΩ “ H.
Generally, this is the property of space-like or light-like hypersurfaces.

• Acausal set is such a subset Ω ofMwhose no points (events) can be connected by a causal
curve, i.e. which is completely disjunct from its causal future, J`pΩqXΩ “ H. Generally,
this is the property of space-like hypersurfaces.

• Past/future inextendible curve is such a curve inM which has no past/future endpoint
inM. For an inextendible causal curve, there are three possibilities basically: i) the curve
runs to infinity, ii) it is finally trapped in a certain finite region where it circulates for ever,
iii) it hits a space-time singularity.

• Future domain of dependence of a subset Ω of M is the set D`pΩq of all points such
that every past-oriented inextendible causal curve from them intersects Ω. It is the set of
all events whose whole past light cones intersect Ω.

• Past domain of dependence of a subset Ω ofM is the set D´pΩq of all points such that
every future-oriented inextendible causal curve from them intersects Ω. It is the set of all
events whose whole future light cones intersect Ω.

• Cauchy hypersurface Σ is such a hypersurface inM which is acausal and whose D`pΣq

and D´pΣq together cover the whole M, i.e. for which D`pΣq Y D´pΣq “ M. In
other words, a Cauchy hypersurface depends on everything what happened before, and
influences everything that is to its future, it cannot be bypassed from either direction. Since
it is acausal, it is clear that every inextendible causal curve intersects it exactly once.
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• Globally hyperbolic space-time is a space-time in which there exists a (global) Cauchy
hypersurface. The point is that in a globally hyperbolic space-time, the entire future / the
entire past of the universe can be predicted / retrodicted uniquely from conditions on the
Cauchy hypersurface.
Remark: We suggested three options for inextendible curves. In a globally hyperbolic
space-time, it is clear that only the first can apply (the curve runs to infinity), because all
causal curves have to intersect a certain (Cauchy) hypersurface. If some of them were
trapped in a finite region or ended in a singularity, they might not satisfy that requirement.
-Very intuitive it is in the case of a naked singularity (imagine it would occur in future of
the “initial” hypersurface): its “future light cone” has Cauchy horizon as its boundary, as
we e.g. know from the Reissner-Nordström space-time.
On the other hand, if there is a black hole, it in general “eats information out of the space-
time” (due to its “no-hair” properties), so it is not possible to retrodict then, from any
“later” hypersurface, a complete information about what happened in the past. Yet it may
still be possible to make unique predictions in the domain of outer communications:

• An asymptotically flat space-time is said to be strongly asymptotically predictable if the
closure of the causal past of its future null infinity, M X J´pI `q, is globally hyperbolic.
(More precisely, the latter should be covered by some globally hyperbolic open region
within the conformally extended manifold.) In such a space-time, the complement of M X

J´pI `q is called the black hole and its boundary is called the (future) event horizon.

Einstein equations may be written in many ways. When deriving the metric for stationary
space-times, one usually chooses the parameter of that symmetry directly as the time coordi-
nate (tµ“δµt ), which means that the metric is independent of (that) time t. The field equations
then lead to an elliptic system, describing spatial behaviour rather than time evolution. How-
ever, even stationary space-time can be understood as an evolution problem, if it is described
in different coordinates (see e.g. how we discussed the dynamics of Schwarzschild in Kruskal
coordinates). If studying the Cauchy problem, we naturally suppose to have brought the Ein-
stein equations into such evolution-type, hyperbolic system of the following form:

gαβpx;ϕpjq,∇γϕpjqq∇α∇βϕpiq “ Fpiqpx;ϕpjq,∇γϕpjqq , i, j “ 1, ..., n , (26.6)

where gαβ is a smooth Lorentzian matrix (Lorentzian ” with “´```” eigen-values, in order
to ensure hyperbolicity of the system) which depends on position, but also on the unknown
fields, yet only up to their first derivatives.3 In the case of the (vacuum) Einstein equations,
there is just one field ϕ – the metric gµν . Yet still the left-hand side is far from trivial, because
it may be non-linear in the first derivatives, and also the dependence of gαβ on gµν is itself
non-linear (gαβ “gαµgβνgµν , or realize how they are related through determinant). Notice that
the highest (the second) derivatives of ϕpiq only appear linearly, so the system is quasi-linear,
which is crucial in the results below.

3 The derivative need not be the covariant one. Thinking of the GR case (ϕpjq Ñ gµν), it would actually be
better to write partial derivatives, of course. . .
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26.3.1 The Leray theorem

The fundamental theorem is from 1952, from the unpublished notes called Hyperbolic differ-
ential equations, written at Princeton Institute of Advanced Study by a French mathematician
Jean Leray:

Be
␣

M, gαβpx;ϕpjq,∇γϕpjqq
(

0
(some) globally hyperbolic manifold, where

␣

ϕp1q, ..., ϕpnq

(

0

solve the system (26.6). Let Σ denote a smooth Cauchy hypersurface in
␣

M, gαβ
(

0
, with

some “initial values” on it, corresponding to the given solution. THEN the initial-value
problem for the system (26.6) is well posed in the following sense: for every initial data
sufficiently close to the data for the above reference solution, there exists a neighbourhood
O of Σ (i.e. a certain “future of Σ”) such that (26.6) has a solution tϕp1q, ..., ϕpnqu in O, with
the space-time region

␣

O, gαβpx;ϕpjq,∇γϕpjqq
(

evolved from perturbed data globally hyper-
bolic. Moreover, i) the solution is unique inO; ii) it is also causal, namely, if some other data
agree with those for the reference solution on some subset S of Σ, then the respective two
solutions agree in O X D`pSq; and iii) the solution depends continuously on the initial data.

Remarks: tM, gαβu0 is really “some manifold”: it satisfies the given equations automatically,
serving as a unique reference solution. From a perturbed initial data, a piece of a different
manifold is obtained. And, important again: “sufficient closeness” can only be assessed if an
appropriate norm is known in the pertinent functional space, such as the Sobolev-type norm
mentioned earlier in this chapter.

Intuitive grasp of a proof:
Assume we have a certain reference solution

␣

ϕp1q, ..., ϕpnq

(

0
and a certain Cauchy hypersur-

face on which the solution “records” certain initial conditions. We substitute the solution to
gαβ on the left-hand side and to Fpiq on the right-hand side of (26.6), and we solve the system,
yet with perturbed initial conditions. Mathematically, we thus solve, in this first step, the
linear problem (because all zeroth and first derivatives are known)
“

known functions gαβp. . . q
‰

˚∇α∇βϕpiq “
“

known functions Fpiqp. . . q
‰

.

For a linear system, the Cauchy-Kowalevski theorem(s) ensure the solution exists, uniquely.
One thus obtains the “first iteration” of ϕpiq, symbolically

␣

ϕpiq

(

1
“

␣

ϕpiq

(

0
` δ

␣

ϕpiq

(

. The
second step is to substitute the first iteration

␣

ϕpiq

(

1
back to gαβ and Fpiq of (26.6), and solve

the system – again a linear one – for ϕpiq again (with the perturbed initial conditions already
kept from the first step, of course), to obtain the “second iteration”

␣

ϕpiq

(

2
. In such a way, one

obtains a sequence of approximations, about which Leray showed that for a data sufficiently
close to the original ones they converge to a solution of the full, non-linear system (26.6).

26.3.2 Einstein equations as a hyperbolic system

It is by no means automatic that the Einstein equations could be put into the form (26.6).
And, as already mentioned, it clearly depends on the coordinates chosen. The first task will
be to tackle these issues.

The “zeroth” task actually is to extract, from the left-hand side of Einstein’s equations,
the “genuine curvature” part = the one depending on the highest derivatives of the metric.
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Recalling the fully covariant Riemann tensor (6.8),

Rµβκδ “
1

2
pgµδ,βκ ` gβκ,µδ ´ gµκ,βδ ´ gβδ,µκq ` rΓ2 termss ,

we obtain, from the second-derivative (“genuine curvature”) terms solely,

Rνλ ´
1

2
Rgνλ “

1

2
gµκ

ˆ

δβν δ
δ
λ ´

1

2
gβδgνλ

˙

pgµδ,βκ ` gβκ,µδ ´ gµκ,βδ ´ gβδ,µκq “

“
1

2
gµκpgµλ,νκ ` gνκ,µλ ´ gµκ,νλ ´ gνλ,µκq ´

1

2
gνλg

µκgβδ pgµδ,βκ ´ gµκ,βδq .

Still this does not correspond to the Leray system (26.6), the reason being that the Einstein
equations contain constraints. To analogize it again to electromagnetism: there, the Maxwell
equations involve 6 evolution equations with the first time derivatives, and 2 constraints which
do not contain time derivatives at all. Similarly, the Einstein equations involve 6 evolution
equations with the second time derivatives, and 4 constraints with only the first time deriva-
tives.4 Therefore, it is the constraint equations which are not in the form (26.6), because they
do not contain the second-time-derivative term g00p...q B0B0gµν , hence they are not at all of
the hyperbolic type.

We met the constraints in Chapter 25 and will discuss them more in Chapter 27, yet it is
anyway easy (albeit t&b) to show that they have the form Gνλn

λ “ 0, with Gνλ the Einstein
tensor and nλ the future normal to some (practically: Cauchy) hypersurface, i.e., in adapted
coordinates, the normal to the t“const hypersurfaces,5

nα “
Bt

Bxα
“ δ0α ùñ nλ “ gλαnα “ gλ0 ùñ Gνλn

λ
“ Gνλg

λ0
“ G0

ν .

Actually, multiplying the curvature terms of Gνλ by gλ0, one has (without 1/2)

gµκgλ0pgµλ,νκ ` gνκ,µλ ´ gµκ,νλ ´ gνλ,µκq ´ gµκgβδδ0ν pgµδ,βκ ´ gµκ,βδq .

Collecting only the second-time-derivative terms, the first part provides

gµκgλ0pgµλ,νκ ` gνκ,µλ ´ gµκ,νλ ´ gνλ,µκq

ÝÑ gµ0gλ0gµλ,ν0 ` ������
g0κg00gνκ,00 ´ gµκg00gµκ,ν0 ´ ������

g00gλ0gνλ,00

and the second-term scalar part (the one which multiplies δ0ν) provides

gµκgβδ pgµκ,βδ ´ gµδ,βκq

ÝÑ gµκg00gµκ,00 ´ gµ0g0δgµδ,00 .

4 The difference in the derivative order is no surprise, since the Einstein equations are for a quantity (the met-
ric) on the level of potential, whereas the Maxwell equations are for fields. However, expressing the EM tensor
Fµν in terms of potentials, one also obtains equations with the second time derivatives (the wave equations).

5 The unit normal would be divided by gµνnµnν “ g00, but normalization is not important at this point.
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Both parts only contribute to the g..,00 terms for ν“0, and the contribution is anyway zero,

�������
gµ0gλ0gµλ,00 ´

XXXXXXXgµκg00gµκ,00 `
XXXXXXXgµκg00gµκ,00 ´ ������

gµ0g0δgµδ,00 “ 0 .

Hence, the equations Gνλn
λ“0 indeed do not contain any second time derivatives.

However, the issue of constraints can be remedied thanks to the following

Lemma : Consider vacuum Einstein equations. Thanks to the Bianchi identities, the con-
straints Gνλnλ “ 0 automatically stay satisfied (if they hold on some initial hypersurface),
provided that the spatial dynamical equationsGνλh

ν
ρh

λ
σ“0 are satisfied, with hνρ :“ δνρ`nνnρ

projector to the hypersurface(s) orthogonal to nµ (now already taking unit nµ).
Proof: In adapted coordinates, projection to hαλ means taking the respective spatial compo-
nent, and projection to nλ means taking the time component, Gνλhρνh

σ
λÑGij , GνλnλÑGν0.

Also, B{Bxi mean the derivatives along the initial hypersurface, while B{Bt means the deriva-
tive “away from it”, to its future. At the initial hypersurface (t “ t0), Gνλ “ 0 (because
dynamical equations Gij “ 0 are supposed to hold everywhere, and there is the initial con-
straint Gν0 “ 0 valid at t“ t0), hence also the spatial derivatives vanish, Gνλ

,i “ 0. Now, we
know that contraction of the Bianchi identities implies Gνλ

;ν “0. We thus have, at t“ t0,

0 “ Gνλ
;ν “ Gνλ

,ν ` ΓννσG
σλ

` ΓλνσG
νσ t“t0

“ G0λ
,0 ` Giλ

,i “ G0λ
,0 .

Hence, G0λ vanish on the initial hypersurface together with their first time derivative.
One can proceed similarly to higher time derivatives. Actually, by time derivative of

the above Bianchi identities one obtains

0 “ Gνλ
,ν0 ` Γννσ,0G

σλ
` ΓννσG

σλ
,0 ` Γλνσ,0G

νσ
` ΓλνσG

νσ
,0 .

Again, at t“ t0, one has Gσλ “ 0, so the terms with derivatives of Gammas are out. Gσλ
,0

vanish there too, because the dynamical equations are supposed to hold everywhere (hence
Gij

,0 “0) and G0λ
,0 “0 has been found in the first step. So the equation reduces to

0 “ Gνλ
,ν0 “ G0λ

,00 ` Giλ
,i0 ,

of which, however, the second term vanish for the same reasons: since Gij “ 0 everywhere,
one has Gij

,i0 “ 0, and since G0λ
,0 “ 0 on the initial hypersurface (from the first step), one

also has G0λ
,i0 “ G0λ

,0i “ 0 there. Hence, G0λ vanish on the initial hypersurface together
with their first two time derivatives. Etc... l

It is “needless to say”, but let us stress that the initial satisfaction of the constraints and
ensuring that they stay valid along the whole evolution is crucial in numerical relativity. In a
non-linear theory such as GR, the initial-constraint satisfaction itself is a tricky point, because
exact analytical solution is typically not available, and neither any dynamical evolution (yet)
which would yield the given situation as a consistent outcome. One thus often sees various
“transition effects” at the beginnings of simulations, during which the non-satisfaction of the
initial constraints is being smoothed out using iterations or dynamical equations.
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As a more familiar example, we may once more recall electrodynamics (as in Section
26.1.1). In a source-free vacuum, the fulfilment of the constraints divE⃗ “ 0, divB⃗ “ 0 is
automatically propagated along the evolution thanks to the dynamical equations BE⃗

Bt
“ rotB⃗,

BB⃗
Bt

“´rotE⃗ (which are supposed to hold everywhere),

B

Bt
pdivE⃗q ” div

ˆ

BE⃗

Bt

˙

“ divprotB⃗q “ 0 ,
B

Bt
pdivB⃗q ” div

ˆ

BB⃗

Bt

˙

“ ´divprotE⃗q “ 0 .

The above means that the Einstein equations represent an underdetermined system:
since 4 of them are constraints, they provide, for 10 metric components gµν , only 6 evolution
equations. The underdetermination actually is mandatory6 from the point of view of the
covariance principle: one has to always have freedom to choose 4 coordinate functions.

26.3.3 Harmonic coordinates in Einstein equations

The diffeomorphism invariance implies that every attempt to prove uniqueness of a solution
in GR has to be performed in certain specific coordinates (otherwise the coordinate freedom
simply makes any result non-unique). Perhaps the most common choice are the harmonic
coordinates given by Hµ :“ lxµ “ 0. We showed in Section 22.4.1 that such a condition
is equivalent to p

?
´g gαµq,α “ 0. In the linearized theory, it lead to γαµ,α “ 0 and was also

referred to as the de Donder, Hilbert or Lorenz condition. The harmonic coordinates turned
out to be mainly useful in asymptotically flat space-times, e.g. for studying isolated sources of
gravitation (whereas they are not so suitable in cosmology). In the Cauchy problem, however,
they are of crucial importance, because in them the Einstein equations can be written in the
form (26.6) to which the Leray theorem applies, which we will now embark on.

Let us write out, explicitly,

0 “ Hµ
“

1
?

´g
p
?

´g gαµq,α “ gαµ,α `
1

?
´g

gαµp
?

´gq,α “ gαµ,α `
1

2
gαµgρσgρσ,α ,

where we have employed (A.21). In the following, it will be important that Hµ contains only
first derivatives of the metric, so Hµ

,ν also contain second derivatives. The trick with the
Einstein equations (vacuum ones) is that one adds to their left-hand side a term proportional to
derivatives ofHµ (thus vanishing in the harmonic coordinates). With that term, the equations
do already have the Leray form.

Now details: take the vacuum field equations without the cosmological term, Rνλ “ 0,
and modify the Ricci tensor according to

RH
νλ :“ Rνλ `

1

2
pgινH

ι
,λ ` gιλH

ι
,νq . (26.7)

6 Footnote on three English kind-of synonyms: “mandatory” means required by an official law or rule; “com-
pulsory” means the same, perhaps slightly weaker, and only used by default in connection with school/education
or some public (also military) service; and “obligatory” is the least official of the three, stemming not only from
official laws/rules, but also from moral or social requirements (also “requirements”, meaning “stresses”) or just
from other circumstances. (Refinements welcome!)
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Substituting the explicit expressions, one finds

RH
νλ “

1

2
gµκpgµλ,νκ ` gνκ,µλ ´ gµκ,νλ ´ gνλ,µκq ` ΓµµιΓ

ι
λν ´ ΓµλιΓ

ι
µν `

`
1

2
gινg

αι
,αλ `

1

4
gινpgαιgρσgρσ,αq,λ `

1

2
gιλg

αι
,αν `

1

4
gιλpgαιgρσgρσ,αq,ν “

“
1

2 �����gµκgµλ,νκ `
1

2
XXXXXgµκgνκ,µλ ´

1

2 �����XXXXXgµκgµκ,νλ ´
1

2
gµκgνλ,µκ `

␣

pgβγ,δq
2 terms

(

´

´
1

2
XXXXXgιν,αλg

αι
´

1

2 �����gιλ,ανg
αι

`
␣

pgβγ,δq
2 terms

(

`
1

2 �����XXXXXgρσgρσ,νλ `
␣

pgβγ,δq
2 terms

(

“ ´
1

2
gµκgνλ,µκ `

␣

pgβγ,δq
2 terms

(

,

where we have used, for the gινgαι,αλ and gιλgαι,αν terms,

δαν “gινg
αι

ñ 0 “ gιν,αg
αι

` gινg
αι
,α ñ 0 “ gιν,αλg

αι
` gινg

αι
,αλ`

␣

pgβγ,δq
2 terms

(

.

Therefore, in harmonic coordinates (in which Hµ“0, so the original and the modified Ricci
tensors are identical), the vacuum Einstein equations can be written

´1
2
gµκgνλ,µκ ` Fνλpgβγ, gβγ,δq “ 0 , (26.8)

which already is in the form to which the Leray theorem applies. It is known as the reduced
Einstein equations. Hence, with the initial conditions for gij ” hij and hij,t given on the
initial hypersurface t “ t0, the local (temporary) existence of solutions is guaranteed. Note
that g0µ,t are not at all constrained by the initial conditions, so, in order to ensure consistency,
these should be chosen in such a way that Hµ“0 really hold initially.

One naturally asks now: how does the harmonic condition Hµ “ 0 propagate in time,
according to the field equations? To answer this, it is advantageous to also compute the
H-modified Ricci scalar. From (26.7),

RH
“ R `

1

2
gνλpgινH

ι
,λ ` gιλH

ι
,νq “ R ` H ι

,ι .

The generic-coordinate field equations are thus related to the harmonic-coordinate ones by

0 “ Rνλ ´
1

2
Rgνλ “ RH

νλ ´
1

2
RHgνλ ´

1

2
pgινH

ι
,λ ` gιλH

ι
,ν ´ gνλH

ι
,ιq .

In the following, everything will be taken on the initial hypersurface: choosing, there, Hµ“0
ensures that Rνλ´ 1

2
Rgνλ “ 0 are satisfied there as well as RH

νλ´ 1
2
RHgνλ “ 0. The last term

(i.e. the parenthesis) thus has to vanish, so its contraction tells that H ι
,ι “ 0, which implies,

when substituted back into the parenthesis, gινH ι
,λ` gιλH

ι
,ν “ 0. Writing this in adapted

coordinates where Hµ“0 involves that the spatial derivatives of Hµ vanish initially as well,
we have

pe.g. for λ“j, ν“ t:) gιt���H ι
,j ` gιjH

ι
,t “ 0 pfor any jq .

The harmonic condition is thus “propagated” along the time evolution.
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One more nice property can be shown concerning the harmonic condition: that Hµ“0
can itself be written in the Leray form. Actually, write the contracted Bianchi identities again,

0 “ Gνλ
;ν

“ pGH
νλq

;ν
´

1

2
pgινH

ι
,λ ` gιλH

ι
,ν ´ gνλH

ι
,ιq

;ν .

The satisfaction of the harmonic condition Hµ“0 ensures Gµν “GH
µν , and that in turn means

that the first term of the above vanishes, hence the same has to hold for the second. However,
the latter can obviously be decomposed as

0 “ ´
1

2
p���H ι

,λι ` gιλH
ι
,ν
ν

´ ���H ι
,ιλ q ` tterms without H ι

,κλu .

Multiplying this by gλα, we arrive at

gµνHα
,µν “ tterms without H ι

,κλu .

This is indeed the form (26.6) to which the Leray theorem can be applied, thus ensuring that
Hµ “ 0 can really be found as a solution at t ě t0, provided that Hµ “ 0 and Hµ

,t “ 0 hold
(which we have shown) at t“ t0.

Let us add that the well-posedness of the Einstein equations and the uniqueness of their
solution were mostly proved by Yvonne Choquet-Bruhat in the 1950s, using the harmonic co-
ordinates. At that time Choquet-Bruhat (then Fourès-Bruhat, actually) was a postdoc working
with J. Leray at Princeton, also discussing certain points with late A. Einstein. (Being just
8 years younger then general relativity, she is exactly 100 today when the present Chapter is
being typed, i.e. at the beginning of 2024.)

26.3.4 Maximal Cauchy development: a summary

Here we put together the results indicated above, following Wald [50], Theorem 10.2.2.:

• Let Σ be a 3D smooth manifold, let hµν be a smooth Riemannian metric on Σ, and let Kµν

(the extrinsic curvature of Σ) be a smooth symmetric tensor field on Σ which provides the
information about the change of hµν in the direction orthogonal to Σ. Let hµν and Kµν

satisfy the constraint equations Gµνn
µ“0 for the Einstein tensor.

• Then there exists a unique solution of Einstein’s equations pM, gµνq called the maximal
Cauchy development of pΣ, hµν , Kµνq, satisfying the following properties:

– The space-time pM, gµνq is globally hyperbolic, with Σ its Cauchy hypersurface de-
scribed by the induced metric hµν and the extrinsic curvature Kµν .

– Uniqueness and “maximality”: every other space-time satisfying the above can be
mapped isometrically onto a subset of pM, gµνq.

– Let pΣ, hµν , Kµνq and pΣ1, h1
µν , K

1
µνq be two sets of initial conditions with the re-

spective maximal Cauchy developments pM, gµνq and pM1, g1
µνq. If there exists a

diffeomorphism between certain S ĂΣ and S 1 ĂΣ1 which relates pΣ, hµν , Kµνq and
pΣ1, h1

µν , K
1
µνq, then the domain of dependence DpS 1q ĂM1 is isometric to the do-

main of dependence DpSqĂM.

– The solution gµν depends continuously on the initial data hµν , Kµν assigned on Σ.
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26.3.5 Remarks

The existence of a well posed initial-value formulation is by no means an automatic feature of
a theory. Besides obvious fundamental importance (evolution from “initial conditions” is the
central problem of every quantitative science), the existence of such a formulation provides
various practical advantages. Actually, however non-unique the correspondence between the
bulk (globally hyperbolic) space-time and the initial conditions is (thanks to the freedom in
choosing the initial hypersurface Σ), its existence can make various problems easier, because
it is often simpler to translate them to the language of initial conditions and, subsequently, to
investigate the initial-data constraints rather than the full 4D Einstein equations. A suitable
choice of the initial hypersurface certainly is the crucial point of such an approach.

The Cauchy problem with sources (Tµν ‰0)

can, in general, be formulated in a similar way as for the pure-vacuum GR, provided that
the Einstein equations coupled with the equations governing the pertinent non-gravitational
fields can be put into the Leray form (26.6), with the Tµν solely depending on the fields and
on the metric, together with their first derivatives. In particular, the problem of the coupled
gravitational and Klein-Gordon fields, or the Einstein-Maxwell problem, can be formulated
as well-posed initial-value problems. However, the Leray formulation is generally not a
necessary condition for a system to possess a solvable Cauchy problem. For instance, a
gravitating perfect fluid can be studied from a well-posed initial-value formulation, although
the corresponding equations are not of the form (26.6).



CHAPTER 27

Hamiltonian formulation of the
Einstein equations

The Lagrangian formulation of Einstein equations is “4D”, whereas the Hamiltonian formu-
lation has to be “3+1”, since the Hamilton equations determine time evolution of the phase
variables and thus necessarily require a specific choice of the time coordinate. The Hamilto-
nian formulation is thus suitable for evolution problems such as the Cauchy initial problem,
while, on the other hand, it may also be useful in statements about “space at some given time”
(in definitions of integral quantities, for example). The Hamiltonian view is also the starting
point of the canonical quantization of the theory.

The approach is similar as in classical mechanics, only that continuous systems and
fields have to be described in terms of proper spatial densities of the quantities (of the La-
grangian and Hamiltonian, in particular). Suppose we have decomposed the space-time to
“time” t (parameter along the vector field tµ) and “space” (hypersurfaces Σt) like in Chapter
25. Let the proper density of Lagrangian only depend on configuration variables (“fields”) ψ
and their first derivatives,1 Lpψ, 9ψ, ψ,iq. The variables are tensorial in general (yet we will not
indicate this by indices for clarity) and are evaluated on Σt; their gradient ψ;α we decompose
into the time derivative 9ψ :“£tψ“ψ,ιt

ι (“ψ,ιδ
ι
t “ψ,t in adapted coordinates) and the spatial

derivatives ψ,i (along the coordinate directions of Σt). The canonical momenta Π associated
with the fields ψ we define as the vector densities

Π :“
Bp

?
´gLq

B 9ψ
. (27.1)

Therefrom we express the “velocities” 9ψ“ 9ψpψ,Π, ψ,iq and submit these to the definition of
the Hamiltonian density (Legendre transformation)

Hpψ,Π, ψ,iq :“ Π ¨ 9ψ ´
?

´gL . (27.2)

1 Good to recall Section 23.1 on functional derivative in order to understand how exactly arise, in performing
the variation, the derivatives with respect to the field variables ψ and their derivatives (here only the first ones).

487
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Due to the presence of
?

´g , this is not an invariant, but a scalar density of weight `1. We
will thus integrate it over a coordinate volume, since the latter is a scalar density of weight
´1, so the Hamiltonian will thus be invariant. (Though the spatial density of Hamiltonian is
a scalar density, we will not write it in the gothic font – simply likingH more than H.)

The stationarity of action is equivalent to the Hamilton canonical equations. Indeed,

δS :“ δ

ż

Ω

L?
´g d4x

1`3
ÝÑ δ

t2
ż

t1

ż

Σt

L?
´g d3x dt “ δ

t2
ż

t1

ż

Σt

pΠ ¨ 9ψ ´Hq d3x dt “

“

t2
ż

t1

ż

Σt

ˆ

δΠ ¨ 9ψ ` Π ¨ δ 9ψ ´
BH
Bψ

¨ δψ ´
BH
BΠ

¨ δΠ ´
BH
Bψ,i

¨ δψ,i

˙

d3x dt .

The second term we “per-partes”, already dropping the boundary term as usual (better argu-
ment is that δψ is assumed to vanish at the marginal times t1 and t2),

t2
ż

t1

ż

Σt

Π ¨ δ 9ψ d3x dt “ ´

t2
ż

t1

ż

Σt

9Π ¨ δψ d3x dt .

Similarly we process the last term (time integration is not important in it),

´

ż

Σt

BH
Bψ,i

¨ δψ,i d
3x “ ´

XXXXXXXXXX

ż

Σt

ˆ

BH
Bψ,i

¨ δψ

˙

,i

d3x `

ż

Σt

ˆ

BH
Bψ,i

˙

,i

¨ δψ d3x ;

here the first term has dropped out, since by Gauss law it can be rewritten as an integral from
BH
Bψ,i

¨ δψ over a 2D boundary BΣt (which may possibly lie at infinity), where we assume
δψ “ 0. (Note that the remaining term may look similar, but its integration goes over the
whole Σt, not over any 2D boundary, so it does not vanish.)

To summarize,

δS “

t2
ż

t1

ż

Σt

«

δΠ ¨ 9ψ ´ 9Π ¨ δψ ´
BH
Bψ

¨ δψ ´
BH
BΠ

¨ δΠ `

ˆ

BH
Bψ,i

˙

,i

¨ δψ

ff

d3x dt ,

from where we see, by requiring zeros at both independent variations δΠ and δψ, that

δS “ 0 ðñ 9ψ :“ £tψ “
BH
BΠ

, 9Π :“ £tΠ “ ´
BH
Bψ

`

ˆ

BH
Bψ,i

˙

,i

. (27.3)

It is clear from the derivation that these Hamilton equations are equivalent to the Euler-
Lagrange equations obtained from the Lagrangian approach. Actually, substituting

?
´gL “

Π ¨ 9ψ ´H and the definition of Π to the Euler-Lagrange equation, one has

Bp
?

´gLq

Bψ
´

„

Bp
?

´gLq

Bψ,t

ȷ

,t

´

„

Bp
?

´gLq

Bψ,i

ȷ

,i

“ ´
BH
Bψ

´ 9Π `

„

BH
Bψ,i

ȷ

,i

,

which is zero due to the Hamilton equation for 9Π.
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27.1 Klein-Gordon field and EM field: a warm up
Before embarking on the Einstein equations, let us illustrate the Hamiltonian approach on the
Klein-Gordon scalar field and on the electromagnetic field. In the latter case, we will meet
the important circumstance which later will also occur in the gravitation problem – thanks to
a gauge freedom in the field variables, some of the field equations become constraints.

Suppose, for simplicity, that we deal with a situation where N i “ 0, so, according to
(25.7), gµν “ diagp´N´2, hikq. The Lagrangian density of the Klein-Gordon scalar field
(ψ”ψ, now really without indices) then reads

L “ ´
1

2

`

gµνψ,µψ,ν ` m2ψ2
˘

“ ´
1

2

´

gtt 9ψ2
` hikψ,iψ,k ` m2ψ2

¯

.

From it, we have

Π :“
Bp

?
´gLq

B 9ψ
“ ´

?
´g gtt 9ψ ùñ 9ψ “ ´

Π
?

´g gtt

and the Hamiltonian density

H :“ Π 9ψ ´
?

´gL “ ´
Π2

?
´g gtt

`

?
´g

2

ˆ

gtt
Π2

´gpgttq2
` hikψ,iψ,k ` m2ψ2

˙

“

“ ´
Π2

2
?

´g gtt
`

?
´g

2

`

hikψ,iψ,k ` m2ψ2
˘

,

from which we finally find evolution equations

9ψ “
BH
BΠ

“ ´
Π

?
´g gtt

“
ΠN2

?
´g

,

9Π “ ´
BH
Bψ

`

ˆ

BH
Bψ,j

˙

,j

“ ´
?

´g m2ψ `
`?

´g hjkψ,k
˘

,j
.

This result really leads to the Klein-Gordon equation,

lψ ” gµνψ;µν “
1

?
´g

p
?

´g gµνψ,µq,ν “
1

?
´g

`?
´g gttψ,t

˘

,t
`

1
?

´g

`?
´g hjkψ,j

˘

,k
“

“ ´
9Π

?
´g

`
1

?
´g

´

9Π `
?

´g m2ψ
¯

“ m2ψ .

Second, let us test the Hamiltonian approach on a free EM field in the Minkowski
space-time (gµν “ ηµν ,

?
´g“ 1). Suppose the configuration variable is the four-potential in

this case, ψ ”Aµ. We split it to time and spatial components with respect to Σt, i.e. to the
“scalar” and “vector” potentials

ϕ :“ ´Aµn
µ, A⃗ :“ Aµh

µ
α ,

and write down the Lagrangian density

L “ ´
1

16π
F µνFµν “

1

8π
pE2

´B2
q “

1

8π
p∇⃗ϕ `

9⃗
Aq¨p∇⃗ϕ `

9⃗
Aq ´

1

8π
p∇⃗ˆ A⃗q¨p∇⃗ˆ A⃗q ,



490 27. HAMILTONIAN FORMULATION OF THE EINSTEIN EQUATIONS

where

Eµ ” Fµνn
ν , Bµ ” ´

˚Fµνn
ν

p ðñ Fµν “ nµEν ´ nνEµ ` ϵµνρσn
ρBσ

q

are the electric and magnetic fields defined with respect to Σt. For quantities “living on Σt”
we have employed the three-vector notation, in particular

E⃗ :“ ´∇⃗ϕ ´
9⃗
A , B⃗ :“ ∇⃗ˆ A⃗ .

The momenta conjugated to the scalar and vector potentials come out

Πt :“
Bp

?
´gLq

B 9ϕ
“ 0 , Π⃗ :“

Bp
?

´gLq

B
9⃗
A

“
1

4π
p∇⃗ϕ `

9⃗
Aq “ ´

E⃗

4π
.

Here comes the issue: the first of these relations cannot be inverted, namely, it is not possible
to express from it 9ϕ, so it is also not possible to find the Hamiltonian density H “ Πt

9ϕ `

Π⃗ ¨
9⃗
A ´ L (remember that

?
´g “ 1). This “accident”, related to the gauge freedom of the

four-potential, is being remedied in a simple way: if Πt vanishes identically, it is clearly not
appropriate to consider ϕ a dynamical variable. Actually, if the Lagrangian does not depend
on some of the “velocities”, it means that the change of the respective quantity has no effect in
the theory. So, if dropping ϕ and only leaving A⃗ as configuration variables, we may continue:

we express 9⃗
A “ 4πΠ⃗´∇⃗ϕ and submit it, together with L “ 2πΠ⃗ ¨Π⃗´ B2

8π
, to the “restricted”

Hamiltonian-density prescription,

H “ Π⃗ ¨
9⃗
A ´ L “ Π⃗ ¨ p4πΠ⃗ ´ ∇⃗ϕq ´ 2πΠ⃗ ¨ Π⃗ `

B2

8π
“ 2πΠ2

´ Π⃗ ¨ ∇⃗ϕ `
B2

8π
. (27.4)

The Hamilton equations yield

9⃗
A “

BH
BΠ⃗

“ 4πΠ⃗ ´ ∇⃗ϕ “ ´E⃗ ´ ∇⃗ϕ ,

9⃗
Π

˜

“ ´

9⃗
E

4π

¸

“ ´
�
�
�BH

BA⃗
`

˜

BH
BA⃗,j

¸

,j

“
1

8π

˜

BB2

BA⃗,j

¸

,j

“ ´
∇⃗ˆ B⃗

4π
.

The last equality of the latter equation can best be computed “in components”:

B2
” BkB

k
“ ϵklmA

m,lϵknoAo,n “ pδnl δ
o
m´ δnmδ

o
l qA

m,lAo,n “ pδnlδom´ δnmδolqAm,lAo,n ,

so

BB2

BAi,j
“ pδnlδom´ δnmδolqpδimδ

j
lAo,n ` Am,lδ

i
oδ
j
nq “

“ pδnjδoi´ δniδojqAo,n ` pδjlδim´ δjmδilqAm,l “ 2pAi,j ´ Aj,iq ” 2F ji

ùñ

ˆ

BB2

BAi,j

˙

,j

“ 2F ji
,j “ 2 ϵjikBk,j ” ´2p∇⃗ˆ B⃗q

i .
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The first equation thus reproduces the expression of E⃗ in terms of the potentials, thanks to

which (plus B⃗“ ∇⃗ˆA⃗) holds the second set of Maxwell equations, ∇⃗ˆE⃗“ ´∇⃗ˆ
9⃗
A“ ´

9⃗
B

and ∇⃗¨B⃗“0. The second Hamilton equation yields the Maxwell equation ∇⃗ˆB⃗“
9⃗
E.

Finally, for consistence, it is necessary to add the equation for the derivative by non-
dynamical variable ϕ,

0 “ 9Πt “ ´
�
�
�BH

Bϕ
`

ˆ

BH
Bϕ,j

˙

,j

“ ´

«

BpΠ⃗ ¨ ∇⃗ϕq

Bϕ,j

ff

,j

“ ´
`

Πj
˘

,j
“ ´∇⃗ ¨ Π⃗ “

1

4π
∇⃗ ¨ E⃗ .

This Maxwell equation represents a constraint. (Sure, it cannot be an evolution equation,
because it does not contain the time derivative. The same also applies to the similar equa-
tion ∇⃗ ¨ B⃗ “ 0.) Note that the equation can even simpler be obtained by rewriting, in the
Hamiltonian (27.4),

´Π⃗ ¨ ∇⃗ϕ “ ´∇⃗ ¨ pϕ Π⃗q ` ϕ ∇⃗ ¨ Π⃗ (27.5)

and omitting the first term (it is a divergence only contributing to the surface term): then

0 “ 9Πt “ ´
BH
Bϕ

`

ˆ

S
S
S

BH
Bϕ,j

˙

,j

“ ´∇⃗ ¨ Π⃗ .

Knowing that the term ´Π⃗ ¨ ∇⃗ϕ is thus irrelevant, the Hamiltonian (27.4) is seen to represent
the energy density of the EM field,

H “ 2πΠ2
`
B2

8π
“

1

2

E2 ` B2

4π
.

The EM field exemplifies the Hamiltonian system with a constraint. Constraints oc-
cur in theories which possess a gauge or coordinate freedom. Their “gaugeable” variables are
not dynamical, effectively playing the role of Lagrangian multipliers which enforce the fulfil-
ment of certain constraints. Above, the constraint Πt “0 is called a primary constraint; it
follows from Lagrangian itself, without using any evolution equations. The constraint 9Πt“0
(implying the field equation ∇⃗ ¨ E⃗“ 0) is called a secondary constraint since it is required
by consistency of the evolution equations with the respective primary constraint.

27.2 Gravitational field
We will start from the Lagrangian density Lg “R´2Λ (will only consider vacuum), rewriting
it to the “3+1” form. For simplicity, we will not take into account “boundary” (surface)
terms – those given by divergence of some vector field (here we have covariant divergence in
mind), because such can be expressed, thanks to the Gauss law, as integrals from the flows
of the pertinent vector fields over the boundary of the integration region. Let us emphasize,
however, that we are speaking now about the Lagrangian itself rather than about its variation,
so we are not claiming that the “boundary” terms vanish as a consequence of vanishing of the
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variations on the boundary – actually, we saw in Section 23.4.6 that the boundary parts of the
Lagrangian typically aren’t zero and depend on the geometric properties of the boundary.

Will be suitable to slightly modify the 3+1 form of the scalar curvature (25.37). If
writing (remember that K“nα;α)

K;γn
γ

“ pKnγq;γ ´ Knγ ;γ “ pKnγq;γ ´ K2 ,

the Ricci scalar can be cast into the form

R “
p3qR ` K2

` KνγK
νγ

´ 2aδ ;δ ` 2K,γn
γ

“

“
p3qR ´ K2

` KνγK
νγ

´ 2aδ ;δ ` 2pKnγq;γ . (27.6)

Therefore, if omitting the surface terms ´2aδ ;δ ` 2pKnγq;γ , given by divergences, the grav-
itational Lagrangian density reads

Lg “
p3qR ´ K2

` KνγK
νγ

´ 2Λ “
p3qR ` KκλKρσphκρhλσ ´ hκλhρσq ´ 2Λ . (27.7)

As configuration variables on a given Cauchy hypersurface Σt, we choose the latter’s
metric hµν , and the lapse and shift functions N and Nα. Wishing to define the respective
canonical-momentum densities as derivatives of the Lagrangian density by “velocities”

9hµν :“ hαµh
β
ν£thαβ , 9N :“ £tN “ N,σt

σ , 9Nα :“ hβα£tNβ ,

we must express theLg in terms of the latter. The time derivative of hµν occurs in the extrinsic
curvature, as we know from equation (25.16), i.e. from the formula

Kµν “
1

2N
hαµh

β
ν p£thαβ ´ £Nhαβq “

1

2N

´

9hµν ´ Nν|µ ´ Nµ|ν

¯

.

Now it is possible to define the “momenta” canonically conjugated to hµν ,

Πµν :“
Bp

?
´gLgq

B 9hµν
“

Bp
?

´gLgq

BKαβ

BKαβ

B 9hµν
.

Substituting from (27.7)

Bp
?

´gLgq

BKαβ

“
?

´g
´

δακδ
β
λKρσ ` Kκλδ

α
ρ δ

β
σ

¯

`

hκρhλσ ´ hκλhρσ
˘

“ 2
?

´g pKαβ
´ Khαβq

and from (25.16) BKαβ

B 9hµν
“ 1

2N
δµαδ

ν
β , we finally arrive at

Πµν
“

?
´g

N
pKµν

´ Khµνq “
?
h pKµν

´ Khµνq . (27.8)

The inverse relation follows by tracing,

Π :“ Πµ
µ “ ´2

?
hK ùñ Kµν

“
1

?
h

ˆ

Πµν
´

1

2
Πhµν

˙

. (27.9)
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The Lagrangian does not contain 9N and 9Nα, so the momenta conjugated with N and
Nα identically vanish, ΠN “ 0 and ΠNα “ 0. These are primary constraints of the theory. In
analogy with the situation occurring in electrodynamics, we interpret it in such a way that N ,
Nα in fact aren’t dynamical variables. Similarly as in the EM case, it is related to “gauge”
freedom: N and Nα do not describe any intrinsic properties of space-time, they are elective
components of the time vector tµ. Specifically, N tells “how far” it is from Σt1 to Σt2 , so it
scales the time coordinate, and Nα specifies the coordinates that cover the Σt hypersurfaces.
One thus should not be looking for any dynamical equations for N and Nα, and so we will
not employ them in designing the Hamiltonian.

Now we have everything to find the gravitational part of the Hamiltonian density, more
accurately its “bulk” part (surface terms are not included, as already stressed above),

Hg “ Πµν 9hµν ´
?

´gLg “

“
?
h pKµν

´ Khµνqp2NKµν ` Nν|µ ` Nµ|νq ´ N
?
h
`

p3qR ´ K2
` KµνK

µν
´ 2Λ

˘

“

“ 2
?
h pKµν

´ KhµνqNpµ|νq ` N
?
h
`

KµνK
µν

´ K2
´

p3qR ` 2Λ
˘

.

Employing the formula (27.8) for momenta Πµν , one easily finds the relations

ΠµνΠ
µν

“ h
`

KµνK
µν

` K2
˘

, Π2 :“ pΠµ
µq

2
“ p´2

?
hKq

2
“ 4hK2

ùñ 2ΠµνΠ
µν

´ Π2
“ 2h

`

KµνK
µν

´ K2
˘

,

thanks to which one finally arrives to

Hg “ 2ΠµνNpµ|νq `
N

2
?
h

`

2ΠµνΠ
µν

´ Π2
˘

´ N
?
h
`

p3qR ´ 2Λ
˘

. (27.10)

27.2.1 Hamilton equations: constraints

Let us first look at how secondary constraints arise, given by vanishing of the derivatives of
Hg with respect to the non-dynamical variables N and Nα (required by consistency with the
identical vanishing of ΠN and ΠNα found from the Lagrangian):2

0
´

“ 9ΠN

¯

“ ´
BHg

BN
`

ˆ

S
S
SS

BHg

BN|ι

˙

|ι

“ ´
1

2
?
h

`

2ΠµνΠ
µν

´ Π2
˘

`
?
h
`

p3qR ´ 2Λ
˘

ðñ 2ΠµνΠ
µν

´ Π2
“ 2h

`

p3qR ´ 2Λ
˘

, (27.11)

0
´

“ 9ΠNα

¯

“ ´
�
�
�BHg

BNα

`

ˆ

BHg

BNα|ι

˙

|ι

“

ˆ

2Πµν BNµ|ν

BNα|ι

˙

|ι

“
`

2Πµνδαµδ
ι
ν

˘

|ι
“ 2Παι

|ι

ðñ Παι
|ι “ 0 . (27.12)

2 In the following, it is indeed OK to apply the 3D divergence in the
´

BHg

BNα|ι

¯

|ι
and similar terms, because the

constraints should hold on the hypersurfaces Σt, they do not include any “normal” behaviour. (The latter will
be described by evolution equations later.)
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Yet simpler way how to get the second equation is to rewrite the first term of (27.10) in the
same way as we did with the term ´Π⃗ ¨ ∇⃗ϕ in electrodynamics (27.5), namely as

2ΠµνNµ|ν “ 2pΠµνNµq|ν ´ 2Πµν
|νNµ

and discard the first, “boundary” part given by divergence. Then the last equation appears as

0
´

“ 9ΠNα

¯

“ ´
BHg

BNα

`

ˆ

@
@
@@

BHg

BNα|ι

˙

|ι

“ 2Παν
|ν .

Submitting 2ΠµνΠ
µν ´Π2 “ 2hpKµνK

µν ´K2q and Παν “
?
h pKαν ´Khανq to the

above equations reveals that they represent the Hamiltonian and momentum constraints,3

p3qR ` K2
´ KµνK

µν
“ 2Λ and Kαν

|ν ´ K |α
“ 0

– see equations (25.42) and (25.43).

27.2.2 Hamiltonian as a combination of constraints

Let us point out that in order to infer dynamics from the Hamiltonian (see below), the con-
straints must not be plugged back into it – the Hamiltonian has to remain “off shell” (i.e.
not evaluated along the actual evolution), otherwise it would not be possible to compute its
derivatives “in arbitrary direction”. Actually, it is easy to check that plugging the constraints
back would even make the Hamiltonian zero. On the other hand, if computing global quan-
tities by integrating the Hamiltonian over spatial slices (rather than differentiating it), the
constraints should be satisfied, so its “dynamical part” really vanishes then. To such integral
quantities thus only contribute the boundary terms (which we have been omitting yet).

The “on-shell” vanishing of Hg is a symptom of a more general property: in theories
invariant with respect to general diffeomorphisms, the Hamiltonian in fact turns out to be
given by a linear combination of its constraints4 (plus the boundary terms). Worth to realize
again that the constraints have appeared as a consequence of independence of the theory (of
the Lagrangian) of time derivatives of quantities which are subject to gauge or coordinate
freedom and thus do not represent dynamical variables. (They stand as coefficients in the
combination of constraints which represent the Hamiltonian.) Indeed, there is a one-to-one
correspondence between local symmetries of a theory and its constraints. We will analyse it
more in Chapter 28, specifically in sections on Noether theorems.

In designing a theory, the above correspondence can factually be employed in the op-
posite way: instead of starting from certain symmetry requirements, one may prescribe a
certain set of constraints and design the Hamiltonian as their combination; the constraints
then “generate” certain local symmetries.

3 Sometimes they are called the scalar and vector constraints, with the latter (the momentum one) also being
called the diffeomorphism constraint, because it is linked to the choice of coordinates on the Σt slices.

4 The opposite need not be true: vanishing of the constrained Hamiltonian does not necessarily imply that the
theory is diffeomorphism-invariant.
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27.2.3 Hamilton equations: evolutions

The main work is still to be done. The evolution equations are given by Hamilton equations

9hαβ :“ hµαh
ν
β£thµν “

BHg

BΠαβ
,

9Παβ :“ hαµh
β
ν£tΠ

µν
“ ´

BHg

Bhαβ
`

ˆ

BHg

Bhαβ,ι

˙

,ι

´

ˆ

possibly terms given by
BHg

Bhαβ,ικ

˙

.

In the first equation, differentiation of (27.10) is clear, we only compute more carefully

BΠ2

BΠαβ
“ 2Π

BΠ

BΠαβ
“ 2Π

B

BΠαβ
pΠκλhκλq “ 2Π δκαδ

λ
βhκλ “ 2Πhαβ ,

thus arriving at

9hαβ “
BHg

BΠαβ
“ 2Npα|βq `

N
?
h

p2Παβ ´ Πhαβq . (27.13)

This exactly repeats the definition (27.8) of Παβ and, recalling that 2Παβ´Πhαβ “2
?
hKαβ ,

the relation (25.16) between Kαβ and 9hµν .

For the second equation, let us tackle each of the Hamiltonian (27.10) terms separately:

• In the last term, ´N
?
h
`

p3qR ´ 2Λ
˘

, we use the knowledge from the variational derivation
of Einstein equations. We learned there – see equation (23.15) – that if dropping the surface
terms (given by behaviour of the metric derivatives on the integration-region boundary),
then

δ r
?

´g pR ´ 2Λqs “
?

´g

ˆ

Rµν ´
1

2
Rgµν ` Λgµν

˙

δgµν

ùñ
B

Bgµν
r
?

´g pR ´ 2Λqs “
?

´g

ˆ

Rµν ´
1

2
Rgµν ` Λgµν

˙

.

However, we would prefer to know the derivative with respect to covariant metric, which
reverses the sign, as we know from Section 23.4.1: specifically, we obtained there δgαβ “

´gαµgβνδg
µν , so

δ r
?

´g pR ´ 2Λqs “ ´
?

´g

ˆ

Rαβ
´

1

2
Rgαβ ` Λgαβ

˙

δgαβ ,

ùñ
B

Bgαβ
r
?

´g pR ´ 2Λqs “ ´
?

´g

ˆ

Rαβ
´

1

2
Rgαβ ` Λgαβ

˙

.

In the 3D analogy to this result, we may claim that

B

Bhαβ

”?
h
`

p3qR ´ 2Λ
˘

ı

“ ´
?
h

ˆ

p3qRαβ
´

1

2
p3qRhαβ ` Λhαβ

˙

. (27.14)
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• In the middle term of (27.10), N
2

?
h

p2ΠµνΠ
µν ´ Π2q, we rewrite

2ΠµνΠ
µν

´ Π2
“ ΠκλΠµν

p2hκµhλν ´ hκλhµνq

in order to differentiate it by hµν ,

B

Bhαβ

`

2ΠµνΠ
µν

´ Π2
˘

“ ΠκλΠµν
´

2δακδ
β
µhλν ` 2hκµδ

α
λδ

β
ν ´ δακδ

β
λhµν ´ hκλδ

α
µδ

β
ν

¯

“

“ 4ΠαλΠβνhλν ´ 2ΠΠαβ .

Recalling Section 23.4.1 once again, specifically equation (23.10) for the derivative of the
metric determinant, Bp´gq

Bgµν
“ p´gqgµν , we analogously take Bh

Bhαβ
“ hhαβ here on Σt, so

B

Bhαβ

ˆ

1
?
h

˙

“ ´
1

2h3{2

Bh

Bhαβ
“ ´

1

2h3{2
hhαβ “ ´

1

2
?
h
hαβ .

Hence, in total,

B

Bhαβ

ˆ

2ΠµνΠ
µν ´ Π2

?
h

˙

“

“
2

?
h

`

2ΠαλΠβνhλν ´ ΠΠαβ
˘

´
1

2
?
h
hαβ

`

2ΠµνΠ
µν

´ Π2
˘

. (27.15)

• Finally, in the first term of (27.10), 2ΠµνNpµ|νq , the momenta Πµν are taken as independent
of hαβ , and we rewrite

Nµ|ν “ hµκN
κ

|ν “ hµκ
`

Nκ
,ν `

p3qΓκνλN
λ
˘

“ hµκN
κ
,ν `

p3qΓµνλN
λ

“

“ hµκN
κ
,ν `

1

2
phµν,λ ` hλµ,ν ´ hνλ,µqNλ

ùñ 2Npµ|νq “ hµκN
κ
,ν ` hνκN

κ
,µ ` hµν,λN

λ

(the last two terms in the parenthesis together are anti-symmetric in µ, ν), so

Bp2ΠµνNpµ|νqq

Bhαβ
“ Πµνδpα

µ δ
βq
κ N

κ
,ν ` Πµνδpα

ν δ
βq
κ N

κ
,µ “ ΠνpαNβq

,ν ` ΠµpαNβq
,µ “

“ 2ΠµpαNβq
,µ “ ΠµαNβ

,µ ` ΠµβNα
,µ ,

Bp2ΠµνNpµ|νqq

Bhαβ,ι
“ Πµνδαµδ

β
ν δ

ι
λN

λ
“ ΠαβN ι ,

where the symmetrization in the former term is dictated by the symmetry of hαβ . Putting
the two terms together and rewriting them in terms of the 3D covariant derivative, we have

„

Bp2ΠµνNpµ|νqq

Bhαβ,ι

ȷ

,ι

´
Bp2ΠµνNpµ|νqq

Bhαβ
“

“ Παβ
,ιN

ι
` ΠαβN ι

,ι ´ ΠµαNβ
,µ ´ ΠµβNα

,µ “
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“

´

Παβ
|ι ´ ������p3qΓαισΠ

σβ
´

XXXXXX
p3qΓβισΠ

ασ
¯

N ι
` ΠαβN ι

,ι ´

´ Πµα
`

Nβ
|µ ´

XXXXXX
p3qΓβµσN

σ
˘

´ Πµβ
`

Nα
|µ ´ ������p3qΓαµσN

σ
˘

“

“ Παβ
|ιN

ι
` ΠαβN ι

,ι ´ ΠµαNβ
|µ ´ ΠµβNα

|µ “

“ Παβ
|ιN

ι
` Παβ

?
h

ˆ

N ι

?
h

˙

|ι

´ ΠµαNβ
|µ ´ ΠµβNα

|µ “

“ pΠαβN ι
q|ι ´ ΠµαNβ

|µ ´ ΠµβNα
|µ .

Therefore, collecting the above results for the three Hamiltonian terms, we conclude that

9Παβ :“ hαµh
β
ν£tΠ

µν
“ ´

BHg

Bhαβ
`

ˆ

BHg

Bhαβ,ι

˙

,ι

“

“ ´N
?
h

ˆ

p3qRαβ
´

1

2
p3qRhαβ ` Λhαβ

˙

´
N
?
h

`

2ΠαλΠβνhλν ´ ΠΠαβ
˘

`

`
N

4
?
h
hαβ

`

2ΠµνΠ
µν

´ Π2
˘

` pΠαβN ι
q|ι ´ ΠµαNβ

|µ ´ ΠµβNα
|µ . (27.16)

27.2.4 Boundary contribution to the field equations

In Chapter 23 on Lagrangian approach, a specific attention had to be devoted to the behaviour
of the metric (in fact of its derivatives) on the boundary of the chosen space-time region.
Actually, we showed in Section 23.4.6 that if only δgµν are assumed to vanish there, whereas
the variation of the metric derivatives is left free, a boundary term appears which then has
to be subtracted from the action in order to obtain correct field equations. However, the
boundary term could be expressed concisely as an integral of the shape-operator trace K
(called mean curvature) over the boundary.

Here, one dimension lower, the situation is more tricky. Let us primarily tackle the same
issue as recalled above: what kind of contribution to the Hamiltonian arises if we release
the assumption about vanishing of δgµν,α on the boundary δΩ of the 4D region Ω? What
does it imply for the situation on the 3D space-like hypersurface Σt where we formulate the
Hamiltonian picture?

It is natural to restrict to Σt by considering the space-time region Ω to be a “cylinder”
with space-like bases and time-like cylindrical hypersurface, and to obtain the 3D picture by
shrinking the height of the cylinder to zero. In such a limit, the conditions on the (now identi-
fied) bases should go over to the conditions on the hypersurface Σt itself, thus also inside the
relevant region (St) within that hypersurface, so one may expect that if the variations δgµν,α
do not vanish there, it might in fact contribute to the “bulk” (“volume”) behaviour. Below,
we demonstrate that the extra term thus originating can be expressed as proportional to δhαβ ,
so it indeed contributes to the variation with respect to hαβ , and thus to the derivative of the
Hamiltonian with respect to it. The behaviour on the now 2D, spatial boundary BSt which
arose by shrinking the originally 3D cylindrical surface, apparently should be queried as well,
but we will not address that point in this section, effectively assuming that there the variation
of hαβ,ι does vanish.
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Following again the analogy with the 4D case, we start from the 4D variation (23.13)
and notice the surface term (the second one), specifically how we fixed it in (23.14). For
convenience, we repeat the whole expression:

δ

ż

pR ´ 2Λq
?

´g d4x “

ż
ˆ

Rµν´
1

2
Rgµν` Λgµν

˙

δgµν
?

´g d4x `

ż

gµνδRµν

?
´g d4x ,

where the second term we arranged into the form
ż

pgµνδΓλνµ ´ gµλδΓννµq;λ
?

´g d4x ,

rewrote its integrand as a partial divergence of the vector
?

´g
`

gµνδΓλνµ ´ gµλδΓννµ
˘

and
thus got rid of it (with a little help from our friend C.F.G.).

In analogy, we thus have, one dimension lower, the integrand

δ
”

N
?
h
`

p3qR ´ 2Λ
˘

ı

“

“ ´N
?
h

ˆ

p3qRαβ
´

1

2
p3qRhαβ ` Λhαβ

˙

δhαβ ` N
?
h
`

hαβδp3qΓδβα ´ hαδδp3qΓββα
˘

|δ
,

where the opposite sign at the first term is because we work in terms of δhαβ rather than δhαβ ,
and N stays “intact” under the variation with respect to hαβ . The first part we have already
covered – see (27.14) – while the second term we are newly questioning now.

• First, write the new term as a “divergence of everything minus the extra term thus added”,

N
?
h
`

hαβδp3qΓδβα ´ hαδδp3qΓββα
˘

|δ
“

“
?
h
`

Nhαβδp3qΓδβα´Nhαδδp3qΓββα
˘

|δ
´

?
hN|δ

`

hαβδp3qΓδβα´hαδδp3qΓββα
˘

, (27.17)

of which the first term can be written in terms of partial divergence, so it does not con-
tribute, provided that δp3qΓs vanish on the 2D boundary BSt of our region St within Σt.

• Second, in perfect analogy with the 4D-case formulae (23.21) and (23.22) for the variations
of Christoffel symbols, the variations of 3D Gammas read

δp3qΓιβα “
1

2

“

pδhιβq|α ` pδhαιq|β ´ pδhβαq|ι

‰

`
p3qΓσβαδhσι , (27.18)

δp3qΓδβα “
1

2
hδι

“

pδhιβq|α ` pδhαιq|β ´ pδhβαq|ι

‰

. (27.19)

• As in the 4D case again, we can thus simplify
`

hαβδp3qΓδβα ´ hαδδp3qΓββα
˘

“

“
1

2
phαβhδι ´ hαδhβιq

“

pδhιβq|α ` pδhαιq|β ´ pδhβαq|ι

‰

“

“
1

2
phαβhδι ´ hαδhβιq

“

pδhιβq|α ´ pδhβαq|ι

‰

“ phαβhδι ´ hαδhβιq pδhιβq|α
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(because both the parenthesis and the bracket are anti-symmetric in rα, ιs), and so the
remaining term from the first step (the second one there) can be written as

´
?
hN|δ

`

hαβδp3qΓδβα ´ hαδδp3qΓββα
˘

“ ´
?
hN|δ phαβhδι ´ hαδhβιq pδhιβq|α “

“
?
h
`

N |αhβι ´ N |ιhαβ
˘

pδhβιq|α .

• Now the usual trick, finally: the above term we rewrite as

((((((((((((((((?
h
“`

N |αhβι ´ N |ιhαβ
˘

δhβι
‰

|α
´

?
h
`

N |αhβι ´ N |ιhαβ
˘

|α
δhβι “

“ ´
?
h
`

N |α
αh

βι
´ N |βι

˘

δhβι ,

where the first term represents partial divergence of
“
?
h
`

N |αhβι ´ N |ιhαβ
˘

δhβι
‰

, which,
due to the Gauss law, equals the flux of this vector over the 2D boundary BSt – and that is
zero due to the vanishing of δhβι there.

Thereby, we have derived that the correct result for the variation of the last term of the Hamil-
tonian (27.10) reads

δ
”

N
?
h
`

p3qR ´ 2Λ
˘

ı

“

“ ´N
?
h

ˆ

p3qRαβ
´

1

2
p3qRhαβ ` Λhαβ

˙

δhαβ ` N
?
h
`

hαβδp3qΓδβα ´ hαδδp3qΓββα
˘

|δ
“

“ ´N
?
h

ˆ

p3qRαβ
´

1

2
p3qRhαβ ` Λhαβ

˙

δhαβ ´
?
h
`

N |δ
δh

αβ
´ N |αβ

˘

δhαβ ,

and hence the overall result (27.16) has to be supplemented by the above second term,

9Παβ :“ hαµh
β
ν£tΠ

µν
“ ´

BHg

Bhαβ
`

ˆ

BHg

Bhαβ,ι

˙

,ι

“

“ ´N
?
h

ˆ

p3qRαβ
´

1

2
p3qRhαβ ` Λhαβ

˙

´
?
h
`

N |δ
δh

αβ
´ N |αβ

˘

´

´
N
?
h

`

2ΠαλΠβνhλν ´ ΠΠαβ
˘

`
N

4
?
h
hαβ

`

2ΠµνΠ
µν

´ Π2
˘

`

` pΠαβN ι
q|ι ´ ΠµαNβ

|µ ´ ΠµβNα
|µ . (27.20)

27.2.5 Boundary part of the Hamiltonian

Although we have supplemented the boundary contribution to the field equations, the bound-
ary part of the Hamiltonian has to be completed more carefully. We will include it via Leg-
endre transformation, so we need to first evaluate, in the 3+1 manner, the Lagrangian of the
action (23.25), i.e. of

S “

ż

Ω

pR ´ 2Λ ` 16πLngq
?

´g d4x ` 2ϵ

¿

BΩ

pK ´ Kflatq
?
h d3y ,
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where ϵ :“nιn
ι with nα the outward normal to BΩ. (We will focus on the gravitational part,

thus not taking Lng into account.) Two contributions have to be added to (27.10): one arising
from the 3+1 evaluation of the above boundary term 2ϵ

ű

BΩ
pK ´Kflatq

?
h d3y, and the other

arising from the divergence terms present in the 3+1 decomposition of the Ricci scalar R
(which we omitted in the derivation of (27.10)).

• The evaluation of the boundary term rests in proper grasp of the boundary BΩ. In the
3+1 picture, BΩ is composed of two space-like regions S1 and S2 selected within certain
two (partial) Cauchy hypersurfaces Σt1 and (later) Σt2 , and of a cylindrical-type, smooth
time-like “sleeve” B which is supposed to connect them in an orthogonal manner.5 On B,
the relevant quantities are defined by the unit space-like outer normal of B (denote it by
rµ) rather than by nµ: the extrinsic curvature reads there Kab “ rα;β

Bxα

Bza
Bxβ

Bzb
, with zi some

intrinsic coordinates on B, and the corresponding mean curvature isK“γabKab, where γab

is an inverse to the metric induced on B, i.e. to γab :“gµν
Bxµ

Bza
Bxν

Bzb
. Clearly γab is the space-

time metric “without the rµ direction” and it is (´``), namely γab Bxα

Bza
Bxβ

Bzb
“ gαβ ´ rαrβ .

Hence, the boundary term (without normalization Kflat for now) decomposes as

2ϵ

¿

BΩ

K
?

3D metric on BΩ d3y “ 2

ż

S1

K
?
h d3y ´ 2

ż

S2

K
?
h d3y ` 2

ż

B

K?
´γ d3z ,

because ϵ is ´1 for the bases S1 and S2 whereas it is `1 for B, while, moreover, the
future-pointing normal is an inward one for S1, thus the “opposite” sign of the first term.

• In derivation of the gravitational-Hamiltonian density (27.10), we were omitting the bound-
ary terms, so we took as the Lagrangian density just

Lg “ R ´ 2Λ “
p3qR ´ K2

` KνγK
νγ

´ 2Λ .

If not dropping the divergence terms, we would have had

Lg “
p3qR ´ K2

` KνγK
νγ

´ 2Λ ´ 2aδ ;δ ` 2pKnγq;γ ,

as given by the full Ricci-tensor decomposition (27.6). Using the Gauss theorem, the
omitted terms contribute by ´2

ű

BΩ
paδ ´Knδq dΣδ. Within the S1 and S2 regions, aδnδ“0

(since nδnδ ” ϵ“const) and dΣδ“nδ
?
h d3y, so one obtains there

´2

ż

S1,2

paδ ´ Knδqnδ
?
h d3y “ 2ϵ

ż

S1,2

K
?
h d3y ,

which exactly compensates the boundary term of the first item. On the side hypersurface
B, however, aδnδ ‰ 0 since aµ is the four-acceleration of nµ and nµ is not normal to B.
Actually, the normal of B is rµ, so on B the term ´2

ű

BΩ
paδ ´ Knδq dΣδ yields

´2

ż

B
pnδ ;ιn

ι
´Knδq rδ

?
´γ d3z “ ´2

ż

B
nδ ;ιn

ιrδ
?

´γ d3z “ 2

ż

B
rδ;ιn

δnι
?

´γ d3z .

5 That is, B is supposed to be orthogonal to all the Cauchy hypersurfaces Σt which it intersects, thus the field
nµ is everywhere tangent to it. Therefore, the normal to B which we are about to call rµ fulfils gµνnµrν “0.
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Summarizing from above, we have found that the gravitational part of the action (23.25)
yields, if boundary contributions are included,

Sg “

ż

Ω

p
p3qR ´ K2

` KνγK
νγ

´ 2Λq
?

´g d4x ` 2

ż

B

pK ` rδ;ιn
δnιq

?
´γ d3z . (27.21)

The boundary term can be worked out further. Writing the mean curvature of B as

K ” γabKab ” γab
ˆ

rα;β
Bxα

Bza
Bxβ

Bzb

˙

“ rα;β

ˆ

γab
Bxα

Bza
Bxβ

Bzb

˙

“ rα;βpgαβ ´ rαrβq ,

we obtain

K ` rδ;ιn
δnι “ rα;βpgαβ ´ rαrβ ` nαnβq “: k .

This means the projection of rα;β on the (spheroidal) 2D surface BSt given by intersection
of B with Σt, thus standing for the extrinsic curvature of that surface as a submanifold of Σt

(because rµ itself is tangent to Σt). Denoting such a quantity by k as indicated, we thus arrive
at the boundary result

2

ż

B
pk ´ kflatq

?
´γ d3z , (27.22)

where we have restored the appropriate normalization term kflat which ensures that the bound-
ary contribution does not diverge in the limit when the 2D surface BSt ” Σt X B is taken at
spatial infinity. (Geometrically, kflat represents the extrinsic curvature of that surface as em-
bedded in flat 3D space.)

In order to clearly identify the full Lagrangian and then the Hamiltonian (rather than
their spatial densities), let us finally decompose the integration over

?
´g d4x into the inte-

gration over St (i.e.
?
h d3y) and the time integration (Ndt). The integration on B can also

be decomposed accordingly, if choosing one of the za coordinates as t. One thus obtains the
complete gravitational action (27.21) in the form

S “

t2
ż

t1

»

–

ż

St

`

p3qR ´ K2
` KνγK

νγ
´ 2Λ

˘

N
?
h d3y ` 2

¿

BSt

pk ´ kflatqN
?
σ d2θ

fi

fl dt ,

where
?
σ d2θ has been used for the space-like area element on BSt.

Finally, taking the Legendre transformation

Hg “
Bp

?
´gLgq

B 9hµν

9hµν ´
?

´gLg “
Bp

?
´gLgq

BKαβ

BKαβ

B 9hµν

9hµν ´
?

´gLg

and realizing that the newly added boundary term (27.22) does not depend on 9hµν (on Kαβ),
one sees that it is sufficient, in order to get the full gravitational Hamiltonian, to subtract from
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the “dynamical” part of its density (27.10) the boundary part of
?

´gLg, and integrate it over
St and BSt, respectively,

Hg “

ż

St

Hg d
3y ´ 2

¿

BSt

pk ´ kflatqN
?
σ d2θ “

“

ż

St

„

2ΠµνNpµ|νq `
N

2
?
h

p2ΠµνΠ
µν

´ Π2
q ´ N

?
h p

p3qR ´ 2Λq

ȷ

d3y ´

´ 2

¿

BSt

pk ´ kflatqN
?
σ d2θ .

For the last point, it is more convenient to return to the original, “Lagrangian” variables by

Πµν
“

?
h pKµν

´ Khµνq , 2ΠµνΠ
µν

´ Π2
“ 2h

`

KµνK
µν

´ K2
˘

and to write

Hg “

ż

St

“

2pKµν
´ KhµνqNpµ|νq ` N

`

KµνK
µν

´ K2
´

p3qR ` 2Λ
˘‰

?
h d3y ´

´ 2

¿

BSt

pk ´ kflatqN
?
σ d2θ .

Namely, the last point is to rewrite the first term as

2pKµν
´ KhµνqNpµ|νq “ 2 rpKµν

´ KhµνqNµs
|ν ´ 2pKµν

´ Khµνq|νNµ

and see that this term consists of the “bulk” part ´2pKµν ´Khµνq|νNµ and the 3-divergence
part which can be shifted to the boundary BSt,

2

ż

St

rpKµν
´ KhµνqNµs

|ν

?
h d3y “ 2

¿

BSt

pKµν
´ KhµνqNµrν

?
σ d2θ .

The complete Hamiltonian thus acquires the form

Hg “

ż

St

“

´2pKµν
´ Khµνq|νNµ ` N

`

KµνK
µν

´ K2
´

p3qR ` 2Λ
˘‰

?
h d3y `

` 2

¿

BSt

rpKµν
´ KhµνqNµrν ´ Npk ´ kflatqs

?
σ d2θ . (27.23)

The second, boundary part does not contribute to the variation and thus to the field equations,
but one has to take it into account when attempting to find integral quantities from the Hamil-
tonian (from the Hamiltonian itself, not from its variation). In fact only the boundary terms
contribute “on-shell” because, as we have learnt, the “volume” terms of the Hamiltonian
vanish if constraint equations are satisfied.
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27.2.6 Mass and angular momentum of asymptotically flat space-times

Since the value of the Hamiltonian represents mass-energy, one may obtain this global quan-
tity by “on-shell” evaluation of the Hamiltonian. In such a case, only its boundary part is
left. This part is also zero for compact space-times, whereas for non-compact ones its value
depends on asymptotic behaviour at spatial infinity. We will compute the mass-energy for
asymptotically flat space-times.

Recall the basic relation (25.3) of the 3+1 decomposition, tµ :“ Bxµ

Bt
“Nnµ `Nµ. How

can this be expected to behave asymptotically? In the asymptotically flat case, it is natural to
require that, far away, t goes over to the asymptotic inertial time and tµ goes over to nµ which
at infinity becomes the four-velocity of inertial observers. This corresponds to the asymptotic
values Nµ“0, N“1. Under such a behaviour, the boundary Hamiltonian reduces to

MADM “ ´
1

8π
lim

BStÑ8

¿

BSt

pk ´ kflatq
?
σ d2θ , (27.24)

where we have added 1{p16πq in correspondence with the 1{p16πq-factor difference between
the gravitational and non-gravitational parts of the action (23.25). The quantity is called the
ADM mass, according to R. Arnowitt, S. Deser and C. W. Misner. Since the vector field tµ

generates time flow, the ADM mass represents the value of the Hamiltonian connected with
asymptotic time translation.

With the above hint, one could also judge that the total angular momentum of space-
time should similarly be connected with asymptotic rotation, i.e. with the vector field ϕµ “
Bxµ

Bϕ
, where ϕ is the asymptotic rotation angle. Such a choice of the flow would correspond

to N“0, Nµ“ϕµ, under which the Hamiltonian yields

JADM “ ´
1

8π
lim

BStÑ8

¿

BSt

pKµν
´ Khµνqϕµrν

?
σ d2θ (27.25)

(the minus sign just ensures the standard convention for the angular momentum orientation –
to be tested below).

Asymptotically flat circular space-times

Let us check what the ADM formulae lead to for the “Kerr-type”, asymptotically flat circular
space-times. We know from Section 22.4.3, equation (22.27), that at r " M the Kerr-type
metric reads

ds2 “ ´

ˆ

1 ´
2M

r

˙

dt2 ´
4J

r
sin2 θ dt dϕ `

ˆ

1 `
2M

r

˙

pdr2 ` r2dΩ2
q .

From (17.21), it is also easy to infer the inverse far-field metric, in particular,

gtt “ ´
Σ∆ ` p2Mr ´ Q2qpr2 ` a2q

Σ∆
“ ´1 ´

p2Mr ´ Q2qpr2 ` a2q

Σ∆
Ñ ´1 ´

2M

r
,

gtϕ “ ´
2Mr ´ Q2

Σ∆
a Ñ ´

2J

r3
.
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The hypersurfaces Σt are naturally chosen as given by the constant Killing time t, and the
boundary BSt of a region St within Σt is chosen to be the coordinate sphere r“ const. The
respective induced 3D and 2D metrics read

hijdy
idyj “

ˆ

1 `
2M

r

˙

pdr2 ` r2dΩ2
q , σABdθ

AdθB “

ˆ

1 `
2M

r

˙

r2dΩ2 .

The future unit normal nµ of Σt is proportional to the gradient t,µ , with the normalization
gµνnµnν “ ´1. Similarly, the unit outer normal rµ of BSt surfaces, tangent to Σt, is propor-
tional to the gradient r,µ , with the normalization gµνrµrν “ 1. In the coordinates pt, r, θ, ϕq,
this implies t,µ“δtµ and r,µ“δrµ , with

nt “
´1

?
´gtt

“
´1

b

1 ` 2M
r

.
“ ´1 `

M

r
, rr “

1
?
grr

“
?
grr “

c

1 `
2M

r
.
“ 1 `

M

r
.

The 2D extrinsic curvature of BSt (as a submanifold of Σt) thus amounts to

k ” rα;βpgαβ ´ rαrβ ` nαnβq “ rβ ;β ` rα;βn
αnβ “

1
?

´g
p
?

´g rrq,r ´ Γrttr
r
pntq2 .

Substituting there Γrtt “ ´1
2
gtt,r “ M

r2
,

?
´g “ Σ sin θ Ñ r2 sin θ and

rr “
1

?
grr

Ñ 1 ´
M

r
, nt “ gttnt Ñ 1 `

M

r
, nϕ “ gϕtnt Ñ

2J

r3

ˆ

1 ´
M

r

˙

,

we find

k “
1

r2
p2r ´ Mq ´

M

r2

ˆ

1 ´
M

r

˙ˆ

1 `
M

r

˙2

“
2

r2
pr ´ Mq ` Opr´3

q .

The mean curvature of a sphere r“ const in a 3D Euclidean space can be computed by the
same formula, where however gtt“´1 ñ Γrtt“0 now, so only left is

kflat “ rβ ;β “
1

?
´g

p
?

´g rrq,r “
2

r
.

Hence, k ´ kflat “ ´2M{r2, which, together with
?
σ d2θ“

`

1 ` 2M
r

˘

r2 sin θ dθdϕ, yields

MADM “ ´
1

8π
lim
rÑ8

2π
ż

0

π
ż

0

pk´kflatq

ˆ

1 `
2M

r

˙

r2 sin θ dθdϕ “
1

8π
lim
rÑ8

ˆ

2M

r2
4πr2

˙

“ M .

Now to the angular momentum (27.25). First, hµνϕµrν “gµνϕµrν “0, so we only need
to compute Kµνϕ

µrν “ Kϕrr
r “ Kϕr

`

1 ´ M
r

˘

. By the definition Kµν “nµ;βh
β
ν , we find

Kϕr “ nϕ;βpδβr ` nβ��nr q “ nϕ;r “ ´Γιrϕnι “ ´Γιrϕn
ι

“ ´
1

2
gϕt,rn

t
´

1

2
gϕϕ,rn

ϕ
“
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“ ´
J

r2
sin2 θ

ˆ

1 `
M

r

˙

´ pr ` Mq sin2 θ
2J

r3

ˆ

1 ´
M

r

˙

“ ´
3J

r2
sin2 θ ` Opr´3

q .

Therefore,

JADM “ ´
1

8π
lim
rÑ8

2π
ż

0

π
ż

0

Kµνϕ
µrν

ˆ

1 `
2M

r

˙

r2 sin θ dθdϕ “

“
3J

4
lim
rÑ8

»

–

ˆ

1 ´
M

r

˙ˆ

1 `
2M

r

˙

π
ż

0

sin3 θ dθ

fi

fl “
3J

4

π
ż

0

sin3 θ dθ “ J .

Hence, for asymptotically flat space-times, the boundary part of the Hamiltonian likely
provides a reasonable way how to compute the total amount of a quantity, as connected with
a certain asymptotic vector-field flow. Some alternative options of how to find space-time’s
global parameters will be suggested in Section 28.10.

27.2.7 Checking the evolution equation for K-mu-nu

Hamiltonian equation (27.20) for 9Παβ should be equivalent to the evolution equation (25.47)
for Kµν , thus, without sources (Tβδ“0), to

£tKνλ “ N
`

aν|λ ` aνaλ ´ KKνλ ` 2KνγK
γ
λ ´

p3qRνλ ` Λhνλ
˘

` £NKνλ . (27.26)

The relation between the two quantities reads Πµν “
?
h pKµν´Khµνq (27.8), so one might

like to check whether submission of the respective evolution equations for Kµν and hµν into
the Lie derivative of this relation really yields the same equation as (27.20).6

Regarding that

Bh

Bhρσ
“ hhρσ ùñ

B
?
h

Bhρσ
“

1

2
?
h

Bh

Bhρσ
“

1

2
?
h
hhρσ “

?
h

2
hρσ ,

the Lie derivative of Πµν “
?
h pKµν ´ Khµνq gives

9Πµν
“ p

?
hq

9
pKµν

´ Khµνq `
?
h pKµν

´ Khµνq
9
“

“
B

?
h

Bhρσ
9hρσpKµν

´ Khµνq `
?
h p 9Kµν

´ 9Khµν ´ K 9hµνq “

“
1

2
hρσ 9hρσΠ

µν
`

?
h p 9Kµν

´ 9Khµν ´ K 9hµνq , (27.27)

where we remind the notation 9hµν :“hµαh
ν
β£th

αβ (and the like). The first useful term thus is
9hρσ which we express from (25.16) and (27.9),

9hρσ “ 2NKρσ ` Nρ|σ ` Nσ|ρ “
N
?
h

p2Πρσ ´ Πhρσq ` Nρ|σ ` Nσ|ρ (27.28)

6 Exclamation mark is rarely used in scientific literature, and it is even strictly excluded in some journals.
Still E. Poisson uses one in [35] when warning the reader that it is tedious to derive equation (25.47). Yet much
more it applies to our current whim... So, will you please consider this part an optional exercise.



506 27. HAMILTONIAN FORMULATION OF THE EINSTEIN EQUATIONS

ùñ hισ 9hρσ “
N
?
h

`

2Πι
ρ ´ Πhιρ

˘

` hισpNρ|σ ` Nσ|ρq (27.29)

ùñ hρσ 9hρσ “ 2NK ` 2Nσ
|σ “ ´

NΠ
?
h

` 2Nσ
|σ . (27.30)

In the terms 9hµν and 9Kµν , mind not to naively rise indices of 9hµν , 9Kµν , because the Lie
derivative does not commute with the metric (Lie derivative of the metric is not zero in gen-
eral). It is safer to compute the contravariant counter-parts of £nhµν ” 2Kµν (25.14), £thµν
(25.13) and £Nhµν (25.15) “from definitions”:

£nh
αβ

“ hαβ ;ιn
ι

´ nα;ιh
ιβ

´ nβ ;ιh
αι

“

“ ���aαnβ `
HHHnαaβ ´ nα;β ´ ���aαnβ ´ nβ;α ´

HHHaβnα “ ´nα;β ´ nβ;α , (27.31)

£Nh
αβ

“ hαβ ;ιN
ι

´ Nα
;ιh

ιβ
´ Nβ

;ιh
αι

“ hαβ;ιhρι tρ ´ Nα;ιhβι ´ Nβ;ιhαι

ùñ hµαh
ν
β£Nh

αβ
“ ���hµν|ρ tρ ´ Nµ|ν

´ N ν|µ , (27.32)

£th
αβ

“ hαβ ;ιt
ι

´ tα;ιh
ιβ

´ tβ ;ιh
αι

“

“ hαβ ;ιpNn
ι

` N ι
q ´ pNnα ` Nα

q;ιh
ιβ

´ pNnβ ` Nβ
q;ιh

αι
“

“ N£nh
αβ

´ N |βnα ´ N |αnβ ` £Nh
αβ

“

“ N£nh
αβ

` £Nh
αβ

´ Naβnα ´ Naαnβ . (27.33)

By substitution of (27.31) and (27.32) to (27.33), we also reach the contravariant counter-
parts of (25.14) and (25.16), respectively (note the opposite signs of the Lie-derivative terms!):

£th
αβ

“ ´Npnα;β ` nβ;α ` aαnβ ` aβnαq ` £Nh
αβ

“ ´2NKαβ
` £Nh

αβ

ùñ 9hµν ” hµαh
ν
β£th

αβ
“ hµαh

ν
β

`

´2NKαβ
` £Nh

αβ
˘

“

“ ´2NKµν
´ Nµ|ν

´ N ν|µ
“ ´

N
?
h

p2Πµν
´ Πhµνq ´ Nµ|ν

´ N ν|µ , (27.34)

where (27.9) has been employed in the last equality.
Further, we express 9Kµν in terms of £tKκλ:

hκαh
λ
β£tKκλ ” 9Kαβ “ phαρhβσK

ρσ
q9 “ 9hαρhβσK

ρσ
` hαρ 9hβσK

ρσ
` hαρhβσ 9Kρσ

“

“ 9hαρK
ρ
β ` 9hβσK

σ
α ` hαρhβσ 9Kρσ

ˇ

ˇ ¨ hµαhνβ

ùñ hµαhνβ 9Kαβ “ hµα 9hαρK
ρν

` hνβ 9hβσK
µσ

` 9Kµν

ùñ 9Kµν
“ hµαhνβ 9Kαβ ´ hµα 9hαρK

ρν
´ hνβ 9hβσK

µσ (27.35)

ùñ hµν 9Kµν
“ hαβ 9Kαβ ´ hαν

9hαρK
ρν

´ hβµ
9hβσK

µσ
“ hαβ 9Kαβ ´ 2 9hαρK

αρ

ùñ 9K “ phµνK
µν

q9 “ 9hµνK
µν

` hµν 9Kµν
“ hαβ 9Kαβ ´ 9hαρK

αρ , (27.36)

where we have abbreviated hµρh
ν
σ

9Kρσ ” hµρh
ν
σh

ρ
τh

σ
ω£tK

τω “ hµτh
ν
ω£tK

τω ” 9Kµν . The final
preparatory point is to use the expressions (27.26) and (25.48) in the Lie-derivative terms of
the above results for 9Kµν and 9K. Firstly, expressing the Kµν terms of (27.26) from (27.9),

´KKνλ ` 2KνγK
γ
λ “

Π

4h
p2Πνλ ´ Πhνλq `

1

2h

`

4ΠνγΠ
γ
λ ´ 4ΠΠνλ ` Π2hνλ

˘

“
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“
1

4h

`

8ΠνγΠ
γ
λ ´ 6ΠΠνλ ` Π2hνλ

˘

,

equation (27.26) assumes the form

£tKνλ “ N|νλ `
N

4h

`

8ΠνγΠ
γ
λ ´ 6ΠΠνλ ` Π2hνλ

˘

´ N
`

p3qRνλ ´ Λhνλ
˘

` £NKνλ

ùñ hµαhνβ 9Kαβ “ N |µν
`
N

4h

`

8ΠµγΠν
γ ´ 6ΠΠµν

` Π2hµν
˘

´

´ N
`

p3qRµν
´ Λhµν

˘

` hµαhνβ£NKαβ . (27.37)

The last ingredient needed is

hµαhνβ£NKαβ “ hµαhνβ pKαβ;ιN
ι

` N ι
;αKιβ ` N ι

;βKαιq “

“ hµαhνβ pKαβ;ιh
ι
κN

κ
` Nι;αh

ικKκβ ` Nι;βh
ικKκαq ” Kµν

|κN
κ

` Nκ|µKν
κ ` Nκ|νKµ

κ “

“
1

2
?
h

“

2Πµν
|κN

κ
´ Π|κN

κhµν ` Nκ|µ
p2Πν

κ ´ Πhνκq ` Nκ|ν
p2Πµ

κ ´ Πhµκq
‰

.

Using the latter, (27.37) and (27.28) in (27.35) and in (27.36), we obtain

9Kµν
“ N |µν

`
N

4h

`

8ΠµγΠν
γ ´ 6ΠΠµν

` Π2hµν
˘

´ N
`

p3qRµν
´ Λhµν

˘

`

`
1

2
?
h

”

2Πµν
|κN

κ
´ Π|κN

κhµν ` ((((((((((
Nκ|µ

p2Πν
κ ´ Πhνκq `

hhhhhhhhhhNκ|ν
p2Πµ

κ ´ Πhµκq

ı

´

´
N

2h
p2Πµ

ρ ´ Πhµρqp2Πρν
´ Πhρνq ´

1

2
?
h

pNµ|ρ
` ���Nρ|µ

qp2Πν
ρ ´ Πhνρq ´

´
N

2h
p2Πν

σ ´ Πhνσqp2Πµσ
´ Πhµσq ´

1

2
?
h

pN ν|σ
`

HHHNσ|ν
qp2Πµ

σ ´ Πhµσq “

“ N |µν
´
N

4h

`

8ΠµγΠν
γ ´ 10ΠΠµν

` 3Π2hµν
˘

´ N
`

p3qRµν
´ Λhµν

˘

`

`
1

2
?
h

“

2Πµν
|κN

κ
´ Π|κN

κhµν ´ 2Πν
ρN

µ|ρ
´ 2Πµ

ρN
ν|ρ

` ΠpNµ|ν
` Nν|µ

q
‰

,

9K “ N |σ
σ `

N

4h

`

8ΠµγΠµγ ´ 3Π2
˘

´ Np
p3qR ´ 3Λq `

`
1

2
?
h

”

2Π|κN
κ

´ 3Π|κN
κ

` (((((((((((
2Nκ|µ

p2Πκµ ´ Πhκµq

ı

´

´
N

2h
p2Παρ ´ Πhαρqp2Παρ

´ Πhαρq ´
1

2
?
h (((((((((((((((

pNα|ρ ` Nρ|αqp2Παρ
´ Πhαρq “

“ N |σ
σ ´

NΠ2

4h
´ Np

p3qR ´ 3Λq ´
1

2
?
h
Π|κN

κ .

Finally, we substitute these last relations for 9Kµν and 9K, together with (27.30) and
(27.34), to the formula (27.27), 9Πµν “ 1

2
hρσ 9hρσΠ

µν `
?
h 9Kµν ´

?
h 9Khµν ´

?
hK 9hµν :

9Πµν
“ ´

NΠ

2
?
h
Πµν

` Nσ
|σΠ

µν
`

?
hN |µν

´
N

4
?
h

`

8ΠµγΠν
γ ´ 10ΠΠµν

`
XXXX3Π2hµν

˘

´
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´ N
?
h
`

p3qRµν
´ Λhµν

˘

` Πµν
|κN

κ
´

�������1

2
Π|κN

κhµν ´ Πν
ρN

µ|ρ
´ Πµ

ρN
ν|ρ

`

`
���������XXXXXXXXX
Π

2
pNµ|ν

` N ν|µ
q ´

?
hN |σ

σh
µν

`

Z
Z

Z
ZZ

NΠ2

4
?
h
hµν ` N

?
h p

p3qR ´ 3Λqhµν `

`
�������1

2
Π|κN

κhµν ´
NΠ

2
?
h

p2Πµν
´

XXXΠhµν q ´
���������XXXXXXXXX
Π

2
pNµ|ν

` N ν|µ
q “

“ ´
N
?
h

`

2ΠµγΠν
γ ´ ΠΠµν

˘

` pΠµνNκ
q|κ `

?
h
`

N |µν
´ N |σ

σh
µν
˘

´

´ Πν
ρN

µ|ρ
´ Πµ

ρN
ν|ρ

´ N
?
h
`

p3qRµν
´

p3qRhµν ` 2Λhµν
˘

.

This indeed reproduces equation (27.20) we obtained in the Hamiltonian way, including the
boundary term, provided that one employs the Hamiltonian constraint (27.11) and expresses

N
?
h

ˆ

1

2
p3qR ´ Λ

˙

hµν “
N

4
?
h

`

2ΠαβΠ
αβ

´ Π2
˘

hµν .

Namely, it brings the Ricci-tensor parenthesis to the Einsteinian form,

´ N
?
h
`

p3qRµν
´

p3qRhµν ` 2Λhµν
˘

“

“ ´N
?
h

ˆ

p3qRµν
´

1

2
p3qRhµν ` Λhµν

˙

` N
?
h

ˆ

1

2
p3qR ´ Λ

˙

hµν “

“ ´N
?
h

ˆ

p3qRµν
´

1

2
p3qRhµν ` Λhµν

˙

`
N

4
?
h

`

2ΠαβΠ
αβ

´ Π2
˘

hµν .

Oπϵρ ϵδϵι δϵιξαι.



CHAPTER 28

Conservation laws

It is extremely useful if a certain quantity is conserved along the evolution of a system. Such
a circumstance represents a constraint on the degrees of freedom and serves as a “boundary
condition” of a solution. Expressions for the conserved quantities (“integrals of the mo-
tion”) typically contain one-degree-lower derivatives than the equations of motion, which
itself enables to solve certain aspects of the problem in an easier way. A simple example is a
(one-dimensional) motion of a particle in the potential V pxq: the corresponding equation of
motion m:x “ ´

dV pxq

dx
can be rewritten, if multiplied by 9x, as

d

dt

„

1

2
m 9x2 ` V pxq

ȷ

“ 0 i.e.
1

2
m 9x2 ` V pxq “ const .

The conservations are usually associated with certain symmetries of the system. Here above,
it is the independence of the potential V of time t which brings the conservation of energy.

Or, in chapter 11 on Lie derivative, we observed that if the metric does not change under
the flow of a certain vector field ξµ (a “space-time symmetry” exists), the four-momentum
projection pµξµ stays constant along any geodesic. Here we will consider behaviour of the
whole theory under transformations of variables (not just coordinates), in order to see whether
a possible invariance again implies any conservation laws.

We will start from the Lagrangian formulation, Chapter 23. Let an action is given by
a Lagrangian density (L) depending on location xµ and on the pertinent field(s) ψµpxq and
its (their) first and possibly second partial derivatives. The requirement that the action not be
altered by change of the field(s), i.e. that its variation with respect to the field(s) vanish, one
obtains the Euler-Lagrange equations (23.3),

rELpLqs
µ :“

BL

Bψµ
´

„

BL

Bψµ,α

ȷ

,α

`

„

BL

Bψµ,αβ

ȷ

,αβ

“ 0 , (28.1)

where rELs (with appropriate index) is called the Euler operator and where, for brevity, we
employ the usual gothic notation Lpx, ψpxqq :“

a

´gpxq Lpx, ψpxqq for the Lagrangian
scalar density (it has weight w “ `1). Note that we will only sometimes list explicitly the
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dependences of L on all the variables, i.e. on x (four xµ actually), on field(s) ψpxq and on
their derivatives up to a certain order (usually 1st or 2nd). If writing just L or Lpx, ψpxqq, we
tacitly admit a possible dependence on derivatives of ψ as well.

28.1 Mystery of symmetry, mystery of action
What underlies the theory of relativity is a fundamental surprise: although the bodies and
fields of the physical world are (of course) not invariant under generic coordinate transforma-
tions, still the rules which govern their behaviour do have such a symmetry. And it has be-
come clear that there even exist continuous symmetries which do not concern spatio-temporal
relations and which hide deeper in physical theories. They are called gauge symmetries, be-
cause they typically apply to quantities which represent more degrees of freedom than how
many are possessed by actual physical system (and thus they can partially be “gauged” ac-
cording to what problem one needs to address). In modern era, it is not even so that theorists
would ask which symmetry the given theory has, but rather they require, from the very be-
ginning, the symmetry of the theory (of the action) with respect to a certain Lie group of
continuous (“gauge”) transformations. To each generator of the Lie algebra associated with
the given Lie group, there corresponds a gauge field which has to be properly inserted in
the action in order to ensure the demanded invariance of the latter. (By quantization of this
field, one obtains “gauge bosons” as carriers of the given interaction. In the gauge theories
of fundamental interactions, these are photons, W and Z bosons, and gluons. In gravitation,
a similar role should be played by the yet hypothetical graviton.)

The symmetry transformations of a given gauge theory can be global or local, the
former acting everywhere in the same manner (having constant parameters), whereas the
latter acting in dependence on location (their parameters are functions of coordinates). It is
one of the “mantras of theoretical physics”, as sometimes aptly referred to, that the symmetry
of a (non-dissipative) system with respect to global continuous transformations implies the
respective number of physical conservation laws, whereas the symmetry with respect to local
continuous transformations implies mathematical identities which represent constraints for
non-physical (gauge) degrees of freedom. Also common is to speak of dynamical vs. non-
dynamical symmetries, because the former imply conservation laws for dynamical degrees
of freedom, whereas the latter imply constraints for dynamical equations which effectively
fix the gauge arbitrariness. The first/second case is addressed by the first/second Noether’s
theorems. They both belong to the most important results in theoretical physics.

The one-to-one link between symmetries and conservation laws naturally appears within
the Lagrangian formalism, which itself builds on another mysterious feature of the physical
Universe: although processes often seem to occur and run rather casually, they in fact follow
very special routes along which certain quantities (action functionals) are extremized. This
is not to claim that one could not study the symmetries directly on the equations of motion;
after all, it is not that every valuable differential equation, possibly possessing interesting
symmetries, follows by variation of any action. However, i) the Hamilton principle being so
effective and generic, it also seems to be suitable for the discussion of symmetries; and, ii)
the symmetries which appear on the level of action/Lagrangian are stronger in that they are
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“of shell”, not necessarily depending on the equations of motion.
The most important message of this chapter will be that if the action is invariant under

a certain (finite) Lie group of global transformations, then to every generator of the asso-
ciated Lie algebra there corresponds a conserved Noether current (it satisfies a continuity
equation), which in turn can be integrated to obtain a conserved Noether charge.

28.2 Action, Lagrangian, field equations, and transformations
Lagrangian depends on the position xµ and on the fields ψ which themselves depend on xµ.
One can change both: the coordinates, which necessarily induces a certain transformation of
the fields, and the fields themselves (without necessarily changing the coordinates); the latter
are usually called intrinsic, internal, geometrical, or gauge transformations.1

• The field equations (or “equations of motion” in mechanical parallel) select, from within
the “kinematically possible” configurations (or trajectories) of a system, those which the
system could really assume (or follow). In the Lagrangian approach, one looks for them by
varying the action with respect to the respective field(s) at a given location and in a given
coordinate system. The basic variations (of the fields) are arbitrary yet assumed to vanish
on a boundary of the region in question.

• When asking about conservation laws or constraints of a theory, one looks for the invari-
ance of the action with respect to variations of anything on which it depends in principle,
irrespectively of any dynamical equations. Usually it means variation of the fields as well
as of the coordinates (thus including the coordinate location and the integration domain).
Here the variations are not required to vanish on any boundary, yet it is clear they must be
much more special to generate symmetry.

Physically, one asks when the variation with respect to a given variable “does not change
physics”. In GR, “physics” should primarily be invariant under general diffeomorphisms, so
the Lagrangian L (and thus the action) has to be an invariant, hence L ”

?
´gL has to be

a scalar density (of weight `1). However trivial such a demand might look, remember that
we were able, in Section 23.4.5, to derive from it the conservation of the energy-momentum
tensor. Still more interesting is to inspect the behaviour of the action under the change of the
fields ψ (such as the metric in the GR vacuum case). The main question will be what are the
implications of the invariance with respect to various types of variations.

“Not to change physics” actually involves a number of subtle issues. One generally
has four levels of description: the action, the Lagrangian (density), the equations of motion
(called field equations in a field theory), and specific solutions of the latter. These need
not share the same symmetries. Most important is the invariance of the field equations,
because these determine the physical prediction. In the Lagrangian formulation, it means to
leave unchanged the Euler-Lagrange equations (28.1). First, though it is not necessary for the

1 In reference to the fibre-bundle picture, the coordinate transformations are sometimes called “horizontal”,
while the intrinsic transformations are called “vertical”. We don’t consider transformations of parameters (e.g.
coupling constants) on which the theory may also depend.
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discussion of the conservation laws, it is natural in GR to assume that the fields ψ are tensorial
and that the action and the Lagrangian are invariant with respect to coordinate transformations
pxµ Ñ x1µq. This ensures that the EL equations are tensorial (one then usually writes them
in terms of covariant derivatives). Still there remains the question of what happens if, in
addition, the fields change by some gauge transformation. How to then ensure that the EL
equations keep their form? Since all their terms are given by the first derivatives of L with
respect to the fields and their derivatives, it is clearly sufficient (not [necessarily] necessary)2

if the Lagrangian density is form-invariant, i.e. if it keeps the same functional dependence
on its variables, “L1 “L”.

What about the action? The following computation is crucial for everything below, so
let us perform it carefully, from both the active and the passive point of view:

• “Active” point of view: the coordinate part of the transformation shifts points (thus also
the integration region), while the coordinate mesh “stays still”. One proceeds like

S 1
rψ1

s ”

ż

Ω1

L1
px1, ψ1

px1
qq d4x1 1q

“

ż

Ω1

Lpx1, ψ1
px1

qq d4x1 2q
“

ż

Ω1

Lpx, ψ1
pxqq d4x

3q
“

3q
“

ż

Ω

Lpx, ψ1
pxqq d4x `

ż

BΩ

Lpx, ψ1
pxqq δxαnαd

3x
4q
“

4q
“

ż

Ω

Lpx, ψ1
pxqq d4x `

ż

Ω

rLpx, ψpxqq δxαs,α d
4x . (28.2)

Steps: 1) Form invariance of Lagrangian: L1 “L. 2) The coordinates are “fixed”, and x is
just a dummy integration variable, so there is no difference to denote back x1 Ñx. 3) With
the coordinate transformation, the integration region Ω changed infinitesimally, to Ω1. The
corresponding change of the action is given by an integral of Lpx, ψ1pxqq over the volume
difference between Ω and Ω1, i.e. over the boundary BΩ multiplied by projection of the
shift δxα to the outward normal of BΩ (we called it nα). 4) This “boundary” term was
finally expressed as a divergence integrated over the original domain, with ψ already used
instead of ψ1, because the term is already Opδq.

• “Passive” point of view: the integration domain Ω stays fixed, while the coordinates shift.
This case is more delicate since the Jacobian of the transformation

ˇ

ˇ

Bx1

Bx

ˇ

ˇ enters the integral.
It is worth computing its expansion to linear order in δ right now:

Mµ
α :“

Bx1µ

Bxα
“ δµα` pδxµq,α ñ TrM“ 4`pδxµq,µ , Mn

“ δµα ` npδxµq,α ` Opδ2q ,

so, substituting to the relation (A.10), i.e.

detMµ
α “

1

4!

“

pTrMq
4

´ 6 pTrMq
2TrM2

` 8TrM TrM3
´ 6TrM4

` 3 pTrM2
q
2
‰

,

2 This note is not necessarily mysterious: multiplication of a Lagrangian density by a constant “trivially” does
not change the EL equations, yet it is not covered by the option below. And note in passing that although it does
not “change physics”, such a scaling does change the action.
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we have, to linear order,

pTrMq
4

“ 44 r1 ` pδxµq,µs , pTrMq
2

“ 8 r2 ` pδxµq,µs , TrMn
“ 4 ` npδxµq,µ

ùñ det rδµα` pδxµq,αs “ 1 ` pδxµq,µ .

So, let us compute the action integral in the “passive” point of view,

S 1
rψ1

s ”

ż

Ω

L1
px1, ψ1

px1
qq d4x1 1q

“

ż

Ω

Lpx1, ψ1
px1

qq d4x1
2q
”

2q
”

ż

Ω

Lpx ` δx, ψ1
px ` δxqq

ˇ

ˇ

ˇ

ˇ

Bx1

Bx

ˇ

ˇ

ˇ

ˇ

d4x
3q
“

3q
“

ż

Ω

!

Lpx, ψ1
pxqq ` rLpx, ψ1

pxqqs,α δx
α
)

r1 ` pδxµq,µs d4x
4q
“

4q
“

ż

Ω

Lpx, ψ1
pxqq d4x `

ż

Ω

rLpx, ψpxqq δxαs,α d
4x . (28.3)

Steps: 1) Same as above. 2) Just a substitution. 3) Expansion of L and of the Jacobian in
δx to linear order. 4) Restricting to linear δ order in the result of the multiplication.

The last step is to evaluate the
ş

Ω
Lpx, ψ1pxqq d4x term:

ż

Ω

Lpx, ψ1
pxqq d4x ”

ż

Ω

Lpx, ψ ` δ̄ψq d4x “

ż

Ω

„

Lpx, ψpxqq `
δL

δψ
δ̄ψ

ȷ

d4x “

” Srψs `

ż

Ω �
�
�δL

δψ
δ̄ψ d4x , (28.4)

where the second term is zero if the (original) Euler-Lagrange equations are valid.
Hence, the EL equations keep their form if the Lagrangian density is form-invariant.

In such a case, the action only (possibly) changes by a term which is given by a divergence.
Is not it so that it actually makes no harm to add to the Lagrangian density any term given
by total partial divergence? Yes, but, more precisely, if one considers a problem with L
depending on ψ up to the k-th derivatives, the divergence term can at most depend on the
pk´1q-th derivatives. For a Lagrangian depending on the fields ψ and their 1st and 2nd
derivatives, for example, this means to take four scalars Qαpxµ, ψpxq, ψ,ρpxqq such that

S 1
rψ1

s “ Srψs ´

ż

Ω

Qα
,αpxµ, ψ, ψ,ρq d

4x ” S ´

ż

Ω

Qα
,α d

4x . (28.5)

Then the variation of S 1 with respect to ψ1 really equals that of S with respect to ψ, because
ż

Ω

Qα
,α d

4x “

ż

BΩ

Qα nα d
3x

ùñ δ̄

ż

Ω

Qα
,α d

4x “

ż

BΩ

δ̄Qα nα d
3x “

ż

BΩ

BQα

Bψ
δ̄ψ nα d

3x `

ż

BΩ

BQα

Bψ,ρ
δ̄ψ,ρ nα d

3x “ 0
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(since both δψ and δψ,ρ are supposed to vanish on the boundary BΩ). As restated in a differ-
ent way: under the standard assumptions on the boundary (vanishing of the variations), the
Lagrangian density is not unique – for a given problem, there is the whole class of them mu-
tually differing by divergence terms. Note, however, that the value of the action is modified
by the divergence term, at least if the latter does not vanish on the boundary.

To summarize, combining the evaluation of S 1rψ1s with the finding that the EL equa-
tions are not altered by adding any divergence term to the Lagrangian density, we obtain

ż

Ω

Lpx, ψ1
pxqq d4x `

ż

Ω

rLpx, ψpxqq δxαs,α d
4x “

ż

Ω

Lpx, ψpxqq d4x ´

ż

Ω

Qα
,α d

4x . (28.6)

This relation will be crucial later. Remember that it follows from the form-invariance of the
Lagrangian. The latter ensured the form-invariance of the EL equations, yet the relation does
not require that they are satisfied (i.e., it is “off-shell”).

Remarks

• Irrelevance of the divergence terms applies to the Lagrangian (spatial) densities, employed
to describe continuous problems, such as those of physical fields. (The densities have to be
integrated over 4D regions to get actions.) Discrete problems, such as those of particles, are
described by Lagrangians (which are only being integrated over time). In the Lagrangian,
correspondingly, irrelevant are time-derivative terms:

δ̄S 1
“ δ̄S ´ δ̄

τ2
ż

τ1

dF
dτ

dτ “ δ̄S ´ δ̄rFs
τ2
τ1

“ δ̄S ´ ����δ̄Fpτ2q ` ����δ̄Fpτ1q ,

because the variation vanishes at the end points, δ̄Fpτ1q“0, δ̄Fpτ2q“0.

• Some authors denote the “symmetry modulo the divergence term” as quasi-symmetry.
Clearly the quasi-symmetry is designed so that it is sufficient for the Euler-Lagrange equa-
tions to stay exactly the same. It holds that every symmetry of the Lagrangian is inherited
by the Euler-Lagrange equations, but the converse is not true – the equations may have
richer symmetries than the Lagrangian. (We stressed that we speak of sufficient conditions
for the EL-equations covariance.)

• (Quasi-)symmetries of the Lagrangian density may not map to the same (quasi-)symmetries
of the action. One of the reasons is the dependence of S on the region Ω: if the region is
more-than-1D, it need not satisfy the given symmetry. It may also hold in the opposite
direction: the integration may “rectify” certain asymmetries of the Lagrangian. In other
words, one has to also take into account how Ω changes under the (coordinate) transfor-
mation. On the other hand, it is clear from the notion of quasi-symmetry that some trans-
formations may induce the extra divergence (or total derivative) terms in the Lagrangian,
which however may not contribute to the action (in such a case, one would say that the
quasi-symmetry of the Lagrangian translates to the full symmetry of the action).
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• The last item in the chain are specific solutions of the field equations. These need not
inherit the symmetries of the field equations – one then speaks of the spontaneous sym-
metry breaking. This phenomenon is extremely important in many areas (particle physics,
condensed matter, cosmology, etc.), but it will not be in our focus here.

• If treating the variational problem covariantly (see section 23.2.1), one proceeds analo-
gously, just using the bare Lagrangian density (L, without

?
´g) and covariant derivatives

of the fields instead of partial ones. In particular, the equivalent actions then differ by terms
given by integrals of Qα

;αpx, ψ, ψ;ρq over an invariant volume. (Needless to say, in order
to keep the action invariant, Qα has to be a four-vector then.)

28.2.1 Trivial (or null) Lagrangians

So, Lagrangian densities fully given by partial divergences of some quadruples of functions
are trivial in the sense that, under proper boundary conditions, their Euler-Lagrange equations
are satisfied trivially (by any function). Is a converse also true? -Yes:

Lemma: A Lagrangian is trivial (or null) (i.e., its EL equations are satisfied by any function

ψpxq at every x) if and only if it is given by a total divergence Qα
,α of some four functions

Qαpxµ, ψpxµq, ψ,ιpx
µq, ψ,ικpxµqq. (We consider such a specific setting for the demonstration,

yet the statement readily generalizes to more fields ψ (or more components of them), to any
dimension of the manifold and to the dependence of Qα on any derivatives of ψ). In other
words, the space of total divergences is the kernel of the Euler operator.

To prove it in the opposite direction than above, consider, for λ a real parameter, L“Lpx, λψq

and its derivative

dLpx, λψq

dλ
“

BL

Bpλψq
ψ`

BL

Bpλψ,ιq
ψ,ι `

BL

Bpλψ,ικq
ψ,ικ “

1

λ

ˆ

BL

Bψ
ψ `

BL

Bψ,ι
ψ,ι `

BL

Bψ,ικ
ψ,ικ

˙

.

The parenthesis can be expressed as

`

...
˘

“
BL

Bψ
ψ `

ˆ

BL

Bψ,ι
ψ

˙

,ι

´

ˆ

BL

Bψ,ι

˙

,ι

ψ `

ˆ

BL

Bψ,ικ
ψ,ι

˙

,κ

´

ˆ

BL

Bψ,ικ

˙

,κ

ψ,ι “

“
BL

Bψ
ψ `

ˆ

BL

Bψ,ι
ψ

˙

,ι

´

ˆ

BL

Bψ,ι

˙

,ι

ψ `

ˆ

BL

Bψ,ικ
ψ,ι

˙

,κ

´

«

ˆ

BL

Bψ,ικ

˙

,κ

ψ

ff

,ι

`

ˆ

BL

Bψ,ικ

˙

,κι

ψ “

“ rELpλψqsλψ ` divergencesrLpx, λψqs ,

where rELpλψqs is the left-hand side of the Euler-Lagrange equations (28.1) for λψ and

divergencesrLpx, λψqs :“

ˆ

BL

Bψ,ι
ψ

˙

,ι

`

ˆ

BL

Bψ,ικ
ψ,ι

˙

,κ

´

«

ˆ

BL

Bψ,ικ

˙

,κ

ψ

ff

,ι

“

“

«

BLpx, λψq

Bψ,ι
ψ `

BLpx, λψq

Bψ,κι
ψ,κ ´

ˆ

BLpx, λψq

Bψ,ικ

˙

,κ

ψ

ff

,ι

“: rP ι
px, ψ;λqs,ι .
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Now, if rELs ” 0 trivially, for any function, then we are left with

dLpx, λψq

dλ
“

rP ιpx, ψ;λqs,ι

λ

which, by integration from λ“0 to λ“1, yields

Lpx, ψq ´ Lpx, 0q “

ż 1

0

rP ιpx, ψ;λqs,ι

λ
dλ “

„
ż 1

0

P ιpx, ψ;λq

λ
dλ

ȷ

,ι

“: rQ̃ι
px, ψqs,ι .

Finally, it is always possible to find such a set of functions Q̂ιpxq that Lpxµ, 0q “ rQ̂ιpxµqs,ι

within the (compact) domain Ω.3 Hence, Lpx, ψq “ rQ̂ιpxq ` Q̃ιpx, ψqs,ι. l

28.2.2 “Off-shell” vs. “on-shell” variations

In the realm of variations and symmetries, often used is the attribute “on shell” / “off shell”
which specifies whether the fields involved are assumed/required to satisfy the respective field
equations or not. Correspondingly, symmetries (in fact any statements) are often called weak
if they depend on specific field equations (or even on their specific solutions), vs. strong
when they apply irrespectively of the latter. The subtle point is that certain results which
are valid “on-shell” must be derived from “off-shell” action, because otherwise the argument
would be trivial or circular. As an example, recall the Lagrangian derivation of the equation of
motion for a massive particle in special relativity. When proceeding in a simpler way (without
varying dτ ), from the Lagrangian L“ 1

2
m0ηµνu

µuν , one must not employ the ηµνuµuν “´1
normalization before performing the variation, because the normalization only holds along
the actual trajectory, which however is just being searched for by the variation.

Indeed, it is very important to distinguish between the “off-shell” and “on shell” varia-
tions. They are quite opposite in fact: i) the (quasi-)symmetries of the action are meant to
be off-shell, “virtual” features – they represent conditions on the variation, while the fields
stay arbitrary (not constrained by any Euler-Lagrange equations), whereas ii) the on-shell
variations are performed along the actual evolution of a system – they are arbitrary, but
with the fields constrained to satisfy the pertinent EL equations. Similarly as with the above
Lagrangian of a relativistic particle, it is worth to realize that the concept of an “on-shell
(quasi-)symmetry” would have no sense, because if taking the variation of (28.5) with the
corresponding EL equations already satisfied, δS1 as well as δS would vanish trivially (by
assumption), and the boundary term would of course make the same (as it is designed so).

Example: charged particle in Kerr-Newman

A simple example offers itself: in treating the motion of charged particles in the Kerr-
Newman space-time (Section 17.3), we employed the Lagrangian L “ 1

2
mgµνu

µuν ` qAµu
µ

(Section 17.3.3). Imagine one did not know how the field Aµ behaves under the “gauge”

3 Lpxµ, ψq must be integrable in Ω, so one may e.g. use, for some aµ PΩ, Q̂0pxµq“ 1
4

şx0

a0
Lpu, x1, x2, x3, 0qdu,

Q̂1pxµq“ 1
4

şx1

a1
Lpx0, u, x2, x3, 0qdu, Q̂2pxµq“ 1

4

şx2

a2
Lpx0, x1, u, x3, 0qdu, Q̂3pxµq“ 1

4

şx3

a3
Lpx0, x1, x2, u, 0qdu.
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transformation. However, one requires that any possible transformation has to leave physics
untouched, which means that it is allowed to change the Lagrangian by a total time derivative
of some function F , but nothing else. Admitting a very general freedom Fpxµ, uµ, gµν , Aµq

and considering that xµ is just a set of functions (for which covariant derivative is the same
as ordinary one), one would have

dF
dτ

”
DF
dτ

“ F,µuµ `
BF
Buµ

aµ `
BF

Bgµν
XXXgµν;αu

α
`

BF
BAµ

Aµ;αu
α .

Should the Lagrangian keep the same form, only the first term may actually be present, con-
tributing as

L “
1

2
mgµνu

µuν ` qpAµ ` χ,µquµ , χ :“ ´
F
q
,

so Aµ has to transform as Aµ Ñ Aµ ` χ,µ . The invariance of the Lagrangian thus enforces
the properties of the gauge field Aµ. And, this in turn implies that the gauge field has to be
present in general: even if not included from the beginning, it would appear due to the gauge
transformation.

Example: scalar field

Have a free massless scalar field ψpxµq, described by L“ ´1
2
gαβψ;αψ;β , and thus EL equa-

tions

0 “
�
�
�BL

Bψ
´

„

BL
Bψ;µ

ȷ

;µ

“
1

2
pgαβδµαψ;β ` gαβψ;αδ

µ
βq;µ “ ψ;µ

µ ” lψ .

Consider the gauge transformation ψ̄“ ψ ` kιx
ι, with the vector field kµ null (kµkµ“0) and

divergence-free (kµ;µ“0). Under such a transformation, ψ̄;α“ ψ;α` pkιx
ιq;α “ ψ;α`kιδ

ι
α “

ψ;α ` kα , so, assuming that L̄ depends on ψ̄ in the same way as L depends on ψ,

L̄pψ̄q “ ´
1

2
gαβψ̄;αψ̄;β “ ´

1

2
gαβpψ;α`kαqpψ;β`kβq “ Lpψq ´ ψ;αk

α
“ Lpψq ´ pψkαq;α ,

that is, L̄pψ̄q differs from Lpψq by a divergence term. The “primed” field equations really do
not differ from the original ones,

0 “
�
�
��BL̄

Bψ̄
´

„

BL̄
Bψ̄;µ

ȷ

;µ

“ ... “ l ψ̄ “ pψ;µ
µ ` ���kµ;µ q “ lψ .

Were the field not free, but rather “burdened” with some potential V pψq, one would
have L“´1

2
gαβψ;αψ;β ` V pψq and the Euler-Lagrange equations would yield

0 “
BL
Bψ

´

„

BL
Bψ;µ

ȷ

;µ

“
dV

dψ
` lψ .

In particular, the potential of the form V pψq“´1
2
m2ψ2 (with m constant) leads to the Klein-

Gordon equation lψ ´ m2ψ “ 0.
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Example: electromagnetic field

We have Fµν , Aµ and Jµ. The “kinetic” invariant clearly is FµνF µν , and a plausible potential
invariant should be JµAµ (the hint is that it contains charge density times the electrostatic
potential in the first term). Another invariant is JµJµ, but that does not depend on the field
at all. Then there is AµAµ, which however is not invariant under the gauge transformation
Aµ Ñ Aµ ` χ,µ . And the latter is also true for the last tip F µνJµAν . So let us take4

L “ ´
1

16π
FµνF

µν
` JµAµ

(the constant in front will be convenient later). Well, neither the JµAµ is automatically gauge
invariant! Imagine how it behaves in the action subject to the gauge transformation:
ż

Ω

JµpAµ ` χ,µq
?

´g d4x “

ż

Ω

JµAµ
?

´g d4x `

ż

Ω

rpJµχq;µ ´ Jµ;µχs
?

´g d4x .

By the divergence rule and by Gauss, the middle term is translated to the boundary as
ż

Ω

pJµχq;µ
?

´g d4x “

ż

Ω

p
?

´g Jµχq,µ d
4x “

ż

BΩ

?
´g Jµχnµ d

3x ,

so it vanishes if either Jµ or χ vanish on the boundary BΩ (yet χ should not in general be
required to vanish there, should it be generic). Then the potential term does not harm the
gauge invariance of action if the last term vanishes as well, i.e. if Jµ;µ “ 0. The Jµ is thus a
simple example of Noether’s current: the requirement of gauge invariance implies Jµ;µ “ 0,
which ensures the conservation of electric charge. More insight will arise from the second
Noether theorem.

The Euler-Lagrange equations (23.4) read BL
BAα

´

”

BL
BAα;β

ı

;β
“ 0, with BL

BAα
“ Jµδαµ “ Jα.

For the second term, we write

FµνF
µν

“ pAν;µ´Aµ;νqpAν;µ´Aµ;νq “ 2Aν;µpAν;µ´Aµ;νq “ 2Aν;µpAσ;ρ´Aρ;σq gσνgρµ

and compute

´16π
BL

BAα;β
“ 2δαν δ

β
µpAν;µ ´ Aµ;νq ` 2Aσ;ρpδασδ

β
ρ ´ δαρ δ

β
σq “ 4pAα;β ´ Aβ;αq “ 4F βα .

The EL equations thus provide the first Maxwell series Fαβ
;β “ 4πJα. The second series,

Ftµν;ρu “0, is well known to follow from the very definition of Fµν .

Appendix: It may seem we threw out the AµAµ term too easily. Actually, in correspondence

4 This is the right place to mention the independent term ˚FµνFµν which would come to mind: for the action
this is irrelevant, because it can be written as a divergence,

1

2
ϵµνκλFκλFµν “ 2ϵµνκλAκ,λAµ,ν “ ´

2
?

´g
rµνκλsAλ,κAµ,ν “ ´

2
?

´g
prµνκλsAλ,κAµq,ν .
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to the massive scalar field, why not to add the termm2AµAµ (with massm constant)? Look at
how we treated the gauge invariance of the JµAµ term: we found that Jµ should vanish on the
boundary and satisfy the continuity equation Jµ;µ “ 0. Analogously, for the m2AµAµ term,
we would find thatAµ should vanish on the boundary and satisfy the Lorenz conditionAµ;µ“

0. So, clearly, m2AµAµ is not gauge invariant. One may interpret this as the requirement for
zero rest mass of photons, m“0.

28.2.3 Diffeomorphisms vs. gauge transformations

Is the diffeomorphism invariance of GR a special kind of gauge symmetry? Opposite opinions
can be heard, also depending on what level of the problem one wants to address. The word
“gauge” mostly is used rather generically (“TT gauge”, “harmonic gauge”, etc.), yet let us
shortly look at it.

• At first sight, the general diffeomorphism group of GR (smooth coordinate transforma-
tions), similarly as the groups of gauge transformations in the gauge theories, both repre-
sent certain invariances of physical laws (“symmetries”), so they may be understood on
similar footing.

• At second sight, however, one realizes that the diffeomorphisms of GR transform the space-
time coordinates, not the fields (the metric in particular) – the latter only change “secondar-
ily” (according to their mathematical nature). Gauge transformations, on the other hand,
directly transform the (gauge) fields, without changing the space-time coordinates. This
difference could technically be ignored if any permitted “gauge” of the fields could al-
ternatively be achieved by a pure coordinate transformation – if the scopes of changing
the given field(s) by the gauge transformation and by the coordinate change were in some
sense equivalent. But this is not the case: in electrodynamics, for example, gauging the
four-potential by Aµ ` χ,µ cannot always be achieved by a coordinate transformation, i.e.
as

Bxν

Bx1µ
Aν “ Aµ ` χ,µ .

Trivial examples are Aµ “ 0 and χ,µ ‰ 0, or χ,µ “ ´Aµ p‰ 0q ... these cannot be achieved
by a coordinate change; more generally, the coordinate transformation does not change
gµνAµAν , whereas the gauge transformation does, in general.

• There is more to that when one considers what is the role, in the respective theories, of
quantities which are subject to the transformations. The gauge fields are being “gauged”
by the pertinent gauge group at each space-time point (the group lives on a “fibre existing
above each such point” in the fibre-bundle picture), while themselves factually represent-
ing connections acting “across” the fibres, namely selecting, by their spatio-temporal be-
haviour, a specific spatio-temporal arrangement of the gauge fixing (” the “phase”). If, for
a given such connection, the “phase” changes when going across a closed space-time loop
(the connection has non-trivial holonomy), it means the connection gives rise to some cur-
vature which in this picture corresponds to a given physical field (e.g. the electromagnetic
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field, Fµν). The gauge invariance means that the physical field (which is the measurable
quantity) is independent of the choice of the gauge fixing, i.e. of the connection.

Analogous in GR is that the field – the “decent one”, which cannot be transformed out,
which is the curvature – is obtained from the holonomy of the connection. However, the
gauge fields of gauge theories are fundamental fields, whereas in GR the (Levi-Civita) con-
nection is obtained from the metric as the fundamental tensor. And, as already pointed out,
what is “gauged” in GR rather are coordinates, not directly the connection; in the geomet-
rical language, the diffeomorphism group of GR does not live “above” each manifold point
to shift the local gauge-field value, it rather acts “horizontally”, within the manifold, chang-
ing its points themselves. And, strictly speaking, as opposed to the gauge transformations,
the diffeomorphisms do also change the field (the metric, the connection, the curvature)
secondarily, with only certain scalars staying invariant.

In the quantum view, what is being quantized in qauge theories is the gauge field (the one
being gauged), which in GR would correspond to the coordinates – and that apparently is
not the case. One would rather guess that connection should be quantized, which however
is represented by Christoffel symbols in GR and that are not tensors. (It is in fact not yet
clear what should primarily be quantized in gravity.)

A more philosophical remark is at place. Under the diffeomorphism invariance, it actually
has little sense to speak of the “field at a certain point”, because the “manifold points”
do not have any clear identity; they can only acquire one thanks to the metric (namely,
the metric permits to say when and where, though it itself also changes under diffeomor-
phisms). Hence, as opposed to the standard view in gauge field theories (“a field in some
space-time”, not even speaking of the “field at a given point”), in GR the field itself is the
space-time. As already quoted in Chapter 1, Einstein articulated that as follows: “Space-
time does not claim existence on its own, but only as a structural quality of the field.”

• With self-consistent physical fields dynamically tied to the space-time, the distinction is
less pronounced, because they are subject to both (possible) gauge and diffeomorphism
invariance. A propos, exactly in such a situation it is worth to clearly distinguish between
the two types of transformations, and to elucidate the role of symmetries with respect to
them in the structure of the theory, especially in the conservation laws.

• In the case of infinitesimal transformations, there exists a simple relation between the be-
haviour of tensorial quantities under the gauge (“intrinsic”) and coordinate transformations,
given by the Lie derivative (see the following section). Then, one can treat the two opera-
tions as technically akin.

28.3 Infinitesimal symmetry transformations
In looking for field equations (either in the Lagrangian or Hamiltonian manner), we were
varying the Lagrangian/Hamiltonian at fixed coordinate position, i.e. all the change was due
to the change of the fields. If asking about conservation laws, it is important to extend the
picture and consider variations as caused by change of the fields themselves as well as by
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the change of coordinates. (In principle, one may ask about the behaviour of action under a
change of anything on which it depends.) Actually, remember the derivation of T µν ;ν “0 from
invariance of the “non-gravitational” action with respect to infinitesimal diffeomorphisms,
where the variation was entirely induced by a coordinate transformation (Section 23.4.5).

Below, we assume both types of transformations form a continuous (Lie) group, so that
any finite transformation can be composed of infinitesimal ones. Although in GR we mainly
concern about tensors, the “fields” may be rather generic objects (their behaviour under a
coordinate change is left unspecified yet). Let us look into how both types of (infinitesimal)
transformations work and, mainly, what is their relation.

The infinitesimal coordinate change we write as5

x1µ
“ xµ ´ ϵ ξµpxq “ xµ ` δxµ , δxµ :“ ´ϵ ξµpxq .

In addition to that, let the fields ψ undergo a certain infinitesimal intrinsic change indepen-
dent of the coordinate shift, i.e. an infinitesimal gauge transformation (which would be
there even if coordinates stayed unchanged). Denote the new field(s) in new values of the
coordinates (the result of both transformations performed simultaneously) by ψ1px1q, with

δψpxq :“ ψ1
px1

q ´ ψpxq ... total change of the field value .

Note that this is an extension of the notation we use everywhere else: ψ1px1q etc. we generally
denote the result of a coordinate transformation “alone”, whereas here it stands for the result
of both the coordinate and the gauge shifts. Besides the total variation δψpxq, it will be useful
to also define

δ̄ψpxq :“ ψ1
pxq ´ ψpxq ... field-value change due to the change of the field form .

This is also caused by both shifts, yet it is determined at the same coordinate values. Worth
to realize that such a definition does not represent the change of the field at a given point (had
it any clear meaning), but rather the difference between the original components of ψ at x
and the transformed components ψ1 at the point that is mapped onto x by the coordinate shift.

If there is no gauge change of ψ, the whole variation is solely induced by the coordinate
transformation, with ψ1px1q and δψpxq meaning what we are used to (for instance, if ψ is a
tensor, it is given by tensor transformation rule) and δ̄ψpxq representing the infinitesimal
change of the field along the flow of ξµ. If, on the other hand, there is only a gauge change,
without any coordinate shift, then δψpxq “ δ̄ψpxq (one would tend then to call the altered
field ψ̄pxq) and they really represent a change of the field value “at the same point” (as fully
caused by the change of the field form).6

5 Compare the following with the Lie-derivative section 11.3.1: there, we considered an infinitesimal shift
along the flow of a vector field ξµ, writing that as xµ “ xµ0 ` ϵ ξµpxα0 q. Here we only use the opposite sign, in
order to indicate that now we have a coordinate change in mind, rather than a “point-shifting” transformation.
(These two options are usually called the “active” vs. the “passive” version of a transformation.)

6 We adopt a passive view of the coordinate change here, so, “philosophically”, δψpxq means an Eulerian
variation (at the same point yet with its coordinates changed), while δ̄ψpxq means a Lagrangian variation (at
fixed coordinate values, which however represent different points before and after the transformation). In an
active view, when “the point” is defined to be keeping its coordinates, it would be vice versa.
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Note that if both the coordinate and gauge transformations are infinitesimal, their order
is irrelevant, since the results only differ in Opδ2q. Independently of how transform the fields,
the two variations are related by shift between the points in which the final field is evaluated,

δ̄ψ ” ψ1
pxq ´ ψpxq “ ψ1

px1
´ δxq ´ ψpxq

.
“ ψ1

px1
q ´ ψ1

,αpx1
q δxα ´ ψpxq ”

” δψ ´ ψ1
,αpx1

q δxα
.
“ δψ ´ ψ,αpxq δxα ” δψ ` ϵ ψ,αξ

α (28.7)

This is the well known relation between the Lagrangian and Eulerian variations (δ̄ψ and δψ).
The existence of such a local relation between δψ and δ̄ψ (and the coordinate shift) allows
some authors to treat the variations “concisely”, solely in terms of the “intrinsic” changes of
the field. (Also take into account that the coordinate transformation is only a shift, the type
of the coordinates is not altered, so the “primed-unprimed” notation is really just a notation.)
Anyway, we will keep the δ-δ̄ distinction, for didactic reasons :-).

The Lagrangian variation δ̄ψ commutes with partial derivative, because it is defined at
the same coordinate location; the Eulerian variation, on the other hand, does not:

δ̄pψ,αq ” δ̄

ˆ

Bψ

Bxα

˙

“
Bψ1pxq

Bxα
´

Bψpxq

Bxα
“

B

Bxα
pψ1

pxq ´ ψpxqq ” pδ̄ψq,α ,

δpψ,αq ” δ

ˆ

Bψ

Bxα

˙

“
Bψ1px1q

Bx1α
´

Bψpxq

Bxα
“

Bψ1px1pxqq

Bxβ
Bxβ

Bx1α
´

Bψpxq

Bxα
‰

‰
B

Bxα
pψ1

px1
q ´ ψpxqq ” pδψq,α .

If having just one field ψ of tensorial nature, and if performing only the infinitesimal
coordinate shift, then

δψ ” δψµν...κλ... ” ψ1µν...
κλ...px

1
q ´ ψµν...κλ...pxq “

“
Bx1µ

Bxρ
Bx1ν

Bxσ
...

Bxτ

Bx1κ

Bxω

Bx1λ
... ψρσ...τω... ´ ψµν...κλ... “

.
“ pδµρ ´ ϵ ξµ,ρqpδνσ ´ ϵ ξν ,σq ... pδτκ ` ϵ ξτ ,κqpδωλ ` ϵ ξω,λq ... ψρσ...τω... ´ ψµν...κλ... “
.
“ ϵ p´ξµ,ρ ψ

ρν...
κλ... ´ ξν ,σ ψ

µσ...
κλ... ´ ... ` ξτ ,κ ψ

µν...
τλ... ` ξω,λ ψ

µν...
κω... ` ...q “

“ ϵ p£ξψq
µν...

κλ... ´ ϵ ψµν...κλ...,α ξ
α

” ϵ p£ξψ ´ ψ,αξ
α
q . (28.8)

In such a case, as expected (it is factually a definition of the Lie derivative, as telling the
change of the field ψ under the flow of ϵξµ),

δ̄ψ “ δψ ` ϵ ψ,αξ
α

“ ϵ£ξψ p ” £ϵξψq . (28.9)

We seek conditions under which the infinitesimal transformation is a (quasi-)symmetry
of an action. Recall that the basic condition – ensuring the covariance of the EL equations
– is that S 1rψ1s at most differs from Srψs by a divergence term integrated over the (original)
region Ω, with the Lagrangian keeping the same functional form. By combination of these
two requirements, we obtained the crucial relation (28.6), i.e.7
ż

Ω

Lpx, ψ1
pxqq d4x `

ż

Ω

rLpx, ψpxqq δxαs,α d
4x “

ż

Ω

Lpx, ψpxqq d4x ´

ż

Ω

Qα
,α d

4x .

7 Very important remarque: in (28.4), we saw that
ş

Ω
Lpx, ψ1pxqqd4x equals Srψs plus a term which vanishes
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Let us denote, naturally, Lpx, ψ1pxqq´Lpx, ψpxqq“: δ̄L, and let us consider that the Qα term
has to be Opδ̄q as well, so we denote it by δ̄Qα (Qα itself is just a symbol, after all). In such
a way, we arrive at the symmetry condition
ż

Ω

”

δ̄L `
`

Lpx, ψq δxα ` δ̄Qα
px, ψq

˘

,α

ı

d4x “ 0 . (28.10)

Should this hold for any region Ω, we have the requirement

δ̄L ` pL δxα ` δ̄Qα
q,α “ 0 . (28.11)

28.4 Infinitesimal symmetry and weak conservation laws
Firstly, note that everything has yet been generic, “off shell”. Let us now evaluate δ̄L in
(28.11) explicitly, assuming that L at most depends on the second derivatives of ψ,

δ̄L ” Lpx, ψ ` δ̄ψq ´ Lpx, ψq “ ����Lpx, ψq `
BL

Bψ
δ̄ψ `

BL

Bψ,α
δ̄ψ,α `

BL

Bψ,αβ
δ̄ψ,αβ ´ ����Lpx, ψq “

“

«

BL

Bψ
´

ˆ

BL

Bψ,α

˙

,α

`

ˆ

BL

Bψ,αβ

˙

,αβ

ff

δ̄ψ `

«

BL

Bψ,α
δ̄ψ ´

ˆ

BL

Bψ,αβ

˙

,β

δ̄ψ `
BL

Bψ,αβ
δ̄ψ,β

ff

,α

(28.12)

(it has been important that the δ̄ variation commutes with coordinate partial derivative!).
Look, the first part are just the Euler-Lagrange equations, and the second part is a total diver-
gence!

This is the right place for an important supplement: for the sake of brevity, we have been
denoting just by ψ all the fields possibly present. However, if performing the variation of
any quantity depending on more-than-one fields (including the case of just one field which
however is a vector or a tensor one, thus having more components), one obtains terms which
have to be summed over all the fields (or their components). Indeed, this applies to all the
terms which have appeared in the above variation δ̄L. Taking this into account, and using “A”
for the corresponding index (numbering the fields or their components), the infinitesimal-
symmetry condition (28.11) assumes the form

rELsA δ̄ψA ` δ̄ Jα,α “ 0 , (28.13)

where rELsA denotes the left-hand sides of the Euler-Lagrange equations (28.1) pertaining to
theA-th field (or the field’sA-th component) ψA, and δ̄ Jα denote the “infinitesimal currents”,

rELs
A :“

BL

BψA
´

ˆ

BL

BψA,α

˙

,α

`

ˆ

BL

BψA,αβ

˙

,αβ

, (28.14)

if the EL equations hold. This result was important there for showing that if the Lagrangian is form-invariant
(which ensured the covariance of the EL equations), then, under a generic infinitesimal transformation, the
action changes at most by a boundary term. At the present moment, on the other hand, we must not use the EL
equations, because the (quasi-)symmetries of the action are to be treated irrespectively of them, “off-shell”. It is
thus necessary to use the result (28.2) without the step (28.4).
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δ̄ Jα :“
BL

BψA,α
δ̄ψA ´

ˆ

BL

BψA,αβ

˙

,β

δ̄ψA `
BL

BψA,αβ
δ̄ψA,β ` L δxα ` δ̄Qα . (28.15)

Equation (28.13) is called the main Noether’s identity. It puts together what we mentioned
as on-shell variations (the first term: it vanishes if the fields satisfy their EL equations, while
the variation stays arbitrary) and symmetries of the action (the second term: it vanishes
if the variation satisfies a certain constraint, while the fields are left free), announcing that
whenever the action is off-shell (quasi-)invariant with respect to some continuous global
transformation, then there exists a certain current whose divergence vanishes on-shell.8

If the Lagrangian depends on more fields, the first term of (28.13) appears for each of
them. When all these fields are dynamical (dynamically interconnected with the rest of the
theory), the corresponding Euler-Lagrange equations are satisfied and the symmetry condi-
tion thus implies the conservation law

δ̄ Jα,α “ 0 . (28.16)

The law is “weak” in the sense of being off-shell, i.e. only holding if the pertinent EL equa-
tions are satisfied.

28.5 1st Noether’s theorem: weak conservation
Let us consider the case of global transformations: let the infinitesimal coordinate transfor-
mations δxα “ ´ϵpiqξα

piqpxq form an r-dimensional Lie group (r finite), with ξα
piqpxq the cor-

responding Lie-algebra generators and ϵpiq constant coefficients, i “ 1, 2, ..., r.9 Denote the
intrinsic field change(s) by δ̄ψA, as either induced by the coordinate shift or also otherwise,
and assume that δxα and δ̄ψA together form a symmetry transformation, with the respective
conserved infinitesimal current δ̄ Jα. Now, decompose δ̄ψA and δ̄ Jα into such bases (denoted
ηApiq and tα

piq, respectively) with respect to which the coefficients of both decompositions are
exactly the ϵpiq constants, i.e., let ηApiq and tα

piq be defined so that

δ̄ψA “ ϵpiqηApiqpx, ψ, ψ,ρq pA“ ...q , δ̄ Jα “ ´ϵpiqtαpiqpx, ψ, ψ,ρ, ψ,ρσq . (28.17)

Then (28.16) implies r (weak) conservation laws, one for each independent symmetry gener-
ator,

Bαt
α
piq “ 0 , i “ 1, 2, ..., r . (28.18)

Note that the currents tα
piq are vector densities of weight `1. One can also define the corre-

sponding vectors (dividing tα
piq by

?
´g) and write the divergence as a covariant one using the

usual formula.

8 In Section 28.2, we remarked that the invariance of the action (up to a boundary term) is sufficient, yet not
necessary for the symmetry of the field equations. Therefore, it is good to have in mind that the Noether identity
(and thus the consequent conservation laws) do not solely follow from the symmetry of the EL equations, but
also from the assumption/requirement that the action is diffeomorphism invariant.

9 Poincaré transform is a simple example: x1µ “ Λµνx
ν ` aµ contains 4 (independent) parameters aµ and 16

parameters Λµν of which 6 are independent (due to the 10 orthogonality constraints ηρσΛρµΛσν “ ηµν).
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Example: scalar field in Minkowski

Consider again the scalar field in flat space-time, now with generic mass m, described by
the Klein-Gordon Lagrangian density L “ L “ ´1

2
pηµνψ,µψ,ν ` m2ψ2q. Consider a pure

coordinate shift x1µ “ xµ ` δxµ, δxµ“´ϵpiqξµ
piq, with ϵpiq constants and ξµ

piq generators. Since
ψ is invariant, one has δψ“0 and, from (28.9),

δ̄ψ “ ϵpiq£ξpiq
ψ “ ϵpiqψ,µξ

µ
piq .

From (28.15), it thus follows

δ̄ Jα “
BL

Bψ,α
δ̄ψ ´

ˆ

�
�
��BL

Bψ,αβ

˙

,β

δ̄ψ `

�
�

��BL

Bψ,αβ
δ̄ψ,β ` L δxα ` δ̄Qα

“

“ ´ψ,αϵpiqψ,µξ
µ
piq ´ L ϵpiqξαpiq ` δ̄Qα

“ ´pψ,αψ,µ ` L δαµq ϵpiqξµ
piq ` δ̄Qα .

Let us choose δ̄Qα “ 0 and ξµ
piq “ δµi (i.e. generators of the four translational symmetries).

With such a choice,

δ̄ Jα “ ´pψ,αψ,µ ` L δαµq ϵpiqδµi “ ´pψ,αψ,i ` L δαi q ϵpiq .

Comparison with (28.17) yields (index A is useless, because there is just one field)

ηpiq “ ψ,µξ
µ
piq , tαpiq “ ψ,αψ,i ` L δαi pi “ 1, 2, 3, 4 ... or i “ 0, 1, 2, 3q , (28.19)

the latter standing for the energy-momentum tensor of the Klein-Gordon field. Returning
to the original form tα

piq “ ´ BL
Bψ,α

ψ,i ` L δαi , it represents the so-called canonical energy-
momentum tensor. (The latter is generally associated with the invariance of a system under
constant translations. We will see later that it does not in general provide a satisfactory
energy-momentum tensor, yet for the scalar field it works.)

28.6 2nd Noether’s theorem: generalized Bianchi identities
Besides dynamical fields, theories may also contain non-dynamical quantities – those not
constrained by any “equations of motion”. Most notably, these include functions appearing
in gauge transformations (such as χpxq in the Aµ Ñ Aµ ` χ,µ transformation), or – in GR,
in particular – the coordinates (= four free functions). These are general functions, so they
cannot be expressed in terms of any finite set of constant parameters ϵpiq, or, more accurately,
not even in terms of any countable set of constants, because the transformation freedom is
continuous – one can independently change things at every point. Hence, transformations
involving such general functions form a continuous infinite-dimensional (pseudo-)group.

The local symmetries should not constrain physical degrees of freedom, yet still they
imply certain constraints on the field equations governing the physics. The number of these
constraints is the same as the number of free functions in the gauge group. Namely, in order to
somehow fix the originally free gauge functions, one has to impose certain gauge conditions.
Although these are largely a matter of choice, once fixed, they have to be added to the original
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field equations, which means that the dynamical degrees of freedom finally have to satisfy
more equations than is their number. The problem thus would be overdetermined and may
not have any solution. The only non-trivial way out is that the dynamical equations are not
independent – that they are bound by the pertinent number of constraints.

The transformation (pseudo-)group is usually taken not just continuous, but even smooth,
so one in fact considers an “infinite Lie group” (nomenclature is not unique, because some-
times the Lie groups are automatically taken as finite-dimensional). In our description, the
transition from a finite to an infinite group can be performed by replacing the constant param-
eters ϵpiq with s (say) generic functions ϵpωqpxq (ω “ 1, ..., s); for example, the covariance of
four-dimensional GR corresponds to s“4 – the number of free coordinate functions.10 (Such
a transition is often called the localization of the group.) As a generalization of the above, we
thus assume the transformation of xµ and of each of the fields to have the form

δxα “ ´ϵpωq
pxq ξαpωqpxq pω “ 1, ..., sq ,

δ̄ψA “ ϵpωq
pxq ηApωqpx, ψ, ψ,ρ, ψ,ρσq ` ϵpωq

,αpxq ηαApωqpx, ψ, ψ,ρ, ψ,ρσq , (28.20)

where ϵpωqpxq are generic functions now, supposed to vanish on the boundary BΩ together
with their derivatives ϵpωq

,αpxq. In general, one might consider a more general δ̄ψA involving
higher derivatives of ϵpωqpxq, but we will only comment on this finally.

Abbreviating again by [EL] the left-hand side of the Euler-Lagrange equations, we
insert the calculation (28.12) of δ̄L into the basic equation (28.10), while assuming that the
divergence terms vanish due to the vanishing of the variations (of ϵpωq and ϵpωq

,α , actually) on
the boundary,

0 “

ż

Ω

δ̄L d4x `

������������������
ż

Ω

`

Lpx, ψq δxα ` δ̄Qα
px, ψq

˘

,α
d4x “

ż

Ω

rELs
A δ̄ψA d

4x `
HHHHHHH

ż

Ω

δ̄ Jα,α d
4x “

“

ż

Ω

rELs
A
`

ϵpωqηApωq ` ϵpωq
,α η

α
Apωq

˘

d4x “

ż

Ω

ϵpωq
␣

rELs
A ηApωq ´ Bα

`

rELs
A ηαApωq

˘(

d4x ,

where the last term has been obtained by “per partes”,
ż

Ω

rELs
A ϵpωq

,α η
α
Apωq d

4x “

XXXXXXXXXXXXXX

ż

Ω

Bα
`

rELs
A ϵpωqηαApωq

˘

d4x ´

ż

Ω

ϵpωq
Bα
`

rELs
A ηαApωq

˘

d4x .

We thus arrive at s “generalized Bianchi identities”

rELsA ηApωq ´ Bα

´

rELsA ηαApωq

¯

“ 0 , (28.21)

since ϵpωqpxq have been arbitrary. Obviously, these identities impose certain constraints on the
field equations, namely on rELsA. Clearly they are taken “off-shell”, otherwise they would be

10 The infinite-dimensionality of the problem is thus not brought by the fact that ω would be infinite (it may
well be s “ 1 as in Maxwell’s electromagnetism), but by the continuous dependence on position xµ as the
independent variable.
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trivial. Note that if the arbitrary functions ϵpωqpxq did not vanish on the boundary, one would
obtain the boundary terms on the r.h. side, instead of the zero.

Imagine now, instead of (28.20), a transformation containing higher derivatives of the
ϵpωqpxq functions – up to the order k, say – and follow the above derivation once more: clearly,
after rewriting, similarly as in deriving the [EL] equations themselves, the “expansion” of
δ̄ψ in terms of as many divergence terms as possible (given by divergence of expressions
containing ϵpωq and its derivatives up to the order k ´ 1 ... which all vanish on the boundary),
one is left with k terms containing the [EL] expression with its derivatives up to the k-th
order. For instance, were the field variation given by

δ̄ψA “ ϵpωqηApωq ` ϵpωq
,α η

α
Apωq ` ϵpωq

,αβ η
αβ
Apωq

,

the generalized Bianchi identities would read

rELs
A ηApωq ´ Bα

`

rELs ηαApωq

˘

` BαBβ

´

rELs ηαβApωq

¯

“ 0 .

28.6.1 Implication for the initial problem

The occurrence of Bianchi identities makes the initial-value problems for the theories pos-
sessing local symmetries more complicated, because the constraints have to be already satis-
fied by initial conditions. Let us go into it a bit.

The Bianchi identities bring an important message about the dependence of rELsA on
the highest derivatives of ψA. Let us denote these derivatives by ψpnq

A . If the EL equations
only depend on the highest derivatives linearly (as in the case of GR), we can write

rELs
A

“ κABψ
pnq

B ` IA ,

where κAB and IA only depend on lower-than-pnqth derivatives of ψA. Inserting such an
ansatz into the Bianchi identities (28.21), we obtain

0 “ Bα
`

rELs
A ηαApωq

˘

` ... “ Bα

´

κABψ
pnq

B ηαApωq

¯

` ... “ κABηαApωqBαψ
pnq

B ` ... ,

where we have gradually isolated the only term containing the now highest, pn` 1qth deriva-
tives of ψA. Imagine, in particular, that the above applies to the x0 coordinate. Then the
highest-derivative term (in x0) specifically is the α“0 one,

κABη0ApωqB0ψ
pnq

B “ κABη0Apωqψ
pn`1q

B ” κABη0Apωq

Bn`1ψB
Bpx0qn`1

.

Now, since we are off-shell, the ψA and its/their derivatives are not determined by the EL
equations, they may be rather arbitrary. In order to satisfy the Bianchi identities for all such
virtual field configurations, it is necessary that κABη0Apωq

“0. The latter involves the action of
a matrix κAB on the vectors η0Apωq

(ω “ 1, ..., s), specifically, it says that the matrix κAB has s
independent eigen-vectors with zero eigen-values, hence the determinant of κAB is zero (it is
a singular matrix). This means, however, that it is not possible to express, from the relations
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rELsA “ κABψ
pnq

B ` IA, all the highest derivatives (by x0) ψpnq

A in terms of lower derivatives.
For theories possessing a local gauge symmetry, the field equations are thus not “naturally”
of the Leray type (26.6). However, in most cases it is possible to reach the suitable form by
a coordinate or gauge transformation (remember the harmonic gauge which “remedies” the
Einstein equations, Section 26.3).

Example: EM field

The well known gauge freedom of electrodynamics with respect to δ̄Aκ“χ,κ corresponds, in
our present description, to ψAÑ Aκ and s“1 (one free gauge function χ), so A is the usual
space-time index (A“0, 1, 2, 3“:κ) and ω can be omitted (it only has one value),

δ̄Aκ “ χ,κ ùñ ϵpωq
pxq Ñ ϵpxq “ χpxq , ηApωq Ñ ηκ “ 0 , ηαApωq Ñ ηακ “ δακ .

We know from the EM example before Section 28.2.3 that L“
?

´g
`

´ 1
16π

FµνF
µν`JµAµ

˘

yields

rELs
κ

“
BL

BAκ
´

„

BL

BAκ;β

ȷ

;β

“
?

´g

ˆ

Jκ ´
1

4π
F κβ

;β

˙

“
?

´g Jκ ´
1

4π

`?
´g F κβ

˘

,β
.

Hence, in the generalized Bianchi identities (28.21), the first term vanishes due to ηκ“0, and
the second term reads

Bα prELs
κηακ q “ Bα prELs

α
q “ p

?
´g Jαq,α ´

1

4π��������`?
´g Fαβ

˘

,βα
“

?
´g Jα;α .

Recall now how the continuity equation for the electric current has been appearing
in the relativity course: first it was presented as following from the first set of Maxwell
equations, so as an “on-shell” result. In the examples before Section 28.2.3, we presented it
differently – as an off-shell condition for symmetry of the potential term in the Lagrangian
with respect to the gauge transformation Aκ Ñ Aκ` χ,κ . Now we see that it really follows
as an off-shell Bianchi-type constraint on the field equations (it is not necessary to satisfy
rELs“0 for it, since we have ηApωq “0).

28.7 3rd Noether’s theorem: strong conservation and super-
potentials

Finally, let us consider a combination of the above symmetry settings: let the symmetry trans-
formations form an infinite Lie group, but let the latter contain an r-dimensional Lie subgroup
(r finite) as in Section 28.5. We will again start from the basic Noether’s symmetry condi-
tion (28.13), i.e. rELsA δ̄ψA ` δ̄ Jα,α “ 0. The point is that when the symmetry group only
consisted of the r global shifts, we were done: the condition implied r weak conservations
(only valid if rELsA “ 0). Here, if there exists a larger, infinite symmetry group (containing
the finite one as a subgroup), one also has the pertinent Bianchi identities (28.21) from where
it is possible to express rELsA δ̄ψA in terms of the divergence terms, and thus to reach a set
of strong conservations by adding them in that form to δ̄ Jα,α .
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Now in more detail: plugging to the Noether’s identity, as above, the decomposition
δ̄ψA “ ϵpωqηApωq ` ϵpωq

,α η
α
Apωq

(dependences on position and field not indicated any more),
and substituting rELsA ηApωq “ Bα

`

rELsA ηαApωq

˘

from the Bianchi identities (28.21),11 we
have

rELs
A δ̄ψA “ rELs

A
`

ϵpωqηApωq`ϵpωq
,α η

α
Apωq

˘

“ ϵpωq
Bα
`

rELs
A ηαApωq

˘

` rELs
A ϵpωq

,α η
α
Apωq “

“ Bα
`

rELs
A ϵpωqηαApωq

˘

ω “ 1, ..., s .

The term δ̄ Jα,α can further be “decomposed into the existing r constant parameters” ϵpiq as
in Section 28.5,

δ̄ Jα “ ´ϵpiqtαpiq , i “ 1, ..., r ,

so, altogether, the symmetry condition assumes the conservation-law form

Bα

´

rELsA ϵpωqηαApωq
´ ϵpiqtα

piq

¯

“ 0 . (28.22)

As announced already, these conservations are strong, i.e. valid irrespectively of whether the
rELsA term(s) vanish or not. To summarize: if the finite Lie group of “global” symmetries is
contained within the infinite-dimensional group of (generally) local ones, the basic symmetry
condition (28.13), i.e. rELsA δ̄ψA`δ̄ Jα,α “ 0, can be rewritten as a total divergence (namely,
the first term can also be cast into such a form).

The finding can be expressed in terms of the existence of a certain superpotential,
namely such an antisymmetric matrix Uαβ that

rELs
A ϵpωqηαApωq ´ ϵpiqtαpiq “ BβU

αβ .

The antisymmetry of Uαβ automatically ensures that

Bα
`

rELs ϵpωqηαpωq ´ ϵpiqtαpiq
˘

” BαBβU
αβ

“ 0 .

Apparently, the above strong conservation laws convert into weak conservation laws
for tα

piq as in Section 28.5, whenever the field equations are satisfied:

IF rELs
A

“ 0 , THEN Bαt
α
piq “ 0 . (28.23)

28.8 Summary on Noether’s theorems and conservation laws
• 1st Noether’s theorem: invariance of the action S with respect to an r-dimensional Lie

group of global transformations (involving r generators and r constant coefficients) im-
plies r independent relations between the Lagrangian variation [EL] δ̄ψ and divergences of
certain currents tα

piq. If rELs“0, these imply r (“weak”) conservation laws for the currents.

11 As it is standard, we do not include their divergence terms, possibly occurring if we had not required that
the variations (namely the gauge functions ϵpωq and ϵpωq

,α) vanish on the boundary BΩ.
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• 2nd Noether’s theorem: invariance of S with respect to an 8-dimensional (pseudo-)group
of local transformations, involving s free functions of xµ and their derivatives up to the
k-th order, leads to s differential identities (generalized Bianchi identities) which are linear
in the Euler-Lagrange expression rELs and in the latter’s derivatives up to the k-th order.

• If S is invariant with respect to an 8-dimensional (pseudo-)group of local transformations
which, in addition, contains a certain r-dimensional Lie (sub)group, the corresponding r
weak conservations from the 1st Noether’s theorem can be converted into strong ones.

28.8.1 “Proper”, “improper” and “trivial” conservation laws

What today is being called “weak” vs. “strong” laws, E. Noether called “proper” vs. “im-
proper” laws, respectively. Noether’s original language is not being much used today, only
that “in the meantime” the weak conservation laws have occasionally been divided into
proper/improper according to whether the finite-dimensional symmetry group of a given
theory cannot/can be extended to an infinite-dimensional symmetry group without introduc-
tion of auxiliary, non-dynamical fields.
[Example: the invariance of special-relativity with respect to the 10-parametric Poincaré
group can be extended to invariance with respect to the infinite-dimensional group of lo-
cal diffeomorphisms by extension from Minkowskian to general coordinates. However, the
field gµν which appears in it is not dynamical – there are no field equations for it.]

A notable contribution to the classification was provided by P. J. Olver [32]: he says
that, for a certain set of differential equations for ψpxq, a conservation law is any equation
pexpressionqµ,µ“0 satisfied for all solutions of the system (with “expression” being a tensor
density depending on xµ and on ψpxq including its derivatives up to a certain order). In our
terminology, such laws would be “weak” (satisfied for solutions of the equations). Quite
interesting to quote his very simple example: the Laplace or d’Alembert equation in itself
represents a conservation law, lψ “ pψ;βq;β “ 0, with further conservations e.g. following
by its multiplication by ψ;α:

0 “ ψ;αψ;β
;β “

´

ψ;αψ;β
´

1

2
gαβψ;γψ

;γ
¯

;β
.

On the other hand, instead of “improper” laws, he speaks of trivial conservation laws,
recognizing two classes of them: the first class is “trivial” because not only pexpressionqµ,µ

vanishes, but even pexpressionqµ itself (for all solutions of the given system). The second
class is “trivial” because it holds strongly (in our language), for all functions ψpxq, not just
for those which solve the system. Interestingly, the conservation equation (28.22) obtained
for the combined-symmetry situation, i.e. Bα

´

rELsA ϵpωqηαApωq
´ ϵpiqtα

piq

¯

“ 0, involves all
three Olver’s cases: the whole equation is “strong”, that means “of the second trivial class”;
the first term rELsA ϵpωqηαApωq

has zero divergence, but it is also itself zero for solutions of the
EL equations, so it is “of the first trivial class”; and the remaining term tα

piq is non-zero while
divergence-free only if the EL equations are satisfied, so it is a non-trivial conservation law.
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28.9 Conservation laws for test fields, and canonical energy-
momentum tensor

The variational problem gets different if the gravitational field gµν is given as a fixed back-
ground. In such a case, it is not dynamical (not reciprocally interconnected with the rest of
the problem), which means that the variation of the Lagrangian density with respect to it is
not required to vanish. We will vary, on such a fixed background, the “non-gravitational”
Lagrangian density, assuming the latter depends on test fields ψ and their first derivatives,
and also on the metric, but not on the metric derivatives,

Lngpgµν ;ψ, ψ,αq ”
?

´g Lngpgµν ;ψ, ψ,αq .

Specifically, we will consider a variation solely induced by an infinitesimal coordinate shift
and will express it in terms of the field variations at a given location xµ, i.e. in terms of δ̄ψpxq.
From (28.9) we know that δ̄ψ induced by an infinitesimal diffeomorphism xµ Ñ xµ ´ ϵξµ is
determined by δ̄ψ“ ϵ£ξψ. We will arrive at certain conservations (if there are some space-
time symmetries), yet the main goal will be to introduce a canonical energy-momentum
tensor and to find its relation to the “standard”, symmetric energy-momentum tensor.

In the above setting, we have

δ̄Lng “
BLng

Bgµν
δ̄gµν `

BLng

Bψ
δ̄ψ `

BLng

Bψ,α
δ̄ψ,α . (28.24)

From (23.6) we know that if the non-gravitational Lagrangian density only depends on gµν
and not on its derivatives, one defines the energy-momentum tensor Tαβ and its associated
tensor density Tαβ (of weight w“1) by

1

2
Tαβ :“

1

2

?
´g Tαβ :“ ´

Bp
?

´gLngq

Bgαβ
” ´

BLng

Bgαβ
.

We also know that BLng

Bgµν
δ̄gµν “ ´

BLng

Bgµν
δ̄gµν , so the first term of (28.24) reads 1

2
Tµν δ̄gµν . The

remaining terms can be rearranged as usual,

BLng

Bψ
δ̄ψ `

BLng

Bψ,α
δ̄ψ,α “

BLng

Bψ
δ̄ψ `

ˆ

BLng

Bψ,α
δ̄ψ

˙

,α

´

ˆ

BLng

Bψ,α

˙

,α

δ̄ψ “

“ rELs δ̄ψ ` Bα

ˆ

BLng

Bψ,α
δ̄ψ

˙

,

where rELpLngqs denotes the Euler operator arising from variation of Lng with respect to ψ,

rELs :“ rELpLngqs ”
BLng

Bψ
´ Bα

ˆ

BLng

Bψ,α

˙

(and commutation of the δ̄ variation with the partial derivative was employed for δ̄ψ,α).
Hence, the variation (28.24) assumes the form

δ̄Lng “
1

2
Tµν δ̄gµν ` rELs δ̄ψ ` Bα

ˆ

BLng

Bψ,α
δ̄ψ

˙

. (28.25)
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Recall now the coordinate-shift origin of the variations. In such a case, we know that
invariants (in fact all tensors) behave as δ̄T “ ϵ£ξT “ ϵ T;ιξ

ι. The same also applies to the
associated scalar densities (T”

?
´g T ), because δ̄T “ T δ̄

?
´g `

?
´g δ̄T , where

δ̄
?

´g “
1

2

?
´g gµν δ̄gµν “

1

2

?
´g gµνϵ£ξgµν “

1

2

?
´g gµνϵ pξµ;ν` ξν;µq “ ϵ

?
´g ξµ;µ ,

ùñ δ̄T “ ϵ
?

´g Tξµ;µ ` ϵ
?

´g T;ιξ
ι

“ ϵ p
?

´g Tξιq;ι ” ϵ£ξT .

Details are given in Section A.1.2. In particular, we show there that the above divergence
can equally well be written as a partial one. Hence, to summarize, we substitute, to equation
(28.25), the expressions δ̄ψ“ϵ£ξψ and

δ̄Lng “ ϵ£ξLng “ ϵ pLng ξ
ι
q;ι “ ϵ pLng ξ

ι
q,ι ,

δ̄gµν “ ϵ£ξgµν “ ϵ pξµ;ν` ξν;µq ùñ
1

2
Tµν δ̄gµν “

1

2
Tµνϵ pξµ;ν` ξν;µq “ ϵTµνξµ;ν ,

to obtain (cancelling ϵ from the whole equation)

pLng ξ
ι
q,ι “ Tµνξµ;ν ` rELs£ξψ ` Bα

ˆ

BLng

Bψ,α
£ξψ

˙

.

Finally, shifting the pLng ξ
ιq,ι term to the divergence on the r.h. side, we arrive at

Tµνξµ;ν ` rELs£ξψ ` Bα

´

BLng

Bψ,α
£ξψ ´ Lng ξ

α
¯

“ 0 . (28.26)

It is clear now that in the special case when ξµ is a Killing field, one obtains weak
conservation(s) for the divergence term, because then Tµνξµ;ν “ Tpµνqξrµ;νs “ 0. Still more
special is the case when the test field ψ follows the space-time symmetry, £ξψ“0: then one
is left just with p∇αLngqξα“

?
´gpBαLngqξα“0, because Lngξ

α is a vector density for which
partial and covariant derivatives coincide, ξα;α“0 for a Killing field, and∇αLng “BαLng.

Recall now that (28.26) is an identity, so it has to be satisfied for arbitrary ξµ, including
its arbitrary derivatives. Therefore, not only that (28.26) has to vanish as a whole – vanish
must individually its parts proportional to ξµ and to its derivatives. In order to check this, let us
write the equation more explicitely. First of all, realize once again that ψ in general represents
more than one fields, or a field with more components, so the terms such as rELs£ξψ should
in fact be written as rELsA£ξψA (sum over A). In order to extract the gradient of ξµ from
the £ξψ term, let us consider just a single field ψ yet of a generic type (ψK , say, with K a
multi-index in general). Then, generally,

£ξψ
K

“ ψK ;αξ
α

´ FK
αL

βψLξα;β , (28.27)

where the coefficients FK
αL

β (and ψL, of course) are independent of the properties of ξµ.
In order to illustrate such a formula, take K ” µν, for example: one has

£ξψ
µν

“ ψµν ;αξ
α

´ ξµ;βψ
βν

´ ξν ;βψ
µβ ,
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so should the corresponding formula

£ξψ
µν
`

” £ξψ
K

“ ψK ;αξ
α

´ FK
αL

βψLξα;β
!

“
˘

ψµν ;αξ
α

´ F µν
αρσ

βψρσξα;β

work, the coefficients have to read F µν
αρσ

β “ δµαδ
β
ρ δ

ν
σ ` δναδ

µ
ρ δ

β
σ .

Let us now focus on the last term of (28.26). It is a divergence of a vector density, so
one can apply on it covariant divergence equally well,

Bα

ˆ

BLng

BψK,α
£ξψ

K
´ Lng ξ

α

˙

“ ∇α

ˆ

BLng

BψK,α
£ξψ

K
´ Lng ξ

α

˙

“

“ ∇α

ˆ

BLng

BψK,α
ψK ;ρξ

ρ
´

BLng

BψK,α
FK

ρL
βψLξρ;β ´ Lng ξ

α

˙

“

“ ∇α

„ˆ

BLng

BψK,α
ψK ;ρ ´ Lng δ

α
ρ

˙

loooooooooooooomoooooooooooooon

“: ´tρ
α

ξρ ´
BLng

BψK,α
FK

ρL
βψL

looooooooomooooooooon

“: ´Sρ
βα

ξρ;β

ȷ

“ (28.28)

“ ´tρ
α
;α ξ

ρ
´ tρ

α ξρ;α ` Sρ
βα

;α ξ
ρ
;β ` Sρ

βα ξρ;βα ,

where tρ
α is known, from the field theory, as the canonical energy-momentum tensor,12

and Sρ
βα is know as the (canonical) spin tensor. The whole identity (28.26) now appears as

Tµνξµ;ν ` rELsK
`

ψK ;αξ
α

´ FK
αL

βψLξα;β
˘

`

´ tρ
α
;α ξ

ρ
´ tρ

α ξρ;α ` Sρ
βα

;α ξ
ρ
;β ` Sρ

βα ξρ;βα “ 0 (28.29)

([EL] now clearly has the multi-index K at the bottom).
In order to fulfil this for arbitrary ξµ in all the derivative orders, note first that FK

αL
β ,

tρ
α and Sρ

βα do not depend on ξµ at all. Second, the second derivatives of ξµ only appear
in the very last term Sρ

βα ξρ;βα. For the partial-derivative part of this term, Sρ
βα ξρ,βα , to

vanish, Sρ
βα has to be anti-symmetric in rα, βs. Then, however, one has

Sρ
βα ξρ;βα “ Sρ

rβαs ξρ;βα “ Sρ
βα ξρ;rβαs “ ´Sρ

βαRρ
µβαξ

µ ,

thanks to which we conclude that the term Sρ
βα ξρ;βα actually does not involve any deriva-

tives of ξµ, and that there are no terms at all proportional to the second derivatives of ξµ in
the equation.

Proceed now to the crucial part of (28.29), proportional to ξα,β : this will provide the
relation between Tβα and tα

β . From the first term, we extract the partial-derivative part as

Tµνξµ;ν ” Tαβξα;β ” Tβαξ
α
;β ÝÑ Tβαξ

α
,β .

From the second term, rELs£ξψ, the [EL] part does not depend on ξµ, so only contributing
is the ´FK

αL
βψLξα;β part, hence

rELs£ξψ ÝÑ ´rELsK F
K
αL

βψLξα,β .

12 This tensor is more often being introduced with the opposite sign in the literature. Our choice leads, for a
scalar field (e.g.), to tρ

α“´
BLng

Bψ,α
ψ,ρ`Lng δ

α
ρ “ ψ,αψ,ρ`Lng δ

α
ρ , which agrees with the result obtained from

the conserved Noether current in (28.19), and also with that obtained from the formula (23.17) in (23.18).
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Finally, from the rest of (28.29) we have (just renaming indices first...)

´tρ
α ξρ;α ` Sρ

βα
;α ξ

ρ
;β ” ´tα

β ξα;β ` Sα
βρ

;ρ ξ
α
;β ÝÑ

`

´tα
β

` Sα
βρ

;ρ

˘

ξα,β .

Therefore, in total we have reached, for the ξα,β-part of (28.29), the requirement
`

Tβα ´ rELsK F
K
αL

βψL ´ tα
β ` Sα

βρ
;ρ

˘

ξα,β “ 0 . (28.30)

It has to be satisfied for arbitrary ξα,β , so vanish must the parenthesis. The formula represents
the relation between the “symmetric” (or “metric”) energy-momentum tensor Tβα and the
canonical one, tαβ . (They both are tensor densities actually, sure.)

Remark: in specific theories, the definition of the energy-momentum tensors is ad-
justed, by including constants, according to how exactly the pertinent field equations relate
the fields to the sources. See the next section for the GR case where the formulas (28.28) in
fact define 16πtρ

α, etc.
If the Euler-Lagrange equations are satisfied, rELsK “0, the energy-momentum tensors

just differ by the spin term. Diverging the thus reduced (“weak”) condition while supposing
conservation of the symmetric energy-momentum tensor, Tβα;β “0, we obtain

tα
β
;β “ �

��Tβα;β ` Sα
βρ

;ρβ .

Regarding, in addition, the skew-symmetry of Sα
βρ in the upper indices, we have

tα
β
;β “ Sα

βρ
;ρβ “ Sα

rβρs
;ρβ “ Sα

βρ
;rρβs “ Rι

αρβSι
βρ

` Rι
β
ρβSα

ιρ
` Rι

ρ
ρβSα

βι
“

“ Rι
αρβSι

βρ
`

XXXXXRιρSα
ιρ

´
XXXXXRιβSα

βι
“ ´Rι

αβρSι
βρ .

So, the canonical tensor is not in general conserved in a curved space-time.

Example: EM field in Minkowski

Let us check how the currents and the canonical energy-momentum tensor look for the free
EM field in Minkowski. For L ” L“ ´ 1

16π
FµνF

µν , the diverged part of the main Noether’s
identity (28.13), i.e. the infinitesimal currents (28.15), read

δ̄ Jα “
BL

BAκ,α
δ̄Aκ ´

ˆ

�
�
��BL

BAκ,αβ

˙

,β

δ̄Aκ `
�

�
��BL

BAκ,αβ
δ̄Aκ,β ` L δxα ` δ̄Qα .

If the change of Aµ is solely induced by the infinitesimal translation x1α “ xα ´ ϵ ξαpxq, we
have, from the general relation (28.9), δ̄Aκ “ ϵ£ξAκ “ ϵ pAκ,ιξ

ι ` ξι,κAιq, hence

δ̄ Jα “ ϵ

ˆ

BL

BAκ,α
Aκ,ι ´ L δαι

˙

ξι ` ϵ
BL

BAκ,α
Aιξ

ι
,κ ` δ̄Qα .

Comparing this with the divergence term (28.28) of the test-field equation (28.26), we recog-
nize the canonical energy-momentum tensor and the canonical spin tensor,

BL

BAκ,α
Aκ,ι ´ L δαι ” ´tι

α ,
BL

BAκ,α
Aι ” ´Sι

κα .
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Substituting for BL
BAκ,α

“ ´ 1
4π
Fακ, this means

tι
α

“
1

4π

ˆ

FακAκ,ι ´
1

4
δαι FµνF

µν

˙

, Sι
κα

“
1

4π
FακAι .

It is not ideal: tια is neither symmetric nor trace-free in general, and it is even gauge-
dependent (a change of Aκ would affect it).

However, we can employ the freedom in δ̄Qα to rectify the result: choosing

δ̄Qα
“

ϵ

4π
pFακξιAιq,κ “

ϵ

4π ���Fακ
,κξ

ιAι `
ϵ

4π
Fακξι,κAι `

ϵ

4π
FακAι,κξ

ι

(thus “on-shell”), the first term exactly cancels the spin-tensor term and the second term
complements the gauge-dependent term of tια to the standard “correct” one,

δ̄ Jα “ ´ϵ

ˆ

tι
α

´
1

4π
FακAι,κ

˙

ξι ´ ϵ

ˆ

����������
Sι

κα
´

1

4π
FακAι

˙

ξι,κ “

“ ´
1

4π

ˆ

FακFικ ´
1

4
δαι FµνF

µν

˙

ϵ ξι .

Note that the above choice of δ̄Qα is totally “harmless”, because not only that it leads to a
divergence term, but even this term is zero, pδ̄Qαq,α“0, thanks to the antisymmetry of Fακ.

The above modification of the canonical energy-momentum tensor to a symmetric and
gauge-invariant form is called the Belinfante-Rosenfeld procedure. Note once more that
the correction term has been taken “on-shell”, so in general the favourable properties of the
Belinfante-Rosenfeld tensor only apply if the field equations are satisfied.

28.10 Energy (and other “source” features) of the gravita-
tional field

In Maxwell’s electromagnetism (in flat space-time), the currents Jα generate the field Fαβ ,
with the field bearing no characteristics of the source (i.e. of the current): there is no current
in the field itself, which makes the notion of the current clear. Associated with the field
is the energy-momentum tensor Tµν (see Section 7.3), from which the energy of the field
at some moment (on some space-like hypersurface Σ) can be computed as

ş

Σ
T µν t

νnµ d
3x,

with tµ the time-translation Killing vector and nµ the unit normal to Σ. Equations T µν,µ “ 0
then represent the conservation laws which guarantee that the energy and momentum of the
system are independent of time (independent of the choice of Σ) – see below. Besides that,
it is always possible to say how much energy (and momentum) there is in a certain spatial
region. The field can transport energy from one place to the other, as it is clear from what
people are constantly doing (look around).

In GR, it is the energy-momentum Tµν what represent sources, yet the field itself bears
the energy and momentum and thus itself behaves as a source (“the field generates field”).
And the field is capable of transporting the energy and momentum at distance: otherwise
detection of gravitational waves would not be feasible. In fact, the field has its own degrees of
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freedom, independent of any “non-gravitational source” – even with Tµν “0, one has plethora
of space-times which do contain non-trivial field, including those containing gravitational
radiation. It is thus inherently problematic to say how much energy or momentum is here
and how much there, because “the source is everywhere” ... the gravitational energy, as well
as other source characteristics, are non-localisable. The situation is only clear for test bodies
and fields which have no effect on the gravitational background (which are not dynamically
coupled to the latter).

One may also comment on the above issue from the principle of equivalence: since the
gravitation is universal, it is always possible to go over to LIFE... There, however, gravita-
tional acceleration locally vanishes, so the situation is – locally – indistinguishable from flat
space-time, i.e., as if it were no gravitation at all. In mathematical words, first derivatives of
the metric (Christoffel symbols) themselves do not in general give rise to any tensorial quan-
tity from which “strength of gravity” could be inferred and use to define the energetics.13

You may ask, why just metric and its first derivatives? –It is because of the field equations:
these contain second derivatives, so in order to have something conserved, it should be of one
derivative order less.

Remark: Equations containing higher than second derivatives tend to predict unphys-
ical properties, such as superluminal speed of propagation (acausality) or instability with
respect to perturbations (modes with negative energy can occur). At a quantum level, this
reveals as the occurrence of particles with imaginary mass/energy (tachyons) or with nega-
tive mass/energy (ghosts), possibly having negative or greater-than-one probability of being
found in a certain state (thus breaking the unitarity). In the role of equations of motion and
field equations, physics thus very much prefers the second-order differential equations.

Now the same in more technical words. In Einstein equations, Tµν represents all non-
gravitational sources. It locally conserves covariantly, T µν ;ν “0, yet still this does not gener-
ally imply a global “Gauss law” which would say that a total energy and momentum present
in a certain region were conserved. Actually, the covariant divergence of a symmetric tensor
cannot be rewritten solely in terms of partial divergence – see (5.17),

T µν ;ν “
1

?
´g

p
?

´g T µνq,ν ` ΓµνιT
ιν .

To be more precise, this formula does provide conservation, but only in the stationary
case. Indeed, writing it for a mixed tensor T να , we have

T να;ν ” T να,ν ` ΓννιT
ι
α ´ ΓιναT

ν
ι “ T να,ν `

p
?

´gq,ι
?

´g
T ια ´ ΓιναT

ιν
“

“
1

?
´g

p
?

´g T να q,ν ´
1

2
pgιν,α` gαι,ν´ gνα,ιqT

ιν
“

“
1

?
´g

p
?

´g T να q,ν ´
1

2
gιν,α T

ιν . (28.31)

13 In this sentence, “in general” means “in general space-time”. In Kerr space-time, for example, there are
invariant quantities (lapse N , dragging angular velocity ω, and circumferential radius given by gϕϕ) from which
one can define vectors by gradients. In particular, gµνN,µN,ν is a very good measure of the gravitational
acceleration (squared). But all this is based on particular symmetries – the time and azimuthal Killing fields.
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Something similar to what we know from geodesic equation (3.6) arises: if the metric does
not depend on the α-th coordinate, the respective (α-th) row/column of the energy-momentum
tensor is conserved, because then 0 “ T να;ν “ 1?

´g
p
?

´g T να q,ν . In particular, for a stationary
space-time, one has gιν,0 “0 (in terms of the Killing time), hence

0 “
1

?
´g

p
?

´g T ν0 q,ν ùñ 0 “

ż

Ω

1
?

´g
p
?

´g T ν0 q,ν

?
´g d4x “

¿

BΩ

?
´g T ν0 nν d

3x .

Imagine the domain Ω as representing a history of some spatial region, i.e. as a 3D cylinder
with its bases at x0 ” t“ tin and at x0 ” t“ tfin. Assuming there are no energy fluxes across
the walls of that cylinder, we have the common conservation of energy:

ş

tin

?
´g T 0

0 d
3x “

ş

tfin

?
´g T 0

0 d
3x (because the normal points in an opposite sense on the bases).

However, in general no formula for energy follows straightforwardly which would be
naturally conserved. This was one of the reasons why also the notion of gravitational radi-
ation was for decades a matter of debate. In particular, the Einstein’s “quadrupole formula”
from 1918, determining the power emitted by a gravitational source, was a subject to non-
negligible scepticism which marginally survived until 21st century. It was one of Einstein’s
many triumphs when it was shown, in 1980s, that the orbital period of the Hulse-Taylor bi-
nary pulsar (1974) decays in incredible agreement with the formula (down to 0.2% by 2005),
not speaking about direct detection of the waves in 2015.

Today, it is better understood that the lack of the energy-density prescription is a feature
rather than a bug of GR. Below, we mention a few ways how to deal with this issue.

28.10.1 Energy-momentum pseudo-tensors (complexes)

In Section 23.3, we showed how Einstein gravitational equations follow by a suitable varia-
tional method. Let us recall the procedure, yet in a more general setting: this time we will
only specify that the Lagrangian density should depend on the metric and on its 1st and 2nd
derivatives. So let

S “ Sg ` Sng “

ż

Ω

Lgpgµν , gµν,α, gµν,αβq
?

´g d4x ` 16π

ż

Ω

Lngpψng; gµν , gµν,αq
?

´g d4x ,

where the 16π has been fixed according to how we did it specifically in GR in (23.5). The
Lagrangians certainly also depends on xµ, but we assume it does so only “implicitly” through
the dependence on the field gµν and its derivatives. We know from Section 23.3 that if δ̄gµν

as well as δ̄gµν,ι vanish on the boundary BΩ, the variational derivatives of Sg and Sng with
respect to gµν yield, respectively,

Bp
?

´gLgq

Bgµν
´

„

Bp
?

´gLgq

Bgµν,α

ȷ

,α

`

„

Bp
?

´gLgq

Bgµν,αβ

ȷ

,αβ

“: rELpLgqsµν ,

Bp
?

´gLngq

Bgµν
´

„

Bp
?

´gLngq

Bgµν,α

ȷ

,α

“: rELpLngqsµν .

Specifically in GR, we know that these come out as

rELpLgqsµν “
?

´g

ˆ

Rµν ´
1

2
Rgµν ` Λgµν

˙

, rELpLngqsµν “: ´

?
´g

2
Tµν ,
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and that the field equations relate them as rELpLgqsµν ` 16π rELpLngqsµν “ 0.
Now, however, consider a generic situation (no specific field equations), and focus on

the gravitational part Sg. Consider again its behaviour induced by an infinitesimal shift
xµ Ñ xµ ´ ϵξµ. Yes, the steps will seem to be very similar to what we did above, yet
the aim is very different. We will try to find a conservation law which would include the
gravitational field, in order to obtain then, on its basis, some conserved global quantities also
incorporating the pure-gravitational contributions. Such contributions have to be searched
for elsewhere than in the standard energy-momentum tensor T µν , because the latter only
contains non-gravitational sources. And the GR experience says that the gravitational part
of the field equations hardly provides any covariant information in this respect (in GR, the
covariant divergence of the field-equations l.h. side vanishes automatically due to the Bianchi
identities). The only hope is to find the conservation law in terms of partial divergence,
for some tensor density which would contain the standard, non-gravitational part Tµν plus
a certain contribution due to the gravitational field. The latter cannot be expected to be
of tensorial nature, yet it might still be useful, at least in problems with clearly privileged
coordinates.

So, let us express the “barred” variation of Lg (the change at a given point) in the way
we have already followed several times,

δ̄Lg “
BLg

Bgµν
δ̄gµν `

BLg

Bgµν,α
δ̄gµν,α `

BLg

Bgµν,αβ
δ̄gµν,αβ “

“
BLg

Bgµν
δ̄gµν `

ˆ

BLg

Bgµν,α
δ̄gµν

˙

,α

´

ˆ

BLg

Bgµν,α

˙

,α

δ̄gµν `

`

ˆ

BLg

Bgµν,αβ
δ̄gµν,α

˙

,β

´

ˆ

BLg

Bgµν,αβ

˙

,β

δ̄gµν,α “

“
BLg

Bgµν
δ̄gµν `

ˆ

BLg

Bgµν,α
δ̄gµν

˙

,α

´

ˆ

BLg

Bgµν,α

˙

,α

δ̄gµν `

`

ˆ

BLg

Bgµν,αβ
δ̄gµν

˙

,αβ

´ 2

«

ˆ

BLg

Bgµν,αβ

˙

,α

δ̄gµν

ff

,β

`

ˆ

BLg

Bgµν,αβ

˙

,αβ

δ̄gµν “

“ rELpLgqs
µν δ̄gµν ` Bα

«

BLg

Bgµν,α
δ̄gµν `

ˆ

BLg

Bgµν,αβ
δ̄gµν

˙

,β

´ 2

ˆ

BLg

Bgµν,αβ

˙

,β

δ̄gµν

ff

“

“ rELpLgqs
µν δ̄gµν ` Bα

«

BLg

Bgµν,α
δ̄gµν ´

ˆ

BLg

Bgµν,αβ

˙

,β

δ̄gµν `
BLg

Bgµν,αβ

`

δ̄gµν
˘

,β

ff

,

where we have again used the commutation of δ̄ with coordinate partial derivatives.
If the variation is completely induced by a coordinate shift xµ Ñ xµ´ϵξµpxq, we know

the “barred” variation of the quantities is given by their Lie derivative with respect to ϵξµ. The
variation of metric thus reads £ξgµν “ ξµ;ν ` ξν;µ. And, being Lg ”

?
´gLg a scalar density

of weight `1, we also know the Lie derivative acts on it according to

δ̄Lg “ £ξLg “ pLgξ
α
q;α “ pLgξ

α
q,α . (28.32)
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Putting all together, we have the equation

pLgξ
α
q,α “ rELpLgqs

µν£ξgµν ` Bα

«

BLg

Bgµν,α
£ξgµν´

ˆ

BLg

Bgµν,αβ

˙

,β

£ξgµν`
BLg

Bgµν,αβ
p£ξgµνq,β

ff

,

that is,

0 “ rELpLgqs
µν£ξgµν `

“

...
‰α
,α ´ pLgξ

α
q,α “ rELpLgqs

µν£ξgµν ` 16π Jα,α , (28.33)

where the “gravitational flux” Jα has been introduced, similarly as in equation (28.15), by

16π Jα :“
BLg

Bgµν,α
£ξgµν ´

ˆ

BLg

Bgµν,αβ

˙

,β

£ξgµν `
BLg

Bgµν,αβ
p£ξgµνq,β ´ Lgξ

α . (28.34)

Integrating this over Ω while assuming that ξµ vanishes at BΩ with sufficient number of
derivatives to make δ̄gµν ” £ξgµν “0, δ̄gµν,β “pδ̄gµνq,β ” p£ξgµνq,β “0 there, the divergence
term Jα,α vanishes due to Gauss, so we are left with

0 “

ż

Ω

rELpLgqs
µν

pξµ;ν ` ξν;µq d4x “ 2

ż

Ω

rELpLgqs
µνξµ;ν d

4x “

“ 2

XXXXXXXXXXXXX

ż

Ω

prELpLgqs
µνξµq;ν d4x ´ 2

ż

Ω

prELpLgqs
µν

q;ν ξµ d
4x ,

where we have right cancelled the first term, because rELpLgqsµνξµ is a vector density of
weight +1, so

`

rELpLgqsµνξµ
˘

;ν
“

`

rELpLgqsµνξµ
˘

,ν
and its integral again vanishes due to

Gauss under the given boundary assumptions (ξµ “ 0 on BΩ). Hence, since ξµ is generic,
similarly as we obtained the GR conservation laws T µν ;ν “0 in (23.20), we have derived the
generic contracted Bianchi identities

prELpLgqs
µν

q;ν “ 0 .

By using the above Bianchi identities back in (28.33), it is possible to express the whole
this identity as a divergence. Actually, after plugging there £ξgµν “ ξµ;ν ` ξν;µ, rewrite again

rELpLgqs
µν£ξgµν ` 16π Jα,α “ 2rELpLgqs

µνξµ;ν ` 16π Jα,α “

“ 2 prELpLgqs
µνξµq;ν ´ 2((((((((

prELpLgqs
µν

q;ν ξµ ` 16π Jα,α ,

where the cancellation is exactly due to the Bianchi identities. Realizing finally that both
rELpLgqsµνξµ and Jα are vector densities (of the same weight +1), we can write the result
equally well in terms of covariant or partial divergence,

prELpLgqsµνξµ ` 8π Jνq;ν “ prELpLgqsµνξµ ` 8π Jνq,ν “ 0 . (28.35)

Apparently, this is a strong-type conservation law (not necessarily requiring satisfaction of
any EL equations). However, if one does substitute certain particular field equations, as e.g.
those of the Einstein type, rELpLgqsµν “ 8π Tµν :“ 8π

?
´g T µν , it yields

`

Tµνξµ ` Jν
˘

,ν
“ 0 . (28.36)
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In the history (cf. e.g. H. A. Lorentz or W. Pauli), Tµνξµ and Jν were respectively interpreted
as the “matter energy-momentum flux” and the “energy-momentum flux due to the gravita-
tional field”, with the conservation being understood so that they just cancel out each other
(Tµνξµ ` Jν itself vanishes). However, today’s viewpoint is different:

While Tµν is determined by the field equations, the “gravitational flux” Jν is not unique.
Actually, take a certain skew-symmetric matrix V µνpgαβ, gαβ,γ, ξ

ιq, called superpotential (it
need not be a tensor, and not even a tensor density, as already suggested by its variables not
including gαβ,γδ), and change the gravitational flux to

J1ν
“ Jν ` V νλ

,λ .

Even if the total flux Tµνξµ ` Jν were zero originally, now it need not be, while clearly
V νλ

,λν “ 0, so the conservation
`

Tµνξµ ` J1ν
˘

,ν
“ 0 still holds. In order to restrict the

freedom in Jν , one e.g. requires that the integration of J0 over the whole space (over its
proper volume) yields the correct mass, such as M in the case of Schwarzschild.

Recall now that Jν depends on the choice of ξµ – see the definition (28.34). A “canon-
ical” option is to take four independent translations which in the adapted coordinates reduce
to ξµ

pκq
“ δµκ , where κ “ 0,1,2,3 numbers the vectors. The matrix of the gravitational fluxes

Jν obtained for these four ξµ
pκq

is called then the energy-momentum pseudotensor or the
energy-momentum complex,

tκ
ν :“ Jνpξµ“ ξµ

pκq
“ δµκq .

We know from (11.12) that ξµ Ñ ξµ
pκq

“ δµκ yields £ξgαβ “ gαβ,κ , hence the general form of
Jν , (28.34), becomes

16π Jν Ñ 16π tκ
ν

“
BLg

Bgαβ,ν
gαβ,κ´

ˆ

BLg

Bgαβ,νλ

˙

,λ

gαβ,κ`
BLg

Bgαβ,νλ
pgαβ,κq,λ´Lgδ

ν
κ . (28.37)

In the special case when the Lagrangian density does not depend on the second derivatives of
the metric, we see the prescription reduces to the “canonical”-type expression (28.28),14

16π tκ
ν

“
BLg

Bgαβ,ν
gαβ,κ ´ Lgδ

ν
κ . (28.38)

Before proceeding to specific examples, let us stress the pseudotensors/complexes are
not tensorial quantities, so they cannot represent the energy-momentum fluxes in an invariant
and unique way. In particular, they typically can locally be made vanish, which exactly
indicates that it is impossible to localize the gravitational energy/momentum. This does not
mean they are not useful, but they have to be employed in coordinates suitable for a given
situation (in asymptotically flat space-times, for example, it has to be coordinates which

14 Yes, there is the sign difference and there appear 16π here. However, remember that (28.28) was computed
from Lng, whereas here we take it from Lg. And, in equation pTµνξµ `Jνq,ν “0, we sum the non-gravitational
and gravitational contributions (Tµνξµ and Jν , respectively) with the same signs, while they stand on the oppo-
site sides of the field equations.
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asymptotically become Minkowskian and which do so sufficiently quickly, namely faster
than gµν Ñ ηµν ` Op1{

?
rq, with r asymptotically representing proper radial distance15).

The gravitational complexes should depend on the metric and its first derivatives (yet
there are exceptions also involving the second derivatives, e.g. the suggestion by C. Møller16).
They preferably should be symmetric, and in asymptotically flat space-times their integral
over the whole “space” (over a properly chosen space-like hypersurface) should provide in-
tegral quantities (energy, angular momentum) of plausible properties and independent of the
spatial coordinates. There exist two important examples of the energy-momentum complex:

Einstein’s energy-momentum complex

Einstein himself suggested (right in 1916) a complex which can be obtained from the reduced
formula (28.38), because he only isolated from the gravitational Lagrangian the part indepen-
dent of the second metric derivatives. Actually, the Hilbert-Lagrangian scalar density can be
decomposed as

?
´g R “

?
´g gβγ

`

ΓλρλΓ
ρ
βγ ´ ΓλργΓ

ρ
βλ

˘

`
“?

´g pgβγΓιβγ ´ gιβΓλβλq
‰

,ι
.

Importantly, the second part (the one depending on the second metric derivatives) is given
by partial divergence, so it does not contribute to the field equations at all. Hence the first
part of the expression alone represents a valid Lagrangian density for GR (only that it is
not invariant). Indeed, with Lg ”

?
´gLg :“

?
´g gβγ

`

ΓλρλΓ
ρ
βγ´ ΓλργΓ

ρ
βλ

˘

, the field
equations appear as

rELpLgqs
αβ

”
BLg

Bgαβ
´

ˆ

BLg

Bgαβ,ι

˙

,ι

“ ´16π rELpLngqs
αβ

“ 8π Tαβ . (28.39)

It is thus natural to introduce, by formula (28.38),

16π tκ
ν :“

BLg

Bgαβ,ν
gαβ,κ ´ Lgδ

ν
κ , (28.40)

yielding the explicit expression

16π tκ
ν

?
´g

“ gρσ pΓιιρΓ
ν
κσ ` ΓιικΓ

ν
ρσ ´ 2ΓνριΓ

ι
κσq ´ δνκ g

ρσ
pΓτ ρσΓ

ι
ιτ ´ Γτ ριΓ

ι
στ q `

` gνι pΓσσρΓ
ρ
ικ ´ ΓσσιΓ

ρ
ρκq .

Taking a divergence of the definition (28.40), we have (recall that Lg “Lgpgαβ, gαβ,ιq)

16π tκ
ν
,ν “

ˆ

BLg

Bgαβ,ν

˙

,ν

gαβ,κ `

�������BLg

Bgαβ,ν
gαβ,κν ´

BLg

Bgαβ
gαβ,κ ´

�������BLg

Bgαβ,ι
gαβ,ικ “

15 This type of subtlety is actually involved in the notion of asymptotic flatness as such: it is not sufficient that
“the space is flat very far away”, the metric has to approach the flat one in a specific manner.

16 It is the Christian Møller who, besides writing the known GR textbook [30], in 1938 advised to O. Frisch to
study nuclear fission as a possible source of vast energy. Also, in the 1930s when A. S. Eddington was giving a
hard time to S. Chandrasekhar’s theory of degenerate fermion gas in final stages of stellar-core evolution, Møller
clearly supported Chandrasekhar and wrote a paper Relativistic Degeneracy with him.
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“ ´rELpLgqs
αβgαβ,κ “ ´8π Tαβgαβ,κ . (28.41)

However, since we know, from (28.31), that the conservation of T νκ reads, explicitely,

0 “
?

´g T νκ;ν “ p
?

´g T νκ q,ν ´

?
´g

2
gιν,κ T

ιν
” Tνκ,ν ´

1

2
gιν,κ T

ιν ,

we can express 1
2
gιν,κ T

ιν “Tνκ,ν , or, 8π Tαβgαβ,κ“16π Tβκ,β , to obtain, from (28.41),

pTνκ ` tκ
ν
q,ν “ 0 ,

which is exactly the desired property.
It has been found that Einstein complex is generated by a superpotential Vκνσ given by

16π Vκ
νσ

“
1

?
´g

gκλ
“

g pgλσgνι ´ gλνgσιq
‰

,ι
: Vκ

νσ
,σ “ tκ

ν
p`Tνκ if there is matterq .

Note that since Vκνσ is anti-symmetric in rνσs, the conservation law Vκ
νσ
,σν “ 0 follows

without any requirement on gµν (it need not satisfy Einstein equations), i.e. “strongly”, so
F. Klein and E. Noether would call it improper, while P. J. Olver would call it trivial of the
second class.

Clearly the mixed Einstein complex transforms, under affine (linear, but not necessarily
Lorentz) transformations, as a tensor density of weight `1, which is a good feature because
thanks to it the integral

pκ “

ż

V

tκ
0 d3x

provides a quantity which – under the affine transformations – behaves as a (co)vector and
which can thus represent the momentum (of the gravitational field). The total four-momentum
of course is then introduced as

pµ “

ż

Σ

pTµν ` tµνq dΣν .

However, the standard definition Jµν “
ş

Σ
rxµpTνκ ` tνκq ´ xνpTµκ ` tµκqs dΣκ of total

angular momentum is useless, because the non-mixed forms of the Einstein complex, tκλ and
tµν , are not symmetric. This is the main drawback of Einstein’s proposal.

Landau-Lifshitz energy-momentum complex

Landau & Lifshitz chose an opposite strategy in a sense ([25], section 96): they identified, in
a freely falling frame, the “genuine-curvature” part of the Einstein tensor (i.e. the part solely
given by the second derivatives of the metric), defined Tµν from it, and then added a complex
tµν in such a way that it correspond to the rest of the Einstein tensor within the conservation
laws p

?
´g Tµν ` tµνq,ν “ 0.
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Actually, in a local geodesic system, the first derivatives of the metric vanish, so the
fully covariant Riemann (6.8) reduces to

Rαβγδ “
1

2
pgαδ,βγ ` gβγ,αδ ´ gαγ,βδ ´ gβδ,αγq ` rΓ2 termss .

Plugging the curvature part into the Einstein tensor,

Rµν
´

1

2
Rgµν “ gµβgνδgαγRαβγδ ´

1

2
gβδgαγRαβγδg

µν
“

“
1

2
gµβgνδgαγpgαδ,βγ ` gβγ,αδ ´ gαγ,βδ ´ gβδ,αγq ´

1

2
gβδgαγgµνpgαδ,βγ ´ gαγ,βδq ,

one can define the corresponding T µν from the field equations,

16π T µν p´2Λgµνq “ 2Rµν
´ Rgµν “

“ gµβgνδgαγpgαδ,βγ ` gβγ,αδ ´ gαγ,βδ ´ gβδ,αγq ´ gβδgαγgµνpgαδ,βγ ´ gαγ,βδq ,

which – when neglecting the first-metric-derivative terms again – turns out to equal

16π T µν p´2Λgµνq “
1

´g

“

g pgµσgνι ´ gµνgσιq
‰

,ισ
“:

16π

´g
V µνσ

,σ ,

i.e. (we omit the cosmological term already)
?

´g Tµν ” p´gqT µν “ V µνσ
,σ , with 16π V µνσ :“

“

g pgµσgνι ´ gµνgσιq
‰

,ι
.

In a generic coordinate system, there also appear the gµν,ι terms (the Christoffel sym-
bols), so

?
´g Tµν “ V µνσ

,σ no longer holds. Let us denote the difference as tµν ,
?

´g Tµν ` tµν “ V µνσ
,σ ùñ p

?
´g Tµν ` tµνq,ν “ 0 .

Obviously, the above superpotential can be obtained from that of the Einstein complex simply
by pVLLqµνσ “

?
´g gµκpVEqκ

νσ. Since the matter contribution Tµν means the same in both
cases, one can thus relate the two gravitational complexes,

?
´g Tµν ` ptLLq

µν
” pVLLq

µνσ
,σ “ r

?
´g gµκpVEqκ

νσ
s,σ “

“ p
?

´g gµκq,σpVEqκ
νσ

`
?

´g gµκpVEqκ
νσ
,σ ”

” p
?

´g gµκq,σpVEqκ
νσ

`
?

´g gµκ rTνκ ` ptEqκ
ν
s

ùñ ptLLq
µν

“
?

´g gµκptEqκ
ν

` p
?

´g gµκq,σpVEqκ
νσ .

And it also reveals how both complexes can be conserved simultaneously,

pVLLq
µνσ

,σν “ r
?

´g gµκpVEqκ
νσ

s,σν “ rp
?

´g gµκq,σpVEqκ
νσ

`
?

´g gµκpVEqκ
νσ
,σs,ν “

“ (((((((((((
p
?

´g gµκq,σνpVEqκ
νσ

` p
?

´g gµκq,σpVEqκ
νσ
,ν `

` p
?

´g gµκq,νpVEqκ
νσ
,σ `

?
´g gµκpVEqκ

νσ
,σν “

“
(((((((((((((
2p

?
´g gµκq,pσBνqpVEqκ

νσ
`

?
´g gµκpVEqκ

νσ
,σν .
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To derive an explicit formula for the LL tµν is tedious, it reads

16π tµν

´g
“
`

2ΓσκλΓ
ρ
ρσ ´ ΓσκρΓ

ρ
λσ ´ ΓσκσΓ

ρ
λρ

˘

pgµκgνλ ´ gµνgκλq `

`
`

ΓνκρΓ
ρ
λσ ` ΓνλσΓ

ρ
κρ ´ ΓνρσΓ

ρ
κλ ´ ΓνκλΓ

ρ
ρσ

˘

gµκgλσ `

`
`

ΓµκρΓ
ρ
λσ ` ΓµλσΓ

ρ
κρ ´ ΓµρσΓ

ρ
κλ ´ ΓµκλΓ

ρ
ρσ

˘

gνκgλσ `

`
`

ΓµκσΓ
ν
λρ ´ ΓµκλΓ

ν
ρσ

˘

gκλgρσ .

The LL complex is a tensor density of weight +2, not +1 as the Einstein complex (more
accurately, they behave so under linear transformations). This is not ideal for the definition
of the momentum (the respective integral over coordinate volume yields a vector density of
weight +1 rather than a vector), though suggestions exist in the literature how to work around
this issue. On the other hand, a clear advantage over the Einstein proposal is the LL-complex
symmetry.

An example, finally: consider the natural definition of four-momentum,

pα “

ż

Σ

p
?

´g Tµν ` tµνq dΣν ”

ż

V

p
?

´g Tµ0 ` tµ0q dV “

“

ż

V

V µ0σ
,σ dV “

ż

V

V µ0k
,k dV “

ż

S

V µ0k dSk ,

with the last but one equality holding in a stationary situation, and with S :“BV . Substituting

V µ0k
“

1

16π

“

g pgµkg0i ´ gµ0gkiq
‰

,i
,

we see immediately that V i0k “ 1
16π

“

g pgikg0i ´ gi0gkiq
‰

,i
“ 0, so pi“0. For p0, consider an

asymptotically flat space-time and recall the far-field metric (22.24), (22.27) we derived for a
stationary quasi-Newtonian source in the centre-of-mass coordinates (those in which pi“0).
We found there

g00 “ ´1 ´ 2Φ , g0i “ Opr´2
q , gik “ p1 ´ 2Φqδik

(whether indices are down or up is irrelevant since the coordinates are of linear type and far
away they are raised/lowered by a flat metric). Substituting the leading terms

����
g0kg0i ´ g00gki » p1 ` 2Φqp1 ´ 2Φqδik “ p1 ´ 4Φ2

qδik ,

g » ´p1 ` 2Φqp1 ´ 2Φq
3

» ´1 ` 4Φ ,

we have

g p����
gµkg0i ´ gµ0gkiq » p´1 ` 4Φqp1 ´ 4Φ2

qδik » p´1 ` 4Φqδik »

ˆ

´1 ´
4M

r

˙

δik

ùñ
“

g pgµkg0i ´ gµ0gkiq
‰

,i
»

ˆ

´1 ´
4M

r

˙

,r

“
4M

r2
.

Hence, by integrating over a sphere r“const, we find

p0 “
1

16π

ż

S

4M

r2
4πr2 dr “ M .
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More than enough complexes

In order to indicate the freedom one has in the design of a complex, consider an arbitrary
tensor density tκ

ν which is conserved, i.e. which is constrained by the continuity equation
tκ
ν
;ν “ 0. The corresponding superpotential Vκrνσs is required to fulfill Vκνσ,σ “ tκ

ν . How-
ever, the conservation will also apply to any quantity t1κ

ν :“ pφVκ
νσq,σ , with φpxαq arbitrary

function, thanks to the anti-symmetry of Vκνσ.
Clearly, another way to alternative complexes is to add two superpotentials (which both

generate a certain complex), Vκrνσs ` Wκ
rνσs.

28.10.2 Komar integrals

We learned in (9.2) and in (11.27) that the EM four-potential Aµ and any Killing vector ξµ

are coupled to curvature through equations

lAα ´ Rα
µA

µ
“ ´4πJα , l ξα ` Rα

µξ
µ

“ 0 ,

respectively. In a vacuum (Rα
µ “ 0), these are very similar (the source term Jα is not a

big distinction actually, because the electromagnetism is considered test here). Generally,
without the Lorenz condition Aα;α“0, the EM wave equation reads

pAβ;α ´ Aα;βq;β “ 4πJα .

One can define the total charge from its density standing in J0 by

Q “

ż

x0“const

J0
?

´g dx1dx2dx3 .

In this analogy, it is natural to introduce the “mass-current ( ” mometum) density” as

pα :“ pξβ;α ´ ξα;βq;β “ ´2ξα;ββ

and from it to define “mass” (with obvious idea and notation)

M “ ´
1

8π

ż

x0“const

p0
?

´g dx1dx2dx3 ”
1

4π

ż

x0“const

ξ0;ββ
?

´g dx1dx2dx3 “

“
1

4π

ż

x0“const

p
?

´g ξ0;βq,β dx1dx2dx3 “
1

4π

ż

x0“const

p
?

´g ξ0;iq,i dx
1dx2dx3 “

“
1

4π

¿

S

ξ0;i dSi

(remember that ξµ;ν is anti-symmetric, so ξ0;0 “ 0), where S is some 2-surface enclosing the
source and dSi is its vector proper-area element.

Let us check whether this might work on the Schwarzschild space-time where the time-
like Killing field writes, in the Schwarzschild coordinates, ξµ ” tµ “ δµ0 . Choosing naturally
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tt“const, r“constu as the integration surface S, i.e. dSi“δri
?
gθθgϕϕ dθ dϕ, it is sufficient

to know the r-component of the gradient,

t0;r “ grσt0;σ “ grrp�
�t0,r ` Γ0

r0q “
1

2
grrg0ρp���gρr,0 ` g0ρ,r ´ HHHgr0,ρ q “

“
1

2
grrg00g00,r “ ´

1

2
g00,r “

M

r2
.

The above prescription really yields the correct Schwarzschild value,

1

4π

¿

S

t0;i dSi “
1

4π

2π
ż

0

π
ż

0

t0;r
?
gθθgϕϕ dθ dϕ “

1

4π

2π
ż

0

π
ż

0

M

r2
r2 sin θ dθ dϕ “ M . (28.42)

Besides stationarity, Schwarzschild (but e.g. Kerr-Newman as well) also possesses
axial symmetry, so there also exists a space-like Killing vector field with circular orbits,
ϕµ “ δµ3 (if assigning ϕ ” x3). Similarly as the mass, here it is the angular momentum what
can be defined accordingly,

J “ ´
1

8π

¿

S

ϕ0;i dSi .

Notice the factor ´1{8π instead of 1{4π (which is an “anomaly”, sometimes ascribed to the
universally attractive and spin-2 character of gravity, while more often just considered a weak
point of this type of definition).

After this brief intro, let us motivate the Komar integrals more thoroughly. Consider a
stationary, asymptotically flat space-time which is vacuum at least “far away”. A family of
observers “at rest with respect to infinity”, i.e. those with four-velocity proportional to the
time Killing field tµ ” Bxµ

Bt
, uµ “ tµ

?
´gρσtρtσ

” tµ?
´gtt

, have four-acceleration

aµ “ uµ;νu
ν

“

ˆ

tµ
?

´gtt

˙

;ν

tν
?

´gtt
“
tµ;νt

ν

´gtt
`

1

2

tµ����tνgtt;ν
p´gttq2

“
tµ;νt

ν

´gtt
, (28.43)

because

tνgtt;ν ” tνpgαβt
αtβq;ν “ tνpgαβtαtβq;ν “ 2tνgαβtα;νtβ “ 2tνtrα;νst

α
“ 0

(tµ being Killing, tα;ν is anti-symmetric). “Renormalizing” now the four-acceleration “with
respect to the asymptotic inertial frame” (similarly as we did when introducing the surface
gravity in Section 19.4.1), i.e. multiplying it by

?
´gtt, we finally get the expression tµ;νtν?

´gtt
for the force necessary to keep a unit-mass particle at rest at a given location (as taken with
respect to infinity, e.g. as if hanging from there on a massless string). The force necessary to
support the whole spheroidal shell S of unit-density mass is thus given by

F “

¿

S

tµ;νt
ν

?
´gtt

rµ dS , (28.44)
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where rµ is the unit outward normal to S, orthogonal to tµ, i.e. rµrµ“1, rµtµ“0, gtt ” tµt
µ.

It is easy to check – on Schwarzschild again – that the integral agrees with what we suggested
above: writing

rµ “ gµνr
ν

“ gµν

Bxν

Br
b

gκλ
Bxκ

Br
Bxλ

Br

“
gµν

?
grr

δνr “
?
grr δ

r
µ , rµdS “

?
grr δ

r
µ

?
gθθgϕϕ dθ dϕ ,

we have

tµ;νt
ν

?
´gtt

rµ dS “
tµ;0t0
?

´gtt
rµ dS “

tµ;0gtt
?

´gtt
rµ dS “ ´

t0;µgtt
?

´gtt
rµ dS “ t0;µ

?
´gtt rµ dS “

“ t0;r
?

´gttgrr
?
gθθgϕϕ dθ dϕ “ t0;r

?
gθθgϕϕ dθ dϕ ,

which really is the same as what we integrated in (28.42).
Back to a generic stationary space-time. The vectors tµ and rµ form the (non-unit)

time-like and (unit) space-like normals to the surface S, so the metric can be decomposed as

gµν “ ´
tµtν
´gtt

` rµrν ` σµν “
1

´gtt
ptµr

ι
´ rµt

ι
qptιrν ´ rιtνq ` σµν “ Nµ

ιNιν ` σµν

(σµν being the induced metric on S), where a bivector normal to S has been introduced,

Nµν :“
1

?
´gtt

ptµrν ´ rµtνq “ Nrµνs .

In terms of the latter, one can write the integrand of (28.44) in terms of the tensor area element
on S,

tµ;νtν
?

´gtt
rµ “

trµ;νstν
?

´gtt
rµ “

1

2
tµ;νNνµ , dSνµ “ ´NνµdS “ NµνdS “ Nµν

?
σ d2x .

Using the Stokes theorem for the volume V between two spheroidal surfaces S and S 1 pą Sq,
one has (schematic notation for integral “limits”)

F 1
´ F “

S1
¿

S

tµ;νt
ν

?
´gtt

rµ dS “
1

2

S1
¿

S

tµ;νNνµ dS “ ´
1

2

S1
¿

S

tµ;ν dSνµ “
1

2

S1
¿

S

tµ;ν dSµν “

“

ż

V

tµ;νν dΣµ “ ´

ż

V

Rµ
νt
ν dΣµ “

ż

V

Rµ
νt
ν nµ dV , (28.45)

where the Killing property of tµ has been employed, l tµ “ ´Rµ
νt
ν , and dΣµ “ ´nµ dV is

the vector proper-volume element on V (with nµ the future-directed unit normal to V ; for
example, if V was within t “ const, then nµ “ ´t,µ and nµ “ ´gµνt,ν , which in adapted
coordinates reads nµ “ ´gµνδ0ν “ ´gµ0; for flat space-time the latter would be just δµ0 ).
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An immediate conclusion is that in a vacuum where Ricci vanishes, the above result
also vanishes, so the integral (28.44) is independent of how the surface S is chosen. However,
the same is true – as ensured by the field equation ∆Φ“4πρ – for the Gaussian integral

M “
1

4π

¿

S

Φ,iri dS

which defines the total mass enclosed in a surface S in the Newtonian gravity. And, note that
Φ,i is exactly the force that has to be exerted on a unit test mass for the latter to stay at rest,
which means that 4πM stands for the total outward force needed to support the whole shell
of mass distributed over S (with unit surface density). Regarding the above correspondence,
one is led to define, in stationary space-times, the mass by the 1{4π-multiple of (28.44),

M “
1

4π

¿

S

tµ;νt
ν

?
´gtt

rµ dS “ ´
1

8π

¿

S

tµ;ν dSνµ . (28.46)

Usually the surface S is taken as asymptotic, or at least securely surrounding all sources
present in the space-time.

Using Einstein equations, it is also possible to rewrite the “volume-form” result (28.45),

M “
1

4π

ż

V

Rµ
νt
ν nµ dV “ 2

ż

V

ˆ

T µν ´
1

2
Tδµν

˙

tν nµ dV ,

which is known as the Tolman formula for mass. In the special case when the entire space-
time is vacuum but contains a black hole, the original surface integral has to be used, with the
contributions computed at infinity (or just far away) and over the black-hole horizon.

If the space-time is axially symmetric as well, angular momentum can be defined in
exactly the same manner as mass, just with tµ replaced by the axial Killing field ϕµ and with
the extra factor ´1{2 in front, that is,

J “ ´
1

8π

¿

S

ϕµ;νϕ
ν

?
gϕϕ

rµ dS “
1

16π

¿

S

ϕµ;ν dSνµ .

Let us test the formula on the Kerr metric.17 The area element is given by “vector product” of
the angular vectors Bxµ{Bθ and Bxµ{Bϕ which are tangent to the 2D surfaces tt“ const, r“

constu (and “generate” them),

dSµν “ ϵµνκλ
Bxκ

Bθ

Bxκ

Bϕ
dθ dϕ “

?
´g rµνθϕs dθ dϕ ,

hence (ϕµ is Killing, so ϕr;t ´ ϕt;r “ ´2ϕt;r)

J “
1

16π

2π
ż

0

π
ż

0

pϕr;t ´ ϕt;rq
?

´g dθ dϕ “ ´
1

4

π
ż

0

ϕt;r
?

´g dθ .

17 There is an unproved conjecture that the Komar integrals necessarily yield results with wrong signs. We
will try to give a counter-example.
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Recalling the metric from Section 16.2 and taking ϕµ “ δµϕ (in the BL coordinates), we
compute

´g “
“

´gttgϕϕ ` pgtϕq
2
‰

grrgθθ “ gϕϕp´gtt ´ gtϕωq grrgθθ “ N2gϕϕgrrgθθ “

“
Σ∆

A
A
Σ

sin2 θ
Σ

∆
Σ “ Σ2 sin2 θ ,

ϕµ;ν “ gνιp�
��ϕµ,ι ` Γµικϕ

κ
q “

1

2
gνιgµλpgλι,κ ` gκλ,ι ´ gικ,λq δκϕ “

“
1

2
gνιgµλpgϕλ,ι ´ gιϕ,λq “

1

2
gνι

`

gµtgϕt,ι ` gµϕgϕϕ,ι ´ gµrgιϕ,r ´ gµθgιϕ,θ
˘

“

“
1

2

“

gµtpgνrgϕt,r ` gνθgϕt,θq ` gµϕpgνrgϕϕ,r ` gνθgϕϕ,θq´

´gµrpgνtgtϕ,r ` gνϕgϕϕ,rq ´ gµθpgνtgtϕ,θ ` gνϕgϕϕ,θq
‰

,

ϕt;r “
1

2

`

gttgrrgϕt,r ` gtϕgrrgϕϕ,r
˘

“ ´
1

2Σ2
pAgtϕ,r ` 2Margϕϕ,rq “

“
2Ma sin2 θ

2Σ4

”

ApΣ ´ Z
Z2r
2
q `

XXX2Ar2 ´ rΣA,r
ı

“

“ ´
Ma sin2 θ

Σ3

“

Σp3r2 ´ a2q ` 2r2a2 sin2 θ
‰

,

hence

J “
Ma

4

π
ż

0

sin3 θ

Σ2

“

Σp3r2 ´ a2q ` 2r2a2 sin2 θ
‰

dθ .

If the integration surface is at asymptotic radius, Σ»r2 and the integrand reduces to 3 sin3 θ,
so one indeed obtains

J “
3Ma

4

π
ż

0

sin3 θ dθ “ Ma .

Interestingly, however, the integral in fact provides the same result for any r, because

π
ż

0

sin3 θ

Σ2

“

Σp3r2 ´ a2q ` 2r2a2 sin2 θ
‰

dθ “ 4 ,

so it is independent of the choice of the integration “sphere”. (This is not a general property
of the Komar integrals. In particular, in space-times which are not asymptotically flat, the
integral has to typically be computed over the horizon.)
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CHAPTER 29

Relativistic strings

29.1 Messages from the beyond
The standard model of micro-world is based on the concept of particles as fundamental ob-
jects. The particles interact via three fundamental interactions, also mediated by particles
– the spin-1 quanta of gauge fields subjected to Up1q, SUp2q and SUp3q local symmetries
(called photons, W˘ and Z bosons, and eight gluons, respectively). The model has been
extremely successful, yet still it is clear it is not a final, “complete” theory. The first evi-
dence one notices is that particle physicists use, as a settled abbreviation, the BSM – beyond
standard model. “Beyond” are (usually considered) the neutrino oscillations, interpreted as
indicating a non-zero rest mass of neutrinos. Beyond is the matter-antimatter asymmetry
in the Universe, and – if cosmological models based on GR are plausible – the yet missing
explanation of what constitutes the “dark energy” and the “dark matter”. Beyond also are
certain puzzling numerical relations such as that between the lepton masses.

Yet more interesting from the theoretical side are conceptual, consistency and com-
pleteness problems. First, the standard model is not much elegant, the less for a relativist,
because it contains 19 free parameters which have to be determined by measurements (the
masses of 3 leptons, of 6 quarks and of the Higgs boson, plus gauge and Yukawa couplings).
Theorists ask, what is the sufficient reason for such particular structure of gauge fields and
for the particular values of the parameters? Also, why certain parameters have to be fine
tuned in a special way in order to lead to the observed reality? The word unnatural is be-
ing voiced in connection with such improbable fine tunings. It concerns, for example, the
Higgs field: the standard model predicts huge quantum-fluctuation corrections for its mass,
which should naturally result in a very small or (rather) a very large mass, perhaps of the
order of the Planck mass (unless there is a delicate cancellation between the “bare” value and
the quantum-correction contribution). Yet the Higgs’ rest energy of 125 GeV is 1017 times
smaller than EPlanck. This discrepancy is important for the ratio between the gravitational
constant and the Fermi constant, i.e. for how weak the gravitational interaction is with re-
spect to the weak interaction. The query thus arising is more specifically called the hierarchy
problem: why certain scales of nature are so vastly different, although it would seem natural

551
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for them to be close to each other.
Last but mainly: this text is about gravitation, the weakest interaction, which is not

covered by the standard model. When trying to incorporate gravitation in the scheme of
the quantum theory, a non-renormalizable field theory is obtained, which standardly is be-
ing taken as indication that new physics (BSM, and also beyond GR) appears at very high
energy (at very small space-time scales). A simple hint of this feature is being added: the
gravitational interaction scales with Newton’s gravitational constant G. When computing the
graviton-exchange corrections to an amplitude of some process, the ratio of the correction
to the original amplitude has to be given by a dimensionless combination of the fundamen-
tal constants of the theory, i.e. G, ℏ and c (the cosmological constant is totally irrelevant at
micro-scales, and it may not be fundamental), and energy E. The only such dimensionless
combination is

GE2

ℏc5
”

E2

pMPlanckc2q2
”

E2

pEPlanckq2
.
“

ˆ

E

1.22 ¨ 1016 TeV

˙2

.

Indeed, the Planck energy is extremely large, about 2 ¨ 109 joules (!). The ratio clearly shows
that the gravitational correction is absolutely negligible in usual particle processes (the maxi-
mum energy of LHC is of the order of 10 TeV). On the other hand, there is a principal problem
at very high energies (E2 ą EPlanck), because every higher-order correction (involving more
and more graviton exchanges) is then E2{pEPlanckq2 times larger. Practically, this feature is
a problem for the theory of very early universe.

Several plausible ways have been suggested how to overcome the weak points of the
standard model. Grand-unification theories (unifying the three non-gravitational interactions,
mostly employing one single group of gauge symmetry), the idea of extra spatial dimensions
(sufficiently curved not to be detectable at moderate energies) and the idea of supersymmetry
(which combines the symmetries of fields with different spins into a richer group) are the
most important ones. However, none of them has brought a substantially simpler and less
arbitrary picture than the standard model.

Two major routes still remain promising: the efforts to “quantize general relativity” (yet
probably using different variables, as e.g. in the loop quantum gravity) and thus to infer how
to incorporate it in the quantum world of other interactions, and the effort to base the expla-
nation of matter and interactions on strings (and possibly membranes) rather than points as
fundamental objects. Actually, the more-dimensional are the objects, the less singular gener-
ally are their interactions. On the other hand, complications arising from the growing number
of their internal degrees of freedom narrows the practical range down to 1D and 2D objects.
J. Polchinski [36] offers a meticulous sufficient reason why to study strings: “Perhaps we
merely suffer from a lack of imagination, and there are many other consistent theories of
gravity with a short-distance cutoff. However, experience has shown that divergence prob-
lems in quantum field theory are not easily resolved, so if we have even one solution we
should take it very seriously. Indeed, we are fortunate that consistency turns out to be such a
restrictive principle, since the unification of gravity with the other interactions takes place at
such high energy, MPlanck , that experimental tests will be difficult and indirect.”
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29.2 Particles and strings in general relativity
We already have some experience that the gravitational field may be a complicated thing. Yet
worse are material sources. Point particles either are automatically curvature singularities (if
treated exactly), or they have to be very lightweight (in order to be adequately described as
test ones). For extended bodies (stars, clouds, galaxies, ...) , the compass of exact solutions
is very restricted, to just extremely symmetric cases. At least a bit realistic, rotating star is
out of reach. And then, in-between, there are (1D) line sources and (2D) thin shells. As
shown notably in [12], the dividing line just goes between them: while for shells of matter
it is generally possible to find metrics whose curvature tensors are well defined in terms
of distributions, the contrary is true for line sources (and certainly for particles). The shells
clearly are important as discs (accretion, planetary, galactic) or spheroidal envelopes left from
explosions, while the linear structures might describe thin rings or filaments. And, the field
theories offer topological defects – in particular, domain walls and cosmic strings – which
arise, between mutually uncorrelated regions of fields, due to symmetry breaking in phase
transitions accompanying the cosmological cooling.

However, similarly as particles, the line sources can at least be treated as test bod-
ies, in a given space-time background. While particles move along world-lines, line sources
(“strings”) move along world-sheets. In particular, close strings (loops) have tubular surfaces
as their histories, while finite open strings trace out strips in a space-time. In special-relativity
course or when asking about motion in the Kerr-Newman space-time, we employed the La-
grangian approach and asked about a stationary value of an action representing the proper
time spent along a world-line between given two events. For strings, a natural generalization
is to consider an action representing the proper area of a world-sheet. This resembles another
variational exercise of that type: the search for minimal surfaces. Actually, that exercise is
known to yield (hyper)surfaces with zero mean curvature (trace of the shape operator, see
Section 25), of which soap films, or marginally trapped surfaces and horizons, are examples.

29.3 Towards string action: the point-particle case revisited
When studying the motion of a free test particle (of rest mass m), we used two different
actions (Sections 17.3.2 and 17.3.3): first,

S “ ´m

τfin
ż

τin

dτ “ ´m

τfin
ż

τin

a

´gµνdxµdxν “ ´m

τfin
ż

τin

c

´gµν
dxµ

dτ

dxν

dτ
dτ “

“ ´m

pfin
ż

pin

d

´gµν
dxµ

dp

dxν

dp

dp

dτ
dτ “ ´m

pfin
ż

pin

d

´gµν
dxµ

dp

dxν

dp
dp ,

where also shown is the “automatic” invariance of S with respect to reparameterization
τ Ñ ppτq. As it is clear from the comparison of the first and the third expressions, in
this formulation one a priori assumes that ´gµν

dxµ

dτ
dxν

dτ
“ 1, i.e. that dxµ

dτ
“:uµ is normalized

to ´1, in other words, that τ has on all the virtual world-lines the meaning of proper time
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(these equivalent properties hold “off-shell”). However, this means that τ has to be subjected
to variation, because each such world-line has its specific proper time.

The above “length-functional” action cannot be used for massless particles. It is not
because of the factor m (this can be omitted or – quite naturally – absorbed in the square root
by writing gµνpµpν there inside), but because massless particles move along null world-lines,
i.e. those for which both gµνpµpν “0 and dτ “0. Well, even this would not be a problem, IF
the integrand only vanished along the actual world-line. But in this formulation it is supposed
to vanish on every kinematically possible (” “virtual”) world-line. Therefore, one would be
searching for an extremal path among those which all have zero length... And, when making
variation of the square root, the latter would get to the denominator...

We know of an alternative: to parameterize all the virtual world-lines by proper time
of the actual, dynamically realized one. We denote it by τ again, but handle it differently,
namely we do not vary it (when “looking around” over the neighbouring virtual paths). This
implies that the tangent’s normalization only holds “on-shell”, along the actual world-line, so
it cannot be used to simplify the action which now is represented by “energy functional”

S “
1

2
m

ż τfin

τin

gµνu
µuν dτ “

1

2

ż λfin

λin

gµνp
µpν dλ “

1

2

ż λfin

λin

gµν
dxµ

dλ

dxν

dλ
dλ ,

where λ is a dimensionless parameter normalized so that dxµ

dλ
“ pµ. The variation proceeds

similarly, but there is no problem with the square root (in the denominator). And the geodesic
equation of course comes out. Hamiltonian is the same as Lagrangian in this case. This
formulation can be applied to time-like as well as null or even space-like world-lines, with
the latter options selected by adding, as a constraint, the normalization of the tangent.

29.3.1 The Polyakov-type action

There is yet another possibility, elegant from the Hamiltonian point of view. In it, one up-
grades the reparameterization freedom to the level of independent “gauge” variable, by con-
sidering a certain internal metric γ ” γλλpλq ă 01 which scales the parameterization along
the world-lines (dλ Ñ

?
´γ dλ),

S “
1

2

λfin
ż

λin

ˆ

gµν
dxµ

?
´γ dλ

dxν
?

´γ dλ
´ m2

˙

?
´γ dλ ”

λfin
ż

λin

Lpxµpλq, γpλqq
?

´γ dλ. (29.1)

The internal metric γ is not (necessarily) linked to the space-time metric gµν , in particular, it
is not necessarily induced on the world-line by gµν . Note that γ indeed only depends directly
on λ, not on xµ.

By variation of p´γ Lq with respect to xµ (while assuming fixed endpoints and right
crossing out the boundary term), one obtains

δ p´γ Lq “
1

2
δ

ˆ

gµν
dxµ

dλ

dxν

dλ

˙

“
1

2
gµν,ρ

dxµ

dλ

dxν

dλ
δxρ ` gµν

dpδxµq

dλ

dxν

dλ
“

1 The sign may in fact be arbitrary (as it will reveal itself before long), but we anticipate that the string world-
sheets will be time-like, so we already write it in the same notation, as

?
´γ. In passing, this implies that we

assume to be scaling dλ by a positive function (the square root is always taken as positive).
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“
1

2
gµν,ρ

dxµ

dλ

dxν

dλ
δxρ `

����������d

dλ

ˆ

gµνδx
µ dx

ν

dλ

˙

´
d

dλ

ˆ

gµν
dxν

dλ

˙

δxµ “

“
1

2
gµν,ρ

dxµ

dλ

dxν

dλ
δxρ ´ gµν,ρ

dxν

dλ

dxρ

dλ
δxµ ´ gµν

d2xν

dλ2
δxµ “

“

„

´gµν
d2xν

dλ2
´

ˆ

gµpν,ρq ´
1

2
gνρ,µ

˙

dxν

dλ

dxρ

dλ

ȷ

δxµ “

“

„

´gµα
d2xα

dλ2
´ Γµνρ

dxν

dλ

dxρ

dλ

ȷ

δxµ “ ´gµα

„

d2xα

dλ2
` Γανρ

dxν

dλ

dxρ

dλ

ȷ

δxµ,

namely the corresponding Euler-Lagrange equations yield the geodesic equation. By varia-
tion of 4L?

´γ “ 2?
´γ
gµν

dxµ

dλ
dxν

dλ
´ 2

?
´γ m2 with respect to γ, we have

δp4L?
´γq “

δγ

p´γq3{2
gµν

dxµ

dλ

dxν

dλ
`

δγ
?

´γ
m2

“
δγ

p´γq3{2

ˆ

gµν
dxµ

dλ

dxν

dλ
´ γm2

˙

,

so the corresponding Euler-Lagrange equations yield the normalization condition

gµν
dxµ

dλ

dxν

dλ
“ γm2 .

Let us also add the Hamiltonian view. Defining the momenta conjugated to xµ and γ,

Πα :“
BpL?

´γq

B
`

dxα

dλ

˘ “
1

?
´γ

gαν
dxν

dλ
, Πpγq :“

BpL?
´γq

B
`

dγ
dλ

˘ “ 0 (primary constraint) ,

we get the Hamiltonian

H “ Πα
dxα

dλ
´ L?

´γ “
1

2
?

´γ
gαν

dxα

dλ

dxν

dλ
`

?
´γ

2
m2

“

?
´γ

2

`

gακΠαΠκ ` m2
˘

.

The canonical equations appear as

dxµ

dλ
“

BH
BΠµ

“
?

´γ Πµ ,

dΠµ

dλ
“ ´

BH
Bxµ

“ ´

?
´γ

2
gακ,µΠαΠκ “ ´

1

2
?

´γ
gακ,µ gαρ

dxρ

dλ
gκσ

dxσ

dλ
“

“
1

2
?

´γ
gακgαρgκσ,µ

dxρ

dλ

dxσ

dλ
“

1

2
?

´γ
gρσ,µ

dxρ

dλ

dxσ

dλ
,

the former just repeating the definition of Πµ and the latter providing the geodesic equation.
Actually,

dΠµ

dλ
“

d

dλ

ˆ

1
?

´γ
gµν

dxν

dλ

˙

“

dγ
dλ
gµν

dxν

dλ

2p´γq3{2
`

1
?

´γ
gµν,α

dxν

dλ

dxα

dλ
`

1
?

´γ
gµν

d2xν

dλ2
,

so the equation dΠµ

dλ
“´ BH

Bxµ
yields, after multiplication by

?
´γ gιµ,

d2xι

dλ2
` gιµ

ˆ

gµpν,αq ´
1

2
gαν,µ

˙

dxν

dλ

dxα

dλ
“

1

2γ

dγ

dλ

dxι

dλ
,



556 29. RELATIVISTIC STRINGS

which is the geodesic equation, in a non-affine parameterization in general. Further, the equa-
tion for dγ

dλ
is of course singular due to the primary constraint Πpγq “0 (γ has no dynamics, it

is a “pure gauge”), while the remaining equation reads

dΠpγq

dλ
“ ´

BH
Bγ

“
H
2γ

.

In order that the primary constraint Πpγq “ 0 be propagated, we thus obtain the secondary
constraint

H “ 0 , i.e. gακΠαΠκ “ ´m2 (“mass shell”) .

The Hamiltonian thus itself represents a constraint – “on-shell” it vanishes.

29.4 The Nambu-Goto action
Following standard notation (e.g. Chapter 6 of [54]), let us denote by pτ, σq two intrinsic
coordinates on a string world-sheet, and let Xµpτ, σq denote the string coordinates in the
background space-time.2 We will understand σ as labelling the position along the string (it
parameterizes the space-like direction), while τ as labelling the moments of time (it param-
eterizes the time-like direction). It is being stressed that one is not supposed to be able to
keep track of the individual points constituting the string (the string is structureless), which
makes us start from a humble demand: we assume that the causal past J´ppq of every point p
of any “given-time imprint” of a string on an arbitrary time-like congruence has a non-empty
intersection with every such preceding imprint.

Denote by gµν the host space-time metric, by BXµ

Bτ
“: Xµ

,τ and BXµ

Bσ
“: Xµ

,σ the “spatial”
and “temporal” vectors tangent to the world-sheet, and by

hττ “ gµνX
µ
,τX

ν
,τ , hτσ “ gµνX

µ
,τX

ν
,σ , hσσ “ gµνX

µ
,σX

ν
,σ

the metric induced by gµν on the world-sheet. Analogously as we used the proper world-line
length as the particle action, we will use the proper world-sheet area as the string action, with
element

dA “
?

´h dτ dσ “
a

phτσq2 ´ hττhσσ dτ dσ “

“

b

pgµνX
µ
,τXν

,σq2 ´ pgµκX
µ
,τXκ

,τ qpgνλXν
,σX

λ
,σq dτ dσ .

We know the action can be multiplied by any constant, so let us multiply it by some real T0,
finally:

S “ ´T0

τfin
ż

τin

∆σ
ż

0

b

pgµνX
µ
,τXν

,σq2 ´ pgµκX
µ
,τXκ

,τ qpgνλXν
,σX

λ
,σq dσ dτ . (29.2)

It is called the Nambu-Goto action. (T0 will be interpreted as the string tension, see later.)

2 One thus must not denote by τ or σ any (other) indices...
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29.5 Momenta and equations of string motion
Variation of the corresponding Lagrangian density (L“´T0)

pL
?

´hqpXµ
,τ , X

µ
,σ, gαβpXµ

qq “ ´T0

b

pgµνX
µ
,τXν

,σq2 ´ pgµκX
µ
,τXκ

,τ qpgνλXν
,σX

λ
,σq

yields

δ̄pL
?

´hq “
BpL

?
´hq

BXα
,τ

δ̄pXα
,τ q `

BpL
?

´hq

BXα
,σ

δ̄pXα
,σq `

BpL
?

´hq

Bgαβ
gαβ,ιδ̄X

ι .

We assume to perform the variation at given τ and σ (so the “barred” one), with only the “field
variables” (here meaning the space-time configuration Xµ) changing, so we are allowed to
commute

δ̄pXµ
,τ q “ pδ̄Xµ

q,τ , δ̄pXµ
,σq “ pδ̄Xµ

q,σ .

Let us introduce the pertinent conjugate momenta,

Πpτq
α :“

BpL
?

´hq

BXα
,τ

“ ´T0

`

gµνX
µ
,τX

ν
,σ

˘

gαιX
ι
,σ ´

`

gνλX
ν
,σX

λ
,σ

˘

gακX
κ
,τ

b

pgµνX
µ
,τXν

,σq2 ´ pgµκX
µ
,τXκ

,τ qpgνλXν
,σX

λ
,σq

“

“ ´
T0

?
´h

gαι
`

hτσX
ι
,σ ´ hσσX

ι
,τ

˘

, (29.3)

Πpσq
α :“

BpL
?

´hq

BXα
,σ

“ ´T0

`

gµνX
µ
,τX

ν
,σ

˘

gιαX
ι
,τ ´

`

gµκX
µ
,τX

κ
,τ

˘

gαλX
λ
,σ

b

pgµνX
µ
,τXν

,σq2 ´ pgµκX
µ
,τXκ

,τ qpgνλXν
,σX

λ
,σq

“

“ ´
T0

?
´h

gαι
`

hτσX
ι
,τ ´ hττX

ι
,σ

˘

, (29.4)

and we also need to calculate the variation with respect to the metric,

BpL
?

´hq

Bgαβ
gαβ,ι “ ´

T0
2

2hτσX
α
,τX

β
,σ ´ Xα

,τX
β
,τhσσ ´ hττX

α
,σX

β
,σ

b

pgµνX
µ
,τXν

,σq2 ´ pgµκX
µ
,τXκ

,τ qpgνλXν
,σX

λ
,σq

gαβ,ι “

“ ´
T0

2
?

´h

`

hτσX
α
,τX

β
,σ ´ hσσX

α
,τX

β
,τ

˘

gαβ,ι ´

´
T0

2
?

´h

`

hτσX
α
,τX

β
,σ ´ hττX

α
,σX

β
,σ

˘

gαβ,ι “

“
1

2
ΠpτqαXβ

,τgαβ,ι `
1

2
ΠpσqαXβ

,σgαβ,ι “
`

ΠpτqαXβ
,τ ` ΠpσqαXβ

,σ

˘

Γαβι .

The last form has been obtained from observation that the expressions ΠpτqαXβ
,τ and ΠpσqαXβ

,σ

are symmetric in pα, βq, so, e.g.,

ΓαβιΠ
pτq
α Xβ

,τ “ ΓαβιΠ
pτqαXβ

,τ “
1

2
pgαβ,ι ` gια,β ´ gβι,αqΠpτqαXβ

,τ “
1

2
gαβ,ιΠ

pτqαXβ
,τ .
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The total variation thus appears as

δ̄pL
?

´hq “ Πpτq
µ

Bpδ̄Xµq

Bτ
` Πpσq

µ

Bpδ̄Xµq

Bσ
` Γαβι

`

Πpτq
α Xβ

,τ ` Πpσq
α Xβ

,σ

˘

δ̄X ι
“

“ Bτ
`

Πpτq
µ δ̄Xµ

˘

` Bσ
`

Πpσq
µ δ̄Xµ

˘

´
“

Bτ pΠpτq
µ q ` BσpΠpσq

µ q
‰

δ̄Xµ
`

` Γαβι
`

Πpτq
α Xβ

,τ ` Πpσq
α Xβ

,σ

˘

δ̄X ι
“

“ Bτ
`

Πpτq
µ δ̄Xµ

˘

` Bσ
`

Πpσq
µ δ̄Xµ

˘

´
`

∇τΠpτq
µ `∇σΠpσq

µ

˘

δ̄Xµ ,

where we have denoted, for tA,Bu“tτ, σu,

∇AΠpAq
µ :“ BAΠ

pAq
µ ´ ΓαβµΠ

pAq
α Xβ

,A .

Plugging this to δ̄S and performing integration over τ in the first term while over σ in the
second term, one has

δ̄S “ ´T0

∆σ
ż

0

“

Πpτq
µ δ̄Xµ

‰τfin

τin
dσ ´ T0

τfin
ż

τin

“

Πpσq
µ δ̄Xµ

‰∆σ

0
dτ ´

` T0

τfin
ż

τin

∆σ
ż

0

`

∇τΠpτq
µ `∇σΠpσq

µ

˘

δ̄Xµ dσ dτ .

Now, first, we assume δ̄Xµpτin, σq “ 0, δ̄Xµpτfin, σq “ 0, so the first term is out. Second, the
last term has to vanish for any δ̄Xµpτ, σq, so the main equations of the motion read

∇τΠpτq
µ `∇σΠpσq

µ “ 0 ÝÑ in Minkowski: BτΠ
pτq
µ ` BσΠ

pσq
µ “ 0 . (29.5)

The remaining term T0
şτfin
τin

“

Π
pσq
µ δ̄Xµ

‰∆σ

0
dτ requires to specify boundary conditions at the

string ends.

29.5.1 Boundary conditions

In order to evaluate
“

Π
pσq
µ δ̄Xµ

‰∆σ

0
, one needs 2d conditions, with d the space-time dimension.

For any specific end of the string, one may prescribe either the Dirichlet condition (the end
point is fixed to some coordinate value), or the free-endpoint condition (the end point is
not constrained). The Dirichlet condition can only be prescribed in spatial directions (of
course), it reads X ipτ, σendq “ const, i.e. X i

,τ pτ, σendq “ 0, and so also δ̄X ipτ, σendq “ 0.
Speaking only of one coordinate of one of the endpoints yet, such a condition only ensures
that the term Π

pσq

i δ̄X i vanishes for one particular value of i. The number of X i which are
fixed in the Dirichlet manner is complementary to the dimension of the remaining freedom:
if d´1´p of X i are fixed (0 ď p ď d´1), it means that the given endpoint is tied to a
p-dimensional set. For example, in a standard 4D space-time of GR (d“ 4) and with p“ 2,
the given endpoint would only be fixed in (d´1´p “ 4´1´2 “) one dimension while left
free in the remaining two spatial dimensions. This would mean that the endpoint is fixed to
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a certain p“2 dimensional surface. The two remaining, more restrictive possibilities (in the
4D spacetime) would be to fix the endpoint to a certain curve (p“1 dimension) or even to a
certain spatial point (p“0 – as on string instruments). Clearly, the more spatial dimensions,
the more options for how to constrain the endpoints.

The subsets to which the string endpoints are fixed in a Dirichlet manner are called the
D-branes; more specifically, one writes Dp-branes if wanting to specify their dimension (p).
The special case of p“3 corresponds to the end points being spatially unconstrained (in 4D,
the D3-brane fills the whole space).

The free-endpoint condition leaves the string endpoints free, so the only possibility to
make the term

“

Π
pσq
µ δ̄Xµ

‰∆σ

0
safely vanish is to ensure Π

pσq
µ pτ, σendq “ 0. The free-endpoint

condition has to hold including the time component (µ“ 0). Since the momenta Π
pσq
µ have

something to do with velocities, we expect the free-endpoint conditions to actually be of the
Neumann type.

29.5.2 Automatic constraints

Similarly as in the case of a relativistic particle, one also obtains, automatically, the primary
constraint of momentum normalization. Actually, from definitions (29.3) and (29.4), we have

gαβΠpτq
α Π

pτq

β “
T 2
0

´h
gικ

`

hτσX
ι
,σ ´ hσσX

ι
,τ

˘ `

hτσX
κ
,σ ´ hσσX

κ
,τ

˘

“ ´T 2
0 hσσ ,

gαβΠpσq
α Π

pσq

β “
T 2
0

´h
gικ

`

hτσX
ι
,τ ´ hττX

ι
,σ

˘ `

hτσX
κ
,τ ´ hττX

κ
,σ

˘

“ ´T 2
0 hττ ,

gαβΠpτq
α Π

pσq

β “
T 2
0

´h
gικ

`

hτσX
ι
,σ ´ hσσX

ι
,τ

˘ `

hτσX
κ
,τ ´ hττX

κ
,σ

˘

“ T 2
0 hτσ ,

from where also
1

2
hAB

´

gαβΠpAq
α Π

pBq

β

¯

“ T 2
0 p´hq with tA,Bu “ tτσu .

Also worth noticing are the following automatic properties:

Πpτq
α Xα

,σ “ ´
T0

?
´h

gαι
`

hτσX
ι
,σ ´ hσσX

ι
,τ

˘

Xα
,σ “ ´

T0
?

´h
phτσhσσ ´ hσσhστ q “ 0 ,

Πpσq
α Xα

,τ “ ´
T0

?
´h

gια
`

hτσX
ι
,τ ´ hττX

ι
,σ

˘

Xα
,τ “ ´

T0
?

´h
phτσhττ ´ hττhτσq “ 0 ,

Πpτq
α Xα

,τ ` Πpσq
α Xα

,σ “ ´
T0

2
?

´h
2
“

phτσq
2

´ hττhσσ
‰

“ ´T0
?

´h .

29.5.3 Equations of motion once more

Equations of motion can also be derived in a more elegant way, from the “intrinsic” form of
the action

S “ ´T0

τfin
ż

τin

∆σ
ż

0

?
´h dσ dτ .
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Using the knowledge (23.8) from the variational derivation of Einstein equations, we have

δ̄
?

´h “
1

2

?
´h hAB δ̄hAB “

1

2

?
´h hAB δ̄

`

gµνX
µ
,AX

ν
,B

˘

“

“
1

2

?
´h hAB

“

gµν,αX
µ
,AX

ν
,B δ̄X

α
` 2gµνpδ̄Xµ

q,AX
ν
,B

‰

“

“
1

2

?
´hhABgµν,αX

µ
,AX

ν
,B δ̄X

α
`
(((((((((((((
`
?

´hhABgµν δ̄X
µXν

,B

˘

,A
´
`
?

´hhABgµνX
ν
,B

˘

,A
δ̄Xµ

“

“
1

2

?
´hhABgµν,αX

µ
,AX

ν
,B δ̄X

α
´

?
´hhABgµν,αX

α
,AX

ν
,B δ̄X

µ
´gµν

`
?

´hhABXν
,B

˘

,A
δ̄Xµ

“
?

´hhAB
ˆ

1

2
gµν,α ´ gαν,µ

˙

Xµ
,AX

ν
,B δ̄X

α
´ gµν

`
?

´hhABXν
,B

˘

,A
δ̄Xµ

“

“ ´
?

´hhABΓαµνX
µ
,AX

ν
,B δ̄X

α
´ gαν

`
?

´hhABXν
,B

˘

,A
δ̄Xα .

This vanishes for any δ̄Xα if gαι
“

BA
`?

´hhABX ι
,B

˘

`Γιµν
?

´hhABXµ
,AX

ν
,B

‰

“ 0, i.e.

∇A
`
?

´hhABX ι
,B

˘

:“ BA
`
?

´hhABX ι
,B

˘

` Γιµν
?

´hhABXµ
,AX

ν
,B “ 0 , (29.6)

where we have denoted∇AV Aι :“BAV
Aι`ΓιµνV

AνXµ
,A, similarly as in equations (29.5). The

boxed equations are equivalent to (29.5).
Equation (29.6) shows that the operator ∇A is kind-of “doubly covariant derivative”

(divergence, specifically) – the first term is a covariant divergence determined by the induced
metric hAB, while the second term is the contribution from the background-space-time (Levi-
Civita) connection. Later such an operator will be presented within a more geometric picture,
and we will see it represents a covariant derivative projected to the tangent plane of the world-
sheet.

29.5.4 Nambu-Goto Hamiltonian

For the Nambu-Goto Lagrangian, the Legendre transformation with (29.3) and (29.4) inserted
yieldsH“L

?
´h,

H “ Πpτq
α Xα

,τ ` Πpσq
α Xα

,σ ´ L
?

´h “

“ ´T0

`

gµνX
µ
,τX

ν
,σ

˘ `

gαιX
ι
,σX

α
,τ

˘

´
`

gνλX
ν
,σX

λ
,σ

˘ `

gακX
κ
,τX

α
,τ

˘

b

pgµνX
µ
,τXν

,σq2 ´ pgµκX
µ
,τXκ

,τ qpgνλXν
,σX

λ
,σq

´

´ T0

`

gµνX
µ
,τX

ν
,σ

˘ `

gιαX
ι
,τX

α
,σ

˘

´
`

gµκX
µ
,τX

κ
,τ

˘ `

gαλX
λ
,σX

α
,σ

˘

b

pgµνX
µ
,τXν

,σq2 ´ pgµκX
µ
,τXκ

,τ qpgνλXν
,σX

λ
,σq

`

` T0

b

pgµνX
µ
,τXν

,σq2 ´ pgµκX
µ
,τXκ

,τ qpgνλXν
,σX

λ
,σq “

“ ´T0

b

pgµνX
µ
,τXν

,σq2 ´ pgµκX
µ
,τXκ

,τ qpgνλXν
,σX

λ
,σq “ L

?
´h .

This Hamiltonian is sometimes called the extended Hamiltonian. Namely, classically one
would only take

H “ Πpτq
α Xα

,τ ´ L
?

´h “ 0 .
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Note that this vanishing is off-shell!, so, in this picture, the dynamics is fully governed by
constraints.

29.5.5 Suitable coordinates

Assuming that the string at any constant τ is a smooth space-like segment, it should be con-
venient to choose the space-time time coordinate so that within the string it coincides with τ ,
i.e. X0pτ, σq :“ τ . Such an adaptation may also be understood in an opposite way: having
some space-time coordinates, the t “ const hypersurface is intersected by the string world-
sheet in a certain curve; the latter represents an instantaneous configuration of the string as
taken with respect to the coordinate time t. The relation τ :“X0pτ, σq ” tpτ, σq then defines
a certain intrinsic time parameterizing the string world-sheet. In the described “static gauge”,
we anyway have

Xµ
,τ “ pτ,τ , X

i
,τ q “ p1, X i

,τ q , Xµ
,σ “ pτ,σ, X

i
,σq “ p0, X i

,σq .

The other intrinsic coordinate σ need not in general be much specified, the only re-
quirement one definitely has is uniqueness – that the curves σ“const are smooth and do not
intersect. An additional requirement might be that they be causal. A certain special attention
is necessary if the string is closed, because then the world-sheet has cylindrical topology, so
σ has to be cyclic, with the points Xµpτ, 0q and Xµpτ,∆σq identified.

29.5.6 Tension and energy of the string

Consider an open string to which the coordinates are adapted in such a way that it stretches
along one of the spatial coordinates only (X1, say), with the endpoints fixed to the values
X1pτ, 0q “ 0 and X1pτ,∆σq “ a ą 0. Using the time coordinate t adapted to the string
“proper time” τ , we thus have

X0
pτ, σq “ τ , X1

pτ, σq “ spσq , X2
pτ, σq “ 0 , X3

pτ, σq “ 0 , p...q ,

where spσq is assumed to be continuously increasing from sp0q“0 to sp∆σq“a. Then

Xµ
,τ “ p1, 0, 0, 0, ...q , Xµ

,σ “ p0, s,σ, 0, 0, ...q ps,σ ą 0q

ùñ hττ ” gµκX
µ
,τX

κ
,τ “g00 , hσσ” gνλX

ν
,σX

λ
,σ“g11ps,σq

2, hτσ” gµνX
µ
,τX

ν
,σ“g01s,σ .

Substituting to the action (29.2), one obtains

S “ ´T0

τfin
ż

τin

∆σ
ż

0

?
´h dσ dτ “ ´T0

τfin
ż

τin

∆σ
ż

0

a

pg01q2´g00g11 s,σ dσ dτ .

In the simple case of Minkowski as the “target” space-time (gµν “ηµν), one thus has

S “ ´T0

τfin
ż

τin

∆σ
ż

0

ds

dσ
dσ dτ “ ´T0

τfin
ż

τin

rsp∆σq´sp0qs dτ “ ´T0a

τfin
ż

τin

dτ “ ´T0a pτfin´τinq .
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Comparing this with a general action prescription S “
şτfin
τin
L dτ , we infer that T0 represents

the tension of the string. Actually, in our setting the string is static, so there would be no
kinetic term in the Lagrangian L, just a potential one (which has an opposite sign than the
kinetic term) – and that just corresponds to T0a standing for potential energy of the string
(with T0 assumed constant, independent of time, position and length of the string). The
tension also represents the rest mass of the string per unit proper length (µ0), according to
m0c

2 “µ0ac
2 “T0a (this means that the string is “massless”, its rest mass is fully induced by

its tension).
Remark 1: The proper length of such a fixed string in Minkowski would be constant.

However, in general this is not the case – the proper length may be changing in time.
Remark 2: we should check whether the assumed string configuration can actually

be realized in accord with the equations of motion (29.5). The momenta (29.3) and (29.4)
reduce, respectively, to

Πpτq
α “ ´T0

g01gα1ps,σq2 ´ g11gα0ps,σq2
a

pg01s,σq2 ´ g00g11ps,σq2
“ ´T0

a

pg01q2´g00g11 s,σ δ
0
α

Mink
“ ´T0s,σδ

0
α ,

Πpσq
α “ ´T0

g01g0αs,σ ´ g00gα1s,σ
a

pg01s,σq2 ´ g00g11ps,σq2
“ ´T0

a

pg01q2´g00g11 δ
1
α

Mink
“ ´T0 δ

1
α .

Hence, in Minkowski space-time, both terms of the equations of motion BτΠ
pτq
µ ` BσΠ

pσq
µ “ 0

are zero, because both momenta are independent of τ and Π
pσq
α is also independent of σ.

29.6 String velocity
Imagining the world-sheet as a 2D congruence of world-lines “numbered” by σ and param-
eterized by τ , one would naturally define a kind-of four-velocity as Uµ :“ dXµ

dτ
” Xµ

,τ . In
the “static gauge” where t ” τ , it coincides with the coordinate velocity V µ :“ dXµ

dt
. How-

ever, as stressed already, such a quantity could not be interpreted as the four-velocity of a
particular material point of the string, because we do not know how to mark and keep track
of any such individual point (except the endpoints), and so we have almost no control over
the longitudinal motion within the string. Mathematically, this reflects in reparameteriza-
tion invariance: we can choose different “intrinsic” parameters pτ, σq, which would naturally
change the “velocities”.

Yet it is still possible to ascribe to the string a certain velocity, irrespectively of the
above ignorance. At some (arbitrary) moment, choose an arbitrary point p of the string.
Imagine to erect a (local) hyperplane orthogonal to the string at that point. After an infinitesi-
mal lapse of τ or t, watch how the intersection point has shifted and thus introduce a velocity.
Mathematically, it means to project the above local “four-velocity” to the local hyperplane
orthogonal to the string at the given point.

Let us first consider, besides the rather arbitrary parameter σ, the proper length along
the string (arc length), call it spσq:

1 “ hss :“ gµν
BXµ

Bs

BXν

Bs
“ gµνX

µ
,σX

ν
,σ

ˆ

dσ

ds

˙2

.
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The derivative Xµ
,σ is naturally understood to be taken at τ “ const, so Xµ

,s “ Xµ
,σσ,s is the

unit vector tangent to the string, let us denote it by Sµ :“Xµ
,s . In terms of this vector, one

standardly introduces the projector to the local orthogonal hyperplane by

hµν :“ gµν ´ SµSν .

Using the latter, one defines the transverse velocity of the string (at the given point) as

Uµ
K :“ hµνU

ν
”
`

δµν ´ SµgνλS
λ
˘

Uν
“ Uµ

´
`

gνλS
λUν

˘

Sµ ” Uµ
´ Uµ

||
.

Its square amounts to

gαβU
α
KU

β
K “ gαβU

αUβ
´ 2

`

gαβU
αSβ

˘ `

gνλS
λUν

˘

`
`

gνλS
λUν

˘2
pgαβS

αSβq “

“ gαβU
αUβ

´
`

gαβU
αSβ

˘2
.

(The uncertainty in the identification of the world-lines of individual “string points” makes
also the meaning of τ uncertain, so we better do not claim that Uµ is necessarily normalized
to ´1.)

Let us return to the Nambu-Goto action (29.2) now and rewrite the determinant under
the square root,

pgµνX
µ
,τX

ν
,σq

2
´ pgµκX

µ
,τX

κ
,τ qpgνλX

ν
,σX

λ
,σq “

“
“

pgµνU
µSνq

2
´ pgµκU

µUκ
qpgνλS

νSλ
‰

ps,σq
2

“ p´gαβU
α
KU

β
Kqps,σq

2 .

It is thus clear how to write L
?

´h “ H and the action,

S “ ´T0

τfin
ż

τin

∆σ
ż

0

b

´gαβUα
KU

β
K s,σ dσ dτ ,

which very much resembles the action for a relativistic particle. (Note that it would seem
suitable to write the integration in terms of ds “ s,σdσ, but the integration over σ has the
advantage that its limits are fixed, whereas the upper bound for s – i.e. the proper length of
the string – may be changing.)

The transversal four-velocity also enables to rewrite in another form the momenta (29.3)
and (29.4) (original forms are repeated for convenience)

Πpτq
α “ ´T0

`

gµνX
µ
,τX

ν
,σ

˘

gαιX
ι
,σ ´

`

gνλX
ν
,σX

λ
,σ

˘

gακX
κ
,τ

b

pgµνX
µ
,τXν

,σq2 ´ pgµκX
µ
,τXκ

,τ qpgνλXν
,σX

λ
,σq

“

“ ´T0 s,σ
pgµνU

µSνq gαιS
ι ´ gακU

κ

a

´gµνU
µ
KU

ν
K

“ ´T0 s,σ
gαιU

ι
||

´ gακU
κ

a

´gµνU
µ
KU

ν
K

“

“ T0 s,σ
gακU

κ
K

a

´gµνU
µ
KU

ν
K

, (29.7)
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Πpσq
α “ ´T0

`

gµνX
µ
,τX

ν
,σ

˘

gιαX
ι
,τ ´

`

gµκX
µ
,τX

κ
,τ

˘

gαλX
λ
,σ

b

pgµνX
µ
,τXν

,σq2 ´ pgµκX
µ
,τXκ

,τ qpgνλXν
,σX

λ
,σq

“

“ ´T0
pgµνU

µSνq gιαU
ι ´ pgµκU

µUκq gαλS
λ

a

´gµνU
µ
KU

ν
K

. (29.8)

The second momentum Π
pσq
α does not simplify that much, but look at it once more: if factoring

out p´gµκU
µUκq and thus normalizing U -s in the first term (call the normalized version Ũµ),

we have

Πpσq
α “ ´T0 p´gµκU

µUκ
q

pgµνŨ
µSνq gιαŨ

ι ` gανS
ν

a

´gµνU
µ
KU

ν
K

“

“ ´T0
´gµκU

µUκ

a

´gµνU
µ
KU

ν
K

pgαν ` ŨαŨνqSν . (29.9)

Clearly pgαν ` ŨαŨνqSν is the projection of Sµ to the hyperplane locally orthogonal to Uµ.

29.6.1 Motion of free endpoints of an open string

Have an open string with free endpoints, so with boundary conditions Πpσq
µ pτ, σendq“0. Look

at the expression (29.9): the projection pgαν ` ŨαŨνqSν is certainly non-zero (otherwise Sν

would have to be proportional to Uν), so the only possibility is that gµκUµUκ “ 0. Hence,
the free endpoints move with the speed of light. Wait: we have been admitting that the string
points are indistinguishable, so also Uµ is a somewhat vague quantity. However, this does
not apply to endpoints – the endpoints do have clear identity, and Uµ is the tangent to their
world-lines.

Return now to (29.8) with the above finding, thus with the second term vanishing.
In order that Πpσq

µ pτ, σendq vanish, the first term has to be zero as well, which means that
gµνU

µSν “0 – the motion of free endpoints is purely transversal. Such a circumstance in fact
requires a bit of back-checking, because gµνUµSν “ 0 means (look through the formulas of
Section 29.6 once more) that really Uµ

||
”
`

gνλS
λUν

˘

Sµ“0, so, at the endpoints,

´gµνU
µ
KU

ν
K Ñ ´gµνU

µUν
Ñ 0 .

The query is that the latter appears in denominators at times. However, everything works
well: the momentum then becomes null as well, because (29.7) yields

gαβΠpτq
α Π

pτq

β “ pT0s,σq
2
b

´gκλUκ
KU

λ
K Ñ 0

and Π
pσq
µ pτ, σendq “ 0 by the boundary constraint. And, from (29.9) it is clear that the con-

straint is fulfilled at the very endpoints too, Πpσq
α Ñ ´T0

a

´gµκUµUκ Sα Ñ 0 .
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29.7 “Energy-functional” actions and the energy-momentum
tensor

The square root in the Nambu-Goto action is somewhat annoying.3 Fortunately, similar op-
tions to those shown in the particle case (Section 29.3) also exist for strings, based on “energy
functionals” (those quadratic in velocities). So consider

S “

τfin
ż

τin

∆σ
ż

0

L dσ dτ “
T0
2

τfin
ż

τin

∆σ
ż

0

`

gµνX
µ
,τX

ν
,τ ´ gµνX

µ
,σX

ν
,σ

˘

dσ dτ . (29.10)

The canonical momenta read

Πpτq
µ :“

BL

BXµ
,τ

“ T0 gµνX
ν
,τ , Πpσq

µ :“
BL

BXµ
,σ

“ ´T0 gµνX
ν
,σ ,

clearly satisfying Π
pτq
µ Xµ

,σ ` Π
pσq
µ Xµ

,τ “ 0. The equations of motion follow as

δ̄L “
BL

BXα
,τ

pδ̄Xα
q,τ `

BL

BXα
,σ

pδ̄Xα
q,σ `

BL

Bgαβ
gαβ,ιδ̄X

ι
“

“ Πpτq
α pδ̄Xα

q,τ ` Πpσq
α pδ̄Xα

q,σ `
T0
2

`

Xα
,τX

β
,τ ´ Xα

,σX
β
,σ

˘

gαβ,ιδ̄X
ι

“

“
`

ΠpAq
α δ̄Xα

˘

,A
´
`

ΠpAq
α

˘

,A
δ̄Xα

`
`

ΠpτqαXβ
,τ ` ΠpσqαXβ

,σ

˘

Γαβιδ̄X
ι .

Omitting the first, divergence term, we thus find the same equations as from Nambu-Goto,

0 “ BAΠ
pAq
µ ´ ΓαβµΠ

pAq
α Xβ

,A “: ∇AΠpAq
µ .

The above equations of motion assume the wave-equation form if the momenta are
substituted in them. In particular, in Minkowski one obtains

BτΠ
pτq
µ ` BσΠ

pσq
µ “ 0 ðñ Xµ

,ττ ´ Xµ
,σσ “ 0 . (29.11)

For the above Lagrangian, the extended Hamiltonian reads

H “ Πpτq
µ Xµ

,τ ` Πpσq
µ Xµ

,σ ´ L “ T0 gµνX
µ
,τX

ν
,τ ´ T0 gµνX

µ
,σX

ν
,σ ´ L “ L .

A “classical” Hamiltonian yields a different expression, however,

H “ Πpτq
µ Xµ

,τ ´ L “ T0 gµνX
µ
,τX

ν
,τ ´ L “

T0
2

`

gµνX
µ
,τX

ν
,τ ` gµνX

µ
,σX

ν
,σ

˘

“
Π

pAq
µ Πµ

pAq

2T0
.

It is easy to check that the canonical equations yield what expected. Yet still the constraints
(similar to the normalization of the tangent to the particle world-line) have to be added by
hand.

3 Have seen on the web that MTW is “a somewhat thicker book”.
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29.7.1 The Polyakov action

The above “energy-type” action is practically the simplest option, similarly as in the case of
particles. Yet we showed that conceptually the most elegant option was the action (29.1).
That introduced, as an independent “gauge” degree of freedom, an internal metric which
scaled the parameter along the particle world-line. Let us proceed similarly here, only that
the internal metric has now to be 2x2, describing the intrinsic geometry of the world-sheet,
we denote it γABpτ, σq (again). This actually is a natural way how to generally frame the
question “which parameterization of the world-sheet to choose”. The action thus is written
as

S “ ´
T0
2

τfin
ż

τin

∆σ
ż

0

gµνX
µ
,AX

ν
,B γ

AB
?

´γ dσ dτ , tA,Bu “ tτ, σu . (29.12)

It is usually called the Polyakov action after A. Polyakov who first employed it for quantiza-
tion. Note that the mass term is absent – the string is “massless”.

Let us vary the 1/2 of the integrand with respect to Xα, while right crossing out the
divergence terms. Bearing in mind that γAB does not depend on Xα, we have

1

2
gµν,αX

µ
,AX

ν
,B γ

AB
?

´γ δ̄Xα
` gµνpδ̄Xµ

q,AX
ν
,B γ

AB
?

´γ “

“
1

2
gµν,αX

µ
,AX

ν
,Bγ

AB
?

´γ δ̄Xα
`
hhhhhhhhhhhhh

`

gµν δ̄X
µXν

,Bγ
AB

?
´γ

˘

,A
´
`

gµνX
ν
,Bγ

AB
?

´γ
˘

,A
δ̄Xµ

“

“

„

1

2
gµν,αX

µ
,AX

ν
,B γ

AB
?

´γ ´ gαν,µX
µ
,AX

ν
,B γ

AB
?

´γ ´ gανBA
`

Xν
,B γ

AB
?

´γ
˘

ȷ

δ̄Xα ,

so the equations of motion read

0 “ gαν,µX
µ
,AX

ν
,B γ

AB
?

´γ ` gανBA
`

Xν
,B γ

AB
?

´γ
˘

´
1

2
gµν,αX

µ
,AX

ν
,B γ

AB
?

´γ “

“ gανBA
`

Xν
,B γ

AB
?

´γ
˘

` ΓαµνX
µ
,AX

ν
,B γ

AB
?

´γ “

“ gαι
“

BA
`?

´γ γABX ι
,B

˘

` Γιµν
?

´γ γABXµ
,AX

ν
,B

‰

.

Using the same notation∇AV Aι :“ BAV
Aι`ΓιµνV

AνXµ
,A as in the field equations (29.5) and

(29.6), we could write the result as

∇A
`?

´γ γABX ι
,B

˘

“ 0 . (29.13)

Good to notice that the first term represents a covariant derivative associated with the internal
metric γAB which one would standardly denote as BA

`?
´γ γABX ι

,B

˘

“:
?

´γ∇ApγABX ι
,Bq.

The
?

´γ can thus be factored out and the field equations assume the form

∇BX ι
,B ` Γιµνγ

ABXµ
,AX

ν
,B “ 0 , (29.14)

known as the Virasoro constraints. One can in fact write them as a wave equation,

lX ι
` Γιµνγ

ABXµ
,AX

ν
,B “ 0 where lX ι :“ ∇ApγABX ι

,Bq .
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As in the particle case, γAB naturally does not obey any evolution equation (since it
represents a gauge freedom), yet we expect to obtain a certain constraint by varying the
action with respect to it. Using again the determinant-derivative rule (23.9), we have

δ̄
`

gµνX
µ
,AX

ν
,B γ

AB
?

´γ
˘

” δ̄
`

hABγ
AB

?
´γ

˘

“

“ hAB
?

´γ δ̄γAB´ hABγ
AB

?
´γ

2
γCDδ̄γ

CD
“

ˆ

hCD ´
1

2
hABγ

ABγCD

˙

?
´γ δ̄γCD .

Should this vanish, it has to hold hCD“ 1
2
hABγ

ABγCD, so the metrics have to be proportional.
The determinant of this relation yields h“

`

1
2
hABγ

AB
˘2
γ, hence

?
´h“ 1

2
hABγ

AB
?

´γ (we
assume hABγAB ą 0). By dividing the matrix proportionality by the last equation, we have

hCD
?

´h
“

γCD
?

´γ
ñ

hCDγ
CD

?
´h

“
γCDγ

CD

?
´γ

“
2

?
´γ

ñ hCDγ
CD

?
´γ “ 2

?
´h .

Therefore, introducing this in the action (29.12) reveals that the latter “on-shell” (with the
constraint satisfied) equals the Nambu-Goto action,

S “ ´
T0
2

τfin
ż

τin

∆σ
ż

0

hABγ
AB

?
´γ dσ dτ “ ´T0

τfin
ż

τin

∆σ
ż

0

?
´h dσ dτ .

29.7.2 Open strings: conditions at the endpoints

In the derivation of the Virasoro equations (29.14), we crossed out
hhhhhhhhhhhhh

`

gµν δ̄X
µXν

,B γ
AB

?
´γ

˘

,A

as a boundary term. Yet it requires more attention. Integrating it partially over the respective
variables while assuming that δXµpτin, σq “ 0 and δXµpτfin, σq “ 0, we have (omitting the
´T0 factor)

τfin
ż

τin

∆σ
ż

0

”

`

gµν δ̄X
µXν

,B γ
τB

?
´γ

˘

,τ
`
`

gµν δ̄X
µXν

,B γ
σB

?
´γ

˘

,σ

ı

dσ dτ “

“

∆σ
ż

0
(((((((((((((
“

gµν δ̄X
µXν

,B γ
τB

?
´γ

‰τfin

τin
dσ `

τfin
ż

τin

“

gµν δ̄X
µXν

,B γ
σB

?
´γ

‰∆σ

0
dτ .

For closed strings (loops), σ“0 and σ“∆σ represent the same point, so the result of course
vanishes, while for open strings the additional condition arises

Xν
,B γ

σB
“ 0 at the endpoints pσ “ 0 and σ “ ∆σq .

These are Neumann conditions requiring that the σ component of Xν
,B – i.e. the one tangent

to the world-sheet while normal to its endpoint boundary – should vanish.
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29.7.3 Energy-momentum tensor

In the variational derivation of Einstein equations we defined the energy-momentum tensor
by differentiation of the non-gravitational Lagrangian with respect to the metric. In the case
when the Lagrangian did not depend on the metric derivatives, we had (in Section 23.4.4)

Tµν :“ ´
2

?
´g

Bp
?

´gLngq

Bgµν
“ ´

2
?

´g

B
?

´g

Bgµν
Lng ´ 2

BLng

Bgµν
“ gµνLng ´ 2

BLng

Bgµν

(where Lng is the invariant Lagrangian density). With our invariant world-sheet Lagrangian
L “ ´T0

2
hCDγ

CD, it means

TAB :“ γABL´ 2
BL

BγAB
“ ´

T0
2
hCDγ

CDγAB ` T0hAB “

“ T0

ˆ

hAB ´
1

2
hCDγ

CD γAB

˙

“ T0hAB ` γABL .

This tensor is traceless, γABTAB “ 0, and it satisfies the covariant conservation laws. The
conservation follows, in exactly the same manner as in the space-time case treated in Section
23.4.5, from the diffeomorphism invariance of the action – here under the infinitesimal shift
of the parameterization pτ, σq. Let us denote, for a while, wA :“ pτ, σq and let us perform the
shift wA Ñ wA ` ξA (with ξ infinitesimal). The internal metric changes in it as usual,

γAB Ñ γAB ´∇AξB ´∇BξA ” γAB ` δ̄γAB .

Under such a special variation, the action is required to stay unchanged,

0 “ δ̄

ż

L?
´γ dσ dτ “

ż

BpL?
´γq

BγAB
δ̄γAB dσ dτ “ ´

1

2

ż

TAB δ̄γ
AB

?
´γ dσ dτ “

“

ż

TAB∇AξB
?

´γ dσ dτ “

ż

”

�������∇ApTABξBq ´ p∇ATABq ξB

ı?
´γ dσ dτ .

The first, divergence term vanishes because ξB is supposed to vanish on the boundaries, and
the second has to vanish for any ξB satisfying such boundary behaviour (but non-zero over
the world-sheet), so, necessarily,∇ATAB “0.

The energy-momentum tensor thus conserves off-shell, namely the conservation fol-
lows just from the diffeomorphism invariance of the action. We stress this, because on-shell
it is rather trivial: from the variation of S with respect to γAB, we even showed that TAB “0.

There is also a “partially on-shell” view. The TAB has been introduced solely from the
(off-shell) behaviour of L with respect to γAB, without any information from its behaviour
with respect toXµ

,A. One may thus speculate that the conservation might follow if this missing
information is added. Actually, take the definition of TAB and the Virasoro constraints (29.14)
which, exactly, were obtained from the variation of S with respect toXµ

,A. Omitting the factor
T0 in TAB and realizing that∇A is the connection of γAB, we have

∇ATAB “ ∇AhAB ´
1

2
∇A

phCDγ
CDγABq “ γCD∇DhCB ´

1

2
γCD∇BhCD “
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“ γCD∇D
`

gµκX
µ
,CX

κ
,B

˘

´
1

2
γCD∇B

`

gµνX
µ
,CX

ν
,D

˘

“

“ γCDgµκ,νX
µ
,CX

κ
,BX

ν
,D`γCDgµκp∇DXµ

,CqXκ
,B ` γCDgµκX

µ
,C∇DXκ

,B ´

´
1

2
γCDgµν,κX

µ
,CX

ν
,DX

κ
,B ´ γCDgµνX

µ
,C∇BXν

,D “

“
hhhhhhhhhhh
Γκµνγ

CDXκ
,BX

µ
,CX

ν
,D

hhhhhhhhhh`gµκp∇CXµ
,CqXκ

,B `

` γCDgµκX
µ
,C∇DXκ

,B ´ γCDgµνX
µ
,C∇BXν

,D ,

where the cancellation follows from the Virasoro constraint ∇CXµ
,C “ ´ΓµλνX

λ
,CX

ν
,D . The

remaining two terms mutually cancel as well, due to the Levi-Civita nature of∇,

γCDgµνX
µ
,C

`

∇DXν
,B´∇BXν

,D

˘

“ γCDgµνX
µ
,C

“

Xν
,BD´Xν

,DB´pΓADB´ΓABDqXν
,A

‰

“ 0 .

29.7.4 Scale invariance

Besides the symmetries of the Nambu-Goto action (with respect to the reparameterization
of the world-sheet and with respect to the transformation of space-time coordinates), the
Polyakov action (29.12) has one more symmetry which only holds in 2D – the Weyl symme-
try, i.e. the one with respect to the conformal rescaling γAB Ñ Ω2γAB. Indeed, the γAB

?
´γ

term of the action remains invariant, because
?

´γ scales as Ω2 and γAB scales as γAB{γ,
that is, as Ω2{Ω4, so altogether the Ω factors cancel out.

The scale invariance (often called the Weyl symmetry) has turned out to be crucial
in the quantization of the action (serving as the path integral). Three items are at place in
connection with the scale invariance:

• Scale invariance (with respect to a constant rescaling), or, more generally, conformal invari-
ance (with respect to rescaling by a function of position) is the crucial feature of conformal
field theories, used in various branches of physics, most notably in statistical physics and
solid-state physics. Let us show that it is in fact the deep reason why the energy-momentum
tensor is traceless. Consider the conformal transformation γAB Ñ Ω2pτ, σqγAB, so δ̄γAB “

pΩ2 ´ 1qγAB. The thus induced variation of the Lagrangian reads

δ̄ pL?
´γq “

BpL?
´γq

BγAB
δ̄γAB “

?
´γ

2
TAB δ̄γAB “

?
´γ

2
TABpΩ2

´ 1qγAB .

Should this vanish, for a general Ω2, it requires TABγAB “0 which is the traceless property.

• String theory is not fully scale invariant, because its actions contain T0 which is connected
to the string mass-energy density, so it does bring a certain scale. This is well under-
standable actually: a strict scale invariance forbids the occurrence of any length, time or
mass parameters in the theory, hence, in particular, the theory can only involve massless
excitations of the pertinent field. This would of course be too restrictive for a string theory.

• Even if the classical field theory is scale-invariant, its quantum version may violate this.
Actually, in renormalization procedures standardly employed to treat divergences in the
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perturbation theory, the counter-terms necessary to regularize the quantum corrections of-
ten introduce a certain length scale. Generally, such a loss of symmetry is being called an
anomaly (it even occasionally occurs within classical physics itself). In string theory, this
type of anomaly is called the Weyl anomaly. It manifests itself on the energy-momentum
tensor: classically, it is traceless, but quantum fluctuations (the Casimir effect) generate a
certain vacuum mean value of the trace, specifically, xTAA y “ ´ C

12
R, where R“RpγABq is

the Ricci scalar of the world-sheet and C is a constant.4

29.8 World-sheet curvature in action?
Experience from the Hilbert action of GR suggests the question: what about curvature of the
world-sheet, i.e. the one associated with the metric γAB? Why have not we considered the
Hilbert-type term
ż

RpγABq
?

´γ dσ dτ

in designing the string action? Although we have devoted a separate section to this important
question, the answer is pretty short. Remember from Section 23.4.3 that the variation of the
Hilbert term with respect to the associated metric lead to the Einstein tensor,

δ̄

ż

R
?

´g d4x “

ż
ˆ

Rµν ´
1

2
Rgµν

˙

δ̄gµν
?

´g d4x ,

at least provided that the corresponding Christoffel-symbol variations vanished on the bound-
ary (together with the metric variations themselves). However, due to the Bianchi identities,
in 2D the Riemann tensor only has one independent component, satisfying

RABCD “
R

2
pγACγBD ´ γADγBCq ùñ RBD ” γACRABCD “

R

2
γBD .

Hence, the Einstein tensor vanishes. The Hilbert-type term thus is irrelevant for variations of
the action.

However, although it does not contribute to the dynamics, the Hilbert term does con-
tribute to the action itself, thus affecting global quantities computed from it. And, we also
saw in the Lagrangian formulation of GR that if the variation of the Christoffel symbols does
not vanish on the boundary, the Hilbert action in addition brings a non-trivial boundary term
(Section 23.4.6). Specifically, it requires that the term

2ϵ

¿

BΩ

K
?
h d3y , where K “ hαβnα;β , hαβ “ gαβ ´ ϵ nαnβ , ϵ :“ gµνn

µnν ,

4 This constant is called the central charge of the theory and it kind-of measures the number of degrees of
freedom in the theory. It is the Noether charge induced by symmetry with respect to a certain “central” subgroup
of the whole symmetry group which commutes with all the rest of the group. In the conformal field theories, it
is represented by an operator which commutes with all the other operators, thus necessarily being a “c-number”.
The constant C then is referred to as the central charge of the Virasoro algebra spanned by generators of the
conformal transformations of the world-sheet.
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be included in the action (with BΩ the boundary, hαβ its metric, nα its outward unit normal
and K the trace of its extrinsic curvature). Analogously, in the case of an open string, where
the world-sheet (W ) has boundaries represented by the string-endpoint histories, the whole
curvature contribution to the action thus reads
ż

W

RpγABq
?

´γ dσ dτ ` 2ϵ

ż

BW

k ds , (29.15)

where k :“ tAtB∇AnB, with tA the tangent to the boundary, nA the outward unit normal
orthogonal to tA, and ϵ :“ γABt

AtB. If the string endpoints are free, they move along null
geodesics; along such parts of the boundary the second integral apparently has no contribution
(sure, ds“0 then, but also k“ tAtB∇AnB “´tB∇BtAnB “0, because tA is geodesic).

The expression (29.15) exactly appears in the Gauss-Bonnet theorem: for a compact
2D (pseudo-)Riemannian manifold with a boundary, the above expression yields the number
4πχ, where χ“2´2h´ b´c (with h the number of handles and b the number of boundaries,
i.e. of “legs”, and c the number of cross-caps) is the Euler characteristic of the surface. (If
b“ 0, the second integral is absent.) The Euler characteristic is a topological invariant, so it
does not change under smooth deformations of the surface (the world-sheet in our case).

The last point is very important for the string perturbation theory, since the string pro-
cesses which appear in the “Feynman diagrams” geometrically correspond to the various
changes of the above characteristics, so the pertinent world-sheets can be classified according
to their values. For example, one open string follows, within any finite time interval, a world-
sheet with no handles, one boundary and no cross-caps. If it emits and reabsorbs another open
string, the resulting world-sheet has one boundary more (there appears a hole), so χ changes
by ∆χ“ ´1. If a closed string is emitted and reabsorbed, χ changes by ∆χ“ ´2, because
there appears a handle on the world-sheet. In the quantum string theory, the Hilbert-type,
“topological” part of the action stands multiplied by a factor Φ which physically represents
the vacuum expectation value of one of the massless excitations of the string (the so called
dilaton field). And the number eΦ stands for the string coupling constant: the amplitude of
every next-order correction is weighted by e´Φ∆χ, i.e. by eΦ for open-string loops (∆χ“´1)
while by e2Φ for closed-string loops (∆χ“´2).

• We have been speaking of the conformal invariance as the central property of the theory.
The Hilbert action term does not seem to have this property! Actually, the Ricci scalar is
known to transform, in a general space-time of dimension d, as

R1
“

R

Ω2
´ 2pd ´ 1q

gabΩ;ab

Ω3
´ pd ´ 1qpd ´ 4q

gabΩ,aΩ,b

Ω4

(the derivation of this result is one of the most “intriguing” procedures in GR, so let us leave
it to the reader). It is convenient – the more in 2D – to parameterize the transformation as
Ω2 “e2ω which leads to

R1
“ e´2ω

“

R ´ 2pd ´ 1q gabω;ab ´ pd ´ 1qpd ´ 2q gabω,aω,b
‰

.

In 2D, the formula simplifies to just R1 “ e´2ωpR´ 2∇2ωq. Hence, since
?

´γ in 2D con-
formally transforms as

?
´γ1 “

?
´γ e2ω, the whole Lagrangian term R

?
´γ transforms
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to R1
?

´γ1 “ pR ´ 2∇2ωq
?

´γ . There is the extra term 2
?

´γ∇2ω, but that term can be
written as a divergence,

?
´γ∇2ω ”

?
´γ∇ApγAB∇Bωq “ BA

`

γABω,B
˘

.

The extra term thus does not contribute to the dynamics and, for closed-string world-sheets
(without boundary), it leaves the action integral conformally invariant. For open-string
world-sheets, the above boundary term has to be included.

29.8.1 And cosmological term?

A natural additional footnote is to query the possibility of an analogue of a cosmological term
in the action,

ş

λ
?

´γ dσ dτ . However, we immediately refuse it, because – if λ is a constant
(not subject to any transformation) – the term is not conformally invariant, transforming as
?

´γ1 “
?

´γ e2ω.

29.9 The world-sheet 2+2 splitting
Finally, good to read what B. Carter thinks about what we have tried to outline above:
“... Even in the most recent literature there are still (under Eisenhart’s uninspiring influence)
many examples of insufficient effort to sort out the messy clutter of indices of different kinds
(Greek or Latin, early or late,5 small or capital) that arise in this way by grouping the various
contributions into simple tensorially covariant combinations. Another inconvenient feature
of many publications is that results have been left in a form that depends on some particular
gauge choice (such as the conformal gauge for internal string coordinates) which obscures
the relationship with other results concerning the same system but in a different gauge. The
strategy adopted here aims at minimising such problems (they can never be entirely elimi-
nated) by working as far as possible with a single kind of tensor index, which must of course
be the one that is most fundamental, namely that of the background coordinates, xµ.”

The quotation is from one of the versions of Carter’s arXiv notes on Classical dynamics
of strings and branes. One more reflection from there: Of the cases of particles, strings and
thin layers, only the string case is non-trivial (in a 4D spacetime) in the strong sense of having
a world-sheet with both dimension and codimension greater than one. The following section
largely follows Carter’s notes.

29.9.1 The first and the second fundamental tensors

The Σt hypersurfaces of the 3+1 decomposition were 3D and space-like, whereas the world-
sheet is 2D and time-like. If the world-sheet is smooth (if its induced metric is differentiable),
it is possible, at its any particular point, to consider an orthonormal tetrad consisting of two
tangent and two normal vectors. The background picture is to have some global time coor-
dinate t, fix it to some constant and thus obtain the string as the tt “ constu section of the

5 Comment by OS: “early” and “late” does not indicate a historical period (when the given font had been
used), but whether the given letter is close to the beginning or to the end of the alphabet.
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world-sheet. Parameterize the world-sheet by τ :“ t and by σ going along the tτ “ constu
string. Let sµ denote the unit tangent vector to the string (one has two options how to orient
it, of course) – in the previous notation, it means the normalized version of Xµ

,σ . Second,
take, at the same point, the unit world-sheet tangent which is orthogonal to sµ and future-
oriented, call it (perhaps too suggestively) uµ. (It need not be proportional to Xµ

,τ ! Actually,
Xµ
,τ may not be orthogonal to Xµ

,σ, namely gµνXµ
,τX

µ
,σ “hτσ may not be zero.) The vector sµ

is supposed to be space-like while the uµ time-like, so, denoting the whole pair as wµA, with
wµ0 :“uµ and wµ1 :“sµ, we have

gµνw
µ
Aw

ν
B “ ηAB ” diagp´1, 1q , ηABwµAw

ν
B ” ´uµuν ` sµsν “ hµν .

Let us denote the two mutually orthogonal unit normals to the world-sheet by nµ2 and nµ3 ,
together nµM pM“2, 3q. They are given, up to a rotation within their plane, by

gµνn
µ
Mn

ν
N “ δMN ” diagp1, 1q , δMNnµMn

ν
N “ gµν ´ hµν , gµνw

µ
An

ν
N “ 0 .

The induced metric hAB “gµνX
µ
,AX

ν
,B “hµνX

µ
,AX

ν
,B (these are same, because gµν´hµν

is normal whereas Xµ
,A tangent to the world-sheet) used in preceding sections is related to

the present picture by hABXµ
,AX

ν
,B “hµν (only that in the case when we use an orthonormal

tangent dyad wµA, the role of hAB is played by Minkowski, hAB “ ηAB). Geometrically, this
represents a pullback of the inverse of hAB “back” to space-time. One may check that the
combined relation yields what expected,

hµν “ hABXµ
,AX

ν
,B “ hAChBDhCDX

µ
,AX

ν
,B “ hAChBDgκλX

κ
,CX

λ
,DX

µ
,AX

ν
,B “ hµκhνλgκλ .

The induced metric hµν is called the first fundamental tensor of the world-sheet. Together
with the projector hµν (satisfying hµι h

ι
ν “ hµν ),6 one automatically has the complementary,

orthogonal projector δµν ´hµν which obviously satisfies hµι pδιν´hινq “ 0.
The tensor fields only living on the world-sheet one cannot differentiate in arbitrary

space-time direction; only meaningful is the tangential derivative

∇µ
:“ hµν∇ν “ hABXµ

,AX
ν
,B∇ν “ hABXµ

,A∇B ,

where ∇ν is the standard space-time LC connection and ∇B is its world-sheet counterpart.
For example, for a scalar field φ only defined on the world-sheet, one computes the tangential
gradient as∇µ

φ “ hABXµ
,Aφ,B .

In 3+1, one defined the second fundamental form (extrinsic curvature) of the hypersur-
face (with metric hαβ) by tangential gradient of its unit normal nµ, that is, Kµν “hαµh

β
νnα;β “

hβνnµ;β . For a 2D surface, it suggests to define a corresponding tensor by tangential gradient
of its orthogonal-complement metric δµν´hµν . As the world-sheet is time-like, let us do it with
a minus sign,

Kµν
α :“ hιµh

κ
ν∇κphαι ´ δαι q “ hιµh

κ
ν∇κhαι ” hιµ∇νhαι . (29.16)

6 When playing with the metrics with indices here and there, it is good to remember that in the mixed ver-
sion (as a projector), the d-dimensional metric is only the dˆd unit matrix in the adapted, “intrinsic”, “d-
dimensional” coordinates. For example, the 2D metric h satisfies hAB “ δAB , but the latter does not hold in the
“extrinsic”, 4D “bulk” coordinates, hµα‰δµα.
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This is the second fundamental tensor of the world-sheet. It shares, with the 3+1 extrinsic
curvature, the Weingarten-Frobenius property of being symmetric. Indeed, one expresses

Kµν
α

“ hµιhνκh
κλ∇λhια “ hµιhνκη

ABwκAw
λ
B∇λhια “ hµιhνκη

ABwκA∇BpηCDwιCw
α
Dq “

“ 2hµιhνκη
ABηCDwκAw

ι
C∇BwαD “ 2wBν w

D
µ∇BwαD ,

so the behaviour in the indices rµ, νs translates through rι, κs and rA,Cs to the behaviour in
rB,Ds. Anti-symmetrization in the latter yields

wBν w
D
µ p∇BwαD ´∇DwαBq “ wBν w

D
µ pwαD,B ´ wαB,Dq “ pw0

µw
1
ν ´ w1

µw
0
νqpwα0,1 ´ wα1,0q .

However, the vectors wα0 and wα1 have to be surface-forming, because they are the generators
of the world-sheet. In our parameterization they even commute, because wαA„Xα

,A and

`

Xα
,0

˘

,β
Xβ
,1 ´

`

Xα
,1

˘

,β
Xβ
,0 “ Xα

,01 ´ Xα
,10 “ 0 .

Below we mention some other properties of Kµν
α:

• The second fundamental tensor is “mixed” in the sense that it is tangential in the first two
indices while orthogonal in the last one,

pδµλ´hµλqKµν
α

“ pδµλ´hµλqhιµh
κ
ν∇κhαι “ 0 ,

Kµν
αhβα “ hιµh

κ
νh

β
α∇κhαι “ hιµh

κ
ν

“

∇κphβαh
α
ι q ´ hαι∇κhβα

‰

“ Kµν
β

´ Kµν
β

“ 0 .

• Kµν
α fully determines the tangential derivative of hµν . Indeed, the definition (29.16) says

Kµν
α

” hιµ∇νhαι “ ∇νphιµh
α
ι q ´ hαι∇νhιµ “ ∇νhαµ ´ hαι∇νhµι “ ∇νhαµ ´ Kα

νµ ,

which yields, if multiplied by gρα,

∇νhµρ “ Kµνρ ` Kρνµ “ Kνµρ ` Kνρµ ” 2Kνpµρq .

• Have some vector tangent to the world-sheet, vµ “ hµνv
ν . The normal component of its

“acceleration” 9vµ :“vν∇νvµ satisfies

pδρµ´hρµq 9vµ “ pδρµ´hρµq vν∇νvµ “ vν∇νvρ ´ vνhρµ∇νvµ “

“ ZZ9vρ ´
XXXXXXXvν∇νphρµv

µ
q ` vνvµ∇νhρµ “ hνβv

βhµαv
α∇νhρµ “ vαvβKαβ

ρ .

• Let us try to express Kµν
α totally explicitely. From its first definition (29.16), we have

Kµν
α

” hιµh
κ
ν∇κphαι ´δαι q “ pδαι ´hαι qhκν∇κhιµ “

“ pδαι ´hαι qhκν
`

hιµ,κ ` Γικλh
λ
µ ´ Γλκµh

ι
λ

˘

“ pδαι ´hαι qhκν
`

hιµ,κ ` Γικλh
λ
µ

˘

.

In the first part, one writes

hκνh
ι
µ,κ “ hνσh

σκ
phµρh

ρι
q,κ “ hνσh

σκ
phµρ,κh

ρι
` hµρh

ρι
,κq ,
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of which the 1st term does not contribute since pδαι ´hαι qhρι“0, and the 2nd term yields

hµρhνσh
σκhρι,κ “ hµρhνσh

BDXσ
,BX

κ
,D

`

hACXρ
,AX

ι
,C

˘

,κ
“

“ hµρhνσh
BDXσ

,B

`

hACXρ
,AX

ι
,C

˘

,D
“

“ hµρhνσh
BDXσ

,B

`

hACXρ
,A

˘

,D
X ι
,C ` hµρhνσh

BDXσ
,Bh

ACXρ
,AX

ι
,CD .

After multiplication by the orthogonal projector pδαι h́αι q, the first term does not contribute,
because X ι

,C is tangent to the world-sheet, i.e. pδαι ´hαι qX ι
,C “ 0. Hence, we arrive at

Kµν
α

“ pδαι ´hαι q
`

hµρhνσh
AChBDXρ

,AX
σ
,BX

ι
,CD ` hκνh

λ
µΓ

ι
κλ

˘

. (29.17)

Since pδαι ´hαι qX ι
,C “ 0, the derivative by “D” can alternatively be extended to the whole

first term hµρhνσh
AChBDXρ

,AX
σ
,BX

ι
,C “ hµρhνσh

ριhBDXσ
,B “ hιµhνσh

BDXσ
,B ,

Kµν
α

“ pδαι ´hαι q

”

`

hιµhνσh
BDXσ

,B

˘

,D
` hκνh

λ
µΓ

ι
κλ

ı

. (29.18)

The result is manifestly orthogonal to the world-sheet in the upper index while tangent in
the bottom ones, and its “Weingarten property” is also clear: in the first term of (29.17),
note (from the end) the symmetry in pCDq, implying the symmetry in pABq, which in turn
implies symmetry in pρσq and thus in pµνq; symmetry of the second term is even more
obvious.

29.9.2 The mean-curvature vector

The tangential covariant derivative which appears in the definition of Kµν
α was actually em-

ployed in (29.5), (29.6) and (29.13) already. Here we show more how things go together.
Since Kµν

α is tangential in the first two indices and transversal in the last one, its only
non-trivial contraction is that over the first two indices,

Kα :“ gµνKµν
α

“ hµνKµν
α

” hµνhιµ∇νhαι ” hµνhιµh
κ
ν∇κhαι ” hικ∇κhαι ” ∇ιhια .

This vector, clearly orthogonal to the world-sheet, is called the world-sheet mean-curvature
vector (or extrinsic-curvature vector). For its explicit form, one may just contract (29.18):
since pδαι ´hαι qhιµ “ 0, one may enter the parenthesis with gµν and directly perform the
contraction there, gµνhιµhνσh

BDXσ
,B “ hισh

BDXσ
,B “ hBDX ι

,B , hence

Kα
“ pδαι ´hαι q

”

`

hBDX ι
,B

˘

,D
` hκλΓικλ

ı

. (29.19)

Lemma: The mean-curvature vector can also be expressed as

Kα
“

1
?
h

´?
hhBDXα

,B

¯

,D
` hκλΓακλ ” lXα

` hκλΓακλ . (29.20)

Proof: Were the above expression normal to the world-sheet (as it should be), it would make
no difference to multiply it by the orthogonal projector pδαι ´hαι q. This would yield

pδαι ´hαι qKι
“

p
?
hq,D

?
h

hBD
�������
X ι
,Bpδαι ´hαι q ` pδαι ´hαι q

”

`

hBDX ι
,B

˘

,D
` hκλΓικλ

ı

,
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which is exactly the desired result. Therefore, it is sufficient to show that (29.20) is really
normal to any world-sheet tangent Xγ

,C .

Let us first compute p
?
hq,D?
h

hBDXα
,B :

p
?
hq,D “

B
?
h

BhAC
hAC,D “

1

2

?
hhAChAC,D

with

hAC,D “
`

gκλX
κ
,AX

λ
,C

˘

,D
“ gκλ,δX

κ
,AX

λ
,CX

δ
,D ` 2gκλX

κ
,AX

λ
,CD ,

hence

p
?
hq,D

?
h

hBDXα
,B “

1

2
hAChBDXα

,B

`

gκλ,δX
κ
,AX

λ
,CX

δ
,D ` 2gκλX

κ
,AX

λ
,CD

˘

“

“
1

2
gκλ,δh

κλhαδ ` gκλh
AChBDXκ

,AX
α
,BX

λ
,CD . (29.21)

Using the latter, let us multiply (29.20) by gαγX
γ
,C :

1
?
h

´?
hhBDXα

,B

¯

,D
gαγX

γ
,C ` hκλΓακλgαγX

γ
,C “

“
1

2
gκλ,δh

κλhαδgαγX
γ
,C ` gκλh

AChBDXκ
,AX

α
,BX

λ
,CDgαγX

γ
,C `

`
`

hBDXα
,B

˘

,D
gαγX

γ
,C ` hκλΓγκλX

γ
,C “

“
1

2
gκλ,δh

κλXδ
,C ` hκλΓγκλX

γ
,C ` gκλh

AChBDhBCX
κ
,AX

λ
,CD `

`
`

hBDXα
,BgαγX

γ
,C

˘

,D
´ hBDXα

,B

`

gαγX
γ
,C

˘

,D
“

“
1

2
p���gκλ,γ ` gγκ,λ ` gλγ,κ ´ ���gκλ,γ qhκλXγ

,C ` gκλh
ADXκ

,AX
λ
,CD `

` phBDhBCq,D ´ hBDXα
,B

`

gαγ,δX
δ
,DX

γ
,C ` gαγX

γ
,CD

˘

“

“ �������
gγκ,λh

κλXγ
,C `

hhhhhhhhhgκλh
ADXκ

,AX
λ
,CD ` �������XXXXXXXphDC ” δDC q,D ´ �������

hαδgαγ,δX
γ
,C ´

hhhhhhhhhhBDXα
,BgαγX

γ
,CD .

That’s it.

Corollary: Comparing (29.20) with (29.6) or (29.13), we see that the string equations of
motion can be expressed in an elegant geometrical way [sic!]: as the vanishing of the mean-
curvature vector, Kα“0 .

29.9.3 Gauss-Codazzi equations

Having described the world-sheet extrinsic curvature, one asks whether Gauss-Codazzi–type
equations exist, similarly as in the case of the 3+1 space-time splitting. Let us check it.
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Exactly as in Section 25.4, we compute the second tangent covariant derivative of an arbitrary
(co-)tangent of the world-sheet (Vµ),
`

Vµ;γh
µ
αh

γ
ρ

˘

;σ
hανh

ρ
κh

σ
λ “ Vµ;γσh

µ
νh

γ
κh

σ
λ ` Vµ;γh

µ
α;σh

γ
κh

α
νh

σ
λ ` Vµ;γh

µ
νh

γ
ρ;σh

ρ
κh

σ
λ “

“ Vµ;γσh
µ
νh

γ
κh

σ
λ ` Vµ;γKνλ

µhγκ ` Vµ;γh
µ
νKκλ

γ ,

where now, naturally, hµν stands for the 2D world-sheet projector. The aim is to obtain the
world-sheet Riemann tensor by commutator of the above expression in rκλs. The last term is
symmetric in pκλq, so it will not contribute. In the middle term, we may use the trivial fact
Vµ“hαµVα and write

Vµ;γKνλ
µ

“ phαµVαq;γKνλ
µ

“ hαµ;γVαKνλ
µ

` hαµVα;γKνλ
µ ,

where however the second term vanishes because hαµKνλ
µ“0. So we have

Vµ;γKνλ
µhγκ “ hαµ;γVαKνλ

µhγκ “ hαµ;γh
ι
αVιKνλ

µhγκ “ VιK
ι
κµKνλ

µ .

Finally,

2Vµ;γσh
µ
νh

γ
rκh

σ
λs “ 2Vµ;rγσsh

µ
νh

γ
κh

σ
λ “ Rβ

µγσVβh
µ
νh

γ
κh

σ
λ “ Rβ

µγσh
ι
βVιh

µ
νh

γ
κh

σ
λ .

The commutator in rκλs thus reads

2 pVµ;γh
µ
αh

γ
ρq;σh

α
νh

ρ
rκh

σ
λs ”

p2qRι
νκλVι “ Rβ

µγσh
ι
βVιh

µ
νh

γ
κh

σ
λ `VιK

ι
κµKνλ

µ
´VιK

ι
λµKνκ

µ.

Since Vι has been arbitrary, we arrive at the Gauss equation

Rβ
µγσh

ι
βh

µ
νh

γ
κh

σ
λ “

p2qRι
νκλ ` Kι

κµKνλ
µ

´ Kι
λµKνκ

µ (29.22)

(remember in passing that the 2D Riemann has but one independent component).
The Codazzi equation we derived, in the 3+1 decomposition, from the Ricci identity for

the normal nµ of the 3D hypersurface,Rα
βγδnα “ nβ;γδ´nβ;δγ . Here we have not introduced

the world-sheet normal, rather working in terms of the orthogonal projector pδαβ ´ hαβq, so let
us start from the Ricci identity for the latter,

pδαβ ´ hαβq;γδ ´ pδαβ ´ hαβq;δγ “ Rι
α
γδpδ

ι
β ´ hιβq ` Rι

βγδpδ
α
ι ´ hαι q .

On the l.h. side, the covariant derivative of the metric (δαβ ) is zero, and on the r.h. side,

Rι
βγδδ

α
ι ` Rι

α
γδδ

ι
β “ Rα

βγδ ` Rβ
α
γδ “ 0 ,

so the identity – expectably – applies to the projector hαβ itself,

hαβ;γδ ´ hαβ;δγ “ Rι
βγδh

α
ι ´ Rα

ιγδh
ι
β .

The left-hand side likely can be related to a suitable subtraction of derivatives of the extrinsic
curvature. To this aim, consider a tensor called the third fundamental tensor7

Oµνι
α :“ hρµh

σ
ν pδαβ ´hαβq∇ιKρσ

β
” hρµh

σ
ν pδαβ ´hαβqhκι∇κKρσ

β . (29.23)

7 Carter uses the notation Ξµνι
α, which however seems uncomfortable. Sometimes this tensor is being de-

noted by C, but we use C for the Weyl tensor.
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This tensor inherits the symmetry in pµ, νq from Kµν
α. Substituting Kρσ

β “ hγρh
δ
σh

β
γ;δ, one

has

Oµνι
α

“ hρµh
σ
ν pδαβ ´hαβqhκι

`

hγρh
δ
σh

β
γ;δ

˘

;κ
“

“ hρµh
σ
ν pδαβ ´hαβqhκι

`

hγρ;κh
δ
σh

β
γ;δ ` hγρh

δ
σ;κh

β
γ;δ ` hγρh

δ
σh

β
γ;δκ

˘

“

“
`

Kµι
γhδν ` Kνι

δhγµ
˘

pδαβ ´hαβqhβγ;δ ` hγµh
δ
νh

κ
ι pδαβ ´hαβqhβγ;δκ .

Let us evaluate the commutator Oµνι
α ´ Oµιν

α. The last term contributes by

2hγµh
δ
rνh

κ
ιspδ

α
β ´hαβqhβγ;δκ “ hγµh

δ
νh

κ
ι pδαβ ´hαβq

`

hβγ;δκ ´ hβγ;κδ
˘

“

“ hγµh
δ
νh

κ
ι pδαβ ´hαβq

`

Rλ
β
δκh

λ
γ ` Rλ

γδκh
β
λ

˘

“

“ hγµh
δ
νh

κ
ι pδαβ ´hαβqRλ

β
δκh

λ
γ “ ´hγµh

δ
νh

κ
ι pδαβ ´hαβqRβ

λδκh
λ
γ “

“ ´hλµh
δ
νh

κ
ι pδαβ ´hαβqRβ

λδκ .

The term Kνι
δhγµpδαβ´hαβqhβγ;δ does not contribute at all since it is symmetric in pν, ιq. And in

the first term, since pδαβ´hαβqhβγ “ 0, we can swap the derivative from the latter to the former
(with minus),

Kµι
γhδνpδαβ ´hαβqhβγ;δ “ ´Kµι

γhδνpδαβ ´hαβq;δh
β
γ “ 0

(because Kµι
γhβγ “ 0). Hence, we arrive at the Codazzi equation

Oµνι
α

´ Oµιν
α

“ ´hλµh
δ
νh

κ
ι pδαβ ´hαβqRβ

λδκ . (29.24)

—

The string problem definitely suggests itself for further research. One might compare the 2+2
approach with treating the world-sheet as a 2D time-like congruence. Or one might study
the string configurations “at given time”, as a sequence of space-like curves, using (e.g.) the
Frenet-Serret formalism, if not to even consider the internal physics of the string (elasticity),
making perturbations and studying transversal and longitudinal vibrations... These directions
however are out of the scope of the present course.



CHAPTER 30

Algebraic classification of tensor fields

If acting, by a tensor of rank r, on r´1 vectors and/or covectors, it yields a vector or a
covector. Hence, besides mapping from tangent and cotangent spaces to numbers, tensors
can also be understood as mappings “back” to either tangent or cotangent spaces. In such
an action, a tensor may “favour” certain (co)vectors in the sense that it does not rotate them
– it only (at most) changes their length. Such (co)vectors are called eigen-(co)vectors of a
given tensor. Therefore, besides various coordinate-independent properties we already know
(e.g. symmetries or congruence properties), a vector field may also be privileged in that it is
everywhere an eigen-vector of some important tensor field. In the case of gravitation, mainly
important is the Riemann (or Weyl) tensor. We will analyse the gravitational eigen-problem
after “warming up” on the EM-field tensor. First, however, we shall recall several generic
properties of second-rank tensors.

30.1 Eigen-problem for second-rank tensors
Every second-rank tensor can be decomposed into the antisymmetric and symmetric parts,
and the symmetric part can further be decomposed in a trace-free part and a pure-trace part
proportional to the metric tensor,

Tµν “ Trµνs ` Tpµνq “ Trµνs `

"

Tpµνq ´
1

4
Tgµν

*

`
1

4
Tgµν ; T :“ T ιι . (30.1)

We will thus specifically focus on algebraic properties of tensors of the above types.
The eigen-value equation

T µνV
ν

“ λV µ
ðñ pT µν ´ λδµν qV ν

“ 0 (30.2)

is, for both symmetric and skew-symmetric tensors, independent of which index pair is be-
ing summed over, modulo sign change in the skew-symmetric case.1 It is a system of four

1 Multiplication of the equation by V α yields a symmetric tensor on the right-hand side, so the equation can
also be written as V rαTµs

νV
ν “ 0.

579
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linear algebraic equations for V ν . The system has a solution iff the characteristic (secular)
equation is satisfied

detpT µν ´ λδµν q “ 0 ðñ λ4 ` Ip3qλ
3

` Ip2qλ
2

` Ip1qλ ` Ip0q “ 0 , (30.3)

the coefficients of which Ipιq are determined by algebraic operations from the components
of T µν (and of the metric tensor). Equation (30.2) being a tensor (here vector) equation, the
eigen-values λ have to be invariants. Should they, at the same time, come out as the roots of
the characteristic equation, the latter’s coefficients Ipιq have to be invariant as well. Indeed,
submitting the expressions

M “ T µν ´ λδµν ,

M2
“ pT µι ´ λδµι qpT ιν ´ λδινq “ T µιT

ι
ν ´ 2λT µν ` λ2δµν ,

M3
“ ¨ ¨ ¨ “ T µιT

ι
κT

κ
ν ´ 3λT µιT

ι
ν ` 3λ2T µν ´ λ3δµν ,

M4
“ ¨ ¨ ¨ “ T µιT

ι
κT

κ
λT

λ
ν ´ 4λT µιT

ι
κT

κ
ν ` 6λ2T µιT

ι
ν ´ 4λ3T µν ` λ4δµν ,

to the formula (A.10) for calculation of the determinant from traces of the matrix products,
therefore

TrM “ T µµ ´ 4λ ” T ´ 4λ ,

TrM2
“ T µιT

ι
µ ´ 2λT ` 4λ2,

TrM3
“ T µιT

ι
κT

κ
µ ´ 3λT µιT

ι
µ ` 3λ2T ´ 4λ3,

TrM4
“ T µιT

ι
κT

κ
λT

λ
µ ´ 4λT µιT

ι
κT

κ
µ ` 6λ2T µιT

ι
µ ´ 4λ3T ` 4λ4,

we obtain

detpT µν ´ λδµν q “

λ4 ´ Tλ3 `
1

2
pT 2

´ T µιT
ι
µqλ2 ´

1

6
pT 3

´ 3T T µιT
ι
µ ` 2T µιT

ι
κT

κ
µqλ ` detpT µνq .

(30.4)

This so-called characteristic polynomial always has 4 roots – more generally, a dˆd matrix
always has d eigen-values, of which some (or even all possibly) may be multiple, “degener-
ate”. The number of eigen-vectors may range from 0 to d. The values of λ, their multiplicity
and the number of independent eigen-vectors V ν provide the starting point for identifying
several different algebraic types of tensors.

Let us recall main knowledge on eigen-problem for a square matrix M :

•
ř

i

λi “ TrpMq . . . sum of the eigen-values equals trace of the matrix

•
ś

i

λi “ detpMq . . . product of the eigen-values equals determinant of the matrix

• eigen-vectors corresponding to different eigen-values are linearly independent

• the dimension of the space of eigen-vectors corresponding to a one particular eigen-value
(i.e. the geometrical multiplicity of the eigen-value) is less or equal to the multiplicity of
that eigen-value as the root of the characteristic equation (i.e. its algebraic multiplicity)
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• eigen-values and eigen-vectors of a real symmetric dˆd matrix are real, there exactly exist
d of them, and the eigen-vectors corresponding to different eigen-values are orthogonal; in
a Euclidean (positive semi-definite) metric, every such matrix can be diagonalized thanks
to that, because M “V ¨ Λ ¨ V ´1, where Λ“diagpλiq and V is the matrix whose columns
are independent eigen-vectors of M ; unfortunately, the same is not true in a Lorentzian
(indefinite) metric

• eigen-values and eigen-vectors of a real antisymmetric dˆd matrix may be both real and
imaginary, with eigen-values grouped in pairs having the same magnitude but opposite
sign; there may exist from 0 to d independent eigen-vectors

• a real symmetric matrix may have any rank (from 0 to d), whereas a real anti-symmetric
matrix can only have even rank (Jacobi’s theorem), because, for M anti-symmetric dˆd,

detpMq “ detpMT
q “ detp´Mq “ detp´I ¨Mq “ detp´Iq detpMq “ p´1q

d detpMq ,

so for odd d the determinant has to vanish, i.e. the matrix’ rank has to be lower; in the d“4
case it means that non-trivial bivectors can only have rank 4 or 2.

30.1.1 Metric tensor

Trivial example first: metric tensor has every vector as its eigen-vector – the equation

gµνV
ν

“ λVµ

is always, “trivially” satisfied for λ “ 1. Hence, the metric tensor does not determine any
privileged direction. This is why tensors proportional to the metric are called isotropic. For
example, isotropic is the cosmological term Λgµν , and thus the Ricci tensor of the vacuum
yet Λ ‰ 0 space-times, Rµν “ Λgµν . The pressure term in the ideal-fluid energy-momentum
tensor, Phµν , is isotropic in the 3D space locally orthogonal to the fluid’s flow (described by
the metric hµν).

30.1.2 Antisymmetric tensor (bivector)

An antisymmetric tensor (bivector) we denote suggestively by Fµν and its Hodge dual by

˚F µν :“
1

2
ϵµνρσFρσ

as usual. The properties of the duality mapping are given by the relations (A.9) for the
products of Levi-Civita pseudo-tensors, specifically by the relations

ϵαβγλϵµνκλ “ ´δαµδ
β
ν δ

γ
κ ´ δγµδ

α
ν δ

β
κ ´ δβµδ

γ
ν δ

α
κ ` δαµδ

γ
ν δ

β
κ ` δβµδ

α
ν δ

γ
κ ` δγµδ

β
ν δ

α
κ ,

ϵαβκλϵµνκλ “ ´2δαµδ
β
ν ` 2δβµδ

α
ν .

The general formula for dual of a dual, (A.24), implies that in the case of a bivector the dual
of a dual equals the original tensor with minus,

˚˚Fµν “
1

2
ϵµνκλ

˚F κλ
“

1

4
ϵµνκλϵ

κλαβFαβ “
1

2
p´Fµν ` Fνµq “ ´Fµν , (30.5)
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where the second of the above ϵϵ products has been employed. The first of the products
provides the identity

˚Fµλ
˚Fαλ

´ FµλF
αλ

“ ´
1

2
δαµFιλF

ιλ , (30.6)

which in turn yields, by tracing,

˚Fµλ
˚F µλ

“ ´FµλF
µλ , (30.7)

and it also provides a similar identity for the mixed product,

˚FµλF
αλ

“ Fµλ
˚Fαλ

“
1

4
δαµFιλ

˚F ιλ . (30.8)

Invariant content of a bivector is encoded in two independent scalars, FµνF µν and
pFµν

˚F µνq2 (without the square, the second one is a pseudo-scalar). It might seem that an-
other invariants follow by higher products FµνFνιFικ . . . FλτFτ µ, but it is not so: matrix
products involving even number of F s – i.e. those in which the “boundary” indices are not
summed over – are symmetric in these free indices, so all products involving odd number of
F s vanish; and even-number products can be expressed in terms of the above two invariants
– for example, by multiplication of equation (30.6) by FασF µσ, we have

˚Fµλ
˚FαλFασF

µσ
´ FµλF

αλFασF
µσ

“ ´
1

2
pFιλF

ιλ
q
2 ,

which yields, by substitution to the first term from (30.8),

FµλF
αλFασF

µσ
“

1

2
pFιλF

ιλ
q
2

`
˚Fµλ

˚FαλFασF
µσ

“
1

2
pFιλF

ιλ
q
2

`
1

4
pFιλ

˚F ιλ
q
2 (30.9)

(the value and the whole relation remain exactly the same if Fµν and ˚Fµν are swapped).
Invariant as well is the determinant of the mixed second-rank tensor, yet it neither brings

anything new: from the general relation (A.10) we obtain, in the antisymmetric case, only

detpFµ
ν
q “

1

4!

“

3 pTrF 2
q
2

´ 6TrF 4
‰

“ ´

ˆ

1

4
Fµν

˚F µν

˙2

r “ detp˚Fµ
ν
qs , (30.10)

because TrF “Fµ
µ

“0 and in the bracket we substitute from (30.9), i.e.

pTrF 2
q
2

“ 2TrF 4
´

1

2
rTrpF ˚F qs

2
ñ

3

4!

“

pTrF 2
q
2

´ 2TrF 4
‰

“ ´
1

42
rTrpF ˚F qs

2 .

Now we turn to the eigen-value equation FµνV ν “λVµ. Multiplication by V µ leads to

0 “ FµνV
νV µ

“ λVµV
µ , (30.11)

so either the eigen-value is zero, or the eigen-vector is light-like, or both. Further, thanks to
the skew symmetry of Fµν , to the even space-time dimension and to the fact that a determinant
does not change under swapping matrix rows for columns, it holds

detpFµν´λgµνq “ detp´Fνµ´λgνµq “ det r´I ¨ pFνµ`λgνµqs “ detp´Iq detpFνµ`λgνµq
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“ p´1q
4 detpFνµ ` λgνµq “ detpFνµ ` λgνµq “ detpFµν ` λgµνq ,

that is, the characteristic equation is independent of the sign of λ. It thus cannot contain odd
powers of λ. Actually, for a bivector, the determinant (A.10) is simplified due to the vanish-
ing trace, and the “triple” term in the coefficient at λ vanishes as well, so the characteristic
equation (30.4) assumes the form

detpFµ
ν

` λδνµq “ λ4 `

ˆ

1

2
FµνF

µν

˙

λ2 ´

ˆ

1

4
Fµν

˚F µν

˙2

“ 0 . (30.12)

It has two real, mutually opposite solutions (λ´ “´λ`) given by the plus-root

λ2 “ pλ˘q
2

“
1

4

„

´FµνF
µν

`

b

pFµνF µνq2 ` pFµν˚F µνq2

ȷ

(30.13)

(the root with minus in front of the square root is clearly negative, so the other two solutions
are imaginary).

For the dual bivector, the same exercise leads to the characteristic equation

detp˚Fµ
ν

`
˚λδνµq “

˚λ4 `

ˆ

1

2
˚Fµν

˚F µν

˙

˚λ2 ´

ˆ

1

4
Fµν

˚F µν

˙2

“ 0 , (30.14)

differing in sign of the middle term (because ˚Fµν
˚F µν “´FµνF

µν). Again two real, mutually
opposite solutions exist (˚λ´ “´˚λ`), given by the plus-root

˚λ2 “ p
˚λ˘q

2
“

1

4

„

FµνF
µν

`

b

pFµνF µνq2 ` pFµν˚F µνq2

ȷ

(30.15)

(the other two solutions are imaginary again).
The eigen-values λ˘ and ˚λ˘ are related by the simple rules

pλ˘q
2

´ p
˚λ˘q

2
“ ´

1

2
FµνF

µν , pλ˘q
2

` p
˚λ˘q

2
“

1

2

b

pFµνF µνq2 ` pFµν˚F µνq2 ,

pλ˘q
2
p

˚λ˘q
2

“

ˆ

1

4
Fµν

˚F µν

˙2

.

30.2 Algebraic classification of bivectors
Three distinct algebraic types of bivectors exist, as distinguished by several equivalent (or
overlapping) criteria:

• according to whether the invariants FµνF µν , Fµν˚F µν vanish or not

• according to eigen-values and the number of respective eigen-vectors, in particular, ac-
cording to whether Fµν (or ˚Fµν) has an eigen-vector corresponding to a zero eigen-value,
FµνV

ν “0



584 30. ALGEBRAIC CLASSIFICATION OF TENSOR FIELDS

• according to the algebraic structure of Fµν (or ˚Fµν), namely according to whether it can
be decomposed as an anti-symmetrized (co)vector dyad

• according to the rank of the bivector

Below we list the basic properties of the three algebraic types, proceeding from the generic
one to the most special.

30.2.1 Algebraic type I, generic case

Let a bivector be represented by a matrix of maximal rank, i.e. 4. It means that neither rows
nor columns of the matrix are bound by any constraint of the FµνV ν “ 0 type, i.e., Fµν does
not have any eigen-vector corresponding to a zero eigen-value. In such a case, the determinant
of Fµν – and thus the invariant Fµν˚F µν – is non-zero. Hence, both Fµν and ˚Fµν have two
distinct, non-zero eigen-values, λ˘ and ˚λ˘. Then, however, the corresponding eigen-vectors
have to be null. More specifically, it turns out that they are two and common for Fµν and
˚Fµν , one (kµ, say) corresponding to λ` and ˚λ´ (i.e., F µ

νk
ν “ λ`k

µ and ˚F µ
νk

ν “ ˚λ´k
µ),

while the other (lµ, say) corresponding to λ´ and ˚λ` (i.e., F µ
νl
ν “λ´l

µ and ˚F µ
νl
ν “ ˚λ`l

µ).
Indeed, assume that F µ

νk
ν “ λkµ. Multiplying this by ˚Fα

µ and using equation (30.8), we
have

l.h.side “
˚Fα

µF
µ
νk

ν
“ ´

1

4
δανFιλ

˚F ιλ kν “ ´
1

4
Fιλ

˚F ιλ kα , r.h.side “ λ˚Fα
µk

µ ,

so it must hold

˚Fα
µk

µ
“ ´

1

4λ
Fιλ

˚F ιλ kα

– every eigen-vector kµ of F µ
ν (associated with the eigen-value λ) is simultaneously the

eigen-vector of ˚F µ
ν , associated with the eigen-value ˚λ “ ´ 1

4λ
Fιλ

˚F ιλ. (And obviously it
also holds conversely.)

Note that the case FµνF µν “0 belongs to the generic ones (if Fµν˚F µν ‰0). The eigen-
values (30.13,30.15) are equal in pairs in that case, pλ˘q2 “ p˚λ˘q2 “ 1

4
|Fµν

˚F µν | p‰ 0q.

30.2.2 Algebraic type I, simple case

The opposite case, Fµν˚F µν “0 and FµνF µν ‰0, is somewhat more special. First, the eigen-
values are degenerate here: if FµνF µν ą 0, they read pλ˘q2 “ 0, p˚λ˘q2 “ 1

2
FµνF

µν , whereas
if FµνF µν ă 0, they read pλ˘q2 “ ´1

2
FµνF

µν , p˚λ˘q2 “ 0. Hence, the eigen-value equation
reduces to FµνV ν “0 in the first case, while to ˚Fµν

˚V ν “0 in the second case.
Second, Fµν˚F µν “ 0 is clearly special in that Fµν has zero determinant, so it cannot

have rank 4. If the rank is 2, the bivector is called simple (also decomposable or degenerate).
In such a case, the columns (or rows) of Fµν are dependent – they have to be bound by two
independent constraints FµνV ν “ 0. These exactly represent equations for eigen-vectors
associated with zero eigen-value. From the other side, if there exists such a vector for which
FµνV

ν “0, the bivector must have rank 2, so yet another independent vector (W µ) must exist
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for which FµνW ν “0 holds as well. Therefore, a bivector is simple iff it has two independent
eigen-vectors associated with zero eigen-value. Any linear combination of the eigen-vectors
also satisfies the eigen-value equation, so the zero eigen-value is in fact associated with the
whole eigen-plane. This plane may be time-like, space-like or null; the two independent
eigen-directions which span it can be chosen as orthogonal to each other.

Equation FµνV ν “0 may also be interpreted in a different way, namely that the vectors
represented by the rows of Fµν are orthogonal to the eigen-plane. This implies that the rows
have to be a combination of vectors from the plane orthogonal to the eigen-plane, pν and qν
say: Fµν “ aµpν` bµqν . Owing to the antisymmetry, the same has to also hold for columns,
that is, the “coefficients” aµ and bµ must lie within the orthogonal complement of the eigen-
plane as well: aµ“αpµ`βqµ, bµ“γpµ`δqµ. By submitting this into Fµν`Fνµ“0, we find
that necessarily α“ 0“ δ, β ` γ “ 0. Absorbing the only remaining constant β“ ´γ in pν
or qµ, we reach the expression

Fµν “ qµpν ´ pµqν . (30.16)

From here, one further gets

˚Fµν “
1

2
ϵµνρσpqρpσ ´ pρqσq “ ϵµνρσq

ρpσ , (30.17)

and consequently

˚Fµνq
ν

“
˚Fµνp

ν
“ 0 : (30.18)

the independent vectors qµ, pµ which span the plane complementary to the eigen-plane of Fµν
are eigen-vectors of its dual. This means that the dual is also simple and can be decomposed
similarly,

˚Fµν “
˚qµ

˚pν ´
˚pµ

˚qν , (30.19)

where ˚qµ, ˚pµ are (some) two independent vectors orthogonal to its eigen-plane (being eigen-
vectors of Fµν at the same time). To summarize, Fµν is simple iff ˚Fµν is simple, with their
eigen-planes being complementary to each other.

Now we show the equivalence with the other properties. From (30.16) and (30.17) it
follows immediately that

˚FµλF
αλ

“ 0 ùñ
˚FιλF

ιλ
“ 0 ; (30.20)

thanks to the relation (30.8), these two equations are even equivalent. Also straightforwardly
– by (30.16) and (30.19), respectively – one obtains

FµtνFρσu “ 0 , ˚Fµtν
˚Fρσu “ 0 . (30.21)

Conversely, if a non-trivial Fµν satisfies the latter property, it is simple to show that it has to be
simple. First, there certainly exist some vectors Qµ, P µ for which FρσQρP σ‰0. Multiplying
the equation (30.21) by their dyad QρP σ, we get

Fµν “
FµρQ

ρFνσP
σ ´ FµσP

σFνρQ
ρ

FρσQρP σ
,
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which however is exactly the decomposition (30.16), if identifying FµρQρFνσPσ

FρσQρPσ “: qµpν .
Similarly, multiplying equation (30.20) by some (co)vector of this kind (e.g. Qα), we

obtain ˚FµλF
αλQα“0, which means that ˚Fµλ is simple as well.

Summary and terminology: For a simple bivector, Fµν “ qµpν ´ pµqν , the surface
spanned by the vectors qµ and pµ is called the blade of the bivector. The blade can be space-
like, light-like or time-like, and the bivector is called respectively. The blade is orthogonal to
the eigen-plane of the bivector. The eigen-plane of Fµν coincides with the blade of ˚Fµν , and
vice versa. Hence, Fµν and ˚Fµν have complementary space-time characters. If they are both
null, the blades intersect in their common null eigen-vector – see the following.

30.2.3 Algebraic type N (“null” case)

Let both the invariants FµνF µν and Fµν˚F µν vanish, thus also the determinants of Fµν as well
as of its dual ˚Fµ

ν . Should it still represent a non-trivial case, the rank of the matrices Fµν ,
˚Fµ

ν has to be 2 – the tensors must be simple. According to (30.13,30.15), the eigen-values
of both matrices are zero. This means that eigen-vectors need not be light-like. Let us learn
how many they are.

Let us demand that a vector exist (denote it kµ) within the eigen-plane of Fµν which
simultaneously is an eigen-vector of ˚Fµν , i.e. for which it holds

0 “
˚Fµνk

ν
“

1

2
ϵµνκλpqκpλ ´ pκqλqkν “ ϵµνκλq

κpλkν ñ qrκpλkνs
“ 0 . (30.22)

The vectors pµ, qµ and kµ thus have to be linearly dependent, which implies that Fµν can
be expressed, besides in terms of pµ and qµ, equally well as Fµν “ kµpν ´ pµkν . Since kµ

belongs to its eigen-plane while pµ belongs to the complementary plane, it necessarily holds
pνk

ν “ 0. Then, however, plugging kµ to the eigen-value equation leads to the conclusion
that it has to be light-like:

0 “ Fµνk
ν

“ pkµpν ´ pµkνqkν “ ´pµ kνk
ν

ñ kνk
ν

“ 0 . (30.23)

So, in the case of the null field, both Fµν and ˚Fµν have the whole planes of eigen-
vectors. These two planes (thus their blades at the same time) intersect in a null direction
kµ which is their only common eigen-direction. Both Fµν and ˚Fµν are simple – they may
be written as commutators (and thus have the meaning of surface elements spanned by the
commuted vectors)

Fµν “ kµpν ´ pµkν ,
˚Fµν “ kµ

˚pν ´
˚pµkν , with kνk

ν
“ pνk

ν
“

˚pνk
ν

“ 0 . (30.24)

Introducing this expression into (30.8) – in which the r.h. side is zero in the null case –, we
obtain one more condition,

0 “
˚FµλF

αλ
“ pkµ

˚pλ ´
˚pµkλqpkαpλ ´ pαkλq “ kµk

α ˚pλp
λ

ùñ
˚pλp

λ
“ 0 .

Since both pµ and ˚pµ are space-like (to a light-like vector, namely kµ, only space-like vectors
can be normal – besides kµ itself, of course), we see that all the remaining eigen-vectors –
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those associated with only one of the bivectors Fµν , ˚Fµν (denoted V µ and ˚V µ, respectively)
– are space-like: they have to satisfy pkµpν ´ pµkνqV ν “ 0, where however pνV ν “ 0 (pν is
from the eigen-plane complement), so necessarily kνV ν “0; and similarly for ˚V ν .

Definition Light-like directions determined by the common null eigen-vectors kµ of tensors
Fµν and ˚Fµν are called their principal null directions (PND); they form principal null
congruences (PNC).

30.2.4 Algebraic typ O (trivial case: no field)

Fµν only has one, zero eigen-value, and any vector is its eigen-vector. This may only happen
if Fµν “0.

30.3 Algebraic classification of symmetric tensors
For symmetric tensors the classification is more complicated, because in the Lorentzian (in-
definite) metric it is not so that every real symmetric matrix was diagonalizable. Let us at
least give some partial results:

• At every point, there exist two mutually orthogonal invariant planes of a symmetric tensor,
namely such mutually orthogonal 2D subspaces of the tangent space whose every vector
V µ satisfies that T µνV ν again belongs to that subspace.

• There always exist 4 eigen-vectors. If an invariant plane is not light-like, it may contain 2
distinct real eigen-vectors, one double real eigen-vector, or no real eigen-vector. If at least
one of the invariant planes is light-like, it always contains a triple null eigen-vector; the
fourth eigen-vector is either space-like or null as well.

Algebraically special are again called the situations when the characteristic equation has
multiple elementary factors pλ ´ λkq, and thus multiple (“degenerate”) eigen-values – such
that are associated with more eigen-vectors. In the opposite case, the situation is alge-
braically generic.

30.4 Algebraic classification of electromagnetic fields
It suffices to take over the results derived above for a generic bivector. In the case of an EM
field Fµν ” Aν,µ´Aµ,ν in Minkowski space-time (or in LIFE),

Fµν “

¨

˚

˚

˝

0 ´Ex ´Ey ´Ez
Ex 0 Bz ´By

Ey ´Bz 0 Bx

Ez By ´Bx 0

˛

‹

‹

‚

, F µν
“

¨

˚

˚

˝

0 Ex Ey Ez
´Ex 0 Bz ´By

´Ey ´Bz 0 Bx

´Ez By ´Bx 0

˛

‹

‹

‚

, (30.25)
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and the Hodge dual

˚Fµν “

¨

˚

˚

˝

0 Bx By Bz

´Bx 0 Ez ´Ey
´By ´Ez 0 Ex
´Bz Ey ´Ex 0

˛

‹

‹

‚

, ˚F µν
“

¨

˚

˚

˝

0 ´Bx ´By ´Bz

Bx 0 Ez ´Ey
By ´Ez 0 Ex
Bz Ey ´Ex 0

˛

‹

‹

‚

, (30.26)

the two independent invariants are

FµνF
µν

“ 2B2
´ 2E2, Fµν

˚F µν
“ 4E⃗ ¨ B⃗ pě 0q . (30.27)

The pertinent characteristic equations thus have two pairs of real solutions,

pλ˘q
2

“
1

2

„

E2
´ B2

`

b

pE2 ´ B2q2 ` 4pE⃗ ¨ B⃗q2

ȷ

,

p
˚λ˘q

2
“

1

2

„

´E2
` B2

`

b

pE2 ´ B2q2 ` 4pE⃗ ¨ B⃗q2

ȷ

, (30.28)

related by

pλ˘q
2
p

˚λ˘q
2

“ pE⃗ ¨ B⃗q
2 . (30.29)

According to their values and according to the number of the associated eigen-vectors, one
recognizes three possible algebraic types of EM fields – I, N and O.

30.4.1 Some properties of null EM fields

The EM-field energy-momentum tensor can be written in two forms,

T µν “
1

8π
pF µιF ν

ι `
˚F µι˚F ν

ιq “
1

4π

ˆ

F µιF ν
ι ´

1

4
gµνFρσF

ρσ

˙

, (30.30)

linked through the relation (30.6). In the case of the null (N) field, we know that FρσF ρσ “0
and that the Fµν , ˚F µι tensors can be written as (30.24), i.e.

Fµν “ kµpν ´ pµkν ,
˚Fµν “ kµ

˚pν ´
˚pµkν , with kνk

ν
“ pνk

ν
“

˚pνk
ν

“
˚pνp

ν
“ 0 ,

so the corresponding two forms of Tµν read

8πT µν “ F µιF ν
ι `

˚F µι˚F ν
ι “

“ pkµpι ´ pµkιqpkνpι ´ pνkιq ` pkµ˚pι ´
˚pµkιqpkν˚pι ´

˚pνkιq “

“ kµkνppιpι `
˚pι˚pιq ,

8πT µν “ 2F µιF ν
ι “ 2pkµpι ´ pµkιqpkνpι ´ pνkιq “ 2kµkνpιpι .

This immediately implies

pιpι “
˚pι˚pι .
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In Minkowski, or in LIFE in a general space-time, the energy density w“T 00 and the Poynt-
ing vector Si“T 0i are related by

SiS
i

w2
“

ppιpιq
2pk0q2kik

i

ppιpιq2pk0q4
“

k2

pk0q2
“ 1 p“ c2 in physical unitsq . (30.31)

The energy-flux density S⃗ thus corresponds to a propagation of all the energy density w with
the speed of light in the direction k⃗: the null case represents a “pure radiative field”, with k⃗
playing the role of the wave vector.

The simplest example of the null field is the plane harmonic wave, described, in the
Minkowski space-time, by

Aµ “ Âµ cospkιx
ι
q ùñ Fµν “ pÂµkν ´ kµÂνq sinpkιx

ι
q ; kιk

ι
“ 0 , Âιk

ι
“ 0 . (30.32)

The light-like eigen-vector kµ has several special properties:

Mariot-Robinson theorem (1954/1961):
Principal null vector of a null EM field is, in a charge-free region, geodesic and shear-free.

Proof: Make a covariant divergence of the “degenerate” eigen-equation F µνkµ“0. Employ-
ing the source-less first pair of Maxwell equations F µν

;ν “0, the algebraically special form of
the EM bivector F µν “kµpν´ pµkν , and the null character of kµ (which implies kµkµ;ν “0),
we obtain

0 “ pF µνkµq;ν “ �����F µν
;νkµ ` F µνkµ;ν “ pkµpν ´ pµkνqkµ;ν “ ´pµkνkµ;ν . (30.33)

Similarly for ˚F µν we get 0 “ ´˚pµkνkµ;ν as well. Besides that, kµkνkµ;ν “ 0 due to the
null character of kµ. Therefore, the (co)vector kνkµ;ν is orthogonal to the three independent
vectors pµ, ˚pµ and kµ. Since pµ and ˚pµ are space-like, kνkµ;ν cannot be space-like, because
the direction orthogonal to three mutually orthogonal space-like vectors would have to be
time-like (it could not be kµ). Neither can the vector kνkµ;ν be time-like, because in such
a case it could not be orthogonal to kµ. Hence, it has to be null. But the only null vector
orthogonal to kµ is proportional to kµ itself.2 So, kνkµ;ν has to be proportional to kµ, i.e. the

2 Orthogonality is a local property, and one can at every point work in a locally Minkowskian frame where
gµν “ηµν . So, have a non-trivial null vector kµ and some other non-trivial vector V µ orthogonal to kµ:

0 “ ηµνk
µkν “ ´pk0q2 ` k2 ñ pk0q2 “ k2 , 0 “ ηµνk

µV ν “ ´k0V 0 ` k⃗ ¨ V⃗ ñ V 0 “
k⃗ ¨ V⃗

k0
,

where k2 :“ k⃗ ¨ k⃗ ” ηijk
ikj “ δijk

ikj and likewise for V 2. Then

ηµνV
µV ν “ ´pV 0q2 ` V 2 “ ´

pk⃗ ¨ V⃗ q2

pk0q2
` V 2 “ ´

pk⃗ ¨ V⃗ q2

k2
` V 2 “ V 2 ´

pkV cosαq2

k2
“ V 2 sin2 α ,

with α the angle between k⃗ and V⃗ . Therefore, V µ is space-like in general (sinα‰0), with the special exception
of sinα“0 when it is null. In the latter case, moreover, V⃗ “λk⃗ (with λ some constant), which enforces

V 0 ”
k⃗ ¨ V⃗

k0
“
λk2

k0
“
λpk0q2

k0
“ λk0 ùñ V µ “ λkµ .
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vector field determined at each and every point by the principal null vector kµ is geodesic.
The shear-free property also follows from the Maxwell equations. Write out the first

and the second one, F µν
;ν “0 and F tµν;κu “0, for our bivector F µν “kµpν´ pµkν :

kµ;νp
ν

` kµpν ;ν ´ pµ;νk
ν

´ pµkν ;ν “ 0 , (30.34)

krµ;κspν ` krκ;νspµ ` krν;µspκ ` prν;κskµ ` prµ;νskκ ` prκ;µskν “ 0 . (30.35)

Multiply (30.35) by pµkν , while regarding kνpν “0, kνkν;µ“0, kνkν “0, and assuming affine
parametrization of the geodesic kµ (i.e. kνkµ;ν “0): only the 5th term survives,

ppµ;ν ´ pν;µqkκpµkν “ 0 ùñ pµ;νpµkν “ pν;µpµkν “ ´pνpµkν
;µ .

Multiplication of (30.34) by pµ yields

pµk
µ
;νp

ν
`

XXXXXpµk
µpν ;ν ´ pµp

µ
;νk

ν
´ pµp

µkν ;ν “ 0 ñ pµp
µkν ;ν “ pµk

µ
;νp

ν
´ pµp

µ
;νk

ν ,

hence, by substituting for the last term from the preceding implication, we have

pµp
µ kν ;ν “ 2kµ;νp

µpν “ 2kpµ;νqp
µpν ” pkµ;ν ` kν;µqpµpν .

Exactly the same result also follows for the ˚pµ˚pν projection (by multiplying, respectively by
˚pµ and by ˚pµkν , the Maxwell equations written using ˚F µν),

˚pµ
˚pµ kν ;ν “ pkµ;ν ` kν;µq

˚pµ˚pν .

Finally, combining (30.34) multiplied by ˚pµ and (30.35) multiplied by ˚pµkν , i.e.

˚pµk
µ
;νp

ν
“

˚pµp
µ
;νk

ν , and pµ;ν˚pµkν “ pν;µ˚pµkν “ ´pν˚pµkν
;µ ,

one finds

pkµ;ν ` kν;µq
˚pµpν “ 0 .

Recall now, from equation (24.31), the shear scalar of a light-like field kµ,

8σ2
“ pkµ;ν ` kν;µqpkµ;ν ` kν;µq ´ 2pkι;ιq

2 .

In our case of the null-EM field, take the three mutually orthogonal vectors kµ, pµ and ˚pµ,
and add to them some light-like vector lµ also orthogonal to pµ and ˚pµ while independent of
kµ; such a vector can always be normalized so that kµlµ“´1. In terms of such four vectors,
the metric can at any point be decomposed as

gµν “ ´kµlν ´ lµkν `
pµpν

pκpκ
`

˚pµ˚pν

˚pκ˚pκ
,

so the first term in the expression for σ2 can be written as

pkµ;ν ` kν;µqpkµ;ν ` kν;µq “ gµαgνβpkµ;ν ` kν;µqpkα;β ` kβ;αq “
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“

ˆ

´kµlα´ lµkα `
pµpα

pκpκ
`

˚pµ˚pα

˚pκ˚pκ

˙̂

´kνlβ´ lνkβ `
pνpβ

pκpκ
`

˚pν˚pβ

˚pκ˚pκ

˙

pkµ;ν ` kν;µqp...q “

“
1

ppκpκq2
ppµpα `

˚pµ˚pαq
`

pνpβ `
˚pν˚pβ

˘

pkµ;ν ` kν;µqpkα;β ` kβ;αq “

“
1

ppκpκq2

“

ppµp
µkν ;νq

2
` p

˚pµ
˚pµkν ;νq

2
‰

“ 2pkν ;νq
2 ,

where we have first used that kµkµ;ν “0“ kνkµ;ν and pκpκ“ ˚pκ
˚pκ, and then what we found

above from the Maxwell equations, namely

pkµ;ν `kν;µqpµpν “ pµp
µ kν ;ν , pkµ;ν `kν;µq

˚pµ˚pν “
˚pµ

˚pµ kν ;ν , pkµ;ν `kν;µq
˚pµpν “ 0 .

The shear scalar σ2 thus vanishes for a principal null vector field. l

Remark: The theorem in fact also adds that the host space-time (where the given EM
field lives) itself has to be algebraically special, having the vector kµ as the principal null
direction of the Weyl tensor. (See below for classification of gravitational fields.)

30.5 Algebraic (Petrov) classification of the Weyl tensor
Now we turn to the gravitational problem. The algebraic classification proceeds in a similar
way as above, but it concerns the Riemann (actually Weyl) tensor which is more complicated
than the EM-field tensor. We thus only outline three main methods of tensor-type classifica-
tion. (The discussion is shorter – though only applicable in the standard 4D case – in terms
of spinors; an interested reader is referred to geometrical-method courses.)

30.5.1 Weyl tensor and its eigen-problem

In formula (8.5), we decomposed the Riemann tensor in three parts, calling the one inde-
pendent of sources (of the Ricci tensor) the Weyl tensor, Cµ

νκλ. This tensor has the same
symmetries as Riemann, but is traceless in addition, thus having just 10 independent compo-
nents. In analogy with the electric and magnetic components of Fµν and ˚Fµν with respect to
some observer, we defined the “electric” and “magnetic” parts of the Weyl tensor in Section
8.3.1.

Consider now an eigen-problem for the Weyl tensor, more specifically, the task to find
eigen-bivectors V κλ of the Weyl tensor and the respective eigen-values λ, as solutions of the
equation

1

2
CµνκλV

κλ
“ λVµν . (30.36)

Since the left and the right duals of Weyl equal each other, one has

Cµνκλ
˚V κλ

“
1

2
Cµνκλϵ

κλ
αβV

αβ
“

˚CµναβV
αβ ,
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so the multiplication of equation (30.36) by 1
2
ϵαβ

µν yields

1

4
ϵαβ

µνCµνκλV
κλ

“
1

2
˚CαβκλV

κλ
“

1

2
Cαβκλ

˚V κλ ... “ λ
1

2
ϵαβ

µνVµν “ λ˚Vαβ , (30.37)

and further multiplication of that by 1
2
ϵρσ

αβ leads to

1

2
˚Cρσκλ

˚V κλ

ˆ

“ ´
1

2
CρσκλV

κλ

˙

“ ´λVρσ . (30.38)

Consequently, the eigen-problem is equivalently represented by any of the equations

1

4
CρσκλV

κλ
´

1

4
˚Cρσκλ

˚V κλ
“ λVρσ,

1

4
Cαβκλ

˚V κλ
`

1

4
˚CαβκλV

κλ
“ λ˚Vαβ . (30.39)

30.5.2 Eigen-problem for the “electric” and “magnetic” parts of Weyl

The Weyl-tensor bivector eigen-problem can also be formulated in terms of the Weyl-tensor
electric and magnetic parts. Recall first how the EM-field tensor can be “reconstructed” from
its electric and magnetic parts Êµ“Fµν û

ν and B̂µ“´˚Fµν û
ν – see equation (7.12):

Fµν “ ûµÊν ´ Êµûν ` ϵµνρσû
ρB̂σ .

For any bivector (Cµν), it holds, analogously,

Cµν “ ûµCνιû
ι

´ ûνCµιû
ι

´ ϵµνρσû
ρ˚Cσιûι . (30.40)

The Weyl tensor can be decomposed accordingly, thanks to that it has the structure
CµνCκλ:

CµνCκλ “ pûµCνιû
ι
´ ûνCµιû

ι
´ ϵµνρσû

ρ˚CσιûιqpûκCλγû
γ

´ ûλCκγû
γ

´ ϵκλαβû
α˚Cβγûγq “

“ ûµûκÊνλ ´ ûµûλÊνκ ` ûν ûλÊµκ ´ ûν ûκÊµλ ´ ϵµνρσϵκλαβû
ρûαÊσβ

´

´ ûµû
αϵκλαβB̂

β
ν ` ûν û

αϵκλαβB̂
β
µ ´ ûκû

ρϵµνρσB̂
σ
λ ` ûλû

ρϵµνρσB̂
σ
κ ; (30.41)

we have employed

Cνι
˚Cβγ

“
˚CνιC

βγ
“

˚
pCνιC

βγ
q , ˚Cσι˚Cβγ

“
˚˚

pCσιCβγ
q “ ´CσιCβγ ,

with notation CµνCκλûν ûλ “: Êµκ, ˚pCµνCκλqûν ûλ “: B̂µκ. Enjoy now the use of (A.4), i.e.,

ϵµνρσϵκλαβ “ ´ gµκgνλgραgσβ ´ gµκgνβgρλgσα ´ gµκgναgρβgσλ

` gµκgναgρλgσβ ` gµκgνβgραgσλ ` gµκgνλgρβgσα

` gµλgνκgραgσβ ` gµλgνβgρκgσα ` gµλgναgρβgσκ

´ gµλgναgρκgσβ ´ gµλgνβgραgσκ ´ gµλgνκgρβgσα

´ gµαgνκgρλgσβ ´ gµαgνβgρκgσλ ´ gµαgνλgρβgσκ

` gµαgνλgρκgσβ ` gµαgνβgρλgσκ ` gµαgνκgρβgσλ
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` gµβgνκgρλgσα ` gµβgναgρκgσλ ` gµβgνλgραgσκ

´ gµβgνλgρκgσα ´ gµβgναgρλgσκ ´ gµβgνκgραgσλ ,

and thus compute – while regarding that Êσβ is symmetric, traceless and orthogonal to ûµ

(hence omitting all terms containing gσβ , gσα and gρβ) –

´ϵµνρσϵκλαβû
ρûαÊσβ

“ ûµûκÊνλ ´ ûµûλÊνκ ` ûν ûλÊµκ ´ ûν ûκÊµλ

` gµκÊνλ ´ gµλÊνκ ` gνλÊµκ ´ gνκÊµλ .

Using this in (30.41), we finally have

1

2
Cµνκλ “ 4ûrµÊνsrλûκs `gµrκÊλsν´gνrκÊλsµ`ûαϵµναβB̂

β
rκûλs `ûαϵκλαβB̂

β
rµûνs . (30.42)

Take the above decomposition and introduce it in the eigen-equation 1
2
CµνκλV

κλ “

λVµν . Multiplication by the reference-observer four-velocity ûν yields

1

2
CµνκλV

κλûν “

ˆ

ûκÊµλ ´
1

2
ûαϵκλαβB̂

β
µ

˙

V κλ
“ λVµν û

ν ,

which means
´

ÊµλV
κλ

´ B̂µλ
˚V κλ

¯

ûκ “ λVµν û
ν . (30.43)

If proceeding, instead, via the equivalent eigen-equation 1
2
Cµνκλ

˚V κλ “ λ˚Vµν , we
would have obtained, similarly,
´

Êµλ
˚V κλ

` B̂µλV
κλ
¯

ûκ “ λ˚Vµν û
ν . (30.44)

The Weyl-tensor eigen-problem has thus been translated into an equivalent problem for its
electric and magnetic parts.

Let us remark that in the literature the problem is mostly being formulated in a complex
language – one introduces complex matrices

´Qµν :“ Êµν ` iB̂µν , Vµ :“ pVµν ` i˚Vµνqûν (30.45)

and writes the eigen-equation as

QµνV
ν

“ λVµ (30.46)

whose real and imaginary parts are (30.43) and (30.44), respectively.
The Qµ

ν matrix satisfies Qµ
ν û

ν “ 0 – it possesses an “automatic” eigen-vector ûν tied
to the null eigen-value, so the characteristic equation for its eigen-values is of the 3rd order
only. Indeed, Qµ

ν û
ν “0 means that the rows/columns ofQµ

ν are dependent ñ detpQµ
νq“0,

so the corresponding characteristic equation lacks the last term of (30.4) and it can be divided
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by λ (whose zero value has already been accounted for). Regarding also that Qµ
ν is traceless,

the equation for the remaining eigen-values reduces to

λ3 ´
1

2
Qµ

ιQ
ι
µλ ´

1

3
Qµ

ιQ
ι
κQ

κ
µ “ 0 . (30.47)

The coefficients of this equation

I :“ Qµ
ιQ

ι
µ , J :“ Qµ

ιQ
ι
κQ

κ
µ (30.48)

are the only invariants which can be composed out of Qµ
ν . By comparing the characteristic

equation with the factorization of its left-hand side,

pλ´ λ1qpλ´ λ2qpλ´ λ3q “ λ3 ´ pλ1 ` λ2 ` λ3qλ
2

` pλ1λ2 ` λ2λ3 ` λ3λ1qλ´ λ1λ2λ3 ,

simpler relations are obtained for the eigen-values than if one tried to solve the equation
directly:

λ1 `λ2 `λ3 “ 0 , pλ1q
2

`pλ2q
2

`pλ3q
2

“ I , pλ1q
3

`pλ2q
3

`pλ3q
3

“ J p“ 3λ1λ2λ3q .

(30.49)

The first of them follows immediately by the above comparison, while the third one does so
by summing the characteristic equations (30.47) for λ“λ1, λ“λ2 and λ“λ3 (and employing
the first relation);3 finally, the first relation implies

0 “ pλ1 ` λ2 ` λ3q
2

“ pλ1q
2

` pλ2q
2

` pλ3q
2

` 2pλ1λ2 ` λ2λ3 ` λ3λ1q ,

where, however, the last term has to be “´I by comparison, and hence the second relation.
Relations (30.49) tell which basic situations may occur:

• Gravitational field of type I (algebraically general):
All eigen-values λ and all eigen-vectors V µ are different.

• Gravitational fields of type II and of type D:
Two of the eigen-values are equal – say, λ3 ‰λ1 “λ2 ‰ 0. From (30.49) we then get

I “ 6pλ1q
2

“ 6pλ2q
2

“
3

2
pλ3q

2, J “ ´6pλ1q
3

“ ´6pλ2q
3

“
3

4
pλ3q

3

ùñ I3 “ 6J 2
‰ 0 . (30.50)

Eigen-vectors associated with λ1 “λ2 are different for type II whereas same for type D.

• Gravitational fields of types III, N and O:
All eigen-values are equal, thus being zero. Consequently, both the invariants I and J
have to be zero as well. The respective three eigen-vectors are different in type III while
two of them coincide in type N; the type O is “trivial”, Qµ

ν “0.

Note that in the original formulation of the problem, 1
2
CµνκλV

κλ “ λVµν , there exist three
different eigen-bivectors in the I, D and O cases, while only two exist in the II and N cases,
and just a single one in the III case.

3 The final expression added in parenthesis again stems from direct comparison.
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30.5.3 Newman-Penrose tetrads, Debever-Penrose equation, and principal
null directions of the Weyl tensor

In analytical work in GR, the Newman-Penrose (NP) formalism has proved very useful.
It is a particular type of tetrad formalism, in which one uses tetrad projections of quantities
rather than their coordinate components (the approach thus depends on how the tetrad field is
selected, but it is independent of coordinates). Tetrad projections (of the quantities as well as
of differential operators) are many, so many new symbols have to be introduced, connected
by many equations... But there is a benefit: all the differential equations relevant in the
formulation of GR (Einstein equations, Bianchi identities) are of the first order only.

The NP formalism is tied to the NP tetrads, namely tetrads composed of two real and
two complex, mutually complex-conjugate null vectors, tkµ,lµ,mµ,m̄µu, determined by the
following relations:

kσl
σ

“ ´1 , mσm̄
σ

“ 1 , all other products are zero
ðñ gµν “ ´kµlν ´ kνlµ ` mµm̄ν ` mνm̄µ . (30.51)

Weyl tensor is represented then by five complex projections

Ψ0 :“ Cµνκλk
µmνkκmλ , Ψ1 :“ Cµνκλk

µlνkκmλ ,

Ψ2 :“ Cµνκλk
µmνm̄κlλ “

1

2
Cµνκλk

µlνpkκlλ ´ mκm̄λ
q ,

Ψ3 :“ Cµνκλk
µlνm̄κlλ , Ψ4 :“ Cµνκλm̄

µlνm̄κlλ . (30.52)

The NP tetrad is not unique – at any point, one can perform an arbitrary Lorentz trans-
formation. Any such transformation can be decomposed in three simple operations:

• Rotation about kµ, described by
k1µ “ kµ, l1µ “ lµ ` κκ̄ kµ ` κ̄mµ ` κm̄µ, m1µ “ mµ ` κkµ, m̄1µ “ m̄µ ` κ̄kµ,
where κ is a complex parameter. Under such a transformation, the Weyl scalars behave as

Ψ1
0 “ Ψ0 , Ψ1

1 “ Ψ1 ` κ̄Ψ0 , Ψ1
2 “ Ψ2 ` 2κ̄Ψ1 ` κ̄2Ψ0 ,

Ψ1
3 “ Ψ3 ` 3κ̄Ψ2 ` 3κ̄2Ψ1 ` κ̄3Ψ0 , Ψ1

4 “ Ψ4 ` 4κ̄Ψ3 ` 6κ̄2Ψ2 ` 4κ̄3Ψ1 ` κ̄4Ψ0 .

• Rotation about lµ, described by
l1µ “ lµ, k1µ “ kµ ` λλ̄ lµ ` λ̄mµ ` λm̄µ, m1µ “ mµ ` λlµ, m̄1µ “ m̄µ ` λ̄lµ,
where λ is a complex parameter. Under such a transformation, the Weyl scalars behave as

Ψ1
0 “ Ψ0 ` 4λΨ1 ` 6λ2Ψ2 ` 4λ3Ψ3 ` λ4Ψ4 , Ψ1

1 “ Ψ1 ` 3λΨ2 ` 3λ2Ψ3 ` λ3Ψ4 ,

Ψ1
2 “ Ψ2 ` 2λΨ3 ` λ2Ψ4 , Ψ1

3 “ Ψ3 ` λΨ4 , Ψ1
4 “ Ψ4 . (30.53)

• Boost in the (kµ,lµ) plane + spatial rotation in the (mµ,m̄µ) plane, described by
k1µ “ bkµ, l1µ “ b´1lµ, m1µ “ eiφmµ, m̄1µ “ e´iφm̄µ,
with b and φ real parameters. Under such a transformation, the Weyl scalars behave as

Ψ1
0 “

e2iφ

b2
Ψ0 , Ψ1

1 “
eiφ

b
Ψ1 , Ψ1

2 “ Ψ2 , Ψ1
3 “

b

eiφ
Ψ3 , Ψ1

4 “
b2

e2iφ
Ψ4 .
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It turns out that the behaviour of the scalars under the above transformations provide
further – and equivalent – option for the algebraic classification of curvature. Let us focus on
the rotation about lµ. First, at least one of the Ψ scalars can always be made vanish by it. If
any further scalar can be nullified as well, the associated vector kµ defines the principal null
direction of the Weyl tensor. Such directions may have various properties (multiplicities)
related to how many of the Ψ scalars can be made vanish.

Let us proceed from Ψ0. This can apparently be nullified by rotation about lµ with λ
satisfying the quartic equation

Ψ0 ` 4λΨ1 ` 6λ2Ψ2 ` 4λ3Ψ3 ` λ4Ψ4 “ 0 . (30.54)

Five cases may occur according to the number and multiplicity of the roots. Consider first
a generic case – let the equation have four different non-zero solutions. The correspond-
ing eigen-vector equation is the requirement Ψ0 ” Cµνκλk

µmνkκmλ “ 0 itself. It can be
understood as a requirement on the decomposition of the tensor Cµνκλkµkκ in the basis of
dyadic products made of the NP-tetrad vectors. As the tensor Cµνκλkµkκ is real, symmet-
ric (thanks to the symmetry of Weyl in the two pairs of its indices), traceless and satisfying
Cµνκλk

µkκkλ“0, the decomposition can only involve the dyadic terms

kνkλ , kpνRepmλqq “
1

2
kpνpmλq ` m̄λqq “ kpνRepm̄λqq .

Indeed, lλ cannot be involved at all, because lλkλ “ ´1, so Cµνκλkµkκkλ would not vanish,
and Repmνmλq“ 1

2
pmνm̄λ̀ m̄νmλq“Repm̄νm̄λq are not traceless. Hence the decomposition

Cµνκλk
µkκ “ α kνkλ ` β rkνpmλ ` m̄λq ` kλpmν ` m̄νqs , (30.55)

where multiplications by lνlλ and by lνmλ reveal, respectively, that

α “ Cµνκλk
µlνkκlλ , β “ ´Cµνκλk

µlνkκmλ
” ´Ψ1 .

This tells that “at least in one of the indices” the tensor is spanned by the k-vector, which can
alternatively be expressed in the form (it’s suitable to swap the indices µ Ø ν at Cµνκλ)

krαCνsµκrλkβsk
µkκ “ 0 ... called the Debever-Penrose equation . (30.56)

The Weyl tensor is classified according to whether and how many of the four eigen-vector
solutions of this equation coincide. Below we proceed towards more and more special cases.

• Suppose we have already rotated the NP tetrad so that Ψ0 “ 0. Compute the remaining Ψ
scalars in that tetrad, and write down the equation (30.54) once more. It now has the simple
root λ“0 and three further solutions given by equation

4Ψ1 ` 6λΨ2 ` 4λ2Ψ3 ` λ3Ψ4 “ 0 . (30.57)

If these three are non-zero and different, it is still a generic case (just with the NP tetrad
already rotated in a special way).
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• If some of the three roots is zero, Ψ1 has to be zero as well. Vice versa, if it is possible to
reach, besides Ψ0 “0, also Ψ1 “0, i.e. to solve, simultaneously, the equations

Ψ0 ` 4λΨ1 ` 6λ2Ψ2 ` 4λ3Ψ3 ` λ4Ψ4 “ 0 , Ψ1 ` 3λΨ2 ` 3λ2Ψ3 ` λ3Ψ4 “ 0 ,

then, after rotating the tetrad accordingly, λ “ 0 will be a double root of the former and
a simple root of the latter. Consider now what the conditions Ψ0 “ 0, Ψ1 “ 0 imply for
the associated double-degenerate eigen-vector kµ. Should the tensor (30.55) satisfy Ψ1 ”

Cµνκλk
µkκlνmλ “ 0, one has to set in it β “ 0, being thus left with Cµνκλkµkκ “α kνkλ.

This can equivalently be written as

Cνµκrλkβsk
µkκ “ 0 . (30.58)

• We can proceed further in a similar manner. A simultaneous nullifying of Ψ0, Ψ1 and Ψ2 is
possible if and only if λ“0 is a triple root of equation (30.54). Equation for the correspond-
ing triple-degenerate eigen-vector can be obtained by realizing which triple products of the
NP-tetrad vectors may occur in the tensor Cµνκλkµ, in order that it satisfy the conditions

Cµνκλk
µkκ “ α kνkλ , Ψ2 ” Cµνκλk

µmνm̄κlλ “ 0 ,

while being real, skew-symmetric in rκ, λs, having vanishing contraction in ν
λ and vanishing

cyclic permutation Cµtνκλuk
µ. One concludes that it has to be proportional to p. . . qνκkλ,

thus satisfying the condition

Cνµκrλkβsk
µ

“ 0 . (30.59)

• Simultaneous nullifying of Ψ0, Ψ1, Ψ2 and Ψ3 is possible if and only if λ“0 is a quadruple
root of equation (30.54). In order to satisfy, simultaneously, the conditions

Cµνκλk
µkκ “ α kνkλ , Ψ2 ” Cµνκλk

µmνm̄κlλ “ 0 , Ψ3 ” Cµνκλk
µlνm̄κlλ “ 0 ,

the corresponding quadruple-degenerate eigen-vector has to satisfy the equation

Cνµκλk
µ

“ 0 . (30.60)

• Finally, the last possible case, Ψ0 “Ψ1 “Ψ2 “Ψ3 “Ψ4 “0, is equivalent to Cνµκλ“0, i.e.
the space-time has to be conformally flat.

The above possibilities correspond, respectively, to the algebraic types I, II or D, III, N, and
O. In the general, I case, the equation (30.54) has 4 different simple roots, associated with
4 different principal null directions kµ. In the II case, equation (30.54) has 1 double root
equal to zero, and 2 further different simple roots; two of the four PNDs coincide. In the D
case, equation (30.54) has 1 double root equal to zero, and 1 further double root; the four
PNDs coincide in pairs. In the III case, equation (30.54) has 1 triple root equal to zero, and
1 another simple root; three of the four PNDs coincide. In the N case, equation (30.54) has
just 1 quadruple root equal to zero; all the four PNDs coincide. In the O case, the Weyl
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tensor vanishes, which means that the space-time is conformally flat (metric is flat modulo a
multiplicative scalar factor).

In some of the cases, it is in addition possible to make such a “null rotation” about
kµ (the other of the two NP-tetrad real vectors) that some further Ψ scalars vanish (besides
those listed above). Just as a footnote, let us specify that it is possible to reach Ψ2 “ 0 for
type I (besides Ψ0 “ 0), Ψ3 “ 0 for type II (besides Ψ0 “ 0 and Ψ1 “ 0), Ψ3 “ 0 “ Ψ4 for
type D (besides Ψ0 “ 0 and Ψ1 “ 0), and Ψ4 “ 0 for type III (besides Ψ0 “ 0, Ψ1 “ 0 and
Ψ2 “ 0). In an asymptotically flat case, it is natural that the far field is “radial”, so the two
radial directions (outgoing and ingoing) are also “eigen” to the Weyl tensor. Within the NP
tetrad tkµ,lµ,mµ,m̄µu, they are represented by the kµ and lµ vectors.

Let us add that the invariants made of the matrix Qµ
ν in the preceding section can be

expressed in terms of the Weyl scalars as

I “ 2
“

Ψ0Ψ4 ´ 4Ψ1Ψ3 ` 3pΨ2q
2
‰

, J “ 6 det

¨

˝

Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

˛

‚ . (30.61)

It is easy to check that the invariants are

... non-zero and independent in the I case

... I “ 6pΨ2q
2, J “ ´6pΨ2q

3
ùñ I3 “ 6J 2

‰ 0 in the II or D cases
... zero in all the other cases .

Extra relations between the Weyl-tensor projections

Looking at the Ψ scalars, one may ask whether and how the other conceivable projections of
Weyl onto the NP tetrad relate to them. Some follow immediately from the Riemann-type
(anti)symmetries, plus there is the extra Weyl’s property of vanishing trace which is worth
exploiting. Without loss of generality, let us consider the trace over the 2nd and the 4th
indices,

0 “ Cµνκλg
νλ

“ Cµνκλp´kνlλ ´ lνkλ ` mνm̄λ
` m̄νmλ

q “ Cκνµλg
νλ ,

for the projections onto kµkκ, kµlκ, kµmκ, kµm̄κ, lµlκ, lµmκ, lµm̄κ, mµmκ, mµm̄κ and
m̄µm̄κ. In obvious notation (e.g., Cµνκλlµkνm̄κlλ “: Clkm̄l) and right omitting the terms
which vanish “trivially”, we obtain, respectively, zero for the following combinations:

Ckmkm̄ ` Ckm̄km , ´Ckllk ` Ckmlm̄ ` Ckm̄lm , ´Cklmk ` Ckmmm̄ , ´Cklm̄k ` Ckm̄m̄m ,

Clmlm̄ ` Clm̄lm , ´Clkml ` Clmmm̄ , ´Clkm̄l ` Clm̄m̄m ,

´ Cmkml ´ Cmlmk , ´Cmkm̄l ´ Cmlm̄k ` Cmm̄m̄m , ´Cm̄km̄l ´ Cm̄lm̄k ,

that is, when identifying the canonical scalars according to (30.52),

Ckmkm̄ ` Ckm̄km , ´Ckllk ´ Ψ2 ´ Ψ̄2 , Ψ1 ` Ckmmm̄ , Ψ̄1 ` Ckm̄m̄m ,

Clmlm̄ ` Clm̄lm , Ψ̄3 ` Clmmm̄ , Ψ3 ` Clm̄m̄m ,
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´ Cmkml ´ Cmlmk , Ψ2 ` Ψ̄2 ` Cmm̄m̄m , ´Cm̄km̄l ´ Cm̄lm̄k .

Using elementary symmetries, we thus find

0 “ Ckmkm̄ “ Clmlm̄ “ Cmkml “ Cm̄km̄l ,

Cklkl “ Cmm̄mm̄ “ Ψ2 ` Ψ̄2 , Ckmm̄m “ Ψ1 , Clm̄mm̄ “ Ψ3 .

Plus it is worth to add that from the first Bianchi identity it follows

Cklmm̄ “ ´Ckmm̄l ´ Ckm̄lm “ ´Ψ2 ` Ψ̄2 ,

and that the function α ” Cµνκλk
µlνkκlλ from the algebraically special propertyCµνκλkµkκ“

α kνkλ we now see to equal α “ Ψ2 ` Ψ̄2 .

To conclude this section, note the following important link between the algebraic char-
acter of the Weyl tensor and kinematic properties of its principal null directions (counter-part
of the Mariot-Robinson theorem from electromagnetism):

30.5.4 The Goldberg-Sachs theorem

A non-flat vacuum (Rµν “ Λgµν) space-time is algebraically special (not of type I) if
and only if it admits a shear-free geodesic null congruence. (The latter is integral to the
repeated Weyl-tensor principal null direction.)

Proof: projections of the vacuum Bianchi identities

The proof follows from the vacuum Bianchi identities, Cµνκλ;λ “ 0, by projections onto the
NP tetrad. Since the statement concerns Ψ0 and Ψ1, one tries to select such projections which
do contain Ψ0 and Ψ1, and – if possible – do not contain many other Ψs. The right choices
turn out to be Cµνκλ;λkµmνkκ and Cµνκλ;λkµmνmκ. The first of them:

Cµνκλ
;λkµmνkκ “

“

Cµνκδk
µmνkκδδλ

‰;λ
´ Cµνκλpkµmνkκq

;λ
“

“

”

Cµνκδk
µmνkκp´�

��kδlλ ´ lδkλ ` mδm̄λ ` m̄δmλq

ı;λ

´ Cµνκλpkµmνkκq
;λ

“

“ r´Ckmklkλ ` Ckmkmm̄λ ` Ckmkm̄mλs
;λ

´ Cµνκλpkµmνkκq
;λ ,

where Ckmkl“Ψ1, Ckmkm“Ψ0 and Ckmkm̄“0, so we have

p0 “q Cµνκλ
;λkµmνkκ “ ´pΨ1kλq

;λ
` pΨ0m̄λq

;λ
´ Cµνκλpkµmνkκq

;λ . (30.62)

The last term one writes out by Leibniz, and works patiently,

´ Cµνκλpkµmνkκq
;λ

“ ´Cµνκλk
µ;λmνkκ ´ Cµνκλk

µmν;λkκ ´ Cµνκλk
µmνkκ;λ “

“ ´Cανκδm
νkκp´kαlµ´���lαkµ `����mαm̄µ `m̄αmµqp´�

��kδlλ ´lδkλ`mδm̄λ`m̄δmλq kµ;λ ´

´ Cµβκδk
µkκp´���kβlν ´lβkν`mβm̄ν`����m̄βmν qp´�

��kδlλ ´lδkλ`mδm̄λ`m̄δmλqmν;λ
´
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´ Cµνγδk
µmν

p´kγlκ´���lγkκ `mγm̄κ`m̄γmκqp´kδlλ´lδkλ`mδm̄λ`m̄δmλq kκ;λ “

“ ´ rCkmkllµkλ ´ Ckmkmlµm̄λ ´ ����XXXXCkmkm̄ lµmλ ´ Cm̄mklmµkλ ` Cm̄mkmmµm̄λ `

`Cm̄mkm̄mµmλs kµ;λ ´

´ rCklklkνkλ ´ Cklkmkνm̄λ ´ Cklkm̄kνmλ ´ Ckmklm̄νkλ ` Ckmkmm̄νm̄λ `

`����XXXXCkmkm̄m̄νmλsmν;λ
´

´ rCkmkllκkλ ´ Ckmkmlκm̄λ ´ ����XXXXCkmkm̄ lκmλ ´ Ckmmkm̄κlλ ´ ����XXXXCkmml m̄κkλ `

`Ckmmm̄m̄κmλ ´ ����XXXXCkmm̄kmκlλ ´ Ckmm̄lmκkλ ` Ckmm̄mmκm̄λs kκ;λ “

“ ´
“

Ψ1lµkλ ´ Ψ0lµm̄λ ´ pΨ2 ´ Ψ̄2qmµkλ ` Ψ1mµm̄λ ´ Ψ̄1mµmλ

‰

kµ;λ ´

´
“

pΨ2 ` Ψ̄2qkνkλ ´ Ψ1kνm̄λ ´ Ψ̄1kνmλ ´ Ψ1m̄νkλ ` Ψ0m̄νm̄λ

‰

mν;λ
´

´ rΨ1lκkλ ´ Ψ0lκm̄λ ` Ψ0m̄κlλ ´ Ψ1m̄κmλ ´ Ψ2mκkλ ` Ψ1mκm̄λs kκ;λ “

“ Ψ1p´���kµlλ ´ lµkλ ` mµm̄λ ` m̄µmλq kµ;λ ´ Ψ1plµkλ ` 4mµm̄λq kµ;λ ` Ψ1m̄νkλm
ν;λ

´ Ψ0p´kµlλ ´ lµkλ ` mµm̄λ ` ����m̄µmλ q m̄µ;λ
´ Ψ0lµkλm̄

µ;λ
´ 2Ψ0m̄µm̄λm

µ;λ
`

` 2Ψ0lµm̄λk
µ;λ

` 3Ψ2mµkλk
µ;λ

“

“ Ψ1kλ
;λ

´ Ψ0m̄λ
;λ

´ Ψ1plµkλ ` 4mµm̄λq kµ;λ ` Ψ1m̄νkλm
ν;λ

`

` Ψ0pm̄µkλ ´ 2kµm̄λq lµ;λ ´ 2Ψ0m̄µm̄λm
µ;λ

` 3Ψ2mµkλk
µ;λ .

Substituting this to (30.62), we find that the pkmkq projection of the Bianchi identities yields

Ψ1
;λkλ ´ Ψ0

;λm̄λ “ Ψ0pm̄µkλ ´ 2kµm̄λq lµ;λ ´ 2Ψ0m̄µm̄λm
µ;λ

` Ψ1m̄νkλm
ν;λ

´

´ Ψ1plµkλ ` 4mµm̄λq kµ;λ ` 3Ψ2mµkλk
µ;λ . (30.63)

Let’s proceed to the second useful Bianchi-identities projection, Cµνκλ;λkµmνmκ:

Cµνκλ
;λkµmνmκ

“
“

Cµνκδk
µmνmκδδλ

‰;λ
´ Cµνκλpkµmνmκ

q
;λ

“

“

”

Cµνκδk
µmνmκ

p´kδlλ ´ lδkλ ` ����
mδm̄λ ` m̄δmλq

ı;λ

´ Cµνκλpkµmνmκ
q
;λ

“

“ r´Ckmmklλ ´ Ckmmlkλ ` Ckmmm̄mλs
;λ

´ Cµνκλpkµmνmκ
q
;λ ,

where Ckmmk“´Ψ0, Ckmml“0 and Ckmmm̄“´Ψ1, so we have

p0 “q Cµνκλ
;λkµmνmκ

“ pΨ0lλq
;λ

´ pΨ1mλq
;λ

´ Cµνκλpkµmνmκ
q
;λ . (30.64)

Similarly as above, we tackle the last term,

´ Cµνκλpkµmνmκ
q
;λ

“ ´Cµνκλk
µ;λmνmκ

´ Cµνκλk
µmν;λmκ

´ Cµνκλk
µmνmκ;λ

“

“ ´Cανκδm
νmκ

p´kαlµ´���lαkµ `����mαm̄µ `m̄αmµqp´kδlλ´lδkλ`����
mδm̄λ `m̄δmλq kµ;λ ´

´ Cµβκδk
µmκ

p´���kβlν ´lβkν`mβm̄ν`����m̄βmν qp´kδlλ´lδkλ`����
mδm̄λ `m̄δmλqmν;λ

´

´ Cµνγδk
µmν

p´kγlκ´lγkκ`mγm̄κ`����m̄γmκ qp´kδlλ´lδkλ`mδm̄λ`m̄δmλqmκ;λ
“

“ ´ rCkmmklµlλ ` ����XXXXCkmml lµkλ ´ Ckmmm̄lµmλ ´ Cm̄mmkmµlλ ´ Cm̄mmlmµkλ `

`Cm̄mmm̄mµmλs kµ;λ ´
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´ rCklmkkνlλ ` Cklmlkνkλ ´ Cklmm̄kνmλ ´ Ckmmkm̄νlλ ´ ����XXXXCkmml m̄νkλ `

`Ckmmm̄m̄νmλsmν;λ
´

´ rCkmkllκkλ ´ Ckmkmlκm̄λ ´ ����XXXXCkmkm̄ lκmλ ` Ckmlkkκlλ ´ ����XXXXCkmlmkκm̄λ ´

´Ckmlm̄kκmλ ´ Ckmmkm̄κlλ ´ ����XXXXCkmml m̄κkλ ` Ckmmm̄m̄κmλsmκ;λ
“

“ ´
“

´Ψ0lµlλ ` Ψ1lµmλ ` Ψ1mµlλ ` Ψ̄3mµkλ ´ pΨ2 ` Ψ̄2qmµmλ

‰

kµ;λ ´

´
“

´Ψ1kνlλ ` Ψ̄3kνkλ ` pΨ2 ´ Ψ̄2qkνmλ ` Ψ0m̄νlλ ´ Ψ1m̄νmλ

‰

mν;λ
´

´ rΨ1lκkλ ´ Ψ0lκm̄λ ´ Ψ1kκlλ ` Ψ2kκmλ ` Ψ0m̄κlλ ´ Ψ1m̄κmλsmκ;λ
“

“ ´Ψ0p´kµlλ ´ ���lµkλ ` mµm̄λ ` m̄µmλq lµ;λ ´ Ψ0plµmλ ´ 2mµlλq m̄µ;λ
´ 2Ψ0kµlλl

µ;λ

` Ψ1p´kµlλ ´ lµkλ ` ����mµm̄λ ` m̄µmλqmµ;λ
´ Ψ1plµmλ ` 4mµlλq kµ;λ `

` Ψ1m̄µmλm
µ;λ

` 3Ψ2mµmλk
µ;λ

“

“ ´Ψ0lλ
;λ

` Ψ1mλ
;λ

´ Ψ0plµmλ ´ 2mµlλq m̄µ;λ
´ 2Ψ0kµlλl

µ;λ
´

´ Ψ1plµmλ ` 4mµlλq kµ;λ ` Ψ1m̄µmλm
µ;λ

` 3Ψ2mµmλk
µ;λ .

Substituting this to (30.64), we find that the (kmm) projection of the Bianchi identities yields

Ψ0
;λlλ ´ Ψ;λ

1 mλ “ Ψ0plµmλ ´ 2mµlλq m̄µ;λ
´ 2Ψ0lµlλk

µ;λ
` Ψ1mνmλm̄

ν;λ
`

` Ψ1plµmλ ` 4mµlλq kµ;λ ´ 3Ψ2mµmλk
µ;λ . (30.65)

Proof ñ

If Ψ0 “0 and Ψ1 “0, equations (30.63) and (30.65) reduce, respectively, to

0 “ Ψ2mµkλk
µ;λ , 0 “ Ψ2mµmλk

µ;λ .

Should Ψ2 be non-zero (which it should in general), the expressions behind have to vanish.

• First, mµkλk
µ;λ“0 tells that kλkµ;λ has to lie within the pk, lq plane. However, if it was (at

least partially) proportional to lµ, it would have non-zero scalar product with kµ – which
is not the case, because kµkµ;λ “ 0. Hence, kλkµ;λ has to be solely proportional to kµ (or
zero), which means that kµ is geodesic.

• In order to infer whatmµmλk
µ;λ“0 means, let us first multiply it by its complex conjugate,

m̄µm̄κk
µ;κ“0, to arrive at pmνmλk

ν;λqpm̄µm̄κk
µ;κq “ 0.

The next step is hard to call otherwise than Cimrman’s step-aside.4 Consider three possible
projections of kµ;κkν;λ:

gµνgκλk
µ;κkν;λ “

“ p´kµlν ´ lµkν ` mµm̄ν ` m̄µmνqp´kκlλ ´ lκkλ ` mκm̄λ ` m̄κmλq kµ;κkν;λ “

“ 2mµm̄νmκm̄λk
µ;κkν;λ ` 2mµm̄νm̄κmλk

µ;κkν;λ ,

gµλgνκk
µ;κkν;λ “

4 See Wikipedia: Jára (da) Cimrman and his philosophy of externism.
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“ p´kµlλ ´ lµkλ ` mµm̄λ ` m̄µmλqp´kνlκ ´ lνkκ ` mνm̄κ ` m̄νmκq kµ;κkν;λ “

“ pmµm̄λmνm̄κ ` m̄µmλm̄νmκq kµ;κkν;λ ` 2mµm̄λm̄νmκk
µ;κkν;λ ,

gµκgνλk
µ;κkν;λ “

“ p´kµlκ ´ lµkκ ` mµm̄κ ` m̄µmκqp´kνlλ ´ lνkλ ` mνm̄λ ` m̄νmλq kµ;κkν;λ “

“ pmµm̄κmνm̄λ ` m̄µmκm̄νmλq kµ;κkν;λ ` 2mµm̄κm̄νmλk
µ;κkν;λ ,

where the terms containing kµ do not contribute due to kµkµ;κ“0 and kνkν;λ“0. Labelling
the above six terms by A to F, it is easily seen that A=D, B=F and C=E, which leads to the
simple result A+B+C+D-E-F = A+D = 2A,

pgµνgκλ ` gµλgνκ ´ gµκgνλq kµ;κkν;λ “ 4mµmκm̄νm̄λk
µ;κkν;λ .

This is exactly what we previously found to be zero. Hence, we obtain

0 “ mµmκm̄νm̄λk
µ;κkν;λ “

1

4

`

kν;λk
ν;λ

` kλ;νk
ν;λ

´ kκ
;κkλ

;λ
˘

“
1

2
kpν;λqk

ν;λ
´

1

4
pkκ;κq

2.

Checking equation (24.31), one sees this vanishing expression is exactly the shear of kµ.5

Proof ð

Have a vacuum space-time and let a geodesic shear-free congruence kµ exist in it. From
equation (24.45), we see that in suitable coordinates (where only physical degrees of freedom
in shear and vorticity are manifested) the vanishing of shear implies hρµh

σ
νCρισλk

ιkλ “ 0.
Writing out

hρµh
σ
νCρισλk

ιkλ “ pδρµ ` kρlµ ` lρkµqpδσν ` kσlν ` lσkνqCρισλk
ιkλ “

“ pmρm̄µ ` m̄ρmµqpmσm̄ν ` m̄σmνqCρισλk
ιkλ “

“ Cmkmkm̄µm̄ν ` ����XXXXCmkm̄k m̄µmν ` ����XXXXCm̄kmkmµm̄ν ` Cm̄km̄kmµmν “

“ Ψ0m̄µm̄ν ` Ψ̄0mµmν ,

we see Ψ0 has to vanish. The non-trivial part remains, however: to show that Ψ1 vanishes as
well, i.e. that kµ is a repeated eigen-vector of Weyl.

We again rely on the same projections of the Bianchi identities as above, (30.63) and
(30.65). With Ψ“ 0, with kλkµ;λ “ 0 (without loss of generality, kµ can be affinely parame-
terized) and with vanishing shear, mµmλk

µ;λ“0, the two equations appear as

Ψ1
;λkλ “ Ψ1m̄νkλm

ν;λ
´ 4Ψ1mµm̄λk

µ;λ , (30.66)

Ψ;λ
1 mλ “ ´Ψ1mνmλm̄

ν;λ
´ Ψ1plµmλ ` 4mµlλq kµ;λ . (30.67)

The aim is to show that under the given assumptions these equations necessarily lead to the
solution Ψ1 “0.

5 If a magnitude of a complex number is zero, 0 “ zz̄ “ pRe zq2 ` pIm zq2, it means that both real and
imaginary parts of z have to vanish, i.e. that z itself has to vanish. Therefore, zero shear means mµmκk

µ;κ“0.
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Time to consider the freedom in orientation/rotation of the NP basis. We are concerned
with the properties of kµ, so that has to be left untouched, yet transformations can be made,
without loss of generality, which do have such a property. Two terms of the above equations
can thus be eliminated:

• The first term of (30.66), m̄νkλm
ν;λ, can be nullified by the rotation m1ν “eiφmν :

m1ν;λm̄1
νkλ “ peiφmν

q
;λe´iφm̄νkλ “ φ;λkλ ` mν;λm̄νkλ .

Indeed, such φ can always be found (possibly accompanied by a linear rescaling of kµ)
which makes this expression vanish.

• The second term which can be “gauged out” is mµlλk
µ;λ in equation (30.67). Actually,

make the “null rotation” of the NP tetrad about kµ, i.e. the transformation described by

k1µ
“ kµ, l1µ “ lµ ` κκ̄ kµ ` κ̄mµ

` κm̄µ, m1µ
“ mµ

` κkµ, m̄1µ
“ m̄µ

` κ̄kµ ,

and require that property: one obtains easily

0 “ m1
µl

1
λk

1µ;λ
“ pmµ`�

��κkµ qplλ`���κκ̄ kλ`κ̄mλ`κm̄λq kµ;λ “ mµlλk
µ;λ

` κmµm̄λk
µ;λ ,

because kµkµ;λ “ 0 (kµ is null), kλkµ;λ “ 0 (kµ is geodesic, with affine parameterization
assumed) and mµmλk

µ;λ “ 0 (kµ is shear free). Hence, if mµlλk
µ;λ is non-zero, its elimi-

nation is achieved by choosing

κ “ ´
mµlλk

µ;λ

mαm̄δkα;δ
.

The only case when this could not be done is mαm̄δk
α;δ “ 0. However, if that happened,

equation (30.66) would read Ψ1
;λkλ “ 0, so Ψ1 would vanish and the proof would be

finished.

• The rotation about kµ does not harm the other assumptions and results used: kµkµ;λ “ 0
and kλkµ;λ“0 of course do not change, but neither

m1ν;λm̄1
νk

1
λ “ pmν;λ

` ���
κ;λkν ` ���

κkν;λ qpm̄ν ` κ̄kνq kλ “ mν;λm̄νkλ ´ κ̄mν����
kν;λkλ p“ 0q ,

m1
µm

1
λk

1µ;λ
“ pmµ ` �

��κkµ qpmλ ` ���κkλ q kµ;λ “ mµmλk
µ;λ

p“ 0q .

Also, the relevant two Weyl scalars change according to Ψ1
0 “Ψ0, Ψ1

1 “Ψ1`κ̄Ψ0, which
means that pΨ0 “0,Ψ1 “0q ô pΨ1

0 “0,Ψ1
1 “0q.

• Note also that the same rotation about kµ cannot at the same time eliminate the other terms
of (30.66) and (30.67). Indeed,

m1
µm̄

1
λk

1µ;λ
“ pmµ ` �

��κkµ qpm̄λ ` ���κ̄kλ q kµ;λ “ mµm̄λk
µ;λ ,

m1
µm

1
λm̄

1µ;λ
` l1µm

1
λk

1µ;λ
“

“ pmµ ` κkµqpmλ ` ���κkλ qpm̄µ;λ
` ���
κ̄;λkµ ` ���

κ̄kµ;λ q `
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` plµ ` ���κκ̄ kµ ` κ̄mµ ` κm̄µqpmλ ` ���κkλ q kµ;λ “

“ mµmλm̄
µ;λ

`
XXXXXXκkµmλm̄

µ;λ
` lµmλk

µ;λ
`

XXXXXXκm̄µmλk
µ;λ

“ mµmλm̄
µ;λ

` lµmλk
µ;λ .

(Warning: the (((((((cancellations again have not been meant so that the respective terms were
zero, but that they vanished after the pertinent scalar products.)

To summarize, we simplified equations (30.66) and (30.67) to

Ψ1
;λkλ “ ´4Ψ1mµm̄λk

µ;λ , ´Ψ;λ
1 mλ “ Ψ1mνmλm̄

ν;λ
` Ψ1lµmλk

µ;λ ,

which can also be written as

plnΨ1q
;λkλ “ ´4mµm̄λk

µ;λ , plnΨ1q
;λmλ “ ´mνmλm̄

ν;λ
´ lµmλk

µ;λ . (30.68)

The ultimate point is to consider “integrability condition” for this pair. Let us compute the
commutator of the two derivatives in two ways (and compare the results):

• First start from computing it for a generic scalar (S, say),

pS;αkαq
;βmβ ´ pS;βmβq

;αkα “ �������
pS;αβ

´ S;βα
q kαmβ ` S;β

pkβ
;αmα ´ mβ

;αkαq “

“ S;ι
p´kιl

β
´ �

��lιk
β

` mιm̄
β

` m̄ιm
β
qpkβ

;αmα ´ mβ
;αkαq “

“ S;ιkιp´lβmαk
β;α

` lβkαm
β;α

q ` S;ιmιpm̄βmαk
β;α

´ m̄βkαm
β;α

q ` S;ιm̄ι������
mβmαk

β;α

(in the last term appears the shear, so we already omit it). Cancelling, as above, the term
m̄βkαm

β;α, we thus have

pS;αkαq
;βmβ ´ pS;βmβq

;αkα “ ´pS;ιkιqplβmαk
β;α

` mβkαl
β;α

q ` pS;ιmιq m̄βmαk
β;α .

Using this for S “ lnΨ1 and substituting from equations (30.68), we arrive at

rplnΨ1q
;αkαs

;βmβ ´ rplnΨ1q
;βmβs

;αkα “

“ ´plnΨ1q
;ιkι plβmαk

β;α
` mβkαl

β;α
q ` plnΨ1q

;ιmι m̄βmαk
β;α

“

“ 4pmµm̄λk
µ;λ

qplβmαk
β;α

` mβkαl
β;α

q ´ pmνmλm̄
ν;λ

` lµmλk
µ;λ

qpm̄βmαk
β;α

q .

This can further be simplified:

pmµm̄λk
µ;λ

qplβmαk
β;α

q “ p´���kαlλ ´ ���lαkλ ` mαm̄λ ` XXXXm̄αmλ qmµk
µ;λlβk

β;α
“

“ mµk
µ;λlβkβ;λ ,

pmµm̄λk
µ;λ

qpmβkαl
β;α

q “ p´���kβlλ ´ ���lβkλ ` mβm̄λ ` XXXXm̄βmλ qmµk
µ;λkαl

β;α
“

“ mµk
µ;λkαlλ;α ,

pmνmλm̄
ν;λ

qpm̄βmαk
β;α

q “ p´���kλlβ ´ ���lλkβ ` mλm̄β ` XXXXm̄λmβ qmνm̄
ν;λmαk

β;α
“

“ mνm̄
ν;λmαkλ;α ,

plµmλk
µ;λ

qpm̄βmαk
β;α

q “ p´���kλlβ ´ ���lλkβ ` mλm̄β ` XXXXm̄λmβ q lµk
µ;λmαk

β;α
“

“ lµk
µ;λmαkλ;α ,

where the last cancellations (XXXm̄m) are thanks to mλmµk
µ;λ“0 (zero shear). Hence,

rplnΨ1q
;αkαs

;βmβ ´ rplnΨ1q
;βmβs

;αkα “

“ 4mµk
µ;λlβkβ;λ ` 4mµk

µ;λkαlλ;α ´ mνm̄
ν;λmαkλ;α ´ lµk

µ;λmαkλ;α . (30.69)
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• On the other hand, computing the same commutator directly from (30.68) yields

rplnΨ1q
;αkαs

;βmβ ´ rplnΨ1q
;βmβs

;αkα “

“ ´4pmµm̄λk
µ;λ

q
;βmβ ` pmνmλm̄

ν;λ
` lµmλk

µ;λ
q
;αkα “

“
“

´4mµ;βm
βm̄λk

µ;λ
´ 4mµm̄λ;βm

βkµ;λ
‰

´ 4mµm̄λk
µ;λβmβ `

` ((((((((
mν;αk

αmλm̄
ν;λ

`
hhhhhhhhmνmλ;αk

αm̄ν;λ
` mνmλm̄

ν;λαkα `

` �������
lµ;αk

αmλk
µ;λ

`
XXXXXXXlµmλ;αk

αkµ;λ ` lµmλk
µ;λαkα . (30.70)

Cancellations:

– Since kα;λkα “ 0, m̄λk
α;λm̄α “ 0 (zero shear), kµ;δkδ “ 0 (geodesicity), mµk

µ;δlδ “ 0
(rotation of the tetrad) and mµk

µ;δmδ“0 (zero shear), one decomposes

m̄λk
µ;λ

“ m̄λk
α;λ

p´kαl
µ

´ lαk
µ

` mαm̄
µ

` m̄αm
µ
q “

“ ´m̄λk
α;λlαk

µ
` m̄λk

α;λmαm̄
µ ,

mµk
µ;λ

“ mµk
µ;δ

p´kδl
λ

´ lδk
λ

` mδm̄
λ

` m̄δm
λ
q “

“ mµk
µ;δm̄δm

λ ,

which implies that the first two terms (they are in the bracket) yield zero,

´ 4mµ;βm
βm̄λk

µ;λ
´ 4mµm̄λ;βm

βkµ;λ “

“ ´4mµ;βm
β
p´m̄λk

α;λlαk
µ

` m̄λk
α;λmαm̄

µ
q ´ 4m̄λ;βm

βmµk
µ;δm̄δm

λ
“

“ ´4mµ;βm
βm̄λk

α;λmαm̄
µ

` 4m̄λmβmµk
µ;δm̄δmλ;β “ 0 .

– The term
hhhhhhhhmνmλ;αk

αm̄ν;λ : decomposing in it, similarly as above,

kαmλ;α “ kαmδ;αp´kδlλ ´ lδkλ ` mδm̄λ ` m̄δmλq “ ´kαmδ;αl
δkλ ,

it reads ´mνm̄
ν;λkαmδ;αl

δkλ, which contains mνm̄
ν;λkλ“0 (by tetrad rotation).

– In order to show that the terms ((((((((
mν;αk

αmλm̄
ν;λ ` �������

lµ;αk
αmλk

µ;λ cancel against each
other, one again writes

mν;αk
α

“ ´kαmβ;αl
βkν , mλk

µ;λ
“ ´mλk

β;λlβk
µ

` mλk
β;λm̄βm

µ

and substitutes it into them,

mν;αk
αmλm̄

ν;λ
` lµ;αk

αmλk
µ;λ

“

“ ´kαmβ;αl
βkνmλm̄

ν;λ
` lµ;αk

α
p´������
mλk

β;λlβk
µ

` mλk
β;λm̄βm

µ
q “

“ ´kαmβlβ;αk
ν;λmλm̄ν ` lµ;αk

αmλk
β;λm̄βm

µ
“ 0 .

– Similarly the term
XXXXXXXlµmλ;αk

αkµ;λ : substituting mλ;αk
α“ ´kαmδ;αl

δkλ from above, it
really vanishes (due to kλkµ;λ“0), ´lµk

αmδ;αl
δkλk

µ;λ“0.
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Thus only the terms with the second derivatives have remained in (30.70). All these second
derivatives can be eliminated.

– First, since the shear mµmβk
µ;β is assumed to be zero,

mµm̄λk
µ;λβmβ “ mµm̄λmβpkµ;βλ ` Cιµλβkιq “

“ �������
pmµmβk

µ;β
q
;λm̄λ ´ pmµmβq

;λm̄λk
µ;β

` mµm̄λmβC
ιµλβkι “

“ ´mµ;λm̄
λmβk

µ;β
´

hhhhhhhhmµmβ;λm̄
λkµ;β ` Ψ1 .

The hhhhhcancelled term: one again substitutes into it mµk
µ;β “mµk

µ;νm̄νm
β , to obtain

mµk
µ;νm̄νm

βmβ;λm̄
λ“0 (because mβmβ;λ“0).

– Second, since one can arrange for mνkαm̄
ν;α“0 by rotation of the tetrad, one has

mνmλm̄
ν;λαkα “ mνmλkαpm̄ν;αλ

` Cινλαm̄ιq “

“ (((((((
pmνkαm̄

ν;α
q
;λmλ ´ pmνkαq

;λmλm̄
ν;α

` mνmλkαC
ινλαm̄ι “

“ ´
hhhhhhhhmν;λm

λkαm̄
ν;α

´ mνkα;λm
λm̄ν;α

´ Ψ1 .

The hhhhhcancelled term: substituting in it kαm̄ν;α “ ´kαm̄
β;αlβk

ν , one finds it vanishes,
´mν;λm

λkαm̄
β;αlβk

ν “0 (because of zero shear, ´mν;λm
λkν “mνmλk

ν;λ“0).

– Third, since kαkµ;α“0 (kµ is geodesic and affine-parameterized),

lµmλk
µ;λαkα “ lµmλkαpkµ;αλ ` Cιµλαkιq “

“ ������
plµkαk

µ;α
q
;λmλ ´ plµkαq

;λmλk
µ;α

` lµmλkαC
ιµλαkι “

“ ´lµ;λm
λ
����kαk

µ;α
´ lµkα;λm

λkµ;α ´ Ψ1 .

Substituting all the three results in (30.70) leads to

rplnΨ1q
;αkαs

;βmβ ´ rplnΨ1q
;βmβs

;αkα “

“ 4mµ;λm̄
λmβk

µ;β
´ mνkα;λm

λm̄ν;α
´ lµkα;λm

λkµ;α ´ 6Ψ1 . (30.71)

• Big finale: compare the commutator computed by two different routes, (30.69) and (30.71).
Equal thus should be the expressions

4mµk
µ;λlβkβ;λ ` 4mµk

µ;λkαlλ;α ´ ((((((((
mνm̄

ν;λmαkλ;α ´
XXXXXXXlµk

µ;λmαkλ;α “

“ 4mµ;λm̄
λmβk

µ;β
´ ((((((((
mνkα;λm

λm̄ν;α
´

XXXXXXXlµkα;λm
λkµ;α ´ 6Ψ1 .

Substituting the decompositionmβk
µ;β “ ´mβk

α;βlαk
µ`mβk

α;βm̄αm
µ into the first term

on the right, we have

´4mµ;λm̄
λmβk

α;βlαk
µ

`
((((((((((((
4mµ;λm̄

λmβk
α;βm̄αm

µ ,

of which the second term vanishes due to mµ;λm
µ“0, while the first term can be rewritten

as 4mµk
µ;λm̄λmβk

α;βlα and thus it clearly cancels out with the first term on the left of the
above commutator-comparison equation. Hence, the latter reduces to

6Ψ1 “ ´4mµk
µ;λkαlλ;α . (30.72)
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• Yet bigger finale:6 the tetrad has been rotated so that kµ;νmµlν “0, so one obtains from its
k-derivative

0 “ pkµ;νm
µlνq;λk

λ
“ kµ;νλm

µlνkλ ` �������
kµ;νm

µ;λlνkλ ` kµ;νm
µlν;λkλ “

“ pkµ;λν`Cι
µνλkιqm

µlνkλ ` kµ;νm
µlν;λkλ “ kµ;λνm

µlνkλ ` Ckmlk ` kµ;νm
µlν;λkλ ,

where we have expressed mµ;λkλ “ ´mα;λkλlαk
µ and, consequently, cancelled the term

kµ;νm
µ;λlνkλ “ ´kµ;νl

νmα;λkλlαk
µ (due to kµ;νkµ “0). The second derivative can in fact

be omitted as well,

kµ;λνm
µlνkλ “ p

HHHHkµ;λk
λ

q;νm
µlν ´ �������

kµ;λk
λ;νmµlν ,

where the second term vanishes because after substituting kµ;λmµ “kµ;δm
µm̄δmλ it reads

kµ;δm
µm̄δmλk

λ;νlν , thus containing mλk
λ;νlν “0. Therefore, as Ckmlk“´Ψ1, we find

Ψ1 “ kµ;νm
µlν;λkλ . (30.73)

The expression in (30.72) is exactly the same as in (30.73), just with a different numerical
factor, so it has to be zero – i.e., Ψ1 “0 .

Concluding remark: By writing kµ;νmµ“kµ;βm
µm̄βmν again, the vanishing expression reads

pkµ;βm
µm̄βqpmνl

ν;λkλq. Recall now that in rotating the tetrad in order to ensuremµlλk
µ;λ“0,

we needed kµ;βmµm̄β ‰ 0 (otherwise the whole proof would have been established immedi-
ately), which means that the result of the proof actually reads mνl

ν;λkλ“0 . Worth to make
oneself sure that this is not trivial: what can always be made vanish by tetrad rotation has been
kµ;νm

µlν “´mµ;νk
µlν , whereas here we have found vanishing of mµl

µ;νkν “´mµ;νl
µkν .

One more remark: the proof of the Goldberg-Sachs theorem is usually not being exam-
ined in full detail.

30.6 Classification of Ricci and of energy-momentum tensor
Since Rµν and Tµν are bound by Einstein’s equations, i.e. they merely differ by terms pro-
portional to gµν , their algebraic classification is equivalent. Actually, if adding a term pro-
portional to gµν to some second-rank tensor, the eigen-vectors remain the same, while the
eigen-values shift accordingly:

pT µν ´ fδµν qV ν
“ λV µ

ùñ T µνV
ν

“ pλ ` fqV µ . (30.74)

Various circumstances may occur in the classification of symmetric tensors. Anyway, we will
only touch on two most important cases of the energy-momentum tensor.

6 Another Cimrman’s step-aside.
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30.6.1 Energy-momentum tensor of EM field

As the EM-field Tµν (30.30) is traceless, its determinant reads, by prescription (A.10),

detpT µνq “
1

8

“

pT µιT
ι
µq

2
´ 2T µιT

ι
κT

κ
λT

λ
µ

‰

. (30.75)

In order to evaluate both terms, it is useful to compute

p8πq
2T µιT

ι
ν “ pF µρFιρ `

˚F µρ˚Fιρq pF ισFνσ `
˚F ισ˚Fνσq “

“ pF µρFιρ ´
˚F µρ˚Fιρq pF ισFνσ ´

˚F ισ˚Fνσq ` 4F µρFιρ
˚F ισ˚Fνσ “

“
1

4
δµν pFιλF

ιλ
q
2

`
1

4
δµν pFιλ

˚F ιλ
q
2, (30.76)

where we have regarded that in the product of the Fιρ˚F ισ type it does not matter where aster-
isk is placed – see relation (30.8) –, and then equation (30.6) has been used in the parentheses,
and equation (30.8) in the last term. Now easily already,

p8πq
4
“

pT µιT
ι
µq

2
´ 2T µιT

ι
κT

κ
λT

λ
µ

‰

“
“

pFιλF
ιλ

q
2

` pFιλ
˚F ιλ

q
2
‰2

´
1

2
rthe sames

2 ,

hence

detpT µνq “
1

16p8πq4

“

pFιλF
ιλ

q
2

` pFιλ
˚F ιλ

q
2
‰2
. (30.77)

From (30.76) and from tracelessness of T µµ it also follows that the “triple” term T µιT
ι
νT

ν
µ

vanishes as well, so the characteristic equation (30.4)“0 reduces to

λ4 ´
1

2
T µιT

ι
µλ

2
` detpT µνq “

“ λ4 ´
1

2p8πq2

“

pFιλF
ιλ

q
2

` pFιλ
˚F ιλ

q
2
‰

λ2 `
1

16p8πq4

“

pFιλF
ιλ

q
2

` pFιλ
˚F ιλ

q
2
‰2

“

“

"

λ2 ´
1

4p8πq2

“

pFιλF
ιλ

q
2

` pFιλ
˚F ιλ

q
2
‰

*2

“ 0 . (30.78)

The eigen-values are thus given by

pλT˘q
2

“
1

p16πq2

“

pFιλF
ιλ

q
2

` pFιλ
˚F ιλ

q
2
‰

, (30.79)

both of them being double degenerate.
Comparison of this result with the eigen-values (30.13) and (30.15) of F µ

ν and ˚F µ
ν

reveals the simple relation

˘λT˘ “
1

8π

“

pλ˘q
2

` p
˚λ˘q

2
‰

(30.80)

which perfectly mirrors the structure of Tµν . Sure, one can verify this straightforwardly:
being kν the common eigen-vector of F µ

ν and ˚F µ
ν , one has

8πT µνk
ν

“ pF µιFνι `
˚F µι˚Fνιq k

ν
“ ´F µιλ˘kι ´

˚F µι˚λ¯kι “
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“ ´rpλ˘q
2

` p
˚λ¯q

2
s kµ ” ¯λT˘ k

µ . (30.81)

In summary, the tensors F µ
ν , ˚F µ

ν and T µν share two null eigen-vectors which are
different in general whereas they coincide for a null (N) field (in that case, all the eigen-
values are zero).

30.6.2 Energy-momentum tensor of ideal fluid

T µν “ pρ ` P quµuν ` Pδµν “ ρuµuν ` Phµν (30.82)

has

T ” T µµ “ ´ρ ` 3P , T µιT
ι
µ “ ρ2 ` 3P 2 ,

T µιT
ι
κT

κ
µ “ ´ρ3 ` 3P 3 , T µιT

ι
κT

κ
λT

λ
µ “ ρ4 ` 3P 4 , (30.83)

so (A.10) yields the determinant

detpT µνq “ ´ρP 3 (30.84)

and from (30.4) we get the characteristic equation

λ4 ` pρ´ 3P qλ3 ´ 3P pρ´P qλ2 `P 2
p3ρ´P qλ´ ρP 3

“ pλ` ρqpλ´P q
3

“ 0 . (30.85)

Therefore, the eigen-value λ“P is triple while the eigen-value λ“´ρ is simple.
The eigen-vectors also follow very easily: from the equation pρ`P quµuνV

ν `PV µ “

´ρV µ we have pρ` P qhµνV
ν “0, so the eigen-direction associated with λ“´ρ is the fluid’s

four-velocity uµ itself; on the other hand, the equation pρ`P quµuνV
ν`PV µ “ PV µ implies

pρ ` P quµuνV
ν “ 0, so the eigen-value λ“P is accorded with the whole eigen-hyperplane

orthogonal to uµ (three independent eigen-vectors can be identified within it at any point).
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APPENDIX A

Tensor densities, duals and volumes

In GR, one is celebrating tensors due to their invariant character, but not all quantities can
of course be represented by tensors (like not all scalars are invariants – see mass-energy, for
example). Neither the principle of general covariance demands that it be so – it only demands
that fundamental physical equations as a whole be covariant. Below, we note one particular
class of non-tensorial (though “almost tensorial”) quantities, the so-called tensor densities.

Motivation for the study of densities stems from volume integrations. One certainly
likes to integrate tensors over proper volumes, areas, etc., yet some mathematical rules – such
as the Gauss theorem – apply to integration over coordinate domains. Below, we will see the
proper volumes differ from the coordinate ones by a factor given by the metric determinant,
which is why the transformation property of the latter will be our starting point:

A.1 Metric determinant and tensor densities
Since (determinant of a product) = (product of determinants), the determinant of the covariant
metric tensor g :“ |gµν | transforms as

g1
µν “

Bxρ

Bx1µ

Bxσ

Bx1ν
gρσ ùñ g1

“

ˇ

ˇ

ˇ

ˇ

Bx

Bx1

ˇ

ˇ

ˇ

ˇ

2

g “

ˇ

ˇ

ˇ

ˇ

Bx1

Bx

ˇ

ˇ

ˇ

ˇ

´2

g ,

where the second arrangement follows from

Bx1α

Bxι
Bxι

Bx1β
“ δαβ ùñ

ˇ

ˇ

ˇ

ˇ

Bx1

Bx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bx

Bx1

ˇ

ˇ

ˇ

ˇ

“ 1 .

We say that g is a scalar density of weight w“2 – it transforms like an invariant, except that
the w-th power of the inverse-transform Jacobian appears there.1 The nomenclature naturally
generalizes to multi-component quantities:

1 Some authors use the opposite sign, w“ ´2, referring to the power of the direct-transform Jacobian which
appears in the transformation formula. We adhere to the choice which implies that the quantities containing
p
?

´gqw are of weight w. Actually, the latter is the most important case, specifically with w “ 1, because it
occurs in the study of integrals of tensors over proper volumes – see below.
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Definition We call tensor density of weight w (w integer) the quantity2 T...... which trans-
forms as a tensor (of the respective type), except that the transformation also involves Jacobi
determinant of the inverse coordinate change in the w-th power, i.e.

T1...
...px

1
q “

ˇ

ˇ

ˇ

ˇ

Bx

Bx1

ˇ

ˇ

ˇ

ˇ

w
Bx1.

Bx.
¨ ¨ ¨

Bx.

Bx1.
¨ ¨ ¨ T......pxq “

ˇ

ˇ

ˇ

ˇ

Bx1

Bx

ˇ

ˇ

ˇ

ˇ

´w
Bx1.

Bx.
¨ ¨ ¨

Bx.

Bx1.
¨ ¨ ¨ T......pxq . (A.1)

Just by looking at the above definition and the transformation of g, we infer the following

Lemma From an arbitrary tensor density, one can make a tensor (of the respective type) by
multiplying it by g´w{2.
Proof: One simply multiplies the transformation (A.1) by pg1q´w{2 “

ˇ

ˇ

Bx
Bx1

ˇ

ˇ

´w
g´w{2.

Note: in the case of Lorentzian (indefinite) metric, one has to take p´gq´w{2 actually (at least
for odd w); one often writes |g| for generality.

A.1.1 Levi-Civita pseudo-tensor and determinants

Be rαβγδs the permutation symbol, i.e. the object which is anti-symmetric in all its indices
and whose all components are, in any coordinate system, only 0, `1 and ´1; and let the sign
be fixed by r0123s“`1. Recalling the definition of a Jacobian,
ˇ

ˇ

ˇ

ˇ

Bx1

Bx

ˇ

ˇ

ˇ

ˇ

“
Bx10

Bxµ
Bx11

Bxν
Bx12

Bxκ
Bx13

Bxλ
rµνκλs ,

and using the fact that a determinant is “anti-symmetric” with respect to exchange of any two
columns or rows, we may also write
ˇ

ˇ

ˇ

ˇ

Bx1

Bx

ˇ

ˇ

ˇ

ˇ

rαβγδs “
Bx1α

Bxµ
Bx1β

Bxν
Bx1γ

Bxκ
Bx1δ

Bxλ
rµνκλs .

Therefore, rαβγδs transforms as a (4,0)-type tensor density of weight w“ 1. Make a tensor
out of it according to the above Lemma:

ϵαβγδ ” ´
1

?
´g

rαβγδs . (A.2)

This is the covariant Levi-Civita tensor. Minus in front is just a convention; this our one fixes
ϵ0123 “´ϵ123 ” ´1 (thus ϵ0123 “ϵ123 ” `1) for the Minkowski metric.

In the same way as for the Jacobian, we obtain, from the formula for the determinant
of the covariant metric, g “ g0µg1νg2κg3λrµνκλs, the relation

g rµνκλs “ gµαgνβgκγgλδrαβγδs .

Owing to that, we get for the covariant Levi-Civita tensor, by just lowering indices of ϵαβγδ,

ϵµνκλ ” gµαgνβgκγgλδ ϵ
αβγδ

“ ´
1

?
´g

gµαgνβgκγgλδrαβγδs “
?

´g rµνκλs . (A.3)

2 It is a habit in the literature to write the tensor densities in gothic fonts, so we also adhere to it.
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Often useful (and always welcome :-)) are inner products of two epsilons over various
possible number of indices,

ϵαβγδϵµνκλ “ ´4! δrα
µ δ

β
ν δ

γ
κδ

δs

λ , (A.4)

ϵαβγλϵµνκλ “ ´3! δrα
µ δ

β
ν δ

γs
κ , (A.5)

ϵαβκλϵµνκλ “ ´p2!q2 δrα
µ δ

βs
ν , (A.6)

ϵανκλϵµνκλ “ ´3! δαµ , (A.7)

ϵµνκλϵµνκλ “ ´4! . (A.8)

In general, they can be summarized as

ϵα1... αkλ1... λ4´k ϵµ1... µkλ1... λ4´k
“ ´k! p4 ´ kq! δrα1

µ1
. . . δα4´ks

µ4´k
pk ď 4q . (A.9)

For antisymmetrized products of Kronecker deltas, often introduced is the generalized Kro-
necker symbol, δα1... αn

µ1... µn
” n! δ

rα1
µ1 δ

¨
¨δ

¨
¨δ

¨
¨δ
αns
µn . Using this symbol, one can easily write the

determinant of a generic matrix (4x4); by evaluating the individual terms (they are 24), one
may also express such a determinant in terms of traces of M and of its powers:

detpM mixedq “

“
1

4!
Mµ

αMν
βMκ

γMλ
δ δµνκλαβγδ “

“ Mµ
αMν

βMκ
γMλ

δ δrµ
α δ

ν
βδ

κ
γδ

λs

δ “ Mrµ
αMν

βMκ
γMλs

δ δµαδ
ν
βδ

κ
γδ

λ
δ “

“
1

4!

“

pTrMq
4

´ 6 pTrMq
2TrM2

` 8TrM TrM3
´ 6TrM4

` 3 pTrM2
q
2
‰

. (A.10)

Since, again, determinant of a matrix product = product of matrix determinants, the deter-
minant of a (corresponding) fully covariant or fully contravariant matrix is obtained (respec-
tively) by multiplying or dividing the above result by g. Note that if the mixed matrix repre-
sents a mixed tensor, the traces of all its powers are invariants, so the determinant is invariant
as well. Consequently, the determinant of a fully covariant, resp. fully contravariant second-
rank tensor is a scalar density of weight `2, resp. ´2.

Why “pseudo-tensor”?

The Levi-Civita tensor, strictly speaking, is a pseudo-tensor – a quantity which behaves as a
tensor, just that in its transformation appears the sign of the transformation Jacobian. This is
because the term

?
´g in the definition: the latter transforms like g1 “

ˇ

ˇ

Bx1

Bx

ˇ

ˇ

´2
g, hence

1
?

´g1
“ abs

ˇ

ˇ

ˇ

ˇ

Bx1

Bx

ˇ

ˇ

ˇ

ˇ

1
?

´g
,

and so, after division by the Jacobian which appears in the transformation of the permutation
symbol itself, the sign is really left in the overall transformation,

abs
ˇ

ˇ

Bx1

Bx

ˇ

ˇ

ˇ

ˇ

Bx1

Bx

ˇ

ˇ

“ sign

ˇ

ˇ

ˇ

ˇ

Bx1

Bx

ˇ

ˇ

ˇ

ˇ

.
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This implies that pseudo-tensors are also all other tensor-like quantities introduced using
?

´g , in particular those containing ϵαβγδ (linearly), as e.g. the duals to antisymmetric ten-
sors.

A.1.2 Differentiation of tensor densities

Let T...... be a tensor density of some tensor type and weight w, and let T ...... be the corre-
sponding tensor; we know their relation is T “T |g|´w{2. Since derivatives should satisfy the
Leibniz rule, and since |g|;α “ 0 while |g|,α “ 2|g|Γµµα by equation (5.15), we have (indices
are suppressed)

T;α “ T;α |g|
´w{2

´ T
w

2|g|
|g|

´w{2
���|g|;α “ T;α |g|

´w{2,

T,α “ T,α |g|
´w{2

´ T
w

2|g|
|g|

´w{2
|g|,α “ T,α |g|

´w{2
´ Tw |g|

´w{2 Γµµα

ùñ T,α “ T,α |g|
w{2

` Tw Γµµα . (A.11)

The Lie-derivative action on tensor densities can be inferred from its action on the met-
ric determinant, with the latter in turn derived from the formula (23.8) for a generic variation
of

?
´g , i.e. δ

?
´g “ 1

2

?
´g gµνδgµν . Actually, different derivatives of quantities are de-

termined by the latter’s variations under different types of transport. Similarly as the formula
yields p

?
´gq,ρ “ 1

2

?
´g gµνgµν,ρ “

?
´g Γµµι for the partial derivative of

?
´g (and zero

for its Levi-Civita covariant derivative), for the Lie derivative one has

£ξ

a

|g| “
1

2

a

|g| gµν£ξgµν “
1

2

a

|g| gµνpξµ;ν `ξν;µq “
a

|g| ξµ;µ “
`

a

|g| ξµ
˘

,µ
. (A.12)

The knowledge of £ξ

a

|g| allows to fix the Lie derivative of any tensor density: using again
the relation T“T |g|w{2, with T the density and T the tensor (indices omitted), one has

£ξT “ |g|
w{2£ξT ` T

w

2|g|
|g|

w{2£ξ|g| “ |g|
w{2£ξT ` T

w

|g|
|g|

w{2
a

|g|£ξ

a

|g| “

“ |g|
w{2£ξT ` Tw |g|

w{2ξι;ι “ |g|
w{2£ξT ` Tw ξι;ι . (A.13)

Similarly as for tensors, this result assumes the same form whether written in terms of covari-
ant or partial derivatives. Actually, expressing above £ξT in terms of covariant derivatives,

£ξT
µ...
α... “ T µ...α...;ιξ

ι
´
ÿ

ξµ;ιT
ι...
α... `

ÿ

ξι;αT
µ...
ι... ,

one has

£ξT
µ...
α... “ Tµ...α...;ιξ

ι
´
ÿ

ξµ;ιT
ι...
α... `

ÿ

ξι;αT
µ...
ι... ` Tµ...α...w ξ

ι
;ι “

“ rsame covariant-derivative formula as for tensors ` Tµ...α...w ξ
ι
;ι , (A.14)

while expressing £ξT in terms of partial derivatives,

£ξT
µ...
α... “ T µ...α...,ιξ

ι
´
ÿ

ξµ,ιT
ι...
α... `

ÿ

ξι,αT
µ...
ι... ,



A.1. METRIC DETERMINANT AND TENSOR DENSITIES 615

leads to

£ξT
µ...
α... “ Tµ...α...,ιξ

ι
´ Tµ...α...w Γκκιξ

ι
´
ÿ

ξµ,ιT
ι...
α... `

ÿ

ξι,αT
µ...
ι... ` Tµ...α...w ξ

ι
;ι “

“ rsame partial-derivative formula as for tensors ` Tµ...α...w ξ
ι
,ι , (A.15)

where the relation (A.11) has been employed in the first term, i.e.

T µ...α...,ι|g|
w{2

“ Tµ...α...,ι ´ Tµ...α...w Γκκι .

Specifically for the w“1 densities, the first and the last terms can be joined, obtaining

£ξT “ pT ξιq;ι ` rproducts of T with covariant gradients of ξµs (A.16)
“ pT ξιq,ι ` rproducts of T with partial gradients of ξµs , (A.17)

and, still more specifically, for the w“1 scalar densities this implies the very useful result

£ξT “ pT ξιq;ι “ pT ξιq,ι . (A.18)

Clearly T ξι is a vector density, so the last sub-result can also be voiced such that for vector
densities of weight w“1 the covariant and partial divergences are equal.

Last general observation: it is obvious from the formulas that – similarly as with tensors
– the Lie differentiation does not change the type of tensor densities (it leaves both their tensor
type and weight unchanged).

A.1.3 Differentiation of the Levi-Civita tensor and of metric determinant
by a generic connection

The Levi-Civita tensor is solely given by the metric and by pure numerical factors rµνκλs,
so its covariant derivative has to vanish. Let us remind that this is however a special property
of the Levi-Civita connection (for which gµν;ρ “ 0). How would the differentiation work for
a generic affine connection (not related to the metric)? According to the covariant differenti-
ation prescription,

ϵµνκλ;ρ ” ϵµνκλ,ρ ´ Γιρµϵινκλ ´ Γιρνϵµικλ ´ Γιρκϵµνιλ ´ Γιρλϵµνκι “

“ p
?

´gq,ρrµνκλs ´
?

´g pΓιρµrινκλs ` Γιρνrµικλs ` Γιρκrµνιλs ` Γιρλrµνκιsq .

For the relation to be non-trivial, pµ, ν, κ, λq must assume different values. Consequently,
in all the Γ terms, ι has to assume the same value as the index it has substituted in the
permutation symbol (i.e., respectively, µ, ν, κ and λ). And, in each of the four terms, ι
substituted a different index, so it must just run through all the four possible different values
in total. The relation can thus be written as

ϵµνκλ;ρ “ rp
?

´gq,ρ ´
?

´g Γιριs rµνκλs .

Should the Leibniz rule be satisfied,

ϵµνκλ;ρ “ p
?

´gq;ρrµνκλs `
?

´g�����rµνκλs;ρ ,
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the metric determinant has to be differentiated according to

p
?

´gq;ρ “ p
?

´gq,ρ ´
?

´g Γιρι . (A.19)

We will show now that such a rule can also be obtained directly from the generic for-
mula for the differentiation of a determinant (of a square matrix M ),

pdetMq,ρ

detM
“ Tr

`

M´1
¨ M,ρ

˘

,

if applied for the covariant derivative rather than the partial one. For the metric determinant,
one thus has

p´gq;ρ “ p´gqgαβgαβ;ρ ùñ p
?

´gq;ρ “
1

2

?
´g gαβgαβ;ρ . (A.20)

Actually, by directly writing out gαβ;ρ , one finds

p
?

´gq;ρ “
1

2

?
´g gαβ pgαβ,ρ ´ Γιραgιβ ´ Γιρβgαιq “

“
1

2

?
´g gαβgαβ,ρ ´

1

2

?
´g

`

δαι Γ
ι
ρα ` δβι Γ

ι
ρβ

˘

“ p
?

´gq,ρ ´
?

´g Γιρι ,

where we used the similar partial-derivative relation p
?

´gq,ρ “ 1
2

?
´g gαβgαβ,ρ obtained in

Section 23.4.1, equation (23.8). Hence the generic correspondence

p
?

´gq,ρ “
1

2

?
´g gαβgαβ,ρ ÐÑ p

?
´gq;ρ “

1

2

?
´g gαβgαβ;ρ . (A.21)

The above finding implies that for a torsion-free, symmetric connection, one has

pV ρ
?

´gq;ρ “ V ρ
;ρ

?
´g ` V ρ

p
?

´gq;ρ “

“ pV ρ
,ρ ` ΓρριV

ι
q

?
´g ` V ρ

rp
?

´gq,ρ ´
?

´g Γιριs “

“ V ρ
,ρ

?
´g ` V ρ

p
?

´gq,ρ `
?

´g V ι
p������Γρρι ´ Γριρ q “ pV ρ

?
´gq,ρ . (A.22)

This result means that the Gauss theorem is not only restricted to the divergence performed
by the Levi-Civita connection. For the Levi-Civita connection, one just specifically obtains
the usual GR relation

?
´g V λ

;λ “ p
?

´g V λq,λ , because anything solely made of metric is
constant with respect to it.

A.2 Duals to antisymmetric tensors
Definition Have a totally antisymmetric tensor Tµ1... µk (2ďkď4). The (pseudo-)tensor

˚Tα1... α4´k :“
1

k!
ϵα1... α4´kµ1... µkTµ1... µk (A.23)

we call its (Hodge) dual. The dual is of the p4́ kq-th rank and is as well totally antisymmetric.
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• Apparently, we might consider dual of a dual – but without reaching anything new, be-
cause, according to the above definition,

˚˚Tν1... νk ”
1

p4 ´ kq!
ϵν1... νkα1... α4´k

˚Tα1... α4´k “

“
1

p4 ´ kq! k!
ϵν1... νkα1... α4´k

ϵα1... α4´kµ1... µkTµ1... µk “

“ ´p´1q
kp4´kqTν1... νk “ p´1q

k´1Tν1... νk , (A.24)

where we have used (A.9) in evaluation of the product of Levi-Civita tensors.

• Particular cases:

k “ 2 : ˚Tαβ ”
1

2
ϵαβµνTµν ,

˚˚Tρσ ”
1

2
ϵρσαβ

˚Tαβ “ ´Tρσ (A.25)

k “ 3 : ˚Tα ”
1

6
ϵαµνκTµνκ ,

˚˚Tρστ ” ϵρστα
˚Tα “ Tρστ (A.26)

k “ 4 : ˚T ”
1

24
ϵµνκλTµνκλ ,

˚˚Tρστω ” ϵρστω
˚T “ ´Tρστω . (A.27)

The k “ 2 case is e.g. related to the EM-field tensor. The k “ 4 case is “trivial” actually,
since the fourth-rank totally antisymmetric tensor must simply be proportional to the Levi-
Civita tensor.

• However, most important for GR is the dual of the Riemann tensor. Since the latter is
antisymmetric in two pairs of indices, it is actually possible to define two duals (different
in general), the left dual and the ... right dual, right,

˚Rαβ
κλ ”

1

2
ϵαβρσRρσκλ , R˚

αβ
κλ

”
1

2
Rαβρσϵ

ρσκλ . (A.28)

• Well, yes, one may thus consider a double dual of Riemann as well. Enjoy the application
of relation (A.4):

˚R˚αβ
µν :“

1

4
ϵαβρσRρσ

κλϵκλµν “ ´
1

4
4! δrα

κ δ
β
λδ

ρ
µδ

σs
ν Rρσ

κλ
“

“ ´
1

4
Rρσ

κλ
ˆ

ˆ pδακδ
β
λδ

ρ
µδ

σ
ν ` δακδ

σ
λδ

β
µδ

ρ
ν ` δακδ

ρ
λδ

σ
µδ

β
ν ` δβκδ

ρ
λδ

α
µδ

σ
ν ` δβκδ

σ
λδ

ρ
µδ

α
ν ` δβκδ

α
λδ

σ
µδ

ρ
ν `

` δρκδ
α
λδ

β
µδ

σ
ν ` δρκδ

σ
λδ

α
µδ

β
ν ` δρκδ

β
λδ

σ
µδ

α
ν ` δσκδ

α
λδ

ρ
µδ

β
ν ` δσκδ

β
λδ

α
µδ

ρ
ν ` δσκδ

ρ
λδ

β
µδ

α
ν ´

´ δακδ
β
λδ

σ
µδ

ρ
ν ´ δακδ

ρ
λδ

β
µδ

σ
ν ´ δακδ

σ
λδ

ρ
µδ

β
ν ´ δβκδ

ρ
λδ

σ
µδ

α
ν ´ δβκδ

α
λδ

ρ
µδ

σ
ν ´ δβκδ

σ
λδ

α
µδ

ρ
ν ´

´ δρκδ
α
λδ

σ
µδ

β
ν ´ δρκδ

β
λδ

α
µδ

σ
ν ´ δρκδ

σ
λδ

β
µδ

α
ν ´ δσκδ

α
λδ

β
µδ

ρ
ν ´ δσκδ

ρ
λδ

α
µδ

β
ν ´ δσκδ

β
λδ

ρ
µδ

α
ν q “

“ ´Rαβ
µν ` 2Rrα

µ δ
βs
ν ` 2δrα

µ R
βs
ν ´ Rδrα

µ δ
βs
ν . (A.29)

Introducing the traceless part of Ricci Sαµ :“ Rα
µ ´ 1

4
Rδαµ , one can also rewrite the above

as

˚R˚αβ
µν ` Rαβ

µν “ 2Srα
µ δ

βs
ν ` 2δrα

µ S
βs
ν “ 2Eαβ

µν , (A.30)
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where Eαβ
µν we know from the Riemann-tensor decomposition (8.5). This relation is

called the Ruse-Lanczos identity. It specifically reduces to ˚R˚αβ
µν `Rαβ

µν “ 0 if Tµν “0
(whence Sµν “ 0). The double dual has the same symmetries as Riemann itself. Let us
show another two properties:

– By contraction over pαµq one finds easily that

˚R˚µβ
µν “ Rβ

ν ´
1

2
Rδβν

`

” Gβ
ν

˘

... the Einstein tensor . (A.31)

– Divergence of the double dual is zero. Actually, by substituting to

˚R˚
αβµν

;ν
“ ´Rαβµν

;ν
`Rµα;β´Rµβ;α`Rνβ

;νgµα´Rνα
;νgµβ´

1

2
R;βgµα`

1

2
R;αgµβ

for the first term from (6.33), i.e. ´Rαβµν
;ν

“Rµβ;α´Rµα;β , this term exactly cancels
out with the second and the third terms, so one is left with

˚R˚
αβµν

;ν
“

ˆ

Rν
β;ν ´

1

2
R;β

˙

gµα ´

ˆ

Rν
α;ν ´

1

2
R;α

˙

gµβ .

We know, however, from the section about Einstein equations, that double contraction
of the Bianchi identities Rµν

rαβ;ρs “ 0 in indices pµαq and pνρq implies vanishing of the
parentheses. Hence,

˚R˚
αβµν

;ν
“ 0 . (A.32)

And, by contraction, one confirms Gβν
;ν

“ 0 as well.

– Duals of the Weyl tensor and of the other parts of Riemann’s decomposition (8.5)
now follow quite easily. First, the above Ruse-Lanczos identity (A.29) has been ob-
tained solely on the basis of the Riemann-tensor symmetries, so it actually holds for
any tensor which shares them (with the pertinent counterpart of Ricci tensor appear-
ing on the right-hand side, of course). In particular, it holds for the tensors which
stand in its decomposition (8.5). Regarding their traces (8.6), i.e.

Eκ
νκλ “ Sνλ, Gκ

νκλ “
1

4
Rgνλ ùñ Cκ

νκλ “ 0 ,

one has (let us write it in lower indices)

˚C˚
αβµν ` Cαβµν “ 0 , (A.33)

˚E˚
αβµν ´ Eαβµν “ 0 , (A.34)

˚G˚
αβµν ` Gαβµν “ 0 . (A.35)

Regarding that dual of a dual in 2 indices is minus the original tensor (A.25), another
left dualization of these relations yields

˚˚C˚
αβµν `

˚Cαβµν “ ´C˚
αβµν `

˚Cαβµν “ 0 , (A.36)
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˚˚E˚
αβµν ´

˚Eαβµν “ ´E˚
αβµν ´

˚Eαβµν “ 0 , (A.37)
˚˚G˚

αβµν `
˚Gαβµν “ ´G˚

αβµν `
˚Gαβµν “ 0 . (A.38)

Finally, left-dualizing the Ruse-Lanczos formula for Riemann (A.30), we have

˚˚R˚
αβµν `

˚Rαβµν “ ´R˚
αβµν `

˚Rαβµν “ 2 ˚Eαβµν . (A.39)

• Lemma

˚T ...ναν... “ 0 ðñ T...rνρσs... “ 0 ,

and similarly with T and ˚T switched. The asterisk means here the dual of T “in the indices
rρ, σs”.
Proof: By definition,

˚T ...ναβ... ”
1

2
ϵαβρσT...

ν
ρσ... ,

which yields, when multiplied by gβν ,

˚T ...ναν... “
1

2
ϵαβρσT...βρσ... “

1

2
ϵανρσT...rνρσs... ,

and thus the required statement.

• The lemma specifically applies to the derivative of the EM-field tensor:

˚Fαβ
”

1

2
ϵαβρσFρσ ùñ

˚Fαβ
;β “

1

2
ϵαβρσFρσ;β “

1

2
ϵαβρσFrρσ;βs .

The “duality” of source-free Maxwell equations thus shows itself: vanishing of the diver-
gence of one of the EM tensors is equivalent to vanishing of the cycle-permuted gradient
of the other.

• Let us check how the Lemma works for the Riemann tensor, too. For its right and left dual,
we have, respectively,

R˚
αβ

κλ
”

1

2
Rαβρσϵ

ρσκλ
ùñ R˚

ιβ
ιλ

“
1

2
Rιβρσϵ

ρσιλ
“ ´

1

2
Rβrιρσsϵ

ρσιλ
“ 0 , (A.40)

˚Rαβ
κλ ”

1

2
ϵαβρσRρσκλ ùñ

˚Rιβ
ιλ “

1

2
ϵιβρσRρσιλ “ ´

1

2
ϵιβρσRλrιρσs “ 0 . (A.41)

Therefore, vanishing of Rµrιρσs is equivalent to the vanishing of the contraction of dual
tensors. In the opposite direction it holds analogously,

pR˚˚
αβρσ ” q

1

2
R˚

αβ
κλϵκλρσ “ ´Rαβρσ ùñ ´Rαιρ

ι
“

1

2
R˚

α
rικλsϵκλρι , (A.42)

p
˚˚Rρσκλ ” q

1

2
ϵρσαβ

˚Rαβ
κλ “ ´Rρσκλ ùñ ´Rρικ

ι
“ ´

1

2
ϵριαβ

˚Rrαβιs
κ . (A.43)

Hence, the Ricci tensor is zero if and only if the antisymmetrization of the dual tensors in
three indices vanishes (i.e., when they satisfy an analogue of the “cyclic indentity” known
from Maxwell equations).
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A.3 Integration and general covariance
Physical equations often contain integrals and/or derivatives. Should the equations be co-
variant, the operations of integration and differentiation should be such as well. Introduction
of covariant derivative is a standard part of GR basics, whereas integration is not so often
discussed, although it is equally important in geometry (it is most notably being treated in
differential forms).

A.3.1 Invariant volume element

The simplest query is how to integrate over volume – in an invariant way (so that by integra-
tion of invariant one again gets invariant). Since the coordinate element (in a d-dimensional
space)

ddx ” dx1dx2 . . . dxd

transforms via Jacobian of the transformation,

ddx1
“

ˇ

ˇ

ˇ

ˇ

Bx1

Bx

ˇ

ˇ

ˇ

ˇ

ddx ,

it is a scalar density of weight w“ ´1. According to the lemma from the beginning of this
Appendix, we make it invariant by multiplying it by g´w{2 ” g1{2, so
a

g1 ddx1
“

?
g ddx (A.44)

is the invariant volume element. In a Lorentzian space(-time), one has to take minus g under
the square root, so in GR the element reads

?
´g d4x “ dx0dx1dx2dx3 .

Example In E3, the question reads (for example)

dV “ dxdydz “ ??? drdθdϕ

Since the corresponding metrics of E3 read

dσ2
“ dx2 ` dy2 ` dz2 “ dr2 ` r2pdθ2 ` sin2 θ dϕ2

q ,

the metric determinant amounts to g “ grrgθθgϕϕ “ r4 sin2 θ (while it is gxxgyygzz “ 1 in
Cartesian coordinates), so one concludes dV “ r2 sin θ drdθdϕ.

A.3.2 Volume, surface and line integration of scalars. Stokes theorem

If integrating over some d-dimensional region, its boundaries need not necessarily corre-
spond to constant value of some of the coordinates, so it may be suitable to introduce the
pertinent volume/surface/linear element more generally that in the preceding paragraph. In
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the region in question, one can certainly choose a certain infinitesimal basis out of d inde-
pendent infinitesimal four-vectors

␣

dpAqx
µ
( d

A“1
. The volume of an elementary d-dimensional

parallelepiped with edges given by shifts dpAqx
µ is the pseudo-scalar

ϵλ1...λddp1qx
λ1 . . . dpdqx

λd , (A.45)

where ϵλ1... λd is the d-dimensional Levi-Civita tensor. Integration can now be written covari-
antly as

ş

τ , where

τ ” Tκ1... κdδ
κ1... κd
λ1... λd

dp1qx
λ1 . . . dpdqx

λd “ d! Tκ1... κd dp1qx
rλ1 . . . dpdqx

λds (A.46)

is a differential form associated with a chosen tensor Tκ1... κd . The “oriented” integration
element is given by generalized Kronecker symbol, and the antisymmetrization in the indices
of all its linear elements can be written as the determinant

dp1qx
rλ1 . . . dpdqx

λds
“

1

d!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dp1qx
λ1 . . . dp1qx

λd

. . . . . . . . .
dpdqx

λ1 . . . dpdqx
λd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. (A.47)

As from the tensor Tκ1...κd clearly applies its antisymmetric part only, one may right away
assume that it is antisymmetric, but then it has to be proportional to the Levi-Civita tensor of
the pertinent rank.

• In the d“4 case appears the symbol δαβγδµνκλ “ ´ϵαβγδϵµνκλ, so if we introduce a pseudo-
scalar T by the relation

Tαβγδ “ Tϵαβγδ ,

the integration assumes the form
ż

Ω

Tαβγδδ
αβγδ
µνκλ dp1qx

µdp2qx
νdp3qx

κdp4qx
λ

“ 4!

ż

Ω

TdΩ , (A.48)

where the 4D element reads

dΩ “ ϵµνκλ dp1qx
µdp2qx

νdp3qx
κdp4qx

λ .

In particular, if the infinitesimal elements point in the direction of the coordinate axes,
i.e. each and every vector dpAqx

µ solely has the A-th component and that is given by dxA

(A “ 1, . . . , d), the prescription reduces to
ş

Ω

T
?

´g d4x from the preceding subsection.

• In the d“3 case one has δαβγµνκ “ ´ϵαβγλϵµνκλ, and the tensor Tαβγ can be associated with
a pseudo-vector T σ according to Tαβγ “ T σϵαβγσ. The integral then becomes

3!

ż

V

T σdVσ , (A.49)

where the oriented volume element reads

dVσ “ ϵµνκσ dp1qx
µdp2qx

νdp3qx
κ .
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• In the d“2 case we substitute δαβµν “ δαµδ
β
ν ´ δαν δ

β
µ , thus arriving at the integral

ż

S

TαβdS
αβ

“

ż

S

pTαβ ´ Tβαq dp1qx
αdp2qx

β (A.50)

over the surface element

dSαβ “ dp1qx
αdp2qx

β
´ dp1qx

βdp2qx
α .

• Finally, the d“1 case corresponds to the length element dlα“dxα and to the line integra-
tion
ż

γ

Tαdx
α . (A.51)

Stokes theorem

permits to translate the integration (of some tensor) over a boundary of some region into the
integration (of the derivative of that tensor) over the enclosed region, and vice versa:

¿

Bpregionq

τ “

ż

region

dτ . (A.52)

Here, τ is the differential form associated with the tensor Tκ1... κd´1
–

τ ” Tκ1... κd´1
δ
κ1... κd´1

λ1... λd´1
dp1qx

λ1 . . . dpd´1qx
λd´1 “

“ pd ´ 1q! Tκ1... κd´1
dp1qx

rλ1 . . . dpd´1qx
λd´1s ,

and dτ is its exterior differential,

dτ “ Tκ1... κd´1,κd δ
κ1... κd´1κd
λ1... λd´1λd

dp1qx
λ1 . . . dpd´1qx

λd´1dpdqx
λd “

“ d! Tκ1... κd´1,κd dp1qx
rλ1 . . . dpd´1qx

λd´1dpdqx
λds .



APPENDIX B

Killing and Killing-Yano tensors

Killing vector fields can be viewed as a subclass of more general objects connected with more
“hidden” symmetries of space-time – the so-called Killing tensors and Killing-Yano tensors.

Killing tensors (ξµ...ν) are totally symmetric tensors which satisfy the generalized Killing
equation

ξpµ...ν;αq “ 0 . (B.1)

Killing-Yano tensors (Yµ...ν) are totally antisymmetric tensors which satisfy a different pos-
sible generalization of the Killing equation,

Yµ...pν;αq “ 0 . (B.2)

Several simple properties of these tensors:

• Similarly as for a Killing vector, the existence of the Killing tensor implies conservation of
the quantity ξµ...νuµ... uν along geodesics (with tangent vector uµ):

d

dτ
pξµ...νu

µ... uνq “
D

dτ
pξµ...νu

µ... uνq “ ξµ...ν;αu
µ... uνuα “ ξpµ...ν;αqu

µ... uνuα “ 0 .

• Obviously, the metric tensor itself is “trivially” the Killing tensor – the corresponding
constant of geodesic motion is gµνuµuν “ ´1. Similarly, trivial Killing tensors are also
symmetrized products of Killing vectors, ξµ... ν “ ξpµ... ηνq:

ξpµ... ν;αq “ ξpµ;α... ηνq ` ... ` ξpµ... ην;αq “ 0 ,

because gradients of the Killing vectors ξµ;α, ... , ην;α are antisymmetric.

• Important relation: the existence of the second-rank Killing-Yano tensor implies the exis-
tence of the second-rank Killing tensor – it is given by “square” of the Killing-Yano tensor,
ξµν “ YµιYν

ι. Actually, if Yµpν;αq “ 0, then

3 ξpµν;κq “ pYµαY ν
α
q;κ ` pYκαY µ

α
q;ν ` pYναY κ

α
q;µ “

623
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“ ´2Yαpµ;κqYν
α

´ 2Yαpκ;νqYµ
α

´ 2Yαpν;µqYκ
α

“ 0 .

The opposite implication does not hold in general.

• In 4D, the Killing-Yano tensor can maximally be of the 4th rank. However, the 1st-rank and
the 4th-rank cases are trivial – Yµ is just the Killing vector and Yµνκλ is proportional to the
Levi-Civita tensor. The corresponding Killing tensors are YµYν and 1

6
ϵµαβγϵ

αβγ
ν “ gµν ,

respectively. The Killing-Yano tensor of the 3rd rank has, due to its total antisymmetry,
only 4 independent components, so it can be represented by the vector dual

hµ :“
1

3!
ϵµ
αβγYαβγ .

Using the equations Yαβpγ;νq “ 0 and inversion of the definition Yαβν “ ϵαβνσh
σ, one

obtains the equation for hµ:

6hµ;ν “ ϵµ
αβγYαβγ;ν “ ´ϵµ

αβγYαβν;γ “ ´ϵµ
αβγϵαβνσh

σ
;γ “ 2pgµνδ

γ
σ ´ gµσδ

γ
ν qhσ ;γ “

“ 2gµνh
σ
;σ ´ 2hµ;ν

ùñ hµ;ν “
1

4
gµνh

σ
;σ .

Duals of the Killing-Yano tensors are called closed conformal Killing-Yano tensors.
They are of the rank = dimension minus rank of the KY tensor, and the general relation
between their properties is indicated by the above example: gradient of the KY tensors has
only antisymmetric part, while gradient of their duals has only trace part.

• If it is possible to express the Killing tensor in terms of the Killing-Yano tensor, then the
constants of geodesic motion ξµνu

µuν can also be expressed in terms of the KY-tensor
invariants. Namely, a tensor Yµν is the KY tensor if and only if the vector Yµνuν parallel
transports along arbitrary geodesic (of which uν is the tangent vector),

D

dτ
pYµνu

ν
q “ pYµνu

ν
q;αu

α
“ Yµν;αu

νuα “ Yµpν;αqu
νuα “ 0 ðñ Yµpν;αq “ 0 .

From here immediately follows conservation of the scalar product gµνY µ
αu

αY ν
βu

β “

ξαβu
αuβ ,

d

dτ

`

gµνY
µ
αu

αY ν
βu

β
˘

“
D

dτ

`

gµνY
µ
αu

αY ν
βu

β
˘

“ 0 .

In the case of the 3rd-rank KY tensor, the same holds for the tensor phµuν ´ hνuµq com-
posed of its dual hµ,

phµuν ´ hνuµq;αu
α

“ phµ;αuν ´ hν;αuµquα “
1

4
hσ ;σpgµαuν ´ gναuµquα “ 0 .

These properties indicate that the existence of the Killing and Killing-Yano tensors is
closely related to the separability of the geodesic equation (to the existence of its separated
first integrals), but it turned out that it is also interconnected with separability of other
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differential equations. In other words, the Killing(-Yano) tensors do not describe direct
symmetries of space-time (of metric), but rather symmetries in the dynamics of test parti-
cles and fields (thus concerning the symplectic structure). However, their existence meets
at numerous points with the properties of Killing vectors and also with the properties of
space-time curvature.

• Maximal number of independent Killing tensors which can exist in a 4D space-time is
50, while for Killing-Yano tensors it is 10. These maximal numbers exist in “maximally
symmetric space-times” of constant curvature.

• Observation: A bivector Yµν is the KY tensor if and only if ˚Yρσ;κ “ 2ξrρgσsκ,
where ˚Yρσ :“ 1

2
ϵρσ

µνYµν is the dual of the tensor Yµν and ξβ :“ 1
6
ϵβµνκYµν;κ is the dual of

its gradient Yµν;κ.

Proof: Let a bivector Yµν be the KY tensor, so let Yµpν;κq “ 0. This means that the tensor
Yµν;κ is antisymmetric in all the three indices, so it can be expressed in terms of its dual ξα

as Yµν;κ“ϵµνκαξ
α. Then, for a dual ˚Yρσ of the tensor Yµν we have

1

2
pϵρσ

µνYµνq;κ “
1

2
ϵρσ

µνYµν;κ “
1

2
ϵρσ

µνϵµνκαξ
α

“ pgραgσκ ´ gρκgσαqξα “ 2ξrρgσsκ ,

where we used the product formula (A.6).
Opposite implication: if some bivector Yµν and some covector ξρ satisfy the relation

1

2
ϵρσ

µνYµν;κ “ 2ξrρgσsκ ,

then by multiplying the latter by 1
2
ϵαβ

ρσ and by employing the “ϵ ¨ ¨ ϵ” formula again, it
follows

´Yαβ;κ “ ´ϵαβκσξ
σ ,

from where clearly Yαpβ;κq “ 0. l

• Another observation: In Chapter11, we derived the formula (11.17) for the Lie derivative
of affine connection,

ξµ;κλ “ ξµ;κλ ` Rµ
κδλξ

δ .

Consider the case when this expression vanishes, so ξι;κλ“Rικλδξ
δ. Then ξpι;κq is a Killing

tensor, because ξpι;κλq “Rpικλqδξ
δ“0.

B.1 Other types of symmetries
There exists a number of other, less straightforward and intuitively less accessible symme-
tries. Let us just touch on several of them. The mapping gµν Ñ Ω2gµν , where Ω is a non-zero
scalar function, is called the conformal isometry. Its generator ξµ, satisfying

p£ξgµνq “ ξµ;ν ` ξν;µ “ 2ϕgµν (B.3)
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(the scalar function ϕ is connected to Ω by a line integral), is called the conformal Killing
vector (or also the conformal motion). If ϕ is constant, the vector ξµ is called the homothetic
vector (the homothetic motion); especially if ϕ“0, then ξµ is the ordinary Killing vector or
motion (the mapping is an isometry) from Section 11.4.

In GR, main attention is being devoted to continuous symmetries of space-time, i.e. to
the symmetries of the Einstein equations, but privileges of the vector fields may of course
follow from symmetries of other equations or quantities of the theory. For example, the map-
pings which transforms between geodesics are called projective collineations, with those con-
serving affine parameterization being called affine collineations. Ricci collineations are anal-
ogous to isometries, but for the Ricci tensor instead for the metric, and curvature collineations
work similarly for the Riemann tensor. Between these symmetries and other space-time fea-
tures (algebraic type, but also the existence of the integrals of geodesic motion) exist many
relations which, however, cannot be summarized in a few brief statements; we refer to the
monography [44].
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Václav Boštík: bez názvu (without name)
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