
KILLING HORIZONS

notes for BH-thermodynamics course1

1 For a rigorous yet well-readable account on basic properties of Killing horizons, see B. Carter, J.

Math. Phys. 10 (1969) 70. (It does not involve “thermodynamics” yet.)
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Some people think that everything important lives on a boundary. In physics, the idea that

behaviour of the “bulk” can be described by theories formulated on its boundary is called the

holographic principle. After a lunch, I tend to doubt about it, yet it might at least work for

black holes. Actually, the holographic viewpoint was inspired by the proposal (in 1972) by

Jacob Bekenstein to connect the entropy of a black hole with the proper area of the horizon. In

terms of such a quantity, he formulated the second law of black-hole thermodynamics. Were

Bekenstein right, the usual first-law term TdS would require that the black hole have tem-

perature, proportional to the quantity called surface gravity. Bardeen, Carter and Hawking

subsequently (1973) wrote the paper “The four laws of black hole mechanics” where they

added, for a stationary and axisymmetric black hole, the other three laws.

As it is clear from Carter’s thorough lecture on stationary black holes in the proceedings

of the famous Les Houches ’72 Summer School, the authors of the paper themselves did not

think their laws were more than an analogy of thermodynamics. In particular, Hawking

embarked on showing that black holes do not emit thermal radiation, in order to demonstrate

that the horizon “temperature” does not have its usual sense, and so neither the area really

represents the black-hole entropy. Employing the quantum-field theory on a (classical) curved

background, he managed to show (1974) just the opposite: black holes do emit radiation, in

accord with the black-body formula.1 The road to black-hole thermodynamics was open.

Yet, wait, thermodynamics of pure geometry? Nothing that strange, actually: according

to quantum field theory, an accelerated observer sees thermal bath, even in a flat space-time

where an inertial observer sees pure vacuum (so called Unruh effect). And acceleration (in-

ertial field) is equivalent to gravity, isn’t it?

Today, the thermodynamics of black holes – of something “built from pure geome-

try" – is considered a key to deep connections between gravitational, quantum and statistical

physics. Since the gravitational degrees of freedom should also contribute to the relevant

quantities, a complete picture also requires to quantize these (not only the other fields “living

on a background”). The area is thus being studied heavily as one of the promising targets –

and tests – of any attempt to quantize gravitation.

Below, as a starting point, we mention several notions and results from the geome-

try and physics of black-hole horizons. We naturally restrict to non-dynamical, stationary

horizons. In the electro-vacuum and asymptotically flat case, the uniqueness theorems say it

leads to the Kerr-Newman family of solutions, but we will be slightly more general and will

consider stationary and axisymmetric setting (often so-called circular in addition).

Although many definitions of black-hole horizons exist, in a generic situation it is not

entirely clear what “a black hole” actually means. Anyway, the laws of black-hole thermo-

dynamics start from a stationary and axially symmetric situation: the zeroth law states that

on a stationary horizon the surface gravity is everywhere the same, and the first law fixes the

“first thermodynamic law” for changes of basic quantities (mass, horizon area, charge and

spin) characterizing the transition of the black hole between two close stationary states. The

word “axisymmetric” has disappeared somehow, yet it is there automatically: if a stationary

black hole is not static, i.e. if it is rotating, then it has to be axisymmetric, since otherwise –

with some bump on it – it would emit gravitational waves, so it could not be stationary.

1 Black hole is quite an ideal black body, isn’t it...



2

Notation

V µ ... a generic vector field

ξµ ... a (generic) Killing vector field

tµ ... time-symetry Killing vector field

φµ ... axial-symmetry Killing vector field

t, φ ... Killing coordinates (chosen as parameters along the respective symmetries),

tµ “: Bxµ

Bt
, φµ “: Bxµ

Bφ

gtt ” gµνt
µtν , gtφ ” gµνt

µφν , gφφ ” gµνφ
µφν ... Killing part of the metric

ω :“ ´ gtφ
gφφ

... dragging angular velocity; ωH ... its horizon value

N ... lapse function (N2 “´gtt´gtφω)

hµ :“ tµ ` ωHφ
µ ... the Killing vector field which generates the horizon

N
µ :“ Nnµ :“ tµ ` ωφµ ... vector field orthogonal to hypersurfaces t“const

(on a Killing horizon, Nµ and hµ coincide, including their gradient)

nµ :“ 1
N
N

µ ... unit version of Nν (four-velocity of zero-angular-momentum congruence)

ωµrV s (sometimes without rV s) ... vorticity vector of a (co)vector field V µ

Θµν , σµν ... expansion and shear tensors (of a given vector field)

κ, κH ... acceleration scalar and its horizon value ” surface gravity

1.1 Selected properties of Killing vector fields

The Killing vector fields ξµ fix directions along which the space-time metric does not change.

Such a property is naturally expressed in terms of the Lie derivative. The Lie derivative is

a very “low level” operation, it needs neither the connection and nor the metric, yet if we

speak of the Lie derivative of the metric, the latter has to be there, right? Let us also assume

the space-time is equipped with the Levi-Civita connection as it is standard in GR. Then the

(Killing) equation for the Killing fields writes

0 “ £ξgµν “ gµν,ιξ
ι ` ξι,µgιν ` ξι,νgµι “ ✘✘✘gµν;ιξ

ι ` ξι;µgιν ` ξι;νgµι “ ξν;µ ` ξµ;ν “: 2ξpµ;νq .

The Killing vector fields have many simple properties, of which we only mention the

clearly vanishing expansion scalar, i.e. ξµ;µ “ 0. Next, let us mention an important relation

between Killing vector fields and curvature. In the Ricci identity for ξν ,

ξν;κλ ´ ξν;λκ “ Rσ
νκλξσ,

we anti-commute, by the Killing equation, ν and λ in the second term, and then we write the

relation together with its cyclic permutations:

ξν;κλ ` ξλ;νκ “ Rσ
νκλξσ ,

ξλ;νκ ` ξκ;λν “ Rσ
λνκξσ ,

ξκ;λν ` ξν;κλ “ Rσ
κλνξσ .

Now add the first and the last equation, while subtracting the middle one (for example),

2ξν;κλ “ pRσ
νκλ ` Rσ

κλν ´ Rσ
λνκqξσ “

`

✘✘✘✘Rσ
tνκλu ´ 2Rσ

λνκ

˘

ξσ “ ´2Rσ
λνκξσ

ùñ ξν;κλ “ ´Rσ
λνκξσ “ Rνκλσξ

σ . (1.1)
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• Corollary: by contraction of this equation, one has

ξν;
κ
κ ” l ξν “ ´Rσ

νξσ . (1.2)

If the Ricci tensor vanishes, this corresponds to the (de Rham) wave equation for the EM

four-potential (otherwise the signs at the curvature terms are opposite). Regarding also

that the Killing fields automatically satisfy the “Lorenz condition” ξµ;µ “0, one infers the

following: in space-times with Rµν “ 0, the knowledge of a Killing vector implies the

knowledge of a possible EM four-potential. (Note that the corresponding EM field must be

a test field, because otherwise the Ricci tensor would be Rµν “8πT µν
EM rather than zero.)

• Another corollary: projecting (1.1) twice on a tangent vector uµ “ dxµ

dτ
of any geodesic

(Duµ

dτ
“0), we find

ξν;κλu
κuλ “ Dξν;κ

dτ
uκ “ Dpξν;κuκq

dτ
“ D2ξν

dτ 2
“ Rνκλσu

κuλξσ . (1.3)

That means, the Killing vectors satisfy the geodesic-deviation equation.

1.2 A useful formula

Have a vector field V µ (imagine it is time-like, though it is not necessary). Denote

gµνV
µV ν “:´N2 ñ p´N2q;α “2Vµ;αV

µ , and ωµrV s :“ 1

2
ǫµνκλVν;κVλ .

Using the famous relation

ǫµνκλǫ
µαβγ “ ´3! δrα

ν δβκδ
γs
λ , (1.4)

we obtain, for the square of the vorticity (twist) ωµrV s,

4ωµω
µ “ ǫµνκλV

ν;κV λ ǫµαβγVα;βVγ “
“ ´

´

δαν δ
β
κδ

γ
λ ` δγν δ

α
κ δ

β
λ ` δβν δ

γ
κδ

α
λ ´ δβν δ

α
κδ

γ
λ ´ δγν δ

β
κδ

α
λ ´ δαν δ

γ
κδ

β
λ

¯

V ν;κV λVα;βVγ “
“ V α;βVα;βN

2 ´ V γ;αV βVα;βVγ ´ V β;γV αVα;βVγ

´ V β;αVα;βN
2 ` V γ;βV αVα;βVγ ` V α;γV βVα;βVγ “

“ 2N2V rα;βsVα;β ´ 2V rγ;αsVγVα;βV
β ` 2V rγ;βsVγVα;βV

α .

Relabelling α Ø β in the last term, we reach a very useful formula

4ωµω
µ “ 2N2V rα;βsVα;β ` 4V rγ;αsVγVrβ;αsV

β . (1.5)

Corollary for Killing fields : If V µ is Killing, V µ Ñ ξµ, i.e. if ξrα;βs “ξα;β , it becomes

4ωµω
µ “ 2N2ξα;βξα;β ` pN2q;αpN2q;α . (1.6)
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Also, writing pN2q;αpN2q;α “ 4N2N ;αN;α and

2ξα;βξα;β “ 2pξα;βξαq;β ´ 2ξα;ββξα “ p´N2q;ββ ` 2Rαβξ
αξβ “ (1.7)

“ ´2N;βN
;β ´ 2N lN ` 2Rαβξ

αξβ ,

one brings curvature into the formula through equation (1.2),

2ωµω
µ “ N2

`

N ;αN;α ´ N lN ` Rαβξ
αξβ

˘

. (1.8)

1.3 Killing horizon: Vishveshwara, otherwise vacuum

We will now focus on such Killing fields which somewhere become light-like (while not

being light-like around). More specifically, we will be interested in the situation when they

become light-like on a connected null hypersurface (which will be called a Killing horizon

then). The Killing vector field which thus “generates” the horizon will be denoted by hµ.

Let us remark there exist different horizons, typically being null hypersurfaces, some-

times even having Killing generators. Very loosely speaking, they usually represent causal

boundaries of certain regions which are “dragged with respect to the rest of space-time in a

superluminal speed”, either by strong gravity (black-hole horizons), by “dark energy” (cos-

mological horizons) or simply by boost/acceleration of a family of observers (acceleration

horizons). In order to represent a black-hole event horizon, the Killing horizon should be

non-singular (geodesically complete) and closed in the sense that its topology is S2ˆR.

Definition The set tgµνhµhν ” ´N2 “ 0, with hµKilling and hµ ‰ 0u, is called a Killing

horizon, if it is a connected null hypersurface (or a union of such).

Proposition Two orthogonal null vectors are necessarily proportional to each other.

Proof: Orthogonality is a local property, and one can at every point work in a locally Minkowskian

frame where gµν “ηµν . So, have a non-trivial null vector kµ and some other non-trivial vector

V µ orthogonal to kµ:

0 “ ηµνk
µkν “ ´pk0q2 ` k2 ñ pk0q2 “ k2 ,

0 “ ηµνk
µV ν “ ´k0V 0 ` ~k ¨ ~V ñ V 0 “

~k ¨ ~V
k0

ñ pV 0q2 “ p~k ¨ ~V q2
k2

,

where k2 :“~k ¨ ~k ” ηijk
ikj “ δijk

ikj and likewise for V 2. Then

ηµνV
µV ν “ ´pV 0q2 ` V 2 “ ´p~k ¨ ~V q2

k2
` V 2 “ ´pkV cosαq2

k2
` V 2 “ V 2 sin2 α ,

with α the angle between ~k and ~V . Therefore, V µ is space-like in general (sinα ‰ 0), with

the special exception of sinα “ 0 when it is null. However, the latter case means ~V “ λ~k

(with λ some constant), which enforces

V 0 ”
~k ¨ ~V
k0

“ λk2

k0
“ λpk0q2

k0
“ λk0 ùñ V µ “ λkµ .
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Lemma On its horizon, the Killing field is proportional to the normal of that hypersurface.

Proof: On the Killing horizon, by definition, hµ is light-like and the normal pN2q;µ as well,

while both are non-zero. And they are orthogonal to each other, p´N2q;αhα “ 2hµ;αh
µhα “

2hpµ;αqh
µhα “ 0. Hence, they must be proportional. (That means, hµ is a null generator of

the Killing horizon, being both tangent and orthogonal to it.)

Corollary:

Since, on the Killing horizon, the vectors hµ and pN2q;µ are proportional to each other,
1
2
pN2q;µ “ ´hα;µhα “ hµ;αhα “ κHh

µ, it means hµ is geodesic there; and we have intro-

duced an invariant κH quantifying how much non-affine its parameterization is. It is called

the surface gravity and will be very important later.

Theorem [Vishveshwara (1968)]

The set tgµνhµhν ” ´N2 “ 0, with hµ Killing and hµ ‰ 0u is a null hypersurface (thus a

Killing horizon) if and only if ωµrhs“0 there, with pN2q;α ‰0.

Proof ñ: First, the above Lemma says that on the horizon hµ and pN2q;µ are proportional.

Hence, if hµ is non-trivial, pN2q;µ must be as well, and since pN2q;µ is hypersurface-orthogonal

by construction, hµ has to be as well, thus having zero vorticity there. (Note that from the

formula (1.6) it only follows that ωµ is null there, ωµω
µ “0.)

Proof ð: If ω“0 on the set tN2 “0u, formula (1.6) says that this set has to be null. Besides

that, Frobenius says it is an integral hypersurface. And, if pN2q;µ ‰0 there, it implies that hµ

is non-trivial there as well, because – again – these two vectors have to be proportional there.

Lemma On a Killing horizon, Rαβh
αhβ (thus Tαβh

αhβ) has to vanish.

Proof follows from the Killing property, from the Raychaudhuri equation and from the the-

orem by Vishveshwara. Consider first that for a geodesic null field (a generic one, not nec-

essarily Killing yet) which is not affinely parameterized, kα;βk
β “ κkα, the Raychaudhuri

equation reads

Θ;λk
λ “ pkα

;βk
βq;α ´ 1

2
Θ2 ` 2ω2 ´ 2σ2 ´ Rαβk

αkβ .

Actually, recall that in a time-like case, when acceleration aα :“uα
;βu

β is taken into account,

the Raychaudhuri equation involves the extra term aα;α. Here the role of this term is played

by pkα
;βk

βq;α “ pκkαq;α. Now consider the case of a Killing vector field (which somewhere

has its horizon), kµ Ñ hµ. For such, hµ;ν “hrµ;νs, so the expansion scalar Θ ” hµ
;µ “ 0 and

(thus) the shear scalar reads

σ2 “ 1

2 ✟✟✟hpµ;νqh
µ;ν ` 1

4
κ2hµh

µ ´ ❅❅Θ2

4
.

On its horizon, hµ is null, so the shear scalar vanishes completely, and hµ has zero vorticity

(Vishveshwara theorem), hence the Raychaudhuri equation reduces to 0 “ phα
;βh

βq;α ´
Rαβh

αhβ. Finally, the red term reads

phα
;βh

βq;α “ pκhαq;α “ κ,αh
α ` κ,α✟✟✟hα

;α ,
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of which the second part vanishes (everywhere) due to the zero expansion, and the first part

has to vanish on the horizon, because the horizon value κH has to be constant along hα (since

the latter is a symmetry generator). Well, let us show the latter formally: application of the

covariant derivative along hα to the equation κ2
H “ ´1

2
hµ;νhµ;ν yields

hαpκ2
Hq;α “ ´hαhµ;νhµ;να “ ´hµ;νRµνασh

αhσ “ 0 .

Hence, Rαβh
αhβ “0 on the Killing horizon. Using the Einstein equations (in principle

even with the cosmological term), this means that Tαβh
αhβ “0 on a Killing horizon. Actually,

on the horizon where hµ is null, one has

8π Tαβh
αhβ “

ˆ

Rαβ ´ 1

2
Rgαβ ` Λgαβ

˙

hαhβ “ Rαβh
αhβ .

Corollary: The condition Tαβh
αhβ “0 can only be satisfied by a vacuum or by a special EM

field aligned with hµ, as it is clear from the EM energy-momentum tensor:

4πTαβh
αhβ “ pFαιFβ

ι ` ˚Fαι
˚Fβ

ιqhαhβ “ Fαιh
αFβ

ιhβ ` ˚Fαιh
α˚Fβ

ιhβ “ EιE
ι ` BιB

ι ,

where Eι :“ ´Fαιh
α, Bι :“ ˚Fαιh

α. Hence, both the electric-field and magnetic-field vectors

have to be light-like, which means they have to be proportional to hµ on the horizon; in other

words, hµ has to be a common principal null vector of both Fαι and ˚Fαι.

Another corollary: The condition Tαβh
αhβ “ 0 means that Tαβh

β is orthogonal to hα which

however is null on the horizon, so Tαβh
β has to be either space-like or null. But the dominant

energy condition requires that Tαβh
β be causal (time-like or null), so the only (limit) option is

left that Tαβh
β is light-like. Two orthogonal light-like vectors necessarily being proportional,

this means that Tαβh
β „ hα on a Killing horizon.

Another expressions of κH: By the Vishveshwara theorem, a Killing field has zero vorticity

on its horizon, hence it is hypersurface-orthogonal there.2 This is equivalent to the property

(see GR course, Frobenius theorem)

0 “ htα;βhλu ” hα;βhλ ` hλ;αhβ ` hβ;λhα .

Multiplying this equation by hα;β , one obtains

0 “ hα;βhα;βh
λ ` hλ;αhα;βh

β ` hβ;λhα;βh
α “ hα;βhα;βh

λ ` hλ;ακHhα ´ hβ;λκHhβ “
“ hα;βhα;βh

λ ` κ2
Hh

λ ` κ2
Hh

λ “ phα;βhα;β ` 2κ2
Hq hλ

ùñ κ2
H “ ´1

2
hα;βhα;β .

Yet another expression of κH: On the horizon (where Rαβξ
αξβ “ 0), equation (1.7) implies

(for ξµ Ñ hµ)

κ2
H ” ´1

2
hα;βhα;β “ ´1

4
l p´N2q .

2 Actually, we have just shown that, on the horizon, 1
2

pN2q;µ “ κHh
µ, which means that hµ is hypersurface-

orthogonal there since hα “ 1
2κH

pN2q,α.
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1.4 Stationary (and axisymmetric) black holes

Most notably it was Roger Penrose who, at the end of 1960s, was arguing that total gravi-

tational collapse is a generic tendency of large masses, rather than anything just tied to very

high symmetries or otherwise special initial conditions. He outlined the picture of such a col-

lapse, accompanied by radiating away most of the features of the collapsing object, and leav-

ing a relatively simple black hole which in a correspondingly short dynamical time (scaled

by GM{c3) settles to a quasi-stationary state (if not strongly perturbed further, of course).

Intuitively, a stationary yet non-static, i.e. rotating body should be axisymmetric, since

otherwise it would generate gravitational waves (and possibly EM waves as well), so it could

not stay stationary. This was really subsequently proved by Stephen Hawking within his

strong rigidity theorem [1972]. He showed that the stationary horizon has to be either

static or axially symmetric, and that the boundaries of stationary black holes represent Killing

horizons of the asymptotically time-like Killing vector fields. Indeed, however generic our

previous section may have sound, it factually concerned the stationary and axisymmetric

space-times. Leaving this fundamental part outside the scope of these notes, let us at least

sketch the notions and results which are necessary.

Definition Complement of the causal past of future null infinity is called a black hole. By

this definition, black hole is the region from where there is no escape to future null infinity.

The boundary of a black hole is called the (future) event horizon.

Remark: The space-time in which these notions are defined is supposed to be strongly

asymptotically predictable, which means i) asymptotically flat and ii) with the closure of

the causal past of future null infinity being globally hyperbolic (more precisely, there has to

exist an open region of “conformal” space-time – obtained from the original one by a confor-

mal transformation – which is globally hyperbolic and which contains the whole closure of

the causal past of future null infinity of the original space-time). Practically, this means the

absence of naked singularities.

It turns out that the event horizon is necessarily a 3D achronal (space-like or light-like) hy-

persurface. Worth to have in mind that the event horizon is a global concept in the sense that

one has to know all the space-time up to future null infinity in order to decide whether and

where there is a black hole. There exist quasi-local definitions of horizons, mostly based on

Penrose’s (marginally) trapped surfaces (compact 2D submanifolds such that both outgo-

ing and ingoing orthogonal geodesic null congruences have non-positive expansions). In a

dynamical situation, the various horizons may differ (and they typically differ from the in-

stantaneous event horizon), but for stationary space-times they all coincide and reduce to the

Killing horizon of the respective time Killing field. The strong rigidity theorem is the crucial

result in this direction.

The strong rigidity theorem [Hawking 1972]

• Have a stationary event horizon in a space-time which is analytic, where the fundamental

matter fields obey well-behaved hyperbolic equations and where the weak energy condition
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holds. The null generator of such a horizon coincides there with a certain Killing vector

field of the whole space-time, hence it is a Killing horizon.

• There are only two possibilities: either the (Killing) field which generates the horizon is

hypersurface-orthogonal (i.e., the region outside the black hole is static), or there exists

another, axial Killing vector field (an asymptotically space-like field with closed orbits and

non-empty set of fixed points [the axis]).

So let us consider stationary and – necessarily – axisymmetric black holes. Denote

by tµ and φµ the time and the axial Killing fields. We assume the two symmetries commute,

as it is always the case in an asymptotically flat space-time. Denote by t and φ the parameters

of the time and the axial symmetries. Physically, t represents proper time of a rest observer at

infinity, while φ represents the azimuthal angle (supposed to range from 0 to 2π in the sense

of the source rotation). The Killing fields then write tµ “ Bxµ

Bt
, φµ “ Bxµ

Bφ
. We (thus) assume

there exists a regular symmetry axis where the azimuthal circumference of the orbits of φµ

(which amounts to 2πgφφ) shrinks to zero, i.e. where gφφ ” gµνφ
µφν vanishes.

Corollary [explaining why “rigidity” theorem] :

Angular velocity of the stationary axisymmetric horizon is constant all over the horizon.

Proof: The Killing field (hµ) claimed to coincide, on the horizon, with the latter’s null gen-

erator has to be a linear combination of tµ and φµ, since otherwise it would indicate the

existence of a third independent symmetry (which however is assumed not to be present).

With a suitable normalization, one can thus write hµ “ tµ `ωHφ
µ. The quantity ωH has to be

constant (even off the horizon), because otherwise hµ would not satisfy the Killing equation.

Now, since the horizon has to itself stay invariant under the action of tµ and/or φµ, these vec-

tors have to be tangent to it (being space-like in general), and since hµ should be null on the

horizon, they should also be normal to hµ there. Hence, on the horizon, multiplication of the

above relation by hµ yields 0“0, while multiplications by φµ and by tµ yield

ωH “ ´ φµt
µ

φαφα
” ´ gµνt

µφν

gαβφαφβ
” ´ gtφ

gφφ
, ωH “ ´ tµt

µ

tαφα
” ´ gµνt

µtν

gαβtαφβ
” ´ gtt

gtφ
,

where the metric components are evaluated on the horizon. The first expression indicates that

ωH can be interpreted as the angular velocity of the horizon with respect to infinity. Equating

the two expressions, one obtains

0 “ ´gttgφφ ` pgtφq2 “ gφφp´gtt ´ gtφωHq ” gφφN
2 .

Indeed, it is easy to check that this N2 coincides with the one introduced before in Sections

1.2 and 1.3, since

´N2 ” hµh
µ “ ptµ ` ωHφµqptµ ` ωHφ

µq “ gtt ` 2gtφωH ` gφφω
2
H “ gtt ` gtφωH .

1.5 Warnings

Consider such a thought: let hµ be a Killing-horizon null geodesic generator. Then the l.h.

side of hµ;αhα “ κHh
µ can be written as ´hα;µhα, because hµ is Killing. And hµ is also null,

hence hα;µhα “0. So what is it all about?
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• One may make such mistakes at many places of the Killing-horizon calculations. The point

is that hµ is only null at the very horizon – this property in fact defines the horizon, it is

(and has to be) specific for it. So p´N2q;µ ” phαhαq;µ “ 2hα;µhα is non-zero. Indeed,

remember this was especially claimed/assumed in the Vishveshwara theorem.

• The Killing property of hµ is a subtle point, too. It is factually only required at the horizon.

Actually, recall the careful wording of the strong rigidity theorem: “The null generator of

such a horizon coincides there with a certain Killing vector field of the whole space-time...”

So one may either base the study on a vector field which is Killing everywhere, albeit it may

be unphysical (e.g. space-like) at some regions; or, one may know of some “reasonable”

vector field (possibly with certain favourable properties) which however is only Killing at

the very horizon. While the first (everywhere Killing) option is the hµ “ tµ ` ωHφ
µ field

(which is space-like above a certain radius), we will see the second option (Killing only at

the horizon) is the field N
µ “ tµ ` ωφµ, with ω :“ ´ tµφ

µ

φαφα (which is time-like everywhere

outside the horizon). We will see such a field, for example, has the nice property that it is

everywhere vorticity-free.

• Indeed, the vanishing vorticity (i.e., hypersurface orthogonality) is another “issue”: vortic-

ity is also only required to vanish for the horizon generator. Of the above two fields, the

everywhere-Killing one, hµ “ tµ ` ωHφ
µ, is only vorticity-free at the horizon, whereas

N
µ “ tµ ` ωφµ will be shown to have zero vorticity everywhere.

Clearly, one has to always take care of where, how generally the given property is being

employed. In particular, the most precarious is to use any of the properties (potentially only

applying at the very horizon) under a derivative. In such a case, one should always check

carefully how the given quantity behaves under a given differentiation.

1.6 Orthogonal transitivity and circularity

We have mentioned how one has to be careful about what holds “in a volume” (perhaps even

everywhere) and what only holds on the horizon. Another source of confusion may be how

general is the host space-time. The basic statements concerning Killing horizons really just

require that a certain Killing vector field becomes null on a null hypersurface. However, if

one considers – most naturally – the Killing field representing stationarity, the strong rigidity

theorem claims that stationarity also implies axisymmetry (if not staticity), though under

the very strong assumption of the metric analyticity. In an asymptotically flat case, the two

symmetries commute, so one naturally arrives at stationary and axisymmetric space-times.

Within that setting, the crucial results (such as the rigidity theorem or the zeroth law

of black-hole thermodynamics we will derive later) follow by Einstein equations and some

of the energy conditions (plus possibly the analyticity). Another possibility is to assume

that the space-time moreover is orthogonally transitive. Then those conclusions follow by

purely geometric means, irrespectively of the field equations. When speaking of stationary

and axisymmetric space-times, people often suppose this additional property automatically,

yet it is by no means granted, so we somewhat go into it below.
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The planes locally spanned by two independent smooth vector fields are called the sur-

faces of transitivity of the continuous group generated by these fields. The group is said

to be orthogonally transitive, if there exists a family of complementary-dimension integral

surfaces everywhere orthogonal to the surfaces of transitivity. Now, consider the continu-

ous group generated by stationarity and axisymmetry. Its surfaces of transitivity are locally

spanned by tµ and φµ, and the question is whether there exist global “meridional” surfaces,

everywhere orthogonal to both of them.

tµ

φµ

Σt

Σφ

ωµ[t]

ωµ[φ]

Figure 1.1 Two independent vector fields, tµ and φµ, their orthogonal hypersurfaces Σt and Σφ,

and their vorticity vectors ωµrts and ωµrφs (which are orthogonal to them, so tangent to Σptq
and Σpφq, respectively). If the intersection Σptq X Σpφq is integrable, one speaks of orthogonal

transitivity of the symmetry group generated by tµ and φµ.

In the case of just one vector field V µ, Frobenius theorem says that its local orthogonal

hyperplanes ΣpV q are integrable if and only if V µ has zero vorticity – when the latter does not

“entwine” about itself. Here, in the case of two fields, tµ and φµ, wanted is the integrability of

the local planes given by intersections ΣptqXΣpφq. Such planes would certainly be integrable

if both the normal fields tµ and φµ had zero vorticities. However, even weaker condition is

clearly sufficient: the vorticity of tµ must not have a component in the direction of φµ, and

the vorticity of φµ must not have a component in the direction of tµ. Therefore, one demands

ωµrtsφµ “ 1

2
ǫµνρσφµtν;ρtσ “ 0 and ωrφsµtµ “ 1

2
ǫµνρσtµφν;ρφσ “ 0 ;

more often it is being written as

φrµtν;ρtσs “ 0 and trµφν;ρφσs “ 0 .

If these conditions are satisfied, the thus existing global meridional planes can be covered by

coordinates x1, x2, e.g. by r and θ (or ρ and z), such that the metric does not contain the terms



1.6. ORTHOGONAL TRANSITIVITY AND CIRCULARITY 11

gt1, gt2, g1φ and g2φ. The latter can also be voiced in such a way that the metric is invariant

under the inversion tÑ ´t, φÑ ´φ; one says that the symmetry group is invertible (strictly

speaking, this property is slightly stronger than the orthogonal transitivity, see Carter 1969).

Proposition

In a general stationary and axisymmetric case, the vorticity vector of Nµ “ tµ ` ωφµ satisfies

ωµrNs :“ 1

2
ǫµνκλNν;κNλ “ φµ

gφφ
pφιω

ιrts ´ ω tιω
ιrφsq .

Proof:

Nν;κNλ “ ptν;κ ` ωφν;κ ` φνω;κqptλ ` ωφλq “
“ tν;κtλ ` ω tν;κφλ ` ωφν;κtλ ` ω2φν;κφλ ` ω;κφνtλ ` ωω;κφνφλ .

The last term can be omitted since it is symmetric in pν, λq and thus does not contribute to

Nrν;κNλs. To the above, it is suitable to substitute the gradient of ω ” ´ gtφ
gφφ

“ ´ tιφ
ι

φσφσ ,

ω;κ “ ´pgtφq;κ
gφφ

` gtφ

gφφ

pgφφq;κ
gφφ

“ ´pgtφq;κ ` ωpgφφq;κ
gφφ

“ ´ptιφιq;κ ` ωpφιφ
ιq;κ

gφφ
“

“ ´´2tκ;ιφ
ι ´ 2ωφκ;ιφ

ι

gφφ
“ 2φι

gφφ
ptκ;ι ` ωφκ;ιq ,

where we have used that tµ and φµ are Killings and that they commute (tιφκ;ι“ tκ;ιφ
ι),

ptιφιq;κ “ tι;κφ
ι ` tιφι;κ “ ´tκ;ιφ

ι ´ tιφκ;ι “ ´2tκ;ιφ
ι ,

pφιφ
ιq;κ “ 2φι;κφ

ι “ ´2φκ;ιφ
ι .

Substituting to Nν;κNλ above (without the last term already), we have

Nν;κNλ “ tν;κtλ ` ω tν;κφλ ` ωφν;κtλ ` ω2φν;κφλ ` 2φι

gφφ
ptκ;ι ` ωφκ;ιqφνtλ “

“ φι

gφφ
ptν;κtλφι ´ tν;κφλtι ` ωφν;κtλφι ´ ωφν;κφλtι ` 2tκ;ιφνtλ ` 2ωφκ;ιφνtλq .

Imposing the anti-symmetrization rνκλs, we write separately the terms with tµ;α and φµ;α ,

trν;κtλsφι ´ trν;κφλstι ` 2φrνtλtκs;ι “ φιtrν;κtλs ´ tι;rνtκφλs ` trνφκtλs;ι ´ tιφrνtκ;λs “
“ 4φrιtν;κtλs ,

φrν;κtλsφι ´ φrν;κφλstι ` 2φrνtλφκs;ι “ φιφrν;κtλs ´ φι;rνtκφλs ` trνφκφλs;ι ´ tιφrνφκ;λs “
“ 4φrιφν;κtλs “ ´4 trιφν;κφλs ,

thus finding that

Nrν;κNλs “ 4φι

gφφ

`

φrιtν;κtλs ´ ω trιφν;κφλs

˘
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ñ ωµrNs “ 1

2
ǫµνκλNrν;κNλs “ 2φι

gφφ

`

ǫµνκλφrιtν;κtλs ´ ωǫµνκλtrιφν;κφλs

˘

.

For each value of the free index µ, the summation over ι only yields non-trivial contribution

for ι“µ, so the formula can be written as

ωµrNs “ 2φµ

gφφ

`

ǫινκλφrιtν;κtλs ´ ωǫινκλtrιφν;κφλs

˘

“

“ φµ

2gφφ

`

ǫινκλφιtrν;κtλs ´ ωǫινκλtιφrν;κφλs

˘

“ φµ

gφφ
pφιω

ιrts ´ ω tιω
ιrφsq . l

Corollary: Space-time is circular if and only if Nµ “ tµ ` ωφµ is hypersurface-orthogonal.

Proof: First, the circularity conditions φιω
ιrts“0, tιω

ιrφs“0 immediately make ωµrNs van-

ish, so N
µ is then hypersurface-orthogonal. Equally clearly, if Nµ is hypersurface-orthogonal,

i.e. Nrν;κNλs “0, then

0 “ φrµNν;κNλs “ φrµNν;κtλs “ φrµtν;κtλs ` ωφrµφν;κtλs ,

because Nν;κ “ tν;κ`ωφν;κ` φνω,κ (so the last term cancels in anti-symmetrization with φµ).

Theorem [Papapetrou, 1966]

The conditions φrµtνtκ;λs “0 , trµφνφκ;λs “0 are equivalent to the conditions

φrµtλRκsνt
ν “ 0 , trµφλRκsνφ

ν “ 0 .

Proof: The derivation is the same for both the conditions, and since it starts from properties

which hold for any Killing vector field, we will at this stage denote the latter generically as

ξµ. Multiplying the definition ωµrξs “ 1

2
ǫµνκλξ

ν;κξλ by ǫµβγδ and using the formula (1.4),

i.e., explicitly,

ǫµνκλǫ
µβγδ “ ´δβν δ

γ
κδ

δ
λ ´ δδνδ

β
κδ

γ
λ ´ δγν δ

δ
κδ

β
λ ` δβν δ

δ
κδ

γ
λ ` δγν δ

β
κδ

δ
λ ` δδνδ

γ
κδ

β
λ ,

we easily obtain

ωµǫ
µβγδ “ ´ξβξrγ;δs ´ ξδξrβ;γs ´ ξγξrδ;βs “ ´ξβξγ;δ ´ ξδξβ;γ ´ ξγξδ;β “ ´ξtβξγ;δu .

Differentiation of the latter by xβ yields

ωµ;βǫ
µβγδ “ ´pξβξγ;δq;β ´ pξδξβ;γq;β ´ pξγξδ;βq;β “

“ ´✚
✚✚ξβ ;β ξ

γ;δ ´ ξβξγ;δβ ´ ❳❳❳❳ξδ;βξ
β;γ ´ ξδξβ;γβ ´ ❳❳❳❳ξγ ;βξ

δ;β ´ ξγξδ;ββ “
“ ´ξβξ

γ;δβ ` ξδ l ξγ ´ ξγ l ξδ “ ´✘✘✘✘✘✘❳❳❳❳❳❳ξβR
γδβσξσ ` ξγRδ

β ξ
β ´ ξδR

γ
β ξ

β , (1.9)

where the Killing property and the formulas (1.1), (1.2) have been employed. Multiplication

of this relation by ǫανγδ leads to twice the same term on the right-hand side, while on the left

one has

ωµ;βǫ
µβγδǫανγδ “ 2ωµ;βpδµν δβα ´ δµαδ

β
ν q “ 2pων;α ´ ωα;νq ” 4ωrν;αs ,
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so we arrive at the formula for gradient of (any) Killing-vector twist,

ωrν;αs “ 1

2
ǫανγδ ξ

γRδ
β ξ

β . (1.10)

Now, let us specify to our ξµ ” tµ, ωµ ” ωµrts case (with φµ the second existing Killing

field) and consider the derivative

pφνωνq,α “ φν
;αων ` φνων;α “ φν

;αων ` φνωα;ν ` 2φνωrν;αs “
“ ✘✘✘✘✘p£φ ωαq ` ǫανγδ φ

νtγRδ
β t

β . (1.11)

This result confirms that

φrµtνtκ;λs “ 0 ùñ pφνωνrtsq,α “ 0 ðñ φrµtλRκsνt
ν “ 0 .

Similarly one would verify that

trµφνφκ;λs “ 0 ùñ ptνωνrφsq,α “ 0 ðñ trµφλRκsνφ
ν “ 0 .

The opposite implications are also based on the relation (1.11). Since φµ “gµαφ
α “gµφ

vanishes on the symmetry axis,3 also trivial there is ωµrφs “ 1

2
ǫµνκλφνφκ;λ. Consequently,

both the invariants φνω
νrts and tνω

νrφs vanish on the axis as well. Now, if the space-time

satisfies φrµtλRκsνt
ν “ 0 and trµφλRκsνφ

ν “ 0, implying that the gradients of both the in-

variants are everywhere zero, pφνω
νrtsq,α “ 0 and ptνωνrφsq,α “ 0, then the invariants are

themselves zero everywhere, which is the orthogonal-transitivity condition. l

Corollaries : Since the orthogonal-transitivity properties trivially hold for the metric tensor,

φrµtλgκsνt
ν “ φrµtλtκs “ 0 , trµφλgκsνφ

ν “ trµφλφκs “ 0 ,

one may use Einstein equations and translate the Ricci-based conditions to

φrµtλTκsνt
ν “ 0 , trµφλTκsνφ

ν “ 0 . (1.12)

They can be summarized (added) in φrµtλTκsνN
ν “0 or φrµNλTκsνN

ν “0, with N
µ “ tµ`ωφµ

(remember that φµN
µ “0, so the latter is even “nicer”).

Immediately clear is that vacuum stationary and axisymmetric space-times are nec-

essarily orthogonally transitive. Actually, every space-time is such in which sources move

purely along stationary circular trajectories (along the Killing directions, i.e. with four-

velocity satisfying urνtκφλs “ 0). This is illustrated on an ideal fluid, Tκν “ pρ ` P quκuλ `
Pgκλ: the second part is circular automatically and the first one has to satisfy φrµtλuκs “ 0,

resp. trµφλuκs “ 0 (which is the same). The stationary axisymmetric space-times which are

orthogonally transitive are thus called circular space-times.

3 On a regular axis, gφφ ” φµφ
µ has to vanish since it determines proper circumference about the axis (along

a circular orbit of φµ at some given radius). This is not due to φµ becoming null (light-like) there, but because

φµ “gµφ shrinks there to zero (while φµ “ Bxµ{Bφ everywhere).
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1.6.1 Circular (i.e. “Kerr-like”) metric

If the stationary and axisymmetric space-time is also circular, the metric can be written as

ds2 “ ´N2 dt2 ` gφφ pdφ´ω dtq2 ` grr dr
2 ` gθθ dθ

2 , (1.13)

with N2 :“´gtt´gtφω and ω :“´ gtφ
gφφ

the lapse function and the dragging angular velocity,

and r and θ covering the meridional planes (alternatively, one might e.g. use the ρ and z

coordinates of cylindrical type). Worth to repeat once more that the whole “Killing” part of

the metric has invariant meaning since it is given by scalar products of the Killing fields,

gtt “ gµνt
µtν , gtφ “ gµνt

µφν , gφφ “ gµνφ
µφν .

The same is of course inherited by N2, ω and all other quantities possibly defined from that

part of the metric.

The speciality of circular metrics, within generic stationary and axisymmetric ones, is

that the meridional surfaces are globally orthogonal to tµ and φµ, so the coordinates can be

tied to them so that gt1, gt2, g1φ and g2φ vanish everywhere p1, 2 ‰ t, φq.

1.6.2 Stationary circular orbits and their light cones

Consider a family of stationary motions along the circles r “ const, θ “ const, i.e. with

four-velocity given by combination of the Killing fields,

uµ “ tµ ` Ωφµ

|tµ ` Ωφµ| “ tµ ` Ωφµ

a

´gικptι ` Ωφιqptκ ` Ωφκq
, (1.14)

where the azimuthal angular velocity Ω :“ dφ

dt
is constant in time (it may however depend on

r and θ). In the above coordinates pt, r, θ, φq adapted to the symmetries,

tµ “ δ
µ
t , φµ “ δ

µ
φ , gικptι`Ωφιqptκ`Ωφκq “ gtt`2gtφΩ`gφφΩ

2 “ ´N2`gφφpΩ´ωq2 ,

so the four-velocity has components

uµ “ utp1, 0, 0,Ωq , ut “ 1
a

N2 ´ gφφpΩ ´ ωq2
. (1.15)

The angular velocity with respect to an asymptotic inertial system, Ω, cannot be arbitrary

– too large values would correspond to super-luminal (space-like) motion. The interval of

time-like motion has boundaries where uµ can no longer be normalized by any real ut, i.e. at

the roots of gtt ` 2gtφΩ ` gφφΩ
2 “ 0:

Ωmax,min “ ´gtφ ˘
a

pgtφq2 ´ gttgφφ

gφφ
“ ω ˘

c

ω2 ´ gtt

gφφ
“ ω ˘ N

?
gφφ

. (1.16)
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1.6.3 Horizon as a limit for circular motions

Hence, the light cone of stationary circular motions, expressed in terms of Ω, is centred by

the dragging angular velocity ω, extending from it equally to both sides. The time-like option

for Ω closes up at N “ 0, which (thus) clearly represents a horizon. The observers orbiting

there with Ω “ ω are null already, being proportional to the null generators of the horizon.

Below, N2 becomes negative and N thus imaginary.

1.6.4 Stationary circular congruence with zero angular momentum

Within the stationary circular orbits, the value Ω “ ω identifies the congruence of so-called

Zero Angular Momentum Observers. Indeed, the (specific) azimuthal angular momentum

(for any motion, not just the stationary circular one) reads

uφ “ gφtu
t ` gφφu

φ “ gφφu
tpΩ ´ ωq ,

so it vanishes if and only if Ω “ ω. The ZAMO congruence has four-velocity and four-

acceleration

uµ “ tµ ` ωφµ

N
“ 1

N
p1, 0, 0, ωq ” nµ , aα :“ uα;βu

β “ N,α

N
.

Notation etc

In the GR course, we have denoted ξµ :“ tµ ` ωφµ, but that is somewhat misleading,

because by ξµ we generally denote Killing vector fields. And, it is crucial in the present

course to distinguish between Killing and non-Killing fields. So let us switch to the notation

N
µ :“ tµ ` ωφµ. Consistence with the notation used in 3+1 splitting would suggest to use

Nnµ, because in that way the quantities N , nµ and tµ would exactly correspond to what in

3+1 is denoted so ... N is lapse, nµ is the normal to the hypersurfaces t“ const (see below)

and tµ is the “time vector"; and, the shift vector Nµ, also important in 3+1, corresponds to

Nµ ” ´ωφµ. However, Nnµ is graphically not ideal at times, so let us adhere to N
µ, with the

remark that we will nowhere use the shift vector Nµ, so there should be no confusion. The

ZAMO congruence represents the most privileged stationary circular congruence, time-like

everywhere from radial infinity down to the horizon. [This is not to claim that ZAMO is the

only such privileged subfamily. For example, there exist Carter (canonical) observers, also

time-like down to the horizon, and exclusive in that their angular velocity Ω is the same as

that of principal null directions of the Weyl tensor (so the latter are purely radial relative to

them). However, the Carter observers only exist in algebraically special space-times, not in

any stationary and axisymmetric space-time as ZAMOs.]

The field N
µ “ tµ ` ωφµ also has other nice properties:4

• Scalar products:

gµνN
µ
N

ν “ gtt ` 2gtφω ` gφφω
2 “ gtt ` gtφω “ ´N2

4 Note that it is not a Killing field, because ω is not constant – it depends on both r and θ.
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(hence, Nµ is null where N2 “0, i.e. on the horizon),

φµN
µ “ φµptµ` ωφµq“ gtφ`gφφω“0 , tµN

µ “ tµptµ` ωφµq“ gtt` gtφω“´N2 .

• Covariant version:

Nα “ gαµN
µ “ gαµptµ ` ωφµq “ gαt ` gαφω “ ´N2δtα “ ´N2t,α , nα “ ´Nt,α

ñ nµ is orthogonal to the hypersurfaces t“const ñ it has zero twist, ωµrns“0.

The latter follows from Frobenius theorem; actually, it is clear immediately,

ωµrns :“ 1

2
ǫµνκλnν;κnλ “ 1

2
ǫµνκλpnν,κ ´ Γι

κνnιqnλ “ 1

2
ǫµνκλpNt,νq,κNt,λ “ 0 .

Memory from GR: the Frobenius theorem says that hypersurface orthogonality and zero

twist are equivalent properties – indeed, this property is well known: ωµrns represents

rotation (curl) of nν within the (hyper)surface orthogonal to nλ; if that rotation is zero,

the field nν has to be proportional to a gradient of some scalar field. In components,

ωµrns“0 means nν,κ “nκ,ν , which exactly are the integrability conditions for the equation

´fdΦ“nνdx
ν , i.e. ´fΦ,ν “nν , with f and Φ some scalars (f ”N and Φ” t in our case).

Reminder: as proved before in a coordinate-independent manner, this item only holds in

the circular case. Indeed, otherwise Nα “ gαt`gαφω may also have r and/or θ components,

and thus not to be orthogonal to t“const.

• Expansion tensor:

Θµν “ hα
µh

β
νNpα;βq “ pδαµ ` nαnµqpδβν ` nβnνqNpα;βq “

“ Npµ;νq ` Npµ;βqn
βnν ` Npα;νqn

αnµ ` Npα;βqn
αnβnµnν .

But tµ and φµ are Killings, so

Npα;βq “ ✟✟✟tpα;βq ` ω❍❍❍φpα;βq ` φpαω,βq ,

and φαn
α “0, ω,βn

β “0, hence Npα;βqn
β “0 and thus we are left with

Θµν “ Npµ;νq “ φpµω,νq .

This also implies that the expansion scalar vanishes, Θ:“Θν
ν “ 0, so the expansion tensor

is “pure shear”, Θµν “σµν . (Note again: this is not automatic, because N
µ is not Killing.)

• Comparison of Nµ ” tµ ` ωφµ with the field hµ ” tµ ` ωHφ
µ (at generic location):

N
µ is not Killing, whereas hµ is. Both have zero expansion. Nµ is hypersurface-orthogonal

(it has zero vorticity), whereas hµ is not. N
µ is not shear-free, whereas hµ is (as it is

clear from above, with ωH being constant). N
µ is orthogonal to φµ, whereas hµ is not,

φµh
µ “ ✟✟✟φµN

µ ` φµpωH ´ ωqφµ “ gφφpωH ´ ωq. Nµ is time-like everywhere outside the

horizon, whereas hµ is not; namely, hµ becomes space-like above the largest real root of

the equation 0 “ ´gtt ´ 2gtφωH ´ gφφω
2
H “ N2 ´ gφφpωH ´ ωq2 (in the equatorial plane

of a Kerr space-time, for example, it means above r“38.9M for a“0.1M , while already

above r “ 2.08M for a“ 0.9M ; for aÑM`, i.e. in the extreme limit, the border shrinks

to rÑM`, so hµ is nowhere time-like in the equatorial plane).
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1.6.5 Circularity condition for EM field

Lemma Any stationary and axisymmetric EM field Fµν (in a space-time of the same com-

muting symmetries) satisfies Fµνt
µφν “0, ˚Fµνt

µφν “0 (in any region which involves at least

a part of the symmetry axis where φµ “0).

Proof:

pF µνtµφνq,α ” pFµνt
µφνq,α “ pFµνt

µφνq;α “ Fµν;αt
µφν ` Fµνt

µ
;αφ

ν ` Fµνt
µφν

;α “
“ p´Fαµ;ν ´ Fνα;µq tµφν ` Fµνt

µ
;αφ

ν ` Fµνt
µφν

;α “
“ pFµα;νφ

ν ` φν
;αFµνq tµ ` pFαν;µt

µ ` tµ;αFµνqφν “
“ p✘✘✘✘£φFµα ´ φν

;µFναq tµ ` p❳❳❳❳£tFαν ´ tµ;νFαµqφν “
“ Fµαptµ;νφν ´ φµ

;νt
νq “ Fµαptµ,νφν ´ φµ

,νt
νq “ 0 ,

because the Killing fields tµ and φµ are supposed to commute. The same computation works

for the dual ˚Fµν . Now, F µνtµφν and ˚F µνtµφν necessarily are zero on the symmetry axis

where φµ “0, so they have to vanish in any region containing at least part of the latter.

• Remark: Vanishing of Fµνt
µφν follows immediately,

Fµνt
µφν “ pAν,µ ´ AµνqBxµ

Bt
Bxν

Bφ “
✚
✚✚Aν,tφ

ν ´ ❍❍❍Aµ,φ t
µ “ 0 .

Theorem The circularity conditions are satisfied by any stationary and axisymmetric source-

free EM field.

Proof: Take φrµtλT κs
νn

ν (which in the circular case should vanish). Of the key expression

4π T κ
νn

ν “
ˆ

F κιFνι ´ 1

4
δκνF

σιFσι

˙

nν “ F κιFνιn
ν ´ 1

4
nκF σιFσι ,

the second term clearly is “circular” since φrµtλnκs “ 0, so let us focus on the first term,

contributing by φrµtλF κsιFνιn
ν . The latter is circular if and only if F κιFνιn

ν is proportional

to nκ (or, more precisely, if it is a combination of tκ and φκ).

Let us make use of the standard decomposition of the expression F κιFνι in terms of

a certain time-like field (“observer”) and the corresponding electric and magnetic field. We

will specifically consider the ZAMO observer (which always exists and is time-like all the

way down to the horizon),

uµ “ 1

N
ptµ ` ωφµq ” nµ , Eµ :“ Fµνn

ν , Bµ :“ ´˚Fµνn
ν ” 1

2
ǫµνκλn

νF κλ ,

which is reciprocal to

Fµν “ nµEν ´ Eµnν ` ǫµνρσn
ρBσ , ˚Fµν “ Bµnν ´ nµBν ` ǫµνρσn

ρEσ ,

and thus giving rise to5

F κιF ν
ι “ nκnνE2 ` pgκν`nκnνqB2 ´ EκEν ´ BκBν ` nκ

`

~Eˆ ~B
˘ν ` nν

`

~Eˆ ~B
˘κ

,

5 See GR-course lecture notes; again multiplication of epsilons over one index is the key.
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with
`

~Eˆ ~B
˘µ

:“ ǫµσαβEσnαBβ . Since nνn
ν “ ´1, pδκν `nκnνqnν “ 0, Eνn

ν “ 0, Bνn
ν “ 0

and p ~Eˆ ~Bqνnν “0, the multiplication of the above F κιFνι by nν yields

F κιFνιn
ν “ ´nκE2 ´

`

~Eˆ ~B
˘κ

.

The first term is clearly circular, being proportional to nκ. So compute

4π ǫαµλκt
λT κ

νn
ν “ ǫαµλκt

λF κιFνιn
ν “ ´ǫαµλκn

λ
`

~Eˆ ~B
˘κ “

“ ´ǫαµλκǫ
κβγδnλEβnγBγ “ ... “ ´EµBν ` BµEν

ùñ 4π ǫαµλκφ
µtλT κ

νn
ν ” 4π ǫαµλκφ

rµtλT κs
νn

ν “
“ ´φµEµBν ` φµBµEν ” ´p✘✘✘✘✘φµFµιn

ι qBν ´ p❳❳❳❳❳φµ˚Fµιn
ι qEν “ 0 ,

because both the expressions in parentheses vanish due to the above Lemma.

• Remark: We have nowhere cared about the sources, so we in fact have not used the source-

free assumption. However, it is clear that the possible sources would have to move in a

stationary manner along circular orbits in order that they themselves satisfy the circularity

conditions. Indeed, it is known that if currents also had poloidal components, the resulting

EM field would not be circular, so if the field is “exact” (dynamical), neither the space-time

would be such (see [Gourgoulhon]).

1.7 The weak rigidity theorem

Theorem [Carter 1969]

In a circular space-time, the dragging angular velocity ω is constant (“:ωH) all over the sur-

face t´N2 “0u, so the latter is a Killing horizon. (Namely, hµ ” tµ ` ωHφ
µ thus is a Killing

field which on the horizon coincides with N
µ ” tµ ` ωφµ.)

Proof:

• First, if the two Killing fields commute, tα,µφ
µ “ φα,µt

µ (which is automatic in the asymp-

totically flat case), it also means tα;µφ
µ “ φα;µt

µ. Let us use it in

gtφ;α “ ptµφµq;α “ tµ;αφ
µ ` tµφµ;α “ ´tα;µφ

µ ´ tµφα;µ “ ´2tµφα;µ

gφφ;α “ pφµφ
µq;α “ 2φµ;αφ

µ “ ´2φα;µφ
µ

ùñ ω,α “
ˆ

´ gtφ

gφφ

˙

;α

“ ´gtφ;αgφφ ` gtφgφφ;α

pgφφq2 “ ´gtφ;α ´ ωgφφ;α

gφφ
“

“ 2φα;µ

gφφ
ptµ ` ωφµq ” 2N

gφφ
φα;µn

µ .

• It is clear that ω,αt
α “ 0 and ω,αφ

α “ 0 (thus ω,αn
α “ 0), so we only need to check the

derivative of ω in the plane perpendicular to both tµ and φµ,

ǫαβγδφβtγω,δ “ 2N

gφφ
ǫαβγδφβtγφδ;µn

µ ” 2N

gφφ
ǫαβγδφrβtγφδs;µn

µ .
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• One of the circularity conditions reads 0“4!φrβtγφδ;µs “3!φtrβtγφδs;µu (braces mean cyclic

permutation in the enclosed indices, without a prefactor), from where one can express

3!φrβtγφδs;µ “ 3!φrµtβφγs;δ ´ 3!φrδtµφβs;γ ` 3!φrγtδφµs;β “
“ φµtβφγ;δ ` φγtµφβ;δ ` φβtγφµ;δ ´ φβtµφγ;δ ´ φγtβφµ;δ ´ φµtγφβ;δ

´ φδtµφβ;γ ´ φβtδφµ;γ ´ φµtβφδ;γ ` φµtδφβ;γ ` φβtµφδ;γ ` φδtβφµ;γ

` φγtδφµ;β ` φµtγφδ;β ` φδtµφγ;β ´ φδtγφµ;β ´ φµtδφγ;β ´ φγtµφδ;β “
“ 2φµttβφγ;δu ´ 2tµφtβφγ;δu ´ 2φtβtrγφδsu;µ .

Now multiply this by N
µ, using φµN

µ “0, tµN
µ “´N2 and φδ;µN

µ “ 1

2
gφφω,δ :

φrβtγφδs;µN
µ “ 1

3!

`

2N2φtβφγ;δu ´ gφφφtβtrγω,δsu

˘

“ 1

2

`

2N2φrβφγ;δs ´ gφφφrβtγω,δs

˘

.

Finally, multiplication by ǫαβγδ yields

ǫαβγδφβtγω,δ “ 2ǫαβγδ

gφφ
φrβtγφδs;µN

µ “ ǫαβγδ

gφφ

`

2N2φrβφγ;δs ´ gφφφrβtγω,δs

˘

ùñ ǫαβγδφβtγω,δ “ N2

gφφ
ǫαβγδφβφγ;δ . (1.17)

• Hence, on the N2 “0 hypersurface, the derivative of ω in the complementary (meridional)

plane vanishes as well, so ω is constant there.

Lemma The generator of a Killing horizon is a principal null vector of Weyl (there on the

horizon).

Proof: Above, we have learnt that the shear of the N
µ ” tµ ` ωφµ field reads σµν “φpµω,νq.

The rigidity theorems, in any of the versions, say that on the horizon ω,ν vanishes, hence also

the shear of Nµ. However, on the horizon, Nµ coincides with the geodesic null Killing gener-

ator hµ. Hence, according to the Goldberg-Sachs theorem (see e.g. GR-course lecture notes),

the generator of a Killing horizon is tangent there to the repeated principal null congruence of

the Weyl tensor. (Worth to add that this property only holds on the horizon. Sure, we might

have started directly from hµ ” tµ ` ωHφ
µ which is Killing and shear-free everywhere, yet

even this field is only null at the very horizon.)

Note that this property is not so “obvious”, because the horizon is a feature of the

metric and its first derivatives, while the principal null directions are given by curvature.

Indeed, curvature generally does not behave in any special way on black-hole horizons.

1.8 Acceleration scalar and the black-hole surface gravity

Due to the equivalence principle, “gravitational acceleration” cannot in general be repre-

sented by an invariant quantity. However, in circular space-times, there is such a possibility –

it is provided by gradient of the “Killing” part of the metric (which in turn follows by scalar

products of the Killing vector fields, and thus has an invariant character).



20

1.8.1 Physical picture

Intuitively, the strength of the field can be characterized by magnitude of four-acceleration

which some suitable observers need in order to “keep themselves at a given orbit”. Such a

concept is of course ambiguous, but in circular space-times there do exist certain symmetry-

privileged orbits – the stationary circular ones we mentioned at the beginning. In particular,

a natural choice is the ZAMO congruence having Ω “ ω, which is time-like everywhere

down to the horizon and has zero angular momentum with respect to infinity. [Whereas, for

instance, it is not possible to consider static pΩ“0) congruence for this purpose, since that is

only time-like outside the static limit given by gtt “0.]

Let us first compute the four-acceleration of a generic stationary circular orbit in a

circular space-time,

aµ “ duµ

dτ
´ Γι

µκuιu
κ “ ´Γιµκu

ιuκ “ ´1

2
pgιµ,κ`gκι,µ´gµκ,ιquιuκ “ ´1

2
gκι,µu

ιuκ “

“ ´1

2
putq2pgtt,µ ` 2gtφ,µΩ ` gφφ,µΩ

2q “ 1

2

gtt,µ ` 2gtφ,µΩ ` gφφ,µΩ
2

gtt ` 2gtφΩ ` gφφΩ2
, (1.18)

where we have used the stationarity of the motion, thus constancy of uµ along the orbit, and

symmetry of uιuκ due to which the term pgιµ,κ´gµκ,ιq antisymmetric in pι, κq drops out in the

multiplication. The main aspect is that the “Killing” components at and aφ vanish.

Now specifically for the ZAMO sub-family, i.e. for uµ “nµ, or Ω“ω”´gtφ{gφφ :

gtt ` 2gtφω ` gφφω
2 “ gtt ` gtφω “ ´N2 ,

gtt,µ ` 2gtφ,µω ` gφφ,µω
2 “ pgtt ` gtφωq,µ “ p´N2q,µ “ ´2NN,µ ,

so one obtains

aµ “ 1

2

´2NN,µ

´N2
“ N,µ

N
. (1.19)

The lapse is often being expressed in terms of the gravitational potential Φ, as N “ eΦ; then

the ZAMO’s acceleration is just aµ “Φ,µ .

However, in the limitN Ñ0`, all the time-like range of stationary circular motions (and

ZAMO family in particular) go over to the null generators of the horizon – the photons which

just stay on the horizon, keeping constant r and θ while orbiting with Ω“ωH in the azimuthal

direction. No other time-like or light-like world-line can lie on the horizon. This means that

in the horizon limit (N Ñ 0), the magnitude of the circular-orbit acceleration undoubtedly

diverges; on the ZAMO acceleration which we plan to use it is seen at first sight. Yet there is

a natural way how to regularize such a divergence: multiply the acceleration by N . This has

a clear meaning since N represents the dilation factor between the proper time of ZAMO and

the Killing time t. Indeed, from (1.15) we have

ut ” dt

dτ̂
“ 1

N
ùñ N,µ “ Naµ “ aµ

ut
” Duµ

dτ̂

dτ̂

dt
.

One thus obtains the ZAMO acceleration taken “with respect to the asymptotic inertial time”.
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So let us define the acceleration scalar κ and the black-hole surface gravity κH by

κ2 :“ N2gµνaµaν “ gµνN,µN,ν , κ2
H :“ lim

NÑ0
κ2 . (1.20)

Remark: Horizon vacuumness once more, from circularity:

Circularity conditions (1.12), i.e. φrµtλTκsνt
ν “ 0 and trµφλTκsνφ

ν “ 0, can be summed to

φrµtλTκsνN
ν “0, since N

µ ” tµ ` ωφµ. Write this out (without 1{3!) and multiply it by N
κ,

while remembering that φκN
κ “0 and tκN

κ “´N2,

0 “ pφµtλTκν ` φκtµTλν ` φλtκTµν ´ φλtµTκν ´ φκtλTµν ´ φµtκTλνqNν
N

κ “
“ 2φrµtλsTκνN

ν
N

κ ` 2N2φrµTλsνN
ν .

The fields φµ and tµ are independent, and on the horizon N “ 0, so TκνN
ν
N

κ has to van-

ish there, which, according to Einstein equations, implies the same for RκνN
ν
N

κ (because

gκνN
ν
N

κ “0 there).

1.8.2 Zeroth law of black-hole thermodynamics

In a thermal equilibrium, the temperature is the same within the whole system. Similarly,

in a stationary state, the surface gravity is constant all over the black-hole horizon. Let us

show a different proof than those given above. Namely, most of the above results (a rigidity

theorem in particular) either follow as a purely geometric property (independent of the theory

of gravitation and of energy conditions) if one assumes that the space-time is circular, or

they are obtained for a generic space-time from the field equations and energy conditions.

(One speaks of weak and strong versions of the results, respectively.) Up to now, we have

been assuming the circularity where necessary, only having employed the Einstein equations

for the translation between Rµν and Tµν in the circularity conditions and to understand the

horizon circumstance Rµνh
µhν “ 0. Here we base the proof on the field equations and the

energy-dominance conditions. (And then we also offer an alternative one.)

Theorem [Bardeen, Carter & Hawking 1973] κH is constant all over a Killing horizon.

Proof: We know that on a Killing horizon its generating Killing field hµ has zero vorticity,

ωµrhs ” 1

2
ǫµνκλhν;κhλ “ 0, or hrν;κhλs “0. Since hrν;κs “hν;κ, it expands as

hν;κhλ ` hλ;νhκ ` hκ;λhν “ 0 ùñ hν;κhλ ´ hν;λhκ “ hλ;κhν , i.e. Dλκhν “hλ;κhν ,

where we have introduced Dλκ :“hλ∇κ´hκ∇λ. Multiplying by κH while using its definition

hν;µh
µ “κHhν on the r.h. side, we have

κHDλκhν “ κHhλ;κhν “ hν;µh
µhλ;κ “ hν;µDλκh

µ , (1.21)

where we finally re-substituted the red term from above. Now, instead of hν alone (as above),

apply Dλκ to κHhν “hν;µh
µ, that is, write out the relation DλκpκHhνq “ Dλκphν;µh

µq:

hνDλκκH ` κHDλκhν “ hµ
Dλκhν;µ ` hν;µDλκh

µ .
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According to equation (1.21), the second terms on both sides are equal, so we are left with

hνDλκκH “ hµ
Dλκhν;µ ” hµphλ∇κ ´ hκ∇λqhν;µ ” hµphλhν;µκ ´ hκhν;µλq “

“ hµphλRνµκι ´ hκRνµλιq hι “ phλRκινµ ´ hκRλινµq hµhι “
” 2hrλRκsινµh

ιhµ . (1.22)

At this stage, we might express Riemann in terms of Weyl and Ricci, and to employ

the results obtained for circular horizons, namely that Rιµh
ιhµ “ 0 and hrλRκsινµh

ιhµ “ 0
(exactly the condition for hµ standing for the repeated principal null vector of Weyl). How-

ever, we wish to finish the proof without referring to the circularity property. Next step is to

express the result in terms of the Ricci (rather than Riemann) tensor. It is possible through

somewhat uncomfortable application of Dνι to the first equation hι
;κhλ ´ hι

;λhκ “ hλ;κh
ι:

hνh
ι
;κιhλ ` ❳❳❳❳❳hνh

ι
;κhλ;ι ´ hνh

ι
;λιhκ ´ ❳❳❳❳❳hνh

ι
;λhκ;ι ´

´ hιh
ι
;κνhλ ´ ✘✘✘✘✘❳❳❳❳❳hιh

ι
;κhλ;ν ` hιh

ι
;λνhκ ` ✘✘✘✘✘❳❳❳❳❳hιh

ι
;λhκ;ν

“ hνhλ;κιh
ι ` hνhλ;κ✚

✚hι
;ι ´ ✘✘✘✘✘hιhλ;κνh

ι ´ ✘✘✘✘✘❳❳❳❳❳hιhλ;κh
ι
;ν ,

where the ❳❳❳terms cancelled with respect to each other, the ✘✘✘terms vanish due to obvious rea-

sons, and the ✘✘✘❳❳❳terms sum to zero because

´ hιh
ι
;κhλ;ν ` hιh

ι
;λhκ;ν ` hιhλ;κh

ι
;ν “ hιhκ;ιhλ;ν ` hιhλ;ιhν;κ ` hιhν;ιhκ;λ “

“ κHphκhλ;ν ` hλhν;κ ` hνhκ;λq “ 0 .

Thanks to the Killing property, hι
;κι “ ´l hκ and hι

;λι “ ´l hλ , hence the equation yields,

with (1.1) and (1.2) substituted,

hνhλRκµh
µ ´ hνhκRλµh

µ “ hιhλR
ι
κνµh

µ ´ hιhκR
ι
λνµh

µ ` hν✘✘✘✘✘✘
hιRλκιµh

µ ,

which is easily arranged as

hνhrλRκsµh
µ “ ´hrλRκsινµh

ιhµ .

Using it in equation (1.22), we obtain

DλκκH “ ´2hrλRκsµh
µ . (1.23)

(Remember this only applies at the horizon, since we started from the vorticity-free property

of hµ which only holds there.)

Finally (but one), recall that on a Killing horizon Rκµh
κhµ “ 0, which implies that

Rκµh
µ has to be proportional to hκ (provided that the dominant energy condition holds).

Therefore, hrλRκsµh
µ „ hrλhκs “ 0.

And, finally: what actually have we learnt by finding DλκκH “ 0 ? First, as the hori-

zon has to be the surface of transitivity of the two Killing vectors, κH has to definitely be

constant along hµ (we showed this explicitely within the Lemma below the Vishveshwara

theorem). To prove the constancy over the horizon, it is thus sufficient to show the con-

stancy in the tangent direction independent of hµ. But that is exactly given by the operator
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Dλκ ” hλ∇κ´ hκ∇λ.

Alternative proof: Recall equation (1.10), valid for any Killing field (in any space-time),

ωrν;αsrξs “ 1

2
ǫανγδ ξ

γRδ
β ξ

β .

The connection with (1.23) is obvious: putting ξµ Ñ hµ, the r.h. sides (necessarily vanishing

on the horizon) are same, only that this time it is written in terms of Levi-Civita. Hence,

on the horizon of ξµ (here hµ), not only vanishes the latter’s vorticity itself, but also the

anti-symmetrized gradient of vorticity.

An easy way to make ωrν;αs zero is to take the field N
µ “ tµ`ωφµ (for which ωµrNs“0

everywhere). To convince oneself that on the horizon ωµrNs yields the same value as ωµrhs,
write

ωµ
;αrhs “ 1

2
ǫµνκλphν;καhλ ` hν;κhλ;αq “ 1

2
ǫµνκλpRνκασh

σhλ ` hν;κhλ;αq .

On the horizon, this really equals ωµ
;αrNs, because N

µ “ hµ there and their gradients are

same there as well. Indeed,

Nν;κ “ tν;κ ` ωφν;κ ` φνω,κ , while hν;κ “ tν;κ ` ωHφν;κ ,

which however are same, because, on the horizon, ω“ωH and ω,κ “0 (rigidity theorem).

Proof from circularity: Above, the zeroth law has been obtained from geometry (zero vortic-

ity of hµ on the horizon), from Einstein equations (Rαβh
αhβ “ 0 on the horizon) and from

the dominant energy condition (Tαβh
β causal). In circular space-times, the theorem follows

as a purely geometrical fact, independent of the field equations and of energy conditions.

Sorry, I don’t much like the usual proof, but have not yet been able to provide a better

one :-)
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