KILLING HORIZONS

notes for BH-thermodynamics course!

! For a rigorous yet well-readable account on basic properties of Killing horizons, see B. Carter, J.
Math. Phys. 10 (1969) 70. (It does not involve “thermodynamics” yet.)
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Some people think that everything important lives on a boundary. In physics, the idea that
behaviour of the “bulk” can be described by theories formulated on its boundary is called the
holographic principle. After a lunch, I tend to doubt about it, yet it might at least work for
black holes. Actually, the holographic viewpoint was inspired by the proposal (in 1972) by
Jacob Bekenstein to connect the entropy of a black hole with the proper area of the horizon. In
terms of such a quantity, he formulated the second law of black-hole thermodynamics. Were
Bekenstein right, the usual first-law term 7'd.S would require that the black hole have tem-
perature, proportional to the quantity called surface gravity. Bardeen, Carter and Hawking
subsequently (1973) wrote the paper “The four laws of black hole mechanics” where they
added, for a stationary and axisymmetric black hole, the other three laws.

As itis clear from Carter’s thorough lecture on stationary black holes in the proceedings
of the famous Les Houches *72 Summer School, the authors of the paper themselves did not
think their laws were more than an analogy of thermodynamics. In particular, Hawking
embarked on showing that black holes do not emit thermal radiation, in order to demonstrate
that the horizon “temperature” does not have its usual sense, and so neither the area really
represents the black-hole entropy. Employing the quantum-field theory on a (classical) curved
background, he managed to show (1974) just the opposite: black holes do emit radiation, in
accord with the black-body formulall The road to black-hole thermodynamics was open.

Yet, wait, thermodynamics of pure geometry? Nothing that strange, actually: according
to quantum field theory, an accelerated observer sees thermal bath, even in a flat space-time
where an inertial observer sees pure vacuum (so called Unruh effect). And acceleration (in-
ertial field) is equivalent to gravity, isn’t it?

Today, the thermodynamics of black holes — of something “built from pure geome-
try" —is considered a key to deep connections between gravitational, quantum and statistical
physics. Since the gravitational degrees of freedom should also contribute to the relevant
quantities, a complete picture also requires to quantize these (not only the other fields “living
on a background”). The area is thus being studied heavily as one of the promising targets —
and tests — of any attempt to quantize gravitation.

Below, as a starting point, we mention several notions and results from the geome-
try and physics of black-hole horizons. We naturally restrict to non-dynamical, stationary
horizons. In the electro-vacuum and asymptotically flat case, the uniqueness theorems say it
leads to the Kerr-Newman family of solutions, but we will be slightly more general and will
consider stationary and axisymmetric setting (often so-called circular in addition).

Although many definitions of black-hole horizons exist, in a generic situation it is not
entirely clear what “a black hole” actually means. Anyway, the laws of black-hole thermo-
dynamics start from a stationary and axially symmetric situation: the zeroth law states that
on a stationary horizon the surface gravity is everywhere the same, and the first law fixes the
“first thermodynamic law” for changes of basic quantities (mass, horizon area, charge and
spin) characterizing the transition of the black hole between two close stationary states. The
word “axisymmetric” has disappeared somehow, yet it is there automatically: if a stationary
black hole is not static, i.e. if it is rotating, then it has to be axisymmetric, since otherwise —
with some bump on it — it would emit gravitational waves, so it could not be stationary.

! Black hole is quite an ideal black body, isn’t it...



Notation

V' ... a generic vector field

&M ... a(generic) Killing vector field

t# ... time-symetry Killing vector field
ot ... axial-symmetry Killing vector field

t, @ ... Killing coordinates (chosen as parameters along the respective symmetries),
. OzM 6m“

PGt =

Ju = guyt“t Gty = gu,,t <b Jop = gw,gﬁ“gﬁ” . Killing part of the metric

W= ;’;Z . dragging angular velocity; wy ... its horizon value

N ... lapse function (N? = —g;; — giw)
h* :=t" + wy@* ... the Killing vector field which generates the horizon
n* = Nnt = tH 4+ wet ... vector field orthogonal to hypersurfaces ¢ = const
(on a Killing horizon, 11* and h* coincide, including their gradient)
nt = % 11* ... unit version of 11" (four-velocity of zero-angular-momentum congruence)
wH[V] (sometimes without [V]) ... vorticity vector of a (co)vector field V#
© s O ... €xpansion and shear tensors (of a given vector field)
K, kg ... acceleration scalar and its horizon value = surface gravity

1.1 Selected properties of Killing vector fields

The Killing vector fields £ fix directions along which the space-time metric does not change.
Such a property is naturally expressed in terms of the Lie derivative. The Lie derivative is
a very “low level” operation, it needs neither the connection and nor the metric, yet if we
speak of the Lie derivative of the metric, the latter has to be there, right? Let us also assume
the space-time is equipped with the Levi-Civita connection as it is standard in GR. Then the
(Killing) equation for the Killing fields writes

0= Legu = G +& w9 +E& w9 = Gura€ + & 00w +E G = v+ & =1 28u) -
The Killing vector fields have many simple properties, of which we only mention the

clearly vanishing expansion scalar, i.e. £, = 0. Next, let us mention an important relation
between Killing vector fields and curvature. In the Ricci identity for &,

51/;/{)\ - gl/;)\ﬁ = Raunkgaa
we anti-commute, by the Killing equation, v and ) in the second term, and then we write the
relation together with its cyclic permutations:

51/;/{)\ + gk;un = RJV&)\SU ’

gk;un + gn;)\u = RU)\VHSU ’

5/@;)\11 + 51/;/@)\ = RU/@)\V&T .

Now add the first and the last equation, while subtracting the middle one (for example),

2£V;H)\ = (Rozzn)\ + R o — Rg)\w@)ga = (% - QRU)\V/@) go = _2R0Ayn£o
e 51/;/@)\ = _RO—)\V.‘Q&-O' = Rw;)\crga . (11)
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* Corollary: by contraction of this equation, one has

@;Rn = Dgu = _Rgugo . (12)

If the Ricci tensor vanishes, this corresponds to the (de Rham) wave equation for the EM
four-potential (otherwise the signs at the curvature terms are opposite). Regarding also
that the Killing fields automatically satisfy the “Lorenz condition” ., = 0, one infers the
following: in space-times with R*” = 0, the knowledge of a Killing vector implies the
knowledge of a possible EM four-potential. (Note that the corresponding EM field must be
a test field, because otherwise the Ricci tensor would be R*” =8n T}y, rather than zero.)

 Another corollary: projecting (I.I) twice on a tangent vector u* = Cgc—: of any geodesic
(B =0), we find

D&y D(éysu”) D%,
K, A ) K __ ) o _ K, A¢Oo
gzx;n)\u u = ar U = dr = dr2 = RynAou U 5 . (13)

That means, the Killing vectors satisfy the geodesic-deviation equation.

1.2 A useful formula
Have a vector field V# (imagine it is time-like, though it is not necessary). Denote

1
gw}vuvl’ =: —N2 = <_N2);a = 2Vu;avu ) and wu[v] = 5 €MV'{)\VV§HV>‘ :

Using the famous relation
Emre = 316105757 (1.4)
we obtain, for the square of the vorticity (twist) w”[V],
4w, wh = € VIRV PV 5V =
= — <5§‘6f6} + 6352‘6f + 006785 — 655957 — 676555 — 535Z5f> VIRV, BV, =
= VOV sN? = VIOVPV, 3V, — VIV, 6V,

— VIVasN? + VIV, 6V, + VIV, 5V, =
= oN2VIhly, o —ovDrely v, oV 4 oV DAY Y Ve

Relabelling o« <> [ in the last term, we reach a very useful formula

dw,wh = 2N VISR o gyl v (VA (1.5)

Corollary for Killing fields ‘: If V*#is Killing, V# — ¥, i.e. if {[,5) = a;s » it becomes

dw,wh = 2N2E5PE 5 + (N?)¥(N?).4 | (1.6)




Also, writing (N?)*(N?)., = 4N2N*N,, and

2504;6&1;5 = 2(504;65&);5 - 2£a;6ﬁ£a = (_N2>;65 + 2Raﬁ£a£6 = (1.7)
= —2N4zN* — 2NN + 2R,p6°67

one brings curvature into the formula through equation (L.2)),

2w,w" = N? (NN, — NON + Ro56%¢%) . (1.8)

1.3 Killing horizon: Vishveshwara, otherwise vacuum

We will now focus on such Killing fields which somewhere become light-like (while not
being light-like around). More specifically, we will be interested in the situation when they
become light-like on a connected null hypersurface (which will be called a Killing horizon
then). The Killing vector field which thus “generates” the horizon will be denoted by h*.
Let us remark there exist different horizons, typically being null hypersurfaces, some-
times even having Killing generators. Very loosely speaking, they usually represent causal
boundaries of certain regions which are “dragged with respect to the rest of space-time in a
superluminal speed”, either by strong gravity (black-hole horizons), by “dark energy” (cos-
mological horizons) or simply by boost/acceleration of a family of observers (acceleration
horizons). In order to represent a black-hole event horizon, the Killing horizon should be
non-singular (geodesically complete) and closed in the sense that its topology is S? x R.

The set {g,, h*h” = —N? = 0, with k* Killing and h* # 0}, is called a Killing
horizon, if it is a connected null hypersurface (or a union of such).

Two orthogonal null vectors are necessarily proportional to each other.

Proof: Orthogonality is a local property, and one can at every point work in a locally Minkowskian
frame where g, =1),,,.. So, have a non-trivial null vector £ and some other non-trivial vector
V*# orthogonal to k#:

0= nuk'k = (K" +k* = (K)?=#k*,

V . £V £ 7y
0=nuk'V"=—-kV+k-V = V= o = (V0)2_< k2> :
where k%:=Fk - k = n;;k'k/ = 6;;k'k? and likewise for V2. Then
k- V)2 kV cos a)?
B VIV = (V0 47 = = Sy o BV cosa) Z‘fo‘) + V2= Visinta,

with « the angle between k and V. Therefore, V" is space-like in general (sin a # 0), with
the special exception of sin « = 0 when it is null. However, the latter case means V' = Ak
(with A some constant), which enforces

-V A2 ()2

0 _ - o _ 0 —
Vis =5 =S5 = =M — V=
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On its horizon, the Killing field is proportional to the normal of that hypersurface.

Proof: On the Killing horizon, by definition, h* is light-like and the normal (N Q)W as well,
while both are non-zero. And they are orthogonal to each other, (—N?).,h* = 2h,.,h*h* =
2h 0y = 0. Hence, they must be proportional. (That means, /* is a null generator of
the Killing horizon, being both tangent and orthogonal to it.)

Corollary:

Since, on the Killing horizon, the vectors h* and (N?)* are proportional to each other,
%(N )k = —h%Hh, = h*°h, = kph*, it means h* is geodesic there; and we have intro-
duced an invariant xy quantifying how much non-affine its parameterization is. It is called
the surface gravity and will be very important later.

‘ Theorem [Vishveshwara (1968)] ‘

The set {g,,h*h” = —N? = 0, with h* Killing and h* # 0} is a null hypersurface (thus a
Killing horizon) if and only if w,,[h] =0 there, with (N?)., #0.

Proof =: First, the above Lemma says that on the horizon h* and (N?)# are proportional.
Hence, if h* is non-trivial, (N?)* must be as well, and since (N?)* is hypersurface-orthogonal
by construction, ~* has to be as well, thus having zero vorticity there. (Note that from the
formula (L.6)) it only follows that w* is null there, w,w" =0.)

Proof «<=: If w=0 on the set { N? =0}, formula (L.6) says that this set has to be null. Besides
that, Frobenius says it is an integral hypersurface. And, if (N?)# # 0 there, it implies that h*
is non-trivial there as well, because — again — these two vectors have to be proportional there.

On a Killing horizon, R,sh*h? (thus T,,sh*h?) has to vanish.

Proof follows from the Killing property, from the Raychaudhuri equation and from the the-
orem by Vishveshwara. Consider first that for a geodesic null field (a generic one, not nec-
essarily Killing yet) which is not affinely parameterized, k,.sk” = kk,, the Raychaudhuri
equation reads

/ 1
Ok = (k% k7). — 5@2 + 2w* — 202 — Ropk®k” .

Actually, recall that in a time-like case, when acceleration a® :=u“, guﬁ is taken into account,
the Raychaudhuri equation involves the extra term a“.,. Here the role of this term is played
by (k%.3k").. = (kk®)... Now consider the case of a Killing vector field (which somewhere
has its horizon), k# — h*. For such, ., = h{,.,, so the expansion scalar © = h*., =0 and
(thus) the shear scalar reads
2
o? = %Mh’“” + i/ﬂ:zhﬂh“’ — % )

On its horizon, h* is null, so the shear scalar vanishes completely, and h* has zero vorticity
(Vishveshwara theorem), hence the Raychaudhuri equation reduces to 0 = (h®.3h")., —
R.p hehB. Finally, the red term reads

(h/a:ﬁhﬂ):u = (/{ha):u - 'L‘:,zx}la + /{,a%a



of which the second part vanishes (everywhere) due to the zero expansion, and the first part
has to vanish on the horizon, because the horizon value sy has to be constant along h* (since
the latter is a symmetry generator). Well, let us show the latter formally: application of the
covariant derivative along h® to the equation k% = —% h**h,,., yields

R (Ki):a = —ROW" By = =P Rpaoh®h = 0.

Hence, R,3h®h” =0 on the Killing horizon. Using the Einstein equations (in principle
even with the cosmological term), this means that 7,,5h*h” =0 on a Killing horizon. Actually,
on the horizon where A* is null, one has

1
81 Togh™h? = <Ra5 — 5R9as + Agaﬁ) h*h? = Rash®h”.

Corollary: The condition T,,5h*h” =0 can only be satisfied by a vacuum or by a special EM
field aligned with h*, as it is clear from the EM energy-momentum tensor:

AnTosh®h? = (Fo Fg' + *Fo,*F3') h*h® = F, h*Fg'h? + *F,,h*F3'h” = E,E* + B,B",

where F, :=—F,, h*, B, :=*F, h*. Hence, both the electric-field and magnetic-field vectors
have to be light-like, which means they have to be proportional to 4* on the horizon; in other
words, h* has to be a common principal null vector of both F},, and *F,,.

Another corollary: The condition 7,5h*h” = 0 means that T,,3h” is orthogonal to 2™ which
however is null on the horizon, so T,,sh” has to be either space-like or null. But the dominant
energy condition requires that 7,,sh” be causal (time-like or null), so the only (limit) option is
left that T,,5h” is light-like. Two orthogonal light-like vectors necessarily being proportional,
this means that 7,3 h? ~ h, on a Killing horizon.

Another expressions of xy: By the Vishveshwara theorem, a Killing field has zero vorticity
on its horizon, hence it is hypersurface-orthogonal there d This is equivalent to the property
(see GR course, Frobenius theorem)

0 = hlPpM = p@fp 4 pAORP 4 P e

Multiplying this equation by %,.s , one obtains
0 = h*Phagh® + BN hah® + BP e sh® = B*Phogh® + BN kyh, — WP kyhg =
= WP hagh + KERY + KERY = (R*P hgs + 26%) B
1
2
Yet another expression of ky: On the horizon (where Ragé’afﬁ = 0), equation implies
(for £ — h*)

1. 1
KJ%{ = —ih ’6}1/&;6 = _ZD(_N2)

— k= —=h"Phas.

2 Actually, we have just shown that, on the horizon, %(N 2)it = kyhM, which means that h* is hypersurface-
orthogonal there since ho = 5= (N?) 4.
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1.4 Stationary (and axisymmetric) black holes

Most notably it was Roger Penrose who, at the end of 1960s, was arguing that total gravi-
tational collapse is a generic tendency of large masses, rather than anything just tied to very
high symmetries or otherwise special initial conditions. He outlined the picture of such a col-
lapse, accompanied by radiating away most of the features of the collapsing object, and leav-
ing a relatively simple black hole which in a correspondingly short dynamical time (scaled
by GM /c?) settles to a quasi-stationary state (if not strongly perturbed further, of course).

Intuitively, a stationary yet non-static, i.e. rotating body should be axisymmetric, since
otherwise it would generate gravitational waves (and possibly EM waves as well), so it could
not stay stationary. This was really subsequently proved by Stephen Hawking within his
strong rigidity theorem [1972]. He showed that the stationary horizon has to be either
static or axially symmetric, and that the boundaries of stationary black holes represent Killing
horizons of the asymptotically time-like Killing vector fields. Indeed, however generic our
previous section may have sound, it factually concerned the stationary and axisymmetric
space-times. Leaving this fundamental part outside the scope of these notes, let us at least
sketch the notions and results which are necessary.

Complement of the causal past of future null infinity is called a black hole. By
this definition, black hole is the region from where there is no escape to future null infinity.
The boundary of a black hole is called the (future) event horizon.

Remark: The space-time in which these notions are defined is supposed to be strongly
asymptotically predictable, which means i) asymptotically flat and ii) with the closure of
the causal past of future null infinity being globally hyperbolic (more precisely, there has to
exist an open region of “conformal” space-time — obtained from the original one by a confor-
mal transformation — which is globally hyperbolic and which contains the whole closure of
the causal past of future null infinity of the original space-time). Practically, this means the
absence of naked singularities.

It turns out that the event horizon is necessarily a 3D achronal (space-like or light-like) hy-
persurface. Worth to have in mind that the event horizon is a global concept in the sense that
one has to know all the space-time up to future null infinity in order to decide whether and
where there is a black hole. There exist quasi-local definitions of horizons, mostly based on
Penrose’s (marginally) trapped surfaces (compact 2D submanifolds such that both outgo-
ing and ingoing orthogonal geodesic null congruences have non-positive expansions). In a
dynamical situation, the various horizons may differ (and they fypically differ from the in-
stantaneous event horizon), but for stationary space-times they all coincide and reduce to the
Killing horizon of the respective time Killing field. The strong rigidity theorem is the crucial
result in this direction.

The strong rigidity theorem [Hawking 1972] ‘

* Have a stationary event horizon in a space-time which is analytic, where the fundamental
matter fields obey well-behaved hyperbolic equations and where the weak energy condition



holds. The null generator of such a horizon coincides there with a certain Killing vector
field of the whole space-time, hence it is a Killing horizon.

* There are only two possibilities: either the (Killing) field which generates the horizon is
hypersurface-orthogonal (i.e., the region outside the black hole is static), or there exists
another, axial Killing vector field (an asymptotically space-like field with closed orbits and
non-empty set of fixed points [the axis]).

So let us consider stationary and — necessarily — axisymmetric black holes. Denote
by t# and ¢* the time and the axial Killing fields. We assume the two symmetries commute,
as it is always the case in an asymptotically flat space-time. Denote by ¢ and ¢ the parameters
of the time and the axial symmetries. Physically, ¢ represents proper time of a rest observer at
infinity, while ¢ represents the azimuthal angle (supposed to range from 0 to 27 in the sense

of the source rotation). The Killing fields then write t* = ag—:, oF = afo:. We (thus) assume

B
there exists a regular symmetry axis where the azimuthal circumference of the orbits of ¢*

(which amounts to 27gy,) shrinks to zero, i.e. where g4 = g,, ¢ ¢” vanishes.

‘ Corollary [explaining why “rigidity” theorem] ‘:

Angular velocity of the stationary axisymmetric horizon is constant all over the horizon.

Proof: The Killing field (h*) claimed to coincide, on the horizon, with the latter’s null gen-
erator has to be a linear combination of t* and ¢*, since otherwise it would indicate the
existence of a third independent symmetry (which however is assumed not to be present).
With a suitable normalization, one can thus write h* = t* + wy¢*. The quantity wy has to be
constant (even off the horizon), because otherwise h* would not satisfy the Killing equation.
Now, since the horizon has to itself stay invariant under the action of ¢* and/or ¢*, these vec-
tors have to be tangent to it (being space-like in general), and since ~2* should be null on the
horizon, they should also be normal to ~2* there. Hence, on the horizon, multiplication of the
above relation by h,, yields 0= 0, while multiplications by ¢, and by ¢, yield

T ') e " gttt gu
00"~ 0ap0"0" T ges’ T 10" T gast®d’ T g
where the metric components are evaluated on the horizon. The first expression indicates that
wy can be interpreted as the angular velocity of the horizon with respect to infinity. Equating

the two expressions, one obtains

WH =

0= —919¢s + (gt¢)2 = 9¢>¢>(_9tt - 9t¢>WH> = 9¢>¢>N2 .

Indeed, it is easy to check that this N2 coincides with the one introduced before in Sections

[[.2]and [1.3] since
—N? = h,h" = (t, + wnou) ([ + wad”) = gu + 2016wH + Joswi = Gu + Geown -

1.5 Warnings

Consider such a thought: let 4* be a Killing-horizon null geodesic generator. Then the Lh.
side of h***h, = kgh* can be written as —h**h,,, because h* is Killing. And h* is also null,
hence h**h, =0. So what is it all about?
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* One may make such mistakes at many places of the Killing-horizon calculations. The point
is that 2 is only null at the very horizon — this property in fact defines the horizon, it is
(and has to be) specific for it. So (—N?)* = (h®hy)* = 2h*Fh, is non-zero. Indeed,
remember this was especially claimed/assumed in the Vishveshwara theorem.

* The Killing property of h* is a subtle point, too. It is factually only required at the horizon.
Actually, recall the careful wording of the strong rigidity theorem: “The null generator of
such a horizon coincides there with a certain Killing vector field of the whole space-time...”
So one may either base the study on a vector field which is Killing everywhere, albeit it may
be unphysical (e.g. space-like) at some regions; or, one may know of some ‘“reasonable”
vector field (possibly with certain favourable properties) which however is only Killing at
the very horizon. While the first (everywhere Killing) option is the h#* = t* + wye* field
(which is space-like above a certain radius), we will see the second option (Killing only at
the horizon) is the field 11" = t* + w@t, with w := —;’;—d)i (which is time-like everywhere
outside the horizon). We will see such a field, for example, has the nice property that it is
everywhere vorticity-free.

* Indeed, the vanishing vorticity (i.e., hypersurface orthogonality) is another “issue”: vortic-
ity is also only required to vanish for the horizon generator. Of the above two fields, the
everywhere-Killing one, h* = t* 4+ wyet, is only vorticity-free at the horizon, whereas
n* =t + we will be shown to have zero vorticity everywhere.

Clearly, one has to always take care of where, how generally the given property is being
employed. In particular, the most precarious is to use any of the properties (potentially only
applying at the very horizon) under a derivative. In such a case, one should always check
carefully how the given quantity behaves under a given differentiation.

1.6 Orthogonal transitivity and circularity

We have mentioned how one has to be careful about what holds “in a volume” (perhaps even
everywhere) and what only holds on the horizon. Another source of confusion may be how
general is the host space-time. The basic statements concerning Killing horizons really just
require that a certain Killing vector field becomes null on a null hypersurface. However, if
one considers — most naturally — the Killing field representing stationarity, the strong rigidity
theorem claims that stationarity also implies axisymmetry (if not staticity), though under
the very strong assumption of the metric analyticity. In an asymptotically flat case, the two
symmetries commute, so one naturally arrives at stationary and axisymmetric space-times.

Within that setting, the crucial results (such as the rigidity theorem or the zeroth law
of black-hole thermodynamics we will derive later) follow by Einstein equations and some
of the energy conditions (plus possibly the analyticity). Another possibility is to assume
that the space-time moreover is orthogonally transitive. Then those conclusions follow by
purely geometric means, irrespectively of the field equations. When speaking of stationary
and axisymmetric space-times, people often suppose this additional property automatically,
yet it is by no means granted, so we somewhat go into it below.
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The planes locally spanned by two independent smooth vector fields are called the sur-
faces of transitivity of the continuous group generated by these fields. The group is said
to be orthogonally transitive, if there exists a family of complementary-dimension integral
surfaces everywhere orthogonal to the surfaces of transitivity. Now, consider the continu-
ous group generated by stationarity and axisymmetry. Its surfaces of transitivity are locally
spanned by t* and ¢*, and the question is whether there exist global “meridional” surfaces,
everywhere orthogonal to both of them.

Figure 1.1 Two tndependent vector Jlelds, t* ana ¢*, their orthogonal hypersurfaces X, and Xy,
and their vorticity vectors w[t] and w”[@] (which are orthogonal to them, so tangent to X(t)
and 3(¢), respectively). If the intersection X(t) N X(¢) 1s tntegravle, one speaks of orthogonal
transitivity of the symmetry group generated by t# and Q.

In the case of just one vector field V#, Frobenius theorem says that its local orthogonal
hyperplanes (V') are integrable if and only if V/* has zero vorticity — when the latter does not
“entwine” about itself. Here, in the case of two fields, t* and ¢*, wanted is the integrability of
the local planes given by intersections () N ¥(¢). Such planes would certainly be integrable
if both the normal fields ¢* and ¢* had zero vorticities. However, even weaker condition is
clearly sufficient: the vorticity of ¢* must not have a component in the direction of ¢*, and
the vorticity of ¢ must not have a component in the direction of ¢#. Therefore, one demands

1 1
wht]p, = §e“yp"¢utl,;ptg =0 and wle|t, = 56“”””tu¢l,;p¢o =0;

more often it is being written as
Plutvipto) = 0 and tuPuipPo] = 0.

If these conditions are satisfied, the thus existing global meridional planes can be covered by
coordinates z', 22, e. g. by r and 6 (or p and z), such that the metric does not contain the terms
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g1, 9e2, 914 and go. The latter can also be voiced in such a way that the metric is invariant
under the inversion t — —t,  — —¢; one says that the symmetry group is invertible (strictly
speaking, this property is slightly stronger than the orthogonal transitivity, see Carter 1969).

In a general stationary and axisymmetric case, the vorticity vector of 11# =t* + w¢* satisfies
1 VEA ¢H L 2
W[N] = = " N, 1 = — (pu'[t] —wtw'[¢]).
2 Goo

Proof:

nu;nn)\ = (tu;/@ + w¢u;n + ¢I/w;/€)(t)\ + W¢A) =
vy + W tu;n(bA + W(bu;ntA + W2¢u;n¢>\ + w;n¢utA + WW;H¢V¢>\ .

The last term can be omitted since it is symmetric in (v, A) and thus does not contribute to

N, 11y. To the above, it is suitable to substitute the gradient of w = —;7;72 = —% ,
. _(gtfb);n I Ite. (96¢)x _ _(gm);n + w(goe)sn _ _(tb¢b>;n + w(d.9");x _
’ 9es 9o Yoo 9oo 9es

2t — 2B 20
Go¢ Go¢

(tﬁ;b + w¢/{;b) )

where we have used that t* and ¢* are Killings and that they commute (t*¢,.., = ,.,¢"),

(tLQSL);n = tL;H¢L + tLQSL;:‘i = _tn;LCbL - tL¢n;L = _2tﬁ;L¢L7
(¢L¢L>;H = 2¢L;H¢L = _2¢I€;L¢L .

Substituting to 71,,...11, above (without the last term already), we have

20"
nu;nn)\ = tV;Ht)\ + WtV;HQSA + w¢l/;l€t>\ + w2¢u;n¢)\ + i (tﬁ;l, + w¢/€;b)¢l/t>\ =
)
_#

9ee

(tu;ntA¢L - tu;H¢AtL + w¢l/;fit)\¢L - wgbl/;f{gb)\tL + 2t&;b¢ut)\ + 2W¢H;L¢Vt>\) .

Imposing the anti-symmetrization [vx\|, we write separately the terms with ¢,,., and ¢,,., ,

UuintA] P — Ui @1t + 200t ] = Ot — Li[la®A] + HpPrtaly — LPlen] =
= 4 Pptykty
Pt P — Pt + 200 EaPul = OuPluinla] — Pufutn®r] + L Pr®r — L Prin] =
=49 Puintn] = — 41 Puk®n]

thus finding that

40"
9o

n[u;nn)\] = (QS[LtV;HtA] - W t[LQSI/;HCb)\])
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1 20"
= wu[n] =5 ewjﬁ)\n[u;nn)\] = i (EMVH)\QS[LtV;HtA] - weMV“At[L¢V;H¢)\]) .
2 oo
For each value of the free index , the summation over ¢ only yields non-trivial contribution

for 1 =y, so the formula can be written as

2 M
wﬂ[n] _ ¢ (EWH)\Qb[LtV;Rt)\] o WGWRAt[LQﬁy;/@Qb)\]) =
Go¢
I3 i
= 2 (Nt — P en) = o (9] - wte o). D
294 9o

Corollary: Space-time is circular if and only if 71* = t* + w@* is hypersurface-orthogonal.

Proof: First, the circularity conditions ¢,w*[t] =0, t,w*[¢] =0 immediately make w”[11] van-
ish, so 71" is then hypersurface-orthogonal. Equally clearly, if 71* is hypersurface-orthogonal,
re. M,..115 =0, then

0= Cb[unu;nn)\] = Cb[unu;nt)\] = Cb[utu;nt)\] + w¢[u¢u;ﬁt)\] )

because 11, =t,..+ W, + Ouw . (so the last term cancels in anti-symmetrization with ¢,,).

‘Theorem [Papapetrou, 1966] ‘

The conditions ¢(,t,t..x) =0, t[,0,Px;x =0 are equivalent to the conditions

Cb[ut)\Rn]ytV =0, t[“¢)\RH]V¢V =0].

Proof: The derivation is the same for both the conditions, and since it starts from properties
which hold for any Killing vector field, we will at this stage denote the latter generically as
&*. Multiplying the definition w,[£] = €& "€ by €77 and using the formula (L4),
1.e., explicitly,

n€?0 = 055709 — 656257 — 676205 + 688267 + 676P55 + 656765
we easily obtain
%Euﬁw _ _565[7;5] _ 555[5;7] _ 575[5;5] _ _gﬁgw;é _ 5555;7 _ 5755;5 _ _5{657;5} )
Differentiation of the latter by 2 yields
Wspe" = —(E7€70) 5 — (€°€77).5 — (£7677) 5 =
= G e, T 0, Tl e, =
= =6+ OO0 - 008 = —GRYEL + ORYE - CRYE, (1Y)

where the Killing property and the formulas (I.1)), (1.2)) have been employed. Multiplication
of this relation by €,,+s leads to twice the same term on the right-hand side, while on the left
one has

Wu;ﬁeum%ww = 2”#;5(5552 - 5555) = 2(Wia — Wayw) =4 W0 »
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so we arrive at the formula for gradient of (any) Killing-vector twist,

1
Wlysa] = 5 €Cavys gng 56 . (1.10)

Now, let us specify to our {# = t*, w, = w),[t] case (with ¢* the second existing Killing
field) and consider the derivative

(¢”wy),a = ¢"\qwy + @' Wiia = @0y + P Wan + 20 W0 =
= (Lyoa] + €ays PR (1.11)

This result confirms that
Pttty =0 = (gb”w,,[t]),a =0 < ¢ptraRapt"=0.
Similarly one would verify that

tudvden) =0 = (w9]), =0 <= {oaRad” =0.

)

The opposite implications are also based on the relation (L.II). Since ¢, = g0 ®* = gue
vanishes on the symmetry axisf also trivial there is wh[@] = 2", ¢,..r. Consequently,
both the invariants ¢,w”[t]| and ¢, w"”[¢] vanish on the axis as well. Now, if the space-time
satisfies ¢p,taR.p,t" = 0 and t,¢) Ry, ¢" = 0, implying that the gradients of both the in-
variants are everywhere zero, (¢,w”[t]) , = 0 and (t,w”[¢]) , = O, then the invariants are
themselves zero everywhere, which is the orthogonal-transitivity condition. ]

: Since the orthogonal-transitivity properties trivially hold for the metric tensor,

Prutagapt” = Oputatg =0, uPrGrn®” = tuoadn) = 0,

one may use Einstein equations and translate the Ricci-based conditions to
gﬁ[utATH]VtV =0, t[ugﬁ)\TH]ngV =0. (1.12)

They can be summarized (added) in ¢, 2T, 11" =0 or ¢, 11,1}, 11" =0, with N* =t +weH
(remember that ¢, 11* =0, so the latter is even “nicer”).

Immediately clear is that vacuum stationary and axisymmetric space-times are nec-
essarily orthogonally transitive. Actually, every space-time is such in which sources move
purely along stationary circular trajectories (along the Killing directions, i.e. with four-
velocity satisfying up,t.¢x = 0). This is illustrated on an ideal fluid, T}, = (p + P)u,u +
Pgy: the second part is circular automatically and the first one has to satisfy ¢t \u. = 0,
resp. tr,@auys = 0 (which is the same). The stationary axisymmetric space-times which are
orthogonally transitive are thus called circular space-times.

3 On a regular axis, gy = ¢, " has to vanish since it determines proper circumference about the axis (along
a circular orbit of ¢# at some given radius). This is not due to ¢* becoming null (light-like) there, but because
& = gug shrinks there to zero (while ¢* = dx# /d¢ everywhere).
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1.6.1 Circular (i.e. “Kerr-like”) metric

If the stationary and axisymmetric space-time is also circular, the metric can be written as

ds? = —N?dt? + gy (dp—w dt)® + g, dr® + gpy d6? |, (1.13)

with N?:=—g;—gipw and w:= — g% the lapse function and the dragging angular velocity,
and r and 6 covering the meridional planes (alternatively, one might e.g. use the p and z
coordinates of cylindrical type). Worth to repeat once more that the whole “Killing” part of
the metric has invariant meaning since it is given by scalar products of the Killing fields,

git = guut“ty y Gt = guut“(by sy Yoo = guuﬁbuﬁby .

The same is of course inherited by N2, w and all other quantities possibly defined from that
part of the metric.

The speciality of circular metrics, within generic stationary and axisymmetric ones, is
that the meridional surfaces are globally orthogonal to t* and ¢*, so the coordinates can be
tied to them so that g;1, gs2, 15 and go4 vanish everywhere (1,2 # t, ¢).

1.6.2 Stationary circular orbits and their light cones

Consider a family of stationary motions along the circles » = const, § = const, i.e. with
four-velocity given by combination of the Killing fields,

t + Qot t 4+ Qot
b= = , (1.14)
[t + Qo1 —gu(tt + Q¢r) (17 + Qgr)
where the azimuthal angular velocity €2 := % is constant in time (it may however depend on

r and 6). In the above coordinates (¢, r, 0, ¢) adapted to the symmetries,
=0 ¢ =104 gt +Q0") (" +Q0%) = gu+ 200+ gpp® = —N+ gus(QU—w)?,
so the four-velocity has components

1
ut =u'(1,0,0,9), u'= ) 1.15
( ) VNZ = g4s(Q — w)? 41

The angular velocity with respect to an asymptotic inertial system, {2, cannot be arbitrary
— too large values would correspond to super-luminal (space-like) motion. The interval of
time-like motion has boundaries where u* can no longer be normalized by any real v, i.e. at
the roots of gyt + 2g:4Q + gpeQ* = 0:

— + 4/ 2 _ N
Qmax,min = gro (gt¢) il =wt,/w?-— & =Wk —. (116)
V 9oe V9o

9oo
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1.6.3 Horizon as a limit for circular motions

Hence, the light cone of stationary circular motions, expressed in terms of {2, is centred by
the dragging angular velocity w, extending from it equally to both sides. The time-like option
for €2 closes up at N = 0, which (thus) clearly represents a horizon. The observers orbiting
there with 2 = w are null already, being proportional to the null generators of the horizon.
Below, N2 becomes negative and N thus imaginary.

1.6.4 Stationary circular congruence with zero angular momentum

Within the stationary circular orbits, the value €2 = w identifies the congruence of so-called
Zero Angular Momentum Observers. Indeed, the (specific) azimuthal angular momentum
(for any motion, not just the stationary circular one) reads

Up = gortt’ + Gopu® = gosu' (R — w),

so it vanishes if and only if €2 = w. The ZAMO congruence has four-velocity and four-
acceleration

Ctwet 1
N N

Na
uu <1’07 0,W> = n”) aa = ua;ﬁuﬁ = T .

Notation etc

In the GR course, we have denoted &* := t* + w¢t, but that is somewhat misleading,
because by £# we generally denote Killing vector fields. And, it is crucial in the present
course to distinguish between Killing and non-Killing fields. So let us switch to the notation
n" = t* + wet. Consistence with the notation used in 3+1 splitting would suggest to use
Nnt, because in that way the quantities /V, n* and t* would exactly correspond to what in
3+1 is denoted so ... N is lapse, n* is the normal to the hypersurfaces ¢ = const (see below)
and ¢# is the “time vector"; and, the shift vector N*, also important in 3+1, corresponds to
NF = —w¢#. However, Nn# is graphically not ideal at times, so let us adhere to 71#, with the
remark that we will nowhere use the shift vector N*, so there should be no confusion. The
ZAMO congruence represents the most privileged stationary circular congruence, time-like
everywhere from radial infinity down to the horizon. [This is not to claim that ZAMO is the
only such privileged subfamily. For example, there exist Carter (canonical) observers, also
time-like down to the horizon, and exclusive in that their angular velocity € is the same as
that of principal null directions of the Weyl tensor (so the latter are purely radial relative to
them). However, the Carter observers only exist in algebraically special space-times, not in
any stationary and axisymmetric space-time as ZAMOs. |

The field 11* = t* + we* also has other nice propertiesﬂ

* Scalar products:

Gu "N = gy + 2919w + 9¢¢W2 = gu + Gipw = —N?

* Note that it is not a Killing field, because w is not constant — it depends on both 7 and 6.
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(hence, 11* is null where N2 =0, i.e. on the horizon),

Cbunu = ¢u(tu+ WQW) = gt¢+g¢¢w =0 ) tunu = tu(tu+ wqbu) =g+ GtoW = _N2 .

¢ Covariant version:

na = ga,unu = gau<tu + w¢#) = Gat + GapW = _N252 = _N2t,a s Nag = _Nta

)

= n* is orthogonal to the hypersurfaces ¢ =const => it has zero twist, w”[n]=0.
The latter follows from Frobenius theorem; actually, it is clear immediately,

1 1 1
whn] = 56“”"’\%;,{71,\ = 56“”'%)\(%1,,,{ —In)ny = 56“”“)‘(Nt71,)7,4]\7t,>\ =0.

Memory from GR: the Frobenius theorem says that hypersurface orthogonality and zero
twist are equivalent properties — indeed, this property is well known: w*[n] represents
rotation (curl) of n, within the (hyper)surface orthogonal to n,; if that rotation is zero,
the field n, has to be proportional to a gradient of some scalar field. In components,
w[n] =0 means n, , =n, ,, which exactly are the integrability conditions for the equation
—fd®=n,dz",ie. —f®,=n,, with f and ® some scalars (f =N and ®=¢ in our case).

Reminder: as proved before in a coordinate-independent manner, this item only holds in
the circular case. Indeed, otherwise 71, = ga¢ + gagw may also have  and/or f components,
and thus not to be orthogonal to ¢ = const.

* Expansion tensor:
@,W = hz‘hfn(a;ﬁ) = (53 + no‘nu)(ch + nﬁn,,)n(a;g) =
= Ny + Nispyn” 1y + Ny ny + Neasgyn®nnym, -
But t# and ¢* are Killings, so
Niap) = L) + W Pant) + Plat )
and ¢, ,n“=0, w,ﬁnﬁ =(), hence n(a;g)nﬁ =0 and thus we are left with
Ouw = Ny = G -

This also implies that the expansion scalar vanishes, © := ©% = 0, so the expansion tensor
is “pure shear”, ©,,, = 0,,,. (Note again: this is not automatic, because 71* is not Killing.)

* Comparison of 11" = t* 4+ w¢" with the field h* = t# + wy@" (at generic location):

11" is not Killing, whereas h* is. Both have zero expansion. 71* is hypersurface-orthogonal
(it has zero vorticity), whereas h* is not. 71" is not shear-free, whereas h* is (as it is
clear from above, with wy being constant). 77* is orthogonal to ¢*, whereas h* is not,
Pt = W + ¢pu(wn — w)P" = gpp(wn — w). N* is time-like everywhere outside the
horizon, whereas h* is not; namely, h* becomes space-like above the largest real root of
the equation 0 = —gy; — 2g1pwn — Gpowi = N? — gye(wn — w)? (in the equatorial plane
of a Kerr space-time, for example, it means above r =38.9M for a =0.1M, while already
above 7 = 2.08 M for a =0.9M; for a — M ™, i.e. in the extreme limit, the border shrinks
to r— M™, so h* is nowhere time-like in the equatorial plane).
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1.6.5 Circularity condition for EM field

Any stationary and axisymmetric EM field F},, (in a space-time of the same com-
muting symmetries) satisfies ), t"¢" =0, *F},,t#¢” = 0 (in any region which involves at least
a part of the symmetry axis where ¢, = O)

Proof:

(F* )0 = (Fuwt"d").a = (Fut"0")ia = Fuat"¢” + Fut"ad” + Fut'o"a =
:( a,u,u_ uau)t“¢y+Fuutua¢ +F,uut¢ e

( pao V¢V + Cbl/ /u/) tﬂ + (Fau;utu + tu;aFw/) Cbl/ -
= (LoFa = O pubva) ' + (L — 10 Fap) ¢ =
= Fua(t",00" = ¢"01") = Fua(t" 09" — ¢ ,1") = 0,
because the Killing fields ¢# and ¢* are supposed to commute. The same computation works
for the dual *F},,. Now, F'*"t,¢, and *F'*"t,¢, necessarily are zero on the symmetry axis
where ¢, =0, so they have to vanish in any region containing at least part of the latter.

* Remark: Vanishing of F),, t#¢" follows immediately,

é’x ox
BV v e
Fﬂut ¥ = (Am,u A at a¢ ﬂ/(ﬁ Mt =0.

The circularity conditions are satisfied by any stationary and axisymmetric source-
free EM field.

Proof: Take ¢l“t*T"!,n” (which in the circular case should vanish). Of the key expression
1 1
A T",n" = (F”“F,,L ~ 2 5§F“Fm> n’ = F*"F,n" — 1 n"FoF,, ,

the second term clearly is “circular” since <b[”tAn“] = 0, so let us focus on the first term,
contributing by ¢l#t* F#l* F,, n”. The latter is circular if and only if F**F,,n" is proportional
to n” (or, more precisely, if it is a combination of t* and ¢*).

Let us make use of the standard decomposition of the expression /" F},, in terms of
a certain time-like field (“observer”) and the corresponding electric and magnetic field. We
will specifically consider the ZAMO observer (which always exists and is time-like all the
way down to the horizon),

1
_ . v . % v /@)\
ut = —(t" + wet) =n*, E,:=F,n", B,:= i’ = 26;“,,{)\71 F

I
which is reciprocal to

F =n,E, — En, + €,,,n" B, *Fl = Bun, —n, By, + €00 E7
and thus giving rise tof

FREY, = n*n’E? + (¢ +n*n") B — EE" — B"B” + n"(Ex B)" + n”(Ex B)"

3 See GR-course lecture notes; again multiplication of epsilons over one index is the key.
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with (E x B)" := e*7*¢ E,n, By . Since n,n” = —1, (65 +n"n,)n” =0, E,n” =0, B,n’ =0
and (E x B ),n” =0, the multiplication of the above F**F,, by n” yields

FfF,n" = —n"E? — (E X E)H .
The first term is clearly circular, being proportional to n". So compute

4T ew,\ﬁt’\T“,,n” = ew)\,.@t)‘Fman” = —ew)\,{n’\ (Ex é)ﬁ —
= —aun€ 0 Egn, B, = ... = —E,B, + B,E,
— 4r equﬁ”t)‘T“Vn” =A4r ew,\,ﬁqﬁ[“t)‘T“],,n” =
= —¢"E.B, + ¢"B,E, = —(¢"Fmn) By — (0" Fpn’) B, = 0,
because both the expressions in parentheses vanish due to the above Lemma.

¢ Remark: We have nowhere cared about the sources, so we in fact have not used the source-
free assumption. However, it is clear that the possible sources would have to move in a
stationary manner along circular orbits in order that they themselves satisfy the circularity
conditions. Indeed, it is known that if currents also had poloidal components, the resulting
EM field would not be circular, so if the field is “exact” (dynamical), neither the space-time
would be such (see [Gourgoulhon]).

1.7 The weak rigidity theorem

‘Theorem [Carter 1969] ‘

In a circular space-time, the dragging angular velocity w is constant (=: wyy) all over the sur-
face {—N? =0}, so the latter is a Killing horizon. (Namely, h* = t* + wyd* thus is a Killing
field which on the horizon coincides with 71 = t#* + we¢*.)

Proof:

* First, if the two Killing fields commute, ¢, ,¢* = ¢, ,t* (Which is automatic in the asymp-
totically flat case), it also means t,., 0" = ¢,.,t". Let us use it in

Yidia = (t“qw);a = tll;agbu + tu¢u;o¢ = —toz;qu - t”%;u = —2tu¢a;ﬂ
Yotia = (0ud")ia = 200" = —200,,0"
= W, = (_gﬁ) _ —0tp;a966 T Gto9oda T Otpa — WYhgia _

9o (990)* 9o
204 2N
— M (tu + wqb“) = ¢awnu‘
9o 9o

e It is clear that w ,t* = 0 and w ¢~ = 0 (thus w ,n® = 0), so we only need to check the
derivative of w in the plane perpendicular to both ¢* and ¢*,
2N

€ Bvégbﬁtvw,é = € Bwsgbﬁtv%;unu = € Bwﬂﬁ[ﬁtvgbﬂ;unu'
Go¢ Jo¢
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* One of the circularity conditions reads 0 = 4! @5t ¢5,,) = 3! d¢stPs);,y (braces mean cyclic
permutation in the enclosed indices, without a prefactor), from where one can express

3 datyds = 3! Prutsdyss — 3! drstudpyy + 3!y tsdpys =
= OulsDris + Otu0p:5 + Opty@us — Pptudyis — PAtgPus — OulyOpis

— Gstu®py — PatsPupy — PulsPsy + OulsOpy + Gptudsy + Pstaduny

+ Py tsbup + Outy Gs.p + Ostudrpg — sty dup — Outsdrp — Ootudsp =
= 20ut(50y0p = 20uPiPri0y — 2048t Polyu -

Now multiply this by 77%, using ¢, 11" =0, ¢,11" = —N? and ¢5,, 11" = % JppW 5 :

1 1
Pt Psy 1" = 30 (2N2¢{B¢7;6} - 9¢¢¢{Bthw,5]}) ) (2N2¢[6¢'y;5] - g¢¢¢[ﬁtvw,5]) .
Finally, multiplication by %7 yields
80 afyé aByé )
€ pptyw s = Praty o)l = (2N?B150:5) — GooPrst,w,a)
Go¢ 9o
5 N? 5
—  Pstws = o P55 . (1.17)

e Hence, on the N? =0 hypersurface, the derivative of w in the complementary (meridional)
plane vanishes as well, so w is constant there.

The generator of a Killing horizon is a principal null vector of Weyl (there on the
horizon).

Proof: Above, we have learnt that the shear of the 11" = {* + w¢* field reads 0, = oW ).
The rigidity theorems, in any of the versions, say that on the horizon w, vanishes, hence also
the shear of 77*. However, on the horizon, 71" coincides with the geodesic null Killing gener-
ator h*. Hence, according to the Goldberg-Sachs theorem (see e.g. GR-course lecture notes),
the generator of a Killing horizon is tangent there to the repeated principal null congruence of
the Weyl tensor. (Worth to add that this property only holds on the horizon. Sure, we might
have started directly from h* = t* + wy@* which is Killing and shear-free everywhere, yet
even this field is only null at the very horizon.)

Note that this property is not so “obvious”, because the horizon is a feature of the
metric and its first derivatives, while the principal null directions are given by curvature.
Indeed, curvature generally does not behave in any special way on black-hole horizons.

1.8 Acceleration scalar and the black-hole surface gravity

Due to the equivalence principle, “gravitational acceleration” cannot in general be repre-
sented by an invariant quantity. However, in circular space-times, there is such a possibility —
it is provided by gradient of the “Killing” part of the metric (which in turn follows by scalar
products of the Killing vector fields, and thus has an invariant character).
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1.8.1 Physical picture

Intuitively, the strength of the field can be characterized by magnitude of four-acceleration
which some suitable observers need in order to “keep themselves at a given orbit”. Such a
concept is of course ambiguous, but in circular space-times there do exist certain symmetry-
privileged orbits — the stationary circular ones we mentioned at the beginning. In particular,
a natural choice is the ZAMO congruence having €2 = w, which is time-like everywhere
down to the horizon and has zero angular momentum with respect to infinity. [Whereas, for
instance, it is not possible to consider static (£2=0) congruence for this purpose, since that is
only time-like outside the static limit given by gy =0.]

Let us first compute the four-acceleration of a generic stationary circular orbit in a
circular space-time,

du L 3 . 1 LK 1 L K
Ap = d—TM -T e U = —Fumu u = _§<gbﬂvﬁ+gﬂb7“_g“H’L)u w= _5 Jruptt =
T, 4o 2 U ety + 2916182 + 9o Q2
S + 201642 + Goo V) = 5 =L X e Hi8
2 (u)*(Gue + 296,182 + Go,uS ") 2 Gu + 201682 + g2 i

where we have used the stationarity of the motion, thus constancy of u,, along the orbit, and
symmetry of u'u" due to which the term (g,,, »—g,x,.) antisymmetric in (¢, x) drops out in the
multiplication. The main aspect is that the “Killing” components a; and a, vanish.

Now specifically for the ZAMO sub-family, i.e. for u* =n*, or Q =w=—g./gpe :

Jit + 2gpw + 9¢¢W2 = gt T GrpW = —N?,
Gt + 20100 + 9¢¢7MW2 = (Gu + Grow) p = (_N2)vu = —2NN,,

So one obtains

1 -2NN, N,
UG =5——m = N (1.19)
The lapse is often being expressed in terms of the gravitational potential ®, as N = ¢®; then
the ZAMO’s acceleration is justa, =P ,, .

However, in the limit N — 0%, all the time-like range of stationary circular motions (and
ZAMO family in particular) go over to the null generators of the horizon — the photons which
just stay on the horizon, keeping constant r and # while orbiting with €2 =wy in the azimuthal
direction. No other time-like or light-like world-line can lie on the horizon. This means that
in the horizon limit (N — 0), the magnitude of the circular-orbit acceleration undoubtedly
diverges; on the ZAMO acceleration which we plan to use it is seen at first sight. Yet there is
a natural way how to regularize such a divergence: multiply the acceleration by N. This has
a clear meaning since [V represents the dilation factor between the proper time of ZAMO and
the Killing time ¢. Indeed, from we have

utzﬁzi - N#:Nazﬁz%ﬁ.

dr N ot dr dt

One thus obtains the ZAMO acceleration taken “with respect to the asymptotic inertial time”.
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So let us define the acceleration scalar « and the black-hole surface gravity xy by

k® = N*¢"a,a, = ¢"*N,N, , K = ]1/1£n>0 K2 (1.20)

Remark: Horizon vacuumness once more, from circularity:

Circularity conditions (L12), i.e. ¢.tAT.t” = 0 and t,$\T,¢” = 0, can be summed to
OrutaTi), 1" =0, since N* = " + we. Write this out (without 1/3!) and multiply it by 777,
while remembering that ¢,,71* =0 and ¢, 1% = — N2,

0= (¢utATnV + qb/@tuT)\V + gb)\tHTul/ - qb)\tuTm/ - qb/@t)\TuV - ¢utnTAV) nn- =
= 2¢0,t\ T V1" + 2N, T 117

The fields ¢* and t* are independent, and on the horizon N = 0, so 7}, 11”11" has to van-
ish there, which, according to Einstein equations, implies the same for R,,11"11" (because
i 11717 =0 there).

1.8.2 Zeroth law of black-hole thermodynamics

In a thermal equilibrium, the temperature is the same within the whole system. Similarly,
in a stationary state, the surface gravity is constant all over the black-hole horizon. Let us
show a different proof than those given above. Namely, most of the above results (a rigidity
theorem in particular) either follow as a purely geometric property (independent of the theory
of gravitation and of energy conditions) if one assumes that the space-time is circular, or
they are obtained for a generic space-time from the field equations and energy conditions.
(One speaks of weak and strong versions of the results, respectively.) Up to now, we have
been assuming the circularity where necessary, only having employed the Einstein equations
for the translation between R, and T}, in the circularity conditions and to understand the
horizon circumstance R, h*h” = 0. Here we base the proof on the field equations and the
energy-dominance conditions. (And then we also offer an alternative one.)

‘ Theorem [Bardeen, Carter & Hawking 1973] ‘ ry 1s constant all over a Killing horizon.

Proof: We know that on a Killing horizon its generating Killing field 2* has zero vorticity,
wh|h] = 2"y, hy = 0, or Apyha = 0. Since Ay, = hy,., it expands as

hu;nh)\ + h)\;l/hn + h/@;)\hu =0 = hu;nh)\ - hl/;)\hn = h’)\;fih’ll ) Le. D)\/@hu :h/\;fehy )

where we have introduced D), :=h)\V .— h, V. Multiplying by xy while using its definition
hy. W = kuh, on the r.h. side, we have

HHDAﬁhV = HHhA;nhy = hu;,uhllh)\:;{ = hzx;,u,D)\nh'uu (121)

where we finally re-substituted the red term from above. Now, instead of h,, alone (as above),
apply Dy to kih, = h,,, h*, that is, write out the relation D), (knhy,) = Dag(hy., h*):

h,Dy.ku + kaDyrchy, = hu'D)\,{hl,;u + hl,;u'D)\,{hM .
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According to equation (I.21)), the second terms on both sides are equal, so we are left with

hI/DAHKJH = hHIDAnhu;p = h“(h)\vn - hlivA)hI/;p = h“(h)\hy;un - hlihlj;p)\> =
= hu(h)\Ruum - hHRl/p)\L) ht = (h)\RmVu - hHRAu/u) h*h' =
= 2B Reguuh' b (1.22)

At this stage, we might express Riemann in terms of Weyl and Ricci, and to employ
the results obtained for circular horizons, namely that R, h*h* = 0 and hpy R0 h* =0
(exactly the condition for h* standing for the repeated principal null vector of Weyl). How-
ever, we wish to finish the proof without referring to the circularity property. Next step is to
express the result in terms of the Ricci (rather than Riemann) tensor. It is possible through
somewhat uncomfortable application of D,, to the first equation h* . hy — h*.\h, = hy.h":

ho bt b + Tl — hyht by — T, —
- thb;m/h)\ M + h h', )\l/h + M
= hth)\;mhL + hyhA;ﬁ%_M_Ma

where the Terms cancelled with respect to each other, the terms vanish due to obvious rea-
sons, and the Termas sum to zero because

- thL;ﬁhA;u + thb;)\hﬁ;u + thA;ﬁhL;zx = hbhn;LhA;y + thA;Lhy;H + hbhy;bh,.;;)\ =
= K,H(hnh)\;,/ + h)\h,/;,{ + h,,h,{p\) =0.

Thanks to the Killing property, h'.., = =[] h, and h*.,, = =[] h) , hence the equation yields,
with and substituted,

hyha Ry b — hyh Ry b = hohyR' b — hohy R sy b+ oy B R
which is easily arranged as
hyhp R bt = —hp R b b
Using it in equation (1.22)), we obtain
Dy.ku = —2hp R . (1.23)

(Remember this only applies at the horizon, since we started from the vorticity-free property
of h#* which only holds there.)

Finally (but one), recall that on a Killing horizon R, h"h* = 0, which implies that
R, h* has to be proportional to h, (provided that the dominant energy condition holds).
Therefore, hp\Rqu.h* ~ hpnhieg = 0.

And, finally: what actually have we learnt by finding D).~y = 0 ? First, as the hori-
zon has to be the surface of transitivity of the two Killing vectors, xy has to definitely be
constant along h* (we showed this explicitely within the Lemma below the Vishveshwara
theorem). To prove the constancy over the horizon, it is thus sufficient to show the con-
stancy in the tangent direction independent of h*. But that is exactly given by the operator
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D)\H = h)\v,.@— hRV)\.

Alternative proof: Recall equation (I.10), valid for any Killing field (in any space-time),

Wy;a] [6] = % €avvyd S’ng SB .
The connection with is obvious: putting £# — h*, the r.h. sides (necessarily vanishing
on the horizon) are same, only that this time it is written in terms of Levi-Civita. Hence,
on the horizon of &* (here h*), not only vanishes the latter’s vorticity itself, but also the
anti-symmetrized gradient of vorticity.

An easy way to make wy,.q] zero is to take the field 11* = t* +wg@* (for which whtN]=0
everywhere). To convince oneself that on the horizon w"[11] yields the same value as w”|h],
write

1 1
Wu;a [h] = i‘suy'{)\(hu;nah)\ + hu;ﬁh)\;a) = §€MVH>\<RVnaothA + hu;ﬁh)\;a) .
On the horizon, this really equals w”.,[11], because 71" = h* there and their gradients are
same there as well. Indeed,

Ny, =ty + Whp + Opw ., while hyy =1, +Wadyy ,
which however are same, because, on the horizon, w =wy and w ,, =0 (rigidity theorem).

Proof from circularity: Above, the zeroth law has been obtained from geometry (zero vortic-
ity of A* on the horizon), from Einstein equations (Raﬁhahﬁ = 0 on the horizon) and from
the dominant energy condition (T,,sh” causal). In circular space-times, the theorem follows
as a purely geometrical fact, independent of the field equations and of energy conditions.

Sorry, I don’t much like the usual proof, but have not yet been able to provide a better
one :-)
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