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Some people think that everything important lives on a boundary. In physics, the idea that

behaviour of the “bulk” can be described by theories formulated on its boundary is called the

holographic principle. After a lunch, I tend to doubt about it, yet it might at least work for

black holes. Actually, the holographic viewpoint was inspired by the proposal (in 1972) by

Jacob Bekenstein to connect the entropy of a black hole with the proper area of the horizon. In

terms of such a quantity, he formulated the second law of black-hole thermodynamics. Were

Bekenstein right, the usual first-law term TdS would require that the black hole have tem-

perature, proportional to the quantity called surface gravity. Bardeen, Carter and Hawking

subsequently (1973) wrote the paper “The four laws of black hole mechanics” where they

added, for a stationary and axisymmetric black hole, the other three laws.

As it is e.g. clear from Carter’s thorough lecture on stationary black holes in the famous

Les Houches ’72 Summer School proceedings, the authors of the paper themselves did not

think their laws were more than an analogy of thermodynamics. In particular, Hawking

decided to show that black holes do not emit thermal radiation, in order to demonstrate that

despite formal analogy, the “temperature” of the horizon does not have its usual sense, and so

neither the area really represents the black-hole entropy. Employing the quantum-field theory

on a (classical) curved background, he managed to show (1974) just the opposite: black holes

do emit thermal radiation, in accord with the black-body formula.1 The road to black-hole

thermodynamics was open.

Today, the thermodynamics of black holes – of something “built from pure geome-

try” – is considered a key to deep connections between gravitational, quantum and statistical

physics. Since the gravitational degrees of freedom should also contribute to the relevant

quantities, a complete picture also requires to quantize these (not only the other fields “on a

background”). The area is thus being studied heavily as one of the promising targets – and

tests – of any attempt to quantize gravitation. Bekenstein’s proposals continue to inspire it.

Below, as the starting point, we mention several notions and results from the geometry

and physics of black-hole horizons. We naturally restrict to non-dynamical, stationary hori-

zons. In the electro-vacuum and asymptotically flat case, this necessarily means the Kerr-

Newman family of solutions according to the uniqueness theorems, but we will at least be

slightly more general and will consider stationary and axially symmetric (in fact so-called

circular) setting.

Although many definitions of black-hole horizons exist, in a generic situation it is not

entirely clear what “a black hole” actually means. Anyway, the laws of black-hole thermo-

dynamics start from a stationary and axially symmetric situation: the zeroth law states that

on a stationary horizon the surface gravity is everywhere the same, and the first law fixes the

“first thermodynamic law” for changes of basic quantities (mass, horizon area, charge and

spin) characterizing the transition of the black hole between two close stationary states. The

word “axisymmetric” has disappeared somehow, yet it is there automatically: if a stationary

black hole is not static, i.e. if it is rotating, then it has to be axisymmetric, since otherwise –

with some bump on it – it would emit gravitational waves, so it could not be stationary.

1 Black hole is quite an ideal black body, isn’t it...
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1.1 Horizons in circular space-times (physical approach)

In stationary and axisymmetric space-times (at least when these two symmetries commute,

which is always ensured in an asymptotically flat case), all those various horizon definitions

coincide and reduce to the important notion of the Killing horizon – a connected null hyper-

surface generated by a certain Killing vector field. The Killing horizons are the simplest type

of horizons for which thermodynamic quantities are being introduced and for which the laws

of thermodynamics are being voiced. Below, however, we first approach the horizon from

physics side.

1.1.1 Stationary circular orbits and their light cones

Consider an asymptotically flat space-time with two commuting Killing vector fields, of

which – at least “far away” – one is time-like with open orbits (tµ) and one is space-like

with closed orbits (φµ). Omitting important assumptions about the existence of the symmetry

axis and its regularity (“elementary flatness”), denote by t the parameter of the time symme-

try and by φ the parameter of the axial symmetry. Physically, t represents proper time of a

rest observer at infinity, while φ represents the azimuthal angle standardly ranging from 0 to

2π (in the sense of the source rotation). The Killing fields then write tµ “ Bxµ

Bt
, φµ “ Bxµ

Bφ
.

If the space-time is also orthogonally transitive, that is, if integral meridional planes

exist (as e.g. in the vacuum case, see later), the metric can be written as

ds2 “ ´N2 dt2 ` gφφ pdφ´ω dtq2 ` grr dr
2 ` gθθ dθ

2 , (1.1)

where

N2 :“ ´gtt ´ gtφω and ω :“ ´ gtφ

gφφ

are called the lapse function and the dragging angular velocity, and r and θ cover the merid-

ional planes (alternatively, one might use cylindrical-type ρ and z coordinates, for example).

Worth to note that the whole “Killing” part of the metric has invariant meaning since it is

given by scalar products of the Killing fields,

gtt “ gµνt
µtν , gtφ “ gµνt

µφν , gφφ “ gµνφ
µφν .

The same is of course inherited by N2, ω and all other quantities possibly defined from that

part of the metric.

Consider a family of stationary motions along the circles r“const, θ“const, i.e. with

four-velocity given by combination of the Killing fields,

uµ “ tµ ` Ωφµ

|tµ ` Ωφµ| “ tµ ` Ωφµ

a

´gικptι ` Ωφιqptκ ` Ωφκq
, (1.2)

where the azimuthal angular velocity Ω :“ dφ

dt
is constant in time (it may however depend on

r and θ). In the above coordinates pt, r, θ, φq adapted to the symmetries,

tµ “ δ
µ
t , φµ “ δ

µ
φ , gικptι`Ωφιqptκ`Ωφκq “ gtt`2gtφΩ`gφφΩ

2 “ ´N2`gφφpΩ´ωq2 ,
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so the four-velocity has components

uµ “ utp1, 0, 0,Ωq , ut “ 1
a

N2 ´ gφφpΩ ´ ωq2
. (1.3)

The angular velocity with respect to an asymptotic inertial system, Ω, cannot be arbitrary

– too large values would correspond to super-luminal (space-like) motion. The interval of

time-like motion has boundaries where uµ can no longer be normalized by any real ut, i.e. at

the roots of gtt ` 2gtφΩ ` gφφΩ
2 “ 0:

Ωmax,min “ ´gtφ ˘
a

pgtφq2 ´ gttgφφ

gφφ
“ ω ˘

c

ω2 ´ gtt

gφφ
“ ω ˘ N

?
gφφ

. (1.4)

1.1.2 Horizon as the limit for circular motions

Hence, the light cone of stationary circular motions, expressed in terms of Ω, is centred by

the dragging angular velocity ω, extending from it equally to both sides. The time-like option

for Ω closes up at N “ 0, which (thus) clearly represents a horizon. The observers orbiting

there with Ω “ ω are null already, representing the null generators of the horizon. Below, N2

becomes negative and N thus imaginary.

Within the stationary circular orbits, the value Ω “ ω identifies the congruence of

so-called Zero Angular Momentum Observers. Indeed, the (specific) azimuthal angular mo-

mentum (for any motion, not just the stationary circular one) reads

uφ “ gφtu
t ` gφφu

φ “ gφφu
tpΩ ´ ωq ,

so it vanishes if and only if Ω “ ω. The ZAMO congruence has four-velocity and four-

acceleration

uµ “ 1

N
p1, 0, 0, ωq , aα “ N,α

N
.

The field ξµ “ tµ ` ωφµ also has other simple properties:2

• Scalar products:

gµνξ
µξν “ gtt ` 2gtφω ` gφφω

2 “ gtt ` gtφω “ ´N2

(hence, ξµ is null where N2 “0, i.e. on the horizon),

φµξ
µ “ φµptµ `ωφµq “ gtφ ` gφφω “ 0 , tµξ

µ “ tµptµ `ωφµq “ gtt ` gtφω “ ´N2 .

• Covariant version:

ξα “ gαµξ
µ “ gαµptµ ` ωφµq “ gαt ` gαφω “ ´N2δtα “ ´N2t,α

2 Note that it is not a Killing field, because ω is not constant – it depends on both r and θ.
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ñ ξµ is orthogonal to the hypersurfaces t “ const ñ it has zero twist, ωµrξs “ 0. The

latter follows from Frobenius theorem; actually, it is clear immediately,

ωµrξs :“ 1

2
ǫµνκλξν;κξλ “ 1

2
ǫµνκλpξν,κ ´ Γι

κνξιqξλ “ 1

2
N2ǫµνκλpN2t,νq,κt,λ “ 0 .

In passing, the Frobenius theorem says that hypersurface orthogonality and zero twist are

equivalent properties – indeed, this property is well known: ωµ represents rotation (curl) of

ξν within the (hyper)surface orthogonal to ξλ; if that rotation is zero, the field ξν has to be

proportional to a gradient of some scalar field. Writing it out in components, ωµ “0 means

ξν,κ “ ξκ,ν, which are exactly the integrability conditions for the equation ´fdΦ “ ξνdx
ν ,

i.e. ´fΦ,ν “ ξν , with f and Φ some scalars (f ” N2 and Φ ” t in our case).

• Expansion tensor:

Θµν “ hα
µh

β
νξpα;βq “

ˆ

δαµ ` ξαξµ

N2

˙ ˆ

δβν ` ξβξν

N2

˙

ξpα;βq “

“ ξpµ;νq ` ξpµ;βq
ξβξν

N2
` ξpα;νq

ξαξµ

N2
` ξpα;βq

ξαξβξµξν

N4
.

But tµ and φµ are Killings, so

ξpα;βq “
✟
✟
✟tpα;βq ` ω❍

❍
❍

φpα;βq ` φpαω,βq ,

and φαξ
α “0, ω,βξ

β “0, hence ξpα;βqξ
β “0 and thus we are left with

Θµν “ ξpµ;νq “ φpµω,νq .

This also implies that the expansion scalar vanishes, Θ:“Θν
ν “0, so the expansion tensor is

“pure shear”, Θµν “σµν . (Note again that this is not automatic, because ξµ is not Killing.)

Let us now confirm the importance of N “0 from a more geometrical perspective. We

will show how it naturally arises as the main property of a Killing horizon. Before embarking

on that point, let us first recall several properties of Killing vector fields.

1.2 Selected properties of the Killing vector fields

The Killing vector fields ξµ fix directions along which the space-time metric does not change.

This is naturally expressed in terms of the Lie derivative. The Lie derivative is a very “low

level” operation, it needs neither the connection and nor the metric, yet if we speak of the Lie

derivative of the metric, the latter has to be there, right? Let us also assume the space-time is

equipped with the Levi-Civita connection as it is standard in GR. Then the (Killing) equation

for the Killing fields writes

0 “ £ξgµν “ gµν,ιξ
ι ` ξι,µgιν ` ξι,νgµι “ ✘✘✘gµν;ιξ

ι ` ξι;µgιν ` ξι;νgµι “ ξν;µ ` ξµ;ν “: 2ξpµ;νq .
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The Killing vector fields have many simple properties, of which we only mention the

clearly vanishing expansion scalar, i.e. ξµ;µ “ 0. Next, let us mention an important relation

between Killing vector fields and curvature. In the Ricci identity for ξν ,

ξν;κλ ´ ξν;λκ “ Rσ
νκλξσ,

we anti-commute, by the Killing equation, ν and λ in the second term, and then we write the

relation together with its cyclic permutations:

ξν;κλ ` ξλ;νκ “ Rσ
νκλξσ ,

ξλ;νκ ` ξκ;λν “ Rσ
λνκξσ ,

ξκ;λν ` ξν;κλ “ Rσ
κλνξσ .

Now add the first and the last equation, while subtracting the middle one (for example),

2ξν;κλ “ pRσ
νκλ ` Rσ

κλν ´ Rσ
λνκqξσ “

`

✘✘✘✘Rσ
tνκλu ´ 2Rσ

λνκ

˘

ξσ “ ´2Rσ
λνκξσ

ùñ ξν;κλ “ ´Rσ
λνκξσ “ Rνκλσξ

σ . (1.5)

• Corollary: by contraction of this equation, one has

ξν;
κ
κ ” l ξν “ ´Rσ

νξσ . (1.6)

If the Ricci tensor vanishes, this corresponds to the (de Rham) wave equation for the EM

four-potential (otherwise the signs at the curvature terms are opposite). Regarding also

that the Killing fields automatically satisfy the “Lorenz condition” ξµ;µ “0, one infers the

following: in space-times with Rµν “ 0, the knowledge of a Killing vector implies the

knowledge of a possible EM four-potential. (Note that the corresponding EM field must be

a test field, because otherwise the Ricci tensor would be Rµν “8πT µν
EM rather than zero.)

• Another corollary: projecting (1.5) twice on a tangent vector uµ “ dxµ

dτ
of any geodesic

(Duµ

dτ
“0), we find

ξν;κλu
κuλ “ Dξν;κ

dτ
uκ “ Dpξν;κuκq

dτ
“ D2ξν

dτ 2
“ Rνκλσu

κuλξσ . (1.7)

That means, the Killing vectors satisfy the geodesic-deviation equation.

• Yet another corollary: differentiating equation (1.5), one obtains an equation symboli-

cally looking as ∇∇∇ξ “ ´ξ∇R´R∇ξ; differentiating once more, one has ∇∇∇∇ξ “
´ξ∇∇R ´ 2∇R∇ξ ´R∇∇ξ, where ∇∇ξ can be expressed from (1.5); etc etc...: when-

ever the 2nd derivative arises on the r.h. side, one substitutes from (1.5), thus gradually

expressing all the derivatives (ě 2nd) in terms of ξµ and its gradient. In other words,

thanks to equation (1.5), the entire Taylor expansion of ξµ is fully determined by ξµ and its

gradient. Hence, the Killing exercise can in principle have as many independent solutions

as the number of the “initial conditions” ξµ and ξµ;ν; and these are 4+6, since ξµ;ν is anti-

symmetric. So, in a 4D space-time, there may at most exist 10 independent Killing fields.

In a general dimension d, it is dpd ` 1q{2.
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1.3 A useful formula

Have a vector field ξµ. Denote

gµνξ
µξν “:´N2 ñ p´N2q;α “2ξµ;αξ

µ , and ωµ :“ 1

2
ǫµνκλξν;κξλ pvorticity, twistq .

Using the famous relation

ǫµνκλǫ
µαβγ “ ´3! δrα

ν δβκδ
γs
λ , (1.8)

we obtain a useful formula

4ωµω
µ “ ǫµνκλξ

ν;κξλ ǫµαβγξα;βξγ “
“ ´

´

δαν δ
β
κδ

γ
λ ` δγν δ

α
κδ

β
λ ` δβν δ

γ
κδ

α
λ ´ δβν δ

α
κδ

γ
λ ´ δγν δ

β
κδ

α
λ ´ δαν δ

γ
κδ

β
λ

¯

ξν;κξλξα;βξγ “
“ ξα;βξα;βN

2 ´ ξγ;αξβξα;βξγ ´ ξβ;γξαξα;βξγ

´ ξβ;αξα;βN
2 ` ξγ;βξαξα;βξγ ` ξα;γξβξα;βξγ “

“ 2N2ξrα;βsξα;β ´ 2ξrγ;αsξγξα;βξ
β ` 2ξrγ;βsξγξα;βξ

α .

Relabelling α Ø β in the last term, we have

4ωµω
µ “ 2N2ξrα;βsξα;β ` 4ξrγ;αsξγξrβ;αsξ

β . (1.9)

Hence, if ξµ is a Killing field, i.e. if ξrα;βs “ ξα;β , we obtain the relation

4ωµω
µ “ 2N2ξα;βξα;β ` pN2q;αpN2q;α . (1.10)

1.4 Killing horizon: theorem by Vishveshwara

Proposition : Two orthogonal null vectors are necessarily proportional to each other.

Proof: Orthogonality is a local property, and one can at every point work in a locally Minkowskian

frame where gµν “ηµν . So, have a non-trivial null vector kµ and some other non-trivial vector

V µ orthogonal to kµ:

0 “ ηµνk
µkν “ ´pk0q2 ` k2 ñ pk0q2 “ k2 ,

0 “ ηµνk
µV ν “ ´k0V 0 ` ~k ¨ ~V ñ V 0 “

~k ¨ ~V
k0

ñ pV 0q2 “ p~k ¨ ~V q2
k2

,

where k2 :“~k ¨ ~k ” ηijk
ikj “ δijk

ikj and likewise for V 2. Then

ηµνV
µV ν “ ´pV 0q2 ` V 2 “ ´p~k ¨ ~V q2

k2
` V 2 “ ´pkV cosαq2

k2
` V 2 “ V 2 sin2 α ,
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with α the angle between ~k and ~V . Therefore, V µ is space-like in general (sinα ‰ 0), with

the special exception of sinα “ 0 when it is null. However, the latter case means ~V “ λ~k

(with λ some constant), which enforces

V 0 ”
~k ¨ ~V
k0

“ λk2

k0
“ λpk0q2

k0
“ λk0 ùñ V µ “ λkµ .

Definition : The set tgµνξµξν ” ´N2 “ 0, with ξµKilling and ξµ ‰ 0u, is called a Killing

horizon, if it is a null and connected hypersurface (or a union of such).

Lemma : On its horizon, the Killing field is proportional to the normal of that hypersurface.

Proof: On the Killing horizon, by definition, ξµ is null and the normal pN2q;µ as well. How-

ever, they are also orthogonal to each other, p´N2q;αξα “ 2ξµ;αξ
µξα “ 2ξpµ;αqξ

µξα “ 0. But

the only vector orthogonal to a null vector is proportional to it. (Hence, ξµ is a null generator

of the Killing horizon, being both tangent and orthogonal to it.)

Theorem [Vishveshwara (1968)]

Let ξµ be a Killing field. Then the set tgµνξµξν ” ´N2 “ 0, with ξµ ‰ 0u is a null hypersur-

face (a Killing horizon) if and only if ωµ “0 there, with pN2q;α ‰0.

Proof ñ: First, if the set tgµνξµξν ” ´N2 “ 0u is a null hypersurface, its normal is null, i.e.

pN2q;αpN2q;α “ 0. Formula (1.10) then implies ωµω
µ “ 0. Second, since ξµ and pN2q;µ are

proportional to each other there (see Lemma), if ξµ is non-trivial, pN2q;µ must be as well.

Proof ð: If ω “ 0, formula (1.10) says that the set tN2 “ 0u has to be null. Besides that,

Frobenius says it is an integral hypersurface. And, if pN2q;µ ‰ 0 there, it implies that ξµ is

non-trivial there as well, because – again – these two vectors have to be proportional there.

Consequence of the Lemma :

Since, on the hypersurface tN2 “0u, the vectors ξµ and pN2q;µ are proportional to each other,

pN2q;µ “ ´2ξα;µξα “ 2ξµ;αξα „ ξµ, it means ξµ is geodesic there.

1.5 Orthogonal-transitivity conditions

Have some vector field ξµ. Frobenius theorem says that its local orthogonal hyperplanes Σpξq
are integrable if and only if ξµ has zero vorticity – when the latter does not “entwine” about

itself. In stationary and axisymmetric space-times, the so-called orthogonal transitivity is

the requirement that integral meridional surfaces exist, everywhere orthogonal to both inde-

pendent Killing vector fields tµ and φµ. So, wanted is the integrability of the local planes

given by intersections Σptq X Σpφq. Such planes would certainly be integrable if both the

normal fields tµ and φµ had zero vorticities. However, even weaker condition is clearly suffi-

cient: the vorticity of tµ must not have a component in the direction of φµ, and the vorticity
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tµ

φµ

Σ(t)

Σ(φ)

ωµ(t)

ωµ(φ)

Figure 1.1 Two independent vector fields, tµ and φµ, their orthogonal hypersurfaces Σptq and
Σpφq, and their vorticity vectors ωµrts and ωµrφs (which are orthogonal to them, so tangent toΣptq
and Σpφq, respectively). If the intersection Σptq X Σpφq is integrable, one speaks of orthogonal

transitivity of the two fields.

of φµ must not have a component in the direction of tµ. Therefore, one demands

ωµrtsφµ “ ǫµνρσφµtν;ρtσ “ 0 and ωrφsµtµ “ ǫµνρσtµφν;ρφσ “ 0 ;

more often it is being written as

φrµtν;ρtσs “ 0 and trµφν;ρφσs “ 0 .

If these conditions are satisfied, the thus existing global meridional planes can be covered by

coordinates x1, x2, for example by r and θ (or ρ and z), such that the metric does not contain

the terms gt1, gt2, g1φ and g2φ.

Theorem [Papapetrou, 1966]

The conditions φrµtνtκ;λs “0 , trµφνφκ;λs “0 are equivalent to the conditions

φrµtλRκsνt
ν “ 0 , trµφλRκsνφ

ν “ 0 .

Proof: The derivation is the same for both the conditions, and since it starts from properties

which hold for any Killing vector field, we will at this stage denote the latter generically as

ξµ. Multiplying the definition ωµrξs “ 1
2
ǫµνκλξ

ν;κξλ by ǫµβγδ and using the formula (1.8),

i.e., explicitly,

ǫµνκλǫ
µβγδ “ ´δβν δ

γ
κδ

δ
λ ´ δδνδ

β
κδ

γ
λ ´ δγν δ

δ
κδ

β
λ ` δβν δ

δ
κδ

γ
λ ` δγν δ

β
κδ

δ
λ ` δδνδ

γ
κδ

β
λ ,
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we easily obtain

ωµǫ
µβγδ “ ´ξβξrγ;δs ´ ξδξrβ;γs ´ ξγξrδ;βs “ ´ξβξγ;δ ´ ξδξβ;γ ´ ξγξδ;β “ ´ξtβξγ;δu .

Differentiation of the latter by xβ yields

ωµ;βǫ
µβγδ “ ´pξβξγ;δq;β ´ pξδξβ;γq;β ´ pξγξδ;βq;β “

“ ´
✟
✟
✟
✟❍

❍
❍
❍

ξβξγ;δβ ´ ❳❳❳❳ξδ;βξ
β;γ ´ ξδξβ;γβ ´ ❳❳❳❳ξγ ;βξ

δ;β ´ ξγξδ;ββ “
“ ξδ l ξγ ´ ξγ l ξδ “ ξγRδ

β ξ
β ´ ξδR

γ
β ξ

β , (1.11)

where only the Killing property and the formula (1.6) have been employed. Multiplication

of this relation by ǫανγδ leads to twice the same term on the right-hand side, while on the left

one has

ωµ;βǫ
µβγδǫανγδ “ 2ωµ;βpδµν δβα ´ δµαδ

β
ν q “ 2pων;α ´ ωα;νq ” 4ωrν;αs ,

so we arrive at the formula for gradient of (any) Killing-vector twist,

ωrν;αs “ 1

2
ǫανγδ ξ

γRδ
β ξ

β . (1.12)

Now, let us specify to our ξµ ” tµ, ωµ ” ωµrts case (with φµ the second existing Killing

field) and consider the derivative

pφνωνq,α “ φν
;αων ` φνων;α “ φν

;αων ` φνωα;ν ` 2φνωrν;αs “
“ ✘✘✘✘✘p£φ ωαq ` ǫανγδ φ

νtγRδ
β t

β . (1.13)

This result confirms that

φrµtνtκ;λs “ 0 ùñ pφνωνrtsq,α “ 0 ðñ φrµtλRκsνt
ν “ 0 .

Similarly one would verify that

trµφνφκ;λs “ 0 ùñ ptνωνrφsq,α “ 0 ðñ trµφλRκsνφ
ν “ 0 .

The opposite implications are also based on the relation (1.13). Since φµ “ gµφ van-

ishes on the symmetry axis,3 also trivial there is ωµrφs “ 1
2
ǫµνκλφνφκ;λ. Consequently, both

the invariants φνω
νrts and tνω

νrφs vanish on the axis as well. Now, if the space-time satisfies

φrµtλRκsνt
ν “ 0 and trµφλRκsνφ

ν “ 0, implying that the gradients of both the invariants are

everywhere zero, pφνω
νrtsq,α “0 and ptνωνrφsq,α “0, then the invariants are themselves zero

everywhere, which is the orthogonal-transitivity condition. l

3 On a regular axis, gφφ ” φµφ
µ has to vanish since it determines proper circumference about the axis (along

a circular orbit of φµ at some given radius). This is not due to φµ becoming null (light-like) there, but because

φµ “gµφ shrinks there to zero (while φµ “ Bxµ{Bφ everywhere).
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Corollaries : Since the orthogonal-transitivity properties trivially hold for the metric tensor,

φrµtλgκsνt
ν “ φrµtλtκs “ 0 , trµφλgκsνφ

ν “ trµφλφκs “ 0 ,

one may use Einstein equations and translate the Ricci-based conditions to

φrµtλTκsνt
ν “ 0 , trµφλTκsνφ

ν “ 0 . (1.14)

Immediately clear is that vacuum stationary and axisymmetric space-times are necessarily or-

thogonally transitive. Actually, every space-time is such in which sources move purely along

stationary circular trajectories (along the Killing directions, i.e. with four-velocity satisfying

urνtκφλs “ 0). This is illustrated on an ideal fluid, Tκν “ pρ ` P quκuλ ` Pgκλ: the second

part is circular automatically and the first one has to satisfy φrµtλuκs “ 0, resp. trµφλuκs “ 0
(which is the same). The stationary axisymmetric space-times which are orthogonally transi-

tive are thus called circular space-times.

1.6 The weak rigidity theorem

Theorem [Carter 1969]

In a circular space-time, the dragging angular velocity ω is constant all over the surface

t´N2 “0u, so the latter is a Killing horizon.

Proof:

• First, if the two Killing fields commute, tα,µφ
µ “ φα,µt

µ (which is automatic in the asymp-

totically flat case), it also means tα;µφ
µ “ φα;µt

µ. Let us use it in

gtφ;α “ ptµφµq;α “ tµ;αφ
µ ` tµφµ;α “ ´tα;µφ

µ ´ tµφα;µ “ ´2tµφα;µ

gφφ;α “ pφµφ
µq;α “ 2φµ;αφ

µ “ ´2φα;µφ
µ

ùñ ω,α “
ˆ

´ gtφ

gφφ

˙

;α

“ ´gtφ;αgφφ ` gtφgφφ;α

pgφφq2 “ ´gtφ;α ´ ωgφφ;α

gφφ
“

“ 2φα;µ

gφφ
ptµ ` ωφµq ” 2

gφφ
φα;µξ

µ .

• It is clear that ω,αt
α “ 0 and ω,αφ

α “ 0 (thus ω,αξ
α “ 0), so we only need to check the

derivative of ω in the plane perpendicular to both tµ and φµ,

ǫαβγδφβtγω,δ “ 2

gφφ
ǫαβγδφβtγφδ;µξ

µ ” 2

gφφ
ǫαβγδφrβtγφδs;µξ

µ .

• One of the circularity conditions reads 0“4!φrβtγφδ;µs “3!φtrβtγφδs;µu (braces mean cyclic

permutation in the enclosed indices, without a prefactor), from where one can express

3!φrβtγφδs;µ “ 3!φrµtβφγs;δ ´ 3!φrδtµφβs;γ ` 3!φrγtδφµs;β “
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“ φµtβφγ;δ ` φγtµφβ;δ ` φβtγφµ;δ ´ φβtµφγ;δ ´ φγtβφµ;δ ´ φµtγφβ;δ

´ φδtµφβ;γ ´ φβtδφµ;γ ´ φµtβφδ;γ ` φµtδφβ;γ ` φβtµφδ;γ ` φδtβφµ;γ

` φγtδφµ;β ` φµtγφδ;β ` φδtµφγ;β ´ φδtγφµ;β ´ φµtδφγ;β ´ φγtµφδ;β “
“ 2φµttβφγ;δu ´ 2tµφtβφγ;δu ´ φtβtγφδu;µ ` φtβtδφγu;µ .

Now multiply this by ξµ, using the relations φµξ
µ “0, tµξ

µ “´N2 and φδ;µξ
µ “ 1

2
gφφω,δ :

φrβtγφδs;µξ
µ “ 1

3!

ˆ

2N2φtβφγ;δu ´ 1

2
gφφφtβtγω,δu ` 1

2
gφφφtβtδω,γu

˙

.

Finally, multiplication by ǫαβγδ removes the 1
3!

factor (antisymmetrization is 1
n!

times cyclic

permutation in the antisymmetrized indices), so

ǫαβγδφβtγω,δ “ 2

gφφ
ǫαβγδ

`

2N2φrβφγ;δs ´ gφφφrβtγω,δs

˘

(1.15)

ùñ 3ǫαβγδφβtγω,δ “ 4N2

gφφ
ǫαβγδφβφγ;δ . (1.16)

• Hence, on the N2 “0 hypersurface, the derivative of ω in the complementary (meridional)

plane vanishes as well, so ω is constant there.
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