CIRCULAR HORIZONS

notes for BH-thermodynamics course
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Some people think that everything important lives on a boundary. In physics, the idea that
behaviour of the “bulk” can be described by theories formulated on its boundary is called the
holographic principle. After a lunch, I tend to doubt about it, yet it might at least work for
black holes. Actually, the holographic viewpoint was inspired by the proposal (in 1972) by
Jacob Bekenstein to connect the entropy of a black hole with the proper area of the horizon. In
terms of such a quantity, he formulated the second law of black-hole thermodynamics. Were
Bekenstein right, the usual first-law term 7'd.S would require that the black hole have tem-
perature, proportional to the quantity called surface gravity. Bardeen, Carter and Hawking
subsequently (1973) wrote the paper “The four laws of black hole mechanics” where they
added, for a stationary and axisymmetric black hole, the other three laws.

Asitis e.g. clear from Carter’s thorough lecture on stationary black holes in the famous
Les Houches 72 Summer School proceedings, the authors of the paper themselves did not
think their laws were more than an analogy of thermodynamics. In particular, Hawking
decided to show that black holes do not emit thermal radiation, in order to demonstrate that
despite formal analogy, the “temperature” of the horizon does not have its usual sense, and so
neither the area really represents the black-hole entropy. Employing the quantum-field theory
on a (classical) curved background, he managed to show (1974) just the opposite: black holes
do emit thermal radiation, in accord with the black-body formula The road to black-hole
thermodynamics was open.

Today, the thermodynamics of black holes — of something “built from pure geome-
try” — is considered a key to deep connections between gravitational, quantum and statistical
physics. Since the gravitational degrees of freedom should also contribute to the relevant
quantities, a complete picture also requires to quantize these (not only the other fields “on a
background”). The area is thus being studied heavily as one of the promising targets — and
tests — of any attempt to quantize gravitation. Bekenstein’s proposals continue to inspire it.

Below, as the starting point, we mention several notions and results from the geometry
and physics of black-hole horizons. We naturally restrict to non-dynamical, stationary hori-
zons. In the electro-vacuum and asymptotically flat case, this necessarily means the Kerr-
Newman family of solutions according to the uniqueness theorems, but we will at least be
slightly more general and will consider stationary and axially symmetric (in fact so-called
circular) setting.

Although many definitions of black-hole horizons exist, in a generic situation it is not
entirely clear what “a black hole” actually means. Anyway, the laws of black-hole thermo-
dynamics start from a stationary and axially symmetric situation: the zeroth law states that
on a stationary horizon the surface gravity is everywhere the same, and the first law fixes the
“first thermodynamic law” for changes of basic quantities (mass, horizon area, charge and
spin) characterizing the transition of the black hole between two close stationary states. The
word “axisymmetric” has disappeared somehow, yet it is there automatically: if a stationary
black hole is not static, i.e. if it is rotating, then it has to be axisymmetric, since otherwise —
with some bump on it — it would emit gravitational waves, so it could not be stationary.

! Black hole is quite an ideal black body, isn’t it...



1.1 Horizons in circular space-times (physical approach)

In stationary and axisymmetric space-times (at least when these two symmetries commute,
which is always ensured in an asymptotically flat case), all those various horizon definitions
coincide and reduce to the important notion of the Killing horizon — a connected null hyper-
surface generated by a certain Killing vector field. The Killing horizons are the simplest type
of horizons for which thermodynamic quantities are being introduced and for which the laws
of thermodynamics are being voiced. Below, however, we first approach the horizon from
physics side.

1.1.1 Stationary circular orbits and their light cones

Consider an asymptotically flat space-time with two commuting Killing vector fields, of
which — at least “far away” — one is time-like with open orbits (¢#) and one is space-like
with closed orbits (¢#). Omitting important assumptions about the existence of the symmetry
axis and its regularity (“elementary flatness”), denote by ¢ the parameter of the time symme-
try and by ¢ the parameter of the axial symmetry. Physically, ¢ represents proper time of a
rest observer at infinity, while ¢ represents the azimuthal angle standardly ranging from 0 to
2 (in the sense of the source rotation). The Killing fields then write ¢+ = ag—:, oF = a{%.

If the space-time is also orthogonally transitive, that is, if integral meridional planes
exist (as e.g. in the vacuum case, see later), the metric can be written as

ds® = =N?dt* + gyg (dp—w dt)* + g, dr? + gge d6? |, (1.1)
where
N2 = _gtt — gt¢w and W = _gﬂ
9o

are called the lapse function and the dragging angular velocity, and r and 6 cover the merid-
ional planes (alternatively, one might use cylindrical-type p and z coordinates, for example).
Worth to note that the whole “Killing” part of the metric has invariant meaning since it is
given by scalar products of the Killing fields,

git = guut“ty y Gt = guut“¢y y Yoo = guuﬁbuﬁby .

The same is of course inherited by N2, w and all other quantities possibly defined from that
part of the metric.

Consider a family of stationary motions along the circles r = const, § = const, i.e. with
four-velocity given by combination of the Killing fields,

Qe t o+ Qo
= |t“—|—Q¢”| - \/_gm(# +Q¢L)(tn+Q¢H)

I

5 (1.2)

where the azimuthal angular velocity €2 := % is constant in time (it may however depend on

r and 6). In the above coordinates (¢, r, 0, ¢) adapted to the symmetries,

=0 =0 gt + Q)" +Q7) = gu 42010+ gpeft® = — N>+ gps(Q—w)?,
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so the four-velocity has components

1
u' =u'(1,0,0,Q), u'= ) (1.3)

VINZ = g4s(Q — w)?

The angular velocity with respect to an asymptotic inertial system, {2, cannot be arbitrary
— too large values would correspond to super-luminal (space-like) motion. The interval of
time-like motion has boundaries where u* can no longer be normalized by any real «!, i.e. at
the roots of gy + 245 + g4$2% = 0:

— + 2 _ N
Ommin = S0 ENV IS “ubos _ ) Jp Iy N (1.4)
o0 VY960

9o

1.1.2 Horizon as the limit for circular motions

Hence, the light cone of stationary circular motions, expressed in terms of 2, is centred by
the dragging angular velocity w, extending from it equally to both sides. The time-like option
for €2 closes up at N = 0, which (thus) clearly represents a horizon. The observers orbiting
there with Q) = w are null already, representing the null generators of the horizon. Below, N2
becomes negative and N thus imaginary.

Within the stationary circular orbits, the value 2 = w identifies the congruence of
so-called Zero Angular Momentum Observers. Indeed, the (specific) azimuthal angular mo-
mentum (for any motion, not just the stationary circular one) reads

Uy = Gortt’ + Gopu® = gosu' (R — w),

so it vanishes if and only if 2 = w. The ZAMO congruence has four-velocity and four-
acceleration

1 N
u“=N(1,O,0,w), %ZW"

The field £# = t# + w@* also has other simple properties@

* Scalar products:

9" = gu + 291w + Goo” = gu + grow = —N*

(hence, £ is null where N2 =0, i.e. on the horizon),
Gult = Gu(t" + W) = Gip + Goow = 0, ,6" = t,(t" + wP") = gu + Grpw = —N>.
¢ Covariant version:

ga = gaugu = gau(tu + WQSM) = Qut + JagpW = —N253 = —N2t7a

2 Note that it is not a Killing field, because w is not constant — it depends on both 7 and 6.



= ¢M is orthogonal to the hypersurfaces ¢ = const => it has zero twist, w”[{] = 0. The
latter follows from Frobenius theorem; actually, it is clear immediately,

1
N2 A (N2t ) uta = 0.

1
_EHVHA<£V7H _ FLng)g)\ — 2

2

1
—Euyﬁ)\gy;ng)\ =

WHE] = 5

In passing, the Frobenius theorem says that hypersurface orthogonality and zero twist are
equivalent properties — indeed, this property is well known: w* represents rotation (curl) of
&, within the (hyper)surface orthogonal to &,; if that rotation is zero, the field &, has to be
proportional to a gradient of some scalar field. Writing it out in components, w* =0 means
€. = &, Which are exactly the integrability conditions for the equation — fd® = &,dz”,
ie. —f®, =&, with f and ® some scalars (f = N? and ® = ¢ in our case).

» Expansion tensor:

o 8
O = hhpEas) = ( 48 f”) (5 + f]\g/) E(as) =

= E(uw) T E(p) §N§2 §N§;

£°67€,u80
Nt

+ g(a;ﬁ)

But t* and ¢* are Killings, so

8) = teB) + W Pag) + Do) 5

and ¢,£%=0, w € =0, hence 5(04;5)55 =0 and thus we are left with

O = Suw) = P(uw,)

This also implies that the expansion scalar vanishes, © := 0" =0, so the expansion tensor is
“pure shear”, ©,,, = 0. (Note again that this is not automatic, because £* is not Killing.)

Let us now confirm the importance of /N =0 from a more geometrical perspective. We
will show how it naturally arises as the main property of a Killing horizon. Before embarking
on that point, let us first recall several properties of Killing vector fields.

1.2 Selected properties of the Killing vector fields

The Killing vector fields £ fix directions along which the space-time metric does not change.
This is naturally expressed in terms of the Lie derivative. The Lie derivative is a very “low
level” operation, it needs neither the connection and nor the metric, yet if we speak of the Lie
derivative of the metric, the latter has to be there, right? Let us also assume the space-time is
equipped with the Levi-Civita connection as it is standard in GR. Then the (Killing) equation
for the Killing fields writes

0= Leguw = G + & w9 + & v = Qo€ +& 090w + &G = Eop + i =t 28 () -
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The Killing vector fields have many simple properties, of which we only mention the
clearly vanishing expansion scalar, i.e. £, = 0. Next, let us mention an important relation
between Killing vector fields and curvature. In the Ricci identity for &,,

51/;/@)\ - gug)\n = ROV}@A&U;

we anti-commute, by the Killing equation, v and A in the second term, and then we write the
relation together with its cyclic permutations:

51/;/@)\ + 5)\;1//@ = RUV}@)\gcr ;
gk;un + 5/@;)\1/ = RU)\Vnga ’
5/@;)\11 + 51/;/4)\ = Roﬁ)\ygcr .

Now add the first and the last equation, while subtracting the middle one (for example),

251/;/4)\ = (RUVH)\ + RUR)\V - RaAuﬁ)gcr = (% - QRJ)\V/@) 50 = _QRO—)\Vﬂgo'
= 51/;&)\ = _RJ)\VHSU = RV&)\USJ . (15)

* Corollary: by contraction of this equation, one has

gzx;nﬁ = D£V = _Rgugo . (16)

If the Ricci tensor vanishes, this corresponds to the (de Rham) wave equation for the EM
four-potential (otherwise the signs at the curvature terms are opposite). Regarding also
that the Killing fields automatically satisfy the “Lorenz condition” ., = 0, one infers the
following: in space-times with R*” = 0, the knowledge of a Killing vector implies the
knowledge of a possible EM four-potential. (Note that the corresponding EM field must be
a test field, because otherwise the Ricci tensor would be R* =8nT} rather than zero.)

* Another corollary: projecting (L3) twice on a tangent vector u* = 4 of any geodesic
(B2 =0), we find

dr
D Vik g D vt D? v P o
gl/;&)\unu)\ = % u = (gdiT ) = d’Ti = Rw@)\au u>\§ . (17)

That means, the Killing vectors satisfy the geodesic-deviation equation.

* Yet another corollary: differentiating equation (I.3)), one obtains an equation symboli-
cally looking as VVV¢ = -6V R— RV, differentiating once more, one has VVVV¢ =
—¢VVR — 2VRVE — RVVE, where VVE can be expressed from (L3); etc etc.... when-
ever the 2nd derivative arises on the r.h. side, one substitutes from (L.3)), thus gradually
expressing all the derivatives (= 2nd) in terms of £* and its gradient. In other words,
thanks to equation (L.3)), the entire Taylor expansion of £* is fully determined by £/ and its
gradient. Hence, the Killing exercise can in principle have as many independent solutions
as the number of the “initial conditions” §* and &,,,,; and these are 4+6, since ¢,,, is anti-
symmetric. So, in a 4D space-time, there may at most exist 10 independent Killing fields.
In a general dimension d, itis d(d + 1)/2.



1.3 A useful formula

Have a vector field £#. Denote

Gl =1—N? = (=N?),=2¢.,£", and w":= %e“’”’“)‘glmg,\ (vorticity, twist) .
Using the famous relation

Epmne" P = —31 6106857 (1.8)
we obtain a useful formula

4wuwu = Euw@)\gumg)\ euaﬁ’yga;ﬁg’y =
— (20283 + 020205 + 030705 — 03078 — 530005 — OR08Y) €, —

= £PL0pN? — £7°PE, 08, — E71€°La¢,
— P g N? + €€ g€, + £97E EnipE, =
_ 2N2€[a;6]€a;ﬁ _ 25[”“]&5&;556 + 25[%6]57504;65& )

Relabelling o <> [ in the last term, we have
dw,wh = 2N2E1Ple o+ aglrele g5 06° . (1.9)

Hence, if £ is a Killing field, i.e. if {[,,3] = {a;3 , We obtain the relation

dw,wh = 2N2€4PE, 5+ (N?V*(N?).o|. (1.10)

1.4 Killing horizon: theorem by Vishveshwara

: Two orthogonal null vectors are necessarily proportional to each other.

Proof: Orthogonality is a local property, and one can at every point work in a locally Minkowskian
frame where g, =1),,,.. So, have a non-trivial null vector £ and some other non-trivial vector
V*# orthogonal to k*:

0= muk"k” = —(k)? + K = (k) =k,
i
kO

<
—~

>~

<t
N—
no

0=nuhk'V" =KV +k-V = V=

where k2:=k - k = nijk'k? = 0;;k'k? and likewise for V2. Then

_,.—»2 2
(k-V) +V2:_M+V2:V2sin2a,

nMVVMVV = _(Vo)z + V2 == L2 L2




1.5. ORTHOGONAL-TRANSITIVITY CONDITIONS 7

with « the angle between k and V. Therefore, V* is space-like in general (sin o # 0), with
the special exception of sin @ = 0 when it is null. However, the latter case means V =\
(with \ some constant), which enforces

E-Vo M2 A(KD)?
0 _ 0
VY = 0 = 10 = 70 = \k _ VH = \EM.

: The set {g,,{"{" = —N? = 0, with £* Killing and & # 0}, is called a Killing
horizon, if it is a null and connected hypersurface (or a union of such).

: On its horizon, the Killing field is proportional to the normal of that hypersurface.
Proof: On the Killing horizon, by definition, £# is null and the normal (N?)# as well. How-
ever, they are also orthogonal to each other, (—N?).,£* = 2£,,.,ME* = 2€(,,0) "™ = 0. But
the only vector orthogonal to a null vector is proportional to it. (Hence, £/ is a null generator
of the Killing horizon, being both tangent and orthogonal to it.)

‘ Theorem [Vishveshwara (1968)] ‘

Let & be a Killing field. Then the set {g,,{"{¥ = —N? =0, with &* # 0} is a null hypersur-
face (a Killing horizon) if and only if w, = 0 there, with (N 2) #0.

Proof = First, if the set {g,,{"{” = —N? =0} is a null hypersurface, its normal is null, i.e.
(N?)**(N?)., = 0. Formula (LI0) then implies w,w” = 0. Second, since {* and (N?)* are
proportional to each other there (see Lemma), if £ is non-trivial, (N?)# must be as well.

Proof <: If w = 0, formula (LIQ) says that the set { N? = 0} has to be null. Besides that,
Frobenius says it is an integral hypersurface. And, if (N?)* # 0 there, it implies that ¥ is
non-trivial there as well, because — again — these two vectors have to be proportional there.

‘ Consequence of the Lemma ‘:

Since, on the hypersurface { N? =0}, the vectors £ and (IN?)* are proportional to each other,
(N2)it = —2€%RE, = 2EME, ~ 1, it means E* is geodesic there.

1.5 Orthogonal-transitivity conditions

Have some vector field £#. Frobenius theorem says that its local orthogonal hyperplanes ¥ (&)
are integrable if and only if £# has zero vorticity — when the latter does not “entwine” about
itself. In stationary and axisymmetric space-times, the so-called orthogonal transitivity is
the requirement that integral meridional surfaces exist, everywhere orthogonal to both inde-
pendent Killing vector fields # and ¢*. So, wanted is the integrability of the local planes
given by intersections 3(t) N X(¢). Such planes would certainly be integrable if both the
normal fields t* and ¢* had zero vorticities. However, even weaker condition is clearly suffi-
cient: the vorticity of ¢* must not have a component in the direction of ¢*, and the vorticity



Figure 1.1 Two independent vector flelds, t# and ¢*, their orthogonal hypersurfaces 3(t) and
Y(¢), and their vorticity vectors wh [t] and w*[@] (which are orthogonal to them, so tangent to (t)
and 3(¢), respectively). If the intersection X(t) N X(¢) 1s tntegravle, one speaks of orthogonal
transitivity of the two flelds.

of ¢" must not have a component in the direction of ¢#. Therefore, one demands
wHtlp, = € Pty pte = 0 and wlo|t, = €t by 05 = 0 ;
more often it is being written as

Plutuipto] =0 and tuPuipdo) = 0.

If these conditions are satisfied, the thus existing global meridional planes can be covered by
coordinates x!, 22, for example by r and  (or p and 2), such that the metric does not contain

the terms g1, g0, J1¢ and 92¢-

‘Theorem [Papapetrou, 1966] ‘

The conditions ¢(,t,t..x) =0, t[,¢,Px;n =0 are equivalent to the conditions

¢[utARn]utV =0, t[u¢ARn]V¢V =0].

Proof: The derivation is the same for both the conditions, and since it starts from properties
which hold for any Killing vector field, we will at this stage denote the latter generically as
&*. Multiplying the definition w,[£] = 3€,,E7"E* by €7 and using the formula (L),
1.e., explicitly,

€ma€?0 = 055709 — 056267 — 676205 + 688267 + 076255 + 656705




1.5. ORTHOGONAL-TRANSITIVITY CONDITIONS 9

we easily obtain
w“e“&’é _ _555[7;5] _ 555[5;7] _ 5’75[5;5] _ _5657;5 _ 5555;7 _ 5/55;6 _ _5{55%5} )
Differentiation of the latter by 2 yields

wu;ge“ﬁw — _(565%5);5 _ (5555;7);6 _ (5755;5);6 -
= — P8 - TRl - £ - T — 0P, =
=08 -0 =Ry e" - CRyE7, (1.11)
where only the Killing property and the formula (I.6) have been employed. Multiplication

of this relation by €,,.,s leads to twice the same term on the right-hand side, while on the left
one has

Wu;ﬁeum%avw =2 Wu;ﬁ(éﬁég - 5555) = 2(Wia — Way) =4 W]

so we arrive at the formula for gradient of (any) Killing-vector twist,

1
Wlysal = 5 €avys gng 56 . (112)

Now, let us specify to our {# = t*, w, = w,,[t] case (with ¢* the second existing Killing
field) and consider the derivative

(¢VWV>’Q = ¢V;aw1/ + ¢un;a = ¢V;chl/ + ¢Vwa;u + 2¢VW[V;Q] =
= (£y@a] + €apns O RY . (1.13)

This result confirms that

Optuten) =0 = (P"wt]), =0 <= ¢ptrRyt" =0.

)

Similarly one would verify that

t[uqﬁ,,ng;A] =0 = (t”w,,[gb]) o= 0 <= t[ugb)\R,@]l,gbV =0.

)

The opposite implications are also based on the relation (LLI3). Since ¢, = g,4 van-
ishes on the symmetry axisE] also trivial there is w"[¢] = %e’“"‘“gﬁym; ». Consequently, both
the invariants ¢,w”[t] and ¢,w"[¢] vanish on the axis as well. Now, if the space-time satisfies
OrutaRet” =0 and £,¢5\ Ry, ¢" = 0, implying that the gradients of both the invariants are
everywhere zero, (¢,w”[t]) ,=0and (t,w”[¢]) , =0, then the invariants are themselves zero
everywhere, which is the orthogonal-transitivity condition. ]

3 On a regular axis, gy = ¢, " has to vanish since it determines proper circumference about the axis (along
a circular orbit of ¢# at some given radius). This is not due to ¢* becoming null (light-like) there, but because
& = gug shrinks there to zero (while ¢* = dx# /d¢ everywhere).



10

: Since the orthogonal-transitivity properties trivially hold for the metric tensor,
Prutagrpt” = Oputaty =0, uPAgrp®” = tuodrde =0,

one may use Einstein equations and translate the Ricci-based conditions to
ot Lt =0, tudr T e” = 0. (1.14)

Immediately clear is that vacuum stationary and axisymmetric space-times are necessarily or-
thogonally transitive. Actually, every space-time is such in which sources move purely along
stationary circular trajectories (along the Killing directions, i.e. with four-velocity satisfying
u[”t’“(b” = 0). This is illustrated on an ideal fluid, T}, = (p + P)u,uy + Pg.»: the second
part is circular automatically and the first one has to satisfy ¢y, t\u. = 0, resp. t[,Pru, = 0
(which is the same). The stationary axisymmetric space-times which are orthogonally transi-
tive are thus called circular space-times.

1.6 The weak rigidity theorem

‘ Theorem [Carter 1969] ‘

In a circular space-time, the dragging angular velocity w is constant all over the surface
{—N?=0}, so the latter is a Killing horizon.

Proof:

* First, if the two Killing fields commute, ¢, ,¢* = ¢, ,t* (Which is automatic in the asymp-
totically flat case), it also means t,., 0" = ¢,.,t". Let us use it in

tdra = (tugbu);a = tu;agbu + tugbu;a = _ta;ugbu - tugba;u = _2tu¢a;u

9opia = (Cbuﬁbu);a = 200" = —2¢0;,9"
— W, = (_gﬂ) _ 9160900 T Gte9epia _ —Yigia — Whppia _

9o (9p0)? 90
204 2
— & (tu + w¢u) = __ %;H&” )
9o 9o

e It is clear that w ,t* = 0 and w ,¢* = 0 (thus w £ = 0), so we only need to check the
derivative of w in the plane perpendicular to both ¢# and ¢*,

€ Bvégbﬁtvw,é = € Bwsgbﬁt%b&ugu = € ngb[ﬁtvgbfﬂ;ugu'
Go¢ Go¢

* One of the circularity conditions reads 0 = 4! ¢ (5t ¢5,,) = 3! D5t Ds);,y (braces mean cyclic
permutation in the enclosed indices, without a prefactor), from where one can express

3! Qb[ﬁtv%];u = 3! ¢[utﬁ¢ﬂ;5 -3 ¢[5tu¢ﬁ];'y + 3! ‘b[vtcs?bu];ﬁ =
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= QulpPyis + Oytudpis + PlyPus — Pludyis — Oytadus — PulyPpss

- ¢5tu¢5;’7 - ¢ﬁt5¢u;’y - ¢utﬁ¢5;fy + ¢ut5¢ﬁ;v + ¢Btu¢5w + ¢5tﬁ¢u;’y

+ ¢vt5¢u;ﬁ + ¢utv¢6;ﬁ + ¢6tu¢v;6 - ¢6tv¢u;6 — OutsPyp — vatuﬁbé;ﬁ =
= 20ul(p0ysy — 20uP(sPyisy — Pty Dy + GiptsPyyip -

Now multiply this by £, using the relations ¢, =0, t,£# =—N? and ¢;,,&" = % oW 5 -

1 1 1
Dot P = 30 (2N 2P0y — 5 Jeedstway + 5 9¢¢¢{Btt5wﬁ}) -

Finally, multiplication by €*%7 removes the % factor (antisymmetrization is # times cyclic
permutation in the antisymmetrized indices), so

(0% 2 (07

e patiws = e 918 (2N Gpsdoa) — JosD(stse.) (1.15)
AN?

- 3EQBV6¢BLYCU,5 = — Eaﬁwsqﬁgdiws . (116)
Yoo

* Hence, on the N? =0 hypersurface, the derivative of w in the complementary (meridional)
plane vanishes as well, so w is constant there.
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