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Introduction

History of the Penrose process

R. Penrose, Gravitational Collapse: the Role of General Relativity,
Rivista del Nuovo Cimento, Numero Speziale 1, 252 (1969).
Requires high relative velocity of the fragments, impractical;
J. Bardeen, W. H. Press, S. A. Teukolsky, Rotating black holes:
Locally nonrotating frames, energy extraction, and scalar synchrotron
radiation, The Astrophysical Journal 178, 347-370 (1972).
An analogy for charged, non-spinning black hole:
G. Denardo, R. Ruffini, On the energetics of Reissner Nordstrøm
geometries, Phys. Lett. B 45, 259-262 (1973).
Astrophysical black holes interacting with a magnetic field can
become charged due to selective charge accretion: R. M. Wald, Black
hole in a uniform magnetic field, Phys. Rev. D 10, 1680-1685 (1974).
S. M. Wagh, S. V. Dhurandhar, N. Dadhich, Revival of the Penrose
Process for Astrophysical Applications, Astrophys. J. 290, 12-14
(1985).
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Introduction

Collisional Penrose process
J. Bardeen, W. Press, S. Teukolsky, Astrophys. J. 178, 347 (1972).
T. Piran, J. Shaham, J. Katz, High efficiency of the Penrose mech-
anism for particle collisions, Astrophys. J. Lett. 196, L107 (1975).
For collision of infalling and
orbiting particle, the horizon
limit of the collision energy is
unbounded (divergent redshift)
For extremal Kerr, some orbits
(at least seem to) go down to
the horizon radius. But how would
the particle start on that orbit?
However, there exists a type of motion that asymp-
totically approaches the radius of an orbit
M. Bañados, J. Silk, S. M. West, Kerr
Black Holes as Particle Accelerators to
Arbitrarily High Energy, PRL 103, 111102 (2009).

Filip Hejda (CEICO-FZU) Collisional Penrose process czechLISA, 22nd June 2021 3 / 14



Introduction

Collisional Penrose process
J. Bardeen, W. Press, S. Teukolsky, Astrophys. J. 178, 347 (1972).
T. Piran, J. Shaham, J. Katz, High efficiency of the Penrose mech-
anism for particle collisions, Astrophys. J. Lett. 196, L107 (1975).
For collision of infalling and
orbiting particle, the horizon
limit of the collision energy is
unbounded (divergent redshift)
For extremal Kerr, some orbits
(at least seem to) go down to
the horizon radius. But how would
the particle start on that orbit?
However, there exists a type of motion that asymp-
totically approaches the radius of an orbit
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M. Bañados, J. Silk, S. M. West, Kerr
Black Holes as Particle Accelerators to
Arbitrarily High Energy, PRL 103, 111102 (2009).

Filip Hejda (CEICO-FZU) Collisional Penrose process czechLISA, 22nd June 2021 3 / 14



Introduction

Motivation
There used to be two variants of the so-called BSW effect:
Centrifugal: particles with fine-tuned angular momentum around an
extremally rotating black hole, strongly limited energy extraction;
T. Harada, H. Nemoto, U. Miyamoto, Upper limits of particle
emission from high-energy collision and reaction near a maximally
rotating Kerr black hole, Phys. Rev. D 86, 024027 (2012).
Electrostatic: particles with fine-tuned charge close to an extremally
charged black hole, with no strong bounds on extracted energy;
O. B. Zaslavskii, Acceleration of particles by nonrotating charged
black holes? JETP Letters 92, 571 (2010). O. B. Zaslavskii, Energy
extraction from extremal charged black holes due to the
Banados-Silk-West effect, Phys. Rev. D 86, 124039 (2012).
Black holes can maintain a small “Wald charge” due to selective
charge accretion in external magnetic field, as mentioned earlier
Can we “bridge” the two cases? How do the bounds (dis)appear?
No need to turn to subextremal black holes at this stage
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Introduction

Extremal approximation (vacuum case)
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Additionally, near-horizon region of an extremal magnetised black
hole is well approximated by extremal Kerr-Newman solution; cf. Jiří
Bičák, FH, arXiv:1510.01911, PhysRevD.92.104006
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Introduction

The setup
General axially symmetric stationary metric as a model of an isolated
black hole, N → 0 at the horizon(s), outer horizon at r+, extremal r0

g = −N2 dt2 + gϕϕ (dϕ− ω dt)2 + grr dr2 + gϑϑ dϑ2

Electromagnetic potential and generalised electrostatic potential φ

A = At dt + Aϕ dϕ = −φdt + Aϕ (dϕ− ω dt)

Equations of motion for a test particle with mass m, charge q = mq̃,
energy E = mε and angular momentum L = ml

ut =
(ε− V+) + (ε− V−)

2N2
ur = σ

√
1

N2grr
(ε− V+) (ε− V−)

ε > V+ implies (ur )2 > 0 and ut > 0; V+ ≡ V is effective potential

V± = ωl + q̃φ± N

√
1 +

(l − q̃Aϕ)
2

gϕϕ

Valid for equatorial and also axial (with l = 0,Aϕ = 0) motion
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Introduction

Curves of the effective potential for Kerr-Newman black holes
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Introduction

Critical particles and the approach phase of the process

Due to the causality restriction (ut > 0), we can say that particles
with ε > V |r+ fall into the black hole, whereas particles with
ε < V |r+ can not get close to horizon
Fine-tuned particles with ε = V |r+ are on the verge between those
cases, so they are called “critical particles”
Clearly, the effective potential must decrease in order for the motion
of critical particles towards r+ to be allowed
In the subextremal case the derivative ∂V/∂r |r+ is always infinite and
positive, so no critical particle can approach r+
For extremal black holes, the derivative is finite. The condition
∂V/∂r |r=r0 = 0 corresponds to a branch of a hyperbola in the
parameter space of l , q̃ (energy is determined by the fine-tuning
through relation εcr = lωH + q̃φH)
See FH, J. Bičák, arXiv:1612.04959, PhysRevD.95.084055 for details
about the approach phase and the hyperbola orientation
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Energy extraction

Conservation of momentum
Let us consider a 2→ 2 scattering process involving a critical particle
1 and a usual particle 2, both moving towards extremal black hole
ECM attainable in such processes diverges ∼ (rC − r0)

−1

Can we produce highly energetic particles and extract energy?
Conservation of charge, energy and angular momentum
For radial momentum, we can do a resummation. For usual particles:

N2pt − σN
√

grrpr ∼ (rC − r0)
2

N2pt + σN
√

grrpr
.
= 2 (E − LωH − qφH) + . . .

In contrast, for (nearly) critical particles

N2pt ± N
√

grrpr ∼ (rC − r0)

Thus, we can split orders by summing the time and radial component
N2
(

pt(1) + pt(2)
)
+ N
√

grr
(

pr(1) + pr(2)
)
= N2

(
pt(3) + pt(4)

)
+ N
√

grr
(

pr(3) + pr(4)
)

One of the produced particles (No. 4) must fall into the black hole
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Energy extraction

Fate of particle 3
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+/− is the sign of C3 in the formal expansion(
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.
= −C3 (rC − r0) + . . .

Figure from: FH, J. Bičák, O. B. Zaslavskii, PhysRevD.100.064041
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Energy extraction Equatorial case

Extremal Kerr-Newman with a
M = 1

2 , QM =
√
3
2 ; process with A1 = 2.5m3
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Caveats

No unconditional bounds on energy extraction from extremal
electrovacuum black holes via charged particle collisions

However, microscopic particles have enormous values of specific
charge q̃ (roughly 5 · 1017 for protons and 1021 for electrons)

Problems arise due to the proportionality of the critical energy to the
charge εcr = lωH + q̃φH
This is particularly troublesome for the axial motion, for which l = 0

In addition, we need |q3| > |q1| > 0 for E3 > E1 in the axial case

This requires processes involving atomic nuclei, which are unrealistic
and reduce efficiency; toy model

We can consider black holes with |Q| � M (i.e. |φH| � 1)

However, it turns out that the process is possible only for
Q/M > 10−6, and consequetnly for ε1 > 5 · 1011
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Conclusion

On the other hand, the problem with the proportionality
εcr = lωH + q̃φH can be remedied in the equatorial case
We can consider either uncharged initial particles, or particle 1 with a
value of angular momentum that leads to cancellation of the terms
The latter variant works only for − sgn q1 = sgn q3 = sgn Q
and |Q| � M
The key point: the extracted energy goes like

E3 ≈ 1027 eV
Q
M

q3
qelem

Thus, in order to throw a proton with energy at the GZK limit
(5 · 1019 eV), we need just seemingly insignificant Q/M .

= 5 · 10−8

Our setup neglects a lot of things, including back-reaction. . .
Nevertheless, for uncharged particles, unconditional bounds on E3
arise even in this simplified case, as seen in the previous figure
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