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1 Introduction

Unlike in Newtonian gravity, there is a lack of complete exact solutions repre-
senting self-gravitating rotating compact objects in general relativity due to its
essential non-linearity. On the other hand a great progress has been made within
a class of the stationary axisymmetric vacuum or electro-vacuum asymptotically
flat spacetimes where powerful methods were applied to obtain analytic solutions
of Einstein’s equations [1]. Among these solutions the most important role still
plays the spacetime discovered by Kerr [2]. One of the reasons consists in the
fact that compact astrophysical objects very often posses large specific angular
momentum and a Kerr black hole is thus a natural candidate for the spinning
remnant of gravitational collapse [3]. Indeed, assuming that the the cosmic cen-
sorship conjecture holds, the black—hole uniqueness theorems guarantee that the
Kerr metric represents the unique solution describing all rotating vacuum black
holes (cf. e.g. [4]). If one takes into account that the properties of the interior
Schwarzschild solution describing a static spherically symmetric star surrounded
by its gravitational field are even now, sixty years after its discovery, inspiring
astrophysicists in a deeper understanding of the peculiarities of general relativity
[5], there is no doubt that an exact interior Kerr solution would be even more
exciting.

This, of course, has been realized by many workers. As the properties of Kerr’s
spinning particle metric were analyzed [6], [7], the search for such solution started
(e.g. [8],]9]). Since that time several authors have been able to construct interior
solutions that can be matched with the Kerr vacuum geometry as an external
field, but the material of various balls or shells has very strange properties and
allows no reasonable interpretation [10], [11], [12], [13]. For example, quite recent
work, that appeared in 1991, gives “a toroidal source”, consisting of “a toroidal
shell ..., a disk ...and an annulus of matter interior to the torus” [14]. The
masses of the disk and annulus are negative. The review on the “Sources for
the Kerr Metric” [15], written in 1978, contains 71 references, and concludes
with: “Destructive statements denying the existence of a material source for the
Kerr metric should be rejected until (if ever) they are reasonably justified.” To
summarize in Hermann Bondi’s way, the sources suggested so far for the Kerr
metric are not the easiest materials to buy in the shops ...

In this situation less complicated sources should be studied — the most natu-
ral choice seems to be an axisymmetric thin disk. Even among such sources the
most realistic one, the thin disk of a finite diameter without a radial pressure, was
excluded from a list of possible sources of external parts of Kerr spacetime [16].
The situation is somewhat different in the special case of the extreme Kerr metric,
where there is a definite relationship between mass and angular momentum. The
numerical study [17] of uniformly rotating disks indicated how the extreme Kerr
geometry forms around the disk in the “ultrarelativistic” limit. These numerical
results were supported recently by the important analytical work [18]. If a re-



quirement of the finite diameter is relaxed, it can be shown that such disks can
play a role of the interior Kerr solution with any angular momentum [19] (see
also [20]).

In this thesis both our first results concerning Kerr disks and their gener-
alization to stationary axisymmetric electro-vacuum spacetimes are presented.
The section 2 is based on letter [19], published in 1993. The basic idea, which
enables one to construct physically acceptable thin disks (as well as completely
unreasonable shells) is then presented in section 3 in greater detail. Because we
are interested in the interpretation of the stress-energy tensor of the disk using
the ‘usual’ matter, we study only disks without radial pressure. Even though the
radius of these disks is infinite, they have finite integral quantities such as mass
or angular momentum, which means that their respective densities (as defined in
section 4) have reasonable asymptotic behavior.

In the central region of the disk, the situation is quite complicated and the
properties of the stress-energy tensor must be carefully studied using covariant
characteristics — the energy conditions which are introduced in section 5. It is
shown that for a general axisymmetric stationary electro-vacuum asymptotically
flat spacetime which admits Weyl-Papapetrou coordinates the reasonable disk-
like source may exist and that the surface stress-energy tensor of such a disk may
consist of two counter-rotating streams of (charged electro-) geodesic particles at
each radius, if certain conditions (studied in section 6) are met. Although in last
years several galaxies were found to have the disks built from two nearly identical
counter-rotationg stellar components (see e.g. [21]), the presence of counter-
streaming component apparently makes such disks not so realictic astrophysically.
Wee shall see, however, that the Kerr disks exist with the mass of the co-rotating
component exceeding 90% of the total mass of the disk.

It is clear that physically realistic disks can be constructed only within certain
limits of the values of total charge, angular momentum, effective radius of the
disk, and other parameters which enter into the metric. The survey of the pa-
rameter space of the Kerr-Newman disks is presented in section 7. The analogous
survey of Tomimatsu-Sato 6 = 2 disk sources is given in section 8. In these two
sections the properties of disks generating considered spacetimes are studied with
an emphasis on possible interpretations of the surface stress-energy tensor of the
disk and on various relativistic phenomena, such as the existence of ergoregions
or of closed timelike curves in the vicinity of the disks. In appendices A, B and
C the plots of relevant disk quantities as functions of the circumferential radius
are given.



2 Relativistic disks as sources
of the Kerr metric

This section is based on letter [19], with several notes appended.

Bic¢dk, Lynden—Bell and Katz [22] (BLK in the following) have shown that
most vacuum static Weyl solutions can arise as the metrics of counter-rotating
relativistic disks (see [22], also for other references on relativistic disks). The
simple idea which inspired the work of BLK is commonly used in Newtonian
galactic dynamics [23] (the idea first appeared in Kuzmin’s work [24]): Imagine
a point mass M placed at a distance b below the centre o = 0 of a plane z = 0
(see Figure 1). This gives a solution of Laplace’s equation above the plane. Then
consider the potential obtained by reflecting this z > 0 potential in z = 0 so
that a symmetrical solution both above and below the plane is obtained. It is
continuous but has a discontinuous normal derivative on z = 0, the jump in which
gives a positive surface density on the plane. In galactic dynamics one considers
general line distributions of mass along the negative z—axis and, employing the
method described above, one finds the potential-density pairs for general axially
symmetric disks. In fact, Bi¢dk, Lynden-Bell and Pichon [25] found an infinite
number of new static solutions of Einstein’s equations starting from realistic
potentials used to describe flat galaxies, as given recently by Evans and de Zeeuw
[26].
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Figure 1: Gravitational field of a Kuzmin disk (illustrated using lines of force)

Here we wish to demonstrate that a similar method works also for axisymmet-
ric, reflection symmetric, stationary spacetimes. It is important to realize that
although now no metric function solves Laplace’s equation as in the static case,
we may view the procedure described above as the identification of the hyper-
surface 2 = b with z = —b. The field then remains continuous but the jump of
its normal derivative induces a matter distribution in the disk which arises due



to the identification. What remains to be seen, is whether the material can be
“bought in the shops”.

This idea can be employed for all known asymptotically flat stationary vacuum
spacetimes, e.g. for the Tomimatsu-Sato solutions, for the “rotating” Curzon
solution, or for other metrics (cf. [27] for references). Here we shall illustrate the
procedure for the simplest, but most interesting case — the Kerr metric.

A stationary axisymmetric vacuum metric can be written in canonical coor-
dinates (¢, ¢, g, z) in the form [27]

ds* = £~ [g(do® + d2*) + @dg?| — f(dt + Ady)” , (1)

where f, g, A are functions of g, z (we put ¢ = G = 1). Spheroidal coordinates
(x,y) are commonly used, and we introduce both prolate (x = +1) and oblate
(k = —1) ones since we wish to include all types of Kerr metrics:

2=Ary, 0= A [(:1:2 —k)(1 - yQ)]l/2 , A = const. . (2)

For the Kerr solution (mass M, specific angular momentum a > 0) the functions
in (1) are ratios of polynomials [27]:

f:L/E, g:L/F, A:B/L, (3)

L=p2>+ ¢y’ —1,E=(pz+1)+¢%", (4)

F=p*(2* —ky?), B=2Mq(l—y*)(pr+1), (5)

k' +q¢" =1, gq=a/M, X=Mp. (6)

Here k = 1 fora < M, k = —1 fora > M. If a = M, then kK = 0, A = M,

p=q=1.

Now we identify the “planes” z = b = const. > 0 and z = —b which will lead
to disks with zero radial pressure. With the Kerr geometry the matching is more
complicated than in the static cases and, therefore, we turn to Israel’s covariant
formalism (see [28] for its recent exposition). This enables us, using Einstein’s
field equations, to link the surface stress—energy tensor, S, of the disk arising
from this identiﬁcation, to the jump [K(a)(b)] = K(a)(b)|z:+b — K(a)(b)|z:—b of
normal extrinsic curvature across the timelike hypersurface ¥ given by z = b (or
z = —b). The tetrad indices are denoted by (a), (b), ..., with the tetrad vectors
being chosen so that three vectors tangent to ¥ are just e”a) = 6&) (b=0,1,2,3,
{at} = {t, ¢, 0,2}, a = 0,1,2), while n* = (0,0,0,1/,/gz;) is the unit normal.

As a consequence of Einstein’s field equations we find the non-vanishing com-

ponents of the surface stress—energy tensor to be
ZLF (L' F' E'
SO0 = - )

Z 4 9L
E? L+F E
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where L, E, F, B are given by (5), 0? = 0> — B?/E?,

= (&) = y| )
— 167 Ja )\(.1'2 _ ) Y+ = Ylz=+b »

and the operator “/” is defined by the relation [f.]°=", = 2y, f'/\(2? — ky?) for
any f. For the Kerr metric

L' = 2e(p’s® — ?y* +2¢° — 1) ,
E' = 2p(z® — k) (pr + 1) + 22¢°(1 = ¢*) ,
Fo= et (- @) - 2)] (9)

B = 2M(¢/p)(1—y") ¢ — (pr+1)°] .

(In egs. (8), (9), both x and y are evaluated at z = b; by inverting (2) one finds
Tlomib = T)ompy Y2 |omsp = ¥?|o=s-) Eags. (7) — (9) give the stress—energy tensor
of the disks.

Let us now show that the disks may be interpreted as being made of two
streams of collisionless particles that circulate in opposite directions. In order to
see this, we find, at each radius p and for z = b, the preferred observer for whom
the stress—energy tensor (7) acquires a diagonal form'. Let his 4-velocity (the
timelike eigenvector of the tensor), read

V#=N(1,9,0,0) , (10)
and his unit spatial base—vector in the p—direction be

WwH =J(5,1,0,0) . (11)
The conditions V*V, = —1, WHtW, = 1, V¥, = 0 determine three of the pa-
rameters entering (10), (11) in terms of the fourth, of (2 say. Assume now a tensor

T (which will be calculated from (7) — (9)) has non-vanishing components T,
T T, Then, by choosing

Q={@ -1 - (@ -1 + 41 ]} 2 (12)

! The question of existence of such observers was not addressed here. In section 5 we show,
that it is related to the energy conditions and that, if S(g)0)S(1)1) — 5(20)(1) > 0, V*# is real

vector.



TH¥ can be cast into the form

" = oVHIVY + PWHFWY | (13)

where 700 211
o= T~ -7 , (14)

N2(1 — 3202)

Tll _ QQTOO
P—=—— (15)

J2(1 — 32Q2)

Hence, the observers circulating with the 4—velocity (10) will see the diagonal
form of T* with

T(*O)(O) = TIJ'VVMVV =0 ,
Toyy =T"VuW, =0,
Toygy =TWW, =P. (16)

We call such observers “

direction only.
If o > P > 0, ®IOs can consider the stress—energy tensor (16) as representing
two equal streams of collisionless particles that circulate in opposite directions

with the same velocity
P 1/2
U*:(—) . (17)

o

p—isotropic” (®IOs) since the isotropy concerns the p—

If 0, is the surface proper rest mass density of one stream (measured in axes that
move with it), then the surface density of its rest mass measured by an ®IO is

s00 =0, [1 — (U*)Q]_l/Q. The surface energy density of the pair of streams is

. o 00 B 20,
T(O)(U) =0= [1 _ (U*)Q]l/Q - 1— (U*)Q ' (18)

The tangential pressure caused by the counter-rotation is Ty, = o(U*)2. The
sum of the proper rest mass surface densities of both streams is simply

20,=0—P. (19)

The condition that the velocity of the streams U* does not exceed the velocity of
light is just the dominant energy condition (see e.g. [4]).

What is the relation of ®IOs to the locally non-rotating frames (LNRFs)?
®I0s rotate with respect to LNRFs with the velocity given by

Vi=0"95 (Q-w), (20)

where w = —g¢1,/g,,. Therefore, the streams circulate with different velocities
in LNRFs and, of course, with respect to “distant stars”. That is why the disks
produce stationary rather than static fields.

7



The physical quantities introduced in (17) — (20) are given in terms of the
metric (1) — (5), and the stress—energy tensor (7) — (9). Hence, all the physical
quantities describing the disks are given analytically. The resulting expressions,
however, are so complicated that it is only reasonable to exhibit them graphically.
Yet, the central surface density has a simple form

M (b+ M)? — a? (21)
2 (b2 + a2 — M2)V2[(b+ M)? + a2]**

Oc

In order for the central density to be positive, one must make the identification
at b> > M? — a®. (This is evident in the black-hole case since the hole’s interior
is mapped onto the rod o = 0, —(M? — a?)'/? < 2z < (M? — a®)'/2) If a > M,
one has to choose b > a — M. The central density can become arbitrarily large
for o — (M? — a?)'/? — a region “close” to the horizon (which itself was cut
off) is then included. o, > 0 can be large also for a 2 M. However, in the cases
with @ > M, it turns out that the physical condition P > 0 (cf. (17) ) leads to
the inequality

p?(9z* — 62% 4+ 1) — p(42° — 242® + 42) — (T2* — 1022 —1) <0, (22)

where z = b/p and p* = a?/M?* — 1 (cf. (5)), which restricts b more strongly. For
a > M one finds b, ~ 9a?/4M. Then we can construct physical disks ? only
with U~ 0.3 (M/a) < 1.

In coordinates (o, z) the ergoregion (cf. e.g. [4]) has a “toroidal” character,
the center of the generating circle with ¢ = const. is at g9 = M(q — 1/2q),
the radius being R = M/2q. For 1 > a/M > 1/4/2 = 0.707, the disks given
by (M? —a?)'/? < b < M?/2a produce the ergoregion. Their central density
is positive and the graphical results show (see below) that they are physical
everywhere. It turns out that physical disks producing an ergoregion exist even
for a/M > 1, provided that a/M < 1.044.

Here we shall confine ourselves to illustrate just one case — with a/M = 0.8.
The disks corresponding to different choices of b are compared by exhibiting the
circular velocities etc. as functions of the “circumferential” proper radius R =
V/Jop> Where g, is given by (1) — (5). In Figure 2(a) we give the velocity curves
of counter-rotating streams as measured by ®I10s. These were calculated, starting
from (17), for twelve disks; the disks become more relativistic with decreasing b.

2The “physical interpretation” means in this section counter-rotating streams of nongeodetic
particles with equal opposite velocities with respect to ®IO which satisfy energy conditions.
It is the easiest generalization of the BLK disk model. If one would like to construct such
disk model in a greater detail, the mechanism of exchange of radial momentum between the
streams should be invented. In section 5 and 6 we distinguish between the energy conditions
requirements (such as P < ¢, which is equivalent to V' < 1) and the existence of both (co-
and counter-rotating) circular geodesics. This is given by radial behaviour of metric functions
rather than altitudinal, which determines stress-energy tensor of the disk.
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Figure 2: Velocity and density profiles of Kerr disks with a/M = 0.8

In the highly relativistic disks (upper two curves) U* increases extremely rapidly
as one moves away from the centre, approaching the velocity of light at R S M,
and then start decreasing. Also in Figure 2(a) velocity curves of the ®IOs with
respect to the LNRF's are plotted by using (20). Although these velocities achieve
also high values (V' ~ 0.25), their maxima occur at larger R ~ (2 — 3)M. In
particular, in the two most relativistic disks, the ®IOs (the velocity curves of
which cross the other curves from bottom to the top in Figure 2(b) ) do not move
so rapidly with respect to LNRFs close to the centre.(Here “close” refers to the
proper circumferential radius R.) Just these two disks - from the twelve disks
exhibited - produce an ergoregion.

Figure 2(b) gives the plots of the sum of the surface proper rest mass densities
of both streams as calculated from (19). For highly relativistic disks, 20, rises
rapidly towards the centre; however, it decreases then very rapidly with R, and in
the most relativistic case even reaches a local minimum at those R where U* — 1.
The central gravitational redshift is z, ~ 10% in this case.

We are not aware of any exact analytic solutions for the sources of the sta-
tionary gravitational fields with such physical properties as the disks constructed
here. Although extending to infinity, they have finite mass and exhibit interest-
ing relativistic properties like high velocities, large redshifts and dragging effects,
including ergoregions. They may appear somewhat artificial astrophysically, but
in the Newtonian limit - when no dragging arises - their features are the same ? as
for the rotating disks with only one stream of particles; in the relativistic regime,
the central parts of a realistic, highly relativistic, rotating flattened object should
have some properties in common with these disks.

3In fact even in the Newtonian gravity some counter-rotation is necessary if the disk should
have prescribed values of mass and angular momentum, although the latter has no influence on
the gravitational field. E.g. in zero angular momentum case corotating and counter-rotating
component of the disk should have the same value of total angular momentum (with opposite

sign).



3 Thin layers as sources of the stationary
axisymmetric spacetimes

In this section we shall investigate the construction of the disk models in a greater
detail and generality.

The easiest way to find a source producing a given stationary solution M of
vacuum or electro-vacuum Einstein equations. It consists in glueing two exactly
identical spacetimes ~M = "M C M, together at their boundary hypersurface
%S, They are thus separated by a 3-dimensional layer of infinite d-function type
curvature which becomes the source of the spacetime (rather than various hidden
or naked singularities). This method avoids the complicated problem of solv-
ing the interior field equations and matching the solution to the electro-vacuum
solution outside.

Figure 3: A part of a stationary spacetime M, (depicted as a three-dimensional box with time
coordinate omitted) and hypersurfaces S delimiting the emphasized part which represents
both *M and M

Three-dimensional hypersurfaces £S5 which will be identified (see Figure 3)
may be characterized by two important quantities — the metric induced on them
by external 4-metrics,

ig(a)(b) = guuieéta)iel(jb) (23)

(u,v=0,1,2,3 and a,b =0, 1,2), and their extrinsic curvatures
K = el el V' = =i el Viefy (24)

Vectors “ef,y,a = 0..2 form the basis tangent to “S (in general not normalized)
and unit vector *n” is orthogonal to %S (i.e. *n#*n, = 1, *e{,,n, = 0). Here “n”
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are normals pointing from ~M to M. The identification is admissible only if
the induced metrics (23) are equivalent [29]. This is guaranteed by the fact that
only the orientation of identified boundaries *S and S is different, whereas basis

vectors ieé‘a) are identical. We will assume hypersurface *S to be prescribed by

an equation ®(z*) = 0 which yields the normal vector *n, = +(® ,®*)" Y2 &,
where an appropriate sign must be chosen.

The jump in the extrinsic curvatures of *S and —S [K(a)(b)] = "Kye —
~ K(4)(»), determines the surface density of the stress-energy tensor by the relation
[29]

-1 ()
S = g (IKwm] = gmn[K5) - (25)
Because whole spacetime is made of two identical copies, we have [K(q@n)] =

2T K a)(b) -

'Iva)rE))commuting Killing vector fields of an stationary axisymmetric spacetime
will be denoted &* and n*, n* having closed orbits. The coordinates associated
with the Killing vectors will have their usual names, ¢t and ¢.

We exclude a case of the dynamic layer generating a stationary spacetime
and assume that one of the basis vectors efto) coincides with &*, and that the
stationary basis ef,) is chosen, Leef,) = 0.

The resulting spacetime should have “reasonable” physical properties. One
typical feature of an asymptotically flat spacetime is that at spatial infinity large
2-spheres surrounding the center have the ratio of the square of any circumference
to the area of the sphere equal to m. To meet this requirement we will assume
that the intersection of the boundary hypersurface S and hypersurface of con-
stant time ¢ is a smooth 2-surface (“the layer at given time”), which at infinity
asymptotically approaches a plane we will denote P, each part thus delimits the
solid angle 27.

The symmetries of the original spacetime M enable one to choose "M =
Q "M, where Q is some map preserving g, and A,. For example let us assume
that the original spacetime is stationary, axi- and reflection-symmetric Kerr so-
lution with mass M and angular momentum J = Ma. If we introduce some
(altitudinal) coordinate z related to the reflection symmetry and omit the time
translation, the following symmetries can be used to obtain the M from "M.

z = -z (26)
© = p+9 (27)
¢ - —pand a — —a (28)

Note that the z coordinate entering (26) may even be the latitudinal coordi-
nate 7/2 — ¢, where ¥ is one of Boyer-Lindquist’s coordinates [7], as well as z
coordinate of the original line element by Kerr [2], although we will prefer the

11



Weyl-Papapetrou z coordinate (29). The first symmetry (26), which enables one
to identify "M with its reflection symmetric copy, is illustrated in Figure 4a.

The other possible interpretation (Figure 4b) is based on composition of (27)
and (28). If the boundary surface is reflection symmetric with respect to ¢,
it can be first rotated by angle 7, which means that identification of points A
and B’ should be made. Then the symmetry (28) is plugged in and the natural
identification of A and A’ can be done, but one has to remember that both parts
have opposite angular momentum parameter.

M
@

Figure 4: Interpretations of the resulting spacetime based on — a) reflection b) axial — sym-
metry.

These two ways of identification are useful as an illustration of the method,
but they do not alter the main idea that the resulting spacetime consists of two
identical parts, and of a thin layer with the surface stress-energy tensor deter-
mined by the properties of the boundary hypersurface S. The new spacetime M
need not necessarily be axially symmetric as a whole, if the asymptotical plane
P is not parallel to the equatorial plane. This situation is illustrated in Figure 5,
where the orientation of the angular momentum of both M, and M is schemat-
ically presented before and after the identification. Complicated structure of the
surface stress-energy tensor (no symmetry, too many nonvanishing components)
yields no obvious interpretation. There may be another reason to prefer P to be
parallel to the equatorial plane: If *S does not cross the equatorial plane, one
can thing of M as an original spacetime M, with removed equatorial region.

If stationary and axisymmetric electromagnetic potential of electro-vacuum
spacetime is a linear combination of Killing vectors £* and n#, i.e. Ar¢rn”l =0,
Maxwell tensor implies R} + R? = 0 and Weyl-Papapetrou (W-P) coordinates

ds? — e~ [ezg(dgz +dz2) + 92d¢2] B 62”(dt—|—Adg0)2, (29)

12
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Figure 5: Orientation of the angular momentum before and after the identification, when P
is tilted with respect to the equatorial plane.

may be introduced [4]. Even though the resulting spacetime is axially symmetric,
its source — the surface stress-energy tensor S, may not exhibit this symmetry.
It depends on the shape of the hypersurface S. If S is tangential to the Killing
vector field n*, i.e. if the orbits of n* are contained in this hypersurface, the basis
vectors may be chosen such that £, el =0, which ensures, that Sy, is axially
symmetric. Such sources will be called disks. This means that if §#n, = n¥n, = 0,
we can choose e(;) = £ and ef}) = 7”. Then if ef, is chosen such that g()@) and
g(1)(2) vanish, the corresponding components Sy2) and S(1)2) will cancel out and
the only nonvanishing components of the surface stress-energy tensor of the disk
are three diagonal components of S(,)) (energy density, and azimuthal and radial
pressures) and one non-diagonal component Sg)1y (angular momentum density).

A similar procedure is used to express electric charge and current density of
the disk (for a general formalism for charged shells, see [30]). The projection
of an electromagnetic vector potential into the boundary surfaces A,y = eé‘a)Au
has to be identical on both sides of the surface S; the electromagnetic field Fiz

surrounding the disk is produced by the surface electric current density attached
to the layer:

1
— nov
= [Fuelyn’] (30)

If efyy = &, ey = n” and APgrpl = 0, this relation yields the stationary
axisymmetric electric current with Jo) = 0.
In our work we will use the hypersurface ®(2*) = z — b = 0 which turns out

to correspond to disks without radial pressure (for disks with radial pressure see
[31]). Then

J(a)

= (g..)""*6L,) (31)
and the simplest tangent basis is



Since this choice makes g3 = gap, We will not use brackets to distinguish
projected and metric components but one has to remember that W-P coordinates
must be applied to obtain correct results.

The fact that S is a surface of constant coordinate z implies simple formula
for the extrinsic curvature, Ko, = (gap) - 99—91/ 2 /2. The surface stress-energy tensor

and electric current then turns out to be

Sy = — Ve <@> R (33)

8T \ Yoo

_ 1 (),
21 [fUo0

These formulae yield explicit expressions, after any stationary axisymmetric
electro-vacuum exact solution g,,, A, is plugged in. Unfortunately, they tend
to be very long and so they will be explicitly given only in particular cases, e.g.
(Q = M, when some simplifications take place and resulting quantities have clear
physical structure.

a:

(34)

4 Total mass, angular momentum and charge

The considered method of construction of the disk sources guarantees that the
values of integral parameters such as the total mass, angular momentum or charge
are equal to those of the original spacetimes. The total quantities can also be
obtained by integration of corresponding surface densities over the disk. If an
electromagnetic field is present, the volume integral of electromagnetic energy
density must also be considered.

In stationary asymptotically flat spacetime the mass M defined by asymptotic
behavior of metric can be expressed as an integral of stress-energy tensor com-
ponents over spacelike hypersurface > surrounding the regions of non-vanishing
T,,. The Komar mass integral (see e.g. [4]),

1
M=—— [ vrerds,, .
- / VHENdS,, (35)
ox

over the 2-dimensional boundary of space-like hypersurface ¥, with £” being
the timelike Killing vector, can be converted, using the Stokes’ theorem, to the
volume integral

M= /E (—2 T, +T7%6Y) & dS, (36)

where dS, = 0! /=g do dz dp is a volume element of hypersurface ¢ = const.
Since the surface stress-energy tensor Sy, is equivalent to surface distribution, the
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total stress-energy tensor can be written as a sum of the regular (electromagnetic)
part T, and the surface distribution proportional to 6(2)

Ty = Ty + €let Sad(2) / /922 (37)

where z = z — bsgn z. Thus the Komar mass (36) consists of two components,
the mass of electromagnetic field, Mg, and the mass of the fluid of the disk, Mp:

My = / —2T! /=g do dz dyp , (38)
)
My, = /D (=2S! 4+ S") \/—g/9.. do dyp . (39)

If disks without the radial pressure are considered (S§ = 0), and the line element
(29), giving g = — 0% g,y Gz, is used, the last integral reads

Mp = [ (S5=S1) /o 20 do. (40)

It is physically reasonable to use the proper circumferential radius R = /g, for
labeling the radial coordinate when depicting any radially dependent quantity
in the disks. The surface density, up, with respect to the circumferential radius
may be defined by the relation

2
Mp :/ up 27R dR = / (S¢ = S!) /ios —2- 2rRdR.  (41)
D D pp,0

This will enable us to compare mass density curves of various types of disks.
Using the surface stress-energy tensor (33), the mass of the disk can be de-
termined by appropriate first derivatives of the metric:

1
Mp = / 9" gu.. 0 do dp . (42)

This relation can be expressed in terms of the Weyl-Papapetrou metric potentials
v and A:

1 AA,
MD—g/(l/,z-F 2926 ) ododp . (43)

Here the first term coincides with the Gauss law of Newtonian gravity My =
(47)~" § Vv.dS.

The integral expression for Mp (42) can be also derived directly from (35)
if an appropriate limiting procedure is used because, after the identification is
made, the antisymmetric tensor field V#¢”, which depends on first derivatives
of the metric tensor, is no longer smooth. As the volume ¥ containing the
disk D is shrinking towards the disk, the integral (35) approaches Mp. The
jump [V“f”]Z:H’ together with the surface element d¥,,,, directly yields (42); so

z2=—b?
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the quantity Mp can be defined independently on the definition of S,, and its
interpretation as a distribution.
The total angular momentum in axisymmetric stationary spacetime can be

defined by [4]
1
J 167r/v n'dL,, , (44)
%

where 1" is the axial Killing vector field. The integral is equivalent with the
volume integral over regions of non-vanishing 7,,:

J = /E T,"n"dS, . (45)

Using the methods already mentioned, these integrals can be rewritten to the
integral over the surface of the disk

J = /DSZ Voo 0 do dyp . (46)

The last integral property of the disks to be considered here is the total charge

Q:/Jt@zwgdg. (47)

All integral quantities can be used as independent checks of the code that
evaluates S, and .J,.

5 Energy conditions and the interpretation of
the surface stress-energy tensor of the disk

The energy conditions introduced in the studies of global properties of spacetimes
(see e.g. [4]) are formulated in an invariant form and can be used when an
invariant characterization of the surface stress-energy tensor S, is needed. We
will use the dominant and the weak energy conditions in order to find physically
realistic sources. The weak energy condition requires, that any observer with
her velocity W* must observe a nonnegative energy density S, WH*W?". The
dominant energy condition is based on the properties of the energy-momentum
current —S,,W*# — this should be future directed timelike vector for classical
matter. If this condition is satisfied, the weak energy condition holds.

The source which satisfies the energy conditions may still have an unclear
physical interpretation. The next step consists in the diagonalization of S, . If
the equation

(Suw — Agu) X" =0 (48)
has two real nonzero eigenvalues —p and p and —pu # p, the corresponding
eigenvectors U* and V* can be rescaled into the form U*U, = —1, V*V, = 1,
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because U*V,, = 0. The equation (48) can be viewed as a diagonalization of
the matrix defined by the mixed-indices tensor S;; which is no longer symmetric
and has two different real eigenvalues corresponding to the energy density and
azimuthal pressure, only if

(S} —S2)?+4S.Sf > 0. (49)

This inequality also implies that the disks which cannot be diagonalized must
have det Syp <0 (A, B =t, ).

The above procedure is equivalent to the transformation of S,,, into the frame
of an observer moving with the velocity U* so what

S;w = MUMUV +pvuvu ) (50)

here V*# is the unit vector in azimuthal direction in observer’s frame. We have
called such an observer “the (-isotropic observer” in section 2. If the decompo-
sition (50) of S, is possible, the weak energy condition is equivalent to

>0 and p> —p (51)
and the dominant energy condition reads
p=0 and |p[ < p. (52)

The eigenvectors U* and V*# can also be used for the decomposition of the
electric current inside the disk,

Tt = oU" + jV* (53)

into the proper charge density ¢ and the current j, as measured by ®IOs.

The diagonalization described above also yields a possible interpretation of
the surface stress-energy tensor of the disks. Imagine that at each radius of the
disk a massive circular ring is placed. Let it rotate with the velocity U*, its
linear energy density is equal to the product of the proper surface density p and
its proper width. The ring is supported against the collapse or expansion by its
internal azimuthal pressure p. Although usual materials do not provide |p|/u ~ 1,
they are consistent with energy conditions and used not infrequently in general
relativity. The material of such rings must be superconductive, if 7 # 0, and
charged, when o # 0 (this is consistent with the survey [32]). In the following
section, however, we shall study more physical situations in which the stress
tensor can be interpreted as counter-rotating streams of freely moving particles.
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6 Disks formed of counter-rotating surface
streams of charged particles

To interpret diagonal surface stress-energy tensor with two nonzero components
Sy and Sy, placed in the equatorial plane of static axisymmetric spacetime Mor-
gan and Morgan [33] introduced the disk created from counter-rotating surface
circular streams of particles.

The most noticeable fact is that at a given radius the velocity of counter-
rotating particles, which generate the azimuthal component of stress-energy ten-
sor, and the velocity of a particle on circular geodesic on that radius are equal;
this is so because the potentials satisfy the Einstein equations. To illustrate this
coincidence we put A = 0 in (29). Then the angular velocities of the circular
geodesic motion ,

v

Qo=+ [-Te 4 & | Peo (54)

o0 1 —ov,

and the angular velocities, which are needed to generate the SZ component of
the surface stress-energy tensor

Stt e2v Cz
Qo = i\/— +—, | —— 55
2+ SW 0 21/,,2 _ C,z 9 ( )

are equal because the vacuum FEinstein equation

_ QQU,QU,Z - C,z

R,,
¢ 0

=0 (56)
holds outside the disk.

The concept of counter-rotating streams can be extended to general stationary
axisymmetric asymptotically flat electro-vacuum spacetimes with the reflection-
symmetric metric and electromagnetic potentials entering (29). If the radial pres-
sure component of the surface stress-energy tensor S,;, attached to the surface of
identification vanishes (due to the choice ®(z#) = z — b = 0), the possibility of
construction of the disk from the surface streams of particles on circular orbits
can be studied in the stationary case as well. The non-diagonal metric implies
the non-diagonal surface stress-energy tensor and the counter-rotating streams
can no longer have identical surface density and opposite velocities. If the elec-
tromagnetic field is present, it is generated by appropriate charges attached to
the particles of both streams.

The two streams of charged dust moving in the plane of identification z = +b
are assumed to have the following energy-stress tensor and electric current:

S = p UCUS + p_UU? | (57)
J¢ =, U+ e U . (58)
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The circular orbits U = Ni[1,Q4,0,0]* of both streams have to satisfy the
radial force balance Uy, U” = EF(Q)gUﬂ. Due to the symmetries the covariant
derivative simplifies and the equation of electro-geodesic motion for both streams
reads

1 )
_§MiUiU£gaﬁ,(9) = & FpsU% . (59)

Since only the time and angular components of both the surface stress-energy
tensor S*¥ and the stream particle velocity U¥ are nonzero, only the following
seven equations remain to be satisfied

St 1 1
SN =pyp | Q[ Hpo | Q| (60)
See 95 02
Jt ] 1 1
J(p = €4 Q+ 4+ €_ Qi 5 (61)
1
oM+ (gtt,g + 215,002+ + gw,ggi) +ex (For + Fopfdi) =0, (62)

where €L = N:I:€:|: and Hty = Niﬂﬂ:

Although for given energy-stress tensor and electric current, six quantities
Q4, €4 and py must be determined using these seven equations, the system is
not over-determined because the following linear combination of (60)-(61)

1
B (gtt,gstt + 29t<p,95w + gw,gsw) + thJt + waﬂ (63)

is equal to the sum of the left-hand sides of both equations (62).

So the disk can be described by the simple dust model (57) with electric
current (58) only if the considered combination (63) is zero. This is true for any
number of streams as long as each consists of electro-geodesic particles.

This is guaranteed by virtue of Einstein equations and the contracted Gauss-
Codazzi equations, which result in the following relation (see e.g. [30])

~SY s+ FagJ? =0, (64)

where the left hand side of this equation is equal to (63). We can therefore discard
one of the seven equations (60)-(62). If the third component of (60) is chosen the
energy and charge densities can be expressed in a quite symmetric manner

Q5" — 5%
2 2 65
H+ + Q+ el ) ( )
Qg — J¢
€L = :Fiﬂ_i_ ey . (66)
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This can be immediately substituted into (62) to obtain following system of
two coupled equations for angular velocities of both streams:

(-5 =5 (Gut.0+ 200,024 + 9,022 )+ (T = J?) (Pt Fip24) = 0

N =D =

(245" =57 (gt + 20,02 + 945002 ) + (U S = T ) (Fyp+ Fpe2-) = 0 (67)

This system of equations can be factorized to the product of cubic and
quadratic equations. The roots of the cubic equation lead to unphysical, sym-
metric solutions with 2 = €, . The quadratic equation

(Stﬂgw,ggtt,g"‘Sttgww,thth_2 Gtp,090,05 ¢S — JtFewgw,gSw+Sw29w,92)Q2+
(2% g0 T Fot = 2 T Fpy S g g + T# FoppGipp oS + 2 S g1y p.0 — T Fpp" T+
SU T Fypgttie — S 900 Fot + I Gpp,pS" Fop + 2 Sw2gww,ggtw,g_

2 Gup ] Fpp S + J FppFy — 45"y, 425 ) Qi+
JPFy? 4 G0 S TP Fyy — J'Fyy J9Fpp — 2 gup. g J ' Fy S 4 S gy, ,2—
2.5%G1,05% Git,o + gnpnp,gsw29tt,g + 2 ST Fotgite — J¥FppS" git,0 = 0

(68)
or its vacuum (F* = 0) limit,

gw,QQQ + 291,02 + gu,o = 0, (69)

which is the radial component of the usual equation of circular geodesic, de-
termine the stream velocities. Both co-rotating and counter-rotating angular
velocities €24 must be checked whether they represent time-like vectors. If two
subluminal circular (electro-) geodesics exist, their orbital frequencies {24 can be
substituted into (65-66). Physically acceptable are only positive stream densities
fi+, but we do not pose any restrictions on the sign of the charge density €4 or
the value of the specific charge €, /.

The positivity of the stream densities s (note that the proper densities are
fi+) is related to the sign of the determinant of the two by two matrix S45
(A, B =1, ), because

det S4% = g7t det Sup = pp_(Qy — Q)% = up(U'Ve - U?VH? (70)

If (57) is understood as the definition of a quadratic form on the two-dimensional
vector space of covariant vectors, one finds the following statement trivial: Both
stream densities fiy are positive, if SAZX 4, X5 > 0 for at least one two-component
vector X4, det S4B > 0 and two subluminal solutions Q. of (68) exist.

Each disk is characterized by the parameters of the original spacetime M ,.J,()
and the size b of the excluded region. The parameter b determines the “effective
diameter” of the disk — this is the radius below which, e.g.,90% of the matter
of the disk resides. It is clear that for large b, fields will be weak and the only
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relativistic effects consist in the fact that the ratio of energy (as well as charge)
densities (65-66) of both streams is governed by the metric potentials. This
is not the case in Newtonian gravity where the angular momentum is not the
source of dragging and only total angular momentum and charge of the disk are
fixed. As b becomes smaller, the relativistic effects play more important role and
the violation of energy conditions may occur. For set of spacetimes studied in
the following, it was confirmed that unless the energy conditions are violated,
closed timelike curves do not exist in the spacetime surrounding the disk. Disks
compact enough, with parameters close to extreme black holes, exhibited the
presence of the ergoregions in the vicinity of the disk but because at least one of
Q24 is tachyonic near the ergosphere, only disks made of rings are able to generate
ergospheres outside.
The z-component of electro-geodesic equation

Po _Lowy  vmur 4 Sp 07 71

ﬁ - 59 Guv,z +ﬁ (z)v ( )
determines the stability of an individual circular orbit. Particles slightly off the
equatorial plane are returned back only if %L_H < 0. Because the issue of
stability was not addressed in our work, this inequality was not studied within
the parameter space of the disk sources of different (electro-)vacuum solutions
discussed below.

7 Kerr-Newman disks

Although we already discused not only neutral dust disks but also the disks with
electric currents we did not yet study explicitly their external fields. In this
section we analyze disks producing Kerr-Newman metric.

To transform the Kerr-Newman metric from Boyer-Lindquist coordinates [7]
t,r,9,¢ into Weyl-Papapetrou (W-P) coordinates (29) one can put

z = (r—M)cos? (72)
N o T ™

Resulting expressions are quite complicated unless the spheroidal coordinates

z = oxy (74)

0o = o\J1—y>Va?—k (75)
M

o = Tp §=1 (76)

are used. The parameter k = 1,0, —1 discriminates dressed, extreme and naked
solutions; and the parameter p > 0, the dimensionless charge s = Q/M, and
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the dimensionless angular momentum ¢ = a/M, are related by the equation
s?2 + ¢* + kp? = 1. The parameter § = 1 is included in the definition for further

reference. In the extreme case (s> + ¢° = 1, k = 0) this equations does not
determine p and since in this case p appears in equations (83-86) only in the form
of the product px the value of p can be chosen freely. The most natural choice is
p = 1. The inverse transform

N 7’_|_+7",
ro= S (77)

Ty —7_

N (78)

where rL = \/92 + (2 £ 0/k)? is not defined for k = 0. For extreme black hole

metrics transformation (78) has to be replaced by the usual polar coordinate

formula y = z/y/0* + 2% while (77) then simplifies to ©z = /p? + 22/M. Lines

of constant = and y plotted in the plane o — z form ellipses and hyperbolas as
showed in Figure 6.
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Figure 6: Prolate spheroidal, spherical and oblate spheroidal coordinate grid.

The spheroidal and Boyer-Lindquist coordinates have the following simple
relation

r = or+ M, (79)

cosd = y. (80)

In Figure 7 the W-P coordinate grid ¢ — z is plotted in Boyer-Lindquist coor-

dinates. In this figure the region covered by W-P coordinates and the shape of

surfaces z = +b (and also the shape of region excluded by identification) are
illustrated.
It is more convenient to express the operators % and a% using the inverse
Jacobi matrix of (74-75), rather than differentiating the inverse map (77-78):
0 1

— e @ g el =)

0z o(z? — ky? ox oyl (81)
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Figure 7: Planes z = const. and cylinders ¢ = const. in Boyer-Lindquist coordinates.

0 0 0
g - 2 2 4,20, (82)
0o o%(x? — Kky?) | Ox oy

The metric potentials of the Kerr-Newman spacetime expressed as functions

of the radial and the latitudinal spheroidal coordinates x and y have the following
form

w DY+ —1

e , 83
(pz +1)* + ¢*y? (83)
o = Prhayts ol (84)
P )
2
pr—s°/2+1
A = 2Mq(1 -9 _ 85
q( Yy )p2x2 + q2y2 + 82 -1 ( )
The electromagnetic potential,
—dt + mq(1 — y*)dy
A, dat = s(pr + 1 , 86
g P+ )+ 1)+ 2y (86)
yields the components of Maxwell tensor (X =px +1, Y = qy):
s a2
F‘pz = Mp(XgZ-J}-Y%2 xéfigﬂ [QXI‘(XZ + q2) +p(x2 - H) (X2 - Y2)] )
_ 5qo 1 2 2 \Vv2\ _ 2 2 2
F,, = VX T [p(l2 Yy )2(X 2 Y?2) 2)(% (X +3 )] . )
Fy = = L [pr(X? —Y?) —2XY?] .

M2p2(X24V2)% 22 —ky?

Using these formulae, the properties of stress-energy tensor distribution can
be studied. Since the most general case includes a number of phenomena, to
reveal their character, several special cases are discussed separately.

23



7.1 Schwarzschild disks

Metric coefficients of the Schwarzschild spacetime simplify to

r—1
= — 88
Gt vl (88)
5T+ 1
= 89
Jpp 0 r—1" ( )
(x4 1)
Yoo = Yzz 22— g2 (90)
The resulting surface stress-energy tensor of the disk
S0 0 -0 0
ac 1
S = _ghe v/ Jee (9—> =| 0 S 0]|=—5]| 0 u?o (91)
81 Ndee/ .\ o0 0) 1"\ 0o 0 o
_ MbR-M MV+R (92)
M7 or R+ M (R' = M)
MR(R? — b?
V2 ( ) : (93)
(R— M)(Mb? + R3)
2R = \/92+(b+M)2+\/92+(b—M)2 (94)

is studied in [22]. To interpret the stress-energy tensor authors consider a disk
with two counter-rotating streams of particles with proper density /2, which are
counter-rotating with velocities +£V. If the whole horizon of Schwarzchild black
hole is contained in the removed region, i.e., if b > M, the velocities of particles
creating the disk are subluminal, although for high central redshifts, particles on
certain inner orbits are highly relativistic.

7.2 Extreme Reissner - Nordstrom disks

Metric coefficients of the extreme Reissner - Nordstrém spacetime read

56'2

= — 95
gt (x+1)2° (95)
(z+1)?
Gop = Q2 2 ) (96)
(z+1)2
Goo = Gzz 2 ) (97)

and the fact that g,,/g,0 = 0 implies that only one component of the surface
stress-energy tensor is nonzero:

SL’2y

S = S (e A1)

(98)
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Normal component of the electric field, F,; = M ! y/(x + 1), yields

Ty

s v

(99)

This means that the proper mass density,

M b
bV P (VP D+ M)

j=— (100)

and the proper charge density /—g®.J; are identical and positive.

The disk consists of charged dust (non-)moving with four-velocity parallel to
the Killing vector field £*. In these static disks electric repulsion is just counter-
balanced with gravitational attraction — as in classical physics.

The contribution of the material of the disk to the total mass, i.e. the Komar
integral (40),

M

varies form 0 to M as b changes from 0 to oo; the detailed dependence Mp(b)
is depicted in Figure 8. The fact that Mp — 0 as b — 0 means that the whole
(Komar) mass of the extreme R-N black hole is equal to the energy stored in the
electric field of the region covered by W-P coordinates (i.e. r > M, see (79) and
Figure 7).

| | | | | |
0 1 2 3 4 5

bM

Figure 8: The dependence of of the mass of the disk Mp on the width of the excluded region
b. The mass M — Mp is of an electromagnetic origin.
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7.3 Kerr disks

Because there are no restrictions on the sign or size of the specific charge attached
to particles of both counter-rotating streams, all peculiarities of the interpreta-
tion of the disk concentrate on the properties of the the surface stress-energy
tensor and the disks producing the Kerr spacetime exhibit the whole spectrum
of behavior concerning the possibility to interpret a disk as physically realistic.
The another reason to study the properties of the uncharged case is related to
the astrophysical importance of the Kerr spacetime. The detailed description of
the motivation to search for a realistic source of the Kerr spacetime was given in
the first two sections.

Disks without the radial pressure generating Kerr spacetime are characterized
by two dimensionless parameters, b/M and a/M, while the scale factor M can

be omitted.
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Figure 9: The parameter space of Kerr disks. I. Counter-rotating disks, II. Rings with
azimuthal pressure, III. Energy conditions violated.

Only some regions in the parameter space of Kerr disks correspond to accept-
able disks, which can be described as a counter-rotating material. In Figure 9
such regions are plotted. The horizontal dashed curve G which is almost identical
with the line b = M delimits the far region, where both solutions {2 correspond
to subluminal velocities, from the near one, where the counter-rotating streams
decomposition is not possible. Below this line the stress-energy tensor can be
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diagonalized, but the role of the source play massive rings rotating with the ve-
locity of ®I0s. They must sustain positive or negative pressure. Because both
densities of counter-rotating streams must be positive, the geodesic particle in-
terpretation is possible only in the region left to the line labeled p > 0 (see (70)).
Below the line E both energy conditions are violated at some radius of the disk as
well as below the line H where the disk hits the horizon of the black hole. Using
small circles, squares, etc., several disks with a/M = 0.8 and a/M = 1.1 are
labeled. Radial properties of their relevant physical quantities are summarized in
Appendix A. Finally below the dashed line e toroidal ergoregion is present near
the center of the disk. The relation of the ergosphere of the Kerr black hole to
the toroidal ergoregion of the disk spacetime is schematically depicted in Figure
10.

v <7 <<l L =1 £ >1
Figure 10: The relation of the ergosphere of the black hole (or the ergo-torus in the naked
case) to the toroidal ergoregion of the spacetime of the disk before and after the identification.
The planes of identification (i.e. the excluded region) are represented by the horizontal lines,
their position represents a typical case when energy conditions considered are fulfilled. If a = M
there is no minimal “size” of the excluded region needed to guarantee the energy conditions.
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Figure 11: The parameter space of Kerr-Newman disks with Q = M/+/2. T. Counter-rotating
disks, II. Rings with azimuthal pressure, III. Energy conditions violated.

7.4 Charged (Kerr-Newman) disks

In the general case, all expressions become quite long and the only formulae worth
displaying are the central energy and charge density of the disk

_M(b+M)2—a2—Q2(1+b/M)\/ (b+ M)2 + a2 102
“C_% [(b+ M)? + a?]? b2 +a2+Q%— M2’ (102)
. Q (b+M)?—a? (b+ M)2 + a2 (103)

21 [(b+ M)+ a2’V 0> + a® + Q> — M?
Because both the electrostatic and centrifugal forces are acting against the
gravity, and the extreme Reissner - Nordstrém disks exhibit equilibrium of gravi-
tational and electrostatic forces, one can conclude, that the region in the a/M —b
plane within the parameter space (see Figure 11), where disks can be made from
counter-rotating electrogeodesic particles, is shrinking towards the line a = 0 as
@ — M. There are no such disks for () > M, although the energy conditions may
be fulfilled if b is large enough. Then the disk may be constructed from charged
superconductive rings rotating with the velocity of ®-isotropic observers.
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8 Tomimatsu-Sato spacetimes

To illustrate the possibility of generating disk-like sources for arbitrary stationary
axisymmetric vacuum spacetime, the properties of the disk sources of Tomimatsu-
Sato 6 = 2 (TS2) spacetimes will be discussed in this section. This is a natural

choice because the Kerr geometry is a member of TS family with the parameter
o=1.
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Figure 12: Ergoregion (dark grey) and regions of closed timelike curves (light grey) for ¢ = 3.
In this figure points below the plane z = 0 correspond to points with x < 0 and y > 0 and they
represent TS2 solution in the region r < M.

TS2 spacetime is determined by the mass M and angular momentum M?2g
[34]. The parameter p again satisfies the relation xkp®> + ¢> = 1 and x = %1.
Introducing the abbreviations a = 22 —k and b = 1 — 1?2, the line element is given
by (29) where

. pla* + ¢*b* — 2p%qPab(2a? + 20 + 3kab)
e =
(kp2(z* — 1) — ¢2(1 — y*) + 2pwra)? + 4¢?y?(prra + (pr + 1)b)2’

4.4 474 2 2 2 2
2 _ Pl + ¢*'b* — 2p*q*ab(2a”® + 2b +3/-cab)’ (104)
P (22 — Ky?)t
pira(2(xt—1)+ (kz™-3)b) + (4ax’+ (3kx*+1)b)ap®— (pr+1) b
plat + ¢*b* — 2p2q%ab(2a? + 2b? + 3kab) '

A = 2Mqgb
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These metric potentials are written down in the short form which does not include
the extreme (¢ = 1) case; this is identical with the extreme Kerr metric. On the
other hand the static limit of TS2 spacetime is the Darmois solution (Weyl metric
with the metric potential v proportional, with factor 2, to the metric potential
of the Schwarzschild solution with the mass M/2), and the corresponding disk
source are thus studied as a special case of Zipoy-Vorhees metrics in [22].

One of the most important differences between Kerr and TS2 family is that
there remain both singular rings and toroidal regions of closed timelike curves in
the region covered by W-P coordinates. Their shape is illustrated in Figure 12

for TS2 spacetime with a/M = 3.
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Figure 13: The parameter space of TS2 disks. I. Counter-rotating disks, II. Rings with
azimuthal pressure, III. Energy conditions violated.

In Figure 13 the parameter space of TS2 disks is presented. Its structure is
more complicated than in the Kerr case, because of previously mentioned phe-
nomena. Disks with a > M and sufficiently small b (those lying bellow the curve
T) are surrounded by a toroidal region of closed timelike curves and the ring sin-
gularity may appear for even smaller b. As shown in Figure 13, such disks violate
energy conditions. When a < M the dominant energy condition is violated for
disks with final central redshifts, which is not the case for the Kerr disks.
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9 Concluding remarks

For a wide class of stationary axisymmetric electro-vacuum spacetimes we have
shown a possibility to construct disk-like “interior solutions”. These sources
provide nice illustration of the well known fact that the Einstein equations govern
not only the behavior of the gravitational field but also yield equations of motion
for the matter. Thus, if a stress-energy tensor with a non-negative azimuthal
and vanishing radial pressure is obtained by a removal of the equatorial region
of spacetime considered, and two counter-rotating circular geodesics exist in the
plane of the disk, the disk may be formed by assigning appropriate energy and
charge densities to both counter-rotating streams. It is generally observed that
such interpretation is allowed as long as the width of the excluded region is large
enough and the gravitational attraction is stronger than electric repulsion. If the
effective radius of the disk is small, it is not possible to construct disks with large
a/M. In the astrophysically most plausible models, around 90% of the total mass
of the disk of dust is rotating in one direction along geodesics and only 10% of
the mass moves along counter-rotating geodesics.
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Appendix A Radial properties of Kerr disks
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Figure 14: Energy density as seen by ®I0s (a/M = 0.8)
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Figure 15: The ratio of the stress to the energy density as seen by ®I0s (a/M = 0.8)
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Figure 16: Velocity of ®10s with respect to LNRFs (a/M = 0.8)
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Figure 17: Energy density of both counter-rotating streams (a/M = 0.8)
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Figure 18: Komar mass density (a/M = 0.8)
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Figure 19: Energy density as seen by ®I0s (a/M = 1.1)
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Figure 20: The ratio of the stress to the energy density as seen by ®I0s (a/M = 1.1)

(0] 1 2 3 4 5 6
RM ——

Figure 21: Velocity of ®10s with respect to LNRFs (a/M = 1.1)
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Figure 22: Energy density of both counter-rotating streams (a/M = 1.1)
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Figure 23: Komar mass density (a/M = 1.1)
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Appendix B Radial properties of Kerr-Newman
disks

0.10-

0. 06—

0. 04

o
[y
N
w
N
(6]
o

RM ——

Figure 24: Energy density as seen by ®I0s (a/M = 0.6,Q/M = 1//2)
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Figure 25: The ratio of the stress to the energy density as seen by ®I0s (a/M = 0.6)
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Figure 26: Velocity of ®I0s with respect to LNRFs (a/M = 0.6,Q/M = 1//2)
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27: Energy density of both counter-rotating streams (a/M = 0.6,Q/M = 1//2)
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Figure 28: Charge density of both counter-rotating streams (a/M = 0.6,Q/M = 1//2)
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Figure 29: Komar mass density (a/M = 0.6,Q/M = 1//2)
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Figure 30: Energy density as seen by ®I0s (a/M = 0.8,Q/M = 1/1/2)
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Figure 31: The ratio of the stress to the energy density as seen by ®I0s (a/M = 0.8)
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Figure 32: Velocity of ®I0s with respect to LNRFs (a/M = 0.8,Q/M = 1//2)
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Figure 33: Energy density of both counter-rotating streams (a/M = 0.8, Q/M = 1/+/2)
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Figure 34: Charge density of both counter-rotating streams (a/M = 0.8,Q/M = 1//2)
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Figure 35: Komar mass density (a/M = 0.8,Q/M = 1/\/2)
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Appendix C Radial properties of Tomimatsu-
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Figure 36: Energy density as seen by ®I0s (a/M = 0.8)
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Figure 37: The ratio of the stress to the energy density as seen by ®I0s (a/M = 0.8)
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Figure 38: Velocity of the ¢-isotropic observer with respect to LNRFs (a/M = 0.8)
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Figure 39: Energy density of both counter-rotating streams (a/M = 0.8)
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Figure 40: Komar mass density (a/M = 0.8)
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Figure 41: Energy density as seen by ®I0s (a/M = 1.1)
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Figure 42: The ratio of the stress to the energy density as seen by ®I0s (a/M = 1.1)
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Figure 43: Velocity of ®10s with respect to LNRFs (a/M = 1.1)
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Figure 44: Energy density of both counter-rotating streams (a/M = 1.1)
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Figure 45: Komar mass density (a/M = 1.1)
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