
Thin disks as sources of stationaryaxisymmetric electrovacuum spacetimes
TOM�A�S LEDVINKA

Department of Theoretical PhysicsFaculty of Mathematics and PhysicsCharles UniversityV Hole�sovi�ck�ach 2, Praha 8, Czech Republic
A disertation submitted to the Faculty of Mathematics and Physics, Charles University,in accordance with the regulations for admission to the degree of Doctor of Physics.Branch of the doctoral study: F-1 { Theoretical physics, astronomy and astrophysicsPraha, October 1998



AcknowledgementsI would like to thank professor Ji�r�� Bi�c�ak for his help. He proposed an inter-esting problem, encouraged me in my work and he has always had the time todiscuss my work with me, and has made valuable comments on the content ofthe thesis.



Contents1 Introduction 22 Relativistic disks as sources of the Kerr metric 43 Thin layers as sources of the stationary axisymmetric spacetimes 104 Total mass, angular momentum and charge 145 Energy conditions and the interpretation of the surfacestress-energy tensor of the disk 166 Disks formed of counter-rotating surface streamsof charged particles 187 Kerr-Newman disks 217.1 Schwarzschild disks . . . . . . . . . . . . . . . . . . . . . . . . . . 247.2 Extreme Reissner - Nordstr}om disks . . . . . . . . . . . . . . . . . 247.3 Kerr disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267.4 Charged (Kerr-Newman) disks . . . . . . . . . . . . . . . . . . . . 288 Tomimatsu-Sato spacetimes 299 Concluding remarks 31Appendix A Radial properties of Kerr disks 32Appendix B Radial properties of Kerr-Newman disks 37Appendix C Radial properties of Tomimatsu-Sato � = 2 disks 43

1



1 IntroductionUnlike in Newtonian gravity, there is a lack of complete exact solutions repre-senting self-gravitating rotating compact objects in general relativity due to itsessential non-linearity. On the other hand a great progress has been made withina class of the stationary axisymmetric vacuum or electro-vacuum asymptoticallyat spacetimes where powerful methods were applied to obtain analytic solutionsof Einstein's equations [1]. Among these solutions the most important role stillplays the spacetime discovered by Kerr [2]. One of the reasons consists in thefact that compact astrophysical objects very often posses large speci�c angularmomentum and a Kerr black hole is thus a natural candidate for the spinningremnant of gravitational collapse [3]. Indeed, assuming that the the cosmic cen-sorship conjecture holds, the black{hole uniqueness theorems guarantee that theKerr metric represents the unique solution describing all rotating vacuum blackholes (cf. e.g. [4]). If one takes into account that the properties of the interiorSchwarzschild solution describing a static spherically symmetric star surroundedby its gravitational �eld are even now, sixty years after its discovery, inspiringastrophysicists in a deeper understanding of the peculiarities of general relativity[5], there is no doubt that an exact interior Kerr solution would be even moreexciting.This, of course, has been realized by many workers. As the properties ofKerr'sspinning particle metric were analyzed [6], [7], the search for such solution started(e.g. [8],[9]). Since that time several authors have been able to construct interiorsolutions that can be matched with the Kerr vacuum geometry as an external�eld, but the material of various balls or shells has very strange properties andallows no reasonable interpretation [10], [11], [12], [13]. For example, quite recentwork, that appeared in 1991, gives \a toroidal source", consisting of \a toroidalshell . . . , a disk . . . and an annulus of matter interior to the torus" [14]. Themasses of the disk and annulus are negative. The review on the \Sources forthe Kerr Metric" [15], written in 1978, contains 71 references, and concludeswith: \Destructive statements denying the existence of a material source for theKerr metric should be rejected until (if ever) they are reasonably justi�ed." Tosummarize in Hermann Bondi's way, the sources suggested so far for the Kerrmetric are not the easiest materials to buy in the shops . . .In this situation less complicated sources should be studied { the most natu-ral choice seems to be an axisymmetric thin disk. Even among such sources themost realistic one, the thin disk of a �nite diameter without a radial pressure, wasexcluded from a list of possible sources of external parts of Kerr spacetime [16].The situation is somewhat di�erent in the special case of the extreme Kerr metric,where there is a de�nite relationship between mass and angular momentum. Thenumerical study [17] of uniformly rotating disks indicated how the extreme Kerrgeometry forms around the disk in the \ultrarelativistic" limit. These numericalresults were supported recently by the important analytical work [18]. If a re-2



quirement of the �nite diameter is relaxed, it can be shown that such disks canplay a role of the interior Kerr solution with any angular momentum [19] (seealso [20]).In this thesis both our �rst results concerning Kerr disks and their gener-alization to stationary axisymmetric electro-vacuum spacetimes are presented.The section 2 is based on letter [19], published in 1993. The basic idea, whichenables one to construct physically acceptable thin disks (as well as completelyunreasonable shells) is then presented in section 3 in greater detail. Because weare interested in the interpretation of the stress-energy tensor of the disk usingthe `usual' matter, we study only disks without radial pressure. Even though theradius of these disks is in�nite, they have �nite integral quantities such as massor angular momentum, which means that their respective densities (as de�ned insection 4) have reasonable asymptotic behavior.In the central region of the disk, the situation is quite complicated and theproperties of the stress-energy tensor must be carefully studied using covariantcharacteristics { the energy conditions which are introduced in section 5. It isshown that for a general axisymmetric stationary electro-vacuum asymptoticallyat spacetime which admits Weyl-Papapetrou coordinates the reasonable disk-like source may exist and that the surface stress-energy tensor of such a disk mayconsist of two counter-rotating streams of (charged electro-) geodesic particles ateach radius, if certain conditions (studied in section 6) are met. Although in lastyears several galaxies were found to have the disks built from two nearly identicalcounter-rotationg stellar components (see e.g. [21]), the presence of counter-streaming component apparently makes such disks not so realictic astrophysically.Wee shall see, however, that the Kerr disks exist with the mass of the co-rotatingcomponent exceeding 90% of the total mass of the disk.It is clear that physically realistic disks can be constructed only within certainlimits of the values of total charge, angular momentum, e�ective radius of thedisk, and other parameters which enter into the metric. The survey of the pa-rameter space of the Kerr-Newman disks is presented in section 7. The analogoussurvey of Tomimatsu-Sato � = 2 disk sources is given in section 8. In these twosections the properties of disks generating considered spacetimes are studied withan emphasis on possible interpretations of the surface stress-energy tensor of thedisk and on various relativistic phenomena, such as the existence of ergoregionsor of closed timelike curves in the vicinity of the disks. In appendices A, B andC the plots of relevant disk quantities as functions of the circumferential radiusare given.
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2 Relativistic disks as sourcesof the Kerr metricThis section is based on letter [19], with several notes appended.Bi�c�ak, Lynden{Bell and Katz [22] (BLK in the following) have shown thatmost vacuum static Weyl solutions can arise as the metrics of counter{rotatingrelativistic disks (see [22], also for other references on relativistic disks). Thesimple idea which inspired the work of BLK is commonly used in Newtoniangalactic dynamics [23] (the idea �rst appeared in Kuzmin's work [24]): Imaginea point mass M placed at a distance b below the centre % = 0 of a plane z = 0(see Figure 1). This gives a solution of Laplace's equation above the plane. Thenconsider the potential obtained by reecting this z � 0 potential in z = 0 sothat a symmetrical solution both above and below the plane is obtained. It iscontinuous but has a discontinuous normal derivative on z = 0, the jump in whichgives a positive surface density on the plane. In galactic dynamics one considersgeneral line distributions of mass along the negative z{axis and, employing themethod described above, one �nds the potential{density pairs for general axiallysymmetric disks. In fact, Bi�c�ak, Lynden{Bell and Pichon [25] found an in�nitenumber of new static solutions of Einstein's equations starting from realisticpotentials used to describe at galaxies, as given recently by Evans and de Zeeuw[26].
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Figure 1: Gravitational �eld of a Kuzmin disk (illustrated using lines of force)Here we wish to demonstrate that a similar method works also for axisymmet-ric, reection symmetric, stationary spacetimes. It is important to realize thatalthough now no metric function solves Laplace's equation as in the static case,we may view the procedure described above as the identi�cation of the hyper-surface z = b with z = �b. The �eld then remains continuous but the jump ofits normal derivative induces a matter distribution in the disk which arises due4



to the identi�cation. What remains to be seen, is whether the material can be\bought in the shops".This idea can be employed for all known asymptotically at stationary vacuumspacetimes, e.g. for the Tomimatsu{Sato solutions, for the \rotating" Curzonsolution, or for other metrics (cf. [27] for references). Here we shall illustrate theprocedure for the simplest, but most interesting case | the Kerr metric.A stationary axisymmetric vacuum metric can be written in canonical coor-dinates (t; '; %; z) in the form [27]ds2 = f�1 hg (d%2 + dz2) + %2d'2i� f(dt+ Ad')2 ; (1)where f , g, A are functions of %, z (we put c = G = 1). Spheroidal coordinates(x; y) are commonly used, and we introduce both prolate (� = +1) and oblate(� = �1) ones since we wish to include all types of Kerr metrics:z = �xy ; % = � h(x2 � �)(1� y2)i1=2 ; � = const: : (2)For the Kerr solution (mass M , speci�c angular momentum a � 0) the functionsin (1) are ratios of polynomials [27]:f = L=E ; g = L=F ; A = B=L ; (3)L = p2x2 + q2y2 � 1 ; E = (px + 1)2 + q2y2 ; (4)F = p2(x2 � �y2) ; B = 2Mq(1� y2)(px + 1) ; (5)�p2 + q2 = 1 ; q = a=M ; � = Mp : (6)Here � = 1 for a < M , � = �1 for a > M . If a = M , then � = 0, � = M ,p = q = 1.Now we identify the \planes" z = b = const. > 0 and z = �b which will leadto disks with zero radial pressure. With the Kerr geometry the matching is morecomplicated than in the static cases and, therefore, we turn to Israel's covariantformalism (see [28] for its recent exposition). This enables us, using Einstein's�eld equations, to link the surface stress{energy tensor, S(a)(b), of the disk arisingfrom this identi�cation, to the jump hK(a)(b)i = K(a)(b)jz=+b � K(a)(b)jz=�b ofnormal extrinsic curvature across the timelike hypersurface � given by z = b (orz = �b). The tetrad indices are denoted by (a), (b), . . . , with the tetrad vectorsbeing chosen so that three vectors tangent to � are just e�(a) = ��(a) (� = 0; 1; 2; 3,fx�g = ft; '; %; zg, a = 0; 1; 2), while n� = (0; 0; 0; 1=pgzz) is the unit normal.As a consequence of Einstein's �eld equations we �nd the non{vanishing com-ponents of the surface stress{energy tensor to beS(0)(0) = ZLFE2  L0L + F 0F � 2 E 0E ! ;5



S(0)(1) = ZBFE2  B0B + F 0F � 2 E 0E ! ; (7)S(1)(1) = ZFL "%21  L0L � F 0F !+ 2 B2E2  B0B � E 0E !# ;where L, E, F , B are given by (5), %21 = %2 �B2=E2,Z = 116� �EF �1=2 2y+�(x2 � �y2) ; y+ = yjz=+b ; (8)and the operator \0" is de�ned by the relation [f;z]z=bz=�b = 2y+f 0=�(x2 � �y2) forany f . For the Kerr metricL0 = 2x(p2x2 � q2y2 + 2q2 � 1) ;E 0 = 2p(x2 � �)(px + 1) + 2xq2(1� y2) ;F 0 = 2x hp2x2 + (1� q2)(y2 � 2)i ; (9)B0 = 2M(q=p)(1� y2) hq2 � (px+ 1)2i :(In eqs. (8), (9), both x and y are evaluated at z = b; by inverting (2) one �ndsxjz=+b = xjz=�b, y2jz=+b = y2jz=�b.) Eqs. (7) { (9) give the stress{energy tensorof the disks.Let us now show that the disks may be interpreted as being made of twostreams of collisionless particles that circulate in opposite directions. In order tosee this, we �nd, at each radius % and for z = b, the preferred observer for whomthe stress{energy tensor (7) acquires a diagonal form1. Let his 4{velocity (thetimelike eigenvector of the tensor), readV � = N(1;
; 0; 0) ; (10)and his unit spatial base{vector in the '{direction beW � = J(�; 1; 0; 0) : (11)The conditions V �V� = �1, W �W� = 1, V �W� = 0 determine three of the pa-rameters entering (10), (11) in terms of the fourth, of 
 say. Assume now a tensorT �� (which will be calculated from (7) { (9)) has non{vanishing components T 00,T 01, T 11. Then, by choosing
 = �(T 11 � T 00 )� h(T 11 � T 00 )2 + 4 T 01 T 10 i1=2� =2T 01 ; (12)1The question of existence of such observers was not addressed here. In section 5 we show,that it is related to the energy conditions and that, if S(0)(0)S(1)(1) � S2(0)(1) > 0, V � is realvector. 6



T �� can be cast into the formT �� = �V �V � + PW �W � ; (13)where � = T 00 � �2T 11N2(1� �2
2) ; (14)P = T 11 � 
2T 00J2(1� �2
2) : (15)Hence, the observers circulating with the 4{velocity (10) will see the diagonalform of T �� with T �(0)(0) = T ��V�V� = � ;T �(0)(1) = T ��V�W� = 0 ;T �(1)(1) = T ��W�W� = P : (16)We call such observers \'{isotropic" (�IOs) since the isotropy concerns the '{direction only.If � � P > 0, �IOs can consider the stress{energy tensor (16) as representingtwo equal streams of collisionless particles that circulate in opposite directionswith the same velocity U� = �P� �1=2 : (17)If �p is the surface proper rest mass density of one stream (measured in axes thatmove with it), then the surface density of its rest mass measured by an �IO is12�0 = �p [1� (U�)2]�1=2. The surface energy density of the pair of streams isT �(0)(0) = � = �0[1� (U�)2]1=2 = 2�p1� (U�)2 : (18)The tangential pressure caused by the counter-rotation is T �(1)(1) = �(U�)2. Thesum of the proper rest mass surface densities of both streams is simply2�p = � � P : (19)The condition that the velocity of the streams U� does not exceed the velocity oflight is just the dominant energy condition (see e.g. [4]).What is the relation of �IOs to the locally non{rotating frames (LNRFs)?�IOs rotate with respect to LNRFs with the velocity given byV = %�1 g'' (
� !) ; (20)where ! = �gt'=g''. Therefore, the streams circulate with di�erent velocitiesin LNRFs and, of course, with respect to \distant stars". That is why the disksproduce stationary rather than static �elds.7



The physical quantities introduced in (17) { (20) are given in terms of themetric (1) { (5), and the stress{energy tensor (7) { (9). Hence, all the physicalquantities describing the disks are given analytically. The resulting expressions,however, are so complicated that it is only reasonable to exhibit them graphically.Yet, the central surface density has a simple form�c = M2� (b +M)2 � a2(b2 + a2 �M2)1=2 [(b +M)2 + a2]3=2 : (21)In order for the central density to be positive, one must make the identi�cationat b2 > M2 � a2. (This is evident in the black{hole case since the hole's interioris mapped onto the rod % = 0, �(M2 � a2)1=2 < z < (M2 � a2)1=2.) If a > M ,one has to choose b > a �M . The central density can become arbitrarily largefor b2 ! (M2 � a2)1=2 | a region \close" to the horizon (which itself was cuto�) is then included. �c > 0 can be large also for a >� M . However, in the caseswith a > M , it turns out that the physical condition P � 0 (cf. (17) ) leads tothe inequalityp2(9x4 � 6x2 + 1)� p(4x5 � 24x3 + 4x)� (7x4 � 10x2 � 1) � 0 ; (22)where x = b=p and p2 = a2=M2� 1 (cf. (5)), which restricts b more strongly. Fora � M one �nds bmin � 9a2=4M . Then we can construct physical disks 2 onlywith U�max � 0:3 (M=a)� 1.In coordinates (%, z) the ergoregion (cf. e.g. [4]) has a \toroidal" character,the center of the generating circle with ' = const. is at %0 = M(q � 1=2q),the radius being R = M=2q. For 1 � a=M > 1=p2 := 0:707, the disks givenby (M2 � a2)1=2 < b < M2=2a produce the ergoregion. Their central densityis positive and the graphical results show (see below) that they are physicaleverywhere. It turns out that physical disks producing an ergoregion exist evenfor a=M > 1, provided that a=M < 1:044.Here we shall con�ne ourselves to illustrate just one case | with a=M = 0:8.The disks corresponding to di�erent choices of b are compared by exhibiting thecircular velocities etc. as functions of the \circumferential" proper radius R =pg'', where g'' is given by (1) { (5). In Figure 2(a) we give the velocity curvesof counter{rotating streams as measured by �IOs. These were calculated, startingfrom (17), for twelve disks; the disks become more relativistic with decreasing b.2The \physical interpretation" means in this section counter-rotating streams of nongeodeticparticles with equal opposite velocities with respect to �IO which satisfy energy conditions.It is the easiest generalization of the BLK disk model. If one would like to construct suchdisk model in a greater detail, the mechanism of exchange of radial momentum between thestreams should be invented. In section 5 and 6 we distinguish between the energy conditionsrequirements (such as P < �, which is equivalent to V < 1) and the existence of both (co-and counter-rotating) circular geodesics. This is given by radial behaviour of metric functionsrather than altitudinal, which determines stress-energy tensor of the disk.8
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Figure 2: Velocity and density pro�les of Kerr disks with a=M = 0:8In the highly relativistic disks (upper two curves) U� increases extremely rapidlyas one moves away from the centre, approaching the velocity of light at R <� M ,and then start decreasing. Also in Figure 2(a) velocity curves of the �IOs withrespect to the LNRFs are plotted by using (20). Although these velocities achievealso high values (V � 0:25), their maxima occur at larger R � (2 � 3)M . Inparticular, in the two most relativistic disks, the �IOs (the velocity curves ofwhich cross the other curves from bottom to the top in Figure 2(b) ) do not moveso rapidly with respect to LNRFs close to the centre.(Here \close" refers to theproper circumferential radius R.) Just these two disks - from the twelve disksexhibited - produce an ergoregion.Figure 2(b) gives the plots of the sum of the surface proper rest mass densitiesof both streams as calculated from (19). For highly relativistic disks, 2�p risesrapidly towards the centre; however, it decreases then very rapidly with R, and inthe most relativistic case even reaches a local minimum at those R where U� ! 1.The central gravitational redshift is zc � 103 in this case.We are not aware of any exact analytic solutions for the sources of the sta-tionary gravitational �elds with such physical properties as the disks constructedhere. Although extending to in�nity, they have �nite mass and exhibit interest-ing relativistic properties like high velocities, large redshifts and dragging e�ects,including ergoregions. They may appear somewhat arti�cial astrophysically, butin the Newtonian limit - when no dragging arises - their features are the same 3 asfor the rotating disks with only one stream of particles; in the relativistic regime,the central parts of a realistic, highly relativistic, rotating attened object shouldhave some properties in common with these disks.3In fact even in the Newtonian gravity some counter-rotation is necessary if the disk shouldhave prescribed values of mass and angular momentum, although the latter has no inuence onthe gravitational �eld. E.g. in zero angular momentum case corotating and counter-rotatingcomponent of the disk should have the same value of total angular momentum (with oppositesign).
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3 Thin layers as sources of the stationaryaxisymmetric spacetimesIn this section we shall investigate the construction of the disk models in a greaterdetail and generality.The easiest way to �nd a source producing a given stationary solutionM0 ofvacuum or electro-vacuum Einstein equations. It consists in glueing two exactlyidentical spacetimes �M � +M � M0 together at their boundary hypersurface�S. They are thus separated by a 3-dimensional layer of in�nite �-function typecurvature which becomes the source of the spacetime (rather than various hiddenor naked singularities). This method avoids the complicated problem of solv-ing the interior �eld equations and matching the solution to the electro-vacuumsolution outside.
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Figure 3: A part of a stationary spacetimeM0 (depicted as a three-dimensional box with timecoordinate omitted) and hypersurfaces �S delimiting the emphasized part which representsboth +M and �MThree-dimensional hypersurfaces �S which will be identi�ed (see Figure 3)may be characterized by two important quantities { the metric induced on themby external 4-metrics, �g(a)(b) = g���e�(a)�e�(b) (23)(�; � = 0; 1; 2; 3 and a; b = 0; 1; 2), and their extrinsic curvatures�K(a)(b) = �e�(a)�e�(b)r��n� = ��n��e�(a)r��e�(b) : (24)Vectors �e�(a); a = 0::2 form the basis tangent to �S (in general not normalized)and unit vector �n� is orthogonal to �S (i.e. �n��n� = 1, �e�(a)�n� = 0). Here �n�10



are normals pointing from �M to +M. The identi�cation is admissible only ifthe induced metrics (23) are equivalent [29]. This is guaranteed by the fact thatonly the orientation of identi�ed boundaries +S and �S is di�erent, whereas basisvectors �e�(a) are identical. We will assume hypersurface +S to be prescribed byan equation �(x�) = 0 which yields the normal vector +n� = �(�;��;�)�1=2 �;�,where an appropriate sign must be chosen.The jump in the extrinsic curvatures of +S and �S hK(a)(b)i = +K(a)(b) ��K(a)(b), determines the surface density of the stress-energy tensor by the relation[29] S(a)(b) = �18� �[K(a)(b)]� g(a)(b)[K (c)(c) ]� : (25)Because whole spacetime is made of two identical copies, we have [K(a)(b)] =2+K(a)(b).Two commuting Killing vector �elds of an stationary axisymmetric spacetimewill be denoted �� and ��, �� having closed orbits. The coordinates associatedwith the Killing vectors will have their usual names, t and '.We exclude a case of the dynamic layer generating a stationary spacetimeand assume that one of the basis vectors e�(0) coincides with ��, and that thestationary basis e�(a) is chosen, $�e�(a) = 0.The resulting spacetime should have \reasonable" physical properties. Onetypical feature of an asymptotically at spacetime is that at spatial in�nity large2-spheres surrounding the center have the ratio of the square of any circumferenceto the area of the sphere equal to �. To meet this requirement we will assumethat the intersection of the boundary hypersurface S and hypersurface of con-stant time t is a smooth 2-surface (\the layer at given time"), which at in�nityasymptotically approaches a plane we will denote P, each part thus delimits thesolid angle 2�.The symmetries of the original spacetime M enable one to choose �M =Q +M, where Q is some map preserving g�� and A�. For example let us assumethat the original spacetime is stationary, axi- and reection-symmetric Kerr so-lution with mass M and angular momentum J = Ma. If we introduce some(altitudinal) coordinate z related to the reection symmetry and omit the timetranslation, the following symmetries can be used to obtain the �M from +M.z ! �z (26)' ! '+ � (27)' ! �' and a ! � a (28)Note that the z coordinate entering (26) may even be the latitudinal coordi-nate �=2 � #, where # is one of Boyer-Lindquist's coordinates [7], as well as zcoordinate of the original line element by Kerr [2], although we will prefer the11



Weyl-Papapetrou z coordinate (29). The �rst symmetry (26), which enables oneto identify +M with its reection symmetric copy, is illustrated in Figure 4a.The other possible interpretation (Figure 4b) is based on composition of (27)and (28). If the boundary surface is reection symmetric with respect to ',it can be �rst rotated by angle �, which means that identi�cation of points Aand B0 should be made. Then the symmetry (28) is plugged in and the naturalidenti�cation of A and A0 can be done, but one has to remember that both partshave opposite angular momentum parameter.
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a) b)Figure 4: Interpretations of the resulting spacetime based on { a) reection b) axial { sym-metry.These two ways of identi�cation are useful as an illustration of the method,but they do not alter the main idea that the resulting spacetime consists of twoidentical parts, and of a thin layer with the surface stress-energy tensor deter-mined by the properties of the boundary hypersurface S. The new spacetimeMneed not necessarily be axially symmetric as a whole, if the asymptotical planeP is not parallel to the equatorial plane. This situation is illustrated in Figure 5,where the orientation of the angular momentum of bothM0 andM is schemat-ically presented before and after the identi�cation. Complicated structure of thesurface stress-energy tensor (no symmetry, too many nonvanishing components)yields no obvious interpretation. There may be another reason to prefer P to beparallel to the equatorial plane: If +S does not cross the equatorial plane, onecan thing ofM as an original spacetimeM0 with removed equatorial region.If stationary and axisymmetric electromagnetic potential of electro-vacuumspacetime is a linear combination of Killing vectors �� and ��, i.e. A[�����] = 0,Maxwell tensor implies Rtt +R'' = 0 and Weyl-Papapetrou (W-P) coordinatesds2 = e�2� he2�(d%2 + dz2) + %2d'2i� e2�(dt+ Ad')2; (29)12



Figure 5: Orientation of the angular momentum before and after the identi�cation, when Pis tilted with respect to the equatorial plane.may be introduced [4]. Even though the resulting spacetime is axially symmetric,its source { the surface stress-energy tensor S(a)(b) may not exhibit this symmetry.It depends on the shape of the hypersurface S. If S is tangential to the Killingvector �eld ��, i.e. if the orbits of �� are contained in this hypersurface, the basisvectors may be chosen such that $�e�(a) =0, which ensures, that S(a)(b) is axiallysymmetric. Such sources will be called disks. This means that if ��n� = ��n� = 0,we can choose e�(0) = �� and e�(1) = ��. Then if e�(2) is chosen such that g(0)(2) andg(1)(2) vanish, the corresponding components S(0)(2) and S(1)(2) will cancel out andthe only nonvanishing components of the surface stress-energy tensor of the diskare three diagonal components of S(a)(b) (energy density, and azimuthal and radialpressures) and one non-diagonal component S(0)(1) (angular momentum density).A similar procedure is used to express electric charge and current density ofthe disk (for a general formalism for charged shells, see [30]). The projectionof an electromagnetic vector potential into the boundary surfaces A(a) = e�(a)A�has to be identical on both sides of the surface S; the electromagnetic �eld F��surrounding the disk is produced by the surface electric current density attachedto the layer: J(a) = 14� hF��e�(a)n�i (30)If e�(0) = ��, e�(1) = �� and A[�����] = 0, this relation yields the stationaryaxisymmetric electric current with J(2) = 0.In our work we will use the hypersurface �(x�) = z � b = 0 which turns outto correspond to disks without radial pressure (for disks with radial pressure see[31]). Then n� = (gzz)�1=2��(z) ; (31)and the simplest tangent basis is e�(a) = ��(a) : (32)13



Since this choice makes g(a)(b) = gab, we will not use brackets to distinguishprojected and metric components but one has to remember that W-P coordinatesmust be applied to obtain correct results.The fact that S is a surface of constant coordinate z implies simple formulafor the extrinsic curvature, Kab = (gab);zg�1=2%% =2. The surface stress-energy tensorand electric current then turns out to beSab = � pg%%8�  gabg%%!;z ; (33)Ja = � 12� (Aa);zpg%% : (34)These formulae yield explicit expressions, after any stationary axisymmetricelectro-vacuum exact solution g�� , A� is plugged in. Unfortunately, they tendto be very long and so they will be explicitly given only in particular cases, e.g.Q = M , when some simpli�cations take place and resulting quantities have clearphysical structure.4 Total mass, angular momentum and chargeThe considered method of construction of the disk sources guarantees that thevalues of integral parameters such as the total mass, angular momentum or chargeare equal to those of the original spacetimes. The total quantities can also beobtained by integration of corresponding surface densities over the disk. If anelectromagnetic �eld is present, the volume integral of electromagnetic energydensity must also be considered.In stationary asymptotically at spacetime the massM de�ned by asymptoticbehavior of metric can be expressed as an integral of stress-energy tensor com-ponents over spacelike hypersurface � surrounding the regions of non-vanishingT�� . The Komar mass integral (see e.g. [4]),M = � 18� Z@� r���d��� : (35)over the 2-dimensional boundary of space-like hypersurface �, with �� beingthe timelike Killing vector, can be converted, using the Stokes' theorem, to thevolume integral M = Z� (�2 T �� + T �� � �� ) �� dS� ; (36)where dS� = �t� p�g d% dz d' is a volume element of hypersurface t = const:Since the surface stress-energy tensor Sab is equivalent to surface distribution, the14



total stress-energy tensor can be written as a sum of the regular (electromagnetic)part T�� and the surface distribution proportional to �(�z)T�� = T�� + ea�eb�Sab�(�z)=pgzz (37)where �z = z � b sgn z. Thus the Komar mass (36) consists of two components,the mass of electromagnetic �eld, ME, and the mass of the uid of the disk, MD:ME = Z��2Ttt p�g d% dz d' ; (38)MD = ZD (�2Stt + Saa) q�g=gzz d% d' : (39)If disks without the radial pressure are considered (S%% = 0), and the line element(29), giving g = �%2 g%% gzz, is used, the last integral readsMD = ZD (S'' � Stt) pg%% 2�% d% : (40)It is physically reasonable to use the proper circumferential radius R = pg'' forlabeling the radial coordinate when depicting any radially dependent quantityin the disks. The surface density, �D, with respect to the circumferential radiusmay be de�ned by the relationMD = ZD �D 2�R dR = ZD (S'' � Stt) pg%% 2%g'';% 2�R dR : (41)This will enable us to compare mass density curves of various types of disks.Using the surface stress-energy tensor (33), the mass of the disk can be de-termined by appropriate �rst derivatives of the metric:MD = 14� Z gt�gt�;z % d% d' : (42)This relation can be expressed in terms of the Weyl-Papapetrou metric potentials� and A: MD = 12� Z (�;z + AA;z2%2 e4�) % d% d' : (43)Here the �rst term coincides with the Gauss law of Newtonian gravity MNewt =(4�)�1 H r�:d~S.The integral expression for MD (42) can be also derived directly from (35)if an appropriate limiting procedure is used because, after the identi�cation ismade, the antisymmetric tensor �eld r���, which depends on �rst derivativesof the metric tensor, is no longer smooth. As the volume � containing thedisk D is shrinking towards the disk, the integral (35) approaches MD. Thejump [r���]z=+bz=�b, together with the surface element d��� , directly yields (42); so15



the quantity MD can be de�ned independently on the de�nition of Sab and itsinterpretation as a distribution.The total angular momentum in axisymmetric stationary spacetime can bede�ned by [4] J = 116� Z@� r���d��� ; (44)where �� is the axial Killing vector �eld. The integral is equivalent with thevolume integral over regions of non-vanishing T�� :J = Z� T �� ��dS� : (45)Using the methods already mentioned, these integrals can be rewritten to theintegral over the surface of the diskJ = ZD St' pg%% % d% d' : (46)The last integral property of the disks to be considered here is the total chargeQ = Z J t pg%% 2�% d% : (47)All integral quantities can be used as independent checks of the code thatevaluates Sab and Ja.5 Energy conditions and the interpretation ofthe surface stress-energy tensor of the diskThe energy conditions introduced in the studies of global properties of spacetimes(see e.g. [4]) are formulated in an invariant form and can be used when aninvariant characterization of the surface stress-energy tensor S�� is needed. Wewill use the dominant and the weak energy conditions in order to �nd physicallyrealistic sources. The weak energy condition requires, that any observer withher velocity W � must observe a nonnegative energy density S��W �W �. Thedominant energy condition is based on the properties of the energy-momentumcurrent �S��W � { this should be future directed timelike vector for classicalmatter. If this condition is satis�ed, the weak energy condition holds.The source which satis�es the energy conditions may still have an unclearphysical interpretation. The next step consists in the diagonalization of S�� . Ifthe equation (S�� � �g��)X� = 0 (48)has two real nonzero eigenvalues �� and p and �� 6= p, the correspondingeigenvectors U� and V � can be rescaled into the form U�U� = �1, V �V� = 1,16



because U�V� = 0. The equation (48) can be viewed as a diagonalization ofthe matrix de�ned by the mixed-indices tensor S�� which is no longer symmetricand has two di�erent real eigenvalues corresponding to the energy density andazimuthal pressure, only if (Stt � S'')2 + 4St'S't > 0 : (49)This inequality also implies that the disks which cannot be diagonalized musthave detSAB � 0 (A;B = t; ').The above procedure is equivalent to the transformation of S�� into the frameof an observer moving with the velocity U� so whatS�� = �U�U� + pV�V� ; (50)here V � is the unit vector in azimuthal direction in observer's frame. We havecalled such an observer \the '-isotropic observer" in section 2. If the decompo-sition (50) of S�� is possible, the weak energy condition is equivalent to� � 0 and p � �� (51)and the dominant energy condition reads� � 0 and jpj � � : (52)The eigenvectors U� and V � can also be used for the decomposition of theelectric current inside the disk,J� = �U� + jV � ; (53)into the proper charge density � and the current j, as measured by �IOs.The diagonalization described above also yields a possible interpretation ofthe surface stress-energy tensor of the disks. Imagine that at each radius of thedisk a massive circular ring is placed. Let it rotate with the velocity U�, itslinear energy density is equal to the product of the proper surface density � andits proper width. The ring is supported against the collapse or expansion by itsinternal azimuthal pressure p. Although usual materials do not provide jpj=� � 1,they are consistent with energy conditions and used not infrequently in generalrelativity. The material of such rings must be superconductive, if j 6= 0, andcharged, when � 6= 0 (this is consistent with the survey [32]). In the followingsection, however, we shall study more physical situations in which the stresstensor can be interpreted as counter-rotating streams of freely moving particles.
17



6 Disks formed of counter-rotating surfacestreams of charged particlesTo interpret diagonal surface stress-energy tensor with two nonzero componentsStt and S'' placed in the equatorial plane of static axisymmetric spacetime Mor-gan and Morgan [33] introduced the disk created from counter-rotating surfacecircular streams of particles.The most noticeable fact is that at a given radius the velocity of counter-rotating particles, which generate the azimuthal component of stress-energy ten-sor, and the velocity of a particle on circular geodesic on that radius are equal;this is so because the potentials satisfy the Einstein equations. To illustrate thiscoincidence we put A = 0 in (29). Then the angular velocities of the circulargeodesic motion 
1� = �s� gtt;%g'';% = � e2�% s %�;%1� %�;% (54)and the angular velocities, which are needed to generate the S'' component ofthe surface stress-energy tensor
2� = �s SttS'' = �e2�% vuut �;z2�;z � �;z ; (55)are equal because the vacuum Einstein equationR%z = 2%�;%�;z � �;z% = 0 (56)holds outside the disk.The concept of counter-rotating streams can be extended to general stationaryaxisymmetric asymptotically at electro-vacuum spacetimes with the reection-symmetric metric and electromagnetic potentials entering (29). If the radial pres-sure component of the surface stress-energy tensor Sab attached to the surface ofidenti�cation vanishes (due to the choice �(x�) = z � b = 0), the possibility ofconstruction of the disk from the surface streams of particles on circular orbitscan be studied in the stationary case as well. The non-diagonal metric impliesthe non-diagonal surface stress-energy tensor and the counter-rotating streamscan no longer have identical surface density and opposite velocities. If the elec-tromagnetic �eld is present, it is generated by appropriate charges attached tothe particles of both streams.The two streams of charged dust moving in the plane of identi�cation z = �bare assumed to have the following energy-stress tensor and electric current:S�� = ��+U�+U�+ + ���U��U�� ; (57)J� = ��+U�+ + ���U�� : (58)18



The circular orbits U�� = N�[1;
�; 0; 0]� of both streams have to satisfy theradial force balance ��U(%);�U� = ��F(%)�U�. Due to the symmetries the covariantderivative simpli�es and the equation of electro-geodesic motion for both streamsreads �12 ���U��U��g��;(%) = ���F(%)�U�� : (59)Since only the time and angular components of both the surface stress-energytensor S�� and the stream particle velocity U�� are nonzero, only the followingseven equations remain to be satis�ed264 SttS'tS'' 375 = �+ 264 1
+
2+ 375+ �� 264 1
�
2� 375 ; (60)" J tJ' # = �+ " 1
+ # + �� " 1
� # ; (61)12�� �gtt;% + 2gt';%
� + g'';%
2��+ �� (F%t + F%'
�) = 0 ; (62)where �� = N���� and �� = N2����.Although for given energy-stress tensor and electric current, six quantities
�, �� and �� must be determined using these seven equations, the system isnot over-determined because the following linear combination of (60)-(61)12 �gtt;%Stt + 2gt';%St' + g'';%S''�+ F%tJ t + F%'J' (63)is equal to the sum of the left-hand sides of both equations (62).So the disk can be described by the simple dust model (57) with electriccurrent (58) only if the considered combination (63) is zero. This is true for anynumber of streams as long as each consists of electro-geodesic particles.This is guaranteed by virtue of Einstein equations and the contracted Gauss-Codazzi equations, which result in the following relation (see e.g. [30])�S��;� + F��J� = 0 ; (64)where the left hand side of this equation is equal to (63). We can therefore discardone of the seven equations (60)-(62). If the third component of (60) is chosen theenergy and charge densities can be expressed in a quite symmetric manner�� = �
�Stt � S't
+ � 
� ; (65)�� = �
�J t � J'
+ � 
� : (66)19



This can be immediately substituted into (62) to obtain following system oftwo coupled equations for angular velocities of both streams:12 �
�Stt�S't��gtt;%+2gt';%
++g'';%
2+�+�
�J t�J'�(F%t+F%'
+) = 012 �
+Stt�S't��gtt;%+2gt';%
�+g'';%
2��+�
+J t�J'�(F%t+F%'
�) = 0 (67)This system of equations can be factorized to the product of cubic andquadratic equations. The roots of the cubic equation lead to unphysical, sym-metric solutions with 
� = 
+. The quadratic equation�Stt2g'';%gtt;%+Sttg'';%J tF%t�2 gt';%g'';%St'Stt�J tF%'g'';%St'+St'2g'';%2�
2+�2Sttgt';%J tF%t � 2 J'F%'Sttgt';% + J'F%'g'';%St' + 2Stt2gt';%gtt;% � J tF%'2J'+SttJ tF%'gtt;% � St'g'';%J tF%t + J'g'';%SttF%t + 2St'2g'';%gt';%�2 gt';%J tF%'St' + J t2F%'F%t � 4Sttgt';%2St'�
+J t2F%t2 + g'';%St'J'F%t � J tF%'J'F%t � 2 gt';%J tF%tSt' + Stt2gtt;%2�2Sttgt';%St'gtt;% + g'';%St'2gtt;% + 2SttJ tF%tgtt;% � J'F%'Sttgtt;% = 0 (68)or its vacuum (F �� = 0) limit,g'';%
2 + 2gt';%
 + gtt;% = 0 ; (69)which is the radial component of the usual equation of circular geodesic, de-termine the stream velocities. Both co-rotating and counter-rotating angularvelocities 
� must be checked whether they represent time-like vectors. If twosubluminal circular (electro-) geodesics exist, their orbital frequencies 
� can besubstituted into (65-66). Physically acceptable are only positive stream densities���, but we do not pose any restrictions on the sign of the charge density ��� orthe value of the speci�c charge ���=���.The positivity of the stream densities �� (note that the proper densities are���) is related to the sign of the determinant of the two by two matrix SAB(A;B = t; '), becausedetSAB = %�4 detSAB = �+��(
+ � 
�)2 = �p(U tV '� U'V t)2 : (70)If (57) is understood as the de�nition of a quadratic form on the two-dimensionalvector space of covariant vectors, one �nds the following statement trivial: Bothstream densities ��� are positive, if SABXAXB > 0 for at least one two-componentvector XA, detSAB > 0 and two subluminal solutions 
� of (68) exist.Each disk is characterized by the parameters of the original spacetimeM ,J ,Qand the size b of the excluded region. The parameter b determines the \e�ectivediameter" of the disk { this is the radius below which, e.g.,90% of the matterof the disk resides. It is clear that for large b, �elds will be weak and the only20



relativistic e�ects consist in the fact that the ratio of energy (as well as charge)densities (65-66) of both streams is governed by the metric potentials. Thisis not the case in Newtonian gravity where the angular momentum is not thesource of dragging and only total angular momentum and charge of the disk are�xed. As b becomes smaller, the relativistic e�ects play more important role andthe violation of energy conditions may occur. For set of spacetimes studied inthe following, it was con�rmed that unless the energy conditions are violated,closed timelike curves do not exist in the spacetime surrounding the disk. Diskscompact enough, with parameters close to extreme black holes, exhibited thepresence of the ergoregions in the vicinity of the disk but because at least one of
� is tachyonic near the ergosphere, only disks made of rings are able to generateergospheres outside.The z-component of electro-geodesic equationd2zd� 2 = 12gzzg��;zU�U� + ����F(z)�U� (71)determines the stability of an individual circular orbit. Particles slightly o� theequatorial plane are returned back only if d2zd�2 ���z=+b < 0. Because the issue ofstability was not addressed in our work, this inequality was not studied withinthe parameter space of the disk sources of di�erent (electro-)vacuum solutionsdiscussed below.7 Kerr-Newman disksAlthough we already discused not only neutral dust disks but also the disks withelectric currents we did not yet study explicitly their external �elds. In thissection we analyze disks producing Kerr-Newman metric.To transform the Kerr-Newman metric from Boyer-Lindquist coordinates [7]t,r,#,' into Weyl-Papapetrou (W-P) coordinates (29) one can putz = (r �M) cos # (72)% = q(r �M)2 + a2 +Q2 �M2 sin# (73)Resulting expressions are quite complicated unless the spheroidal coordinatesz = �xy (74)% = �q1� y2px2 � � (75)� = Mp� ; � = 1 (76)are used. The parameter � = 1; 0;�1 discriminates dressed, extreme and nakedsolutions; and the parameter p > 0, the dimensionless charge s = Q=M , and21



the dimensionless angular momentum q = a=M , are related by the equations2 + q2 + �p2 = 1. The parameter � = 1 is included in the de�nition for furtherreference. In the extreme case (s2 + q2 = 1, � = 0) this equations does notdetermine p and since in this case p appears in equations (83-86) only in the formof the product px the value of p can be chosen freely. The most natural choice isp = 1. The inverse transform x = r+ + r�2� ; (77)y = r+ � r�2�p� ; (78)where r� = q%2 + (z � �p�)2 is not de�ned for � = 0. For extreme black holemetrics transformation (78) has to be replaced by the usual polar coordinateformula y = z=p%2 + z2 while (77) then simpli�es to x = p%2 + z2=M . Linesof constant x and y plotted in the plane % � z form ellipses and hyperbolas asshowed in Figure 6.
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� = +1 � = 0 � = �1Figure 7: Planes z = const: and cylinders % = const: in Boyer-Lindquist coordinates.@@% = %�2(x2 � �y2) "x @@x � y @@y# : (82)The metric potentials of the Kerr-Newman spacetime expressed as functionsof the radial and the latitudinal spheroidal coordinates x and y have the followingform e2� = p2x2 + q2y2 + s2 � 1(px+ 1)2 + q2y2 ; (83)e2� = p2x2 + q2y2 + s2 � 1p2(x2 � �y2) ; (84)A = 2Mq(1� y2) px� s2=2 + 1p2x2 + q2y2 + s2 � 1 : (85)The electromagnetic potential,A�dx� = s(px + 1)�dt+mq(1� y2)d'(px + 1)2 + q2y2 ; (86)yields the components of Maxwell tensor (X = px + 1, Y = qy):F'z = sqyMp(X2+Y 2)2 1�y2x2��y2 [2Xx(X2 + q2) + p(x2 � �)(X2 � Y 2)] ;F'% = sq%Mp2(X2+Y 2)2 1x2��y2 [p(1� y2)(X2 � Y 2)� 2Xy2(X2 + q2)] ;Fzt = sMp(X2+Y 2)2 yx2��y2 [p(X2 � Y 2)(x2 � �) + 2Xq2x(1� y2)] ;F%t = s%M2p2(X2+Y 2)2 1x2��y2 [px(X2 � Y 2)� 2XY 2] : (87)Using these formulae, the properties of stress-energy tensor distribution canbe studied. Since the most general case includes a number of phenomena, toreveal their character, several special cases are discussed separately.23



7.1 Schwarzschild disksMetric coe�cients of the Schwarzschild spacetime simplify togtt = �x� 1x + 1 ; (88)g'' = %2x+ 1x� 1 ; (89)g%% = gzz = (x + 1)2x2 � y2 : (90)The resulting surface stress-energy tensor of the diskSba = �gbcpg%%8�  gacg%%!;z = 0B@ Stt 0 00 S'' 00 0 0 1CA = 11� V 2 0B@ �� 0 00 �V 2 00 0 0 1CA (91)� = Mb2� R �MR +M Mb2 +R3(R4 �M2b2)3=2 ; (92)V 2 = MR(R2 � b2)(R�M)(Mb2 +R3) ; (93)2R = q%2 + (b+M)2 +q%2 + (b�M)2 (94)is studied in [22]. To interpret the stress-energy tensor authors consider a diskwith two counter-rotating streams of particles with proper density �=2, which arecounter-rotating with velocities �V . If the whole horizon of Schwarzchild blackhole is contained in the removed region, i.e., if b > M , the velocities of particlescreating the disk are subluminal, although for high central redshifts, particles oncertain inner orbits are highly relativistic.7.2 Extreme Reissner - Nordstr}om disksMetric coe�cients of the extreme Reissner - Nordstr}om spacetime readgtt = � x2(x + 1)2 ; (95)g'' = %2 (x+ 1)2x2 ; (96)g%% = gzz = (x+ 1)2x2 ; (97)and the fact that g''=g%% = %2 implies that only one component of the surfacestress-energy tensor is nonzero:Stt = x2y2�M(x + 1)4 : (98)24



Normal component of the electric �eld, Fzt = M�1 y=(x+ 1)2, yieldsJt = � xy2�M(x + 1)3 : (99)This means that the proper mass density,� = �Stt = M2� bp%2 + b2(p%2 + b2 +M)2 ; (100)and the proper charge density p�gttJt are identical and positive.The disk consists of charged dust (non-)moving with four-velocity parallel tothe Killing vector �eld ��. In these static disks electric repulsion is just counter-balanced with gravitational attraction { as in classical physics.The contribution of the material of the disk to the total mass, i.e. the Komarintegral (40), MD = b ln�1 + Mb � ; (101)varies form 0 to M as b changes from 0 to 1; the detailed dependence MD(b)is depicted in Figure 8. The fact that MD ! 0 as b ! 0 means that the whole(Komar) mass of the extreme R-N black hole is equal to the energy stored in theelectric �eld of the region covered by W-P coordinates (i.e. r > M , see (79) andFigure 7).
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7.3 Kerr disksBecause there are no restrictions on the sign or size of the speci�c charge attachedto particles of both counter-rotating streams, all peculiarities of the interpreta-tion of the disk concentrate on the properties of the the surface stress-energytensor and the disks producing the Kerr spacetime exhibit the whole spectrumof behavior concerning the possibility to interpret a disk as physically realistic.The another reason to study the properties of the uncharged case is related tothe astrophysical importance of the Kerr spacetime. The detailed description ofthe motivation to search for a realistic source of the Kerr spacetime was given inthe �rst two sections.Disks without the radial pressure generating Kerr spacetime are characterizedby two dimensionless parameters, b=M and a=M , while the scale factor M canbe omitted.
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diagonalized, but the role of the source play massive rings rotating with the ve-locity of �IOs. They must sustain positive or negative pressure. Because bothdensities of counter-rotating streams must be positive, the geodesic particle in-terpretation is possible only in the region left to the line labeled p > 0 (see (70)).Below the line E both energy conditions are violated at some radius of the disk aswell as below the line H where the disk hits the horizon of the black hole. Usingsmall circles, squares, etc., several disks with a=M = 0:8 and a=M = 1:1 arelabeled. Radial properties of their relevant physical quantities are summarized inAppendix A. Finally below the dashed line e toroidal ergoregion is present nearthe center of the disk. The relation of the ergosphere of the Kerr black hole tothe toroidal ergoregion of the disk spacetime is schematically depicted in Figure10.

aM < 1p2 1p2 < aM < 1 aM = 1 aM > 1Figure 10: The relation of the ergosphere of the black hole (or the ergo-torus in the nakedcase) to the toroidal ergoregion of the spacetime of the disk before and after the identi�cation.The planes of identi�cation (i.e. the excluded region) are represented by the horizontal lines,their position represents a typical case when energy conditions considered are ful�lled. If a = Mthere is no minimal \size" of the excluded region needed to guarantee the energy conditions.
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8 Tomimatsu-Sato spacetimesTo illustrate the possibility of generating disk-like sources for arbitrary stationaryaxisymmetric vacuum spacetime, the properties of the disk sources of Tomimatsu-Sato � = 2 (TS2) spacetimes will be discussed in this section. This is a naturalchoice because the Kerr geometry is a member of TS family with the parameter� = 1.
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These metric potentials are written down in the short form which does not includethe extreme (q = 1) case; this is identical with the extreme Kerr metric. On theother hand the static limit of TS2 spacetime is the Darmois solution (Weyl metricwith the metric potential � proportional, with factor 2, to the metric potentialof the Schwarzschild solution with the mass M=2), and the corresponding disksource are thus studied as a special case of Zipoy-Vorhees metrics in [22].One of the most important di�erences between Kerr and TS2 family is thatthere remain both singular rings and toroidal regions of closed timelike curves inthe region covered by W-P coordinates. Their shape is illustrated in Figure 12for TS2 spacetime with a=M = 3.
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Figure 13: The parameter space of TS2 disks. I. Counter-rotating disks, II. Rings withazimuthal pressure, III. Energy conditions violated.In Figure 13 the parameter space of TS2 disks is presented. Its structure ismore complicated than in the Kerr case, because of previously mentioned phe-nomena. Disks with a > M and su�ciently small b (those lying bellow the curveT ) are surrounded by a toroidal region of closed timelike curves and the ring sin-gularity may appear for even smaller b. As shown in Figure 13, such disks violateenergy conditions. When a < M the dominant energy condition is violated fordisks with �nal central redshifts, which is not the case for the Kerr disks.
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9 Concluding remarksFor a wide class of stationary axisymmetric electro-vacuum spacetimes we haveshown a possibility to construct disk-like \interior solutions". These sourcesprovide nice illustration of the well known fact that the Einstein equations governnot only the behavior of the gravitational �eld but also yield equations of motionfor the matter. Thus, if a stress-energy tensor with a non-negative azimuthaland vanishing radial pressure is obtained by a removal of the equatorial regionof spacetime considered, and two counter-rotating circular geodesics exist in theplane of the disk, the disk may be formed by assigning appropriate energy andcharge densities to both counter-rotating streams. It is generally observed thatsuch interpretation is allowed as long as the width of the excluded region is largeenough and the gravitational attraction is stronger than electric repulsion. If thee�ective radius of the disk is small, it is not possible to construct disks with largea=M . In the astrophysically most plausible models, around 90% of the total massof the disk of dust is rotating in one direction along geodesics and only 10% ofthe mass moves along counter-rotating geodesics.
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Appendix A Radial properties of Kerr disks
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Appendix B Radial properties of Kerr-Newmandisks
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Appendix C Radial properties of Tomimatsu-Sato � = 2 disks
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