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Recurrence of geodesics in a black-hole–disc field
Petra Suková and Oldřich Semerák

Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague

Abstract. Processes around astrophysical black holes are usually modeled with test (non-
gravitating) matter and fields. However, the very fact that the holes are “visible” implies that some
matter has to be present there. Even if very thin, it can influence the metric, mainly in higher deriva-
tives, which should in turn affect its own behaviour, as well as motion of further (test) satellites. In
particular, the geodesic dynamics, integrable in the fields of isolated stationary black holes, should
become chaotic. Here we consider exact static, axially and reflection- symmetric space-times of a
Schwarzschild black hole surrounded by a thin disc or ring, and examine how the presence of the
additional source affects the dynamics of free test particles using recurence analysis.

Keywords: black holes, accretion discs, geodesic dynamics, chaos
PACS: 04.70.Bw, 04.25.-g, 05.45.Pq, 95.10.Fh

RECURRENCE ANALYSIS

Typical behaviour of a dynamical system is encoded in the pattern of its recurrences in
the phase space. The pattern is different for regular, chaotic and random trajectories, so
it can be used for classification of the systems and of their possible evolutions. Useful
tool for visualisation of the recurrences are recurrence plots (RPs), developed in [1].
Recently this method was also used succesfully in general relativity, see e.g. [2] where
recurrence analysis of the charged-particle motion around a magnetised rotating black
hole was carried out. Here we draw RPs in order to study the geodesic dynamics in
an exact static and axisymmetric space-time of a black hole surrounded by a massive
thin disc, more specifically by the inverted first disc of the Morgan-Morgan family. (See
[3] for details, including astrophysical motivation and analysis of the system by other
methods.)

The drawing of RP requires knowledge of the test-particle phase trajectory with
constant step of proper time (details are given in [4]). We find the orbits by solving
numerically the corresponding geodesic equation, thus both position and velocity time
series are known (in the case of just one known variable, the phase space can still
be reconstructed from a sequence of its time-delayed series). The basic object of the
recurrence analysis is the recurrence matrix defined by

Ri, j(ε) = Θ(ε− ‖�xi−�x j ‖), i, j = 1, ...,N, (1)

where�xi =�x(ti) are (N) points of the phase trajectory, ε denotes a chosen threshold and
Θ is the Heaviside step function. The matrix thus contains only 1’s and 0’s and can be
easily visualised by plotting a black dot at the coordinates i, j whenever Ri, j(ε) = 1.
For regular orbits, the points are arranged in long diagonal lines, whereas for random
behaviours they are scattered without order. Chaotic orbits yield more “artistic” plots:
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FIGURE 1. Recurrence plots for (a) regular and (b) chaotic trajectory. Note the scale change.

they contain blocks of almost-diagonal patterns as well as irregular ones, apparently
placed one over another within horizontal and vertical structures. The almost-regular
blocks correspond to time intervals when the trajectory sticks to some unstable periodic
orbit. The more unstable this orbit is, the earlier the trajectory deviates from it and the
smaller is the block in the RP. See Fig. 1 for an example of regular and chaotic RP.

Judging the degree of diagonal patterns within the RP by pure observation is of course
subjective, so several quantifiers of the recurrence-matrix properties have been proposed.
The simplest of them is the ratio of the recurrence points (black ones) within all points
of the matrix, RR(ε) = 1

N2 ∑N
i, j=1 Ri, j(ε), called recurrence rate. Another, most important

quantifier is the histogram of diagonal lines of a certain prescribed length l,

P(ε, l) =
N

∑
i, j=1

(1−Ri−1, j−1(ε))(1−Ri+l, j+l(ε))
l−1

∏
k=0

Ri+k, j+k(ε). (2)

Several further quantities can in turn be computed from this histogram. The one called
DET is given by the ratio between all recurrence points and those of them which form
a diagonal line longer than lmin, thus DET = ∑N

l=lmin
lP(l)/∑N

l=1 lP(l). The length of
the longest diagonal Lmax = max({li}N

i=1) and its inverse DIV = 1/Lmax are also of
interest, since they are related to the rate of divergence of nearby orbits and serve as
a rough estimate of the largest Lyapunov exponent. It is even possible to make this
estimate more precise, because the cumulative histogram of diagonals turned out to yield
the second-order Rényi’s entropy K2 which stands for a lower estimate of the sum of
positive Lyapunov exponents (see [4]). Similarly, the histogram of vertical lines can be
introduced,

P(ε,v) =
N

∑
i, j=1

(1−Ri, j(ε))(1−Ri, j+v(ε))
v−1

∏
k=0

Ri, j+k(ε), (3)

and also the respective measure of vertical structures LAM = ∑N
v=vmin

vP(v)/∑N
v=1 vP(v).

Finally, from the probabilities that some chosen diagonal/vertical line has length l,
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FIGURE 2. RQA measures as functions of energy: (a) the recurrence rate (RR), (b) longest-diagonal-
line inverse (DIV), (c) first-type recurrence time (T1) and (d) entropy connected with the probability to
find a vertical of length v (V ENTROPY).

p(l) = P(l)/Nl and p(v) = P(v)/Nv, where Nl and Nv are the total numbers of diag-
onal/vertical lines, one can compute the Shannon entropies

ENT ROPY =−
N

∑
l=lmin

p(l) ln p(l); V ENT ROPY =−
N

∑
v=vmin

p(v) ln p(v). (4)

Another relevant indicator is the size of the “white gaps” between vertical lines.
Namely, it is related to the recurrence times. For example, let us choose a point
�xi on some trajectory and collect all the points which fall in its ε-neighbourhood,
{�x j1,�x j2, . . .}. Compute the recurrence times given by differences between serial num-
bers of the consecutive recurrence points �x jk+1 , �x jk multiplied by the respective proper-
time steps, {Tk = ( jk+1− jk)Δτ}. The mean of Tk is called the recurrence time of the
first type, T1.
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RESULTS

We studied the behaviour of geodesics in our black-hole–disc system in dependence on
their energy. In the above plots, the disc has mass M/2 and inner edge on r = 20 [M]. The
test particle is launched from r = 6.25 [M] with specific angular momentum L = uφ =
3.75 [M] and uρ = 0 and with specific energy E =−ut increasing from 0.951 by 0.00001
up to 0.95508 (M is the black-hole mass and uμ is the particle’s four-velocity). In each
run we compute the trajectory numerically up to the time tmax = 250000 [M], thus the
minimal achievable DIV is 4× 10−6. For the recurrence analysis we use three spatial
coordinates and velocities recorded with the proper-time step Δτ = 10 [M]. In order
to be able to use the same threshold ε for different trajectories and to compare those
of different extent in different directions, we normalize the series of each coordinate
separately to zero mean and unit deviation. To exclude the sojourn points (the recurrence
points resulting from tangential motion with ε large enough to capture more successive
points of the trajectory) from the statistics, we set lmin = vmin = 90 [M].

For each trajectory we compute the RP and the corresponding RQA measures – see
Fig. 2. The trajectory is regular initially. When the energy reaches about 0.95345, the
motion becomes chaotic in a thin phase-space layer around the original regular orbit.
The chaotic layer widens with increasing energy and around E = 0.95423 it spreads
over a much larger region near the boundary of the accessible phase region. However,
the process is not monotonic: for some higher energies the layer gets quite thin again,
with its shape changing suddenly between these two possibilities. The computed RQA
measures indicate the above behaviour in a slightly different way. Mainly, all of them
clearly respond to the occurrence of a large chaotic region, but only DIV seems to be
also sensitive to the thin-layer chaos. Namely, in a thin layer DIV � 3×10−5 which is
about ten times more than for regular motion while ten times less than in a large chaotic
region. (The value 3× 10−4 in a large chaotic region corresponds to a divergence time
about several thousands [M], which represents some ten cycles about the black hole.)

In the chaotic regime, the recurrence rate is lower and the vertical measures T1 and
V ENT ROPY grow significantly, which means that the system takes more time to get
back to the chosen ε-neighbourhood.

For getting plausible results the parameters for RP (ε , Δτ , lmin, vmin) have to be care-
fully set. More details of our results considering also this issue will be given elsewhere.
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