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ABSTRACT
We continue the study of time-like geodesic dynamics in exact static, axially and reflection
symmetric space–times describing the fields of a Schwarzschild black hole surrounded by thin
discs or rings. In the previous paper, the rise (and decline) of geodesic chaos with ring/disc mass
and position and with test particle energy was revealed on Poincaré sections, on time series of
position or velocity and their power spectra, and on time evolution of the orbital ‘latitudinal
action’. In agreement with the KAM theory of nearly integrable dynamical systems and with
the results observed in similar gravitational systems in the literature, we found orbits of
very different degrees of chaoticity in the phase space of perturbed fields. Here we compare
selected orbits in more detail and try to classify them according to the characteristics of the
corresponding phase-variable time series, mainly according to the shape of the time-series
power spectra, and also applying two recurrence methods: the method of ‘average directional
vectors’, which traces the directions in which the trajectory (recurrently) passes through a
chosen phase-space cell, and the ‘recurrence-matrix’ method, which consists of statistics over
the recurrences themselves. All the methods proved simple and powerful, while it is interesting
to observe how they differ in sensitivity to certain types of behaviour.
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1 IN T RO D U C T I O N

The black holes discussed in most university courses are isolated,
stationary and living in asymptotically flat space–times, that is to
say they belong to the Kerr(–Newman) family. The metric which
describes this family is not entirely simple, but it has a number of
‘nice’ properties. Among others, its multipole structure – namely
that required for the black hole uniqueness theorems to work – is
just the one that permits the solution of (electro)geodesic equa-
tions in terms of separated first integrals (e.g. Will 2009). This
full integrability is mostly lost if any of the assumptions (isola-
tion, stationarity, asymptotic flatness) is released. More precisely,
the integrability holds in the whole family of Kerr–Newman–NUT–
(anti-)de Sitter space–times (Carter 1968); it is connected with the
existence of an irreducible second-order Killing tensor (Walker &
Penrose 1970) and has been shown to follow from the existence of
a principal (conformal) Killing–Yano tensor there (e.g. Frolov &
Kubizňák 2008). All these space–times are of Petrov type D and
represent subclass of the Plebański–Demiański solutions with non-
accelerated sources. Besides mass, electric charge and rotational
angular momentum, they also include cosmological constant, mag-
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netic charge and NUT parameter (of which the last two do not seem
to be physically relevant, however).

Although the Kerr(–Newman) metric is being referred to when
speaking about black holes in galactic nuclei and X-ray binaries,
the above assumptions can only be valid approximately in such as-
trophysical circumstances; strictly speaking, they are all violated.
Indeed, the observability of the supposed black holes alone im-
plies that they have to be interacting with matter, thus non-isolated
and non-stationary. Black holes certainly dominate the gravitational
potential and intensity in their wide surroundings, but higher deriva-
tives of the field (curvature) may be affected by nearby matter sig-
nificantly. And these higher derivatives govern stability of motion.
Hence, due to its own gravity, the matter may in fact settle down,
around a central black hole, to a configuration different from that
assumed by a test (non-gravitating) matter.

In a non-linear theory like general relativity, it is not simple to
specify what violation of the given (Kerr) metric is already large
enough to invalidate various related conclusions and to bring physi-
cal differences with observable consequences. If the ambient matter
is dilute and its self-gravitation effects are correspondingly weak, or
when the source is more concentrated but only the field farther from
it is relevant, the problem is usually being addressed by perturbation
techniques. However, perturbation solutions are given in terms of
series that practically must be truncated somewhere, so they can-
not represent fully the self-gravitation effects (and in linear order
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they do not encompass them at all). The perturbative description is
mainly questionable in the case of two- or one-dimensional addi-
tional sources (like discs or rings), because even if the total mass of
such sources is very small, they, however, constitute a singularity
and thus cannot be considered weak in their vicinity.

It is sure in any case that almost any deviation from the Kerr(–
Newman) metric implied by the presence of additional matter leads
to the loss of complete (electro)geodesic integrability. This is even
true when the additional source keeps the symmetries of the ‘origi-
nal’, pure black hole space–time, i.e. when their resulting ‘superpo-
sition’ is stationary, axially and reflection symmetric and orthogo-
nally transitive (this last property is ensured if and only if the source
elements do not perform any other motion than steady orbiting along
the direction of axial symmetry). The loss of integrability in turn
means that motion in the field of such a system is chaotic in general.
The robustness of this conclusion makes the subtle phenomenon of
chaos one of the aspects of astrophysical black hole systems that
should be taken into account and that can have observable conse-
quences (see e.g. Lukes-Gerakopoulos, Apostolatos & Contopoulos
2010).

Needless to say, in astrophysical systems with accreting black
holes the matter elements have many other (and more serious) rea-
sons to behave in a chaotic way. These extend from microscale
processes over (magneto)hydrodynamics of accretion to interaction
with (chaotic) radiation. However, as opposed to the case of discrete
sources moving in the field of accreting stellar mass black hole (e.g.
in an X-ray binary), these ‘physical’ reasons for chaos should be less
important in the case of whole stars orbiting a supermassive black
hole in a galactic nucleus. Under the presence of a heavy accretion
disc (and/or massive gas torus farther away), the motion of such
‘test particles’ may exhibit chaotic features on a sufficient time-
scale, due to the ‘gravitational’ reasons alone. Admittedly, there are
whole star clusters rather than single stars around the nuclear black
holes, so each individual star would also ‘feel’ perturbations from
all the other stars. Such a many-body problem is very difficult to
tackle in general relativity and even in Newtonian theory it is being
treated numerically. A possible simplification is to approximate the
influence of the whole cluster on one particular star by means of an
additional spherical or other simple-shape potential (see e.g. Karas
& Šubr 2007; Löckmann, Baumgardt & Kroupa 2009; Madigan,
Levin & Hopman 2009).

In spite of the ‘shadowing theorem’ (Palmer 2000), it often seems
hopeless to model the behaviour of a realistic non-linear dynamical
system in detail, because sensitive dependence on initial conditions
– one of the characteristic signs of chaos – involves sensitive de-
pendence of conclusions on our ability to describe and treat the
system exactly (see e.g. Judd & Stemler 2009). Unfortunately, the
non-linearity of general relativity as the theory of the underlying
configuration space adds another piece of ‘sensitivity’ to the prob-
lem, and furthermore it strongly limits our compass to treat the
problem exactly. In particular, the non-linearity severely limits the
possibility of describing exactly the gravitational field (i.e. the con-
figuration space) of multicomponent systems, even if they are not
extended. At present, the exact analytic treatment of black holes
with additional sources is only practically possible in static and axi-
ally symmetric case (thus even rotation is excluded in general) with
zero cosmological constant. Outside of the sources, the complete
space–time can then be described by the (Weyl) metric containing
just two unknown functions, one of which has the meaning of New-
tonian gravitational potential. In a vacuum, the Einstein equations
yield Laplace equation for this potential (like in the Newtonian
description), so its ‘total’ form is obtained simply by adding the

contributions from individual sources. The ‘non-Newtonian’ part
of the problem lies in finding the second unknown metric function
by a line integral; it is rather an exception than a rule that this can
be accomplished explicitly.

We will, however, not repeat this standard introduction to the
static and axially symmetric problem; it was summarized, e.g., in
the first paper (Semerák & Suková 2010, hereafter Paper I). There,
we placed uncharged annular thin discs without radial pressure
(and without heat transfer) or their limit – (one-dimensional) rings
– symmetrically about the (originally Schwarzschild) black hole in
order to approximate the configuration of matter assumed in black
hole accretion systems. Considering, in particular, several discs
of the inverted Morgan–Morgan counter-rotating family (Lemos
& Letelier 1994; Semerák 2003) and the Bach–Weyl ring (Bach &
Weyl 1922; D’Afonseca, Letelier & Oliveira 2005) as the additional
sources, we studied how the dynamics of time-like geodesics in the
field of such a system depends on parameters, mainly on relative
mass and position of the external disc/ring and on the energy of
test particles. The system showed typical features of a weakly non-
integrable dynamical system. We observed, on Poincaré sections
and on time series of phase variables and their power spectra, how
it gradually turns chaotic when relative mass of the disc/ring or
energy of the orbits is increased; we also noted, quite generically,
that for very high values of these parameters the system rather
recurred to more regular behaviour.

It is a conventional experience how the originally fully regular
phase space grains into chains of resonance islands, circumscribed
by separatrices from which a net of chaotic filaments originates
that gradually spreads and fuses into a ‘chaotic sea’. However,
besides the overall development of the phase space, it is also inter-
esting to study individual trajectories and try to distinguish different
types among them. Actually, it is known (KAM theorem) that in
‘weakly perturbed’ systems, the phase space contains regions of
very different degrees of chaoticity for almost any ‘strength’ of the
perturbation agent. Moreover, even a given single orbit may show
different degrees of chaoticity/regularity within its different stages.
This is especially valid for the orbits prone to ‘sticky motion’, i.e.
those which spend a long time very close to regular islands while
only occasionally diverging into a chaotic sea. We already singled
out several such orbits in Paper I and illustrated that they can be
distinguished from ‘strongly chaotic’ orbits, drowned in the chaotic
sea, according to the power spectra of phase-variable time series
[that of ‘vertical’ position, z = z(t), for example]. In general relativ-
ity, this simple method was notably employed by Koyama, Kiuchi
& Konishi (2007), who demonstrated (on the problem of spinning
particles in a Schwarzschild background) that the power spectra
of ‘strongly chaotic’ orbits have ‘white-noise’ low-frequency part
(relatively flat curve at rather low values), whereas the spectra of
‘weakly chaotic’ orbits incline to the ‘1/frequency’ shape at low
frequencies (and rise to higher values there). This is natural since
stronger chaos means more irregular time series with less distinct
periods, in particular without marked recurrences even on longer
time-scales.

In the present paper, we analyse in more detail several individual
orbits selected out of those which – at least for a certain time –
adhere to regular regions (‘sticky motion’). We show on Poincaré
diagrams and on power spectra of the corresponding (z-position)
time series that different parts of these orbits present different de-
gree of chaoticity. In stages when the orbits tend to fill uniformly
a large area (chaotic sea), the spectrum approaches white noise at
low frequencies, whereas almost regular parts of the same orbits
indeed generate ‘1/frequency’ shape there. However, even ‘highly
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regular’ parts of such world lines can be clearly distinguished from
strictly regular orbits. On the other hand, it is known that even
strongly chaotic deterministic behaviour is clearly distinguishable
from a random one. It is our object here to check the above for
selected orbits of our dynamical system. We compare how the char-
acter of geodesic dynamics is revealed by z-position power spectra
(Section 2), by the ‘average directional vector’ method based on
statistics over the directions in which the trajectory (recurrently)
passes through specified phase-space cells (Section 3; see Suková
2011, for preliminary results) and by ‘recurrence plots’ which vi-
sualize the pattern of recurrences to such cells (Section 4). Several
useful quantifiers of chaos following from the recurrence plots will
also be computed and plotted.

2 POW ER SPECTRA O F G EODESICS
A N D O F T H E I R PA RT S

Poincaré surfaces of section give a picture of how much regu-
lar/chaotic the system with given parameters is. It is a property of
‘nearly integrable systems’ that some quite irregular trajectories al-
ready appear after a tiny perturbation, and vice versa; even a strongly
perturbed phase space still harbours some quite regular ones. It can
also be recognized on Poincaré diagrams that (in rather strongly per-
turbed cases) certain orbits behave quite differently within different
periods, namely they alternately stick to islands of regular motion
and drift around the ‘chaotic sea’. Hence, the ‘degree of chaoticity’
can be ascribed to the system (phase space) on the whole, but also
to its individual orbits, while in a sense it is a property of a given
part of a given orbit. It should be stressed, however, that such a
tracking of regular/chaotic features down to a particular segment of
particular orbits has to be taken with much caution, since it is in fact
inconsistent with the essence of deterministic chaos as a global phe-
nomenon. This is especially clear on systems like billiards, where
interaction only occurs at discrete events: one cannot say that their
trajectories are almost all regular, with chaos solely occurring at
particular points. In systems where the interaction is long range and
acts continuously (and, ideally, even smoothly), like the gravita-
tional one in our case, such attempts to ‘localize’ the character of
dynamics are more propitious, but still they do not seem to yield
necessary or sufficient criteria (cf. Vieira & Letelier 1996). The
global nature of chaos goes together well with the similar attribute
of Fourier transform, which probably helps power spectra to be an
efficient tool of study of dynamical systems.

We select two geodesic orbits in the field of a black hole (of mass
M) surrounded by the inverted first Morgan–Morgan disc with mass
M = 1.3M and inner radius rdisc = 20M. Such a disc is clearly
very massive in comparison with what is considered astrophysically
realistic; it causes quite a strong perturbation of the original black
hole field and the geodesic dynamics is rather chaotic in general
(see Paper I). The selected two orbits have specific energy and an-
gular momentum at infinity E ≡ ut = 0.956 and � ≡ uφ = 4M,
respectively,1 and initial conditions very close to those of the orbit
drawn in light blue in fig. 16 of Paper I; the power spectrum of its
z-position is clearly seen in the bottom right-hand panel there,
among several other ‘weakly chaotic’ orbits showing the ‘1/fre-
quency’ spectral shape. Note that the power spectrum is obtained

1 We use geometrized units in which c = G = 1. The particle’s proper
time is denoted by τ and its four-velocity by uμ. The Schwarzschild-type
coordinates (t, r, θ , φ) are employed, with vertical position z = r cos θ . In
particular, the time t is tied to the time-like Killing symmetry of space–time.

using the discrete Fourier transform:

Pω(z) = 1

N

∣∣∣∣∣
N−1∑
n=0

z(τn)e−(2π/N)iωτn

∣∣∣∣∣ , (1)

where N is the total number of samples. The spectrum thus illus-
trates which frequencies dominate the particle motion perpendicular
to the plane where the disc or the ring is placed. Both selected orbits
were followed for a long time (of about 107M of proper time, which
means for some 104–105 orbital periods) and then divided in parts in
order to check how these sections appear in Poincaré diagram and in
the power spectrum plot. Rather than showing the figures obtained
for all the parts, let us just give several examples. In general, one
can repeat the conclusion of Koyama et al. (2007), also supported
in our previous paper: the orbits which appear ‘strongly chaotic’ in
Poincaré diagram (filling rather uniformly thick layers there) pro-
duce irregular time series whose power spectra have white-noise
character at low frequencies (rather flat at low level, without dis-
tinct peaks), whereas the orbits which appear ‘weakly chaotic’ in
Poincaré diagram (remaining close to regular islands for consid-
erable periods) produce almost regular time series in the periods
of ‘sticky motion’ (while irregular elsewhere), which brings more
power into low frequencies, and the spectrum assumes 1/f shape
there.

In Fig. 1, the two selected orbits are represented as a whole,
first on Poincaré sections showing passages through the equatorial
plane in (r, ur) axes, then on the ur(t) behaviour and finally on the
power spectra of z(t) evolution. The Poincaré sections show that
the first (left) trajectory spends some time in the vicinity of the
split primary island, but generally it is rather chaotic. The second
(right) trajectory fills the chaotic sea less densely and apparently
prefers to stay in the layers adjacent to the central regular regions.
The time series z(t) and ur(t) of the second trajectory really contain
longer periods of almost regular oscillations, and also the power
spectra of z(t) confirm this difference in the above-described sense:
the second (right) spectrum is a bit less ‘concave’ than the first
(left) one and it tends more to the power-law, 1/f shape, mainly
at low frequencies (where it also ends at somewhat higher values).
However, both trajectories contain rather chaotic as well as rather
regular phases; we give two examples for each of the orbits in Figs 2
and 3. The sections shown on the left are confined to the vicinity of
regular islands for considerable intervals, whereas those on the right
are quite chaotic as is clear from the respective Poincaré diagrams,
ur(t) courses and power spectra of z(t) evolutions.

Several more specific features can be recognized in the figures.
Comparing the weakly chaotic parts of the orbits, one observes that
their rather ‘1/f -shaped’ power spectra can differ in slope and in
noise degree, mainly in the high-frequency part. (Sure: it is impor-
tant, among others, what is the periodicity of the island that the orbit
adheres to.) Some of these spectra can really be almost fitted by a
straight line; nevertheless, they typically have distinct peak in the
middle part and a ‘valley’ to the left of this maximum. On the other
hand, strongly chaotic parts of the orbits provide ‘cat-back’, con-
cave spectral shape which cannot be approximated by a straight line;
the spectra contain less distinct features, in particular less distinct
maximum and valley on its left. However, it would be misleading to
generalize any tendency seen on certain particular series of spectra,
because mainly the quasi-regular phases of motion can involve dif-
ferent amplitudes and periodicities and thus bring different spectral
features; this is already clear from the time series themselves. In
spite of it, we try to put together a series of orbital sections with
different content of chaos/regularity and illustrate how it proves in
power spectra (Fig. 4).
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Figure 1. Two geodesic orbits in the field of a black hole (of mass M) surrounded by the inverted first Morgan–Morgan disc with mass M = 1.3M and inner
radius rdisc = 20M. Both geodesics have specific energy and specific angular momentum at infinity E = 0.956 and � = 4M. The orbit on the left is clearly
more chaotic, the one on the right spends more time in the vicinity of central regular islands in the Poincaré diagram (showing passages across the equatorial
plane, top row). The time series of ur (given by values recorded at passages through the equatorial plane) are plotted in the middle row and the power spectra
of the z(t) evolution are plotted in the bottom row.

3 K A P L A N – G L A S S M E T H O D O F D I AG N O S I N G
T H E D E G R E E O F C H AO S

There exists a large number of methods to recognize the degree of
chaoticity – or even stochasticity – present in the time evolution
of a given system. We will not give any comparative analysis, and
not even a listing of them, but will just illustrate that processing
of time series in some other way can yield information which is
interesting to compare with what is revealed by power spectra. As

an example of a simple but useful method, we will consider the one
suggested by Kaplan & Glass (1992). It was designed to distinguish
between deterministic and random systems, but we will see that it
is quite sensitive and also able to recognize how much chaotic the
(deterministic) system is.

The method of Kaplan and Glass is based on monitoring the
evolution of tangent to the trajectory in small subsets of phase space.
However, it is not the ‘original’ phase space of the system (this may
be unknown), but a d-dimensional embedding ‘reconstructed’ from

C© 2012 The Authors, MNRAS 425, 2455–2476
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



Chaos around black holes with discs or rings 2459

Figure 2. Example of a rather regular (left-hand column) and rather chaotic (right-hand column) phases of the orbit shown in the left-hand column of Fig. 1.
Equatorial Poincaré section (top), ur(t) time series recorded at passages through the equatorial plane (middle) and power spectrum of the z(t) evolution (bottom)
are shown.

a given data series x(τ ) by taking the delayed replicas x(τ ), x(τ −
�τ ), x(τ − 2�τ ), . . . , x(τ − d�τ ) as its axes (�τ is some real-
time shift); the reconstruction is justified by the delay embedding
theorem of Takens (1981). Such a space is then coarse grained into a
grid of md cubes and average directions of passages through each of
these cubes are added up. Namely, first the average direction of each
(kth) pass of a trajectory through the given (jth) box is recorded as a
unit form vkj of the vector connecting the point where the trajectory

entered the box with the point where it left it. Then the vectors
obtained from a large number (nj) of transits through the jth box are
summed (vector addition) and the length of the resulting vector Vj

is normalized by nj:

Vj ≡ |Vj | = 1

nj

nj∑
k=1

vkj .
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Figure 3. Example of a rather regular (left-hand column) and rather chaotic (right-hand column) phases of the orbit shown in the right-hand column of Fig. 1.
Equatorial Poincaré section (top), ur(t) time series recorded at passages through the equatorial plane (middle) and power spectrum of the z(t) evolution (bottom)
are shown.

Finally, the resulting norm Vj is averaged over all boxes which were
crossed n times, and the dependence of this average (≡ L̄d

n) on n is
checked. For random data, L̄d

n decreases with n roughly as n−1/2; in
particular, the average displacement per step for random walk in d
dimensions is (for large n) given by

R̄d
n = 	

(
d+1

2

)
	

(
d
2

)
√

2

nd
, (2)

where 	(.) denotes the gamma function. (Note that R̄d→∞
n = n−1/2.)

For a deterministic system, the average L̄d
n decreases more slowly

or even remains close to a maximal value of 1; this is due to the
fact that in every small neighbourhood the tangent vectors from
all transits are almost parallel, so the norm of their vector sum is
almost maximal. (It depends on box size, however: theoretically, in
the limit of infinitesimally fine grain, which is only conceivable for
infinitely long data series, L̄d

n = 1 for the deterministic dynamics.)
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Figure 4. The ur(t) behaviour (left-hand column) and power spectra of z(t) evolution (right-hand column) of four different sections of orbits shown in Fig. 1;
taken from top to bottom, the first, the second and the fourth sections are parts of the first orbit (shown in the left part of Fig. 1), while the third section belongs
to the second orbit (right part of Fig. 1). The degree of chaoticity clearly grows from top to bottom.
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Besides the size of the lattice boxes, the result clearly depends on
the dimension d and the time lag �τ . In particular, the choice of �τ

may be a subtle issue, as discussed in the original paper (Kaplan &
Glass 1992). In order to analyse the dependence of L̄d

n on �τ , one
can compare the value of Vj with R̄d

nj
for each box and average this

over all occupied boxes:


̄(�τ ) ≡
〈

(Vj )2 −
(
R̄d

nj

)2

1 −
(
R̄d

nj

)2

〉
. (3)

In a theoretical limit, 
̄ = 0 for a random walk, whereas 
̄ = 1 for a
deterministic system. In practice, with finite series and finite ‘pixel’
size, 
̄ falls off roughly as autocorrelation function for randomized
signal, while it happens more slowly for a deterministic signal.

For our system of geodesic dynamics in the static and axially
symmetric field of a black hole surrounded by a disc or a ring,
we choose d = 3 and construct the ‘phase space’ out of the time
series of the test particle vertical position z = r cos θ (r and θ are
Schwarzschild radius and latitude), i.e. the space is spanned by the
axes z(τ ), z(τ − �τ ) and z(τ − 2�τ ). We choose its ‘elementary
grain’ size of the order of M (thus volume �M3) and focus on the
behaviour of 
̄ with increasing �τ . Computation of this depen-
dence for a large number of orbits (or their parts) confirmed that
the method of Kaplan and Glass is able to reveal the degree of their
chaoticity. For rather regular (‘sticky’) evolutions, 
̄ really remains
very close to 1 except when �τ is just multiple of some important
orbital period. On the other hand, for strongly chaotic (parts of the)
orbits, 
̄ has a peak almost approaching 1 for a certain value of �τ

(which is smaller than a period and is related to the first zero of the
autocorrelation function) and then it decreases quite rapidly (with
some oscillation), because around such orbits the geodesic flow is
sensitive to initial conditions and the deterministic connection be-
tween the position x(τ ) and x(τ − �τ ) fades away quickly with the
growing time lag. The rate of decrease of 
̄(�τ ) is a simpler (more
easily comparable) indicator of the degree of chaoticity of the orbit
than the power spectrum. Namely, it is just the value of 
̄(�τ ) that
is important, whereas the spectrum mainly bears its information in
the overall shape and the ‘degree of noisiness’, of which especially
the latter may be difficult to judge and compare. At the same time,
the Kaplan–Glass 
̄(�τ ) indicator seems to be quite reliable, and
also ‘fine’ in the sense that it can distinguish between evolutions
which appear very similar (or just not easily comparable) on spectra.

Let us illustrate this on several parts of our two orbits discussed
in the previous section. Fig. 5 shows spectra of six different orbital
sections, of which the first and the fifth are parts of the second
orbit and the rest are parts of the first orbit. The sections are placed
(top left, top right, middle left, etc.) in the order of increasing
chaos. Fig. 5(b) shows the 
̄(�τ ) functions for the same six orbital
sections. It is seen how the 
̄(�τ ) behaviour safely distinguishes
between the first four examples which are all ‘rather regular’ and
have just slightly different character of spectra. [However, after the
clue is provided by 
̄(�τ ), one admits that the spectra also reveal
the same tendency.] On the other hand, 
̄(�τ ) appears not to be so
sensitive in more chaotic regions: starting from a certain amount of
chaoticity, it does not decrease any more and gives similar behaviour
for orbital phases which still quite differ in spectra, mainly in the
low-frequency tail. [For instance, the last two examples of Fig. 4
yield the same course of 
̄(�τ ).]

We add two more illustrations, one (Fig. 6) showing two orbits
in the field of a black hole with the inverted Morgan–Morgan disc
of parameters different from above (mass M = 0.5M and inner

radius rdisc = 14M) and the other (Fig. 7) showing two orbits in
the field of a black hole surrounded by a thin, Bach–Weyl ring (of
mass M = 0.5M and radius rring = 20M). The orbits in Fig. 6
are only slightly different, one belonging to five-periodic regular
islands and the other sticking closely to the first; we can see how
they differ in power spectra and in the 
̄(�τ ) dependence. The
orbits presented in Fig. 7 differ much more, one lying very close
to the central circular orbit of the primary regular island, while the
other filling the chaotic sea around and in the vicinity of the ring.

4 R E C U R R E N C E A NA LY S I S O F T H E O R B I T S

Let us stress again that the above method is just an example of a
simple but apparently quite reliable way of judging and classifying
the regularity/chaoticity/stochasticity of a given time series. An-
other example of a simple and powerful method is the recurrence
analysis which is based on checking the recurrence of orbits of a dy-
namical system to a chosen (small) cell of phase space (see Marwan
et al. 2007, for a thorough survey). The pattern of recurrences en-
codes quite credibly the character of the dynamics, clearly distin-
guishing between regular, chaotic and random evolutions. Within
general relativity, the method has recently been employed, e.g., by
Kopáček et al. (2010) in their study of orbital dynamics of a charged
test particles around a rotating black hole immersed in a magnetic
field.

A very useful tool for visualization of the recurrences is recur-
rence plot, introduced by Eckmann, Oliffson Kamphorst & Ruelle
(1987). Suppose one knows the phase-space trajectory with constant
step of time (we use proper time in our case of geodesic motion in
a given space–time).2 Denoting by X i = X(τi) the N successive
points of the phase trajectory, one defines the so-called recurrence
matrix by

Ri,j (ε) = �
(
ε− ‖X i − Xj‖

)
, i, j = 1, . . . , N , (4)

where ε is the radius of a chosen neighbourhood (it is called thresh-
old), ‖ · ‖ denotes the chosen norm (in accord with a common ex-
perience, the picture of long-term dynamics only slightly depends
on which norm is chosen) and � is the Heaviside step function. The
matrix thus contains only units and zeros and can be easily visual-
ized by representing 1’s by black dots (while 0’s by blank spaces) at
the respective coordinates i, j. For regular systems, the black points
tend to arrange in distinct structures, in particular in long parallel
diagonal lines (their distance scales with period) and checkerboard
structures, whereas for random behaviours the black points are scat-
tered without order. Chaotic systems yield the most ‘artistic’ plots:
they contain blocks of almost-diagonal patterns as well as irregular
ones, apparently placed one over another within horizontal and ver-
tical structures. The main diagonal Ri,i is trivial (‘line of identity’)
and present in every system (for it is often omitted) and the matrix is
symmetric with respect to it. The almost-regular blocks correspond
to time intervals when the trajectory sticks to some unstable peri-
odic orbit; the more unstable this orbit is, the earlier the trajectory
deviates from it and so the smaller is the block. Horizontal/vertical
lines indicate periods when the system is trapped in some region of
phase space without much change.

2 The knowledge of just one phase variable (e.g. position) is in fact enough,
since the phase space can be reconstructed from a sequence of its time-
delayed series as in the directional vectors method discussed in the previous
section.
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Figure 5. (a) Power spectra of six different parts of the two orbits studied in the last section. In the order from top left to bottom right, their degree of chaoticity
increases (but here on spectra it is barely obvious for the first three or four of them). (b) The Kaplan–Glass function 
̄(�τ ) calculated for the same six orbital
phases whose power spectra are shown in Fig. 5(a). The behaviour of 
̄(�τ ) clearly distinguishes between these examples, in particular between the first four
of them which appear quite similar according to spectra. On the other hand, the last two – quite chaotic – cases are similar here, although their power spectra
show somewhat different degree of chaoticity.

Judging the prominence of diagonal or other patterns within the
recurrence plot by pure observation is, of course, subjective, so
several quantifiers of the recurrence-matrix properties have been
proposed. The simplest of them is the recurrence rate, given by

ratio of the recurrence points (black ones) within all points of the
matrix:

RR(ε) = 1

N2

N∑
i,j=1

Ri,j (ε) .
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Figure 5 – continued

Another most important quantifier is the histogram of diagonal lines
of a certain prescribed length l:

P (ε, l) =
N∑

i,j=1

[1 − Ri−1,j−1(ε)][1 − Ri+l,j+l(ε)]

×
l−1∏
k=0

Ri+k,j+k(ε) .

Several further quantities can in turn be computed from this his-
togram. The one called DET is given by ratio of the points which
form a diagonal line longer than a certain lmin within all the recur-

rence points:

DET (ε) =
∑N

l=lmin
lP (ε, l)∑N

l=1 lP (ε, l)
,

while the average length of diagonal lines is

L(ε) =
∑N

l=lmin
lP (ε, l)∑N

l=lmin
P (ε, l)

.

The length of the longest diagonal Lmax(ε) = max i =1, ... ,N{li} and
its inverse DIV(ε) = 1/Lmax(ε) are also of interest, since they are
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Figure 6. Two geodesic orbits in the field of a black hole (of mass M) surrounded by the inverted first Morgan–Morgan disc with mass M = 0.5M and
inner radius rdisc = 14M. Both geodesics have specific energy and specific angular momentum at infinity E = 0.955 and � = 3.75M. The first (left-hand
column) belongs to five-periodic regular islands and the other (right-hand column) sticks to these islands rather closely on Poincaré diagrams (top row). The
slight difference between the orbits also shows on power spectra of their z(t) evolution (middle row) and on the behaviour of their tangent’s autocorrelation
represented by the 
̄(�τ ) dependence (bottom row).

most directly related to the rate of divergence of nearby orbits and
serve as a rough estimate of the largest Lyapunov exponent.

It is possible to make this estimate more precise, because the
cumulative histogram of diagonals yields the second-order Rényi’s
entropy K2 (also called correlation entropy), which stands for a

lower estimate of the sum of positive Lyapunov exponents. Let the
phase space be divided in boxes with size ε, numbered in some
order by i1, . . . , il. Denote by pi1,...,il (ε) the probability that the
point X(�τ ) is in the i1th box, the following point X(2�τ ) is in
the i2th box and so on, up to the point X(l�τ ). The second-order
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Figure 7. Two geodesic orbits in the field of a black hole (of mass M) surrounded by the Bach–Weyl thin ring with mass M = 0.5M and radius rring =
20M. Both geodesics have specific energy and specific angular momentum at infinity E = 0.93 and � = 3.75M. The first (left-hand column) lies deep in the
primary regular island, while the other (right-hand column) fills the chaotic sea around and in the vicinity of the ring (see Poincaré diagrams in top row).
The big difference between the orbits also shows on power spectra of their z(t) evolution (middle row) and on the behaviour of the Kaplan–Glass averaged
autocorrelation parameter 
̄(�τ ) (bottom row).

Rényi’s entropy K2 is given by

K2(ε, l) = − lim
�τ→0

lim
ε→0

lim
l→∞

1

l�τ
ln

il∑
i1

p2
i1,...,il

(ε) . (5)

Realizing that the occurrence of (non-trivial) diagonal of length l
means that l successive points of the trajectory X(τ ), X(τ+�τ ), . . . ,

X(τ + (l −1)�τ ) lie in the ε-neighbourhoods of certain other l suc-
cessive points X(τ0), X(τ0 +�τ ), . . . , X(τ0 + (l − 1)�τ ), Marwan
et al. (2007) showed that (under the assumption of ergodicity) the
sum can be approximated by

il∑
i1

p2
i1,...,il

(ε) ≈ 1

N

N∑
t=1

pt (ε, l) , (6)
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where pt(ε, l) is the probability of finding the line of length l in the
boxes centred at points X(τ ), X(τ + �τ ), . . . , X(τ + (l − 1)�τ ).
Hence, K2 can be estimated from the relation

K2(ε, l) ≈ K̂2(ε, l) = − 1

l�τ
ln pc(ε, l) , (7)

where pc(ε, l) is the probability of finding a diagonal line whose
length is at least l. This means that K̂2 is determined by a slope of
the cumulative histogram plotted (in logarithmic scale) against the
diagonal length l. At the same time, the correlation entropy K2 was
shown to yield a lower estimate of the sum of positive Lyapunov
exponents; hence the estimate K̂2 is a good indicator of chaotic
behaviour.

Similarly as with diagonal lines, one can plot the histogram of
vertical (or horizontal) lines (against their length v):

P (ε, v) =
N∑

i,j=1

(1 − Ri,j (ε))(1 − Ri,j+v(ε))
v−1∏
k=0

Ri,j+k(ε) ,

and also the respective measure of vertical structures (parallel of
DET , called laminarity):

LAM(ε) =
∑N

v=vmin
vP (v)∑N

v=1 vP (v)
.

The average length of vertical lines,

T T (ε) =
∑N

v=lmin
vP (v)∑N

v=vmin
P (v)

,

is called trapping time, because it indicates for how long the system
is ‘trapped’ (without evolution in phase space). Finally, from the
probabilities that some chosen diagonal or vertical line has length
l, p(l) = P(l)/Nl and p(v) = P(v)/Nv, where N l and Nv are total
numbers of diagonal and vertical lines, one can compute the so-
called Shannon entropies:

L ENT ROPY = −
N∑

l=lmin

p(l) ln p(l) ,

V ENT ROPY = −
N∑

v=vmin

p(v) ln p(v) .

Also relevant as indicator is the size of the ‘white gaps’ between
vertical (or horizontal) lines, because it is related to the recurrence
times. For example, let us choose a point X i on some trajectory and
record the sequence of points which fall in its ε-neighbourhood,
{Xj1 , Xj2 , . . .} (this set corresponds to black dots in a certain col-
umn/row of the recurrence matrix). Compute the recurrence times
given by differences between serial numbers of the consecutive re-
currence points Xjk+1 , Xjk

multiplied by the respective proper time
steps, Tk(ε) = (jk +1 − jk)�τ . The mean of Tk is called the recur-
rence time of the first type, T1. However, the recorded set usually
also contains successive points between which the orbit does not
leave the given ε-neighbourhood, so Tk(ε) = 1. These points (called
sojourn points) do not represent true recurrences, so they should be
discarded from statistics. After removing all the sojourn points, the
above recurrence set contains just beginnings of the vertical black
lines. An average of their distances (average length of white vertical
gaps) is called the second-type recurrence time, T2. The recurrence
times typically behave inversely to RR.

For the recurrence analysis to yield plausible results, it is crucial
to set the parameters ε, �τ , lmin and vmin properly. The dependence
of the results on these parameters is itself interesting to explore.

In particular, the recurrence matrix and all the quantities computed
from it depend critically on the ‘target’ size ε. For example, when
ε is chosen too large, the time step �τ rather small and/or lmin (or
vmin) too small, there are plenty of sojourn points in the recurrence
matrix. On the other hand, if ε is too small, the matrix may come
out too sparse. The lmin limits the occurrence of short diagonal
lines which are often formed, when ε is large enough, due to the
fact that the ε-neighbourhoods of the nth and (n + 1)th recurrence
loops have finitely long non-empty intersection, even though the
loops may be quite diverging from each other. Finally, there is a
subtle issue of misleading long secondary diagonals, which was
pointed out by Marwan et al. (2007); let us briefly discuss it here:
an abundant occurrence of sojourn vertical sequences involving the
main diagonal leads to the occurrence of another long diagonal in the
main-diagonal vicinity, which deforms the recurrence quantifiers
if they are taken into account. Namely, the usage of vmin only
excludes the short sojourn verticals from the statistics, but does
not influence the statistics of diagonals; and the usage of lmin only
excludes short diagonals, not the long ones. Therefore, in order
to get rid of the latter, a certain lower bound for the length of
vertical lines (called Theiler’s parameter, w) is sometimes required
in recording the recurrence matrix (in addition to the careful choice
of ε), i.e. only the points are considered whose serial indices i
and j satisfy |j − i| ≥ w. We used the Theiler’s parameter only in
computing Figs 10 and 14 (right-hand column).

Several examples of recurrence plots obtained for our black hole–
disc system are attached. For computation of the recurrence matrix,
we used the Euclidean norm (both position and velocity are pro-
cessed as vectors in Euclidean space) and ‘Cartesian’ spatial mesh
corresponding to spherical Schwarzschild coordinates; each of the
three coordinates has been normalized to zero mean value and unit
standard deviation. First, we drew the recurrence plots for orbits
(or their parts) studied in previous sections in order to compare
the information they reveal with that provided by Poincaré maps,
time series and their spectra, and by the average directional vector
method. Fig. 8 shows recurrence plots of the two orbital sections
(one rather regular and one rather chaotic) compared in Fig. 3. The
almost regular section occupies the upper left half and the rather
chaotic section occupies the lower right half; the contrast in their
‘entropy’ is obvious. Fig. 9 brings recurrence plots of the six orbital
sections whose z = z(t) power spectra and Kaplan–Glass averaged
autocorrelation parameter 
̄(�τ ) were presented in Figs 5(a) and
(b), respectively. The plots are again ordered in the direction of in-
creasing chaoticity. The first of them really looks like one of the dark
boxes of the subsequent plots (these boxes correspond to ‘sticky-
motion’ periods when the orbit is tied to a regular region); the second
plot shows a clear checkerboard pattern (the orbital section is rather
regular) which then gradually gives way to horizontal/vertical pat-
tern at times when the orbit’s behaviour changes to chaotic.3 Fig. 10
brings recurrence plots and diagonal-line length histograms for the
two rather regular orbits whose Poincaré diagrams, z(t) power spec-
tra and tangent’s autocorrelation parameter were shown in Fig. 6.
The recurrence analysis well distinguishes between the orbits, in
particular the histogram slope (indicated in red in the plots) which
yields Rényi’s entropy is steeper for the less regular orbit.

3 Note that the middle-row plots of this figure are counterparts of the z(t)
time series and spectra shown in the first two rows of Fig. 4. One can
check by comparison that the transition to chaos in the z(t) evolution really
occurs at times when the recurrence matrix changes from checkerboard to
horizontal/vertical regime (‘carpet edge’ in the recurrence plots).
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Figure 8. Recurrence plots for the two orbital sections whose Poincaré maps, z(t) evolutions and their power spectra were shown in Fig. 3. We take advantage
of the recurrence-matrix symmetry and give just halves of the recurrence plots in one square: the almost regular section (the left-hand column of Fig. 3) is above
the main diagonal (upper left triangle), while the rather chaotic section (the right-hand column of Fig. 3) is below the main diagonal (lower right triangle). The
axis values indicate proper time in units of M.

Figs 11 and 12 show six (the latter only four) of the recurrence-
analysis quantifiers (RR, DET , DIV , LAM, V ENTROPY and T2),
computed for large collections of orbits ejected from certain radial
ranges within the equatorial plane of the black hole–disc systems.
The quantifiers evidently distinguish between regular and chaotic
orbits, but their sensitivity to different phase-space features is some-
what different. In Fig. 11, the difference between regular and chaotic
region is more distinct, because the orbits in the left part belong to
a large regular island, which then quite immediately passes into a
chaotic sea (right part of the plots). On the other hand, Fig. 12 scans
a more complex phase-space region where several regular islands

and chaotic layers are crossed. For a better picture of which region
have been considered, the respective Poincaré diagram is also shown
in Fig. 12. In the chaotic regime, the recurrence rate and the fraction
of diagonal lines are seen to be lower, whereas the vertical measures
T2 and V ENTROPY grow significantly. This means that the system
takes more time to get back to the chosen ε-neighbourhood and that
the vertical-line length oscillates more than in the regular regime;
namely, in the regular regime, either there are no vertical lines at
all or they are of approximately the same length (note, for example,
that if vmin is chosen too small, one gets a lot of ‘sojourn’ vertical
lines of the same length). The DIV parameter of course increases
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Figure 9. Recurrence plots for the orbital sections whose z(t) power spectra and Kaplan–Glass parameter 
̄(�τ ) were shown in Figs 5(a) and (b). The z(t)
evolutions and power spectra corresponding to the middle-row plots are given in the first two rows of Fig. 4. Proper time goes along the axes in units of M.
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Figure 10. Recurrence plots and histograms of diagonal-line lengths for the two orbits whose Poincaré diagrams, z(t) power spectra and tangent’s autocorrelation
parameter were shown in Fig. 6. Both orbits are rather regular: left orbit belongs to five-periodic regular islands and the right one sticks to them. Both have
been followed up to 2.1 × 106 M of proper time, with 15M step; we set ε = 1.1 and employed the Theiler’s parameter w = 4. The recurrence analysis clearly
distinguishes between the orbits, in particular, the Rényi’s entropy K2, read off from the slope of the cumulative histogram plotted (in logarithmic scale) against
the diagonal length l (bottom plots), comes out about −1.5 × 10−6 for the regular orbit, while it is about −8.27 × 10−5 for the ‘sticky’ orbit (note that the
x-axis ranges are different, so the difference in slopes is much bigger than it appears at first sight). Obviously, the slope has to be determined from the middle
part of the histogram, where the latter really reflects recurrence properties and where it can be approximated by a straight line.

in the chaotic region as well as the ‘laminarity’. All the quantifiers
get considerably more noisy in the chaotic regions.

In order to illustrate how Poincaré diagrams can be supplemented
by information provided by recurrence analysis, the passage points
are coloured according to the values of selected recurrence quan-
tifiers which apply to the respective orbits (so the colours are of
course mixed in chaotic regions); namely, the top left diagram is
coloured according to the value of DIV and the top right diagram
according to the slope of the diagonal-line histogram. We have

chosen exactly these two quantifiers, because DIV is one of the
simplest, whereas the diagonal-histogram slope is more ‘sophisti-
cated’, tightly connected with Lyapunov exponents. However, it is
seen that the two colourings provide almost the same information
(only the colour scales are somewhat different, naturally). There-
fore, the DIV quantifier seems to be more suitable for a quick
distinction between regularity and chaos, mainly if large sets of tra-
jectories are to be processed routinely. The cumulative-histogram
slope is theoretically more sophisticated, but also harder to get (it
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Figure 11. Six of the recurrence-analysis quantifiers, computed for 400 geodesics ejected tangentially (with ur = 0) from radii between r = 21.5M and 23.5M
(with step 0.005M) from the equatorial plane of the system of a black hole (of mass M) and the inverted first Morgan–Morgan disc with mass 1.3M and inner
Schwarzschild radius 20M. All the orbits have specific energy E = 0.934 and specific angular momentum � = 4M. The orbits have been followed for about
250000M of proper time (thus the minimal achievable DIV is 4 × 10−6) with ‘sampling period’ �τ = 45M, the minimal length of diagonal/vertical lines has
been set at 90M and the recurrence threshold at ε = 1.1. The left part of the plots scans trajectories belonging to a large secondary regular island, while the
right part goes through the chaotic sea. All the quantifiers clearly distinguish between the two regimes.
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Figure 12. The quantifiers RR, DET , DIV and V ENTROPY computed, like in Fig. 11, for 470 geodesics ejected tangentially (with ur = 0) from radii between
r = 5M and 24M (by 0.04M) from the equatorial plane of the system of a black hole (M) and the inverted first Morgan–Morgan disc with mass M = 0.5M

and inner radius rdisc = 18M. All the orbits have specific energy E = 0.9532 and specific angular momentum � = 3.75M. The orbits have again been followed
for about 250 000M of proper time with ‘sampling period’ �τ = 45M, the minimal length of diagonal/vertical lines has been set at 90M and the recurrence
threshold at ε = 1.25. Poincaré diagram of the system is shown at the top, with orbits coloured according to the value of their DIV (top left) and according to
the slope of the diagonal-line histogram (top right); the scale is logarithmic. A system with a more complicated phase portrait has been chosen here in order to
compare the results with the simple case of Fig. 11 and in order to check how sensitive the quantifiers are to more tiny phase-space features.
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is ‘higher level’) and, mainly, its ‘automatic’ computer evaluation
is much more tricky, because it has to be determined from a proper
part of the histogram. Namely, only a certain middle part of the
histogram is relevant, since its short-length end typically ‘diverges’
due to increasing number of sojourn points, while the long-length
end typically falls off quickly due to the finite length of the trajec-
tory. (The histogram has to be computed in the limit l → ∞, so
the short-length end has actually no sense; the long-length end is of
course determined by the fact that practically the trajectories cannot
be infinitely long.)

Finally, the dependence of several quantifiers on the choice of
ε is illustrated in Fig. 13. There, the behaviour of DIV , LAM,
V ENTROPY and T2 over geodesics starting from a wide range
of radii is plotted for 11 different values of ε. In all the plots, one
can clearly recognize a large primary regular island and two smaller
ones. The quantifiers generally show monotonous dependence on ε

– LAM and V ENTROPY increase, whereas DIV and T2 decrease
with ε, as expected. Fig. 13 may also serve as a further support
for the DIV quantifier (see Fig. 12 as well). As also confirmed by
other similar figures not shown here, the large regular islands can
be recognized easily by any of the quantifiers, because the latter
fluctuate there much less and around markedly different values than
in the chaotic regions. However, only the DIV parameter appears
to be fairly indicative of small islands as well. Namely, in regular
regions (both large and small) it is typically two orders of magni-
tude lower than in chaotic regions (DIV ∼ 3 × 10−6 within regular
regions, about an order higher in thin chaotic layers and about 3 ×
10−4 in large chaotic regions; this chaotic-sea value corresponds to
a divergence time of several thousands M, which represents some
10 cycles about the black hole). For longer trajectories (than those
we have treated here) the difference in DIV between regular and
chaotic regions tends to be even bigger. The other quantifiers only
respond to small islands by reducing their oscillation, but not by
a noticeable change of the mean value. Loosely speaking, their
sensitivity profile is shifted towards larger regular regions (see the
RR quantifier in Fig. 12, for example). The last Fig. 14 illustrates
the difference between regular and chaotic geodesic on a markedly
different value of K2 entropy inferred from the cumulative length
histogram of diagonal lines, and also on different dependence on ε

of this histogram.

5 C O N C L U D I N G R E M A R K S

In Paper I, we performed an overall check of the time-like geodesic
dynamics in the field of a Schwarzschild black hole surrounded
by an axially symmetric static thin disc or ring, and of the depen-
dence of its chaoticity on parameters characterizing the additional
source and the test particles. In the present paper, we have focused
on individual orbits and their different parts and showed how the
degree of their irregularity, already visible on Poincaré diagrams,
can be judged in more detail by studying the time series obtained
for phase variables. We have mainly considered the times series z(t)
of the position perpendicular to the disc/ring plane, computed their
power spectra and compared the information thus gained with the
one provided by the method of Kaplan and Glass which tracks au-
tocorrelation between different parts of the series in dependence on
time shift, and also with outcomes of the recurrence-matrix analysis
of Eckmann et al. All these methods proved simple and powerful,
while they differ in sensitivity to specific types of behaviour.

Let us also include a brief mention of several others’ results which
appeared in the field recently. Brink (2008) contributed to the topic
of complete geodesic integrability, mentioned in Section 1, by study-

ing geodesics in stationary axisymmetric vacuum space–times and
the correlation of its fabric with the existence of the ‘fourth integral’
(cf. also Markakis 2012, for a Newtonian treatment of the integrabil-
ity problem). Verhaaren & Hirschmann (2010) returned to the study
of dynamics of test particles with spin in a Schwarzschild space–
time and argued, on Poincaré diagrams and Lyapunov exponents,
that smaller values of spin than previously thought can already make
the particle motion chaotic. Kovács, Bene & Tél (2011) performed
the first post-Newtonian analysis of the Sitnikov system (motion of
a test body in the field of an equal-mass binary, along a line per-
pendicular to the orbital plane and going through the barycentre)
and demonstrated, by numerical study of the system in dependence
on gravitational radius of the ‘primaries’, that the relativistic effect
of pericentre advance does not destroy its chaotic aspects. Ramos-
Caro, Pedraza & Letelier (2011) studied the motion of test particles
in the field of a centre with quadrupole deformation surrounded by
finite thin discs obtained by superpositions of members of a counter-
rotating Morgan–Morgan family. They found that there is a close
connection between linear stability/instability of equatorial circular
orbits and regularity/chaoticity of general three-dimensional orbits
passing through their radii.4 The same group (Letelier, Ramos-Caro
& López-Suspes 2011) also revisited geodesic dynamics in the sys-
tem composed of a monopole or an isotropic harmonic oscillator
and oblate quadrupole, and found several new features not noticed
before. Wang & Wu (2011) employed a pseudo-Newtonian poten-
tial in order to superpose a rotating black hole with a quadrupole
halo. They analysed emission of gravitational waves from particles
orbiting in such a field and demonstrated that the radiated ampli-
tude and power are closely related to the degree of chaoticity of the
orbit. Galaviz (2011) considered the evolution of a compact binary
perturbed by a third body. Within a post-Newtonian version of the
Hamiltonian ADM formulation, and using basin-boundary analysis
and Lyapunov exponents, he examined the relative importance of
different PN orders in inducing chaos in the system. Very recently,
Contopoulos, Harsoula & Lukes-Gerakopoulos (2012) have anal-
ysed the classical system of two coupled oscillators and free motion
in the general relativistic Manko–Novikov space–time (which de-
scribes a rotating axisymmetric compact body); they mainly focused
on periodic orbits of the systems and on dependence of their prop-
erties on orbital energy. Finally, Igata, Ishihara & Takamori (2011)
observed on Poincaré maps that the time-like geodesics bound in
the field of the Emparan–Reall five-dimensional black ring show
chaotic features.

To conclude, it should be admitted that once the evolution of
a given dynamical system is mastered with sufficient numerical
accuracy, it is rather easy to produce various decorative figures.
However, it is also true that these can indeed yield a good picture
of how much irregular the system is and how the irregularity de-
pends on system parameters. This in turn indicates how much the
‘perturbations’ acting on real systems degrade the corresponding
simplified exact models and helps to evaluate the validity of various
approximations. Turning to our particular problem of orbiting in a
static compact-centre space–time, it would be suitable to employ
such methods in order to estimate and compare the significance
of various ‘perturbations’ present in real astrophysical situations.

4 We would like to remember Professor Patricio Letelier who was a leading
expert in the fields of general relativity and chaotic dynamics. He left us just
at the time when the paper Ramos-Caro et al. (2011) appeared in MNRAS.
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Figure 13. Dependence of four recurrence quantifiers on the choice of the threshold approach ε. We go through the geodesics starting with ur = 0 from the
radii r = 5M to 45M from the equatorial plane of the black hole–disc system with the disc mass M = 1.3M and inner disc radius rdisc = 20M. All the
geodesics have specific energy E = 0.956 and specific angular momentum � = 4M. Their DIV , LAM, V ENTROPY and T2 parameters are computed for 11
different values of ε, namely 0.50, 0.65, 0.80, 0.95, . . . , 1.85, 2.00; in this order, the line colour shifts from dark violet, violet, light blue, dark blue, . . . , to red
and dark red. A primary regular island and two smaller islands aside are evident.

Besides the gravitational influence of additional matter, discussed
(in a simple, static and axially symmetric case) in the present work,
there would also occur mechanical interaction of the orbiter with
that matter (see e.g. Šubr & Karas 2005). Both the compact centre
and the matter around would probably have non-zero angular mo-
mentum, so dragging effects should be incorporated; actually, the
orbiter may itself be endowed with spin or even higher momenta.
Incoming gravitational waves can perturb the system as well as
those emitted by the orbiter (back reaction).Of course, if the orbiter
was charged, it would also be affected by any electromagneticfield
present there.

When thinking about possible perturbations of the origi-
nally completely integrable problem of free test motion in a
Schwarzschild or Kerr field, one has mainly in mind the motion of
individual stars around supermassive black holes in galactic nuclei.
As already stressed in Section 1, there are in fact whole clusters of
stars in galactic nuclei; so, when solving the motion of an individual
satellite, one should also take into account gravity of the whole clus-
ter, or solve that motion right as a part of the problem of N interacting
bodies. Such a problem is difficult within general relativity, mainly

if the black hole centre and the disc or ring/toroid should also be
taken into account, but it is being considered within Newtonian the-
ory (see e.g. Šubr, Karas & Huré 2004; Haas, Šubr & Kroupa 2011a;
Haas, Šubr & Vokrouhlický 2011b, and references therein) as well
as in post-Newtonian and post-Minkowskian approximation (e.g.
Chu 2009; Ledvinka, Schäfer & Bičák 2008; Hartung & Steinhoff
2011).

There are several immediate options for further work. One can
of course check the results with yet other methods (Lyapunov-
type coefficients, various other ‘entropies’, basin-boundary analy-
sis, Melnikov integral, etc.), find and study particular significant
orbits of the system (periodic and homoclinic/heteroclinic orbits) in
detail, or compare the relativistic analysis with Newtonian, pseudo-
Newtonian or post-Newtonian one. However, we would mainly
like to focus on astrophysically more realistic situations (parameter
ranges) in future. This should involve, among others, the question
of whether to incorporate also other gravitating components such as
spheroidal halo, disc plus outer ring (or thick toroid), or/and jets, and
– most importantly – the question of how to account adequately for
rotation.
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Figure 14. Dependence of the diagonal-line cumulative length histogram (top row) and of the resulting value of the correlation entropy K2 (bottom row) on
the choice of the threshold approach ε, plotted for a regular (left-hand column) and weakly chaotic (right-hand column) geodesics. Both geodesics have been
followed for about 2 × 106M of proper time. Both have specific energy E = 0.956 and specific angular momentum � = 4M and live in a space–time of a black
hole (M) surrounded by the inverted first Morgan–Morgan disc with mass M = 1.3M and inner radius rdisc = 20M. The recurrence matrix of the chaotic
geodesic has been computed using the Theiler parameter growing linearly with ε (from w = 2 to 6). The K2 entropy of this orbit is considerably more sensitive
to ε than that of the regular orbit on the left (the range along both K2-axes corresponds to a change by a factor of 4); however, the two cases (regular/chaotic)
are clearly distinguished as seen on the orders at the vertical axes.
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