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ABSTRACT

A short formula is suggested that approximates photon trajectories in the Schwarzschild field better than other
simple prescriptions from the literature. We compare it with various “low-order competitors,” namely, with those
following from exact formulas for small M, with one of the results based on pseudo-Newtonian potentials, with
a suitably adjusted hyperbola, and with the effective and often employed approximation by Beloborodov. Our
main concern is the shape of the photon trajectories at finite radii, yet asymptotic behavior is also discussed,
important for lensing. An example is attached indicating that the newly suggested approximation is usable—and
very accurate—for practically solving the ray-deflection exercise.
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1. INTRODUCTION

Geodesic motion in a Schwarzschild field is one of the intro-
ductory exercises in general relativity. The motion being com-
pletely integrable and planar (usually lying at θ = π/2), its exact
solution is mostly expressed as a φ(r) dependence. However,
this involves elliptic integrals (Hagihara 1931; Darwin 1959;
Mielnik & Plebański 1962; Chandrasekhar 1983) and may be
quite uncomfortable if one needs to invert the result for r(φ) or
for some parameter (usually the impact parameter). The solu-
tion for radius (or its reciprocal) as a function of angle was only
given later (Rodrı́guez 1987; Kraniotis & Whitehouse 2003;
Hackmann & Lämmerzahl 2008; Scharf 2011; Kostić 2012;
Gibbons & Vyska 2012) using elliptic functions. In particular,
null geodesics (photon world-lines) have been treated, notably
by Čadež & Kostić (2005) and Muñoz (2014).

However, a simple and easily invertible approximation of
the relativistic photon trajectories seems yet to be suggested.
Although light bending has been treated at many places, usually
the total bending angle is the aim (given by directions at the
source and observer locations, or just by radial asymptotics),
especially when the exercise is treated in connection with
gravitational lensing—see, e.g., Virbhadra & Ellis (2000),
Mutka & Mähönen (2002), Amore et al. (2007), Connell &
Frolov (2008), Virbhadra (2009), or Bozza (2010); recently,
the discussion has mainly been focused on the effect of the
cosmological constant, e.g., Bhadra et al. (2010), Biressa & de
Freitas Pacheco (2011), and Arakida & Kasai (2012). Instead,
we would like to reasonably approximate whole trajectories,
which is of course more delicate. (An even higher level would
also incorporate proper timing, which is also important, but
we restrict this study to spatial trajectories.) Actually, one
learns quickly that formulas obtained by linearization in some
parameter do not reproduce well the strong-field behavior,
while, on the contrary, “improving” this by hand tends to
spoil its weak-field limit. Low-order prescriptions typically
do not provide sufficient bending in the center’s vicinity and
sufficiently quick straightening at larger distances, so even if
they may be adjusted to have a correct pericenter radius as well
as asymptotic directions, their overall shape is often far from
satisfactory.

Below, we first recall basic equations and fix the param-
eterization of the problem (Section 2). In Section 3, several

simple approximations of light rays, resulting from quite differ-
ent approaches, are listed and their basic properties reviewed.
Their performance at different radii is illustrated then and com-
pared numerically with that of our simple suggestion presented
(Section 4), showing that the latter is very accurate, even in-
cluding trajectories with pericenters slightly below r = 4M .
Although we primarily focus on the behavior of the approxima-
tions at finite radii from the central black hole, Section 5 shows
what answers the best of them give for an asymptotic angle
along which the photons approach radial infinity. In Section 6
we illustrate the practical usage of our formula for solving the
ray-deflection exercise, again with results almost identical to
those obtained (purely numerically) from an exact treatment.
Observations made are then briefly summarized in concluding
remarks.

2. NULL GEODESICS IN THE SCHWARZSCHILD
SPACE-TIME

Mainly to fix notation, let us recall basic equations of the
exact problem. Using Schwarzschild coordinates (t, r, θ, φ) and
geometrized units (in which c = 1, G = 1), we consider metric
in the standard form

ds2 = −N2dt2 +
dr2

N2
+ r2(dθ2 + sin2 θ dφ2)

with N2 := 1 − 2M/r . Geodesic motion in the spherically
symmetric field being planar, let us choose the orbital plane to
be the equatorial one (θ = π/2). In such a case, the photon
four-momentum has non-zero components

pt = E

N2
, pr = εr E

r

√
r2 − N2b2, pφ = L

r2
, (1)

where E := −pt , L := pφ , and b := |L|/E are the photon’s
energy, angular momentum, and impact parameter, respectively,
all remaining conserved along the ray; the sign εr ≡ ±1 fixes
the orientation of radial motion (while that of azimuthal motion
is determined by the sign of L).

Let us focus on photons with b > 3
√

3 M which have a (one)
turning point of radial motion, either pericenter (which is always
above r = 3M) or apocenter (which is always below r = 3M).1

1 Photons with b < 3
√

3 M move from infinity to the center or vice versa
without any radial turning.
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Let us then adjust, without loss of generality, the coordinates
so that a given photon reaches this turning point at φ = 0. The
ray thus gets symmetric with respect to the meridional plane
{φ = 0, π} and it is sufficient to only consider its half starting
from that plane. The vanishing of radial momentum at φ = 0
constrains the constants of motion by the condition

r2
0 − N2

0 b2 = 0 �⇒ b = r0√
1 − 2M

r0

, (2)

where r0 := r(φ = 0) indicates the radius at the turning point
of radial motion and N0 := N (r = r0).

Equations for pφ and pr give

dφ

dr
= εr

r

1√
r2

b2 − N2
(3)

which can further be expressed in terms of the extremal
radius r0,

dφ

dr
= εr r0

r√
N2

0 r2 − N2r2
0

= εr r
3/2
0√

r(r − r0)
√

r(r + r0)(r0 − 2M) − 2Mr2
0

. (4)

This second form is more complicated, but it turns out to be
much more suitable for integration. Assuming, without loss of
generality, that we focus on the half of the trajectory that starts
toward positive φ from φ = 0 (briefly, we assume L > 0),
the integration gives (see Darwin 1959 or Chandrasekhar 1983,
formula (260) in Ch. 3)

φ(r) = 2
√

r0

[(r0 − 2M)(r0 + 6M)]1/4
[K(k) − F (χ, k)] (5)

= 2
√

r0

[(r0 − 2M)(r0 + 6M)]1/4
F (χ ′, k), (6)

where F (χ, k) := ∫ χ

0 dα/
√

1 − k2 sin2 α is the elliptic integral
of the first kind, with amplitude χ and modulus k given by

sin2 χ := 1 − 1

k2

2M
(
1 − r0

r

)
√

(r0 − 2M)(r0 + 6M)
, (7)

2k2 := 1 − r0 − 6M√
(r0 − 2M)(r0 + 6M)

, (8)

and K(k) := F (π/2, k) is its complete version. One can check
immediately that F (χ, k) only reduces to K(k) at the turning
point, where r = r0 and so χ = π/2, which correctly yields
φ(r = r0) = 0. The second expression (6) contains a different
amplitude, χ ′, which is related to χ by

sin2 χ ′ = 1 − sin2 χ

1 − k2 sin2 χ

= 4Mk−2
(
1 − r0

r

)
√

(r0 − 2M)(r0 + 6M) + r0 − 2M − 4M r0
r

(9)

(while k remains unprimed in both expressions). We add that the
complementary modulus k′, which is related to k by k′2 = 1−k2,

is given by the same expression (8) as k, just with plus after 1;
their product is therefore quite short,

k2k′2 = 4M (r0 − 3M)

(r0 − 2M)(r0 + 6M)
. (10)

With our parameterization, the azimuth φ of a photon in-
creases monotonically from zero. For a photon starting (from
φ = 0) from r0 � 3M the azimuth can finally reach very large
values; with r0 growing from 3M to infinity the asymptotic az-
imuth decreases from infinity to π/2, while with r0 shrinking
from r = 3M toward 2M the photon falls through the horizon
at φ, quickly decreasing from infinity toward zero.

3. APPROXIMATING THE LIGHT RAYS

The exact Darwin’s formula (5) is quite simple, yet it is not
easy to invert it for r(φ) and mainly for r0 (which would in
turn yield constants of the motion as functions of r and φ).
Such a problem is typically encountered when asking, “What
are the parameters of the light/photons that arrive at a given
location from some (which?) points of a given source?” (in
the Schwarzschild field). Namely, the source generally emits
photons of various different parameters (from different starting
points, with different energies, in different directions, etc.),
of which each follows a different world-line. When studying
some radiation-influenced process at a given location outside
the source, it is first necessary to find which of the photons get to
that location (which means to find from where in the source they
started) and then to infer what are their properties (in order to
be able to say what will be their effect).

An important system that raises such questions is an accretion
disk around a black hole, because (1) its inner part is a powerful
source of radiation that strongly affects matter around it (on
the other hand, the disk can be significantly irradiated by a
hot “corona,” and possibly even self-irradiated), and (2) the
inner part of the disk lies in a very strong gravitational field
where the propagation of light is not trivial (linear). To give a
specific example, we came across the demand to invert Darwin’s
formula for r0 when studying, in Schwarzschild space-time, the
motion of test particles influenced by a radiation field emitted
from the equatorial plane in a perpendicular direction (such a
pattern was considered to approximate the radiation generated
by an equatorial thin disk)—see Bini et al. (2015). In such an
arrangement, one needs to find the impact parameters of the
(two) “vertical” photons interacting with the particle at a given
location, which precisely requires one to find the r0’s from where
those photons started.

Therefore, it is worthwhile to look for an approximation of
photon trajectories that would be simple, invertible for r0, yet
reasonably accurate. In particular, it should work well for as
small a radius (r0) as possible, because in real astrophysical
situations there is often much radiation just quite close to the
horizon. This is natural since matter inflows into these regions
with extremely high speeds, so collisions of its streams dissipate
huge amounts of energy that intensively outflow as radiation. In
particular, real accretion disks are supposed to radiate most from
their innermost regions, which probably reach to the innermost
stable circular geodesic at r = 6M or even below.

A natural starting attempt for how to simplify the inversion
problem is to linearize the exact formula in some small param-
eter. We have either 2M < r � r0 < 3M or r � r0 > 3M , with
b > r0 anyway. Clearly, the r0 > 3M case is more astrophys-
ically interesting. Then the relation between r and b changes
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in time: the photon starts from r ≡ r0 < b, but quickly gets
to r > b (and then even to r 	 b). Surely M is the least of
all parameters and hence the usual linearization in it. However,
the weak-field approximations—like the one obtained by lin-
earization in M—generally yield trajectories “less bent about”
the central gravitating body, since the center’s field is weak-
ened effectively. If such an approximation is employed for the
inversion of the φ(r; r0) formula for r0, it may lead to errors
when applied to strongly bent rays. Actually, adopt our param-
eterization, i.e., adjust the plane φ = 0 so that the ray crosses
it (“starts from it”) in a perpendicular direction (it is purely
azimuthal there). Now, imagine a photon approaching φ = π
(from φ < π ) while having a small radius: it must have started
(purely tangentially) from φ = 0 from a very small radius r0
in order for it to have been bent about the center sufficiently.
For such photons, weak-field approximations may easily yield a
starting radius r0 even lying below the horizon (note that there is
actually no horizon in most such approximations), which may
then bring errors if substituted into the Schwarzschild-metric
lapse function N ≡ √

1 − 2M/r .
One could surely improve the approximation by taking

into account higher order(s) of the small-parameter expansion,
but higher-order formulas mostly cannot be inverted easily.
Restricting oneself to low-order formulas, one can resort to some
more “pragmatic” construct instead. First, “pseudo-Newtonian”
descriptions are often employed in the astrophysical literature,
based on the Newtonian potential suitably modified to mimic
certain features of the actual relativistic field. Second, our
particular problem of scattering-type light trajectories can be
approximated by a hyperbola adjusted to the desired asymptotic
directions. And third, one can try to design a suitable formula
“by hand,” simply observing the main properties it should
reproduce. However, all such ad hoc formulas, not relying on
any clearly justified procedure, must be handled with care;
in particular, even if they were successful close to the black
hole (or rather more if they were successful there), their weak-
field (large-radius) behavior may not be satisfactory. They can
also hardly yield trustful replies for tiny, velocity-dependent
(dragging), non-stationary, radiation, etc., effects, but in the
simple case of static space-times, they have mostly proved
quite practical. Let us compare the above possibilities, including
mainly several successful suggestions from the literature.

3.1. Linearization of Darwin’s Formula in M

Darwin’s formula (5) can be linearized in M to obtain

cos φ = r0

r
− M

r0

(r − r0)(2r + r0)

r2
+ O(M2). (11)

Clearly φ = 0 corresponds to r = r0 correctly, while for r → ∞
one has asymptotics cos φ∞ = −2M/r0, which is always >−1
(so φ∞ < π , which means that the ray’s half-bending is less
than 90◦). The linear part can easily be inverted for r0.

3.2. First M-orders from the Binet Formula

Although the treatments on lensing mostly aim at the total
deflection angle, some of them also provide a prescription for
the photon trajectory. Both are usually obtained by a perturbative
solution of the well-known Binet formula, which in the null case
reads

d2u

dφ2
+ u = 3Mu2, where u := 1

r
. (12)

Let us mention three of them. Biressa & de Freitas Pacheco
(2011) solved the equation up to linear order by2

r0

r
= cos φ +

M

r0
(1 + sin2 φ − cos φ)

= cos φ +
M

r0
(2 + cos2 φ)(1 − cos φ) (13)

in their Equation (14). Clearly r(φ = 0) = r0 as it should be
and solving for cos φ yields (11) in linear order.

A slightly different linear-order solution was given by Bhadra
et al. (2010, their Equation (5)),

R

r
= cos φ +

M

R
(1 + sin2 φ), (14)

where R is a length whose meaning follows by setting φ = 0
(and r = r0):

R

r0
= 1 +

M

R
. (15)

Solving this for R, substituting above, and linearizing in M, one
has

r0 + M

r
= cos φ +

M

r0
(1 + sin2 φ). (16)

Although this differs from Equation (13), its solution for cos φ
again agrees with Equation (11) in linear order.

Finally, let us turn to Arakida & Kasai (2012) who presented
a second-order solution in their Equation (7),

b

r
= cos φ +

M

b
(1 + sin2 φ)

+
M2

4b2
(7 cos φ + 15 φ sin φ + 3 cos3 φ). (17)

The corresponding equation expressed in terms of r0 follows by
substituting Equation (2) for b and expanding in M accordingly,

r0 + M

r
+

3M2

2r0r
= cos φ +

M

r0
(1 + sin2 φ)

+
M2

4r2
0

(7 cos φ + 15 φ sin φ + 3 cos3 φ − 4 − 4 sin2 φ). (18)

In linear order this reduces to Equation (16) and its φ = 0 form

r0 + M

r
+

3M2

2r0r
= 1 +

M

r0
+

3M2

2r2
0

properly yields r = r0. Inversion for b or r0 is of course more
uncomfortable if keeping the second order in M.

3.3. Using a Suitable Pseudo-Newtonian Potential

In Newton’s theory, the motion of test particles in the velocity-
independent spherical potential V (r) is also confined to a plane
(which we again identify with θ = π/2) and described by

r̈ = −V,r + rφ̇2, rφ̈ = −2φ̇ ṙ . (19)

These equations have usual integrals of energy and angular
momentum

E = m

2
(ṙ2 + r2φ̇2) + mV, L = mr2φ̇, (20)

2 Papers on lensing usually adjust the azimuth so that the pericenter lies at
φ = π/2, so we must shift their formulas by π/2.
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which invert for velocities as

rφ̇ = L

mr
, ṙ2 = 2mr2(E − mV ) − L2

m2r2
. (21)

The ratio of the velocities gives an equivalent of the relativistic
Equation (3),

dφ

dr
= εr

r

[
2mr2

L2
(E − mV ) − 1

]−1/2

, (22)

where εr = +1 will again be chosen below. Should the trajectory
be strictly tangential (azimuthal) at φ = 0 (ṙ = 0 at r = r0), it
has to satisfy the condition

2mr2
0 (E − mV0) = L2, where V0 := V (r = r0). (23)

Besides the overall caution in following the pseudo-
Newtonian approach, it is also necessary to distinguish between
various potentials proposed in the literature, because different
ones are suitable for different purposes (see, e.g., Crispino et al.
2011). The Paczyński–Wiita potential V = −M/(r − 2M) is a
most simple and efficient mimicker of the Schwarzschild field,
whose main advantages are correct values of important circu-
lar geodesics, so it is mainly suitable for modeling accretion
disks. However, if plugged into the above equation, the resulting
equation for dφ/dr is not easier to integrate than its relativis-
tic counterpart. The same also applies to the Nowak–Wagoner
quadratic-expansion potential

V = −M

r

(
1 − 3M

r
+

12M2

r2

)
which has often proved the best of the “simple” suggestions.3 It
is clear from Equation (22) that for its integration to be simpler
than that of the relativistic case (3), the resulting polynomial
under the square root has to be only quadratic in r. This is the
case if the potential is of the form

V = −M

r

(
1 +

αM

r

)
, (24)

where α is some constant. Such a form has been advocated by
Wegg (2012), specifically with α = 3. Equation (22) supplied
with the initial condition φ0 := φ(ṙ = 0) = 0 is then (with the
above form of the potential) solved by

φ(r) = 1

k
arccot

k − m2Mr
kL2√

2mr2

L2 (E − mV ) − 1
, (25)

where we introduced the dimensionless constant

k2 := 1 − 2m2αM2

L2
.

The pseudo-Newtonian picture is doubly problematic when
describing photons; in particular, their speed cannot be consid-
ered constant. However, choosing their initial linear speed to be
equal to one, which means r0φ̇0 = 1 in our case when photons
start in a pure azimuthal direction, one has

E = m

2
+ mV0, L = mr0, k2 = 1 − 2αM2

r2
0

,

3 A more advanced yet elegant possibility, namely, a potential suitably
dependent on velocity, was suggested by Tejeda & Rosswog (2013). It would
be worth checking whether it is also useful for null geodesics.

so4 the equatorial trajectory can be rewritten as

φ(r) = r0√
r2

0 − 2αM2

× arccot
r2

0 − 2αM2 − Mr√
r2

0 − 2αM2
√

r2 − r2
0 + 2r2(V0 − V )

.

(26)

Clearly φ(r = r0) = 0 correctly and the asymptotic value at
radial infinity amounts to

φ∞ = r0√
r2

0 − 2αM2

×
⎛
⎝π − arccot

M√
r2

0 − 2αM2
√

1 + 2V0

⎞
⎠ . (27)

When speaking about asymptotics, it should be stressed
that photons exist that remain bound on “elliptic-type” orbits.
Actually, recalling Equations (21), we see that ṙ = 0 if
2mr2(E − mV ) = L2, which after substitution of our E =
m/2 + mV0, L = mr0 implies r2 − r2

0 = 2r2(V − V0), i.e., with
α = 3 and expanded,

(r − r0)
[(

r2
0 − 6M2

)
(r + r0) − 2Mrr0

] = 0. (28)

Besides the automatic zero at r = r0, this also has a second
root at

r = −r0
r2

0 − 6M2

r2
0 − 2Mr0 − 6M2

.

However, this root is only relevant in a narrow interval r0 ∈
(2.8922, 3.6458)M (it grows from 2M to infinity very fast
within this range).

There is one case of particular interest within the above range
of r0: using L ≡ mr2φ̇ = mr0 back in the first of Equations (19),
we have

r3r̈ = −r3V,r + r2
0 = r2

0 − Mr − 2αM2, (29)

which specifically for α = 3 reads

r3r̈ = r2
0 − Mr0 − 6M2 + M(r0 − r)

= (r0 − 3M)(r0 + 2M) + M(r0 − r)

and thus implies that r̈ = 0 at r = r0 = 3M . Therefore, the po-
tential (24) with α = 3 correctly reproduces the Schwarzschild
circular photon geodesic (which indicates that it may be suc-
cessful in simulating photon motion in the innermost region).

3.4. Approximation by a Hyperbola

Another possibility is to approximate the photon trajectory
by a suitable hyperbola. Placing its focus at r = 0 and its vertex
at (φ = 0, r = r0), and prescribing some asymptotic azimuth
φ∞, it is given by the equation

r cos φ = r0 + (r − r0) cos φ∞. (30)

4 Note that the photon has enough energy to escape to infinity, E > 0, if
V0 > −1/2, which holds for r0 > (1 +

√
1 + 2α)M; for α = 3 this means

r0 > 3.65M , which is not so bad.
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Figure 1. Azimuthal description of a photon trajectory used by Beloborodov (Beloborodov 2002; ψ , left) and by us in this note (φ, right); β is the total deflection
angle. Axes r cos φ, r sin φ are also shown (with values in units of M); the black hole is gray.

Now φ∞ can be prescribed somehow, for example, chosen
according to the exact formula. However, since the latter
makes the above expression uncomfortably long, let us instead
illustrate it with φ∞ provided by the Beloborodov formula (see
next subsection), i.e., with cos φ∞ = −(2M/r0 − 2M) (which
proved quite accurate):

r cos φ = r0 − 2M
r − r0

r0 − 2M
. (31)

The limit possibility is to choose φ∞ = π, which yields the
parabola

r cos φ = 2r0 − r.

3.5. Beloborodov’s Approximation

A simple approximation of photon trajectories has been
provided by Beloborodov (2002) in his formula (3),

r(ψ) =
√

M2
(1 − cos ψ)2

(1 + cos ψ)2
+

b2

sin2 ψ
− M

1 − cos ψ

1 + cos ψ

=
√

M2 tan2 ψ

2
+

b2

sin2 ψ
− M tan

ψ

2
, (32)

where the position angle ψ is measured (from the center) so
that ψ = 0 fixes the asymptotic escape direction (with all of
the orbit having ψ > 0, so the photon is considered to move
against the ψ orientation). The value of ψ at pericenter (ψ0)

is determined by

dr

dψ
= 0 �⇒ cos ψ = − 2M

r0 − 2M
=: cos ψ0 (33)

and lies between π/2 and π . The angle β = 2ψ0 −π represents
the total bending angle; 2ψ0 is the asymptotic ingoing direction
if the trajectory is extended to infinity in both directions (see
Figure 1). Beloborodov derived the above result from the elegant
equation

1 − cos α = (1 − cos ψ) N2, (34)

which pretty accurately approximates the relation between the
photon’s momentary radius r, position angle ψ , and the local
direction of flight measured by the angular deflection from the
radial direction in a local static frame, α. (How to understand
the success of this “cosine relation” is explained in Section 2 of
Beloborodov 2002.) The local direction α is given by the photon
momentum,

tan α =
√

gφφ |pφ|√
grr |pr | = bN√

r2 − b2N2

⇒ sin α = bN

r
, cos α =

√
1 − b2N2

r2
, (35)

so one has, by solving Equation (34) for cos ψ and then
substituting for cos α,

cos ψ = r cos α − 2M

r − 2M
=

√
r2 − b2N2 − 2M

r − 2M
. (36)

5
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This increases monotonically from −2M/(r0 − 2M) ≡ cos ψ0
at pericenter through zero to positive values and approaches
unity at r → ∞.

In our parameterization, the photon has pericenter at φ = 0
and moves in a positive φ direction (to some asymptotic φ∞ ≡
ψ0), and hence the angles are related by ψ = ψ0 −φ = φ∞ −φ
(see Figure 1), which means

cos ψ = cos(ψ0 − φ) = cos ψ0 cos φ + sin ψ0 sin φ

= − 2M

r0 − 2M
cos φ +

√
r0(r0 − 4M)

r0 − 2M
sin φ. (37)

Hence, equating (37) = (36) gives the implicit relation

N2
0

N2

(√
1− b2N2

r2
− 2M

r

)
=

√
1− 4M

r0
sin φ − 2M

r0
cos φ

(38)
for the (r, φ) trajectory.

The Beloborodov’s formula is only applicable at r0 > 4M
(it yields φ∞ = π for r0 = 4M), but it really provides a very
good approximation almost all the way down to there. It is less
suitable for finding r0 as a function of r and θ , because the above
relation yields for it an equation of the 16th (or at least the 8th)
degree.

3.6. New Suggestion

The main purpose of this paper is to suggest and test another
ray-approximating formula,

cos φ = r0

r
− M

r0 − αM

(r − r0)(2r + r0)

(r − ωM)2
, (39)

where α and ω are real constants. It correctly gives cos φ = 1
at r = r0, and its radial asymptotics reads

cos φ∞ = − 2M

r0 − αM
(40)

and it can be inverted for r0 as

r0 = R +
√
R2 + 4MrAB

2A
, (41)

where

R ≡ (r − ωM)2(r cos φ + αM) − Mr2,

A ≡ (r − ωM)2 + Mr,

B ≡ 2r2 − (r − ωM)2α cos φ.

The formula works reasonably within a certain range of param-
eters α and ω and it is hard to say which particular combination
is the best, because accuracy at small radii favors somewhat
different values than accuracy farther away. We will specifically
show that very good results are obtained with α = 1.77 and
ω = 1.45, for example.

As in the case of Wegg’s pseudo-Newtonian potential,
“elliptic-type” bound orbits do exist. Since

dr

dφ
= − sin φ

d(cos φ)/dr
,

this would require either sin φ = 0, or d(cos φ)/dr → ∞. The
latter would only hold for r0 = αM or r = ωM , of which none

applies with our choice of α and ω (namely, we always have
r0 > αM and r > ωM). Hence, purely tangential motion can
only happen at sin φ = 0. This holds automatically at r = r0
(where cos φ = +1), and it can also hold on the other side of
the equatorial plane, cos φ = −1. Solving this equation for r,
one finds that for our constants α = 1.77, ω = 1.45 the solution
grows very quickly from 2.025M to infinity with r0 increased
from 2M to (2 + α)M (this last value is valid generally and
does not depend on ω). In other words, all photons launched
from r0 > (2 + α)M escape to infinity and have φ∞ < π there,
consistent with the asymptotic formula (40).

3.7. Comparison of Expansions in M

Before embarking on a numerical comparison of the approx-
imations with the exact formula, let us further check their al-
gebraic properties by expanding them in powers of M. To be
more specific, let us thus expand cos φ(r). First, the cosine of
the exact formula (5) expands as

cos φ = r0

r
− M

r0

(r − r0)(2r + r0)

r2

− M2

r2
0

r − r0

r

D
4r2

+ O(M3), (42)

where an abbreviation has been used:

D := 30r2

√
r + r0

r − r0
arccos

√
r + r0

2r
− 8r2 + 9rr0 + 5r2

0 .

Now to the approximations. Of the prescriptions followed
by the perturbative solution of the Binet formula, we choose
the result (13) by Biressa & de Freitas Pacheco (2011). When
expressed in terms of cos φ, it expands as

cos φ = r0

r
− M

r0

(r − r0)(2r + r0)

r2

− M2

r2
0

(r − r0)(2r + r0)(r + 2r0)

r3
+ O(M3). (43)

Performing the same expansion with the pseudo-Newtonian
result (26) involving Wegg’s potential V = −(M/r)(1+3M/r),
one obtains

cos φ = r0

r
− M

r0

r − r0

r

− M2

r2
0

r − r0 + 3
√

r2 − r2
0 arccos r0

r

r
+ O(M3). (44)

The hyperbola (30), if “endowed with” the exact asymptotic
angle (given by Darwin’s formula), expands to

cos φ = r0

r
− 2M

r0

r − r0

r

− M2

r2
0

(15π − 16)(r − r0)

8r
+ O(M3). (45)

Next the approximation is the one owing to Beloborodov’s
relation (38). Solving the latter for cos φ and expanding as above,
we get

cos φ = r0

r
− M

r0

(r − r0)(2r + r0)

r2

− M2

r2
0

r − r0

r0

B
2r3

+ O(M3), (46)
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where

B := 8r3 + 4r2r0 + 5rr2
0 + 3r3

0 − 4r(2r − r0)
√

r2 − r2
0 .

Finally, our formula (39) expands as

cos φ = r0

r
− M

r0

(r − r0)(2r + r0)

r2

− M2

r2
0

(r − r0)(2r + r0)(αr + 2ωr0)

r3
+ O(M3). (47)

As expected, the absolute term (corresponding to a straight
line) is the same for all of the formulas. The linear terms are
also common (and corresponding to the expansion of the exact
formula), except for the pseudo-Newtonian formula and the
hyperbola. The quadratic terms are somewhat longer, only in
cases (43), (45), and (47) they remain rather simple. In particular,
notice that our suggested expansion (47) is a generalization of
the expansion (43) obtained from the approximate solution by
Biressa & de Freitas Pacheco (2011). It is also seen that if our
constants α and ω are larger than 1 (recall that we are actually
suggesting the values α = 1.77, ω = 1.45), then our quadratic
term is bigger (more negative) and thus results in a trajectory
more bent than the one provided by Equation (13).

4. COMPARISON OF RAY EXAMPLES

Let us compare the above approximations of light rays
passing at different distances from the center; we are even
including those approaching the horizon very closely. Since
the approximate formulas are primarily required to excel at
weak-field regions, they cannot be expected to perform well
down there. However, it is good to know where and how much
they fail. In particular, when using such a formula in a code,
it matters whether it is just very inaccurate, or rather yields
complete nonsense that has to be discarded.

Numerical results are presented in four figures: Figure 2
compares the approximations at small radii (down to the very
horizon), Figure 3 illustrates the radius-dependence of all of
them, Figure 4 shows the behavior at larger radii, and Figure 5
accompanies the remark 5 on asymptotics (hence total deflection
angle) added below.

The figures demonstrate that the approximations obtained
by low-order expansions of the exact formulas (namely by
linearization or quadratic expansion in M) are only usable
for rays whose pericenters are above, say, 6M ÷8M . Below
this radius, all the “ad hoc” prescriptions provide much better
results, including the pseudo-Newtonian one using the potential
suggested by Wegg. Actually, the latter even provides the
best results in a narrow region around the circular photon
geodesic at r = 3M since it reproduces its location exactly;
on the other hand, for pericenters at larger radii it is not as
precise as other approximations, though it also falls off to zero
deflection correctly. When the pericenter shifts below 4M , even
good approximations become rather problematic. The one by
Beloborodov is only usable above this radius, being not very
accurate up to some r = 5M . Our newly suggested formula
is very accurate almost everywhere, including the rays with
pericenters slightly below 4M , but at r0 = 3.77M it also deviates
from the correct behavior, switching to “elliptic” behavior (not
at all present in the relativistic treatment, besides the circular
photon orbit at r = 3M), which can only mimic the relativistic
trajectories locally. Note that the decisive value r0 = 3.77M

comes from r0 = (2 + α)M , so it might be improved (shifted
down) by choosing for our constant α a value lower than 1.77,
but this would almost certainly spoil the behavior farther away.

An approximation by a hyperbola: rough as this idea may
have seemed, the figures show that it reproduces the large-scale
features of the rays very well when tied to correct asymptotics.
However, its bending about the black hole is not sharp enough
and, also, just when endowed with correct asymptotics, it gets
quite complicated and is not invertible for r0.

Finally, it is important that the two approximations that are
satisfactory in general and can be used also below r0 = 4M ,
namely our newly suggested formula (39) and the pseudo-
Newtonian result using Wegg’s potential serve acceptably even
there (at 4M > r0 > 2M), and mainly they nowhere return
error. Above r0 � 5M , the approximation by Beloborodov
remains a benchmark whose main advantage is the extraordi-
narily simple relation (34) between the angular position on the
trajectory and the latter’s local direction.

5. ASYMPTOTIC ANGLE

Asymptotic behavior of the approximations studied here is
clearly visible in Figure 4, but let us add a special remark
(and figure) comparing the φ∞ values. It is of course useless
to include the approximation by the hyperbola here, because,
where applicable, its asymptotic angle has been prescribed by
the correct (exact) value. Therefore, we are left with the re-
sults following from the expansion of the exact formula or
approximate solution of the Binet formula, with the pseudo-
Newtonian result (27) using Wegg’s potential, with the asymp-
totics cos φ∞ = −2M/(r0 − 2M) of Beloborodov, and with
cos φ∞ = −2M/(r0 − αM) following from our formula sug-
gested above. These asymptotic forms can naturally be inverted
for r0 easier than the general formulas describing the whole
trajectory. Inversion is especially simple for Beloborodov’s and
our approximations, and also for the linearized solution of Bi-
net’s formula by Biressa & de Freitas Pacheco (2011) given in
Equation (13):

r0

M
= − (2 + cos φ∞)(1 − cos φ∞)

cos φ∞
Biressa (48)

= −2 − 2 cos φ∞
cos φ∞

Beloborodov (49)

= −2 − α cos φ∞
cos φ∞

our formula. (50)

The cos φ∞ plots given in Figure 5 confirm that the exact
behavior (solid red curve) is best reproduced by our formula
(green curve), followed by the formula of Beloborodov (dotted
black). Note that we only include there results given by the best
of the approximations. In particular, we omit those provided by
linearizations in M as well as by the quadratic formula. We can
supplement the figure by the r → ∞ limits of the expansions
given in Section 3.7, to obtain, up to second order in M,

cos φ∞ = −2M

r0
− M2

r2
0

(
15π

8
− 2

)
exact (51)

= −2M

r0
− 2M2

r2
0

Biressa (52)
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r0 =2 rM 0 =2.3 rM 0 =3M

r0 =3.22 rM 0 =3.4 rM 0 =3.6M

r0 =4 rM 0 =5 rM 0 =8M

Figure 2. Comparison of the light-ray approximations in the strong field near the black hole. Arrangement and parameterization of the photon trajectories in the
equatorial (r cos φ, r sin φ) plane corresponds to the right plot of Figure 1. The curves show the exact trajectory in solid red, the linearization of Darwin’s formula (11)
yields the dot-dashed black line, the linearized solution of the Binet formula by Bhadra et al. (2010; our Equation (16)) is dotted cyan, the one by Biressa & de Freitas
Pacheco (2011; our Equation (13)) is the dashed cyan line, the quadratic-order solution following from Arakida & Kasai (2012; our Equation (18)) yields the solid
cyan line, the approximation owing to Beloborodov Beloborodov (2002; our Equation (38)) is the dotted black line, a hyperbola (30) adjusted to the given pericenter
and to correct asymptotics is the dashed brown line, the approximation using the pseudo-Newtonian potential recommended by Wegg (2012; our Equation (26)) is
the dashed (dark) blue line, and our newly suggested approximation (39) is the solid light green line. From top left to bottom right, the plots show trajectories of
photons starting tangentially (from φ0 = 0) from radii r0 = 2M , r0 = 2.3M , r0 = 3M , r0 = 3.22M , r0 = 3.4M , r0 = 3.6M , r0 = 4M , r0 = 5M , and r0 = 8M .
Beloborodov’s prescription (dotted black line) can only be employed for r0 � 4M and the hyperbola-approximation (dashed brown line) for φ∞ < π . See the main
text for further commentary.

= −M

r0
− M2

r2
0

(
3π

2
+ 1

)
Wegg (53)

= −2M

r0
− 4M2

r2
0

Beloborodov (54)

= −2M

r0
− 2αM2

r2
0

our formula. (55)

The linear terms are equal, except that of the Wegg’s pseudo-
Newtonian formula; and the quadratic-term coefficient of the

exact value, −(15π/8−2)
.= −3.89, is most closely reproduced

by Beloborodov (−4) and by our formula (−3.54 if choosing
α = 1.77 as in the figures).

Let us add that it is not difficult to bring yet a better
proposal solely for the asymptotic angle: in Figure 5, look at
the dotted gold curve that follows with a slight modification of
our asymptotics,

cos φ∞ = − 2M

r0 − αM

[
1 − M6

(r0 − 2.1M)6

]
. (56)

It mirrors the correct curve very accurately down to some
r0 = 3.02M where it reaches cos φ∞ = +1, namely, the photon

8
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ggeWruotcaxe

asseriBalobrepyhvodoroboleB

ardahBniwraDdeziraeniladikarA

Figure 3. Same curves as those in Figure 2, i.e., again showing rays with pericenters at r0 = 2M , r0 = 2.3M , r0 = 3M , r0 = 3.22M , r0 = 3.4M , r0 = 3.6M ,
r0 = 4M , r0 = 5M , and r0 = 8M , but now grouped into plots by approximations (rather than by pericenter radii), so that it is better seen how these depend on
radius in comparison with the exact ideal: from top left to bottom right and with the same coloring as in previous figure, one can see exact rays (solid red line),
our approximation (solid light green line), pseudo-Newtonian result with Wegg’s potential (dashed dark blue line), Beloborodov’s approximation (dotted black line;
only applicable to the last three trajectories), suitably adjusted hyperbolas (dashed brown line; only applicable to the last four trajectories), linear approximation by
Biressa & de Freitas Pacheco (2011; dashed light blue line), linearized Darwin’s formula (dot-dashed black line), quadratic approximation by Arakida & Kasai (2012;
solid light blue line), and the linear approximation by Bhadra et al. (2010; dotted light blue line). The figure reveals that mainly the first-row prescriptions behave
satisfactorily down to the very horizon; they are not very accurate down there, but follow the actual rays qualitatively. Also their overall dependence on radius proves
to be very close to that visible in the exact pattern.

makes a 360◦ angular revolution when starting from there. We
stress that this has been just an ad hoc example; without doubt,
still more accurate asymptotic formulas can be found.

6. FINDING THE RAY PARAMETERS FOR GENERIC
BOUNDARY CONDITIONS

We have assumed that the azimuthal angle φ is adjusted so
that r(φ = 0) = r0, but in a real lensing situation one can only
suppose to know positions of the source, of the lensing body,
and of the observer. Placing the coordinate origin at the lensing

body and choosing the azimuthal (“equatorial”) plane as that
defined by the connecting ray, this means knowing the radii
of the source and of the observer, plus the angular difference
between the source and the observer, say, Δφ. One does not
know a priori the angular position of the ray pericenter, so one
cannot fix the azimuth φ absolutely prior to solving our inversion
exercise (r, φ) → r0. Consider now whether the exercise is still
solvable, i.e., whether it is possible to find r0 from this accessible
information.5

5 I thank the referee for drawing my attention to this point.
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r0 =3.5M r0 =3.75 rM 0 =4M

r0 =4.3 rM 0 =5.5M r0 =8M r0 =30M

Figure 4. Counterpart of Figure 2 with equatorial (r cos φ, r sin φ) plots extended to a larger radial region, in order to also compare the light-ray approximations in
weaker fields farther from the black hole. Again, the exact trajectory is the solid red line, the linearization of Darwin’s formula yields the dot-dashed black line, the
linearized solution of the Binet formula by Bhadra et al. (2010) is the dotted cyan line, the one by Biressa & de Freitas Pacheco (2011) is the dashed cyan line, the
quadratic-order solution following from Arakida & Kasai (2012) yields the solid cyan line, the approximation owing to Beloborodov Beloborodov (2002) is the dotted
black line, a hyperbola adjusted to the given pericenter and to correct asymptotics is the dashed brown line, the approximation using the pseudo-Newtonian potential
by Wegg (2012) is the dashed (dark) blue line, and our newly suggested approximation is the solid light green line. From top left to bottom right, the plots show
trajectories of photons starting tangentially (from φ0 = 0) from radii r0 = 3.5M , r0 = 3.75M , r0 = 4M , r0 = 4.3M , r0 = 5.5M , r0 = 8M , and r0 = 30M . See the
main text for interpretation.

cos φ∞

r0

cos φ∞

r0

solid red: exact result
dashed blue: Wegg’s pseudo-N
dotted black: Beloborodov
solid light green: our formula
dotted gold: good-fit example

Figure 5. Cosine of the azimuth φ along which the ray approaches radial infinity, cos φ∞, as given by the exact formula (solid red), pseudo-Newtonian treatment using
Wegg’s potential (dashed blue), by Beloborodov’s approximation (dotted black), and by the formula we suggest here (solid green). The right plot provides a more
detailed view of the small-pericenter behavior (the pseudo-Newtonian result is not shown there). Just for the sake of interest, we add a curve (dotted gold) given by
the expression (56) in order to illustrate that it is not difficult to suggest a very good formula solely for the asymptotic angle.
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r0/M

Δφ

pericentre radius r0
in dependence on Δφ

for robs = 30M
rsrc = 6M, 8M, . . . , 30M

red: exact result
green: our formula

Figure 6. Finding the connecting ray for a given configuration of source (r = rsrc) and observer (r = robs), when only their angular separation Δφ is known (not their
absolute angular positions). The solution is given in terms of the pericenter radius r0 as a function of Δφ, for robs = 30M; each curve corresponds to one particular
value of rsrc, specifically, (from bottom to top) rsrc = 6M , 8M , 10M ,. . ., 30M . Green curves have been obtained using our approximation (41), while red curves
(drawn “under” the green ones) follow by numerical solution from the exact formula. The green approximation is clearly very accurate: it only fails at Δφ → 2π (⇔
bending by ∼ π ) where our formula switches to bound-orbit mode (this happens for r0 < (2 + α)M = 3.77M , specifically).

In order for the pericenter r0 to have proper sense, let us
assume that it lies between the source and the observer. As we
wish to eventually (in solving the problem) adjust the azimuth
φ so that r(φ = 0) = r0, we can assume (for example) that the
source is at φ < 0 and the observer is at φ > 0. Let us thus
denote their positions by (rsrc >r0,−π < φsrc < 0) and (robs >
r0, π > φobs > 0), respectively. Imagine solving the inversion
for r0 “from both sides,” i.e., looking for (rsrc, cos φsrc) → r0 and
(robs, cos φobs) → r0 (regarding that φsrc <0 whereas φobs >0, it
is better to write the angular data in terms of the cosine, which
is independent of the sign; the exercise can then be treated
using the same formulas “from both sides” of the φ = 0 plane).
Both must lead to the same pericenter r0, and we also know that
φobs−φsrc gives the total angular distance traveled, Δφ (supposed
to be < 2π ), so we have two constraints:

r0(rsrc, φsrc) = r0(robs, φobs), φobs−φsrc = Δφ. (57)

Since rsrc, robs and Δφ are known, we have two equations for
two unknowns, φsrc and φobs.

Let us check whether one can really solve the exercise in such
a way. Suppose that we employ our approximation according to
which r0 is given in terms of r and cos φ by Equation (41). The
constraints thus yield(

R +
√
R2 + 4MrAB

)
src

2Asrc
=

(
R +

√
R2 + 4MrAB

)
obs

2Aobs
,

(58)
where

Rsrc := R(r = rsrc, φ = φsrc),

Robs := R(r = robs, φ = φsrc + Δφ),

Asrc,obs := A(r = rsrc,obs),

Bsrc := B(r = rsrc, φ = φsrc),

Bobs := B(r = robs, φ = φsrc + Δφ),

with R, A, B introduced below Equation (41). The above
equation is to be solved for φsrc, which in turn implies
φobs(=φsrc + Δφ) and r0, all as functions of rsrc, robs, and Δφ.

As an illustration (Figure 6), let us choose robs � rsrc (without
loss of generality) and monitor how the solution of the exercise
changes with Δφ increasing from zero to 2π for a series of source
radii rsrc increasing from some small value to robs. A simple chart
with the source lying somewhere on the r = rsrc, −π < φ < 0
half-circle, the observer lying on the r = robs � rsrc, π > φ > 0
half-circle, and their angular separation Δφ gradually growing,
reveals that (1) when rsrc and robs are sufficiently different,
the solution does not exist for too-small Δφ (the connecting
ray is nowhere purely tangential to the center then); (2) the
solution only starts to exist when Δφ is large enough for rsrc to
just coincide with r0; (3) within the interval of Δφ where the
solution does exist, the pericenter r0 typically decreases from rsrc
with increasing Δφ, because increasing the angular separation
corresponds to a connecting ray increasingly bent around the
center; (4) for Δφ → 2π the pericenter radius falls almost to 3M
and the approximations more or less cease to provide reasonable
answers; specifically, we learned at the end of Section 3.6 that
according to our approximation the minimal possible pericenter
of an unbound trajectory lies at (2 + α)M = 3.77M .

The above estimates are confirmed by Figure 6 where
the pericenter radii are plotted, in dependence on Δφ, for
robs = 30M and rsrc = 6M , 8M , 10M ,. . ., 30M . Besides the
curves r0(robs, rsrc; Δφ) obtained from our approximation (green
curves), the figure also shows analogous results obtained, purely
numerically, from the exact formula (red curves, drawn “under”
the green ones). Clearly the two series of curves almost coincide,
even at quite small r0; our approximation is only not usable for

11



The Astrophysical Journal, 800:77 (12pp), 2015 February 10 Semerák

very large Δφ (approaching 2π ) because this corresponds to
very large bending (by ∼ π ) where our formula goes over to the
elliptic-type bound-orbit regime.

7. CONCLUDING REMARKS

We have suggested a new formula approximating light rays in
the Schwarzschild space, compared it with other formulas from
the literature, and showed that it performs very well, though
being quite simple and easily invertible for the pericenter radius
r0. Besides analytical estimates, the main focus has been in
numerical testing of various plausible approximations against
exact results in a very strong as well as a weaker field regime.
We have shown that our formula also yields very good results
for the asymptotic angle of photons, as well as in searching for
a connecting ray in a given source–gravitating body–observer
configuration.

On a more general level, we can conclude that in spite
of the legitimate vigilance toward ad hoc prescriptions, not
following from an exact result by any sound procedure, in our
comparison such formulas proved considerably better than low-
order expansions of the exact formula, some of them providing
acceptable results even in close vicinity to the horizon.

I am thankful for support from Czech grant GACR-
14-10625S.
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