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ABSTRACT
Motivated by the picture of a thin accretion disc around a black hole, radiating mainly in
the direction perpendicular to its plane, we study the motion of test particles interacting with
a test geodesic radiation flux originating in the equatorial plane of a Schwarzschild space–
time and propagating initially in the perpendicular direction. We assume that the interaction
with the test particles is modelled by an effective term corresponding to the Thomson-type
interaction which governs the Poynting–Robertson effect. After approximating the individual
photon trajectories adequately, we solve the continuity equation approximately in order to find
a consistent flux density with a certain plausible prescribed equatorial profile. The combined
effects of gravity and radiation are illustrated in several typical figures which confirm that the
particles are generically strongly influenced by the flux. In particular, they are both collimated
and accelerated in the direction perpendicular to the disc, but this acceleration is not enough to
explain highly relativistic outflows emanating from some black hole–disc sources. The model
can however be improved in a number of ways before posing further questions which are
summarized in concluding remarks.
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1 IN T RO D U C T I O N

Motion of test particles under the combined effects of gravity and
radiation is of obvious astrophysical significance, mainly in the
case of the rarified atmosphere around a bright compact source.
In the literature, such a motion has mostly been studied while ap-
proximating the particle–radiation interaction by a Thomson-like
term which specifies, through an effective cross-section constant,
what part of the radiation’s relative momentum is transferred to the
particle. Adopting this approach, we have analysed the ‘Poynting–
Robertson effect’ of radiation drag in the equatorial plane of the
Schwarzschild and Kerr background space–times, for an outgoing
or ingoing ‘radial’ photon flux with zero or non-zero angular mo-
mentum (Bini, Jantzen & Stella 2009; Bini et al. 2011a). Then, we
have also considered (Bini et al. 2011b) the case of a non-test flux
involved in the exact Vaidya solution, describing a spherically sym-
metric centre emitting or accreting radiation. These papers may be
consulted for a wider review of literature on this topic.

� E-mail: oldrich.semerak@mff.cuni.cz

In the meantime, several new contributions to the subject have
appeared. Oh, Kim & Lee (2010) presented a numerical treatment
of particle trajectories in the radiation field of a slowly rotating
Kerr-like source, where the existence of equilibrium circular orbits
(‘suspension’ orbits) was confirmed. Stahl et al. (2012) studied the
halt and ‘levitation’ of particles at the corresponding ‘Eddington
sphere’ and discussed its implications for accretion on to a luminous
star. In accord with intuition and experience, they concluded that
the effective cross-section of such a shining source is typically less
than the geometric value, because the infall on to the star’s surface is
prevented by outgoing radiation. In contrast, Oh, Park & Kim (2013)
inferred from numerical experiments that luminosity enhances the
effective cross-section of a relativistic centre about four times. Stahl
et al. (2013) and Mishra & Kluźniak (2014) analysed the response
of the matter suspended on the equilibrium ‘Eddington sphere’ on
a sudden luminosity change, mainly aiming at determination of
conditions under which ejection from the system may occur.

In this paper, we consider a radiative flux directed away from the
equatorial plane in the ‘vertical’ direction, in an effort to model the
situation which may be generated by a thin accretion disc surround-
ing a compact gravitational object. We investigate the behaviour of
test particles above the disc, mainly in the region near the axis of
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symmetry. This question has already been tackled several times in
the literature in connection with the acceleration/deceleration and
axial collimation of astrophysical jets apparently coming out of the
above-type accretion systems both on stellar and galactic scales.1

In a seminal paper, Bisnovatyi-Kogan & Blinnikov (1977) calcu-
lated the action of radiation on particles in the neighbourhood of a
thin disc around a black hole (represented by a Newtonian centre)
in their study of various possible consequences of radiation emis-
sion on the disc accretion. They mainly analysed the dependence
of particle motion (and of the latter’s aftermaths) on the value of
luminosity, assuming this is generated by the relativistic version of
the Shakura–Shunyaev ‘α-model’ of thin discs due to Novikov and
Thorne, and deduced, in particular, that accretion ceases to be pos-
sible (at least against the direction of the main energy release) when
the luminosity approaches some value around the Eddington one.
It was also suggested there that radiation push could ‘sow’ (weak)
electric currents and thus electromagnetic field in plasma due to its
stronger effect on electrons than on ions.

Next, Sikora & Wilson (1981), Piran (1982) and Bodo et al.
(1985) analysed the radiation acceleration and collimation of test
particles or fluid within funnels of thick discs, assuming a Thomson-
type interaction. On the other hand, Phinney (1982) argued that
‘the greatly enhanced radiation pressure force felt by a relativistic
plasma is accompanied by catastrophic Compton cooling and only
under extreme conditions can it lead to relativistic bulk velocities.’
This conclusion was also confirmed by Melia & Königl (1989)
in their study of radiation-drag deceleration of very fast outflows.
Then, Vokrouhlický & Karas (1991) considered the motion of test
particles moving along the symmetry axis of the Schwarzschild or
Kerr space–times under the influence of radiation from a thin test
disc determined by the Novikov–Thorne model. They propagated
the radiation predicted by this model to the location of the particle
and there integrated over the latter’s local sky, taking into account
all the effects of general relativity resulting from the curvature of
space induced by a central black hole. The energy–momentum ten-
sor obtained in this manner was then projected on to the particle’s
four-velocity in order to find the force which the radiation exerts
on the particle. The authors concluded that the general relativistic
effects on the radiation field (redshift, ray bending, dragging) do
not affect the terminal speed of the particle significantly and also
did not observe any significant effect of radiation on the axial pre-
collimation of particles launched from the surface of the disc. They
noticed, however, that the results did depend strongly on the lumi-
nosity profile of the disc primarily through the rotation of the central
object and pointed out that different conclusions might therefore be
reached with different disc models.

Since the black holes supposed in astrophysical sources may
be spinning rapidly, the question also appeared naturally whether
the rotating (Kerr) space–time geometry could not itself accelerate
and/or axially (pre-)collimate outflows emerging from its inner re-
gion – see Bičák, Semerák & Hadrava (1993), de Felice & Zanotti
(2000), Williams (2004), Takami & Kojima (2009), Gariel et al.
(2010) and de Freitas Pacheco, Gariel & Marcilhacy (2012). How-
ever, today the astrophysical jets are believed to be mainly driven
by magnetohydrodynamical effects (e.g. Pudritz et al. 2012).

1 An up-to-date review of the accretion-disc theory is maintained by
Abramowicz & Fragile (2013). The particular issue of jet outflows has
been surveyed e.g. by Pudritz, Hardcastle & Gabuzda (2012), with special
emphasis put on the supposedly crucial role of magnetic fields.

In the meantime, the interest in radiation acceleration of jets
has continued and more astrophysically quite sophisticated treat-
ments have appeared since then, incorporating radiation from spe-
cific models of accretion discs, a more realistic description of
the radiation–particle interaction (dependent on energy and tak-
ing into account heating of the particle as well as its radiation
losses), specific particle content of the outflow (electron–proton
or/and electron–positron jets, for example), magnetic fields or/and
special geometry of the interaction region (‘funnels’ of thick ac-
cretion discs, in particular) – see Sikora et al. (1996), Inoue &
Takahara (1997), Madau & Thompson (2000), Chattopadhyay &
Chakrabarti (2002), Orihara & Fukue (2003), Fukue & Akizuki
(2006), Takeuchi, Ohsuga & Mineshige (2010), Kumar, Chattopad-
hyay & Mandal (2014), Cao (2014) and their references. Let us
conclude this overview by Koutsantoniou & Contopoulos (2014)
who have studied the influence of disc radiation on dynamics of
particles at the inner edge, placing the accretion system around a
rapidly rotating Kerr black hole. They found that for particles around
the innermost stable circular orbit the effect of radiation becomes
almost entirely azimuthal and that, interestingly and contrary to a
standard intuition, it rather changes from drag to acceleration. This
should enhance the efficiency of a ‘cosmic battery’ mechanism in
which the radiation push might trigger the jet outflows indirectly,
through the production of magnetic field.

We would like to compare these various results (especially those
of Vokrouhlický & Karas 1991) with what can be found using
the approach we have taken in previous papers. Restricting to the
Schwarzschild case for simplicity now, in Section 2 we prescribe
the radiative flux to be emanating perpendicularly from the equa-
torial plane (where the thin accretion disc is imagined to lie) and
study its properties, and then its interaction with the test particles
in Section 3. Then, in Section 4, we suitably approximate the pho-
ton trajectories, choose the equatorial energy–density profile of the
flux and extend it off the equatorial plane by approximating the
conservation laws which govern its behaviour. Then, we add the
contributions from two opposing radiation streams which – due to
the symmetry – pass through each point and then compute their
effect on the particle motion. Numerical examples are given in Sec-
tion 5 and the concluding section ends with several remarks and
plans for further study. Note that we use geometrized units in which
c = 1 and G = 1, Greek indices take the values 0, 1, 2, 3 and Latin
indices 1, 2, 3, and partial derivatives are indicated by a comma.

2 ‘V E RT I C A L’ G E O D E S I C R A D I AT I O N FL U X
I N A SCHWARZSCHI LD FI ELD

A thin accretion disc in the equatorial plane would certainly emit
radiation in all directions, but it is perhaps a natural zero-order
approximation to assume that most of the flux is directed perpen-
dicularly to this plane. Actually, Bisnovatyi-Kogan & Blinnikov
(1977) calculated, for a particle at any given location, the radiation
force by integrating contributions from all directions over the whole
Novikov–Thorne disc, and found a ‘cosine law’ peaked along the
vertical axis. However, since the disc itself orbits around the centre
(in fact, extremely fast in the case of very compact centre), the radi-
ation it emits should have some angular momentum, but we will still
set this angular momentum to zero here, not only for simplicity, but
mainly because otherwise the radiation could not reach the vicinity
of the axis. Thus, we assume that a static axially symmetric thin
test disc lies in the equatorial plane θ = π/2 of the Schwarzschild
black hole outside some radius greater than the horizon radius, and
that the photons emanate from it in the perpendicular directions
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Radiation thrust in Schwarzschild space–time 2319

Figure 1. The flux of free test photons emitted perpendicularly from the
Schwarzschild equatorial plane into the ‘upper’ half-space, as plotted in
coordinates ( ± rsin θ , rcos θ ) for a typical ‘meridional’ plane through the
symmetry axis. Through each spatial location pass two rays, except for the
axis where each point is crossed by photons coming from an entire equatorial
circle. Photons starting from below r = 3M fall into the black hole (the grey
circle) and are not shown. In all the plots, the axis values are given in the
units of M.

and follow geodesics. Due to the axial symmetry, each spatial point
above the disc is then crossed by two rays,2 except for the symmetry
axis θ = π/2, where at each point all the rays starting from a certain
circular loop meet in a ‘caustic’, as illustrated in Fig. 1.

Writing the metric in the standard Schwarzschild form

ds2 = −N2dt2 + dr2

N2
+ r2(dθ2 + sin2 θ dφ2)

with N2 = 1 − 2M
r

, our photons with zero axial angular momentum
have non-zero four-momentum components given by

pt =
√K
N2b

, pr = εr

√K
r

√
r2

b2
− N2 , pθ = εθ

√K
r2

, (1)

where b ≡ √K/E denotes their impact parameter, E = −pt is their
energy at infinity and K = (pθ )2 is their ‘Carter constant’, all re-
maining conserved along the rays; the signs εr ≡ ±1 and εθ ≡ ±1
fix the orientation of the meridional-motion components. At each
location above the circular photon orbit at r = 3M, this ‘null dust’
constitutes an outward flux (εr = +1) which would admittedly drag
any test particle along. Besides the shape of the photon trajectories,
the angular distribution of the flux and thus of the particle acceler-
ation/deceleration – in particular, the eventuality that the particles
might be driven into a collimated outflow – depend on the ‘lumi-
nosity profile’ fixed in the equatorial plane, namely on a chosen
equatorial radial profile of the constants of the motion Eeq = E(req,
θ = π/2) and Keq = K(req, θ = π/2) that the photons are endowed

2 In fact by four of them, if the fluxes starting from both faces of the disc
were taken into account. We will only consider one of them, however. Also,
we neglect higher order rays which reach the given point after making one
or more full circuits around the black hole.

Figure 2. The energy profile E = −pt (expressed in units of
√K/M) of

photons shot perpendicularly from the equatorial plane as a function of the
initial equatorial radius req, for the case when K is chosen to be independent
of req. This profile is just the reciprocal of the well-known effective potential
for free radial motion of massless particles in the Schwarzschild space–time.
It starts from zero at req = 2M, has a global maximum of (3

√
3M)−1 at

req = 3M and then falls back to zero asymptotically.

with, but mainly on energy density of the flux determined by con-
servation laws. The constants are constrained by the requirement
that the rays depart orthogonally from the equatorial plane, namely
by the condition pr = 0 there, which takes the form

E2
eq

Keq
r2

eq − 1 + 2M

req
≡ r2

eq

b2
− N2

eq = 0 ⇒ b = req√
1 − 2M

req

. (2)

This radius-dependent constraint implies that only one of the two
constants of the motion may be chosen to have the same value
across all the rays, thus determining the other as a function of the
initial radius. Regarding the supposed accretion-disc temperature
profiles, it does not seem wise to endow all the photons with the
same energy E, and also the resulting profile of Keq(req) implied
by the constraint is not very plausible. We will therefore fix the
Carter constant K instead, which implies that the energy profile
has to read Eeq/

√K = Neq/req; it is illustrated in Fig. 2. Since real
accretion discs are supposed to be considerably hotter at smaller
radii, but this property is somewhat opposed by larger redshift there
with respect to infinity, the profile seen in the figure seems to be a
reasonable choice, in particular it properly goes to zero at the hori-
zon. Rough as the K = const choice may seem, the corresponding
energy profile in Fig. 2 actually well resembles the temperature
profiles obtained from standard models of thin discs – see, for ex-
ample, Bhattacharyya, Thampan & Bombaci (2001) who compared,
in their fig. 7, the temperature profiles for discs around a Newtonian
centre, around a Schwarzschild black hole and around neutron- or
strange-star models employing different equations of state; useful
plots were also presented by Pérez, Romero & Perez Bergliaffa
(2013), showing the temperature profiles of Shakura–Sunyaev and
Novikov–Thorne thin discs around a Schwarzschild centre in gen-
eral relativity and in simple f(R) theories (see their figs 10 and 14,
in particular).

Now, taking ratios of equations (1) with εr = +1 leads to

dθ

dr
= εθ

r

1√
E2

K r2 − N2
= εθ

√
r

1√
r3/b2 − r + 2M

(3)
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which can be further expressed in terms of the initial equatorial
radius by substituting Eeq = √KNeq/req for E to obtain

dθ

dr
= εθ req

r√
N2

eqr
2 − N2r2

eq

= εθ r3/2
eq√

r(r − req)
√

r(r + req)(req − 2M) − 2Mr2
eq

. (4)

In order to integrate this equation, notice the cubic polynomial
inside the square root in the denominator of the rightmost side of
equation (3). Its graph is everywhere concave upward, having two
real roots above the horizon, one below and one above 3M. All our
photons start moving perpendicularly from the equatorial plane at
r > 3M and escape to infinity, which means that the integration
is performed just from the outer root req (turning point of radial
motion) up to a desired radius r > 3M. Assuming without loss
of generality that the photons start moving ‘upwards’ from the
equatorial plane (i.e. that εθ = −1 initially), one finds the solution
formula obtained by Darwin (Darwin 1959, see also equation 260
in Chapter 3 of Chandrasekhar 1983)3

− εθ θ (r) = π

2
− 2

√
req

[(req − 2M)(req + 6M)]1/4
[K(k) − F (χ, k)]

(5)

= π

2
− 2

√
req

[(req − 2M)(req + 6M)]1/4
F (χ ′, k) , (6)

where F (χ, k) = ∫ χ

0
dα√

1−k2 sin2 α
is the elliptic integral of the first

kind, with amplitude χ and modulus k given by

sin2 χ = 1 − 1

k2

2M
(
1 − req

r

)
√

(req − 2M)(req + 6M)
, (7)

2k2 = 1 − req − 6M√
(req − 2M)(req + 6M)

, (8)

and K(k) = F(π/2, k) is its complete version. One can check imme-
diately that F(χ , k) only reduces to K(k) at the starting point, where
r = req and so χ = π/2, which correctly yields θ (r = req) = π/2.
The second expression (6) contains a different amplitude χ ′ which
is related to χ by

sin2 χ ′ = 1 − sin2 χ

1 − k2 sin2 χ

= 1

k2

4M
(
1 − req

r

)
√

(req − 2M)(req + 6M) + req − 2M − 4M
req

r

. (9)

The complementary modulus k′ which is related to k by k′2 = 1 −
k2 is given by the same expression (8) as k, just with a plus sign
after the 1; their product is therefore quite short,

k2k′2 = 4M (req − 3M)

(req − 2M)(req + 6M)
. (10)

The latitude θ of all our photons decreases from π/2 until they
cross the symmetry axis θ = 0. From there θ increases back, which

3 Written in this way, the formula is valid only until the elliptic-integral
term reaches 3π/2. Such a value is only reached for photons starting from
req < 3.09M, however.

is ensured by the sign εθ on the left-hand side of equation (5). In
describing the photon trajectories, this sign should only appear in
front of sin θ terms: actually, one can effectively treat sin θ (as well
as θ itself) as positive for photons which have not yet crossed the
axis while as negative for those which have already crossed it. Such
a distinction will be important in evaluation of the photon effect on
the particle, because at each (non-axial) point the particle interacts
with just two photons – one approaching the axis and one already
receding from it (the latter started from smaller equatorial radius
than the former, so it has been bent more).

Unfortunately, equation (5) represents only an implicit relation
between (r, θ ) and req and can only be solved numerically for req in
general. More precisely, it determines the trajectory of the photon
as parametrized by its starting radius req, which can in principle
be inverted to ‘reconstruct’ req as a function of the actual photon’s
position (r, θ ) (this inversion is unique, at least if restricting to req

larger than a certain radius slightly above 3M in order to discard
photons which make more than one full revolution in θ before
reaching infinity). Being able to trace req from the actual position
(r, θ ) within the photon flux, one then also learns the distribution
of photon energy E in space (and thus of their impact parameter
b = √K/E as well), because req is uniquely related to Eeq (at least
at req > 3M, which is relevant), namely

E(r, θ ) = Eeq(r,θ ) =
√
K (Neq/req)(r,θ ),

whereK is an absolute constant, and the subscript notation indicates
this implicit relationship.

2.1 Energy–momentum tensor

The radiation flux will be described as an incoherent ‘null dust’
with energy–momentum tensor

T μν = 
2pμpν , (11)

where 
2(r, θ ) scales the radiation energy density. The latter has to
be fixed by the conservation law Tμν

;ν = 0 after choosing a certain
profile on some surface stretching across the rays; in our case, it
is natural to choose the equatorial profile 
2

eq = 
2(req, θ = π/2).
For an incoherent radiation flux, this implies

0 = (
2pμpν);ν = 
2pμ
;νp

ν + pμ(
2pν);ν = pμ(
2pν);ν ,

because the photon congruence is geodesic: pμ
;νpν = 0. Hence, for

the particular ‘vertical’ flux chosen in the previous section, Tφν
;ν = 0

is satisfied trivially due to pφ = 0 (in the equatorial plane, Trν
;ν = 0

also holds automatically, because pr = 0 there), while the other
components reduce to a single common condition

(
2pν);ν = 0 =⇒ (
2),νp
ν = −
2pν

;ν (12)

which says that the evolution of 
2 along the photon congruence
is tied to the latter’s expansion pν

;ν ; somewhat more explicitly,

(
2),r pr + (
2),θ pθ = − 
2

√−g

[
(
√−g pr ),r + (

√−g pθ ),θ
]
.

(13)

An even more explicit equation follows using equation (1) to sub-
stitute for pi. In doing so, one has to realize that the differentiation
is performed in a general direction, not just along the photon rays,
so it must be performed with every quantity that is not constant
all over the radiation field; in particular, this even applies to the
constants of geodesic motion (which are only constant along the
rays) unless they are same for all the rays. With our choice made in
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Radiation thrust in Schwarzschild space–time 2321

previous section, this means that one has to consider the energy E to
be a function of (r, θ ), whereas K is left constant since it has been
chosen to be the same for all photons. The conservation condition
can thus be expressed as

(r2
2pr ),r sin θ + εθ
√
K (
2 sin θ ),θ = 0 (14)

or after substitution for pr = (
√K/r)

√
r2/b2 − N2(

r 
2

√
r2

b2
− 1 + 2M

r
sin θ

)
,r

+ εθ (
2 sin θ ),θ = 0 . (15)

Expanding the product derivative and dividing through, one finds

(
r 
2

)
,r

+ εθ (
2 sin θ ),θ√
r2

b2 − 1 + 2M
r

sin θ

+ 
2
r2

b2 − r3

b3 b,r − M
r

r2

b2 − 1 + 2M
r

= 0 ,

(16)

where b = req(1 − 2M/req)−1/2 according to the constraint (2).
Apparently, it is correct to keep the εθ sign in the equation in
order to distinguish between the flux approaching the axis and its
successor continuing after crossing the axis, since otherwise the
θ -derivative would jump across the axis due to the reversal of the
∂xμ/∂θ orientation.

3 IN T E R AC T I O N O F A T E S T PA RT I C L E W I T H
T H E R A D I AT I O N FL U X

The aim of this paper is to check whether the radiation flux from
the disc could not accelerate test particles and/or collimate them in
the direction perpendicular to the disc plane. Hence, consider a test
particle moving in the Schwarzschild field and influenced by inter-
action with radiation described by the null dust energy–momentum
tensor of equation (11). If the interaction is dominated by Thomson
scattering, it is convenient to approximate its effect on the particle
in terms of the fraction of transferred radiation momentum, as seen
in the particle’s rest frame, i.e. by the equation of motion

Duμ

dτ
= −σ̃ (δμ

ν + uμuν) T ν
λu

λ = σ̃ 
2Ê p̂μ , (17)

where τ , uμ and aμ = Duμ/dτ are the test-particle proper time,
four-velocity and four-acceleration, (δμ

ν + uμuν) is the projector
on to the particle’s local rest space and σ̃ is an effective constant
scaling the interaction strength (with dimensions of length); the
second version of the right-hand side is written in terms of the
relative photon energy and momentum with respect to the particle,
Ê ≡ −pνu

ν and p̂μ, which result from the decomposition

pμ = −uμuνp
ν + (δμ

ν + uμuν) pν = Êuμ + p̂μ . (18)

Despite the elegant form (17) of the equation of motion, the
expressions for Ê and p̂μ make it rather cumbersome to be given
explicitly here, the only simplification occurring thanks to the zero
azimuthal motion of photons, pφ = 0. Note, however, that although
both the gravitational and radiation fields are axially symmetric
(Tμφ = 0), the force does contain a non-zero azimuthal component
if the particle’s velocity has some, because of the projection term
uφ Tνλuνuλ.

4 A P P ROX I M AT I N G T H E P H OTO N
T R A J E C TO R I E S

In order to evaluate the effect of the photon flux on the test particle
at a given point (r, θ ), one would have to solve equation (5) for

req and find the photon energy E = √
K/b or the impact parameter

b (and thus the momentum of the incoming photon) there. Then,
one would have to determine 
2(r, θ ) at that point by solving the
continuity equation (12) with a prescribed ‘velocity’ pμ(r, θ ). If
we do not want to resort to pure numerics to accomplish these two
steps, we can consider trying analytic approximations.

A natural approach is to linearize the problem in some small
parameter. We have b > req and, restricting to the astrophysically
relevant case req > 3M, also r ≥ r0 > 3M, while r and b are less
clearly related: all the photons start from r < b, but quickly get
to r > b and then even to r > b. One may linearize consistently
in several small parameters, but the most frequent is the lineariza-
tion in M which is always the smallest one. However, Darwin’s
exact solution (5) is often better approximated by an ad hoc for-
mula rather than by applying some general approximation scheme;
this is mainly true at low radii where the weak-field linearizations
give too ‘weak’ result (we will discuss this issue in more detail
elsewhere Semerák 2014). A good example is the formula provided
by Beloborodov (Beloborodov 2002) which is often used in the
accretion-disc community. Another usable possibility is to approx-
imate the photon meridional-plane trajectory by a suitably adjusted
hyperbola. Choosing correctly the asymptotic angle θ∞ along which
the photon approaches radial infinity, such a hyperbola may be the
best approximation at large distances, though close to a horizon it
is again bent less than the actual relativistic trajectory. Given the
symmetry of our radiation field, both these options can only be used
for photons that make less than a 90◦ change in direction, however.
Still another possibility is to use a pseudo-Newtonian approach and
simulate the Schwarzschild field by a suitably modified Newtonian-
type potential. Various forms of such a potential have been sug-
gested, starting from the well-known cases of Paczyński and Wiita,
V = − M

r−2M
(also used in some of the papers cited in the Introduc-

tion), or Nowak and Wagoner, V = −M
r

(
1 − 3M

r
+ 12M2

r2

)
; see e.g.

the form V = −M
r

(
1 + αM

r

)
, with constant α, advocated by Wegg

(2012) recently (specifically with α = 3) which has also proven
quite satisfactory in our photon-motion problem.

Actually, it is possible to design a number of rather accurate
approximations of the photon trajectories. However, the photon
motion is not the full story here: we also have to employ its descrip-
tion (inverted for req, and thus for b) in the continuity equation (16)
and then solve the latter for the flux density 
2. Although a chosen
approximation may allow for a tractable inversion, this often makes
the continuity equation too difficult to solve, even after linearization
in M.

One approximation which leads to a solvable form of the continu-
ity equation is reached by the usual linearization in M.4 Linearizing
thus Darwin’s formula (5) gives

− εθ sin θ = req

r
− M

r

(r − req)(2r + req)

req r
+ O(M2) (19)

which inverts to

2req

r
= −εθ r sin θ − M +

√
(εθ r sin θ + M)2 + 8M(r + M)

r + M
. (20)

4 Real accretion discs certainly radiate in a much less symmetric and regular
way than we consider here, so although it is always nice to have a self-
consistent and ‘exact’ solution, in this case it is clearly sufficient to use any
reasonable approximation, at least when trying to determine the flux density
from conservation laws. Special attention is only required in the region close
to the horizon where approximations may misrepresent the picture heavily
or even lead to errors when applied within the exact background field.
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Figure 3. Meridional-plane plots of three photon trajectories, as represented by the exact formula (thick red) and by several approximations we have
considered: Beloborodov’s approximation is black dotted (it is only applicable above 4M); approximation by a suitably adjusted hyperbola is brown dashed;
pseudo-Newtonian result using the potential V = − M

r

(
1 + 3M

r

)
is long-dashed blue; our approximation given by formula (21) and used below is thick green;

and the result following from standard linearization in M of the exact formula (the worst approximation) is dash–dotted. The photon starts from req = 4M (left),
req = 7M (middle) and req = 2.5M (right). Our approximation almost coincides with the exact trajectories for photons starting down to some 3.8M and even
below 3M (down to the very horizon) it does not yield non-sense (it follows a constant radius there approximately).

Note that on the axis, the latter yields

req(θ = 0) = 4Mr

M + √
M(8r + 9M)

=
√

2Mr − M

2
+ O(M3/2) .

These equatorial radii req(εθ = −1), req(εθ = +1) should then be
substituted into the impact parameter b = req/Neq and this in turn
into equation (1) in order to find momenta of the two photons which
hit the particle at the given location (r, θ ).

A comparison of several approximations is presented in Fig. 3.
Meridional plots of three photon trajectories are shown there, as
represented (1) by the exact formula (thick red curve), (2) by Be-
loborodov’s approximation, applicable above 4M (black dotted; it
is included mainly as a benchmark), (3) by a suitably adjusted hy-
perbola (brown dashed), (4) by a pseudo-Newtonian result using
the potential V = −M

r

(
1 + 3M

r

)
(long-dashed blue), (5) by the re-

sult following from the above linearization in M of the differential
equation (dash– dotted; it is the worst approximation) and (6) by
the formula

− εθ sin θ = req

r
− M

req − αM

(r − req)(2r + req)

(r − ωM)2
, (21)

(where α and ω are real constants) which we newly suggest and
will specifically use with α = 1.77 and ω = 1.45 (thick green).5

The hyperbola (brown dashed) is chosen to have the same asymp-
totic latitude θ∞ as the orbit provided by Beloborodov’s formula
(dotted), namely given by sin θ∞ = 2M

req−2M
. In the top plot of the

figure, the photon starts from req = 4M, where it is already quite
hard to mimic the exact result by any low-order formula; however,
our approximation even there practically coincides with the exact

5 The issue of satisfactory approximation will be more discussed in Semerák
(2014).

curve. In the bottom-left plot, the photon starts from req = 7M;
Beloborodov’s and our approximation are almost indistinguishable
from the exact ray. At larger radii, the approximations gradually
coalesce with the exact curve and nothing interesting happens (only
the pseudo-Newtonian result gets worse), so we do not show any
photon starting from the more remote, weak-field region. In the
bottom-right plot, the approximate formulas are subjected to a very
tough situation of a photon starting from req = 2.5M. Surprisingly
enough, none of them yields a totally unacceptable result (apart from
the linearization in M and from Beloborodov’s formula which is,
however, not applicable below 4M, so it is not present), the pseudo-
Newtonian (blue) curve is even very close to the exact one and
shares its black hole destiny. Better approximations can be found,
but typically they must be of higher order, so usually not invertible
for req and leading to a rather difficult continuity equation.

4.1 The corresponding photon-flux density

Using the result (20) of the linearization in M, one finds that the
continuity equation (16) assumes the following two forms

εθ = −1 (‘primary’ flux, π/2 ≥ θ ≥ 0) :

r(
2),r −
(

1 + 2 + sin2 θ

sin2 θ

M

r

)
(
2),θ tan θ = 0 , (22)

εθ = +1 (‘secondary’ flux, 0 ≤ θ < θ∞) :

(r2
2),r − (2 + sin θ )(2 − 3 sin θ )

2 sin2 θ (1 − sin θ )
M 
2

+ 2M
(
2 sin θ ),θ

sin2 θ
√

1 − sin θ
= 0 . (23)
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Their respective solutions must then be matched on the axis. It
is worth noting that linearizing the continuity equation in M, it is
much less sensitive to the particular approximation used to describe
the rays. For example, for εθ = −1, not only the approximation
represented by the formula (19), but all approximations in the above
family (21) (and maybe others) lead to the very same linearized
continuity equation (22). Note that there are some very good options
within the above class of such choices, among them the one given
by α = 1.77 and ω = 1.45 which we will use below. Note also that
the above is of course true for the εθ = +1 case as well, but the
classes of ray approximations leading to the same linearized form
of the continuity equation are different; in particular, the class just
mentioned, when used with ( − sin θ ), does not yield equation (23).

The continuity equation (22) for 
2 which describes the flux in
the θ = π/2 → 0 quadrant is solved by any function 
2

−(X), where

X = r2 sin2 θ + 4Mr

8M2 exp(2M/r)
− Ei

(
1,

2M

r

)
,

and

Ei

(
1,

2M

r

)
≡ �

(
0,

2M

r

)
≡

∞∫
2M/r

dx

xex

is the exponential integral (related with the incomplete � function).
On the axis, it becomes


2
− = 
2

−

(
r

2M
exp

(
−2M

r

)
− Ei

(
1,

2M

r

))
. (24)

Let us recall our astrophysical motivation, involving radiation from
an equatorial accretion disc: (i) real thin accretion discs are assumed
to reach close to the innermost stable circular orbit around the
compact centre; in the Schwarzschild field this orbit lies at r = 6M;
(ii) the disc temperature is the highest in the region close to its inner
edge, so in the disc plane (the equatorial one) the radiation flux
peaks somewhere near above 6M while falling to zero very quickly
(exponentially) towards the horizon and more slowly (probably as
1/r2) towards infinity. Therefore, we can for example choose


2
− = 8

M4X
exp

(
− κ

Xλ

)
, (25)

X = r2 sin2 θ + 4Mr

8M2 exp(2M/r)
− Ei

(
1,

2M

r

)
, (26)

where κ and λ are some positive numbers; generically, smaller κ

and larger λ make the profile have a sharper maximum closer to the
centre. We will specifically choose (κ = 32, λ = 2) and (κ = 64,
λ = 1) for numerical examples; the first case should approximate
an accretion disc concentrated towards the innermost stable circular
orbit, while the second case corresponds to a disc spread out to larger
radii. At large radii, 
2

− falls off as 64/(Mrsin θ )2 + O(1/r3), while
along the θ = 0 axis only as 16/(M3r) + O(1/r2). The above flux
profiles really well follow the curves occurring in the accretion-disc
literature, see for example figs 9 and 11 in Pérez et al. (2013).

The continuity equation (23) which describes the flux after it has
crossed the symmetry axis (θ = 0 → θ∞) is solved by


2
+ = F+(Y )

M2r2 exp
(

3
2

) exp
(

3
2

√
1 + sin θ

)
(1 + √

1 + sin θ )2
×

×
(

(
√

2 + 1)
√

1 − sin θ√
2 + √

1 + sin θ

) 3
√

2
4

, (27)

where F+(Y) is an arbitrary dimensionless function of

Y = (2 − sin θ )
√

1 + sin θ − 3M

r
.

On the axis, the solution reduces to


2
+ = 1

4M2r2
F+

(
2 − 3M

r

)
. (28)

The converging and diverging phases of the flux match together
on the axis if 
2

+ = 
2
− there, hence if

F+

(
2 − 3M

r

)
= 32 r2

M2Xθ=0
exp

(
− κ

Xλ
θ=0

)
.

One can write this functional relation as

F+(Yθ=0) = 288

(2 − Yθ=0)2Xθ=0
exp

(
− κ

Xλ
θ=0

)
,

where

Xθ=0 ≡ Xθ=0(Yθ=0) = 1
2M
r

exp
(

2M
r

) − Ei

(
1,

2M

r

)

with
2M

r
= 2

3
(2 − Yθ=0) .

For a general value of θ , we thus have

F+(Y ) = 288

(2 − Y )2Xθ=0(Y )
exp

(
− κ

Xλ
θ=0(Y )

)
, (29)

Xθ=0(Y ) ≡ 1
2
3 (2 − Y ) exp

[
2
3 (2 − Y )

] − Ei

[
1,

2

3
(2 − Y )

]
. (30)

The ‘secondary’ flux density 
2
+ vanishes on the equatorial plane,

and at radial infinity it generally falls off as 1/r2 (but along the
axis only as 1/r, as known from its matching to 
2

− there). Both
components of the flux are everywhere positive and smooth, having
one (global) maximum somewhere between the horizon and infinity.

Fig. 4 presents the meridional plane energy-density distributions
of both the flux solutions; the top plots show half of the fluxes
starting from the ‘right-hand’ half of the equatorial plane, while the
bottom plots show total density given by superposition of the top
plots with its counterparts obtained by reflection with respect to the
vertical axis. Sections of the energy-density profile of both parts of
the flux, drawn at various latitudes for the two specific cases (one
rather concentrated and the other more spread out), are given in Fig.
5. It is clearly seen that the first radiation flux is more concentrated
(towards smaller radii). It can be estimated that with a more accurate
solution of the continuity equation (namely higher-order in M), the
flux would more bend around the black hole (consider that the
linearization in M makes the centre’s field weaker), so it will spread
to the axis slightly sooner (i.e. at smaller radii) than in the present
plots and the secondary flux component (after crossing the axis)
would be correspondingly stronger.

5 E X A M P L E S O F PA RT I C L E T R A J E C TO R I E S

The final step is to study the equations of motion (17) numerically,
in order to see whether and under which conditions the test particles
tend to be accelerated and/or collimated along the symmetry axis.

5.1 Choosing the scale factors

First, one has to ‘connect with nature’ by choosing reasonably
several free scale factors, namely the globally constant square K of
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2324 D. Bini et al.

Figure 4. Meridional-plane (rsin θ , rcos θ ) plots of two different solutions
for the photon-flux density 
2(r, θ ): the more concentrated photon flux given
by κ = 32, λ = 2 (top two plots) and of the less concentrated photon flux
given by κ = 64, λ = 1 (bottom two plots). Within both pairs, the first plots
show densities of the ‘right’ halves of the fluxes, namely of those starting
from the right-hand half of equatorial plane in the figure: the converging
(before-the-axis) part 
2− (25) is plotted in the right-hand quadrant and the
diverging (after-the-axis) part 
2+ (27,29,30) in the left-hand quadrant; both
match along θ = 0. The second plots of the pairs show total energy densities

2(r, θ ), given by superposition 
2− + 
2+ in all the meridional plane.
Notice the different ranges of the plot pairs. Note also that although the
colour shading of both pairs of plots is normalized from red (zero density)
across the HUE range to violet-red (largest density), the first-flux maximum is
about 0.6, while the second-flux maximum is only about 0.046 (see Fig. 5).
Horizontal axis corresponds to the equatorial plane (θ = π/2), vertical one
to the symmetry axis (θ = 0); black hole is down in the middle (small light
half-circle).

Figure 5. Radial profiles of the two solutions for the photon-flux density
shown in Fig. 4, evaluated along different latitudes. (In other words, radial
sections through the first and third plots of Fig. 4, respectively, taken at
latitudes scanning the half-circle by 5◦ in a counter-clockwise sense.) The
curves with the same maximal values represent the ‘converging’ phase of the
photon flux 
2−(r), as given by equation (25), evaluated, from left to right,
at latitudes going from the equatorial plane to the symmetry axis (θ = 90◦,
85◦, 80◦, . . . 0). In the top plot, κ = 32 and λ = 2 are chosen; the equatorial
density peaks nearby above the innermost stable circular orbit, having very
steep falloff towards the horizon and more slow (yet also monotonous) fall
towards infinity. The bottom plot shows a more stretched emission pattern
(note the different axes ranges), given by κ = 64 and λ = 1. The photons
starting from any given φ deviate from each other and are outgoing, so it
is intuitive that the density profile gets wider when the flux travels from
the equatorial plane towards the axis (recall the photon-motion pattern in
Fig. 1). In the right-hand part of the plots, the density of the photon-flux
‘diverging’ phase 
2+(r) is shown, as given by (27,29,30) and matched to

2−(r) along the axis; it is evaluated at latitudes going from the symmetry
axis back to the equatorial plane by 5◦ again. Only several first profiles of
this secondary flux are visible, since the density dissipates quickly when the
flux propagates ‘behind’ the axis, so the curves quickly drop to zero with
increasing latitude there. The radius (horizontal axis) is in the units of M,
while the flux density is in the units of M−4.

the photon angular momentum, the constant multiplicative factor
which scales the energy density of the flux 
2, and the constant σ̃

which scales the efficiency of the photon → particle momentum
transfer. As discussed in previous papers (see mainly Bini et al.
2009, last part of section 2), it is advantageous to follow Robertson
(1937) and combine all these factors into a single effective quantity
(denoted by A) which has a useful interpretation. Namely, for a
purely radially outgoing flux in a spherically symmetric field, it is
given by

A = σ̃ 
2E2r2,

which is constant and equal to M when the flux has exactly the
Eddington value. (The connection between the quantities A, σ̃ and
luminosity was explained in Bini et al. 2009, sections 3.1 and 3.2.)
Our flux is surely not radial and its photons do not have the same
energy, so such a quantity is not constant in general and can only
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Radiation thrust in Schwarzschild space–time 2325

loosely be related to the Eddington luminosity, but it is still very
helpful when trying to adjust the scheme to realistic parameters,
with the A = M value serving as ‘benchmark’. Let us add that the
actual accretion-disc flux may perhaps be highly super-Eddington,
mainly if it comes out of the system in a direction where it does not
counteract accretion; however, super-Eddington flux is not likely to
be generated by a thin accretion disc.

More specifically, we have E2 = K
b2 = K

r2
eq

(
1 − 2M

req

)
, so in the

equatorial plane the expression can be written in terms of K and req

alone,

A = σ̃ 
2K r2

r2
eq

(
1 − 2M

req

)
r=req−→ σ̃ 
2K

(
1 − 2M

req

)
. (31)

Since all components of the ‘vertical’-photon four-momentum (1)
are scaled by

√K, the force term in the equation of motion

−σ̃ (δμ
ν + uμuν) T ν

λu
λ = −σ̃ 
2 pνpλ uλ(gμν + uμuν)

is proportional to σ̃ 
2K, which is well estimated by A since the

remaining factor
(

1 − 2M
req

)
lies between 1/3 and 1 and is typically

close to 1. Hence, for example, having the solution for 
2 (namely
the converging-flux solution 
2

−), one can take its equatorial maxi-
mum max(
2

eq) and then choose σ̃ K according to σ̃ K ∼ A

max(
2
eq)

.

For a ‘10-times Eddington’ disc, one simply takes 10 times more.

5.2 Choice of the approximation for photon trajectories

The weak-field approximations – like that obtained by linearization
in M – generally yield trajectories ‘less bent about’ the central
gravitating body. When using such an approximation for our photon
field, this means that both the trajectories of individual photons and
the corresponding flux are oriented, at generic location, more in the
vertical direction (they are less affected by the centre) than they
would be in the exact description. For the flux, this imperfection
is no issue (our solutions are anyway represented by everywhere
positive and smooth functions), but the approximate description of
the individual trajectories can actually cause problems. Namely,
since the centre’s field is effectively weakened, an occurrence of a
photon at a particular location may lead to inferring wrongly that
it must have started from very close to (or even below) the horizon
(a horizon is not actually present in an approximate description).
In our case, the main problem occurs when the particle is close
to the equatorial plane (especially if it is also at small radius), in
particular, when one asks from where the photon started which
should hit the particle there: according to the approximate picture,
the photon which started from the opposite half of the equatorial
plane can only get there if it started very close to the horizon or even
from req < 2M. Hence, in a certain region close to the equatorial
plane, the approximation is not usable for the ‘secondary’ photons
(those which have already crossed the symmetry axis), because it

would lead to negative
(

1 − 2M
req

)
there and thus to imaginary b and

E. (This can be simply checked by plotting the formula (20) for req

in the εθ = +1 case.)
There are two possible responses to this issue. The first possibility

is to take into account the secondary photons only outside the region
where the above problem occurs. This is a reasonable option since
the secondary flux is negligible anyway in the equatorial region
close to the centre (while the primary flux is the strongest there, on
the contrary). The second possibility is to use a better approximation
for the individual photon trajectories, without necessarily abandon-
ing the flux density 
2 obtained from the weak-field approximation.

(We saw that the latter yields a well-behaved result.) Such an option
might be considered inconsistent, yet still it is better than using the
linear approximation ‘consistently’ (for the description of photon
trajectories as well as for the continuity equation): the particle mo-
tion is mainly misrepresented if the impacting photon momenta are
not correct, especially in the initial phase of motion close to the
black hole (and remember that the momenta also enter the energy–
momentum tensor), whereas details of the radiation density field are
not that crucial; if the distortion due to approximation is not very
large, one can understand the result as representing a field emitted
by some slightly different source, which is no problem, because the
radial profile of the radiation flux was chosen ‘by hand’ anyway
(though of course in accord with predictions of the accretion-disc
theory).

Therefore, in order to be able to also treat the innermost region
close to the black hole properly, it is crucial to approximate the
photon trajectories very accurately and, in addition, to be able to
solve – at least in linear order in M, say – the form of the continuity
equation obtained after substituting this approximation. As already
discussed in Section 4, we suggest and will use the approximation
of the photon trajectories by the parametrized family of curves (21)
which can be inverted to yield the initial radius

req = R− +
√

R2− + 4MrAB
2A , where

R− ≡ (r − ωM)2(−εθ r sin θ + αM) − Mr2 ,

A ≡ (r − ωM)2 + Mr,

B ≡ 2r2 + εθ (r − ωM)2α sin θ . (32)

Specifically, we have used this formula with the parameter values
α = 1.77 and ω = 1.45 which yield a very accurate description,
much better than the linearization in M of the exact result and even
better than the well-known formula by Beloborodov which cannot
be used below req = 4M and also is not easily invertible. (See Fig. 3
for comparison and Semerák 2014 for a more thorough account.) As
already stressed above, it is favourable that for εθ = −1 and to linear
order in M, this formula leads to the same continuity equation as the
formula following from linearization in M of the exact trajectory, so
it is consistent with the flux 
2

− already found (at least up to linear
order in M).

5.3 Numerical results

The effect of the accretion-disc radiation on particles initially float-
ing somewhere around the inner part of the disc is illustrated in Figs
6–10; some of them involve the rather concentrated radiation flux
(κ = 32 and λ= 2), while some consider the flux spread-out to larger
radii (κ = 64 and λ= 1). We mostly adjust the parameters to what we
called the ‘10-times Eddington’ disc, i.e. we choose σ̃ K ∼ A

max(
2
eq)

with A  10M. Specifically, we have set σ̃ K = 20 for the concen-
trated flux and σ̃ K = 220 for the less concentrated one. The plots
were drawn in Schwarzschild coordinates (r, θ , φ), with initial ve-
locities specified with respect to local static observers, i.e. those
whose four-velocity is proportional to the time-like Killing vector
∂xμ/∂t . The ‘physical’ (locally measured) components of these rel-

ative velocities ṽı̃ are related to four-velocity uμ by ṽı̃ =
√

gii

−gtt

ui

ut

(no summation over i).
We first released a set of particles from very near the equato-

rial plane from radii r = 40M, 38M, 36M, . . . , 10M, endowing
them only with Keplerian value of the azimuthal velocity, thus with
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Figure 6. Effect of radiation (and gravity) on particles released at r = 40M, 38M, 36M, . . . , 10M from the equatorial plane, with only the azimuthal component
of initial velocity non-zero and given by the Keplerian value. The meridional plane (rsin θ , rcos θ ) projections of the particle motion are shown for the more
concentrated disc (κ = 32, λ = 2) in the left-hand plot and for the more spread-out disc (κ = 64, λ = 1) in the middle plot. Both clearly indicate collimating
effect of the radiation, though the particles’ non-zero angular momentum (given by the Keplerian value initially) naturally drives them somewhat off the axis.
The top view projections on to the equatorial plane (rsin θcos φ, rsin θsin φ) are shown in the right-hand column (the concentrated disc above/the spread-out
one below) is characterized mainly by azimuthal motion.

physical velocity with respect to a local static observer given by√
M/(r − 2M) , but no initial velocity in the radial or latitudinal

direction. Such particles should best approximate the motion of
material within real accretion disc, and also reflect the effect of the
disc’s radiation without any prejudices on how the motion out of
the disc should begin. The results are shown in Fig. 6 and indi-
cate that the radiation quite strongly drives the particles in the axial
direction. (However, since the particles have non-zero angular mo-
mentum, namely given by Keplerian value initially, their trajectories
are somewhat deflected from the axis by centrifugal force.) Fig. 7
contains a fan of particles released from r = 6M from the plane of
the ‘concentrated’ disc. The particles differ in the value of the initial
radial velocity and their trajectories again indicate vertical push by
the radiation. Fig. 8 shows fans of particles launched towards the
centre from r = 18M (for the concentrated disc) or r = 50M (for
the spread-out disc), θ = π/8, with various initial velocities cover-
ing the whole ‘ingoing’ half-space (with respect to r = const). The
effect of a different interaction strength is revealed by Fig. 9 where
a test particle is bounced off the inner part of the disc, the more the
higher value of the coupling σ̃ K one sets. Finally, Fig. 10 illustrates
the time evolution of all three components of the particle’s relative
velocity with respect to a local static observer for both concentrated
and spread-out radiation flux and for the same motions as followed
in Fig. 6.

As also specified in the figures captions, Fig. 6 (its left-hand and
middle panels) is using meridional-plane projection (rsin θ , rcos θ )
where azimuthal motion is suppressed completely (this component

is revealed by top views in the right-hand panel), whereas in Fig. 7
we use side-view projection (rsin θcos φ, rcos θ ) where the line-of-
sight component (rsin θsin φ) of motion is suppressed (while the
right-hand panel again brings top view along the axis). In Figs 8
and 9, both the projections give the same result since the trajectories
shown there have no azimuthal motion at all (zero angular momen-
tum). Hence, while some of the intersections occurring in the plots
are only seeming (namely those in Fig. 6), the trajectories in Fig. 8
do really intersect due to the stronger ‘repulsive’ effect of radiation
on particles which have approached the disc more closely.

6 C O N C L U S I O N S , R E M A R K S A N D P L A N S

The picture of a black hole thin accretion disc shining mainly in
directions perpendicular to its plane has lead us to consider a ra-
diation flux starting just perpendicular from the equatorial plane
of a Schwarzschild field and to check how such a vertical flux
affects test particles around the disc (which would otherwise fol-
low geodesics of the background space–time). Numerical examples
confirm that it can drive the particles effectively in motion along the
axis accelerating and collimating them in that direction. However,
for an astrophysically relevant range of flux and interaction-strength
parameters, the acceleration of particles in itself is not enough to
explain the highly relativistic energies observed in some jets emanat-
ing from black hole sources; namely, we have observed ‘terminal’
Lorentz factors not much larger than 2 in our examples. This conclu-
sion agrees with observations made in the literature (see mainly the
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Radiation thrust in Schwarzschild space–time 2327

Figure 7. A fan of 17 particles released from r = 6M from the plane of the ‘concentrated’ disc (given by κ = 32, λ = 2). The initial velocity with respect to a
local static observer has azimuthal component given by the Keplerian value, latitudinal component −0.1 (which translates into a slight push towards the axis)
and radial component changing from −0.8, −0.7, −0.6,. . . , to +0.7 and +0.8. Here, the side view projection (rsin θcos φ, rcos θ ) (not the meridional plane r,
θ -projection used above) is shown in the left-hand plot and the top view in the right-hand plot.

Figure 8. Side view of evolution of meridional fans of particles initially ingoing with respect to r = const, namely launched in 13 different directions towards
the centre (by 15◦): the initial velocity with respect to a local static observer has zero azimuthal component, while radial and latitudinal components are
−0.9 (sin δ, cos δ) with δ = 0, π/12, π/6, π/4, . . . , 11π/12, π . All the trajectories have no azimuthal motion, so the side view represents them completely.
The left-hand plot involves the ‘concentrated’ disc (given by κ = 32, λ = 2) and particles launched from r = 18M, θ = π/8, while the right-hand plot involves
the ‘spread-out’ disc (κ = 64, λ = 1) and particles launched from r = 50M, θ = π/8. Apparently, the radiation ‘blows’ the particles away from the discs
effectively and thus accelerates and collimates them (has them move into a relatively narrow cone with respect to which they would have filled otherwise).

MNRAS 446, 2317–2329 (2015)

 at U
niverzita K

arlova v Praze on D
ecem

ber 30, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


2328 D. Bini et al.

Figure 9. Effect of interaction strength, illustrated on a particle starting
from r = 6M on the axis (θ = 0) with initial velocity −0.2 in the radial
direction and 0.9 in the latitudinal direction with respect to a local static
observer. The trajectories differ in the value of σ̃ K, namely, going from
the least bent to the most bent trajectories, σ̃ K = 1, 2, 3, 4, . . . , 20. The
rather concentrated flux is chosen (κ = 32, λ = 2). The particle starts from
a region where the flux is relatively weak but then enters the region where
it is almost maximal, which results in the bending of its trajectory, the
more pronounced the stronger is the ‘coupling’ σ̃ K. The plot represents the
trajectories completely, since they have no azimuthal component.

references given in the Introduction) and seems to be rather robust
with respect to a detailed profile of the flux, so it can be expected to
also hold for more sophisticated models of disc emission with this
same radiation–particle interaction mechanism.

Also known from the literature is another experience: when the
flux is very strong, its detailed distribution is much more impor-
tant for the trajectory than the particle’s initial velocity. Actually,
as already voiced in Bisnovatyi-Kogan & Blinnikov (1977): ‘The
difference in the initial velocity. . . practically does not affect the
results, since a proton acquires a velocity an order of magnitude
higher. . . in a time much smaller than the orbital period [as being
pushed by radiation], and the initial condition is rapidly forgotten.’
(On the contrary, initial location of the particle is of course im-
portant.) Our plots do not fully comply with such an experience:
we considered relatively strong luminosities, yet the trajectories of

particles launched from the same point (Figs 7, 8, 10) clearly differ
from each other according to their initial velocities.

We have mainly focused on meridional-plane projection of the
motion in order to see the vertical effect of the flux, but it is worth to
mention that the top views attached in Figs 6 and 7 (cf. also Fig. 10)
reveal that the azimuthal motion is also far from trivial. As already
pointed out at the end of Section 3, this is mainly due to the term
−σ̃ uφ Tνλu

νuλ in the equation of motion which is non-zero in spite
of the azimuthal symmetry of the gravitational background as well
as of the radiation flux. (Let us once more refer to Koutsantoniou
& Contopoulos 2014 who focused just on the azimuthal effect and
drew interesting conclusions for the disc’s inner edge.)

One should mainly investigate now how the results would be mod-
ified by a more appropriate description of the radiation–particle in-
teraction. In fact, the inner parts of accretion discs mainly emit in the
X band (10–1000 keV, say) where one should incorporate Compton
scattering (which is described by the Klein–Nishina cross-section in
the rest frame of the particle) rather than resort to the Thomson-like
limit where the interaction is only characterized by an effective ‘cou-
pling coefficient’ σ̃ independent of frequency. The results by Keane,
Barrett & Simmons (2001) who compared these two descriptions
in the case of a relativistic spherical source would be important in
such an advancement. Another possible improvement would be to
proceed to a hydrodynamical description of matter. Needless to say,
since our study is purely particle-like, the figures do not in general
say how a blob of plasma would move above an accretion disc; such
a question would have to be solved by a hydrodynamic or magneto-
hydrodynamic code. Though at least a qualitative agreement might
be expected (cf. arguments given by Mishra & Kluźniak 2014), for
a fluid, the intersections would presumably lead to a formation of
shocks, after which the fluid trajectories might differ significantly
from the test-particle ones.

With a more appropriate model of the interaction, one might
also proceed to a better model of the disc radiation: emission in
all directions should be taken into account, not just the emission
perpendicular to the disc, even though the ‘vertical’ pattern might
represent a reasonable overall picture. Also, the radiation should
correspond to that emitted by orbiting matter, so generically having
some angular momentum. (However, due to the emission in all
directions, there would also be present photons with zero angular
momentum which can reach the symmetry axis.) Rotation should
also be incorporated into the gravitational field, proceeding to the
Kerr background. Finally, one should ensure that the innermost
region is also endowed with a ‘correct’ flux, which would require,
besides a very good description of the photon motion (we hope to
have employed a very reasonable approximation here), to solve the
continuity equation more accurately than up to linear order in M.
We are confident that progress can be made along all these routes.

The last point we want to touch on is the question of particle
escape. This has recently been treated by Stahl et al. (2013) and
Mishra & Kluźniak (2014) with motivation to learn how changes of
the centre’s luminosity (spherically symmetric in their case) influ-
ence particle corona around, in particular, how strong burst is needed
for a considerable coronal ejection. In this paper, rather large lumi-
nosities have been chosen and all the particles whose trajectories
are shown in the plots escaped to arbitrarily large distances, except
one in the middle plot of Fig. 6 and seven in Fig. 7. However, these
were all captured from the close vicinity of the black hole where
all the above model imperfections are most serious. Before drawing
more reliable implications about our system, specifically in case of
moderate luminosities when details are even more important, one
should proceed in the indicated directions.
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τ

τ

evolution of velocity components

yellow: azimuthal
green: latitudinal

red: radial

starting radius req decreases
in order indicated by arrows

Figure 10. Time evolution of the physical velocity with respect to static observers at particle momentary locations, plotted for a set of particles starting from
the radii r = 40M, 38M, 36M, . . . , down to 8M (left) and 12M (right), from very near the equatorial plane, as driven by the more concentrated (κ = 32, λ = 2;
left-hand plot) and more spread-out radiation flux (κ = 64, λ = 1; right-hand plot). The same motions have been considered in Fig. 6. Evolution of all three
components of the relative velocity in proper time (horizontal axis, given in units of M) is shown; the azimuthal component is plotted in yellow (it starts at
the local Keplerian orbital value ṽ ≡ ṽφ̃ = [(r/M) − 2]−1/2 and then falls to zero overall), the latitudinal component is plotted in green (it starts from zero,
quickly goes negative and after reaching a minimum it approaches zero gradually) and the radial component is plotted in red (it starts from zero and increases
monotonously). The arrows help to identify the curves: the closer to the centre the particle started, the smaller / the smaller (less negative) / the larger is its
azimuthal / latitudinal / radial velocity at τ = 500M. (The only exception are several particles released from smallest radii in the case of the less concentrated
flux on the right: they start below maximum of the flux density and are influenced less there than those exposed to stronger flux at slightly larger radii.) The
plots show that the particles are strongly affected by radiation, but their terminal velocity (almost entirely radial) is not more than 0.9 (of the speed of light).
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Mishra B., Kluźniak W., 2014, A&A, 566, A62
Oh J. S., Kim H., Lee H. M., 2010, Phys. Rev. D, 81, 084005
Oh J. S., Park C., Kim H., 2013, Gen. Relativ. Gravity, 45, 41
Orihara S., Fukue J., 2003, PASJ, 55, 953
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