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In a previous paper, we considered the motion of massive spinning test particles in the “pole-dipole”
approximation, as described by the Mathisson-Papapetrou-Dixon (MPD) equations and examined its
properties in dependence on the spin supplementary condition. We decomposed the equations in the
orthonormal tetrad based on the timelike vector fixing the spin condition and on the corresponding spin,
while representing the curvature in terms of the Weyl scalars obtained in the Newman-Penrose null tetrad
naturally associated with the orthonormal one; the projections thus obtained did not contain the Weyl
scalarsΨ0 andΨ4. In the present paper, we choose the interpretation tetrad in a different way, attaching it to
the tangent uμ of the worldline representing the history of the spinning body. Actually two tetrads are
suggested, both given “intrinsically” by the problem and each of them incompatible with one specific spin
condition. The decomposition of the MPD equation, again supplemented by writing its right-hand side in
terms of the Weyl scalars, is slightly less efficient than in the massive case, because uμ cannot be freely
chosen (in contrast to Vμ) and so the uμ-based tetrad is less flexible. In the second part of this paper, a
similar analysis is performed for massless spinning particles; in particular, a certain intrinsic interpretation
tetrad is again found. The respective decomposition of the MPD equation of motion is considerably simpler
than in the massive case, containing only Ψ1 and Ψ2 scalars and not the cosmological constant. An option
to span the spin-bivector eigenplane, besides the worldline null tangent, by a main principal null direction
of the Weyl tensor can lead to an even simpler result.
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I. INTRODUCTION

In Ref. [1] (henceforth referred to as paper I), we studied
the problem of motion of a massive spinning test particle
(“pole-dipole” body) as described by the Mathisson-
Papapetrou-Dixon (MPD) equations

_pμ ¼ −
1

2
Rμ

νκλuνSκλ; ð1Þ

_Sαβ ¼ pαuβ − uαpβ; ð2Þ

where pμ and uμ denote the total momentum and four-
velocity of the particle, Sμν is the particle-spin bivector, and
the dot denotes the absolute derivative alonguμ.We restricted
to vacuum space-times and focused on the dependence of the
exercise on the spin supplementary condition SμνVν ¼ 0,
necessary to fix ambiguity in the MPD equations, and on the
interpretation of the spin-curvature interaction in terms of the
Weyl scalars. Starting from the projection of the equations
into a suitable orthonormal tetrad, we chose the latter’s time
vector to coincide with the “reference observer” Vμ speci-
fying the spin condition and one of the spatial legs to
be given by the spin vector sμ connected with Sμν by
sμ ≔ − 1

2
ϵμνρσVνSρσ ¼ −�SμνVν. Rewriting the force term

representing spin-curvature interaction in terms of the scalars
Ψ0–4, obtained by projecting the Weyl tensor onto the
associated Newman-Penrose (NP) complex null tetrad, we
found that the MPD-equation orthonormal-basis projections
do not contain scalars Ψ0 and Ψ4. We then suggested a
possible way to choose the remaining two spatial basis
vectors “intrinsically,” that is, along directions provided by
the geometry of the problem itself; this choice is applicable
when uμ∦pμ (an alternative tetrad, usable in this situation—
but not together with the Mathisson-Pirani condition, on the
contrary—is added in the present paper, Sec. III B 1).
In order to find how the problem looks in space-times of

some particular curvature type, we aligned the first vector
kμ of the NP tetrad with the highest-multiplicity principal
null direction (PND) of the Weyl tensor by a suitable choice
of Vμ, reproducing at the same time a given spin, either
described by sμ or Sμν according to the MPD equations.
More specifically, the plan goes like this: have a generic
space-time (thus some kμ and other PNDs) and a generic
particle (with some spin vector sμ or spin tensor Sμν at a
given point). Aligning the first real vector of the NP tetrad
with kμ, its second real vector lμ can always be chosen so as
to satisfy the relation sμ ¼ sffiffi

2
p ðkμ − lμÞ,1 or, respectively, as

an eigenvector of Sμν independent of kμ; finally Vμ is

*oldrich.semerak@mff.cuni.cz 1More precisely, it is only not possible if kμsμ ¼ 0.

PHYSICAL REVIEW D 92, 124036 (2015)

1550-7998=2015=92(12)=124036(13) 124036-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.124036
http://dx.doi.org/10.1103/PhysRevD.92.124036
http://dx.doi.org/10.1103/PhysRevD.92.124036
http://dx.doi.org/10.1103/PhysRevD.92.124036


retrodefined by Vμ ¼ 1ffiffi
2

p ðkμ þ lμÞ. Projecting the MPD

equation of motion into the orthonormal tetrad involving
these Vμ and sμ=s as the zeroth and first vectors (and
completed by some orthonormal eμ

2̂
and eμ

3̂
), one obtains

Eqs. (66)–(69) of paper I,

−Vμ _pμ ¼ −2s ImΨ2 u1̂

− sðImΨ3 − ImΨ1Þu2̂

− sðReΨ3 þ ReΨ1Þu3̂; ð3Þ

e1̂μ _pμ ¼ −2s ImΨ2 u0̂

− sðImΨ3 þ ImΨ1Þu2̂

− sðReΨ3 − ReΨ1Þu3̂; ð4Þ

e2̂μ _pμ ¼ þs

�
2ReΨ2 −

Λ
3

�
u3̂

− sðImΨ3 − ImΨ1Þu0̂

þ sðImΨ3 þ ImΨ1Þu1̂; ð5Þ

e3̂μ _pμ ¼ −s
�
2ReΨ2 −

Λ
3

�
u2̂

− sðReΨ3 þ ReΨ1Þu0̂

þ sðReΨ3 − ReΨ1Þu1̂; ð6Þ

where uα̂ denote the tetrad components of four-velocity.
It is known that—with the exception of Petrov type III—

it is possible to rotate the null tetrad so it becomes
“transverse” in the sense that the corresponding Ψ1 and
Ψ3 projections vanish (instead of the usual elimination of
Ψ0 andΨ4). If such a rotation of the tetrad were feasible (in
addition to the above), the spinning-particle motion would
be fully determined by Ψ2 and by the cosmological
constant (because Ψ0 and Ψ4 are not involved from the
beginning). Unfortunately, this could only be achieved by
chance, because the necessary rotation involves all the NP
vectors (in dependence on Weyl scalars in the original NP
tetrad); in particular, it fixes the ðkμ; lμÞ plane, so lμ cannot
be chosen to lie in the ðkμ; sμÞ plane at the same time.
In the last part of paper I, we discussed the implications

of the spin conditions mostly considered in the literature,
mainly advocating the condition _Vμ ¼ 0 which leads to
uμ∥pμ and generalizing it, and finally checked several
particular types of motion.
In the present paper, let us proceed in a similar way but

choosing a different orthonormal tetrad, namely, the one
tied to uμ as the time vector. In Sec. II, we suggest—as a
counterpart of the intrinsic tetrad based on Vμ considered in
paper I—a uμ-based tetrad which follows naturally from
geometry of the problem. If trying to adapt the interpre-
tation tetrad to the Weyl-tensor PNDs, one is either led to

the situation when Sμνuν ¼ 0, so the Mathisson-Pirani
condition holds (thus returning to the respective section
of paper I), or one has to release the “natural” association of
the orthonormal tetrad with the NP tetrad, namely, to
compute the Weyl scalars in a NP tetrad which is not
naturally associated with the orthonormal tetrad into which
the MPD equations have been projected. Both possibilities
are worked out, with the type-N space-time mentioned as
an example. Implications of specific spin supplementary
conditions are considered in Sec. III, pointing out, in
particular, that for uμ∥pμ a different tetrad has to be devised
since the original one degenerates (similarly as its counter-
part employed in paper I).
In the second part (Sec. IV), we turn to spinning particles

with zero rest mass. Starting from a summary of what is
known from the literature, we study the geometry of the
massless problem in a similar way as its “massive”
counterpart before. In particular, we again propose a certain
natural NP tetrad and the associated orthonormal frame,
which follow from the geometry of the problem itself, and
inquire about the properties of the MPD equation of motion
when projected there. Also the properties of the orthonor-
mal frame are examined, including the circumstance pμ∥kμ
when the frame is not available (and _pμ is itself propor-
tional to the worldline null tangent kμ).
First, however, let us remind the reader that the space-

time is supposed to be vacuum, possibly involving a
nonzero cosmological constant Λ; the metric signature is
(−þþþ); and geometrized units are used in which c ¼ 1,
G ¼ 1. Greek indices run 0–3, latin indices 1–3, and the
summation convention is followed. The dot denotes an
absolute derivative with respect to the particle’s proper time
τ, the asterisk denotes the Hodge dual, and the overbar
indicates complex conjugation. The Riemann tensor is
defined by Vν;κλ − Vν;λκ ¼ Rμ

νκλVμ and the Levi-Civita
tensor as

ϵμνρσ ¼
ffiffiffiffiffiffi
−g

p ½μνρσ�; ϵμνρσ ¼ −
1ffiffiffiffiffiffi−gp ½μνρσ�; ð7Þ

where g is the determinant of the covariant metric and
½μνρσ� is the permutation symbol fixed by ½0123� ≔ 1.
Please see (e.g.) paper I for an introductory summary on the
spinning-particle problem, including basic as well as recent
references.

II. VACUUM MPD EQUATIONS IN
A TETRAD TIED TO uμ

The reference observer Vμ, in terms of which the spin
supplementary condition is written (SμσVσ ¼ 0), can be
chosen freely, so it is generically possible to attach it to a
given NP tetrad by taking Vμ ≔ 1ffiffi

2
p ðkμ þ lμÞ. This is not in

general possible with uμ, because this has to be obtained
from pμ which in turn is determined by the MPD equations,
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so none of these two vectors can be chosen. Hence the
procedure will have to be different, namely, based on the
given uμ and kμ.
We will again start from the MPD equation of motion,

rewritten in terms of spinvector sμ in the form (39) of paper I,

_pμ ¼ �Rμ
ναβuνsαVβ

¼
�

�Cμ
ναβ þ

Λ
3
ϵμναβ

�
uνsαVβ; ð8Þ

where we have used the vacuum relation between the
Riemann-tensor and Weyl-tensor left duals �Rμ

ναβ and
�Cμ

ναβ (in a vacuum they equal the right duals). Two
advantages of having uμ as the time vector of the tetrad
are obvious: first, similarly as Vμ (and sμ, which we used in
paper I), the four-velocity uμ appears on the right-hand side
among the vectors on which the dual Riemann is projected,
and second, thewhole _pμ is from the beginning orthogonal to
uμ, so its “zeroth” component in such a tetrad vanishes
automatically. (Note that none of these properties holds for
the third major “time” vector of the exercise, pμ.) Now,
however, the following question arises: which spatial vectors
should one add to uμ, in order to complete the basis?
Generally, there are two possibilities: either to take some
vectors provided intrinsically by the pμ, uμ, sμ, Vμ geometry
(possibly also including derivatives of these vectors) or to try
to somehow connect the spatial basis directly to the curvature
structure, while staying in a space orthogonal to uμ.
The first, intrinsic possibility can be proposed in analogy

with paper I. Actually, denoting

γ ≔ −uμVμð> 0Þ; μ ≔ −pμVμð> 0Þ;

we chose there the basis

Vμ; sμ; μuμ − γpμ; ðs2δμν − sμsνÞ _Vν ð9Þ

(or rather its normalized version), made of the eigenvectors
Vμ and sμ of the spin bivector Sαβ ¼ ϵαβμνVμsν and of the
eigenvectors ðμuμ − γpμÞ and ðs2δμν − sμsνÞ _Vν of its dual
�Sμν ¼ sμVν − Vμsν. As a counterpart of this basis, we
suggested the quadruple made of uμ and spatial vectors

pμ −muμ ¼ − _Sμαuα; ð10Þ

γsμ þ sνuνVμ ¼ −�Sμαuα; ð11Þ

ϵμικλuιðγsκ þ sνuνVκÞpλ ¼ −� _Sμλ�Sλνuν; ð12Þ

i.e., of the eigenvectors uμ and ðpμ −muμÞ (“hidden
momentum”) of the bivector _�Sμν ¼ ϵμναβpαuβ and of the
eigenvectors ðγsμ þ sνuνVμÞ and ϵμικλuιðγsκ þ sνuνVκÞpλ

of the bivector _Sαβ ¼ pαuβ − uαpβ. In the above, m
is the particle mass with respect to uμ, given by
m ≔ −uμpμð> 0Þ.

Note that the last of the tetrad vectors can also be written
in a different way: regarding the formula [see, e.g., Ref. [2],
Eq. (7.15)]

�Fμλ�Hλν ¼ HμλFλν þ
1

2
δμνFαβHαβ;

valid for any two bivectors Fμν and Hμν, we can rewrite

ϵμικλuιðγsκ þ sνuνVκÞpλ

¼ −� _Sμλ�Sλνuν ¼ −Sμλ _Sλνuν −
1

2
uμ _SαβSαβ

¼ −Sμλ _Sλνuν − uμϵαβγδpαuβVγsδ

¼ −Sμλ _Sλνuν − uμs_s ¼ −ðδμα þ uμuαÞSαλ _Sλνuν
¼ ðδμα þ uμuαÞϵαλγδVγsδðpλ −muλÞ; ð13Þ

where we have used just basic forms of all the bivectors and
relation (33) from paper I, i.e.,

s_s≡ sμ _sμ ¼
1

2
Sαβ _Sαβ ¼ Sαβpαuβ ¼ ϵμναβsμVνuαpβ: ð14Þ

Also, instead of the tetrad vectors uμ and ðpμ −muμÞ, it
would be possible to use in the basis, for example, pμ and
ðmpμ −M2uμÞ (the latter being given by the component of
uμ orthogonal to pμ).
In order to make the tetrad orthonormal, one needs

magnitudes of the spatial vectors:

ðpμ −muμÞðpμ −muμÞ ¼ m2 −M2; ð15Þ

ðγsμ þ sνuνVμÞðγsμ þ sνuνVμÞ ¼ γ2s2 − ðsνuνÞ2; ð16Þ

ϵμικλuιðγsκ þ sνuνVκÞpλϵμρστuρðγsσ þ sβuβVσÞpτ

¼ � _Sμλ�Sλνuν
� _Sμκ�Sκσuσ

¼ −
1

2
_Sαβ _Sαβ�Sλνuν�Sλσuσ

¼ ðm2 −M2Þðγsμ þ sνuνVμÞðγsμ þ sνuνVμÞ
¼ ðm2 −M2Þ½γ2s2 − ðsνuνÞ2�: ð17Þ

Finally, regarding that the tetrad used in paper I was
numbered as

eμ
0̂
≔ Vμ; ð18Þ

eμ
1̂
≔

sμ

s
; ð19Þ

eμ
2̂
≔

μuμ − γpμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðm2 −M2Þ − ðγm − μÞ2

p ; ð20Þ

eμ
3̂
≔

ϵμικλV ιsκðμuλ − γpλÞ
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðm2 −M2Þ − ðγm − μÞ2

p ; ð21Þ

SPINNING PARTICLES IN VACUUM SPACETIMES OF … PHYSICAL REVIEW D 92, 124036 (2015)

124036-3



let us do it similarly here,

eμð0Þ ≔ uμ; ð22Þ

eμð1Þ ≔
γsμ þ sνuνVμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2s2 − ðsσuσÞ2

p ; ð23Þ

eμð2Þ ≔
pμ −muμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p ; ð24Þ

eμð3Þ ≔
ϵμικλuιðγsκ þ sνuνVκÞpλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2s2 − ðsσuσÞ2

p ð25Þ

(we distinguish the two tetrads by the different markings of
their vector-numbering indices).
Clearly neither of the tetrads can be erected if uμ∥pμ (see

Sec. III B below).

A. Basic observations

One of the vectors we have proposed for the uμ-based
tetrad, ðγsμ þ sνuνVμÞ, is a combination of Vμ and sμ, so it
belongs to the eigenplane of Sμν. If we select this plane to
coincide with that spanned by the PND kμ and a suitably
chosen lμ, the vector ðγsμ þ sνuνVμÞwill be linked with the
curvature structure. This is actually the best that can be
done in this respect; in particular, one cannot include in the
basis two independent vectors lying in the kμ, lμ plane,
because it is impossible to make both of them orthogonal to
uμ. Therefore, the above set of vectors seems to be a
reasonable proposal from which to build a uμ-directed
basis, which at the same time is attached to the curvature
structure as closely as generically possible. (So far, how-
ever, the space-time is left completely general, and
also the tetrad is not necessarily linked to the Weyl-tensor
PNDs.)
Introducing the tetrad (22)–(25), we can first

write (8) as

_pμ ¼ 1

γ

�
�Cμ

ναβ þ
Λ
3
ϵμναβ

�
uνðγsα þ sιuιVαÞVβ ð26Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2s2 − ðsð0ÞÞ2

q
γ

�
�Cμð0Þð1ÞðδÞ þ

Λ
3
ϵμð0Þð1ÞðδÞ

�
VðδÞ;

ð27Þ

where the relevant components of VðδÞ read

Vð0Þ ≔ eð0Þμ Vμ ¼ −uμVμ ≡ γ; ð28Þ

Vð2Þ ≔ eð2Þμ Vμ ¼ γm − μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p ; ð29Þ

Vð3Þ ≔ eð3Þμ Vμ ¼ γϵμικλVμuιsκpλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2s2 − ðsσuσÞ2

p
¼ γsμ _sμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 −M2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2s2 − ðsσuσÞ2
p ð30Þ

[Eq. (14) has been used]. It is clear that the cosmological

constant does not occur in the eð1Þμ _pμ component, i.e., in the
projection on ðγsμ þ sνuνVμÞ. Since the latter plays the role
of spin in (26), this implies the same property we observed
on Vμ-tetrad decomposition in paper I: Λ only influences
motion in directions perpendicular to the spin.
When projecting _pμ to the “parenthesis” tetrad, one also

notices that due to the orthogonality uμ _pμ ¼ 0 the “second”
component yields just

eð2Þμ _pμ ¼ pμ _pμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p ¼ −M _Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p ;

where the mass M is given by M2 ≔ −pμpμð> 0Þ.
Let us also add some obvious identities useful when

transforming between the “hatted” and the parenthesized
tetrads:

γ ≡ −uμVμ ≡ u0̂ ≡ Vð0Þ;

μ≡ −pμVμ ≡ p0̂;

m≡ −uμpμ ≡ pð0Þ;

sμuμ ≡ su1̂ ≡ −sð0Þ:

B. Decomposition in a curvature-adjusted tetrad.
Which one?

Employing Appendix A of paper I, where orthonormal
components of the Weyl tensor (and consequently those of
its dual) are expressed in terms of the Ψ0–Ψ4 scalars, it is
now easy to write down the decomposition of the MPD
equation of motion (8):

1

σ
eð1Þμ _pμ ¼ −2 ImΨ2 Vð0Þ

− ðImΨ3 þ ImΨ1ÞVð2Þ

− ðReΨ3 − ReΨ1ÞVð3Þ; ð31Þ

1

σ
eð2Þμ _pμ ≡ −M _M

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p

¼ −ðImΨ3 − ImΨ1ÞVð0Þ

þ 1

2
ðImΨ0 − ImΨ4ÞVð2Þ

þ
�
ReΨ2 −

1

2
ðReΨ0 þ ReΨ4Þ þ

Λ
3

�
Vð3Þ; ð32Þ
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1

σ
eð3Þμ _pμ ¼ −ðReΨ3 þ ReΨ1ÞVð0Þ

−
�
ReΨ2 þ

1

2
ðReΨ0 þ ReΨ4Þ þ

Λ
3

�
Vð2Þ

−
1

2
ðImΨ0 − ImΨ4ÞVð3Þ; ð33Þ

where we abbreviated σ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2s2−ðsσuσÞ2

p
γ . Apparently the

result is similar to the decomposition with respect to the Vμ-
based tetrad, given in Eqs. (3)–(6), with one important
difference: the components obtained in paper I do not
contain Ψ0 and Ψ4, whereas now these scalars are present.
On the other hand, the present approach has one big
advantage: at any point, the reference observer Vμ can
be chosen arbitrarily (in contrast to uμ), so one can in fact
eliminate much of the above formulas.
Let us remind the reader that the complex Ψ scalars

featuring in Eqs. (31)–(33) represent projections of the
Weyl tensor onto the NP tetrad ðkμ; lμ; mμ; m̄μÞ naturally
associated with its orthonormal counterpart (22)–(25),
namely, connected with the latter by

kμ ≔
1ffiffiffi
2

p ðuμ þ eμð1ÞÞ; lμ ≔
1ffiffiffi
2

p ðuμ − eμð1ÞÞ;

mμ ≔
1ffiffiffi
2

p ðeμð2Þ þ ieμð3ÞÞ; m̄μ ≔
1ffiffiffi
2

p ðeμð2Þ − ieμð3ÞÞ:

One might also express the projections of the MPD
equation onto the (22)–(25) tetrad in terms of Weyl scalars
obtained in some different NP tetrad, not associated with
the given orthonormal tetrad, but then Eqs. (31)–(33) would
look differently.
Consider now shortly our plan, i.e., tuning the tetrad to a

given space-time curvature, similarly as in paper I. It will
certainly be advantageous to identify the first vector kμ of
the NP tetrad with the Weyl-tensor PND of the highest
multiplicity again. Should now the plane determined by uμ

and kμ be made an eigenplane of the spin bivector Sμν, one
would have to resort to only one viable spin condition, with
Vμ ≡ uμ. This would, however, mean returning to paper I,
Sec. V.A, on MPD equations supplemented by the
Mathisson-Pirani condition. Actually, setting Vμ ¼ uμ,
one has sσuσ ¼ 0, σ ¼ s, Vð0Þ ¼ 1, and VðiÞ ¼ 0, reducing
Eqs. (31)–(33) to

eð1Þμ _pμ ¼ −2s ImΨ2;

eð2Þμ _pμ ¼ −sðImΨ3 − ImΨ1Þ;
eð3Þμ _pμ ¼ −sðReΨ3 þ ReΨ1Þ;

which are just Eqs. (97)–(99) of paper I.
If one insisted on the tight connection between the tetrad

and the curvature structure, and at once on a sufficiently
generic view (not pushing one into Vμ ¼ uμ), there is an
alternative—with uμ used as the time vector of the

orthonormal tetrad in which the MPD equations are
decomposed, yet with the reference observer Vμ left free
(for later adaptation of the NP tetrad to a given algebraic
type). If adopting such a compromise, it is necessary to
release the tight (natural) connection between the NP tetrad
and the orthonormal one. Specifically, one could consider
instead the NP tetrad naturally associated with the same
orthonormal tetrad as in paper I, i.e., with (18)–(21).
Expressing such an alternative in other words, one could
keep the NP tetrad (thus the Weyl scalars) from paper I but
decompose the MPD equations in the orthonormal tetrad
(22)–(25) instead of (18)–(21). Rather than deriving such
“hybrid” relations by transformation of the Weyl scalars, it
is simpler to start from Eqs. (3)–(6) and compose their new
components according to the transformation of the ortho-
normal basis. One finds easily that

eð1Þμ _pμ ¼ u0̂e1̂μ þ u1̂Vμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0̂Þ2 − ðu1̂Þ2

q _pμ; ð34Þ

eð2Þμ _pμ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðγm − μÞ2
γ2ðm2 −M2Þ

s
e2̂μ _pμ: ð35Þ

Toalso find the hatted decomposition ofeμð3Þ,we recalle
ð3Þ
μ Vμ

given in (30) and calculate the remaining components,

eð3Þα eα
1̂
¼ −

u1̂e1̂α _sαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0̂Þ2 − ðu1̂Þ2

q ;

eð3Þα eα
2̂
¼ 0;

eð3Þα eα
3̂
¼ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0̂Þ2 − ðu1̂Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðγm−μÞ2

γ2ðm2−M2Þ

q ;

which can then be inserted into

eð3Þμ _pμ ¼ ðeð3Þα eα
0̂
Þe0̂μ _pμ þ ðeð3Þα eα

1̂
Þe1̂μ _pμ þ ðeð3Þα eα

3̂
Þe3̂μ _pμ:

Since the decomposition (3)–(6) from paper I is expressed in
terms of the hatted four-velocity components, it is useful to
add, as a counterpart of (28)–(30), that

u0̂ ≡ Vð0Þ ≡ γ; ð36Þ

u1̂ ¼ −sð0Þ=s; ð37Þ

u2̂ ¼ γm − μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðm2 −M2Þ − ðγm − μÞ2

p ; ð38Þ

u3̂ ¼ γsμ _sμ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðm2 −M2Þ − ðγm − μÞ2

p : ð39Þ
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The last two components are proportional to Vð2Þ and Vð3Þ;
see (29) and (30), respectively.

C. Algebraically special space-times: Type-N example

It is only meaningful to discuss the particular curvature
types if one accepts the above compromise view, i.e.,
decomposes the MPD equations into the uμ-based ortho-
normal tetrad, but keeps the NP tetrad (in which Ψ scalars
are computed) unrelated, and thus free for adaptation to the
curvature structure as in paper I. We saw above that one
pays for this freedom by longer expressions for the MPD-
equation projections. On the other hand, these equations
“inherit” from those obtained in paper I the lack of the Ψ0

and Ψ4 scalars.
For the most special Petrov type N, by using Eqs. (82)–

(83) of paper I, i.e.,

−Vμ _pμ ¼ 0; e1̂μ _pμ ¼ 0; e2̂μ _pμ ¼−
Λ
3
su3̂; e3̂μ _pμ ¼Λ

3
su2̂;

and (39) from above, we obtain

eð1Þμ _pμ ¼ 0; ð40Þ

eð2Þμ _pμ ¼ Λ
3
su3̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ðγm−μÞ2
γ2ðm2−M2Þ

s
¼Λ
3

sμ _sμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−M2

p ; ð41Þ

eð3Þμ _pμ ¼ −Λ
3
su2̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu0̂Þ2−ðu1̂Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− ðγm−μÞ2
γ2ðm2−M2Þ

q

¼ −Λ
3
s2γðγm−μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−M2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2s2−ðsð0ÞÞ2

q
½γ2ðm2−M2Þ−ðγm−μÞ2�

: ð42Þ

In the intrinsic tetrad, we found, in Eq. (84) of paper I, that
M _M ¼ −ðΛ=3Þsμ _sμ, so we can also write the second
equation as

eð2Þμ _pμ ¼ −M _Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p : ð43Þ

The decomposition forms following for other Petrov
types can also be obtained straightforwardly, and we will
not discuss them.

III. SPECIFIC SPIN CONDITIONS

Let us briefly consider how the exercise looks when
supplemented by the main spin conditions. We will,
however, not include the Mathisson-Pirani spin condition,
Vμ ≡ uμ, anymore, because this simply reduces the prob-
lem to the form already treated in Sec. V.A of paper I.

A. Tulczyjew spin condition, Vμ ≡ pμ=M

We know from paper I (Sec. V.B) that the Tulczyjew
condition implies γ ¼ m=M, μ ¼ M, sμpμ ¼ 0 ¼ sμuμ,
_M ¼ 0, _s ¼ 0, and σ ¼ s, so we have

Vð0Þ≡ γ¼ m
M

; Vð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−M2

p

M
; Vð3Þ ¼ 0; ð44Þ

eð1Þμ _pμ ¼ sμ _pμ

s
¼ e1̂μ _pμ; ð45Þ

eð2Þμ _pμ ¼ 0 ¼ e2̂μ _pμ; ð46Þ

eð3Þμ _pμ ¼ ϵμικλ _pμpιsκuλ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p ¼ MSμλ _pμuλ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p

¼ −
M _Sμλpμuλ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p ¼ M
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p
¼ e3̂μ _pμ; ð47Þ

which reduces Eqs. (31)–(33) to

M
s2

sμ _pμ ¼ −2m ImΨ2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p
ðImΨ3 þ ImΨ1Þ; ð48Þ

0 ¼ −2mðImΨ3 − ImΨ1Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p
ðImΨ0 − ImΨ4Þ; ð49Þ

M2

s2
¼ −

mðReΨ3 þ ReΨ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −M2

p

− ReΨ2 −
1

2
ðReΨ0 þ ReΨ4Þ −

Λ
3
: ð50Þ

So the projections of _pμ into the uμ-based tetrad (paren-
thesized) equal those into the Vμ-based tetrad (hatted), and
they appear somewhat simpler when written in terms of the
Ψ scalars computed in the null tetrad associated with the
Vμ-based orthonormal tetrad; this was done in paper I,
Eqs. (121)–(124):

0 ¼ sðImΨ1 − ImΨ3Þ;

e1̂μ _pμ ¼ −
2ms
M

ImΨ2 − sðImΨ1 þ ImΨ3Þu2̂;
0 ¼ sðImΨ1 − ImΨ3Þ;

M2 ¼ s2
�
Λ
3
− 2ReΨ2

�
−
ms2ðReΨ1 þ ReΨ3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 −M2
p :

The reason for the difference is that when the above
expression is written in terms of the Weyl scalars computed
in the null tetrad associated with the uμ-based orthonormal
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tetrad, it contains, in addition to Ψ1, Ψ2, and Ψ3, also Ψ0

and Ψ4.

B. Condition uμ∥ pμ: An alternative tetrad

If uμ∥pμ, then pμ ¼ muμ, m ¼ M, _m ¼ _M ¼ 0,
_pμ ¼ m _uμ, _Sμν ¼ 0, � _Sμν ¼ 0, _s ¼ 0, and μ ¼ γm. The
intrinsic tetrad tied to uμ, Eqs. (22)–(25), cannot be used,
because its last two vectors degenerate (the hidden momen-
tum vanishes).2 One can, however, find a different ortho-
normal tetrad, usable even when pμ ¼ muμ—for example,
one can choose, besides (22) and (23), a vector orthogonal
to uμ, Vμ as well as sμ, i.e.,

ϵμνκλuνVκsλ ¼ Sμνuν;

and add the last one orthogonal to all uμ, eμð1Þ, and S
μνuν (we

will number the two vectors in a reverse order):

eμð2Þ ≔
ϵμαβγuαðγsβ þ sρuρVβÞϵγνκλuνVκsλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2s2 − ðsσuσÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 − 1Þs2 − ðsσuσÞ2

p
¼ ðδμν þ uμuνÞðγs2Vν þ sρuρsνÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2s2 − ðsσuσÞ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðγ2 − 1Þs2 − ðsσuσÞ2
p ; ð51Þ

eμð3Þ ≔
Sμνuνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SαρuρSασuσ
p ¼ ϵμνκλuνVκsλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðγ2 − 1Þs2 − ðsσuσÞ2
p : ð52Þ

Obviously, these vectors are not defined if the Mathisson-
Pirani spin condition Sμνuν ¼ 0 is applied.
The new basis vectors (51) and (52) provide—

independently of the spin condition—projections

Vð2Þ ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 − 1Þs2 − ðsρuρÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2s2 − ðsσuσÞ2

p ; Vð3Þ ¼ 0; ð53Þ

so Eqs. (31)–(33) assume a similar form as (48)–(50), just
with eð2Þμ _pμ no longer equal to −M _Mffiffiffiffiffiffiffiffiffiffiffiffi

m2−M2
p and with slightly

more complicated σ, Vð2Þ, eð1Þμ _pμ, and eð3Þμ _pμ. Note that, if
employed together with the Tulczyjew condition, this
alternative tetrad yields exactly the same projections of
Vμ and _pμ as the original tetrad, that is (44)–(47).
In Sec. V.C.1 of paper I, we showed that the freedom

which the condition uμ∥pμ leaves to the choice of Vμ can be
used to select the latter in such a manner that the
corresponding spin sμ is orthogonal to uμ (thus also to
pμ) and remains so along the whole trajectory. Specifically,
this requires selecting Vμ ¼ uμ at some initial point and
then prescribing evolutions

_Vμ ¼ α

μm2
sμ; _sμ ¼ αs2

μm2
Vμ; ð54Þ

with α given by

α ¼ M2

s2
_pμsμ ¼

M2

s
e1̂μ _pμ:

Ensuring the above setting, one gets, at a generic point, the
“alternative” tetrad3

eμð0Þ ¼ uμ; eμð1Þ ¼
sμ

s
;

eμð2Þ ¼
Vμ − γuμffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p ; eμð3Þ ¼

Sμνuν
s

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ð55Þ

and hence projections

Vð0Þ ¼ γ; Vð1Þ ¼0; Vð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

q
; Vð3Þ ¼0: ð56Þ

Consequently, Eqs. (31)–(33) reduce to

α

m2
¼ −2γ ImΨ2 −

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
ðImΨ3 þ ImΨ1Þ; ð57Þ

Vμ _pμ

sðγ2 − 1Þ ¼
γðImΨ1 − ImΨ3Þffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p þ 1

2
ðImΨ0 − ImΨ4Þ; ð58Þ

Sμνuν _pμ

s2ðγ2 − 1Þ ¼ −
γðReΨ3 þ ReΨ1Þffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p

− ReΨ2 −
1

2
ðReΨ0 þ ReΨ4Þ −

Λ
3
: ð59Þ

This form is slightly more complicated than the Tulczyjew-
condition counterpart (48)–(50). Note that one cannot
obtain the latter, or any other more special form, by
resorting to Vμ ∼ pμ and so, because by prescribing the
initial value (uμ) and evolution of Vμ, the reference
observer was fixed and cannot be adjusted any more (it
cannot be set proportional to pμ or uμ, in particular).

1. Remark: Alternative to the intrinsic tetrad of paper I

If pμ ¼ muμ, the tetrad (18)–(21) employed in paper I is
clearly meaningless as well. Let us suggest its substitute
even usable when pμ ¼ muμ, thus supplementing paper I
where we did not go into this detail. One of the vectors
orthogonal to both Vμ and sμ can obviously be chosen like
above in the uμ-based tetrad case, namely, according to
(52), and the last vector can be found in analogy with (51),
i.e., as the one orthogonal to all Vμ, sμ, and (52):

2The tetrad (18)–(21) suggested in paper I degenerates then in
the same manner.

3Let us stress that sμuμ ¼ 0 does not in general mean Sμνuμ ¼
0 (i.e., the Mathisson-Pirani condition); the spin bivector still has
Vμ and sμ as its eigenvectors, while uν need not belong to the
eigenplane.
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eμð3Þ ≔
−Sμνuνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SαρuρSασuσ

p ¼ ϵμνκλVνuκsλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 − 1Þs2 − ðsσuσÞ2

p ; ð60Þ

eμð2Þ ≔
ϵμαβγVαsβϵγνκλVνuκsλ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 − 1Þs2 − ðsσuσÞ2

p
¼ ðδμν þ VμVν − eμ

1̂
e1̂νÞuνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðγ2 − 1Þs2 − ðsσuσÞ2
p ; ð61Þ

where we remind the reader that eμ
1̂
≡ sμ=s. Therefore, the

eμð2Þ vector is represented by the component of uμ orthogo-

nal to both Vμ and sμ. Again, this tetrad is not available if
the Mathisson-Pirani condition holds, Sμνuν ¼ 0.

IV. MASSLESS PARTICLES

In paper I as well as so far here, we have been
considering particles with nonzero rest mass. Let us now
reserve some space to localized massless particles. It was
shown by Refs. [3,4] that the “massless” situation, repre-
sented by a traceless energy-momentum tensor, implies4

m ≔ −pμkμ ¼ 0 ð¼ const along kμÞ; ð62Þ
the same was also obtained by Ref. [5] from conformal
invariance of the action functional. Other results were that,
if Sμν is spacelike, SμνSμν ≕ 2s2 > 0,5 then

Sμνkν ¼ 0; kμkμ ¼ 0; _kμ ∼ kμ; ð63Þ
so—as already suggested by Ref. [6]—the Mathisson-
Pirani condition automatically holds, and the particle
follows a null geodesic.
The MPD equations themselves (1), (2) remain the same,

_pμ ¼ −
1

2
Rμ

νκλkνSκλ; _Sαβ ¼ pαkβ − kαpβ; ð64Þ
yet one can only rarely take over results from the massive
case (paper I) simply by putting m ¼ 0; namely, the
assumption uμuμ ¼ −1 (and VμVμ ¼ −1) was used there
frequently, whereas now Vμ → uμ → kμ turns out to be
lightlike. From the second MPD equation, one sees
immediately that the scalar s called helicity is constant
along kμ,

2s_s ¼ Sμν _S
μν ¼ 0;

and that _Sαβ is null since _Sαβ _Sαβ ¼ 0, with kμ being a

common eigenvector of Sαβ and _Sαβ.

Let us stop at kμ for a while: here it represents
the worldline tangent, while in paper I we denoted by kμ

the first vector of the NP interpretation tetrad. However, the
tetrad was chosen so that kμ (as well as its second vector lμ)
lay in the eigenplane of Sμν, which is just consistent with
the present notation since the spin condition Sμνkν ¼ 0 now
necessarily holds, so kμ is naturally taken as the main vector
of the interpretation tetrad.
Multiplication of the second of the MPD equations (64)

by pβ and by _pβ yields

M2kα ¼ − _Sαβpβ; ð65Þ

M _Mkα ¼ ðpμ _pμÞkα ¼ − _Sαβ _pβ; ð66Þ

from which one sees that

_Sαβ _pβ ¼ S̈αβpβ; _M _Sαβpβ ¼ M _Sαβ _pβ:

Above, we have introduced pμpμ ≕ M2 as in the massive
case, but with a different (plus) sign—we will see below
that pμ is spacelike now.
Another difference from the massive case is that the spin

vector defined analogously as there, by projection of the
spin-bivector dual onto Vμ → kμ, is also null (sμsμ ¼ 0)
and proportional to kμ,

sμ ≔ −
1

2
ϵμνρσkνSρσ ¼ −�Sμνkν ¼ skμ: ð67Þ

The null character of sμ is seen immediately: sμsμ only
contains terms involving Sρσkσ ¼ 0 or kνkν ¼ 0. The
second claim, sμ ¼ skμ, follows from the fact that two
real null vectors are orthogonal if and only if they are
proportional to each other. The above result also implies
that sμ parallel transports along kμ; specifically, if kμ is
affinely parametrized (_kμ ¼ 0), then

_sμ ¼ _skμ þ s_kμ ¼ 0: ð68Þ

Once one knows that the particle moves on a geodesic
and that its spin is proportional to the latter’s tangent kμ,
one might have little reason to continue the study, because
the momentum pμ is a “strange thing” (spacelike) anyway,
so there is actually no demand to interpret its evolution _pμ.
However, we show below that even in the massless case
there naturally follows a (timelike) “reference observer”
and an associated (spacelike) spin vector (whether the
former is taken as primary or the latter), i.e., quantities
which have the same meaning as in the massive-particle
case and which are worth further consideration. We first
realize that the null version of the Mathisson-Pirani con-
dition leaves more freedom to the spin bivector than the
timelike version and then fix the remaining freedom by
determining the remaining independent dimension of the

4In the massless case, let us use kμ instead of uμ for the tangent
of the representative worldline kμ, while keeping the dot for
covariant differentiation along that worldline, i.e., _X ≔ X;ιkι.

5Otherwise it could hardly be understood as describing the
rotational angular momentum.
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spin-bivector eigenplane. In doing so, we naturally intro-
duce the reference observer Vμ and the corresponding spin
Sμ and also note that one can in fact take advantage of this
freedom and adjust the spin eigenplane so as to contain a
desired direction (independent of kμ), in particular, the
main PND of the host space-time.

A. Null spin condition: Sμνkν ¼ 0, kμkμ ¼ 0

As stressed by Ref. [7] in their treatment of massless
spinning particles, the null version of the spin condition is
less restricting than the “full” timelike case. Generally
speaking, the vanishing of the projection of an object onto a
null direction kμ does not exclude that the object has a
component proportional to kμ. In the case of our bivector
Sμν, the “timelike” condition SμνVν ¼ 0, considered in
paper I, strictly determined its eigenplane and blade; in
particular, it implied that the bivector must read

Sμν ¼ ϵμνκλVκsλ ¼ −s ϵμνκλkκlλ ¼ ismμ ∧ m̄ν;

where the real null vectors kμ and lμ were related to Vμ and
sμ by

kμ ¼ 1ffiffiffi
2

p
�
Vμ þ sμ

s

�
; lμ ¼ 1ffiffiffi

2
p

�
Vμ −

sμ

s

�
;

and mμ and m̄μ are complex null vectors (mutual complex
conjugates) orthogonal to both kμ and lμ and normalized to
mμm̄μ ¼ 1. In contrast, the condition Sμνkν ¼ 0 admits a
more general form,

Sμν ¼ ismμ ∧ m̄ν þ kμ ∧ ðLmν þ L̄m̄νÞ; ð69Þ

where mμ and m̄μ are some complex null vectors orthogo-
nal to kμ and normalized to mμm̄μ ¼ 1 and L denotes an
(arbitrary) magnitude of “the other” independent spin
component. Speaking more generally, the spin vector
(67) follows uniquely from a known bivector, but the
converse is not true; the bivector is not fully determined
by the spin vector.
However, a simple non-null bivector has the whole plane

of eigendirections (with zero eigenvalue), so there exists (or
one can choose) a second null direction lμ, independent of
kμ, which is also “annihilated,” Sμνlν ¼ 0. Provided it is
normalized so that kμlμ ¼ −1, the conditions Sμνkν ¼ 0 and
Sμνlν ¼ 0 require L ¼ −ism̄νlν (ergo L̄ ¼ ismνlν). For the
eigendirections kμ and lμ known/chosen, the bivector is
already determined uniquely (and it is possible to choose
mμ and m̄μ perpendicular to both, making L ¼ 0). Clearly,
if there is some privileged null direction in space-time (call
it lμ), one can take advantage of the freedom still remaining
in the spin bivector subjected to the null condition Sμνkν ¼
0 and require that it also satisfy Sμνlν ¼ 0, thus inclining the
bivector’s eigenplane in the desired way.

B. Spin-bivector eigenplane

Having introduced lμ as the second independent eigen-
vector of the spin bivector, we can multiply by lβ the second
equation of (64) to get

pα ¼ −pβlβkα þ pα⊥ ð70Þ

as a counterpart of equation γpα ¼ μuα þ Sαβ _Vβ which was
numbered (21) in paper I. We have introduced

Sαβ_lβ ¼ − _Sαβlβ ¼ pα þ kαlβpβ

¼ ðδαβ þ kαlβ þ lαkβÞpβ ≕ pα⊥ ð71Þ

as the part of pμ orthogonal to the plane ðkμ; lμÞ; it is a
counterpart of the hidden momentum

pα
hidden ≔ ðδαβ þ uαuβÞpβ ¼ pα −muα ¼ − _Sαβuβ

from the massive case.
As already suggested above, we will use in the next

section the NP tetrad based on independent real null vectors
kμ and lμ which are both annihilated by Sμν and which are
normalized as kμlμ ¼ −1. Being null, lμ certainly satisfies
_lμlμ ¼ 0, and, if the particle’s geodesic is affinely para-

metrized (_kμ ¼ 0), _lμkμ ¼ 0 as well, but lμ need not be

parallel along kμ (i.e., _lμ ≠ 0 in general). Actually, with
helicity s known, one can “reconstruct” the spin bivector
(and its dual) by

Sαβ ¼ −s ϵαβγδkγlδ; �Sμν ¼ sðkμlν − lμkνÞ: ð72Þ

Multiplying the derivative

_Sαβ ¼ −s ϵαβγδkγ_lδ ð73Þ

by ϵμναβlν, we have

s2_lμ ¼ −Sμαpα ⇒ s2_lμ_lμ ¼ _Sμαlμpα ¼ M2: ð74Þ

We have again used pαpα ≕ M2, so with the sign
different from the massive case. Namely, _lμ is clearly
orthogonal to both kμ and lμ which span the eigenplane of
Sμν, and this eigenplane is timelike by assumption, so _lμ has
to be spacelike; hence, M2 > 0. Besides, _lμ is also seen to
be orthogonal to pμ; the reason cannot (in general) be that
pμ also belongs to the eigenplane of Sμν, because this
would mean _lμ ¼ 0, so _Sμν ¼ 0 and, consequently, pμ∥kμ,
which is not in general consistent with the MPD equation
for _pμ (cf. Ref. [4], Sec. V, and Sec. IVG 1 below).
Therefore, in the generic situation the vectors kμ, lμ, and
pμ are independent.
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Note that one learns from (72) that kμ is also annihilated by

� _Sμν ¼ sðkμ_lν − _lμkνÞ; ð75Þ

so it is the common null eigenvector of _Sμν and � _Sμν. This
confirms that _Sμν is null and thus � _Sμν _Sαν ¼ 0 like in the
massive case, similarly as �SμνSαν ¼ 0.

C. Summary of eigenvectors of the spin bivectors

It is very easy now to summarize the independent
eigenvectors of all the bivectors involved. The eigenplane
of Sμν is timelike, and it is spanned by kμ and lμ, while the
eigenplane of _Sμν is null and spanned by kμ and _lμ (the two
eigenplanes intersect “along” kμ). The eigenvectors of � _Sμν

are kμ and pμ, their plane being null (because � _Sμν is null, as
inherited from _Sμν). The last bivector, �Sμν, is the only one
which does not annihilate kμ, but clearly this is true for _lμ,
while its second eigenvector can be found among projections
of Sμν; in particular, Sμν_lν ≡ pμ

⊥ is certainly independent of
_lμ. Both _lμ and pμ

⊥ are spacelike as well as the eigenplane
spanned by them (this is confirmed by the timelike character
of the dual spin bivector, �Sμν�Sμν ¼ −2s2).
Therefore, the massless case differs from the massive one

in the null character of _Sμν and � _Sμν (for a massive particle,
_Sμν is timelike, and � _Sμν is (thus) spacelike).

D. Natural tetrad

In Sec. III.D of paper I, we suggested a natural
orthonormal tetrad which is provided intrinsically, by
geometry of the spinning-particle problem itself. In case
of the Mathisson-Pirani supplementary condition, it was
given by uμ, sμ (the eigenvectors of the spin bivector), the
hidden momentum ðpμ −muμÞ, and the vector product of
the three. The vectors

kμ; lμ; pμ
⊥; _l

μ ð76Þ
we listed in the previous subsection can be used as such a
natural tetrad here in the massless case. Actually, kμ and lμ

span the (timelike) eigenplane of Sμν, and pμ
⊥ with _lμ span

the spacelike plane orthogonal to it, being orthogonal to
each other as well. The first two, null vectors are normal-
ized by kμlμ ¼ −1, and the second, spacelike couple is seen
immediately to have norms given by

pμ
⊥p⊥

μ ¼ pμpμ ¼ M2; _lμ_lμ ¼
M2

s2
:

Needless to say, the spacelike basis vectors

eμð2Þ ≔
pμ
⊥

M
; eμð3Þ ≔

s_lμ

M
ð77Þ

can be transformed into null ones by

mμ ≔
1ffiffiffi
2

p ðeμð2Þ þ ieμð3ÞÞ; m̄μ ≔
1ffiffiffi
2

p ðeμð2Þ− ieμð3ÞÞ; ð78Þ

to complete the NP null tetrad to ðkμ; lμ; mμ; m̄μÞ.

E. Vacuum MPD equations in a natural tetrad

Regarding that the spin condition Sμνkν ¼ 0 holds, we
naturally tie the interpretation tetrad to kμ. Proceeding as
above, one assumes thatSμν is spacelike (SμνSμν ¼ 2s2 > 0),
which implies that it has a timelike eigenplane.Within such a
plane, it is possible to find two independent null eigenvectors.
Denote by lμ “the other one,” independent of kμ, and
normalize it by kμlμ ¼ −1. To complete the standard NP
null tetrad, add two complex null vectors mμ and m̄μ,
orthogonal to both kμ and lμ and normalized as mμm̄μ ¼ 1.
The MPD equation of motion (64) for the massless case

can now be written as

_pμ ¼ −
1

2
Rμ

νκλkνSκλ ¼
s
2
gμρRρνκλϵ

κλαβkνkαlβ

¼ sgμρ �Rρναβkνkαlβ ¼ −s �Cμ
ναβkνlαkβ; ð79Þ

whereR�
ρναβ and

�Rρναβ are the Riemann-tensor right and left
duals [as in paper I, Eq. (39), we have used that they are equal
in the vacuum case; this does not depend on the value of
cosmological constant]. Since �Rμ

ναβ ¼ �Cμ
ναβ þ Λ

3
ϵμναβ,

the cosmological constant drops out completely due to the
presence of kνkβ.
One can first decompose the MPD equation of motion

directly in the NP tetrad, while employing the Weyl-scalar
relations summarized in paper I, Eqs. (A1)–(A4):

kμ _pμ ¼ −s �Cμναβkμkνlαkβ ¼ 0; ð80Þ

lμ _pμ ¼ −s �Cμναβlμkνlαkβ ¼ 2s ImΨ2; ð81Þ

mμ _pμ ¼ −s �Cμναβmμkνlαkβ ¼ −isΨ1; ð82Þ

m̄μ _pμ ¼ −s �Cμναβm̄μkνlαkβ ¼ isΨ̄1: ð83Þ

It may, however, be more natural to escape the complex
results by writing the last two components as projected onto
the (real) orthonormal vectors (77) rather than onto their
complex null counterparts. Since

eμð2Þ ¼
1ffiffiffi
2

p ðmμ þ m̄μÞ; eμð3Þ ¼
1ffiffiffi
2

p
i
ðmμ − m̄μÞ;

we find easily, in lieu of (82) and (83),

eð2Þμ _pμ ¼
ffiffiffi
2

p
s ImΨ1; ð84Þ

eð3Þμ _pμ ¼ −
ffiffiffi
2

p
sReΨ1: ð85Þ

In order to parallel the decomposition made in the massive
case, one can also introduce orthonormal vectors
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Vμ ¼ 1ffiffiffi
2

p ðkμ þ lμÞ; eμð1Þ ¼
1ffiffiffi
2

p ðkμ − lμÞ

and add the corresponding projections instead of (80)
and (81),

−Vμ _pμ ¼ eð1Þμ _pμ ¼ −
ffiffiffi
2

p
s ImΨ2: ð86Þ

The vector Vμ is a most natural timelike direction
with which the massless problem can be connected;
clearly, eμð1Þ represents the corresponding spin vector (its

unit form)—it is orthogonal to Vμ and belongs to the

spin-bivector eigenplane (Sμνeð1Þν ¼ 0).
Equations (84), (85), and (86) show that the projections

of the massless pole-dipole MPD equation onto the natural
tetrad based on the worldline tangent kμ are very simple and
determined just by Ψ1 and Ψ2. In comparison with
equations

e1̂μ _pμ ¼ −2s ImΨ2;

e2̂μ _pμ ¼ −sðImΨ3 − ImΨ1Þ;
e3̂μ _pμ ¼ −sðReΨ3 þ ReΨ1Þ;

obtained for massive particles and the Mathisson-Pirani
spin condition (paper I), the massless case does not contain
the Ψ3 scalar. If one takes the advantage of the remaining
freedom of the spin bivector subjected to only the null spin
condition Sμνkν ¼ 0 (see Sec. IVA) and chooses its second
null eigendirection lμ to be given by the highest-multiplic-
ity PND of the Weyl tensor (provided that kμlμ ≠ 0, of
course), then, depending on the Petrov type, some of the
Weyl scalars can be eliminated. In particular, besides Ψ4 ¼
0 (note again that we take lμ as the second vector of the NP
tetrad),Ψ3=Ψ3, andΨ2=Ψ3,Ψ2 andΨ1 can thus be made to
vanish in type-II/type-III/type-N space-times. Hence, since
the MPD-equation projections contain Ψ1 and Ψ2, they
only simplify in the type-III or type-N case.

F. Properties of the natural orthonormal tetrad

Let us check some more properties of the above-
introduced natural orthonormal tetrad

Vμ; eμð1Þ ≕
Sμ

s
; eμð2Þ ¼

pμ
⊥

M
; eμð3Þ ¼

s_lμ

M
: ð87Þ

First, provided that the particle’s geodesic worldline is
affinely parametrized, _kμ ¼ 0, we see that

_Vμ ¼
_lμffiffiffi
2

p ¼
Meμð3Þffiffiffi

2
p

s
: ð88Þ

One also easily relates the (null) spin sμ to the newly
introduced “spin with respect to Vμ” (denoted by Sμ),

sμ ≡ skμ ¼ sffiffiffi
2

p ðVμ þ eμð1ÞÞ ¼
1ffiffiffi
2

p ðsVμ þ SμÞ: ð89Þ

As _sμ ¼ s_kμ ¼ 0, we have

_eμð1Þ ¼ − _Vμ ¼ −
Meμð3Þffiffiffi

2
p

s
: ð90Þ

Finally, regarding that

_pμ
⊥ ¼ _pμ þ kμlν _pν ¼ ðδμν þ kμlν þ lμkνÞ _pν; ð91Þ

one finds, from orthonormality of the basis,

_eμð2Þ ¼
eð3Þν _pν

M
eμð3Þ; ð92Þ

_eμð3Þ ¼
M
s
kμ −

eð3Þν _pν

M
eμð2Þ: ð93Þ

Having introduced Vμ and Sμ, we can express the spin
bivectors alternatively as6

Sαβ ¼ ϵαβγδVγSδ; �Sμν ¼ SμVν − VμSν ð94Þ

and write, similarly as in paper I (Sec. II. C), equations for
_Vμ and _Sμ in terms of kμ and pμ. Actually, multiplying
_Sαβ ¼ ϵαβγδ _V

γSδ þ ϵαβγδVγ _Sδ by ϵμναβVν and ϵμναβSν, we
obtain, respectively,

_Sμ ¼ ϵμναβVνkαpβ ¼ −� _SμνVν; ð95Þ

s2 _Vμ ¼ ϵμναβSνkαpβ ¼ −� _SμνSν; ð96Þ

where we have already regarded that s _Vμ ¼ − _Sμ ∼ eμð3Þ and
_s ¼ 0. Note that the above equations can also be obtained
very straightforwardly by differentiating

Sμ ¼ −�SμνVν; s2Vμ ¼ −�SμνSν ð97Þ

and that, thanks to SμSμ ¼ s2, the magnitude of Sμ is
automatically constant along kμ.

G. Special cases of motion

The massless spinning-particle problem turns out to be
quite constrained; it offers much less freedom for various
special performances than the massive case. Let us still
mention two cases which arise naturally.

6Note that the above-introduced spin Sμ thus fixes the spin
bivector uniquely, in contrast to the null spin sμ introduced by (67).
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1. pμ ∼ kμ circumstance

Notice, finally, that the tetrad (87)would bemeaningless if
pμ belonged to the eigenplane of Sμν (i.e., if it were some
spacelike combination of kμ and lμ), because then s2_lμ≡
−Sμαpα¼0 and, consequently, _Sαβ¼0 andpμ

⊥≡Sμν_lν¼0. In
such a case, all the vectors kμ, lμ, sμ,Vμ, Sμ, andpμ would lie
in the spin-bivector eigenplane, and most of them would be
parallel transported along the representative worldline:
_kμ ¼ 0, _lμ ¼ 0, _sμ ¼ 0, _Vμ ¼ 0, _Sμ ¼ 0. However, as
already noted below Eq. (74) and as best seen from
Eq. (70), such a circumstance would imply pα ¼ −pβlβkα,
so M ¼ 0 and _pα ¼ − _pβlβkα; i.e., both pα and _pα would
also have to be lightlike and proportional to kμ. According to
Eq. (79), this would require �Cμ

ναβkνlαkβ to be lightlike,
which definitely does not hold for genericmotion in generic
space-time. Using the metric decomposition

gμα ¼ −kμlα − lμkα þmμm̄α þ m̄μmα ð98Þ

and regarding that the first two terms yield zero in the scalar
product below, one can rewrite the requirement as

0 ¼ ð�CμνκλkνlκkλÞgμαð�CαβγδkβlγkδÞ
¼ 2ð�CμνκλmμkνlκkλÞð�Cαβγδm̄αkβlγkδÞ
¼ 2Ψ1Ψ̄1; ð99Þ

which is only satisfied forΨ1 ¼ 0, i.e., if (i) either the particle
moves in the direction (kμ) of the double PND of a Petrov-
type-II space-time, (ii) or the space-time is of typeN (and one
aligns with its quadruple PND the second vector lμ of the NP
tetrad).

2. Stationary situation

The only basic scalar involved which may not be
constant is M. Consider now the case when it is constant,
_M ¼ 0, but when M ≠ 0, so pμ is spacelike (if pμ were
lightlike, it would immediately lead to pμ ∼ kμ, which has
already been mentioned above). From (66) one infers—in
both cases—that _Sαβ _pβ ¼ 0, which implies that _pμ belongs

to the eigenplane of _Sμν. This eigenplane is spanned by kμ

and _lμ, so _pμ has to be given by their combination, say
_pμ ¼ αkμ þMβ_lμ. In particular, _pμ

⊥ must be proportional
to _lμ, since it does not have any component proportional to
kμ by definition. Actually, the latter also follows, given
_M ¼ 0, from (92).7

A related consequence of _M ¼ 0 is of course pμ _pμ ¼ 0.
Writing _pμ as (79), inserting the metric (98), and using
kσpσ ¼ 0 and

_lσpσ ¼ 0 ⇒ mσpσ ¼ m̄σpσ ¼ eð2Þσ pσffiffiffi
2

p ¼ Mffiffiffi
2

p ;

one can express the pμ _pμ ¼ 0 circumstance as a simple
condition for the type of space-time, because in terms of
the Weyl scalars computed in our NP tetrad, it reads

0 ¼ pμ _pμ ¼ −s �Cμναβpμkνlαkβ

¼ −s �Cμναβðmμm̄σ þ m̄μmσÞpσkνlαkβ

¼ −
Msffiffiffi
2

p �Cμναβðmμ þ m̄μÞkνlαkβ ð100Þ

¼ Msffiffiffi
2

p ð−iΨ1 þ iΨ̄1Þ ¼
ffiffiffi
2

p
Ms ImΨ1; ð101Þ

where, in the last row, Eqs. (82) and (83) have
been used.
The coefficients of the _pμ ¼ αkμ þMβ_lμ relation can

also be found in terms of the Weyl scalars: multiplying it by
lμ and _lμ, we have, respectively,

lμ _pμ ¼ −α… ¼ 2s ImΨ2; ð102Þ

_lμ _pμ ¼ Mβ
M2

s2
… ¼ −

ffiffiffi
2

p
MReΨ1: ð103Þ

V. CONCLUDING REMARKS

We have continued the study of a spinning-particle
motion in the pole-dipole approximation. After treating,
in Ref. [1], the MPD equation of motion in an orthonormal
tetrad tied to the reference observer (denoted Vμ), i.e., in a
tetrad involving as a time leg the vector which fixes the spin
supplementary condition (SμνVν ¼ 0), we considered the
tetrad tied to the tangent of the worldline that represents the
particle’s history (denoted uμ). Both possibilities lead to
usable formulations of the problem,with the latter (proposed
in the present paper) being slightly less efficient, because uμ

cannot be freely chosen (in contrast toVμ). In both cases, we
showed how the MPD equation decomposes if representing
the curvature terms in the language of Weyl-tensor scalars
obtained in the NP null tetrads naturally associated with the
orthonormal ones. In the case of decomposing the MPD
equation in the uμ-based tetrad, we also showed how the
projections look when computing the Weyl scalars in a
different NP tetrad (different than that naturally associated
with the orthonormal uμ-based tetrad), namely, the one tied
to a vector Vμ that can be freely chosen.
Expressing the MPD-equation components in terms of

the Weyl scalars, one can infer whether and how the
exercise simplifies in particular Petrov types, provided that
the NP tetrad can be aligned with the highest-multiplicity
PND. Such an alignment is of course more problematic for

7Therefore, if _M ¼ 0, then _pμ
⊥ can be used, after normalization,

as the eμð3Þ vector of the interpretation tetrad equally as well as _lμ.
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the uμ-based tetrad (if one does not want to necessarily resort
to the Sμνuν ¼ 0 spin condition) which is much less flexible.
Another itemwas to see how the problemdepends on the spin
supplementary condition. We saw, in particular, that for the
most advantageous option uμ∥pμ, the interpretation tetrads
we had suggested (as given intrinsically by the geometry of
the problem itself) were not available (two of their vectors
turned zero) and suggested simple alternatives (which on the
contrary do not work for the Sμνuν ¼ 0 condition).
The second part of the present paper was devoted to

spinning particles with zero rest mass. For them, the
worldlines are null geodesics, the spin vector is also
lightlike (and proportional to the worldline tangent), the
momentum is spacelike (or null in a certain limit, which,
however, only corresponds to a specific motion in type-II
fields), and the Mathisson-Pirani spin condition follows
necessarily. In spite of these important differences, a similar
analysis can be performed as in the massive case; in

particular, a certain intrinsic interpretation tetrad can again
be proposed. The respective decomposition of the MPD
equation of motion is considerably simpler than in the
massive case; it contains onlyΨ1 andΨ2 scalars and not the
cosmological constant. Even (some of) these are eliminated
in type-III or type-N space-times if the second null
eigendirection lμ of the spin bivector is identified with
the main PND of the background curvature (this is possible
thanks to the less restricting nature of the null Mathisson-
Pirani condition), and of course in the case when the
particle moves, at least at a given point, along a PND.
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