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Three static and axially symmetric (Weyl-type) ring singularities—the Majumdar-Papapetrou–type
(extremally charged) ring, the Bach-Weyl ring, and the Appell ring—are studied in general relativity in
order to show how remarkably the geometries in their vicinity differ from each other. This is demonstrated
on basic measures of the rings and on invariant characteristics given by the metric and by its first and
second derivatives (lapse, gravitational acceleration, and curvature), and also on geodesic motion. The
results are also compared against the Kerr space-time which possesses a ring singularity too. The Kerr
solution is only stationary, not static, but in spite of the consequent complication by dragging, its ring
appears to be simpler than the static rings. We show that this mainly applies to the Bach-Weyl ring,
although this straightforward counterpart of the Newtonian homogeneous circular ring is by default being
taken as the simplest ring solution, and although the other two static ring sources may seem more
“artificial.” The weird, directional deformation around the Bach-Weyl ring probably indicates that a more
adequate coordinate representation and interpretation of this source should exist.
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I. INTRODUCTION

“Apparently, the rich structure of the Weyl-type sol-
utions is far from completely explored.” is the last
sentence of Ref. [1], and we beg to borrow it as the
first one.1 The quoted paper deals with a stationary
situation, but the statement holds even for a static case
which will be considered here. More specifically, we will
focus on static, axially symmetric, and asymptotically flat
gravitational fields generated by thin circular rings. The
solution of Einstein’s equations may then seem to simply
lead to the aged Bach-Weyl solution which just adds to
the well-known Newtonian potential given by an elliptic
integral “the second” metric function obtained by a line
integral given by the potential gradient. However, (i) this
second function (involved in the meridional-plane geom-
etry) exactly makes the field very different from the
Newtonian one, mainly in the vicinity of the ring, and
(ii) there exist various other Weyl-class solutions with
ring-singularity sources which differ from the Bach-Weyl
solution considerably. In the present paper, we demon-
strate the differences on several basic geometrical proper-
ties, thus reminding us that at least some of the sources
are not “simple rings” (this mainly applies to the Bach-
Weyl ring).
In the following paper, we plan to check whether the

rings just represent naked singularities, or whether apparent
horizons can appear around them under some conditions
(which would indicate that the solution, in fact, cannot stay

static, namely that the ring has to shrink to a point if
“released” from the time-symmetry configuration).
The first solution we choose, besides that due to Bach

and Weyl, is the ring obtained as a continuous limit of a
circular-ring distribution of the Majumdar-Papapetrou
extreme black holes. This solution is not vacuum, of course
(it contains an electromagnetic field), and may seem rather
artificial, but its properties will actually be found more
satisfactory than those of the Bach-Weyl solution. Another
ring to compare will be the Appell solution, originally
known from electrodynamics (already in the 19th century)
and much more recently also introduced into general
relativity. In contrast to the previous two, it extends over
two asymptotically flat domains, connected via a disk
spanned by the ring. A very similar double-sheeted top-
ology is known from the Kerr solution which is generated
by a singular ring as well, so we also subject the latter
to this comparison, although it is rotating, thus only
stationary, not static.
Below, in Sec. II, we first write the Weyl-type metric

in several useful coordinates. Then, in Sec. III, the basic
data are listed about the rings we will compare. Several
simple properties of the rings are calculated in Sec. IV
indicating how the spatial geometry behaves in their
vicinity. In Sec. V, we compare the geometries on two
simple types of geodesics, and then by computing the
gravitational acceleration, given by gradient of the lapse
function. Curvature generated by the rings (the Gauss
curvature of several privileged two surfaces and the
space-time Kretschmann scalar) is examined in
Sec. VI. The properties are illustrated by figures; in
particular, the geometry is visualized on contour plots
(with graduated shading) of the scalars obtained from the
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metric (lapse) and from its derivatives (acceleration and
curvature). Remarks not included directly at respective
places are added in Sec. VII.
The main aim of this study is to demonstrate, on

several examples, that already within very simple—static,
axially (and reflectionally) symmetric, and asymptotically
flat—class, the exact thin-ring solutions of general
relativity differ from each other considerably. It is clear
that being infinitesimally thin, such rings represent
(naked) curvature singularities and so cannot be consid-
ered (astro)physically realistic in their closest vicinity.
The latter is, in fact, already true within Newtonian
theory, because thin (volume-less) sources involve infinite
density, hence diverging derivatives of the gravitational
field. However, some of the relativistic rings add more
serious pathology to this factually natural behavior,
namely their properties are strongly dependent on the
direction from which they are approached (they are far
from being locally cylindrical). We will call such sources
less “reasonable” or “satisfactory,” which will precisely
mean that they are not simple in the sense of Israel [3],
or, in the terms of [4], they are not “normal-dominated”
singularities. It should be added that such a behavior
need not disqualify the source completely, since it may
be tied to a given particular type of representation (in our
case the one based on the Weyl coordinates). Indeed, it
has been proposed how some of such pathologies may be
transformed out, as further commented on in concluding
remarks.
Below, we use geometrized units in which c ¼ 1,G ¼ 1,

index-posed comma/semicolon indicates partial/covariant
derivative and the usual summation rule is employed. The
signature of the space-time metric gμν is (−þ þþ), the
Riemann tensor is defined according to Vν;κλ − Vν;λκ ¼
Rμ

νκλVμ, and the Ricci tensor is defined by Rνλ ¼ Rκ
νκλ.

II. WEYL METRIC, USEFUL COORDINATES

Assuming the configuration to be static and axially
symmetric, we consider as basic the Weyl-type cylindrical
coordinates ðt; ρ;ϕ; zÞ of which t and ϕ are parameters of
the two Killing symmetries, z ¼ 0 is the ring plane, and
ρ ¼ 0 represents its symmetry axis. The metric can be
written

ds2 ¼ −N2dt2 þ N−2½ρ2dϕ2 þ e2λðdρ2 þ dz2Þ�; ð1Þ

where the lapseN is often expressed asN ≡ eν in terms of a
gravitational potential ν which satisfies the Laplace or the
Poisson equation. The second metric function λ is deter-
mined by the line integral of an expression given by the
gradient of ν; it is zero on the symmetry axis (at least if no
source is there).
Aiming to study the fields generated by circular thin

rings, we will naturally set the coordinates so that the
rings lie in the “equatorial plane” z ¼ 0, on some radius

ρ ¼ a.2 Regarding this setting, it is often suitable to
transform to toroidal coordinates with “focus” at the
ring,

ρ ¼ a sinh ζ
cosh ζ − cosψ

; z ¼ a sinψ
cosh ζ − cosψ

; ð2Þ

where ζ is the new radius (0 ≤ ζ < ∞) and ψ is the new
latitudinal coordinate (0 ≤ ψ < 2π). In such coordinates,
the metric takes the form

ds2 ¼ −N2dt2 þ a2

N2

sinh2ζ dϕ2 þ e2λðdζ2 þ dψ2Þ
ðcosh ζ − cosψÞ2 : ð3Þ

Toroidal coordinates are mainly appropriate if one needs to
approach the ring from a generic direction.
The third useful coordinates are the ellipsoidal

(oblate spheroidal) ones, R and ϑ, related to the Weyl
coordinates by

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2

p
sinϑ; z ¼ R cos ϑ: ð4Þ

The metric reads in them

ds2 ¼ −N2dt2 þ ðR2 þ a2Þsin2ϑ
N2

dϕ2

þ Σe2λ

N2

�
dR2

R2 þ a2
þ dϑ2

�
; ð5Þ

where

l1;2 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ ∓ aÞ2 þ z2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2e∓ζ

cosh ζ − cosψ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2

p
∓ a sin ϑ;

Σ ≔ l1l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 − a2 þ z2Þ2 þ 4a2z2

q
¼ 2a2

cosh ζ − cosψ
¼ R2 þ a2cos2ϑ; ð6Þ

and

2The ring radius a is assumed to be positive and finite in
general. The limit a → 0þ is an issue on its own which we do not
tackle here. The limit of the ring solutions themselves is clear—
we will see that for the Majumdar-Papapetrou ring it is the
extreme Reissner-Nordström horizon, for the Bach-Weyl and
Appell rings it is the Curzon “directional-particle” source, and for
Kerr it is, of course, Schwarzschild—but much less clear is the
limit of various formulas given below: apparently some of them
even work in this limit, whereas some do not. We occasionally
add a remark in this respect, but often it is so that a formula
obtained for 0 < a < ∞ does not go over, in the a → 0þ limit, to
the result obtained “from the beginning” for the corresponding
(above mentioned) limit space-time.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2

p
¼ l2 þ l1

2
; a sin ϑ ¼ l2 − l1

2
ð7Þ

is the inverse transformation.
Note that at the Kerr solution exactly the same trans-

formation as (4) will be used, but in that case ðρ; zÞ will
stand for the Kerr-Schild cylindrical coordinates (rather
than for the Weyl ones) and the oblate coordinates will be
represented by Boyer-Lindquist ones. The Boyer-Lindquist
coordinates are oblate with respect to the Kerr-Schild
coordinates, but prolate with respect to the Weyl ones,
yet we still keep the notation ðρ; zÞ in both cases (because
for static rings only Weyl coordinates will be employed,
while for the Kerr only the Kerr-Schild ones). One could
similarly keep the same notation for the above oblate
coordinates as for the Boyer-Lindquist ones, because in this
paper they will play an analogous role, yet we have decided
to distinguish them by using R, ϑ, while the Boyer-
Lindquist ones will be denoted by r, θ as usual. The reason
is that the Boyer-Lindquist coordinates are “Schwarzschild-
type” (they reduce to the Schwarzschild coordinates if the
radius of the Kerr ring shrinks to zero), whereas the oblate
coordinates introduced by (4) are different: with respect
to the Weyl coordinates, the Schwarzschild coordinates
are prolate, being related by ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðr − 2MÞp
sin θ,

z ¼ ðr −MÞ cos θ.

III. RING SOURCES WE WILL COMPARE

Below we list the basic data about the rings we will
compare—the one obtained as a continuous circular
distribution of Majumdar-Papapetrou–type (extremally
charged) particles, the Bach-Weyl ring, the Appell ring,
and the Kerr ring. The Kerr ring is stationary but not static,
and it generates a Killing horizon if its radius is not bigger
than its mass. Yet it is natural to include it, because it is a
prominent ring singularity and it has some common
features with the Appell ring.

A. Majumdar-Papapetrou ring

It is known (e.g., [5]) that the Majumdar-Papapetrou
(MP) solutions provide the only known singularity-free
stationary (in fact, even static) electrovacuum space-times
with more than one black hole. Their metric has λ ¼ 0
everywhere and is usually presented as

ds2 ¼ −N2dt2 þ N−2ðdx2 þ dy2 þ dz2Þ ð8Þ

in Cartesian-type coordinates ðx; y; zÞ related to the Weyl
coordinates by

x ¼ ρ cosϕ; y ¼ ρ sinϕ:

The lapse function N is given by

1

N
¼ 1þ

Xn
j¼1

Mj

j~r − ~rjj
;

n being the number of black holes and Mj and ~rj ≡
ðxj; yj; zjÞ denoting their masses and positions (specifi-
cally, the positions of their horizons which are represented
as points in the above coordinates). The black holes are
just in stationary equilibrium thanks to their extremal
electric charges (jQij ¼ Mi in geometrized units), which
implies that the electromagnetic field is given by potential
Aμ ¼ ð�N; 0; 0; 0Þ.3 This solution is thus not vacuum, in
contrast to the other three rings we include for comparison.
We will consider a special case of the MP configuration,

consisting of a number of identical extreme black holes
arranged in a circle, actually a continuous limit of this
situation when one has an infinite number of “infinitesi-
mal” holes distributed along a circular ring. Even without
referring to the black-hole uniqueness theorems, it is to be
expected that such a ring will be singular, although
resembling a horizon in a sense that the lapse function
will be zero on it. Namely, in making the limit, the
individual horizons become infinitesimal, so the curvature
on them diverges necessarily, in agreement with the
conclusion of [6] (Sec. III there). The system described
has already been studied by [7] who solved numerically the
Bishop’s equations in order to localize its apparent horizon.
We plan to revisit this question in the next paper (and
compare the results for the different rings considered here).
Denoting the Weyl radius of the ring by a, the lapse is

given by

1

N
¼ 1þ M

2π

Z
2π

0

dϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2 − 2aρ cosðϕ − ϕ0Þ þ z2

p
¼ 1þ 2MKðkÞ

πl2
; ð9Þ

where M stands for the ring’s total mass,

l1;2 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ ∓ aÞ2 þ z2

q
;

and

KðkÞ ≔
Z

π=2

0

dαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2α

p

is the complete elliptic integral of the first kind, with
modulus and complementary modulus

k2 ≔ 1 −
ðl1Þ2
ðl2Þ2

¼ 4aρ
ðl2Þ2

; k02 ≔ 1 − k2 ¼ ðl1Þ2
ðl2Þ2

:

3This corresponds to normalization of the scalar potential to 1
rather than to 0 at spatial infinity.
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Note that the second term of (9) represents the (minus)
“Newtonian” potential of a ring and (thus) also appears in
the Bach-Weyl ring solution which will be discussed in the
next section.
Especially on the axis (ρ ¼ 0) and in the equatorial plane

(z ¼ 0), one has

ρ ¼ 0∶ k ¼ 0; K ¼ π=2 ⇒
1

N
¼ 1þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ a2
p ;

z ¼ 0∶ l2 ¼ ρþ a ⇒
1

N
¼ 1þ

2MKð2
ffiffiffiffi
aρ

p
ρþa Þ

πðρþ aÞ :

At radial infinity (ρ2 þ z2 → ∞) the elliptic-integral term
vanishes, the lapse approaches unity and the metric
becomes flat. In a vicinity of the ring (l1 → 0þ,
l2 → 2a−, k → 1−), on the other hand, the elliptic integral
is very large and the lapse goes to zero as

Nðk → 1−Þ ∼ πl2
2MKðkÞ ∼

πa
M lnð8a=l1Þ

:

In toroidal coordinates, the important functions read

ðl1;2Þ2 ¼ 2a2
cosh ζ ∓ sinh ζ
cosh ζ − cosψ

¼ 2a2e∓ζ

cosh ζ − cosψ
;

k2 ¼ 1 − e−2ζ; k02 ¼ e−2ζ:

In the a → 0þ limit, k ¼ 0, so KðkÞ ¼ π=2 and the lapse
function reduces to

1

N
¼ 1þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p :

The ellipsoidal coordinates ðR;ϑÞ become spherical (with
respect to the Weyl axes), and the metric reduces to

ds2 ¼−
dt2

ð1þM
RÞ2

þ
�
1þM

R

�
2

½dR2þR2ðdϑ2þ sin2ϑdϕ2Þ�;

which is the extreme Reissner-Nordström metric in iso-
tropic coordinates. Interestingly, the central location R ¼ 0
where the ring has shrunk then represents an extreme
horizon. (This is clearly not a simple limit, but it may have
been expected, as a return to the original, “point-like”
Majumdar-Papapetrou–type source. More specifically, it
well illustrates the arguments given in Sec. III of [6].)

B. Bach-Weyl ring

What may be considered the most “ordinary” ring is
described by the Bach-Weyl (BW) solution [8],

1

N
¼ exp

2MKðkÞ
πl2

; ð10Þ

λ ¼ −
M2

4π2a2ρ

�
ðρþ aÞðE − KÞ2 þ ðρ − aÞðE − k02KÞ2

k02

�
;

ð11Þ

where M and a again denote the ring’s mass and Weyl
radius,

E≡ EðkÞ ≔
Z

π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2α

p
dα

is the complete elliptic integral of the second kind, and l1;2,
k, and k0 are defined as in the MP-ring case. Hence, the MP
ring can be viewed as a certain approximation of the BW
ring for MKðkÞ ≪ l2. However, as opposed to the MP-ring
solution, the Bach-Weyl solution is also described, in
addition to N, by the “second” metric function λ which
has no Newtonian analogue; this vanishes on the axis, but is
important close to the ring. There, the behavior of λ makes
the space properties very different from those of the
Newtonian case. In particular, the space is strongly aniso-
tropic rather than locally cylindrical around the ring [9],
more precisely, the BW ring is not “simple” in the sense of
Israel [3] (i.e., it is not a “normal-dominated” singularity as
defined and treated by [4]).
In comparison with the Majumdar-Papapetrou case,

for the Bach-Weyl solution the lapse vanishes at the ring
faster, as

Nðk → 1−Þ ∼ exp

�
−
2MKðkÞ

πl2

�
∼
�
l1
8a

�
M=ðπaÞ

:

Finally, in the a → 0þ limit, both elliptic integrals yield
π=2 and the metric functions reduce to

1

N
¼ exp

Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p ; λ ¼ −
1

2

�
Mρ

ρ2 þ z2

�
2

;

which is a Curzon solution (it appears as a directional
pointlike singularity in Weyl coordinates, but, in fact, keeps
a nontrivial, ringlike structure, as unveiled in detail
by [10]).

C. Appell ring

The simplest of the Appell-ring metrics is given by
N ≡ eν and eλ with

ν ¼∓ Mffiffiffi
2

p
Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σþ ρ2 þ z2 − a2

q
ð12Þ

¼∓ Mffiffiffiffiffiffi
2Σ

p ð1þ cosψÞ ð13Þ

¼ −
MR
Σ

; ð14Þ
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λ ¼ M2

8a2

�
1 −

ρ2 þ z2 þ a2

Σ
−
2a2ρ2ðΣ2 − 8z2a2Þ

Σ4

�
ð15Þ

¼ −
M2

16a2
ð2 cosh ζ − 2þ sinh2ζ cos 2ψÞ ð16Þ

¼ −
M2sin2ϑ

4Σ

�
1þ ðR2 þ a2ÞðΣ2 − 8R2a2cos2ϑÞ

Σ3

�
;

ð17Þ

whereM and a again denote the ring mass and Weyl radius,
Σ is given by (6), and the first/second/third expressions are in
the Weyl/toroidal/oblate coordinates (described in Sec. II).
General relativistic space-times generated by Appell rings

have been analyzed mainly by [11] (this kind of sources
appeared in electrostatics originally). As discussed and
illustrated in [12] (Appendix A there), the spatial structure
of the Appell solution is similar to that of the Kerr solution
(where, however, ρ and z must be taken as the Kerr-Schild
cylindrical coordinates rather than the Weyl ones), but a
horizon and rotational dragging are not present, naturally. In
particular, both space-times have the disk ðz ¼ 0; ρ ≤ aÞ ⇔
R ¼ 0 at their center, which is intrinsically flat but whose
ringlike boundary ½z ¼ 0; ρ ¼ a� ⇔ ½R ¼ 0; ϑ ¼ π=2� rep-
resents a curvature singularity (Σ ¼ 0). If approaching the
disk from either side (along ϑ ≠ π=2), R decreases to zero,
whereas its gradient does not vanish, which indicates that the
manifold continues, across the disk serving as a branch cut,
smoothly to the second asymptotically flat sheet character-
ized by R < 0; there, Eq. (12) should be taken with the
bottom sign.4 Unless admitting the second sheet, a layer of
mass would be present on the R ¼ 0 disk whose Newtonian
surface densitywðρÞ can be found by using the potential (12)
in the relation

lim
z→0þ

ν;z ¼ 2πwðρÞ

valid in Weyl space-times,

w ¼ −
Ma

2πða2 − ρ2Þ3=2 ¼ −
M

2πa2cos3ϑ
:

This is everywhere negative and even diverging to −∞
toward the disk edge, while finally jumping to þ∞ at the
very singular rim (to ensure the finite positive total massM).
Irrespective of the interpretation, in the spherical region
ρ2 þ z2 < a2 ⇔ 0 ≤ R < ajcosϑj the field is “repulsive”
in the sense that momentarily static particles are accelerated
away from the central disk.
Clearly ν is everywhere negative, and it only vanishes in

the interior of the Appell ring (on R ¼ 0); it is particularly
simple in the equatorial plane outside of the ring (ϑ ¼ π=2),
ν ¼ −M=R. The second function λ is almost everywhere
negative too, but it is also positive in a certain small
region, namely—within the ðρ; zÞ quarter plane—in a
crescent around R2 ¼ a2 cos2 ϑ (which is just the boundary
of the repulsive region). Actually, on this sphere one has
Σ ¼ 2R2 ¼ 2a2 cos2 ϑ, which yields

λ ¼
�
M
4a

tan2ϑ

�
2

:

In the equatorial plane (ϑ ¼ π=2), λ reduces to

λ ¼ −
M2ð2R2 þ a2Þ

4R4
;

while in the ring’s interior (R ¼ 0) it reads

λ ¼ −
�
M sin ϑ
2acos2ϑ

�
2

ð1þ cos2ϑÞ:

In the a → 0þ limit, Σ ¼ ρ2 þ z2 ¼ R2 and the metric
functions reduce to

ν ¼∓ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p ¼ −
M
R
;

λ ¼ −
1

2

�
Mρ

ρ2 þ z2

�
2

¼ −
M2sin2ϑ
2R2

;

so one is left, as in the BW-ring case, with the Curzon
solution.
Several references to the literature should be added at

this place. First, Zipoy [13] showed that solving the static
axisymmetric vacuum problem in oblate spheroidal coor-
dinates leads to a ringlike singularity in the equatorial
plane, whereas in prolate coordinates a finite line singu-
larity typically arises along the symmetry axis.5 In par-
ticular, his monopole oblate solution [Eq. (17) in [13]] is
described by the same metric as the Appell ring, only with a
different potential

4Keeping the right sign in formulas is at times annoying,
mainly in terms containing odd powers of z, because both space-
time sheets are reflection symmetric, while, at the same time, z
switches sign across both the equatorial planes as well as across
the R ¼ 0 disk. It helps to realize that physically the two sheets
differ in the sign of M: hence, the only safe way to cover all the
possibilities for such terms likeMz is to write them asMjzj and to
change the sign of M in the second sheet. The same remark also
applies to the Kerr solution below if using the Kerr-Schild
coordinates. Clearly it is more comfortable to use the oblate
coordinates, because R (or r) in itself ensures a correct sign
without any caution (and without adjusting the sign at M).

5Later, within studies of larger classes of Weyl-type solutions,
even some prolate-type metrics turned out to possess singularities
which are geometrically ringlike—see [14].

STATIC AXISYMMETRIC RINGS IN GENERAL … PHYSICAL REVIEW D 94, 104021 (2016)

104021-5



ν ¼ −
M
a
arctan

a
R
:

In interpreting the metric, Zipoy also arrived at a double-
sheeted topology, connected through the R ¼ 0 disk. An
alternative interpretation—the one involving just one sheet
and generated instead by a surface layer of mass present on
the disk z ¼ 0, ρ ≤ a—was then suggested by [15]; the
Newtonian density necessary to produce the above poten-
tial is positive,

w ¼ ν;zðz → 0þÞ
2π

¼ M
2πa2 cosϑ

;

and hence less unphysical than that corresponding to the
Appell-ring solution.
Note also that the rings through which double-sheeted

solutions are connected in fact serve as wormholes, and
they are indeed being analyzed in this context—see [16],
for example.

D. Kerr ring

The Kerr metric is mostly being given in the Boyer-
Lindquist coordinates ðt; r; θ;ϕÞ,

ds2 ¼ −N2dt2 þ gϕϕðdϕ − ωdtÞ2 þ Σ
Δ
dr2 þ Σdθ2; ð18Þ

where

N2 ¼ ΣΔ
A

¼ 1 −
2Mrðr2 þ a2Þ

A
;

gϕϕ ¼ A
Σ
sin2θ; ω ≔

−gtϕ
gϕϕ

¼ 2Mar
A

;

Σ ≔ r2 þ a2cos2θ; Δ ≔ r2 − 2Mrþ a2;

A ≔ ðr2 þ a2Þ2 − Δa2sin2θ

¼ Σðr2 þ a2Þ þ 2Mra2sin2θ

¼ ΣΔþ 2Mrðr2 þ a2Þ:

The basic properties of the Kerr solution need not be
repeated, just that Σ ¼ 0 gives the singularity, while else-
where Σ is positive; Δ ¼ 0 gives the horizons, being
negative between them and positive everywhere else. As
for the Appell ring, N ¼ 1 on the central disk given by
r ¼ 0; between the horizons, N2 < 0, while elsewhere it is
positive; and ω is positive/negative on the r > 0=r < 0
sheet, with smooth zero on r ¼ 0. However, there is one
exception to the last two properties: N2 is negative and ω is
positive where A < 0; the latter holds in a toroidal region
spanned by the singularity and lying entirely in the r < 0
space (closed timelike loops exist in this peculiar region,
because gϕϕ < 0 there).

M denotes mass and a is the radius of the singular ring in
the cylindrical Kerr-Schild coordinates ðT; ρ; z;ψÞ which
are related to the Boyer-Lindquist ones by

dT ¼ dt −
2Mr
Δ

dr; dψ ¼ dϕ −
2Mar

ðr2 þ a2ÞΔ dr;

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ; z ¼ r cos θ

and in which the metric assumes the form

ds2 ¼ −dT2 þ dρ2 þ ρ2dψ2 þ dz2

þ 2Mr3

r4 þ a2z2

�
dT þ rρdρ − aρ2dψ

r2 þ a2
þ zdz

r

�
2

: ð19Þ

The oblate radius r satisfies the equation

r4 − ðρ2 − a2 þ z2Þr2 − a2z2 ¼ 0:

Clearly the meridional-plane transformation ðr; θÞ ↔ ðρ; zÞ
is the same as the one between the Weyl and the oblate
spheroidal coordinates (4) which we employed for the
Appell ring. And, actually, the “monopole” part of the Kerr
field represented in the cylindrical Kerr-Schild coordinates
is very similar to the Appell field represented in the Weyl
coordinates [12], and we thus use the same notation ðρ; zÞ
in this paper.6 (However, the Boyer-Lindquist coordinates
are denoted by the usual r, θ, i.e., different from the oblate
ones R, ϑ used in static-ring fields, as already stressed
in Sec. II.)
Although we include the Kerr ring in this comparison, it

should be stressed again that it is a source of a more
general, stationary but nonstatic space-time; namely, it
bears a nonzero angular momentum (given by Ma) and
thus drags the space around in differential corotation. This
implies, among others, that it is not so clear what to take as
the relevant “meridional plane.” The latter is not important
for plotting the quantities, because of the axial symmetry,
but it will be important when some quantity shall really
describe the chosen two-dimensional “meridional” surface
(such as the Gauss curvature). Another difference is that for
a ≤ M the Kerr ring is contained within a stationary black
hole; i.e., it is surrounded by a marginally trapped surface
whose history represents a Killing horizon.

E. On illustrations and the double-sheeted topology
of the Appell ring and Kerr space-times

Below, we check some basic properties of the above
ring fields. In illustrating them, we plot the behavior within
the meridional plane ft ¼ const;ϕ ¼ constg which is

6TheWeyl coordinates, on the other hand, are not useful for the
innermost parts of the Kerr space-time, since in them the outer
horizon is mapped onto a finite segment of the axis (ρ ¼ 0,
jzj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
) and its interior is not covered at all.
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privileged by the Killing symmetries and usually provides
the best insight. The plots are given in natural coordinates
ðρ; zÞ which for the static (MP, BW, and Appell) rings are
the Weyl coordinates, while for the Kerr case they represent
Kerr-Schild coordinates. As already reminded above, the
Appell ring and the Kerr space-times are double sheeted,
the two sheets being effectively distinguished by a sign of
the massM and connected smoothly on the disk spanned by
the ring. We include both sheets in one plot, specifically
by showing the M > 0=M < 0 regions above/below their
z ¼ 0 planes, so the plot is smooth across this central disk,
whereas “outside of the rings” (at ρ > a) the equatorial
planes do not match. (However, if some quantity behaves in
the same manner in both sheets, the equatorial planes
visually do match in its plot.)
Note also that most of the simple-property figures show

rings with M ¼ a; for the Kerr solution, this means the
extreme case with the double degenerate horizon (with
vanishing surface gravity) found on r ¼ M.
Figure 1 shows contours of the lapse invariant N which,

for example, determines redshift between local static
observers and asymptotic inertial ones. As expected, this
Newtonian part of the field behaves quite intuitively around
all four rings. However, already at this level some peculiar
features of the double-sheeted solutions appear, mainly the
very high values in the negative-sheet vicinity of these
two rings (white areas); in case of the Kerr ring, N even
diverges there on a certain toroidal surface (dotted line in
the plot) inside which N2 turns negative due to A < 0. At
the positive-r sheet of the Kerr field, one notices the
horizon given by N ¼ 0.

IV. SIMPLE PROPERTIES OF THE RING FIELDS

A. Small circumference

Wewill calculate several simple sizes of the ring sources.
First, their “small” circumference is best calculated in
toroidal coordinates ðζ;ψÞ, as a limit (ζ → ∞: the ring)
of the integral

2

Z
π

0

ffiffiffiffiffiffiffiffi
gψψ

p
dψ ¼ 2a

Z
π

0

eλdψ
Nðcosh ζ − cosψÞ : ð20Þ

Note that the integrand is always positive in that limit
(provided that N ≡ eν is such), namely behaving
like 2eλ−ν−ζ.
For the MP ring (λ ¼ 0), the cross circumference of a

generic ζ ¼ const tube amounts to

Z
π

0

�
2a

cosh ζ − cosψ
þ 2

ffiffiffi
2

p
MKð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ζ

p
Þ

πeζ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh ζ − cosψ

p
�
dψ

¼ 2πa
sinh ζ

þ 4
ffiffiffi
2

p
MKð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ζ

p
Þ

πeζ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh ζ þ 1

p K

� ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh ζ þ 1

p
�
:

In the limit ζ → ∞, both terms vanish. Hence, although
the ring is the place where the lapse N vanishes, so it
corresponds to a horizon of the usual Weyl solutions, it has
zero cross circumference. (Only in the a → 0þ limit did we
see that it really turns into an extreme horizon.)
For the BW ring, the integrand of (20) behaves, in the

ζ → ∞ limit, as

2eλ−ν−ζ ∼ 2 exp

�
−
2M2 cosψ

π2a2
ζ2eζ

�
; ð21Þ

which means that it extremely strongly vanishes on the
cosψ > 0 side (when the ring is approached from the
“outer” half-space, i.e., from ρ > a), whereas it extremely
strongly diverges on the cosψ < 0 side (when the ring is
approached from the “inner” half-space, i.e., from ρ < a).
For cosψ ¼ 0 (i.e., from directions perpendicular to the
ring’s plane), the limit also vanishes,

2eλ−ν−ζðψ ¼ �π=2Þ ∼ 2 exp

�
−
5M2ζ2

π2a2

�
: ð22Þ

Hence, the outer half-circumference vanishes, while the
inner half-circumference (and thus also the sum of both)
diverges.
For the Appell ring, the integrand of (20) goes like

2eλ−ν−ζ ∼ 2 exp

�
−
M2 cos 2ψ

64a2
e2ζ

�
; ð23Þ

so it vanishes/diverges at the ring—even stronger than for
the BW ring—from the directions cos 2ψ > 0= cos 2ψ < 0.
Especially for cos 2ψ ¼ 0 (i.e., ψ ¼ n · π=4) it vanishes as
well, according to

2eλ−ν−ζ ∼ 2 exp

�
−

M2

16a2
eζ
�
: ð24Þ

The total circumference includes integrals of strongly
infinite quantity over finite intervals, so it is clearly infinite
as for the BW ring. Notice also that the asymptotic behavior
involves M2, so it is the same for both R > 0 and R < 0
(which effectively means M < 0) sheets.
For the Kerr ring, we will stay in Boyer-Lindquist

coordinates in which the ft ¼ const;ϕ ¼ constg plane is
described by

ds2 ¼ Σ
Δ
dr2 þ Σdθ2:

Since Σ vanishes at the ring, its small circumference
(calculated within this plane) surely does the same.
Hence, the MP and the Kerr rings give expectable (zero)

results, whereas the BW and the Appell rings behave more
strangely (and very differently from different directions).
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FIG. 1. Contours of the lapse function N, plotted within the meridional plane for the MP ring (top left), the BW ring (top right), the
Appell ring (bottom left), and the Kerr ring (bottom right). All the rings have M ¼ a. The ðρ; zÞ axes (scaled by a) represent Weyl
coordinates for the static rings, while there are Kerr-Schild coordinates for the Kerr ring. The lapse scalar is everywhere positive, only
vanishing at the very rings and on the Kerr horizon; light/dark shading indicates larger/smaller values. The contour values range from 0.4
to 0.76 for the MP ring, from 0.23 to 0.73 for the BW ring, and from 0.03 to 3.01 for the Appell and Kerr rings (with N ¼ 1 on the z ¼ 0
disk encircled by the ring).
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Let us refer to Fig. 9 in advance, showing contours of the
Kretschmann scalar in the rings’ vicinity, because it nicely
illustrates what has been found, including the important
local angles ψ ¼ n · π=2 (for the BW ring) and ψ ¼ n · π=4
(for the Appell ring).

B. Large circumference

For the “large” circumference, the important quantity is
the proper length of the ft ¼ const; z ¼ const; ρ ¼ constg
circles,

2π
ffiffiffiffiffiffiffi
gϕϕ

p ¼ 2πρ

N
¼ 2πρe−ν ¼ 2π

ae−ν sinh ζ
cosh ζ − cosψ

; ð25Þ

which is then limited to the ring (the last, toroidal
expression enables one to make this limit from any
direction properly).
The circumferential radius ffiffiffiffiffiffiffigϕϕ

p of the MP ring is
infinite,

lim
ζ→∞

ffiffiffiffiffiffiffi
gϕϕ

p

¼ lim
ζ→∞

a sinh ζ
Nðcosh ζ − cosψÞ

¼ lim
ζ→∞

�
a sinh ζ

cosh ζ − cosψ
þ

ffiffiffi
2

p
MKð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ζ

p
Þ sinh ζ

πeζ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh ζ − cosψ

p
�

¼ aþM
π

lim
ζ→∞

Kð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ζ

p
Þ ¼ ∞:

In the a → 0þ limit, the transformation to toroidal coor-
dinates (2) does not make sense and neither does the above
calculation; since the ring becomes an extreme Reissner-
Nordström horizon in that limit, we know the circum-
ference is 2πM then.
For the BW ring, the circumferential radius reads

lim
ζ→∞

ρ exp
2MKðkÞ

πl2

¼ lim
ζ→∞

a sinh ζ
cosh ζ − cosψ

exp

ffiffiffi
2

p
MKð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ζ

p
Þ

πa expðζ=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh ζ−cosψ

p

¼ a lim
ζ→∞

exp
MKð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ζ

p
Þ

πa
¼ ∞:

Clearly the divergence is exponentially stronger than in the
above MP case. In the a → 0þ limit, one can use the
spheroidal (then, in fact, spherical) coordinates ðR;ϑÞ in
which

ffiffiffiffiffiffiffi
gϕϕ

p ¼ R sin ϑ exp
M
R
;

so the circumference (R → 0þ) even then diverges.

The Appell-ring circumferential radius, taken from the
R > 0 sheet, is given by

lim
ζ→∞

ρ exp
Mð1þ cosψÞffiffiffiffiffiffi

2Σ
p

¼ lim
ζ→∞

a sinh ζ exp ½ M
2a ð1þ cosψÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh ζ − cosψ
p �

cosh ζ − cosψ

¼ a lim
ζ→∞

exp

�
Meζ=2

2
ffiffiffi
2

p
a
ð1þ cosψÞ

�
¼ ∞;

and only for ψ ¼ π (i.e., if the circumference is measured
exactly from inside of the ring, in the ring’s plane) is the
circumferential radius just a. In the a → 0þ limit, one gets
the Curzon “particle” as with the BW ring, so the circum-
ference diverges.
For the Kerr ring, we will again stay in Boyer-Lindquist

coordinates, because there
ffiffiffi
Σ

p
represents “distance” from

the ring that may be taken along any direction. We have

lim
Σ→0

ffiffiffiffiffiffiffi
gϕϕ

p ¼ lim
Σ→0

ffiffiffiffi
A
Σ

r
sin θ ¼ a lim

Σ→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Mr

Σ

r
;

which is only finite—equal to a—if taken exactly from the
r ¼ 0 direction (thus from the inside of the ring), whereas
from all other local latitudinal directions it diverges. In the
a → 0þ (Schwarzschild) limit, the circumference vanishes,
independently of the direction (of course).

C. Proper radius, proper distances

The proper radius of the rings is calculated by

Z
a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gρρðz ¼ 0Þ

q
dρ ¼

Z
a

0

�
eλ

N

�
z¼0

dρ: ð26Þ

If wanting to find a proper distance to the ring from a
generic direction, it is again suitable to perform it in
toroidal coordinates,

Z
∞

ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gζζðψÞ

q
dζ ¼ a

Z
∞

ζ

eλdζ
Nðcosh ζ − cosψÞ : ð27Þ

Note that gζζ ¼ gψψ , so the integrand is the same as that for
the cross circumference, expression (20).
For the MP ring this distance is finite from all directions

(ψ ), since

Z
∞

ζ

"
a

cosh ζ − cosψ
þ

ffiffiffi
2

p
MKð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ζ

p
Þ

πeζ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh ζ − cosψ

p
#
dζ

has both integrands vanishing quite fast at ζ → ∞—the
first one as 2ae−ζ and the second one as ð2M=πÞζe−ζ. In
particular, the MP-ring proper radius comes out, as
obtained in the Weyl coordinates,
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Z
a

0

"
1þ

2MKð2
ffiffiffiffi
aρ

p
ρþa Þ

πðρþ aÞ

#
dρ ¼ aþ 2M

π

Z
1

0

KðvÞdv

¼ aþ 4G
π
M; ð28Þ

where

G ¼ 1

2

Z
1

0

KðvÞdv ¼
X∞
l¼0

ð−1Þl
ð2lþ 1Þ2 ≐ 0.9159656

is Catalan’s constant. In the a → 0þ limit, the result
apparently does not work well—namely it remains
finite—but we know the MP ring turns into an extremally
charged spherical horizon in that limit, and such a horizon
is at an infinite proper radial distance from all directions.
For the BW ring the integrand of (27) behaves, for

ζ → ∞, as 2eλ−ν−ζ. Regarding the limit behavior of this
term given by (21) and (22), we see that the distance
measured from any direction on the cosψ ≥ 0 side (from
the outer half-plane, ρ ≥ a) is finite, whereas the distance
from the cosψ < 0 side (from the inner half-plane, ρ < a)
strongly diverges. This means, in particular, that the
proper radius of the BW ring is infinite. In the a → 0þ
limit, when the BW ring shrinks to a Curzon particle,
toroidal coordinates are not meaningful and one rather uses
the spheroidal/spherical ones. In these,

ffiffiffiffiffiffiffi
gRR

p ¼ eλ

N
¼ expM

R

expM2sin2ϑ
2R2

in that limit, which yields finite proper distance from any
direction except along the axis (sinϑ ¼ 0).
For the Appell solution, the 2eλ−ν−ζ term behaves like

(23) and (24), so the distance to the ring is finite from the
directions cos 2ψ ≥ 0, whereas it is infinite from
cos 2ψ < 0. This remains true if the ring is shrunken to
a ¼ 0. It means, in particular, that the ring is at a finite
distance when approached along the equatorial plane
(ψ ¼ 0; π), whereas it is infinitely remote from
perpendicular directions (ψ ¼ �π=2). Since for z ¼ 0,
ρ < 0 (i.e., R ¼ 0 in short) we have

ν ¼ 0 and λ ¼ −
M2ρ2ð2a2 − ρ2Þ
4a2ða2 − ρ2Þ2 ;

the proper radius of the ring is, as expressed in the Weyl
coordinates,

exp
M2

4a2

Z
a

0

exp

�
−

M2a2

4ða2 − ρ2Þ2
�

dρ

¼
ffiffiffi
π

8

r
a exp

M2

4a2
G3;0

2;3

�
3=4; 5=4

0; 1=2; 1

����M2

4a2

�
; ð29Þ

where the second expression uses the Meijer G function.
For any given a, this decreases monotonically from a to
zero with M increased from zero to infinity. The a → 0þ,
Curzon-solution limit is the same as for the BW ring.
The Kerr ring is clearly at a finite distance from any

direction due to the factor Σ (vanishing at the ring) standing
in front of dr2 as well as dθ2 in the Kerr meridional-plane
metric. In particular, the ring’s proper radius is

Z
π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σðr ¼ 0Þ

p
dθ ¼ a

Z
π=2

0

cos θ dθ ¼ a:

D. Proper area of the enclosed disk

The proper area of the disk enclosed by any of the
rings is

2π

Z
a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgρρgϕϕÞz¼0

q
dρ ¼ 2π

Z
a

0

ρ

�
eλ

N2

�
z¼0

dρ:

For the MP ring, λ ¼ 0 and the area is finite,

2π

Z
a

0

ρ

"
1þ

2MKð2
ffiffiffiffi
aρ

p
ρþa Þ

πðρþ aÞ

#2

dρ

¼ πa2 þ 8Maþ 14ζð3Þ
π

M2; ð30Þ

where the Riemann zeta function at s ¼ 3,

ζð3Þ ¼ 4

7

Z
1

0

vK2ðvÞdv ¼
X∞
n¼1

1

n3
¼ 8

7

X∞
l¼0

1

ð2lþ 1Þ3

≐ 1.2020569;

is known as Apéry’s constant. Note that if the a → 0þ
limit was made naively, the area would remain nonzero and
finite, namely given just by the last term 14ζð3ÞM2=π ≐
5.357M2, while the ring’s proper radius (previous sub-
section) would come out 4GM=π ≐ 1.166M. The relation
of these two values is not so far from Euclidean: π times
the radius squared amounts to 4.273M2. (However, the MP
ring in fact “shrinks” to an extreme Reissner-Nordström
horizon, and it is not clear how to understand the above two
quantities then.)
For the BW ring, the area is 2π

R
a
0 ρðeλ−2νÞz¼0dρ. As

expected (the proper radius and the proper circumference of
the BW ring diverge), it is infinite.
The area encircled by the Appell ring is finite on the

contrary,
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2π exp
M2

4a2

Z
a

0

ρ exp

�
−

M2a2

4ða2 − ρ2Þ2
�

dρ

¼ πa2 þ π3=2

2
Ma

�
erf

�
M
2a

�
− 1

�
exp

M2

4a2
;

namely decreasing from πa2 to zero monotonically with
M increasing from zero to infinity. It also vanishes in the
a → 0þ limit. Comparing the area with the proper radius
(29), one finds that with M going from zero to infinity, the
area=radius2 ratio only slightly deviates from the Euclidean
value π—namely it increases towards 4, as also confirmed
by the M → ∞ asymptotics

area ∼
2πa4

M2
; ðproper radiusÞ2 ∼ πa4

2M2
:

Finally, the area encircled by the Kerr ring (i.e., the area
of the surface given by r ¼ 0) is very simple,

2π

Z
π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðr ¼ 0Þ

p
sin θ dθ

¼ 2πa2
Z

π=2

0

cos θ sin θ dθ ¼ πa2;

so it relates to the ring’s proper radius a in a Euclidean way.

E. Radius and area for the Appell and Kerr rings

An important note must be added here, concerning the
Appell and the Kerr solutions: we have called the “proper
radius” the integral of ffiffiffiffiffiffigρρ

p calculated, in the ρ direction
from 0 to a, along the central disk lying at z ¼ 0, and,
similarly, we have called the “proper area” the double
integral of ffiffiffiffiffiffiffiffiffiffiffiffiffigρρgϕϕ

p over that disk. But this is a clear choice
only if one adopts the single-sheet interpretation involving
the layer of mass spread over that disk. Actually, in the case
of the MP and BW rings, the field falls, in the radial
direction, smoothly to zero when approaching the disk
enclosed by the ring, so this disk is a stable equilibrium in a
vertical sense and, therefore, is a geodesic surface (it is
spanned by geodesics launched tangentially to it). In the
Appell and Kerr cases, on the contrary, the field is nonzero
in the ring’s interior, pulling the test particles from the
R < 0 to the R > 0 side, so the central disk is not a
geodesic surface (geodesics starting tangentially to this
surface are deflected into the R > 0 region).
Hence, it is rather ambiguous what to call the proper

radius and proper area of the Appell and Kerr rings. (This
issue was already pointed out by the author of [13] in his
study of the monopole ring solution.) However, the above
“naive” definition has lead to plausible results for both
the double-sheeted rings (for Kerr it even yields a for the
radius and πa2 for the area), which may serve as a certain
justification.

F. Axis of symmetry

The basic requirement for the axis is a local flatness of
the horizontal planes z ¼ const which is known to be the
case if λ ¼ 0 there. Actually, the circumferential radius
about the axis ffiffiffiffiffiffiffigϕϕ

p ¼ ρ=N (which determines the latter’s
circumference in the ϕ direction) then exactly coincides
with the proper distance from the axis ffiffiffiffiffiffigρρ

p
ρ, which is just

the Euclidean picture.
The proper distance computed along the axis is every-

where finite, being given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gzzðρ ¼ 0Þp ¼ N−1ðρ ¼ 0Þ

which is regular for all the rings considered here.
Specifically, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gzzðρ ¼ 0Þ

p
¼ 1þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ a2
p for MP ring;

¼ exp
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ a2
p for BW ring;

¼ exp
MR

R2 þ a2
for Appell ring;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Mr

r2 þ a2

r
for Kerr ring;

where in the Kerr case gzz is understood to correspond to
the Kerr-Schild coordinates.

G. Equatorial plane

For the MP and BW rings, the most important quantity is
the elliptic integral KðkÞ, having a divergence at k ¼ 1. In
the equatorial plane the modulus reads k ¼ 2

ffiffiffiffiffiffi
aρ

p
=ðρþ aÞ

which only reaches 1 at the very ring (ρ ¼ a), while
elsewhere it is smaller. For the Appell and Kerr solutions,
the metric functions only diverge at the rings as well.
One can also verify that there are no mass layers

distributed in the equatorial planes, neither inside nor
outside the rings, by making sure that all the metric
components smoothly cross these planes (z ¼ 0 or
ψ ¼ nπ). A simple check follows by noticing that the
metric functions only involve z (or cos θ and sin θ in the
Kerr case) in even powers.

H. First curvature of the ring lines

We saw that the proper radius of the rings tends to be
finite, whereas their (large) circumference rather tends
to be infinite. This contrast (specifically applying to the
MP ring) suggests to compute the first curvature of the
rings as curves. Let us do it in the Weyl coordinates. Any
ft ¼ const; ρ ¼ const; z ¼ constg ring has the purely azi-
muthal unit tangent vector

wμ ¼ ð0; 0; 1= ffiffiffiffiffiffiffi
gϕϕ

p
; 0Þ ¼ ð0; 0; N=ρ; 0Þ;

so the corresponding curvature (“acceleration”) square
amounts to

STATIC AXISYMMETRIC RINGS IN GENERAL … PHYSICAL REVIEW D 94, 104021 (2016)

104021-11



gμνðwμ
;αwαÞðwν

;βwβÞ ¼ 1

ðgϕϕÞ2
gijΓi

ϕϕΓj
ϕϕ

¼ gklgϕϕ;kgϕϕ;l
4ðgϕϕÞ2

¼ N6

4ρ4
½ðgϕϕ;ρÞ2 þ ðgϕϕ;zÞ2�

¼
�
N;ρ −

N
ρ

�
2

þ ðN;zÞ2:

At the ring N ¼ 0, so one is left with just ðN;ρÞ2 þ ðN;zÞ2.
For both the MP and BW rings the above line curvature

squared has a sharp infinity at the ring, independent of the
direction in which the ring is approached within the
meridional plane. For the Appell ring, on the contrary, it
is zero from all directions but from “inside” (z ¼ 0, ρ < a)
from where it diverges. For the Kerr metric, the same
quantity, also calculable from ð1=4Þðgklgϕϕ;kgϕϕ;lÞ=ðgϕϕÞ2,
diverges at the ring from all directions.

V. GEODESICS AND ACCELERATION

A. Geodesic time of flight

Besides asymptotic regions, there are only two
“absolute” locations between which the time of flight
can be compared meaningfully—the central point of the
ring (lying on the symmetry axis) and the ring itself. More
precisely, this is only meaningful for the MP and BW rings,
because for the other two the central disk is not a geodesic
surface; therefore, the particles would not at all follow it
toward the ring (see Sec. IV E). For the MP and BW rings,
on the other hand, the point (ρ ¼ 0, z ¼ 0) is an equilibrium
(albeit unstable in the ρ direction), so the above time of
flight is actually infinite. However, when comparing the
MP and BW rings, one expects the behavior of geodesics
near the rings to be important and not the behavior near
the central point. Actually, we have observed a profound
difference between the MP and BW rings just there at the

ring’s inside: the MP ring is at a finite proper distance from
there, whereas the BW ring is infinitely remote (see
Table I).
Consider a timelike motion first. For a four-velocity

uμ ≔ dxμ
dτ with only t and ρ components, one has from its

normalization

�
dρ
dτ

�
2

¼ 1

gρρ

�
E2

−gtt
− 1

�
¼ E2 − N2

e2λ
;

where E ≔ −ut is the conserved energy per unit rest mass.
Evaluating this at the starting point (ρ ¼ 0, z ¼ 0) where
uμ ¼ N−1δμt , we have

E ¼ −gttut ¼ N2ut ¼ ðN2utÞρ¼0;z¼0 ¼ Nðρ ¼ 0; z ¼ 0Þ;

and thus

dτ
dρ

¼ eλðz¼0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2ðz ¼ 0; ρ ¼ 0Þ − N2ðz ¼ 0Þ

p : ð31Þ

The time of flight is obtained by integrating this between
the desired values of ρ. For the MP ring, λ ¼ 0, and by
substituting for N one finds that the integrand of (31) is
everywhere finite (except for the equilibrium starting point
ρ ¼ 0, of course) and going to the value ðaþMÞ=a at the
very ring. Hence, the test particle reaches the ring in the
finite proper time. For the BW ring, λ is given by (11) and
after substitution for N one finds that the integrand of (31)
behaves quite differently at the ring; namely it diverges
there as

exp
M
a
· exp

M2

π2aða − ρÞ :

Therefore, the proper time necessary to reach the ring is
exponentially divergent. This conclusion was already made
by [17] who observed, by numerical integration and for

TABLE I. Summary of basic measures of the four rings. Leaving aside the stationary Kerr case, the most natural (and not directional)
are the properties of the Majumdar-Papapetrou ring. On the other hand, the Bach-Weyl ring has turned out weird in all the above respects
(which may not have been expected, because it is the most direct counterpart of the Newtonian circular ring). RN stands for Reissner-
Nordström.

Ring Small circumference Large circumference Proper distance to; proper radius Encircled area a ¼ 0 limit

Majumdar-P. Zero Infinite Finite from all directions Finite Extreme RN
horizon

Bach-Weyl Infinite Infinite Finite/infinite from ρ ≥ a=ρ < a Infinite Curzon
(on ρ < a side) (⇒ proper radius infinite) singularity

Appell Infinite Finite from ψ ¼ π side, Finite/infinite from cos 2ψ ≥ 0= < 0 Finite Curzon
(2 sheeted) (on cos 2ψ < 0 side) Infinite from elsewhere (⇒ proper radius finite) singularity

Kerr Zero Finite from r ¼ 0 side, Finite from all directions Finite Schwarzschild
(2 sheeted) Infinite from elsewhere singularity
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generic geodesics, that all the free particles that approach
the ring do so from its inside and only at infinite time.
For photons, we can find the coordinate (Killing) time t

spent in reaching the ring along the (ρ < a, z ¼ 0) disk.
Restricting to purely radial geodesics as above, we have,
directly from 0 ¼ gttdt2 þ gρρdρ2,

dt
dρ

¼ eλðz¼0Þ

N2ðz ¼ 0Þ : ð32Þ

For the MP ring, we thus have—using the result (28)—

Z
a

0

"
1þ

2MK
�
2
ffiffiffiffi
aρ

p
ρþa

	
πðρþ aÞ

#2

dρ

¼ aþ 8G
π
M þ 4M2

π2a

Z
1

0

K2ðvÞdv; ð33Þ

where everything is finite, including the last integralZ
1

0

K2ðvÞdv ≐ 3.4987815:

For the BW ring, in contrast, the integrand of (32) again
diverges at ρ → a, this time as

�
1 −

ρ

a

�
−2M

πa

exp
M2

π2aða − ρÞ ;

so the light-travel time t is infinite.
Both the above results confirm the contrast between the

MP and the BW rings.

B. Circular equatorial geodesics

Another simple feature independent of coordinates is the
existence of circular geodesics in the ring’s plane; in fact,
even their angular velocity Ω ≔ dϕ=dt is such, because t
and ϕ are Killing coordinates and Ω represents the angular
velocity with respect to the asymptotic inertial frame. The
absolute, of course, is the photon circular geodesic, and
since it is the innermost one, one can also expect that it best
reflects the differences between the rings. Let us focus on it.
The equation for the photon circular orbit has been

derived many times and for theWeyl fields it is very simple,

2ρN;ρ ¼ N ði:e:; 2ρν;ρ ¼ 1Þ: ð34Þ

One can loosely say that a larger orbital radius indicates a
stronger source, but it has to be emphasized that ρ is only a
coordinate and, mainly, that it is virtually impossible to thus
compare different space-times. Nevertheless, what can tell
something is a corresponding circumferential radius (the
one which gives the proper circumference of the orbit’s
spatial track when multiplied by 2π)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕðz ¼ 0; ρ ¼ ρphÞ

q
¼ ρph

Nðz ¼ 0; ρ ¼ ρphÞ

or a proper radial distance of the orbit from the ring

Z
ρph

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gρρðz ¼ 0Þ

q
dρ ¼

Z
ρph

a

eλðz¼0Þ

Nðz ¼ 0Þ dρ

(all the rings are in a finite proper distance from the outer
equatorial plane, so this really has a good meaning).
In Fig. 2 we show, for our four rings, how the photon-

orbit Weyl (or Kerr-Schild) radius, circumferential radius,
and proper radial distance from the ring depend on the ring
radius a (for a unit ring mass M). One sees that the
coordinate-radius values provide quite a good picture this
time. The proper distance of the photon orbit from the ring
(right plot) decreases with a=M for the MP and BW cases,
whereas for the Appell and Kerr cases it only decreases
until a reaches several M and then increases, on the
contrary (this region is not shown already). Another
peculiar feature is the (logarithmic) divergence of the
equatorial radial distance from the MP ring at a → 0þ
(from other rings it remains finite in this limit); however,
this is consistent with the fact that the MP ring becomes an
extreme horizon in that limit. We add that there are no
circular orbits in the R < 0 sheet of the Appell and Kerr
space-times, since there the field is repulsive (M acts with a
minus sign).

C. Gravitational acceleration

The gradient of N provides an important invariant
quantity, the “gravitational acceleration” (field intensity)
κ, given by

κ2 ≔ gμνN;μN;ν ¼
N2

e2λ
½ðN;ρÞ2 þ ðN;zÞ2�: ð35Þ

This scalar is mainly given by the Newtonian quantity N,
only containing λ because of calculating the magnitude of
the gradient. But there is no analogous invariant given by λ,
simply because gρρ ¼ gzz has no invariant meaning as gtt
does have due to the Killing time symmetry. Figure 3
illustrates how the acceleration appears for our rings with
M ¼ a. In looking at it, one may recall for comparison that
on stationary (Killing) horizons, this quantity (surface
gravity) is constant.
For the MP ring, for which λ ¼ 0, the acceleration is zero

at the very center (ρ ¼ 0, z ¼ 0) and also vanishes toward
spatial infinity, with the maximum around the ring radius;
this maximum is divergent in the ring plane, whereas it is
finite elsewhere. On the symmetry axis, in particular,

κ2ðρ ¼ 0Þ ¼ M2z2

ðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2

p
Þ6 :
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One thus observes again that the ring does not correspond
to an extreme horizon, because on horizons κ is finite
(being called surface gravity there), especially on extreme
ones it even vanishes.
For the Bach-Weyl ring, the acceleration behaves sim-

ilarly, reducing to just

κ2ðρ ¼ 0Þ ¼ M2z2

ðz2 þ a2Þ3 exp 4Mffiffiffiffiffiffiffiffiffi
z2þa2

p

on the symmetry axis (and hence vanishing at the very
central point).
In the Appell-ring field, the acceleration expression is

slightly more complicated, but on the axis it reduces to

κ2ðϑ ¼ 0Þ ¼ M2

exp 4MR
R2þa2

ðR2 − a2Þ2
ðR2 þ a2Þ4 ;

especially at ϑ ¼ 0, R ¼ 0 one has κ ¼ M2=a4 (pointing
from the R < 0 to the R > 0 space). Obviously there are
two zero-valued local extrema of κ2 on the axis, at R ¼ �a.
The acceleration scalar also simplifies considerably on the
disk inside the ring,

κ2ðR ¼ 0Þ ¼ M2

a4cos6ϑ
exp

M2ð1 − cos4ϑÞ
2a2cos4ϑ

;

as well as in the equatorial plane,

κ2ðϑ ¼ π=2Þ ¼ M2ðR2 þ a2Þ
R6 expM½2R2ð4R−MÞ−Ma2�

2R4

:

It is also worthwhile to write down the acceleration square
on the boundary jRj ¼ a cosϑ of the repulsive region,

κ2ðR ¼ �a cosϑÞ ¼ M2sin2ϑ
8a4cos6ϑ

1

expMðMsin4ϑ�16acos3ϑÞ
8a2cos4ϑ

:

Finally, in the a → 0þ limit the result is the same as in the
BW-ring case, reading

κ2ða → 0þÞ ¼ M2

R4 expMð4R−Msin2ϑÞ
R2

;

this is finite except at the R ¼ 0 central disk (which is just a
point in that limit, however).
In the Kerr field, the acceleration square reads7

κ2 ¼ M2
Σ2ðr4 − a4Þ2 þ 4r4Δ½2Σðr2 þ a2Þ −A�a2sin2θ

Σ2A3
;

with special values

6 7

5

4

3

2

1

6

5

4

3

2

5

4

3

2

1
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

FIG. 2. Weyl radius (for Kerr space-time: Kerr-Schild radius) (left plot), circumferential radius (middle plot), and proper radial
distance from the ring (right plot) of a photon circular geodesic, plotted in dependence on a=M for the four rings compared in this paper.
For Kerr, the black-hole case is limited to a=M ≤ 1; for a=M > 1 (naked-singularity case), the prograde photon orbit lies at ρ ¼ a, so it
coincides with the ring itself and is not shown. In Kerr space-time, the proper radial distance from the ring only has a good sense for the
a > M case when there is no horizon, so only a retrograde orbit is included in the right plot.

7Physically, it represents the square of the acceleration of
the stationary circular motion with zero angular momentum (the
well-known zero-angular-momentum observers), reparametrized
with respect to the asymptotic inertial time t.
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FIG. 3. Contours of the gravitational acceleration κ given by (35), plotted within the meridional plane for the MP ring (top left), the
BW ring (top right), the Appell ring (bottom left), and the Kerr ring (bottom right). All the rings haveM ¼ a. The ðρ; zÞ axes (scaled by
a) represent Weyl coordinates for the static rings, while Kerr-Schild coordinates for the Kerr ring. We take κ as positive everywhere
(as plus square root of κ2), with light/dark shading indicating larger/smaller values. The contour levels are the same for all the rings; in
the units of 1=a2 they range from 0 to 0.25, and only close to the Appell and Kerr rings do they extend up to 15. The (extreme) Kerr
horizon is visible as the black half-arc where κ ¼ 0.
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κ2ðθ ¼ 0Þ ¼ M2ðr2 − a2Þ2
ðr2 þ a2Þ4 ;

κ2ðθ ¼ π=2Þ ¼ M2½ðr2 þ a2Þ2 − 4Mra2�2
r3ðr3 þ ra2 þ 2Ma2Þ3 ;

κ2ðr ¼ 0Þ ¼ M2

a4cos6θ
;

κ2ða ¼ 0Þ ¼ M2

r4
:

On the horizon (given by N ¼ 0 ⇔ Δ ¼ 0, the larger root
of which is r ¼ rH ≔ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
), the scalar is called

surface gravity and gets very simple (most importantly, it is
independent of θ),

κ2ðr ¼ rHÞ ¼
M2 − a2

ðr2H þ a2Þ2 ¼
M2 − a2

ð2MrHÞ2
;

in particular, it vanishes if the horizon is extreme (M ¼ a).
Interestingly, κ2 diverges not only at the singularity
(Σ ¼ 0), but also where A ¼ 0, i.e., on the boundary of
the chronology-violating region existing in the r < 0
half-space.
Again, the rings differ strongly in the behavior of the

acceleration in their closest vicinity: in the ring-focused
toroidal coordinates ðζ;ψÞ, in which the ring is approached
as ζ → ∞, we have in this limit

κ2 ∼
π4a2e2ζ

M4ζ4
…MP ring;

∼
M2ζ2

π2a4
exp

�
4M2ζ2

π2a2
eζ cosψ

�
…BW ring;

∼
M2

64a4
exp

�
M2

32a2
e2ζ cos 2ψ

�
…Appell ring;

∼
1

64Ma

exp 3ζ
2

cos3 ψ
2

…Kerr ring:

Hence, the MP ring is the only one which—in this respect
and in these coordinates—is isotropic.

VI. CURVATURE

Now we proceed to the level of the second metric
derivatives, and hence to the level of field equations. Let
us just briefly recall that for any static axisymmetric
(electro)vacuum, i.e., for the energy-momentum tensor,

Tμν ¼
1

4π

�
FμλFν

λ −
1

4
gμνFκλFκλ

�
; ð36Þ

with Fμν ≡ Aν;μ − Aμ;ν denoting the electromagnetic-field
tensor and Aμ the electromagnetic four-potential, and with

zero cosmological constant, the field equations reduce
to (e.g., [18])

ν;ρρ þ
ν;ρ
ρ
þ ν;zz ¼ 4π

e2λ

N2
ðTϕ

ϕ − Tt
tÞ

¼ e2λ

N2
ðFϕλFϕλ − FtλFtλÞ

¼ 1

N2
½ðΦ;ρÞ2 þ ðΦ;zÞ2�; ð37Þ

λ;ρ − ρðν;ρÞ2 þ ρðν;zÞ2 ¼ 4πρðTρρ − TzzÞ
¼ ρðFρλFρ

λ − FzλFz
λÞ

¼ −
ρ

N2
½ðΦ;ρÞ2 − ðΦ;zÞ2�; ð38Þ

λ;z − 2ρν;ρν;z ¼ 8πρTρz

¼ 2ρFρλFz
λ

¼ −
2ρ

N2
Φ;ρΦ;z; ð39Þ

where the right-hand sides’ third forms are obtained by
introducing a scalar potential Φðρ; zÞ as

Aμ ¼ ð−Φ; 0; 0; 0Þ ⇒ Ftρ ¼ Φ;ρ; Ftz ¼ Φ;z: ð40Þ

Besides these three, one also has to consider the Maxwell
equations which in the electrostatic case have only one
nontrivial component

Φ;ρρ þ
Φ;ρ

ρ
þ Φ;zz ¼ 2ν;ρΦ;ρ þ 2ν;zΦ;z: ð41Þ

Since the energy-momentum tensor is traceless, Tν
ν ¼ 0,

the Einstein equations (without a cosmological term) imply
that the Ricci scalar Rν

ν is zero as well, which yields useful
relation

N;ρρ þ
N;ρ

ρ
þ N;zzð≕ ΔNÞ

¼ 2

N
½ðN;ρÞ2 þ ðN;zÞ2� þ Nðλ;ρρ þ λ;zzÞ: ð42Þ

Of the two nontrivial and independent invariants of
the electromagnetic-field tensor, FμνFμν and Fμν

�Fμν, the
second (given by the dual tensor �Fμν) vanishes in the static
situation. It is also easy to find that

RμνRμν ¼ ðFμνFμνÞ2; ð43Þ

FμνFμν ¼ −2e−2λ½ðΦ;ρÞ2 þ ðΦ;zÞ2�; ð44Þ

as well as to check that 4πðTρ
ρ þ Tz

zÞ ¼ FρzFρz − FtϕFtϕ

vanishes, as required for the Weyl form of the metric (1).

O. SEMERÁK PHYSICAL REVIEW D 94, 104021 (2016)

104021-16



For the MP ring, the above relations simplify due to the
relations Φ ¼∓ N and (consequently) λ ¼ 0, valid for all
Majumdar-Papapetrou solutions, while the BW and Appell
rings are vacuum, so Tμν ¼ 0 in their case.
Before proceeding to curvature invariants of the four-

dimensional space-time—the Kretschmann scalar, in
particular—let us turn to a two-dimensional characteristic,
the Gauss curvature, which often provides better insight.
Actually, since the Kretschmann scalar [as well as other
four-dimensional (4D) invariants] also contains a “time
contribution” which has no immediate tidal meaning, it is
not necessarily the most intuitive curvature characteristic,
while the Gauss curvature of a suitably chosen two-
dimensional (2D) surface can reveal the spatial geometry
better. In the Weyl-metric case, the most privileged surfaces
are the meridional planes ft ¼ const;ϕ ¼ constg and the
equatorial plane ft ¼ const; z ¼ 0g.

A. Gauss curvature of the meridional plane

From the meridional restriction of the metric and by
employing (42), one obtains the Gauss curvature (half of
the corresponding 2D Ricci scalar)

ð2ÞR
2

¼
�
ðN;ρÞ2 −

NN;ρ

ρ
þ ðN;zÞ2

�
e−2λ: ð45Þ

For the MP ring, this yields quite a long expression which
reduces to

ð2ÞRðρ ¼ 0; z ¼ 0Þ
2

¼ M
2ðM þ aÞ3

at the very center. For the BW ring, the central value is

ð2ÞRðρ ¼ 0; z ¼ 0Þ
2

¼ M
2a3 exp 2M

a

:

For the Appell ring, the axial and equatorial behaviors are
tractable [and slightly shorter in the oblate coordinates R, ϑ;
see (4)],

ð2ÞRðϑ¼ 0Þ
2

¼M2ðR2 − a2Þ2 −MRðR2 − 3a2ÞðR2 þ a2Þ
ðR2 þ a2Þ4 exp 2MR

R2þa2
;

ð2ÞRðϑ¼ π=2Þ
2

¼ −
M½R3 −MðR2 þ a2Þ�
R6 expMð4R3−2MR2−Ma2Þ

2R4

;

ð2ÞRðR¼ 0Þ
2

¼ M2

a4cos6ϑ
exp

M2ð1þ cos2ϑÞsin2ϑ
2a2cos4ϑ

;

and reducing to just

ð2ÞRðR ¼ 0; ϑ ¼ 0Þ
2

¼ M2

a4

at the central point.
The results obtained for all the rings are illustrated in

Figs. 4 (the whole central region of the meridional plane)
and 5 (zoom to the closest coordinate vicinity of the rings),
including also the Gauss curvature of the Kerr meridional
plane. The latter needs a commentary. In static axisym-
metric space-times, it is pretty clear what to understand by
“meridional planes”: they are simply orthogonal to both the
existing Killing symmetries. In the rotating (generic sta-
tionary) case, however, it is not that clear, because of the
presence of differential dragging in the azimuthal direction.
Dragging means different angular velocity of a “physical
meridional plane” at different radii (and also latitudes), so
the plane stretches necessarily along the azimuthal direc-
tion and is wound about the center. At the Kerr black-hole
horizon, the angular velocity in the Boyer-Lindquist
coordinates, dϕ=dt, of any free test particle remains finite,
but both dϕ and dt diverge there. Hence, it is desirable to
turn to different coordinates where time and azimuth
would behave better and then fix the meridional plane
with respect to them. Such a more reasonable choice is just
provided by the Kerr-Schild coordinates (19). The plane
fT ¼ const;ψ ¼ constg is described, as expressed in the
Boyer-Lindquist coordinates, by the metric

dl2 ¼ Σ
r2 þ a2

�
1þ 2Mr

r2 þ a2

�
dr2 þ Σdθ2;

and its Gauss curvature reads

−Mr
ðr2 þ a2Þ2ðr2 − 3a2cos2θÞ − 4Mra2ðΣ − 2r2sin2θÞ

Σ3ðr2 þ 2Mrþ a2Þ2 :

This vanishes on r ¼ 0, while on the axis and in the
equatorial plane it reduces to

axis∶ −Mr
r4 − a4 − 2a2ðr2 þ 2Mrþ a2Þ
ðr2 þ a2Þ2ðr2 þ 2Mrþ a2Þ2 ;

equat∶ −
M
r3

r4 − a4 þ 2a2ðr2 þ 2Mrþ a2Þ
ðr2 þ 2Mrþ a2Þ2 :

In the r > 0 half-space, the Gauss curvature behaves
similarly as around static rings, except that the zero-value
contour ends at the (Kerr) ring in contrast to the static-
ring cases. In the r < 0 half-space, the picture is very
different (even from the Appell-ring case which is itself
interesting), with a kind of “antihorizon” appearing at
r2 þ 2Mrþ a2 ¼ 0 where the curvature jumps (in the
direction of decreasing r) from negative to positive infinity.
Checking the behavior at the very rings (i.e., in the

ζ → ∞ limit in toroidal coordinates), one finds
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FIG. 4. Contours of the Gauss curvature (45) of the ϕ ¼ const surfaces (meridional planes), shown for the Majumdar-Papapetrou ring
(top left), the Bach-Weyl ring (top right), the Appell ring (bottom left), and the Kerr ring (bottom right). For the Kerr ring, the Kerr-
Schild plane fT ¼ const;ψ ¼ constg is rather taken as meridional—see the main text. All the rings again have M ¼ a. Light/dark
shading indicates positive/negative values, and the zero-value contour is emphasized. In the units of 1=a2, the contour levels range from
−0.034 to 0.6 for the MP ring, from −0.027 to 8 for the BW ring, from −1.5 to 2000 for the Appell ring, and from −4 to þ3 (−1000 to
þ800 for the “bottom” sheet) for the Kerr ring.
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ð2ÞR
2

∼
π2e2ζ

M2ζ2
…MP ring;

∼
M2ζ2

π2a4
exp

�
4M2ζ2

π2a2
eζ cosψ

�
…BW ring;

∼
M2

64a4
exp

�
M2

32a2
e2ζ cos 2ψ

�
…Appell ring;

∼
M
8a3

e3ζ=2ð1 − 2 cosψÞ cosψ
2

…Kerr ring:

Again the MP ring is the only isotropic case.

B. Gauss curvature of the equatorial plane

Another privileged section is the equatorial plane,
ft ¼ const; z ¼ 0g, the more that the fields of all the rings
considered in this paper are reflection symmetric with
respect to it. Restricting the metric to this plane and
computing its 2D Ricci scalar, one finds that its Gauss
curvature is

FIG. 5. Details of plots shown in Fig. 4, magnifying the region in a close vicinity of the ring sources (0.9 < ρ=a < 1.1,
−0.1 < z=a < 0.1). Again the Majumdar-Papapetrou ring is at top left, the Bach-Weyl ring at top right, the Appell ring at bottom left,
and the Kerr ring at bottom right. The rings are clearly very different, with only the Majumdar-Papapetrou ring providing a satisfactory
(locally cylindrical) picture. In the units of 1=a2, the contour levels now range from 0.1 to 30 for the MP ring, from 0.001 to
1.35 × 106for the BW ring, from 10−100 to 10140 for the Appell ring, and from −400 to þ400 for the Kerr ring.
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ð2ÞR
2

¼
�
NN;ρρ − ðN;ρÞ2 þ

NN;ρ

ρ
− Nλ;ρ

�
N;ρ −

N
ρ

��
e−2λ:

ð46Þ

Radial behavior of this quantity in the central region is
shown in Fig. 6 for all four rings again (including the r < 0
parts of the Appell and Kerr space-times); differences
between the rings are obviously quite big. Leaving aside
the r < 0 parts of the Appell and Kerr space-times where the
equatorial curvature behaves quite wildly (in the Appell case,
this essentially looks like a reversal of the r > 0 behavior,
but within a much wider range), the values at the ρ ¼ 0,
z ¼ 0 center are almost the same for all the static rings, but
on the way from the center toward the rings, the curvature
changes in a rather dissimilar manner; in particular, the MP-
ring–generated curvature behaves differently from that
plotted for the other rings—namely, as the MP ring is
approached “from inside,” the curvature falls to negative

infinity monotonically, whereas for the BWand Appell rings
it turns positive and finally vanishes at the very ring. (For
Kerr, the Gauss curvature of the central disk is zero every-
where.) For the MP and BW rings, interestingly, the Gauss
curvature of the equatorial plane at the central point ρ ¼ 0,
z ¼ 0 is exactly minus twice the Gauss curvature of the
meridional planes there; namely it amounts to

ð2ÞRðρ ¼ 0; z ¼ 0Þ
2

¼ −
M

ðM þ aÞ3 …MP ring;

¼ −
M

a3 exp 2M
a

…BW ring;

¼ −
Mð2a −MÞ
a4 exp 2M

a

…Appell ring:

Finally, the Kerr equatorial plane (θ ¼ π=2) has Gauss
curvature

M
Ma2ð11r4 þ 2a2r2 þ 8Mra2 − 5a4Þ − rðr2 þ 3a2Þðr2 þ a2Þ2

r4ðr3 þ ra2 þ 2Ma2Þ2 ;

while the Kerr central disk (r ¼ 0) is flat (its Gauss
curvature is zero). The denominator in the above expression
is given by

Aðθ ¼ π=2Þ ¼ rðr3 þ ra2 þ 2Ma2Þ;

which vanishes at the boundary of the chronology-violating
region, namely at

r
M

¼ a2=3

M2=3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

27M2

r
− 1

�1=3

−
1
3
a4=3

M4=3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

27M2

q
− 1

	
1=3 ;

so the equatorial Gauss curvature is infinite there.

C. Gauss curvature of the ρ = a “cylinder”

Within the ft ¼ constg spaces, the last foliation—
complementary to those by the meridional planes
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FIG. 6. Gauss curvature (46) of the equatorial plane, plotted against ρ for all four rings, settingM ¼ a; ρ again represents Weyl radius
for the three static rings, while it represents the Kerr-Schild radius in the Kerr case. The two left plots are in exactly the same scale, while
the right-hand one covers a much wider vertical range. Starting from the left plot, the curvature tends to negative values and diverges at
the very rings, with the MP ring generating a “natural” behavior, while the BW curve is much more wild below the ring; the Appell-ring
curve is qualitatively similar to the latter, but much smoother; the Kerr ring generates zero curvature on the enclosed disk, while outside
there exists a maximum with exactly zero value (this, however, is specific for the extreme,M ¼ a case; forM > a the maximum would
be positive, and for M < a the whole curve would be negative). The rightmost plot shows how wild the situation is on the second,
negative-mass sheets of the Appell and Kerr solutions (note again the much wider range of the vertical axis); the Gauss curvature tends to
positive values there, with the most peculiar feature being the (positive) divergence occurring for Kerr at the boundary A ¼ 0 of the
chronology-violating region.
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ϕ ¼ const and by the horizontal sections z ¼ const—is
represented by “cylinders” ρ ¼ const. Restricting the
metric (1) to these ðϕ; zÞ surfaces, one finds that their
Gauss curvature reads

ð2ÞR
2

¼ ½NN;zz − ðN;zÞ2�e−2λ: ð47Þ

For the MP ring the exponential term reduces to unity. In
order to again compare the results obtained for the three
static rings with that for the Kerr ring, we take, for the latter,
the ft ¼ const; ρ ¼ constg surfaces, i.e., those given by
constant Kerr-Schild cylindrical radius ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ

(and constant Killing time t).
In Fig. 7, we specifically show, for the M ¼ a case, the

Gauss curvature of the ρ ¼ a surface, i.e., of the symmetric

cylindrical surface which crosses the equatorial plane just at
the ring. In the MP, BW, and Kerr cases, the curvature
diverges to negative infinity at the rings, whereas in the
Appell case it vanishes there (after reaching a finite extreme
at certain z < a). Both sheets of the Appell as well as Kerr
space-times are considered, as in previous sections.
Similarly as in Fig. 6 (Gauss curvature of the equatorial
planes), the Gauss curvature of the ρ ¼ a cylinder in the
Kerr space-time diverges (to plus infinity) at a certain
jzj < a on the R < 0 sheet. The explicit formula has the
form

ð2ÞR
2

¼ Ma2cos4θ sin2θ · ðpolynomial of order r17Þ
Σ3A2½ðr2 þ a2Þ2 þ Δa2�2

(where r and θ are bound by the condition ρ ¼ a, i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ ¼ a), so the reason for the divergence is

the same as in the previous section: it occurs where
A ¼ 0, i.e., on the boundary of the chronology-violating
region.

D. Kretschmann scalar

The Riemann-tensor of the static and axisymmetric
space-times has been treated elsewhere (see, e.g., [19]),
so we will not repeat it here. What may only be worth
summarizing is the special case of the Majumdar-
Papapetrou solutions. Because of the relation Φ ¼∓ N
between the electrostatic potential and lapse, specific for
them, one finds [20]

FμνFμν ¼ −2½ðN;ρÞ2 þ ðN;zÞ2� ¼ −2κ2=N2; ð48Þ

hence, thanks to the relation between the Ricci tensor and
the electromagnetic-field tensor, coming from Einstein
equations,

RμνRμν ¼ ðFμνFμνÞ2 ¼ 4κ4

N4
¼ 4½ðN;ρÞ2 þ ðN;zÞ2�2:

For our MP ring, this is singular at the ring and nowhere
else. Both the electromagnetic invariant and (thus) the
Ricci-tensor quadratic scalar are zero at the origin
(ρ ¼ 0, z ¼ 0), as—naturally—for the vacuum ring
solutions.
The Ricci tensor of the Majumdar-Papapetrou solutions

has very simple components,

−Rt
t ¼ Rϕ

ϕ ¼ ðN;ρÞ2 þ ðN;zÞ2;
−Rρ

ρ ¼ Rz
z ¼ ðN;ρÞ2 − ðN;zÞ2;

Rρ
z ¼ Rz

ρ ¼ −2N;ρN;z;

and the nonzero Riemann-tensor components can also be
written quite short,

FIG. 7. Gauss curvature (47) of the “cylinder” ρ ¼ a, plotted
against z (up to z ¼ 5M) for all the four rings, while settingM ¼ a;
we again denote by ρ and z theWeyl coordinates for the three static
rings,while theKerr-Schild coordinates in theKerr case. For theMP
and BW rings (upper/lower thin solid line) the curvature simply
increases monotonically (and finally diverges) when the ring is
approached from infinity. For the Appell ring (dotted lines), the
curvature is negative/positive in the R > 0=R < 0 sheet; it again
increases (in magnitude) when approaching from a remote region,
but, interestingly, after reaching a minimum/maximum (the maxi-
mum has a much larger magnitude) at certain (different) z < a, it
returns to zero at the very ring. In the Kerr case (dashed line) the
Gauss curvature has to be computed by a different formula (see the
main text); in the R > 0 sheet, the result is similar to that obtained
for the MP and BW rings, but before falling to −∞ the curve goes
through zero slightly above z ¼ a and has a low maximum below
that value; in the R < 0 sheet, the curvature diverges at a certain
nonzero z < a, and then, for still lower z, it falls from positive to
negative infinity extremely steeply.
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Rρz
ρz ¼ Rtϕ

tϕ ¼ ðN;ρÞ2 þ ðN;zÞ2 −
N
ρ
N;ρ;

Rtρ
tρ ¼ −ðN;ρÞ2 þ ðN;zÞ2 − NN;ρρ;

Rtz
tz ¼ ðN;ρÞ2 − ðN;zÞ2 − NN;zz;

Rϕρ
ϕρ ¼ ðN;ρÞ2 þ ðN;zÞ2 − NN;zz;

Rϕz
ϕz ¼ ðN;ρÞ2 þ ðN;zÞ2 − NN;ρρ;

Rtρ
tz ¼ −NN;ρz − 2N;ρN;z;

Rϕρ
ϕz ¼ NN;ρz;

from where the Kretschmann scalar K ≔ RμνκλRμνκλ

follows in the form

1

8
K ¼ N2½ðN;ρρÞ2 þ 2ðN;ρzÞ2 þ ðN;zzÞ2�

− 2N½ðN;zÞ2N;ρρ þ ðN;ρÞ2N;zz�

þ 4NN;ρN;zN;ρz þ
N2

ρ2
ðN;ρÞ2 þ 3½ðN;ρÞ2 þ ðN;zÞ2�2

−
2N
ρ

N;ρ½ðN;ρÞ2 þ ðN;zÞ2�: ð49Þ

For the MP ring, the result is relatively complicated and
even remains so on the ρ ¼ 0 axis, but especially at the
central point z ¼ 0 it simplifies to just

Kðρ ¼ 0; z ¼ 0Þ ¼ 12M2

ðM þ aÞ6 :

This starts from zero for M ¼ 0, grows with M up to
64=ð243a4Þ ≐ 0.2633=a4 forM ¼ a=2, and then falls back
to zero gradually for larger M. Within the axis the above
value represents a maximum, while for the circular interior
of the ring it represents a minimum. The behavior of the
Kretschmann scalar in the meridional plane is illustrated,
forM ¼ a, in Figs. 8 (central part of the meridional section)
and 9 (zoom in on the rings’ closest vicinity). Let us add
that in the a → 0þ limit the above expression gives 12=M4

at the very center, which is not exactly the Kretschmann-
scalar value on the extreme Reissner-Nordström horizon
(the latter being 8=M4).
Now to compare with the other rings. For the Bach-Weyl

ring, the Kretschmann scalar reduces, on the ρ ¼ 0 axis, to

Kðρ ¼ 0Þ ¼ 12M2½ð2z2 − a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2

p
− 2Mz2�2

ðz2 þ a2Þ6 exp 4Mffiffiffiffiffiffiffiffiffi
z2þa2

p ;

which has exactly one zero at certain jzj > M and the
central-point value

Kðρ ¼ 0; z ¼ 0Þ ¼ 12M2

a6 expð4M=aÞ :

In contrast to the MP-ring case, this vanishes for a → 0þ.
For the Appell ring, one finds

Kðρ ¼ 0Þ ¼ 48M2½ðM − RÞðR2 − a2Þ2 þ 4a4R�2
ðR2 þ a2Þ8 exp 4MR

R2þa2
;

this always vanishes at certain R > M and also at two other
points in the R < 0 region (one above and one below
R ¼ −a), and it has the central-point value

Kðρ ¼ 0; z ¼ 0Þ ¼ 48M4

a8
;

which diverges for a → 0þ. Therefore, the a → 0þ limits of
Kðρ ¼ 0; z ¼ 0Þ differ considerably for the BWand Appell
rings (including the fact that the Appell-ring result is
proportional to M4=a8, whereas those obtained for the
other rings—and also for the Kerr case below—are propor-
tional toM2=a6), but this is mainly due to a “wrong order of
limits”: the limit form of the axis result is the same for both
and represents correctly the expression valid for the Curzon
solution,

lim
a→0þ

Kðρ ¼ 0Þ ¼ 48M2ðjzj −MÞ2
z8 exp 4M

jzj
:

(The BW and Appell rings being strongly directional, it is
also good to remember that the a → 0þ limit of the value at
the origin ½ρ ¼ 0; z ¼ 0� effectively means approaching the
ring from inside.)
For static axisymmetric fields, the Kretschmann scalar

and the “Ricci tensor squared” are the only independent
invariants quadratic in curvature, whereas in the stationary
case, one also has the Chern-Pontryagin scalar given by

�K ≔ �RμνκλRμνκλ;

representing the “magnetic” part of curvature (�Rμνκλ is the
Riemann-tensor left dual). Hence, when comparing the
static-ring results with the Kerr case, it is appropriate to
also take into account this second contribution. This is most
reasonably done by considering the modulus of the com-
plex number (K − i�K),

jK − i�Kj ¼ 48M2

Σ3
; ð50Þ

which comes out surprisingly simple (much simpler than
each of the parts separately); it amounts to 48M2=a6 at the
central point [θ ¼ 0,r ¼ 0], which diverges in the
Schwarzschild, a ¼ 0 limit. The comparison is illustrated
in Figs. 8 and 9 which confirm very calm behavior of
curvature in the Kerr and the MP-ring cases.
Let us again add the ζ → ∞ asymptotics in order to

quantify the behavior at the closest vicinity of the rings,
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FIG. 8. Contours of the Kretschmann scalar within the meridional plane, shown for the Majumdar-Papapetrou ring (top left), the Bach-
Weyl ring (top right), and the Appell ring (bottom left), and of the combined Kretschmann/Chern-Pontryagin scalar for the Kerr ring
(bottom right). All the rings haveM ¼ a. The ðρ; zÞ axes represent Weyl coordinates for the static rings, while they represent Kerr-Schild
coordinates for the Kerr ring. The scalar is everywhere positive, with light/dark shading indicating large/smaller values. In the units of
1=a4, the contour levels range from 0.003 to 100 for the MP and BW rings, from 0.003 to 5 × 106 for the Appell ring, and from 0.036 to
8000 for the Kerr ring.
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K ∼
84π4e4ζ

M4ζ4
…MP ring;

∼
16M6ζ6

π6a10
exp

�
8M2ζ2

π2a2
eζ cosψ

�
…BW ring;

∼
M6

16384a10
exp

�
M2

16a2
e2ζ cos 2ψ

�
…Appell ring;

jK − i�Kj ∼ 3M2

4a6
e3ζ …Kerr ring;

it was, in fact, not necessary to transform the last, combined
Kretschmann–Chern-Pontryagin scalar of the Kerr space-
time to toroidal coordinates, because the isotropy of
48M2=Σ3 is obvious (Σ represents the square of the
“coordinate distance” from singularity).

VII. CONCLUDING REMARKS

Three examples of static and axisymmetric thin-ring
sources of general relativity have been analyzed—the

FIG. 9. Details of plots shown in Fig. 8, magnifying the region in a close vicinity of the ring sources (0.9 < ρ=a < 1.1,
−0.1 < z=a < 0.1). Again the Majumdar-Papapetrou ring is at top left, the Bach-Weyl ring at top right, the Appell ring at bottom left,
and the Kerr ring at bottom right. The rings are clearly very different, with only the Majumdar-Papapetrou and the Kerr rings providing a
satisfactory (locally cylindrical) picture. In the units of 1=a4, the contour levels now range from 21 to 5 × 104 for the MP ring, from
0.001 to 1015 for the BW ring, from 10−140 to 10140 for the Appell ring, and from 1880 to 1.3 × 107 for the Kerr ring.
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Majumdar-Papapetrou ring (obtained as a smooth limit of
a circular distribution of extremally charged static black
holes), the Bach-Weyl ring, and the Appell ring. Despite
the “artificial” nature of the MP ring, it turns out to
generate quite a reasonable field in its vicinity, as
opposed to the BW ring (usually referred to as the most
ordinary ring source); in particular, the MP ring is not
directional (its properties do not much depend on the
direction from which it is approached), not to mention
that its basic dimensions turned out to involve such
factors as Catalan’s or Apéry’s constants—see (28)
and (30). Even the rather peculiar, double-sheeted
Appell ring (which is also strongly directional) has some
characteristics more natural than the BW ring; for
example (and in contrast to the BW ring), the disk it
encloses has a finite proper radius as well as area, and
both go to zero with a vanishing Weyl radius.
Besides contrasting the three static rings among each

other, we have also compared them with the Kerr ring
singularity. The latter is, of course, rotating rather than
static, and it has a Killing horizon around if a ≤ M, but the
field it generates has, e.g., some similarities with the Appell
case (not only that it is double-sheeted too). The Kerr ring
turns out to have more satisfactory properties than all the
above static rings.
A more general conclusion is that one should be very

careful when considering thin (thus singular) sources
in general relativity—much more careful than in the
Newtonian theory. This mainly applies if such sources
are employed as approximations of an actual distribu-
tion of matter in strong-field astrophysical systems. As
an example, let us mention the usage of the BW ring in
our own study of how the field of a black hole could be
deformed by an external source (started in [12] and
very recently continued in [19]). From the properties
summarized in Table I (of which “everything diverges”
for the BW ring), it even seems questionable to speak
of a source “surrounded by a ring.” However, it is
mainly problematic if the closest vicinity of the ring
directly affects a given problem, as for instance when
considering the motion of free particles in the ring’s
field. It has already been pointed out in [21] and then
repeated by the authors of Ref. [17]8 that near the BW
ring the geodesics behave in a nonintuitive manner,
and an explanation of such a behavior was also
suggested there. More recently, we studied the geodesic
dynamics in the field of an (originally) Schwarzschild
black hole surrounded by the BW ring in order to see
how strong irregularity (chaotic behavior) the ring
induces, even considering the BW ring (in [23]) as a

zero approximation of toroidal configurations of matter
known from galactic centers (in particular from that of
our Galaxy) and called circumnuclear rings. (See also
[24] where we compared the above relativistic system
with its Newtonian counterpart and devoted a special
note to the difference between the Newtonian and
relativistic version of the “ordinary”—Bach-Weyl—
ring.) We mention these previous results in order to
suggest that if employing the BW ring in some (astro)
physical problem, it would be more appropriate to at
least exclude the closest vicinity of the ring from
consideration, to use (e.g.) the MP ring instead,9 or,
in an ideal case, to use extended (in this case toroidal)
sources rather than thin ones—e.g., those studied
in [25–28].
When stressing the unsatisfactory, directional nature

of the BW ring, probably indicating that a better
representation and interpretation could exist, we should
also add that a method for how to achieve this was
suggested by [29]. After proving the theorem that in
orthogonally transitive, stationary, axisymmetric C4−

(sufficiently smooth) space-times, one can remove, by
a coordinate transformation (determined by the level
surfaces of Cartan invariants), any directional singular-
ity which is not at an accumulation point of critical
points of a scalar curvature invariant with directional
behavior, Taylor demonstrated the applicability of the
approach by finding an explicit such transformation for
the Curzon and double-Curzon solutions. He also
planned in the paper to decipher the structure of the
Zipoy-Vorhees, Bach-Weyl, and Tomimatsu-Sato space-
times, but this has not appeared then (however, see [30]
where some of these other particular cases were tackled,
too). In any case, it may be rather nontrivial to reveal a
“true nature” of a given source (see, e.g., [10]), and the
result of any such transformation may be unsatisfactory
in other respects. In other words, the “true nature” in
general (also) depends on physical setting.
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8If interested in ring solutions, one should read the Appendix
of this paper where several important errors in the literature are
admitted. We also added a mistake in [12] and [22], by giving a
wrong expression for the metric function λ for the BW ring (it has
been corrected in [19]).

9In doing so, one has to remember that the MP-ring space-
time is not a vacuum one, namely that it contains the respective
electromagnetic field. However, this does not mean that it
cannot be used when studying geodesic motion, for example:
one simply has to use particles without electric charge in that
case.

STATIC AXISYMMETRIC RINGS IN GENERAL … PHYSICAL REVIEW D 94, 104021 (2016)

104021-25



[1] A. A. Shoom, Distorted stationary rotating black holes,
Phys. Rev. D 91, 064030 (2015).

[2] H. Weyl, Zur Gravitationstheorie, Ann. Phys. (Berlin) 54,
117 (1917) [English translation: G. Neugebauer and D.
Petroff, Republication of: 3. On the theory of gravitation-
Gen. Relativ. Gravit. 44, 779 (2012)].

[3] W. Israel, Line sources in general relativity, Phys. Rev. D 15,
935 (1977).

[4] E. P. T. Liang, Normal-dominated singularities in static
space-times, Commun. Math. Phys. 32, 51 (1973).

[5] P. T. Chruściel, J. L. Costa, and M. Heusler, Stationary black
holes: Uniqueness and beyond, Living Rev. Relativ. 15, 7
(2012).

[6] J. B. Hartle and S.W. Hawking, Solution of the Einstein-
Maxwell equations with many black holes, Commun. Math.
Phys. 26, 87 (1972).

[7] G. Jaramillo and C. O. Lousto, Study of multi-black-hole
and ring-singularity apparent horizons, Phys. Rev. D 84,
104011 (2011).

[8] R. Bach and H. Weyl, Neue Lösungen der Einsteinschen
Gravitationsgleichungen. B. Explizite Aufstellung statischer
axialsymmetrischer Felder, Math. Z. 13, 134 (1922)
[English translation: G. Neugebauer and D. Petroff, Repub-
lication of: New solutions to Einstein’s equations of gravi-
tation. B. Explicit determination of static, axially symmetric
fields. By Rudolf Bach. With a supplement on the static
two-body problem. By H. Weyl., Gen. Relativ. Gravit. 44,
817 (2012).

[9] C. Hoenselaers, The Weyl solution for a ring in a homo-
geneous field, Classical Quantum Gravity 12, 141 (1995).

[10] S. M. Scott and P. Szekeres, The Curzon singularity. I:
Spatial sections, Gen. Relativ. Gravit. 18, 557 (1986).

[11] R. J. Gleiser and J. A. Pullin, Appell rings in general
relativity, Classical Quantum Gravity 6, 977 (1989).

[12] O. Semerák, T. Zellerin, and M. Žáček, The structure of
superposed Weyl fields, Mon. Not. R. Astron. Soc. 308, 691
(1999).

[13] D. M. Zipoy, Topology of some spheroidal metrics, J. Math.
Phys. (N.Y.) 7, 1137 (1966).

[14] H. Kodama and W. Hikida, Global structure of the Zipoy-
Voorhees-Weyl spacetime and the δ ¼ 0 Tomimatsu-Sato
spacetime, Classical Quantum Gravity 20, 5121 (2003).

[15] W. B. Bonnor and A. Sackfield, The interpretation of some
spheroidal metrics, Commun. Math. Phys. 8, 338 (1968).

[16] G.W. Gibbons and M. S. Volkov, Ring wormholes via
duality rotations, Phys. Lett. B 760, 324 (2016).

[17] L. A. D’Afonseca, P. S. Letelier, and S. R. Oliveira,
Geodesics around Weyl-Bach’s ring solution, Classical
Quantum Gravity 22, 3803 (2005).

[18] J. Carminati, An investigation of axially symmetric electro-
vac solutions, Gen. Relativ. Gravit. 13, 1185 (1981).

[19] M. Basovník and O. Semerák, On geometry of deformed
black holes: II. Schwarzschild hole surrounded by a Bach-
Weyl ring, Phys. Rev. D 94, 044007 (2016).

[20] O. Semerák and M. Basovník, On geometry of deformed
black holes: I. Majumdar-Papapetrou binary, Phys. Rev. D
94, 044006 (2016).

[21] O. Semerák, M. Žáček, and T. Zellerin, Test-particle motion
in superposed Weyl fields, Mon. Not. R. Astron. Soc. 308,
705 (1999).

[22] O. Semerák and P. Suková, Free motion around black holes
with discs or rings: Between integrability and chaos—II,
Mon. Not. R. Astron. Soc. 404, 545 (2010).

[23] P. Suková and O. Semerák, Free motion around black holes
with discs or rings: Between integrability and chaos—III,
Mon. Not. R. Astron. Soc. 436, 978 (2013).

[24] V. Witzany, O. Semerák, and P. Suková, Free motion around
black holes with discs or rings: Between integrability and
chaos—IV, Mon. Not. R. Astron. Soc. 451, 1770 (2015).

[25] J. Šácha and O. Semerák, Toroidal source around a static
black hole, Czech. J. Phys. 55, 139 (2005).

[26] D. Vogt and P. S. Letelier, Analytical potential-density pairs
for flat rings and toroidal structures, Mon. Not. R. Astron.
Soc. 396, 1487 (2009).

[27] E. Yu. Bannikova, V. G. Vakulik, and V. M. Shulga, Gravi-
tational potential of a homogeneous circular torus: A new
approach, Mon. Not. R. Astron. Soc. 411, 557 (2011).

[28] T. Fukushima, Zonal toroidal harmonic expansions of
external gravitational fields for ring-like objects, Astron.
J. 152, 35 (2016).

[29] J. P. W. Taylor, Unravelling directional singularities,
Classical Quantum Gravity 22, 4961 (2005).

[30] J. P. W. Taylor, Ph.D. thesis, Queen Mary, University of
London, 2006.

O. SEMERÁK PHYSICAL REVIEW D 94, 104021 (2016)

104021-26

http://dx.doi.org/10.1103/PhysRevD.91.064030
http://dx.doi.org/10.1007/s10714-011-1310-7
http://dx.doi.org/10.1103/PhysRevD.15.935
http://dx.doi.org/10.1103/PhysRevD.15.935
http://dx.doi.org/10.1007/BF01646428
http://dx.doi.org/10.12942/lrr-2012-7
http://dx.doi.org/10.12942/lrr-2012-7
http://dx.doi.org/10.1007/BF01645696
http://dx.doi.org/10.1007/BF01645696
http://dx.doi.org/10.1103/PhysRevD.84.104011
http://dx.doi.org/10.1103/PhysRevD.84.104011
http://dx.doi.org/10.1007/BF01485284
http://dx.doi.org/10.1007/s10714-011-1312-5
http://dx.doi.org/10.1007/s10714-011-1312-5
http://dx.doi.org/10.1088/0264-9381/12/1/012
http://dx.doi.org/10.1007/BF00769924
http://dx.doi.org/10.1088/0264-9381/6/7/005
http://dx.doi.org/10.1046/j.1365-8711.1999.02748.x
http://dx.doi.org/10.1046/j.1365-8711.1999.02748.x
http://dx.doi.org/10.1063/1.1705005
http://dx.doi.org/10.1063/1.1705005
http://dx.doi.org/10.1088/0264-9381/20/23/011
http://dx.doi.org/10.1007/BF01646273
http://dx.doi.org/10.1016/j.physletb.2016.07.012
http://dx.doi.org/10.1088/0264-9381/22/17/028
http://dx.doi.org/10.1088/0264-9381/22/17/028
http://dx.doi.org/10.1007/BF00759867
http://dx.doi.org/10.1103/PhysRevD.94.044007
http://dx.doi.org/10.1103/PhysRevD.94.044006
http://dx.doi.org/10.1103/PhysRevD.94.044006
http://dx.doi.org/10.1046/j.1365-8711.1999.t01-1-02749.x
http://dx.doi.org/10.1046/j.1365-8711.1999.t01-1-02749.x
http://dx.doi.org/10.1111/j.1365-2966.2009.16003.x
http://dx.doi.org/10.1093/mnras/stt1587
http://dx.doi.org/10.1093/mnras/stv1148
http://dx.doi.org/10.1007/s10582-005-0026-x
http://dx.doi.org/10.1111/j.1365-2966.2009.14803.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14803.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17700.x
http://dx.doi.org/10.3847/0004-6256/152/2/35
http://dx.doi.org/10.3847/0004-6256/152/2/35
http://dx.doi.org/10.1088/0264-9381/22/23/003

