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The Mathisson-Papapetrou-Dixon (MPD) equations, providing the “pole-dipole” description of
spinning test particles in general relativity, have to be supplemented by a condition specifying the
worldline that will represent the history of the studied body. It has long been thought that the Mathisson-
Pirani (MP) spin condition—unlike other major choices made in the literature—does not yield an explicit
momentum-velocity relation. We derive here the desired (and very simple) relation and show that it is in
fact equivalent to the MP condition. We clarify the apparent paradox between the existence of such a
definite relation and the known fact that the MP condition is degenerate (does not specify a unique
worldline), thus shedding light on some conflicting statements made in the literature. We then show how,
for a given body, this spin condition yields infinitely many possible representative worldlines, and derive a
detailed method how to switch between them in a curved spacetime. The MP condition is a convenient
choice in situations when it is easy to recognize its “nonhelical” solution, as exemplified here by bodies in
circular orbits and in radial fall in the Schwarzschild spacetime.
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I. INTRODUCTION

The problem of motion of a “small body” in general
relativity has been widely studied in the “pole-dipole”
test-particle approximation when the body is not itself
contributing to the gravitational field and when it is only
characterized by mass and spin (proper angular momentum),
with all the higher multipoles neglected. If the particle
interacts solely gravitationally, the only force it is subjected
to comes from the spin-curvature interaction and the pole-
dipole problem is described by the Mathisson–Papapetrou–
Dixon (MPD) equations

DPμ

dτ
¼ −

1

2
Rμ

νκλUνSκλ ≡ Fμ; ð1Þ

DSαβ

dτ
¼ 2P½αUβ� ≡ PαUβ −UαPβ; ð2Þ

where Pμ and Sμν denote, respectively, the body’s 4-
momentum and spin tensor (spin bivector), Uμ ≡ dzμ=dτ
the 4-velocity of the body’s representative worldline zμðτÞ,
and

D
dτ

≡∇U ≡ ;μUμ

denotes the covariant derivative along Uμ. Both Pμ and Uμ

are assumed to be timelike, with Uμ normalized to
UμUμ ¼ −1, which implies that τ is the proper time.
Contractions of Pμ and Uμ provide the masses M and m,

−PμPμ ≡M2 > 0; −PμUμ ≡m > 0;

respectively, the mass as measured in the zero 3-momentum
and in the zero 3-velocity frames. The timelike character of
both Pμ and Uμ is however not guaranteed automatically by
the MPD equations, with possible breakdown of this
requirement indicating ultimate limits of the pole-dipole
description. The spin bivector is assumed to be spacelike, so

1

2
SμνSμν ≡ S2 > 0:

Since the MPD set (1)–(2) possesses 13 unknowns1 for
only 10 equations, in order to be closed, it has to be
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1Four independent components of Pα, 3 independent compo-
nents of Uα, and 6 independent components of Sαβ.
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supplemented by 3 auxiliary constraints. These are pro-
vided by the so-called spin supplementary condition (SSC),
standardly written as

SμνVν ¼ 0;

where, in case of a particle with nonzero rest mass, Vμ is
some (freely chosen) timelike vector field [defined at
least along zμðτÞ] which is supposed to normalize as
VμVμ ¼ −1. This condition is a choice of a representative
worldline zμðτÞ; more precisely, it demands zμðτÞ to be, at
each instant, the body’s center of mass (or “centroid”) as
measured by an observer with instantaneous 4-velocity Vμ.
Four choices of Vμ have proven particularly convenient:

(i) Vμ ≡Uμ (Mathisson-Pirani (MP) condition [1,2],
originally due to Frenkel [3]), which states that the
reference worldline zμðτÞ is the centroid as measured
in its own rest frame (the zero 3-velocity frame);

(ii) Vμ ≡ Pμ=M (Tulczyjew-Dixon (TD) condition,
[4,5]), which states that zμðτÞ is the centroid as
measured in the zero 3-momentum frame;

(iii) Vμ ∝ uμlab þ Pμ=M (Newton-Wigner (NW) condi-
tion, [6,7]), where uμlab ∝ ∂μ

t is the 4-velocity of the
congruence of “laboratory” observers, at rest in the
given coordinate system (typically somehow privi-
leged by symmetries of the host spacetime);

(iv) Pμ ¼ mUμ (PμkUμ condition, known also as
Ohashi-Kyrian-Semerák (OKS) condition [8,9]),
which demands Vμ to be such that DVμ=dτ belongs
to the eigenplane of Sμν [10], for instance when Vμ

parallel transports along zμðτÞ, DVμ=dτ ¼ 0.
A fifth, less popular choice, is Vμ ≡ uμlab (Corinaldesi-
Papapetrou (CP) condition, [11]), which states that zμðτÞ is
the centroid as measured in the “laboratory” frame [12].
The TD choice has been used most frequently, mainly

because it leads to an explicit expression of the tangent Uμ

in terms of Pμ, Sμν, and zμ, the so-called momentum-
velocity relation [13],

Uμ ¼ m
M2

�
Pμ þ 2SμνRνικλPιSκλ

4M2 þ RαβγδSαβSγδ

�
: ð3Þ

Such relation is important, mainly in numerical treatment,
where the integration of the MPD system is done recur-
rently using the instantaneous tangent Uμ (see [14] for
details). The Pμ ¼ mUμ option in itself represents the
momentum-velocity relation and it turned out to simplify
the spinning-particle problem considerably [10]. For the CP
and NW conditions a momentum-velocity relation is
obtainable, but complicated [12], and no explicit expression
has yet been put forth. Finally, the MP SSC has also been
used many times, but it has been thought that it does not
lead to an explicit momentum-velocity relation (it has
only been shown to provide such an expression for the

four-acceleration DUμ=dτ, [8]). For recent discussions of
the subject, see e.g. [10,12].
Units and notation: Geometric units are used throughout

the article, G ¼ c ¼ 1. Greek letters denote the indices
corresponding to spacetime, while Latin letters denote
indices corresponding only to space. We use the
Riemann tensor convention Rα

βγδ ¼ ∂γΓα
βδ − ∂δΓα

βγ þ � � �,
with metric signature ð−;þ;þ;þÞ. We use abstract index
notation for tensors Tαβγ… and 4-vectors Vα; arrow notation
V⃗ denotes space components of a vector in a given frame.
The Levi-Civita tensor is ϵμνρσ ¼ ffiffiffiffiffiffi−gp

ϵ̃μνρσ , with the Levi-
Civita symbol ϵ̃0123 ¼ 1.

II. EQUATIONS OF MOTION UNDER A SPIN
SUPPLEMENTARY CONDITION (SSC)

First, just for self-completeness, let us repeat several
simple formulas from [10,15]. Writing, for a general vector
Vμ, the spin bivector in terms of the corresponding spin
vector Sμ ≡ −ϵμναβVνSαβ=2,

Sαβ ¼ ϵαβγδVγSδ; ð4Þ

its evolution along Uμ is just

DSαβ
dτ

¼ ϵαβγδ
DVγ

dτ
Sδ þ ϵαβγδVγ DS

δ

dτ
: ð5Þ

In order to “extract” the evolution of Sμ, one substitutes
Eq. (2) in Eq. (5) and multiplies this with ϵμναβVν, i.e.

ðδμν þ VμVνÞ
DSν

dτ
¼ ϵμναβVνUαPβ; ð6Þ

and hence

DSμ

dτ
¼ Vμ DVν

dτ
Sν þ ϵμναβVνUαPβ: ð7Þ

This yields

S
dS
dτ

¼ 1

2

dS2

dτ
¼ Sμ

DSμ

dτ
¼ ϵμναβVμSνPαUβ ð8Þ

for evolution of the spin magnitude S ¼ ffiffiffiffiffiffiffiffiffiffi
SμSμ

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SαβSαβ=2

q
.

In order to express the evolution of Vμ instead, one
multiplies the relation (5) by ϵμναβSν and uses Eq. (8), to
arrive at

ðS2δμν − SμSνÞ
DVν

dτ
¼ ðδμι þ VμV ιÞϵιναβSνUαPβ; ð9Þ

and hence
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S
DðSVμÞ

dτ
¼ −Sμ

DSν
dτ

Vν þ ϵμναβSνUαPβ: ð10Þ

Substituting Eq. (4) into (1), we can also express the force
in terms of the spin vector Sμ,

Fα ≡ DPα

dτ
¼ ⋆RσταμSσVτUμ; ð11Þ

where ⋆Rαβγδ ≡ ϵαβ
μνRμνγδ=2.

Let us stress again that, up to now, everything has been
valid for a generic time-like vector Vμ. For this generic
vector one can obtain a general P − U relation by con-
tracting the spin evolution equation (2) with Vβ, and
noticing that, by virtue of SαβVβ ¼ 0, VβDSαβ=dτ ¼
−SαβDVβ=dτ, leading to [16–19]

Pα ¼ 1

γðV;UÞ
�
μUα þ Sαβ

DVβ

dτ

�
; ð12Þ

where μ≡ −PαVα is the mass as measured by an observer
of 4-velocity Vα, and γðV;UÞ≡ −UαVα is the Lorentz
factor between Uα and Vα.

A. MPD system under the MP SSC

Consider now the MP SSC, i.e., let Vμ ≡Uμ. The force
equation (11) becomes [15]2

Fα ≡ DPα

dτ
¼ HβαSβ; ð13Þ

where Hα
β ≡ ⋆Rα

μβνUμUν ¼ ϵαμστRστ
βνUμUν=2 is the

“gravitomagnetic tidal tensor” (or “magnetic part of the
Riemann tensor”) as measured by an observer of 4-velocity
Uα. The spin evolution equation becomes the Fermi-Walker
transport law (e.g. [20]),

DSμ

dτ
¼ Uμ DU

ν

dτ
Sν: ð14Þ

These expressions are a unique feature of the MP SSC.
Equation (14) tells us that Sμ has fixed components in the
locally nonrotating frame comoving with the centroid. A
locally nonrotating frame is mathematically defined as
Fermi-Walker transported frame, and is physically realized
as a frame where the Coriolis forces vanish. This means that
Sα follows the “compass of inertia” [21], which is the most
natural spin behavior (in the absence of torques), since
gyroscopes are well known for opposing to changes in
direction of their rotation axis. (The spin vectors of other
spin conditions, by contrast, are not fixed, in general,
relative to the comoving nonrotating frame).

B. The momentum-acceleration relation
for the MP SSC

For Vμ ¼ Uμ, Eq. (8) implies that S is a constant, thus
Eq. (10) is rewritten as

S2
DUμ

dτ
¼ −Sμ

DSν
dτ

Uν þ ϵμναβSνUαPβ

¼ −Sμ
DSν
dτ

Uν − SμβPβ; ð15Þ

since now

Sμβ ¼ ϵμβανUαSν; Sα ¼ −
1

2
ϵαβγδUβSγδ: ð16Þ

Note that the first term on the right-hand side of Eq. (15)
can also be rewritten as − 1

m S
μPνDSν=dτ thanks to the

generally valid relation

γðV;UÞPν DSν
dτ

¼ μUνDSν
dτ

(which specifically for Vμ ≡Uμ means PνDSν=dτ ¼
mUνDSν=dτ). One, thus, obtains the momentum-acceler-
ation relation reached in [8],

aα ≡ DUα

dτ
¼ 1

S2

�
1

m
FμSμSα − PγSαγ

�
; ð17Þ

where aα is the acceleration.

C. The momentum-velocity relation for the MP SSC

For Vμ ¼ Uμ, Eq. (12) yields

Pμ ¼ mUμ þ Sμνaν; ð18Þ

where aμ ¼ DUμ=dτ. The desired momentum-velocity
relation3 follows simply by substituting in Eq. (18) the
acceleration aν from Eq. (15),

mUμ ¼ Pμ þ 1

S2
SμνSνβPβ: ð19Þ

(One only employs the fact that SμνSν ¼ 0 by definition.)
The relation (19) contains two scalars, m and S, which
are constant in case of the MP SSC. Therefore, they are
fixed by the initial conditions. Contracting Eq. (19) with
Pα, we get

m2 ¼ M2 −
1

S2
SαμSμβPβPα; ð20Þ

2There is a sign difference compared to the expression in [15],
due to the different sign convention for the Levi-Civita tensor.

3Equation (19) has recently been obtained, for the special
case of flat spacetime, in [12]. Herein we show it to be valid in
general.
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substituting back into Eq. (19) leads to an explicit equation
for Uα in terms of Pμ and Sμν only, Uα ¼ UαðPμ; SμνÞ.
The existence of the relation (19) might seem strange,

mainly due to the long history of assertions that no such
relation is available for the MP condition. Such assertions
were actually followed by a debate on the freedom in
choosing initial conditions and on the subsequent option for
“helical” motion. These issues shall be discussed in detail
in Sec. III.

1. Simple checks of the relation

As a first check, we note that, since SμνSνβ ¼
SμSβ − hμβS2, where

hμβ ≡ δμβ þ UμUβ ð21Þ

is the space projector orthogonal to Uμ, substituting
into (19) yields the trivial relation mUμ ¼ Pμ − hμβP

β

(⇔ mUμ ¼ mUμ), stating that mUμ is the component of
Pμ parallel to Uμ. That (19) verifies the 4-velocity nor-
malization also follows trivially from this relation.
Let us imagine now that the relation (19) is considered in

a generic case, without specifying any spin condition. It is
(in any case) useful to express

SμνSνβ ¼ ϵμνκλVκSλϵνβρσVρSσ

¼ S2ð−δμβ − VμVβ þ S−2SμSβÞ; ð22Þ

and thus to rewrite Eq. (19) as

mUμ ¼ ð−VμVβ þ S−2SμSβÞPβ; ð23Þ

which reveals that geometrically it means projection of Pμ

on the eigenplane of Sμν (or, equivalently, on the blade of its
dual bivector). Note that since SβUβ ¼ 0 ⇔ SβPβ ¼ 0 [this
is generally valid, see Eq. (12)] and the former is true if
the MP condition holds, the relation reduces to trivial
mUμ ¼ mUμ in that case.
An important property is evident now: if multiplied by

Sαμ, relation (23) gives

mSαμUμ ¼ Sαμð−VμVβ þ S−2SμSβÞPβ ¼ 0

immediately, because SαμVμ ¼ 0 as well as SαμSμ ¼ 0 by
definition. Therefore, relation (19) implies the MP SSC,
and so (since the MP SSC likewise implies (19)) it is
equivalent to the latter.

2. “Hidden momentum”

The component of Pμ orthogonal to Uμ, hμνPν ≡ Pμ
hid,

has been dubbed in some literature “hidden momentum.”
The reason for the denomination is seen taking the
perspective of an observer comoving with the centroid
(the zero 3-velocity frame). In such frame the spatial

momentum is precisely hμνPν, and is in general nonzero.
However, by definition, the body is “at rest” in this frame
(since this is the rest frame of the center of mass, or
centroid, chosen to represent it); hence such momentum
must be hidden somehow. It may be cast as analogous
(albeit with a very different nature [15,22]) to the hidden
momentum first found in electromagnetic systems [23]
(namely in magnetic dipoles subjected to electric fields
[15,22–25]). The concept proved useful in simplifying the
interpretation of some exotic motions of the centroid in
Refs. [12,18,22] (amongst them the Mathisson helical
motions [18], discussed below). It reads, for the MP
condition,

Pμ
hid ≡ hμαPα ¼ Pμ −mUμ ð24Þ

¼ Sμνaν ¼ −ϵμβγδSβaγUδ; ð25Þ

the last two equalities holding for the MP SSC, where
we used Eqs. (18), (16). Relation (19) yields an alternative
expression for the hidden momentum, in terms of Pμ

and Sμν:

Pμ
hid ¼ −

1

S2
SμνSνβPβ: ð26Þ

III. THE DUALITY BETWEEN THE
DEGENERACY OF CENTROID AND THE
DETERMINACY OF THE EQUATIONS

Equations (19)–(20) yield a momentum-velocity relation
of the form Uα ¼ UαðPμ; SμνÞ. This means that the equa-
tions of motion can be written as the explicit functions

dzα

dτ
¼ Uαðzμ; Pμ; SμνÞ;

dPα

dτ
¼ fαðzμ; Pμ; SμνÞ;

dSαβ

dτ
¼ ψαβðzμ; Pμ; SμνÞ ð27Þ

which, given the initial values fzα; Pα; Sαβgjin, form a
determinate system. That is, the solution is unique given
this type of initial data and hence, from this point of view,
the MP SSC works like the other SSC’s in the literature.
This fact might be surprising at first, since, contrary to other
SSCs like the TD, the MP SSC is known for not specifying
a unique worldline through the body [4,5,8,12,17,22,26],
being infinitely degenerated. This led to (apparent) contra-
dictions in the literature, between authors noticing that it
does not uniquely specify a worldline, and those arguing
[27,28] that it does, given certain initial conditions (see in
particular the comments made in [27]).
The conflict between the two perspectives is only

seeming. Given a test body, with matter distribution
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described by some energy-momentum tensor Tαβ, the
condition SαβUβ ¼ 0 does not indeed specify a unique
centroid; the MP SSC is obeyed by an infinite set of
worldlines. In the simplest case of flat spacetime, as shown
in [18,26], every point within the so-called “disk of
centroids,”4 counterrotating relative to the body with a
certain fixed angular velocity (Ω ¼ M=S⋆, where S⋆ is the
angular momentum about the nonhelical centroid), yields a
worldline obeying the condition SαβUβ ¼ 0; this is
depicted in body 1 of Fig. 1 (red semicircles therein).
The impact of this degeneracy in the initial value

problem for the equations of motion is not trivial though.
This is why we devote the rest of this section to explain how
this difference between the MP and other SSCs is reflected
in the initial data set needed to determine the solution. For
all the SSCs apart from the MP one, one can apply the
initial data set fzα; Pα; Sαβgjin equally well as the set
fzα; m;Uα; Sαβgjin, since both fix the solution uniquely.
In the case of the MP SSC, however, only the former data
set provides a unique solution, whereas the latter has to be
supplemented by the initial acceleration, i.e., one needs the
data set fzα; m;Uα; Sαβ; aαgjin. The reason for this can be
seen from the generic P −U relation (12). Namely, for all

the usual SSCs except from the MP one, it can be shown
that DVβ=dτ is a function of ðzμ; Uμ; SμνÞ, which allows to
obtain Pα as a function of ðzμ; Uμ; Sμν; mÞ, thereby render-
ing the set fzα; Pα; Sαβgjin equivalent to fzα; m;Uα; Sαβgjin.
Below we provide the proof of the above statement.
In the case of the TD SSC, Vβ ¼ Pβ=M, we have

μ ¼ M and γðV;UÞ ¼ m=M, therefore Eq. (1) gives that

DVβ

dτ
¼ 1

M
DPβ

dτ
¼ −

1

2M
RβγμνSμνUγ:

By contracting Eq. (12) with Uα one obtains

M2 ¼ m2 −
1

2
SαβUαRβγμνSμνUγ;

and by substituting the above M in (12) one obtains the
momentum Pα in terms of ðzμ; Uμ; Sμν; mÞ.
In the case of the Corinaldesi-Papapetrou SSC [11],

Vβ ¼ uβlab is the congruence of “laboratory” observers [12]
(at rest in the given coordinate system). Thus, contracting
Eq. (12) with Uα leads to

μlab ¼ mγðulab; UÞ þ Sαβu
β;σ
labUσUα;

where μlab ≡ −Pαuαlab, γðulab; UÞ ¼ −uαlabUα, and uα;βlab is
determined by the kinematics of the observer congruence
[12]. Substituting into (12) one obtains Pα in terms
of ðzμ; Uμ; Sμν; mÞ.
For the OKS condition, simply Pα ¼ mUα.
The case of the MP condition is different, as (12) yields

Pα ¼ mUα þ Sαβ
DUβ

dτ
;

so clearly the initial values fzα; m;Uα; Sαβgjin are not
sufficient, since one cannot from them determine the
acceleration aα ¼ DUα=dτ, which is needed in order to
obtain Pα. Physically, this is because the same data
fzα; m;Uα; Sαβgjin might correspond to a nonhelical sol-
ution of a given physical body, as well as to helical
solutions of an indiscriminate number of physical bodies.
This is exemplified, for the case of flat spacetime, in Fig. 1:
a given tensor Sαβ and a 4-velocity Uα might correspond to
a helical solution of body 1, whose bulk (i.e., its nonhelical
centroid zα1) is at rest, or to a nonhelical solution of body 2,
which is uniformly moving with velocity v⃗ ¼ U⃗=γ. This
is so when their “intrinsic” spins (i.e., their angular
momentum about the nonhelical centroids zα1 and zα2)
and masses M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−PαPα
p

obey specific relations that
we shall now derive.
First notice, from Eq. (12) applied to the Tulczyjew-

Dixon SSC (Vα ¼ Pα=M), that, in the absence of forces
(DPα=dτ ¼ 0), one has Pα ¼ mUα; this implies that the TD
centroid coincides with a centroid of the MP SSC, more

FIG. 1. Two centroids, z̄α1 and zα2 , of two different bodies for
which the initial data fzα; m; Uα; Sαβgjin is the same. The centroid
z̄α1 is a helical motion of body 1, whose bulk (i.e., its nonhelical
centroid zα1) is at rest; z

α
2 is a nonhelical motion of body 2, which

moves uniformly with velocity v⃗. The figure corresponds to flat
spacetime, where the nonhelical centroids coincide with
the centroids as measured in the zero 3-momentum frames
(defined by the TD condition SαβPβ ¼ 0). Body 2 has a smaller
“intrinsic” spin, but is more massive: S⋆2 ¼ S⋆1=γ, M2 ¼ γM1,
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. By giving the initial shift relative to the non-

helical centroid, Δxα ¼ SαβPβ=M2, or, equivalently, the initial
acceleration aα ¼ −ΔxαM2=S2, the degeneracy is removed.
This is why the initial data fzα; Pα; Sαβgjin (equivalent to
fzα; m; Uα; Sαβ; aαgjin) uniquely fixes the solution, and a definite
velocity-momentum relation Uα ¼ UαðPμ; SμνÞ exists.

4In the zero 3-momentum frame (i.e., in the rest space
orthogonal to Pα), the set of all possible positions of the center
of mass as measured by the different observers spans a disk,
orthogonal to Sα⋆, of radius (56), centered at the centroid as
measured in that frame (TD centroid), see Fig. 1. Such disk is
dubbed the “disk of centroids.” For more details see e.g. [12,26].
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precisely the nonhelical one, since DPα=dτ ¼ 0 ⇒
DUα=dτ ¼ 0 for such worldline. Therefore, the nonhelical
centroids zα1 and zα2 are TD centroids. Now, recall the well
known flat spacetime expression (e.g. [20]; see also
Sec. IV) relating the angular momentum tensors (Sαβ

and S̄αβ) of a given body about two different points zα

and z̄α ¼ zα þ Δxα,

S̄αβ ¼ Sαβ þ 2P½αΔxβ�: ð28Þ

Let us moreover denote, as in [12,18], by Sαβ⋆ the angular
momentum of a given body taken about its TD centroid
(so that Sαβ⋆ Pβ ¼ 0), and by Sα⋆ ¼ −ϵαβγδS

γδ⋆ Pβ=ð2MÞ the
corresponding spin vector. The condition that Sαβ be
simultaneously the angular momentum of body 1 about
its helical centroid z̄α1 , and the angular momentum of
body 2 about its nonhelical centroid zα2 (the TD centroid
of body 2), implies, for body 2, Sαβ⋆2 ¼ Sαβ ⇒ Sα⋆2 ¼ Sα,
and, for body 1, cf. Eq. (28),

Sαβ ¼ Sαβ⋆1 þ 2P½α
1 Δxβ�; ð29Þ

Δxα ¼ −Sαβ⋆1
Uβ

m
; ð30Þ

where Eq. (30) follows from contracting (29) with Uβ, and
making ΔxβUβ ¼ 0. The vector Δxα ¼ z̄α1 − zα1 is the
“shift” of the centroid z̄α1 relative to zα1; it is a vector
orthogonal to the worldlines of both centroids, that yields
their instantaneous spatial displacement (as measured in the
rest frames of either of them). It is the analogue of the
Newtonian displacement vector, as illustrated in Fig. 1. It
follows that

Sα≡−
1

2
ϵαβγδUδSβγ ¼ γSα⋆1− ϵαβγδUδPβ

1Δxγ ¼
Sα⋆1
γ
; ð31Þ

where γ ≡ −UαPα
1=M1 ¼ m=M1 satisfies

5 γ > 1. In both
the second and third equalities of (31) we notice that
UδSδ⋆1 ¼ 0. To obtain this relation, one first notes that
substituting (29) into Sα⋆1 ¼ −ϵαβγδS

γδ
⋆1P

β
1=ð2M1Þ, and

contracting with Uα, yields Sα⋆1Uα ¼ −SαPα
1=M1; then

one just has to note, from Eq. (19), that SαPα
1 ¼ 0. We thus

see that the data fzα; m;Uα; Sαβgjin is the same for bodies 1
and 2 provided that

Sα⋆1 ¼ γSα⋆2 ¼ γSα

(so body 1 has a larger intrinsic spin than body 2,
S⋆1 ¼ γS⋆2 > S⋆2), and

m ¼ γM1 ¼ M2

(so body 2 is more massive than body 1: M1 < M2).
Such degeneracy is removed by additionally fixing

the initial acceleration aαjin. In fact, the initial data
fzα; m;Uα; Sαβ; aαgjin and fzα; Pα; Sαβgjin are equivalent
under this spin condition, since from the latter one
immediately obtains Uαjin via (19), and also aαjin via the
explicit expression for the acceleration (17).
The way these things play out is especially intuitive

again in the flat spacetime case in Fig. 1: as shown in detail
in [18,26], for a given body (body 1 in Fig. 1), the MPD
system (1)–(2) supplemented by the MP SSC is satisfied by
an infinite set of worldlines which, as viewed from the
perspective of the body’s zero 3-momentum frame (the
frame represented in Fig. 1), consist of a set of circular
motions (red semicircles), of radius R ¼ kΔxαk, centered at
the nonhelical centroid (zα1 in Fig. 1). Since, as explained
above, the latter coincides with the body’s TD centroid, let
us denote it henceforth by zαðPÞ. In other frames, the
solutions consist of a combination of such circular motion
with a boost parallel to P⃗. If one is given just the initial data
fzα; m;Uα; Sαβgjin, as explained above, one has no way of
knowing to which kind of solution (helical or nonhelical) of
which kind of body it corresponds to (i.e., which are the
defining moments Pα and Sαβ⋆ , whether its bulk at rest or
moving, etc). This is exemplified by bodies 1 and 2 of
Fig. 1, for which such data is the same. For the initial data
fzα; Pα; Sαβgjin the situation is very different: the momen-
tum Pα tells us immediately the 4-velocity of the nonhelical
centroid: dzαðPÞ=dτ ¼ Pα=M; Pα and Sαβ combined give
us the shift Δxα ¼ zα − zαðPÞ via the expression

Δxα ¼ SαβPβ

M2
ð32Þ

which follows from contracting (29) with Pβ (identifying

Pα
1 → Pα, Sαβ⋆1 → Sαβ⋆ therein), and noting that ΔxβPβ ¼ 0.

From this one gets the coordinates of the TD centroid
zαðPÞ. In other words, as depicted in Fig. 1, the vector Δxα
tells us whether the motion is helical or not, and which one
of the helices. Alternatively, the same information is given
by the initial acceleration, since, from Eqs. (17) and (32),
aα ¼ −ΔxαM2=S2. Moreover, the angular momentum Sαβ⋆
about the nonhelical centroid zαðPÞ can be obtained from
Δxα and Sαβ using, again, (29). The motion is then totally
determined, because we know the center [zαðPÞ, that is, zα1
in Fig. 1] and the radius (Δxα) of the circular motion
described by zα around zαðPÞ; and we know moreover its
angular velocity, which, as shown in [18,26], is the same for
all helices and equal to Ω⃗ ¼ −MS⃗⋆=S2⋆. In this way we get
an intuitive picture of why the motion (and hence Uα) is
completely and uniquely determined given the initial data

5The factor γ can also be written as γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, where v⃗ is

the velocity of the centroid z̄α1 relative to the zero 3-momentum
frame (the reference frame depicted in Fig. 1, where v⃗ ¼ U⃗=γ),
or, equivalently, the velocity of z̄α1 with respect to zα1 .
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fzα; Pα; Sαβgjin, making natural the existence of the
momentum-velocity relation (19).

IV. DIFFERENT SOLUTIONS CORRESPONDING
TO THE SAME PHYSICAL BODY

In this section we discuss the degeneracy of the MP SSC,
and the description of a given physical body through
the different representative worldlines obeying this spin
condition. First of all one needs to establish what, in the
framework of a pole-dipole approximation, defines a
physical body. In a multipole expansion, the energy-
momentum tensor Tαβ and the charge current density
4-vector (jα) of an extended body are represented by its
multipole moments (see e.g. [29,30]). To pole-dipole
order, and in the absence of an electromagnetic field, the
momentum Pα and the spin tensor Sαβ are the only of such
moments entering the equations of motion. Such moments
are taken with respect to a reference worldline zαðτÞ and
defined as integrals over a certain space-like hypersurface.
Different methods have been proposed for precisely defin-
ing the moments in a curved spacetime. Some of them are
based on bitensors [5,22,30], while others employ an
exponential map [29]. In the latter case the moments take
the form [12,29]

Pα̂ ≡
Z
Σðz;VÞ

T α̂ β̂dΣβ̂; ð33Þ

Sα̂ β̂ ≡ 2

Z
Σðz;VÞ

x½α̂T β̂�γ̂dΣγ̂; ð34Þ

in a system of Riemann normal coordinates fxα̂g origi-
nating at zα. Here Σðz; VÞ is the spacelike hypersurface
generated by all geodesics orthogonal to the timelike vector
Vα at the point zα, dΣ is the 3-volume element on Σðz; VÞ,
and dΣγ ≡ −nγdΣ, where nα is the unit vector normal to
Σðz; VÞ (at zα, nα ¼ Vα).
For a free particle in flat spacetime, the conservation

equations Tαβ
;β ¼ 0, along with the existence of a maximal

number of Killing vectors, imply that both Pα and Sαβ are
independent of Σðz; VÞ (see, e.g., [20]). Thus, Sαβ is just a
function of the reference point zα, and Pα is a constant
vector independent of the point. Hence, given Pα and Sαβ

about a reference worldline zαðτÞ, the moments of the same
body relative to another reference worldline z̄αðτ̄Þ are such
that, in a global rectangular coordinate system, the
components of Pα remain the same, and Sαβ is transformed
by the well-known expression (28).
In curved spacetime the situation is more complicated

because the moments depend on the hypersurface of
integration Σ (which in turn are not simply hyperplanes,
as in flat spacetime), and a simple, exact relation between
the moments fP̄α; S̄αβg taken with respect to z̄α, Σðz̄; V̄Þ,
and the moments fPα; Sαβg evaluated with respect to zα,

Σðz; VÞ, does not exist. However, it is still possible to
devise a simple set of transformation rules that, to a very
good approximation, allows us to obtain the moments taken
about z̄α from the knowledge of the moments about zα, if
the size of the test body is small compared to the scale of
the curvature. More precisely, the latter assumption holds
when λ ¼ kRkρ2 ≪ 1, where kRk is the magnitude of the
Riemann tensor and ρ is the radius of the body.
To obtain these transformation rules one starts by

noticing that when λ ≪ 1, then for any point zα within
the convex hull of the body’s worldtube, Pα and Sαβ are
independent of the argument Vα of Σðz; VÞ. This is
explicitly shown in the Appendix of [12]. Now, let fxα̃g
be a system of normal coordinates originating from the
point z̄α. These coordinates can be chosen such that

xα̃ ¼ xα̂ − z̄α̂ þOðkRkkxα̂ − z̄α̂k2kz̄α̂ − zα̂kÞ;

cf. Eq. (11.12) of [31]. Therefore, xα̃ ≃ xα̂ − z̄α̂, provided
that zα and z̄α are two points within the body’s convex hull6

(as is the case for two centroids) and that the condition
λ ≪ 1 holds. Aligning the time axis of the coordinate
system fxα̂g with Vα, ∂α

0̂
jz ¼ Vα, we can thus take Pα̂, P̄α̃,

Sα̂ β̂, S̄α̃ β̃ as integrals over the same hypersurface x0̂ ¼ 0,
which, using (33)–(34), leads to

P̄α̃ ¼ Pα̂; S̄α̃ β̃ ¼ S̄α̂ β̂ ¼ Sα̂ β̂ þ 2P½α̂Δxβ̂�; ð35Þ

where Δxα̂ ¼ z̄α̂ − zα̂ ≡ z̄α̂. This yields a rule for transition
between different representations of the same body: they
are such that, in a normal coordinate system originating at
zα, the components Pα̂ of the momentum are the same at
both points, and the components of the angular momentum
obey relation (35). The setting of normal coordinates is
however laborious in practical situations.
A practical covariant approach to implement these rules

can be devised as follows. First one notes that, since the
system fxα̂g is constructed from geodesics radiating out of
zα, the components Δxα̂ ¼ z̄α̂ are identified with the vector
Δxμ at zα, tangent to the geodesic cαðsÞ connecting zα and
z̄α, and whose length equals that of the geodesic segment.
And the point z̄α is, thus, the image by the exponential map
of Δxμ [12] (see Fig. 2):

z̄α ¼ expαz ðΔxÞ ¼ eΔsd=dscαðsÞjs¼sz

¼ zα þ _cαðszÞΔsþ
1

2
c̈αðszÞΔs2 þ � � � ; ð36Þ

where Δs≡ sz̄ − sz. Choosing s as the proper length of cα,
we have Δs ¼ kΔxμk and

6More precisely, within the intersection of the body’s world-
tube with any spacelike hypersurface Σðz; VÞ, that can be
interpreted as the rest space of some observer of 4-velocity Vα.
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_cαðszÞ ¼
Δxα

kΔxμk ; ð37Þ

reading c̈α from the geodesic equation c̈α þ Γα
βγ _c

β _cγ ¼ 0,
we obtain

z̄α ¼ zα þ Δxα −
1

2
Γα
βγjzΔxβΔxγ þ � � � : ð38Þ

Now let ḡκα ≡ ḡκαðz̄; zÞ denote the bitensor that parallel
propagates tensors Aα1…αn from zα to z̄α along cαðsÞ
[30,32]:

Aα1…αn jz̄ ¼ ḡα1β1…ḡαnβnA
β1…βn jz: ð39Þ

Using the parallel transport equation dAα1…αn=ds ¼
−Γα1

βγA
βα2…αn _cγ − � � � − Γαn

βγA
α1…αn−1β _cγ , this is

Aα1…αn jz̄ ¼ Aα1…αn jz −
Z

z̄

z
Γα1
βγðxÞAβα2…αndxγ

− � � � −
Z

z̄

z
Γαn
βγðxÞAα1…αn−1βdxγ: ð40Þ

Noting that, in the normal coordinate system fxα̂g,
kΓα̂

β̂ γ̂
ðxÞk∼kRkkxk, it follows that Aα̂1…α̂n jz̄ ¼ Aα̂1…α̂n jzþ

OðkAkkRkkΔxμk2Þ. Therefore, under the assumption
λ ≪ 1, Aα̂1…α̂n jz̄ ≃Aα̂1…α̂n jz. In other words, the condition
that, under the assumption λ ≪ 1, the componentsAα̂1…α̂n jz̄
of a tensor at z̄α equal those of a tensor Aα̂1…α̂n jz at zα in

normal coordinates originating from zα, is equivalent to
saying thatAα1…αn jz̄ is obtained by parallel transporting the
tensor Aα1…αn jz from zα to z̄α along cαðsÞ.
Thus, given two points zα and z̄α, or a point zα and a shift

vector Δxα, we have a covariant method for “transforming”
and then “transferring” the moments from zα to z̄α. Namely,
first one has to transform the spin tensor using Eq. (28), in
which Δxα is a vector at the point zα [defined by Eq. (37)].
Note that this is a well-defined operation for tensors at zα: it
yields a tensor S̄αβjz at zα, one whose components in the
normal coordinates fxα̂g of zα happen to equal the
components S̄α̃ β̃ of the spin tensor about z̄α in the normal
coordinates fxα̃g of z̄α [see Eq. (35)]. Then, one parallel
transports Pα and S̄αβjz to z̄α, i.e.

S̄αβjz̄ ¼ ḡαγ ḡβδS̄γδjz
¼ ḡαγ ḡβδðSγδ þ 2P½γΔxδ�Þjz; ð41Þ

Pαjz̄ ¼ ḡαβPβjz: ð42Þ

The above procedure can be used to shift between
different representative (centroid) worldlines of a given
body. Usually one has a solution zαðτÞ corresponding to
some spin condition SαβVβ ¼ 0, and wishes to know how
to shift to a worldline z̄αðτ̄Þ specified by another SSC
S̄αβV̄β ¼ 0. That can be done as follows. Starting from a
point zα along the worldline zαðτÞ, a point z̄α of the new
worldline, such that the method above holds, is reached via
Eq. (36) by an appropriate shift vector Δxα. The vector Δxα
is obtained in turn as follows. One prescribes a vector V̄αjz
at zα (understood to result from the parallel transport of the
actual V̄α ≡ V̄αjz̄, at the yet to be determined z̄α, to zα, i.e.
V̄α ¼ ḡαβV̄βjz); then

Δxα ¼ −
SαβV̄βjz

μ̄
; ð43Þ

where μ̄≡ −PαV̄α. In order to derive Eq. (43), one must
recall, from [32], some properties of the parallel propagator
ḡαβ in Eq. (39). Namely, this tensor is not symmetric: its
second slot parallel transports vectors from zα to z̄α, as
indicated in Eq. (39), whereas the first slot does the inverse
path. That is, let ḡαβðz; z̄Þ be the bitensor whose second slot
parallel transports tensors from z̄α to zα [i.e., the reciprocal
of the tensor ḡαβðz̄; zÞ≡ ḡαβ in Eq. (39)]; we have

ḡαβðz; z̄Þ ¼ ḡβαðz̄; zÞ≡ ḡβα; ð44Þ

cf. Eq. (1.36) of [32]. Now, contracting Eq. (41) with V̄β,
noting, from relation (44), that V̄βḡβδ ¼ V̄δjz, and that, by
definition, S̄αβjz̄V̄β ¼ 0 and ΔxδV̄δjz ¼ 0, one obtains
Eq. (43). The vector Δxα is orthogonal to both Vα and
V̄αjz; it yields, in the sense of the exponential map, the

FIG. 2. Two different centroids [of worldlines z̄αðτ̄Þ and zαðτÞ]
corresponding to the same physical body. The point z̄α ¼
expαz ðΔxμÞ is the image produced by the exponential map of
the shift vector Δxα ¼ −SαβŪβjz=m̄ at zα, where m̄ ¼ −PγŪγ jz.
Ūβjz is the vector resulting from parallel transporting Ūα from z̄α

to zα along the geodesic cαðsÞ connecting these two points. vα ¼
Ūαjz=γ − Uα is the “kinematical” relative velocity [33] of z̄α with
respect to zα (i.e., of Ūα with respect to Uα). Given a worldline
zαðτÞ and its corresponding moments (Pα and Sαβ), a new
solution z̄αðτ̄Þ of the MP SSC is completely set up by prescribing,
at some point zα, the vector vα obeying the constraint (50), and
then by using Eqs. (36), (41)–(43) for V̄αjz ¼ Ūαjz.
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instantaneous spatial (with respect to either Vα or V̄αjz)
displacement7 of the centroid z̄α measured by an observer
of 4-velocity V̄αjz, relative to the centroid zα. Equation (43),
together with Eq. (36) and Eqs. (41)–(42), provide all
the initial data needed to evolve the equations of motion
(1)–(2), provided that they are coupled to a velocity-
momentum relation Uα ¼Uαðzμ;Pμ;SμνÞ, thereby uniquely
determining the new worldline z̄αðτ̄Þ.

A. Transition between different
Mathisson-Pirani centroids

According to the procedure above, given a solution
zαðτÞ, in order to change to a different worldline corre-
sponding to a different centroid of the same body, all one
needs is prescribing the initial vector V̄αjz (i.e., the 4-
velocity of the observer with respect to which the new
centroid is to be measured). All the other quantities
follow from Eqs. (36), (41), (42), (43), that is: the new
initial position, spin vector, momentum, and shift vector,
respectively.
The MP SSC demands V̄α to be tangent to the centroid

worldline, i.e. V̄α ¼ Ūα ≡ dz̄α=dτ. This demand does not
specify a unique worldline, as already discussed in Sec. III;
but still it restricts the choice of the eligible V̄αjz ¼ Ūαjz, as
we shall now see. The conditions that Ūα must obey can be
found from the velocity-momentum relation (19) re-written
in terms of barred quantities, that is

m̄Ūα ¼ Pα þ 1

S̄2
S̄αμS̄μβPβ: ð45Þ

First note that S̄αμS̄μβ ¼ S̄αS̄β − h̄αβS̄2, where h̄αβ ≡
gαβ þ ŪαŪβ is the space projector orthogonal to Ūα and

S̄α ¼ −ϵαβγδS̄γδŪβ=2 ð46Þ

is Eq. (16) in barred quantities, it follows that

m̄Ūα ¼ Pα − h̄αβPβ þ 1

S2
S̄αS̄βPβ ⇔ S̄βPβ ¼ 0;

since Pα − h̄αβPβ ¼ m̄Ūα. Thus, Eq. (45) is reduced to the
orthogonality between S̄β and Pβ, confirming the condition
suggested in [8] (p. 1928) through a different route.
To see what this orthogonality implies for Ūα, we note

that by contracting Eq. (46) with Pα one gets

S̄αPα ¼ −
1

2
ϵαβγδS̄γδŪβPα ¼ 0: ð47Þ

If Sγδ⋆ jz̄ is the angular momentum about the centroid zαðPÞ
measured in the zero 3-momentum frame (the TD centroid),
parallel transported to z̄α, using S̄γδ ¼ Sγδ⋆ jz̄ þ 2P½γζδ�,
where ζα̃ ¼ z̄α̃ − zα̃ðPÞ is the shift vector from zαðPÞ to
z̄α, Eq. (47) gives

1

2
ϵαβγδS

γδ⋆ jz̄ŪβPα ¼ 0 ⇔ Sβ⋆jz̄Ūβ ¼ 0: ð48Þ

Thus, the restriction imposed on Ūα is that it has to be
orthogonal to the spin vector Sβ⋆jz̄ of the TD solution. Now,
using properties (44) and ḡαβḡγβ ¼ δα

γ (cf. Eq. (1.35) of
[32]), we can write Sα⋆jz̄Ūα ≡ Sα⋆jz̄ḡαβḡγβŪγ ¼ Sα⋆jzŪαjz,
where Ūαjz ¼ ḡβαŪβ is the vector obtained by parallel
transporting Ūα from z̄α to zα. Therefore, the condition
Sβ⋆jz̄Ūβ ¼ 0 is equivalent to Sβ⋆jzŪβjz ¼ 0 (this is just the
statement that parallel transport preserves angles).
Consider now the spatial vector vα defined by (see Fig. 2)

Ūαjz ¼ γðUα þ vαÞ; γ ¼ −UαŪαjz ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vαvα

p
:

ð49Þ

The vector vα is the kinematical relative velocity of the
centroid z̄α with respect to zα—a natural generalization of
the concept of relative velocity for the case of objects located
at different points [33]. Since Sβ⋆jzUβ ¼ 0 (as condition (48)
must hold for any solution z̄α), that, together with
Sβ⋆jzŪβjz ¼ 0, implies via (49) that

Sβ⋆jzvβ ¼ 0: ð50Þ

In other words, compatibility of the initial data with the MP
SSC amounts to the requirement that z̄α moves relative to zα

in a direction orthogonal to Sβ⋆jz. For a free particle in flat
spacetime, as depicted in Fig. 1, this amounts to moving in a
direction orthogonal to the body’s axis of rotation.

Algorithm for transition between MP centroids

(1) choose the “kinematical relative velocity” vα of
the new centroid z̄α with respect zα, such that it
obeys (50);

(2) determine Ūαjz ≡ V̄αjz and the shift vector Δxα
through Eqs. (49) and (43).

(3) Determine z̄α from Eq. (38).
(4) Parallel transport Pα to z̄α using Eq. (42); trans-

form the spin tensor and parallel transport it to z̄α

using Eq. (41).
(5) Use the obtained fz̄α; Pα; S̄αβg as initial data for the

system (27), uniquely determining the solution.

7This can readily be seen by aligning the time axis of the
coordinate system fxα̂g in Eq. (34) with V̄αjz, i.e. ∂α

0̂
jz ¼ V̄αjz,

leading to

−Sî α̂V̄ α̂jz ¼ Sî 0̂ ¼
Z
Σðz;V̄Þ

xîT 0̂ γ̂dΣγ̂ ≡ μ̄z̄i:
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V. EXAMPLES

In this section we will employ the Mathisson-Pirani
condition in physical systems where it is easy to setup the
nonhelical solution, and this spin condition is especially
suitable in that it leads to the simplest description of the
physical motion. In each case we will also exemplify
the helical descriptions of the same (within the realm of
the pole-dipole approximation) physical motion.

A. Radial fall in Schwarzschild spacetime

We wish to study the setup shown in Fig. 3, correspond-
ing to the motion of a physical body whose bulk has initial
radial velocity in the Schwarzschild spacetime. We start by
setting an initial 4-velocity Uα ¼ U0∂α

t þ Ur∂α
r. For such

Uα,Hαβ ¼ 0 (cf. Eq. (50) of [15]), and so the spin-curvature
force (13) is zero (regardless of the orientation of Sα).
Taking this into account, and using Eqs. (18), (16), leads to
the equation of motion for the centroid

DPα

dτ
¼ 0 ⇔ maα þ ϵαβγδUδ DðSβaγÞ

dτ
¼ 0: ð51Þ

This equation admits the trivial solution aα ¼ 0, which
corresponds to a radial geodesic trajectory. This solution,

call it zαðτÞ, is (obviously) the nonhelical MP centroid of
this physical system, and it is the same for any spinning
body regardless the orientation of its spin. For this special,
geodesic case, Eq. (18) yields Pα ¼ mUα, which in turn
implies that zαðτÞ coincides with the (unique) centroid
given by the TD SSC, i.e., it holds that SαβPβ ≡ Sαβ⋆ Pβ ¼ 0.
Let us briefly discuss the description of the same

physical motion through other spin conditions. First notice
that it is only under the MP condition that the spin-
curvature force takes the tidal tensor form (13), which
depends only on the centroid’s 4-velocity Uα and on the
spin vector Sα; for other SSCs the force (1) depends also on
Vα, as manifest in Eq. (11). Starting with the TD condition,
Vα ¼ Pα=M, the motion cannot be set up by prescribing a
radial Uα, for it is not possible to obtain Pα from either the
U − P relation (3), nor the P − U relation (12). The
problem is solved instead by prescribing a radial momen-
tum Pα ¼ P0∂α

0 þ Pr∂α
r . Then, by noticing that the numer-

ator of the second term of Eq. (3) can be written as
−4SμνðHPÞβνSβ, where ðHPÞαγ ¼ ⋆RαβγδPβPδ=M2, and
that, for a radial Pα, ðHPÞαγ ¼ 0 (cf. Eq. (50) of [15]),
we see that indeed Eq. (3) yields Pα ¼ mUα, leading to the
same solution obtained with the MP condition. Since such
solution is a radial geodesic, it obviously coincides as well
with a particular solution of the OKS condition, with
Vα ¼ Uα. Under other spin conditions the situation is
however more complicated; the centroids that correspond
to a body whose bulk falls radially, are, in general, shifted
relative to the common centroid of the MP, TD, and OKS
conditions, and do not move radially. Both the spin-
curvature force and the derivative of the hidden momentum
are in general not zero for such centroids, leading to a
nonzero acceleration. This is the case of the centroids
specified by the Corinaldesi-Papapetrou and Newton-
Wigner SSC’s, which deflect as the body approaches the
black hole, cf. Eqs. (4.1), (4.2), (5.1) and (5.4) of [34], and
Fig. 6(c) of [12]. It is also the case of the “eccentric”
centroids of the OKS SSCs, which move nearly parallel to
the radial geodesic, see Eq. (45) and Fig. 6(d) of [12] (in
this case the hidden momentum is zero, the accelerated
“parallel” trajectory being ensured by the spin-curvature
force). Conversely, if one naively prescribes an initial radial
velocity U⃗ for such centroids, then the solution will not
correspond to a radial motion, but to another physical
motion where the body’s bulk does not move radially.
Therefore, without the knowledge of the radial geodesic
solution (obtained either with the MP, TD or OKS con-
ditions), it would not be clear whether a radial motion of the
body’s bulk occurs, and how to prescribe the initial
conditions for the corresponding centroids.

1. Helical centroids

To study the helical solutions, we consider two special
cases:

Δx
U

zα
zα

U

U a

FIG. 3. Left bottom panel: three different solutions—a non-
helical centroid (blue straight line), plus two helical ones—of the
Mathisson-Pirani SSC, all representing, initially, the same physi-
cal situation: a spinning body with radial spin Sα ¼ Sr∂α

r , falling
radially into the black hole (top panel). The nonhelical centroid
zαðτÞ (hence the physical body) starts from rest at r ¼ 10M:
Uα

in ¼ U0∂α
0 ; S

α (taken about zαðτÞ), has magnitude S ¼ 0.5mM.
The helical motions (which counterrotate with the body) are
prescribed as having initial azimuthal velocity vα ¼ vϕ∂α

ϕ relative
to zαðτÞ, of magnitudes v¼0.5 and v¼0.9. Their initial position
is shifted from zαin by Δx⃗jin ¼ ð1=MÞðS⃗ × v⃗Þθ∂θ. Right bottom
panel: the corresponding 2D x-y plot (black region represents the
event horizon). The coordinates fx; y; zg relate to Schwarzschild
coordinates by x ¼ r sin θ cosϕ, y ¼ r sin θ sinϕ, z ¼ r cos θ.
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(i) radial spin Sα ¼ Sr∂α
r (Fig. 3),

(ii) polar spin Sα ¼ Sθ∂α
θ (Fig. 4).

In both cases we consider that the body’s bulk, which in this
case is faithfully represented by its nonhelical centroid
zαðτÞ, starts from rest. Since this baseline coincides with the
TD centroid, the shift equation (43) reduces to

Δxα ¼ −
Sαβvβ
M

≡ −
Sαβ⋆ vβ
M

: ð52Þ

Moreover, since zαðτÞ starts from rest, the initial kinemati-
cal relative velocity vα of the centroid z̄αðτ̄Þ with respect to
zαðτÞ coincides with the velocity with respect to the static
observers. In both cases, we choose azimuthal initial
velocities: vα ¼ vϕ∂α

ϕ, leading to shift vectors along ∂θ

and ∂r for the radial and polar spin cases, respectively. We
approximate the initial position z̄αjin of the helical centroids
as shown in Eq. (38); we also expand in Taylor series about
zα the Christoffel symbols in Eq. (40), keeping only the
lowest order term: Γα

βγðxÞ ¼ Γα
βγðzÞ þOðx − zÞ. Thus, the

expressions (42) for the moments parallel transported to z̄α

are approximated by

Pαjz̄ ¼ ḡαβPβjz ≃ Pαjz − Γα
βγðzÞPβjzΔxγ; ð53Þ

S̄αβjz̄ ≃ S̄αβjz − Γα
δγS̄

δβjzΔxγ − Γβ
δγS̄

αδjzΔxγ: ð54Þ

This provides initial data for the helical solutions, which are
then numerically evolved using the equations of motion
(1)–(2), together with the momentum-velocity relation (19).
We obtain two types of “helical” motion. On one hand, in
the radial spin case of Fig. 3, they are proper helices,
winding about the (geodesic) nonhelical trajectory. On the
other hand, in the polar spin case, Fig. 4, the result is quite
close to a superposition of an infalling radial geodesic (the

nonhelical solution) with a circular motion on the θ ¼ π=2
plane. The fact that, for both trajectories, the winding is
about the nonhelical centroid was to be expected from the
fact that such centroid coincides with the TD centroid,
which is the center of the disk of the possible centroids
(see [12]). Indeed, Eq. (52), whose space part, in the zero
3-momentum frame and in vector notation, reads

Δx⃗ ¼ S⃗⋆ × v⃗
M

; ð55Þ

tells us that the shift vectors corresponding to all the
possible helical solutions span a disk orthogonal to both Pα

and Sα⋆, of radius (“Møller radius”)

RMoller ¼
S⋆
M

; ð56Þ

in the tangent space at zα. Such a situation resembles the
behavior of a free particle in flat spacetime (see [35],
Sec. I), only now the winding stretches for decreasing r
(unlike in flat spacetime) due to the increase in radial
velocity caused by the black hole’s gravitational field. The
plots also indicate that (contrary to the flat spacetime case)
the amplitude of the helices is not constant. In particular, as
the particle approaches the horizon the amplitude slightly
decreases in the radial spin case (Fig. 3), whilst it slightly
increases in the case of polar spin (Fig. 4). The amplitude
changes are however very slight in both cases.
Let us stress, however, an important difference in the

dynamics comparing to the flat spacetime case: in flat
spacetime, no force is exerted on any of the centroids
(Fα ¼ 0), the helical-motion acceleration comes only from
an interchange between the kinetic momentum (mUα) and
the hidden momentum Pα

hid (see Fig. 3 of [18]). Here,
however, the spin-curvature force (13) is nonzero along
all helical trajectories (Fα ≠ 0). Thus the acceleration results
from the combined effects of the force and the hidden
momentum variation. The role of the force, however, is
actually to prevent the worldlines from diverging/converg-
ing, counteracting the tidal forces due to the curvature, and
ensuring that, from thepoint of viewof the zero3-momentum
frame, the helicalmotions stay close towhat theywould be in
flat spacetime. This is what we are going to show next.

2. An analysis of the helical dynamics through
the deviation of worldlines

We start by noticing that since, as discussed in Sec. III,
every point within the worldtube of centroids coincides
momentarily with a certain unique helical centroid, the
helical solutions form locally a congruence of worldlines
filling the worldtube of centroids. Let Uα be the unit vector
field tangent to such a congruence of worldlines, and δxα

be a connecting vector between different worldlines, so that
it is Lie dragged along the congruence, LUδxα ¼ 0. The

FIG. 4. The analogue of Fig. 3 for the case that the body’s
spin is alignedwith the polar axis,Sα ¼ Sθ∂α

θ . The spinvector about
the nonhelical centroid (blue line) has again magnitude
S ¼ 0.5mM, and the “helical” motions are prescribed by putting
initially vα¼vϕ∂α

ϕ, ofmagnitudes v¼0.5 and v ¼ 0.9. Their initial

position is radially shifted from zαin byΔx⃗jin ¼ð1=MÞ× ðS⃗× v⃗Þr∂r.
Unlike the situation for radial spin in Fig. 4, here the “helices” are
planar motions, lying in the equatorial plane θ ¼ π=2.

SPINNING PARTICLES IN GENERAL RELATIVITY: … PHYS. REV. D 97, 084023 (2018)

084023-11



latter expression implies that D2δxα=dτ2 ≡∇U∇Uδxα ¼∇U∇δxUα, and, thus,

D2δxα

dτ2
¼ ∇δxaα − ½∇δx;∇U�Uα

¼ ∇δxaα − Eα
γδxγ; ð57Þ

where Eαβ ≡ RαμβνUμUν is the electric part of the
Riemann tensor. This is the deviation equation for
accelerated worldlines [36], i.e. a generalization of the
geodesic deviation equation to nongeodesic curves. From
the relation Pα

hid ¼ Pα −mUα [cf. Eq. (24)], we
have aα ¼ ðFα −∇UPα

hidÞ=m. Substituting the latter into
Eq. (57) leads to

D2δxα

dτ2
¼ −Eα

γδxγ þ∇δx
Fα

m
−∇δx∇U

Pα
hid

m
: ð58Þ

To dipole order, the covariant derivative (along δxα) of
Eq. (1) reads

∇δxFα ≃ −
1

2
Rα

βμνUβ∇δxSμν

−
1

2
Rα

βμνSμν∇Uδxβ: ð59Þ

The term UβSμν∇δxRα
βμν ≡UβRα

βμν;λδxλSμν, being of
orderOðδxλSμνÞ, was neglected, since Sμνδxλ ≲mρ2, recall
that ρ is the body’s radius. The second term, however, is not
negligible to dipole order, since ∇Uδxβ ¼ ∇δxUβ ¼
Uβ

;αδxα and Uβ
;α is of the order of the angular velocity

of the helical motions, Ω ¼ M=S⋆ ¼ OðS−1Þ. To compute
∇δxSμν, it is convenient to use the normal coordinate system
fxα̂g originating from zα, where the tensor function
Sμ̂ ν̂ðxÞ ¼ Sμ̂ ν̂ðzÞ þ 2P½μ̂xν̂� yields the angular momentum
taken about any point of coordinates xα̂ in terms of xα̂ and
the angular momentum about the origin Sμ̂ ν̂ðzÞ. At the
origin of such coordinates one has therefore Sμ̂ ν̂ðxÞ;λ ¼
Sμ̂ ν̂ðxÞ;λ ¼ 2P½μ̂δν̂�

λ̂
; the latter expression is however a

tensor, so, in an arbitrary coordinate system, we may write

SμνðxÞ;λ ¼ 2P½μδν�λ and

∇δxSμν ¼ SμνðxÞ;λδxλ ¼ 2P½μδν�λ δx
λ

¼ 2P½μδxν�: ð60Þ

We note in passing that Eq. (60) actually holds for an
arbitrary infinitesimal displacement vector δVα (not
necessarily the connecting vector δxα): ∇δVSμν ¼
2P½μδVν�; if one takes δVα ¼ dτUα, we obtain ∇USμν ¼
2P½μUν�, and hence a very simple derivation of the spin
evolution equation (2).

Taking, for simplicity, the nonhelical centroid as the
basis worldline, we have ∇δxSμν ¼ 2mU½μδxν� since, as
shown above, for this worldline8 aα ¼ 0 ⇒ Pα

hid ¼
0 ⇒ Pα ¼ mUα. For such a motion, Eq. (59) reads

∇δxFα ¼ mEα
νδxν −

1

2
Rα

βμνSμν∇Uδxβ; ð61Þ

whose first term exactly cancels out the tidal term in (58),
i.e. one has then

D2δxα

dτ2
¼ −

1

2m
Rα

βμνSμν∇Uδxβ −∇δx∇U
Pα
hid

m
: ð62Þ

These expressions have the following interpretation. The
first term of the force variation (61) ensures that the
worldlines move at a constant distance, by counteracting
the tidal force −Eα

νδxν in Eq. (58), which “tries” to make
the worldlines diverge/converge. The second term of
Eq. (61), together with the hidden momentum term
∇δx∇UðPα

hid=mÞ in Eq. (58), which form Eq. (62), are
responsible for the winding motion around the nonhelical
centroid.
In a flat spacetime, such a winding—and hence the

relative acceleration between centroids—are solely due to
the hidden momentum: D2δxα=dτ2 ¼ −∇δx∇UðPα

hid=mÞ,
cf. Eq. (62). Curvature changes both Pα

hid and its derivative,
but such a change is nevertheless compensated by the first
term of Eq. (62) [second term of Eq. (61)] ensuring that,
apart from an overall motion in the radial direction, the
trajectories are almost the same as in flat spacetime, as
manifest in Figs. 3, 4.
In order to see how these things play out in the examples

herein, we first notice that the connecting vector δxα is
simply related with the shift vector Δxα: for worldlines
infinitesimally close, Δxα ¼ hαβδxβ; that is, Δxα is the
projection of δxα in the direction orthogonal to the basis
worldline zαðτÞ [see Eq. (21)]. Consider now the radial spin
case of Fig. 3. The spin-curvature force exerted on the
helical centroids z̄α is, to leading post-Newtonian order,
⃗F̄ ≃ −3Mv⃗ × S⃗=r3 (e.g. Eq. (56) of [12], for a radial9 S⃗),
pointing outwards, in the direction of the shift vector Δx⃗.
Since the force F⃗ on the nonhelical centroid zα is zero, we

have that ⃗F̄ ¼ ⃗F̄ − F⃗≡ ΔF⃗; and since ΔF⃗ ≃∇ΔxF⃗, we see

that the force ⃗F̄ consists of two parts, which are the two
terms of (61) (with δx⃗ → Δx⃗). The explicit expression for
the first term follows from approximating Δx⃗ ≃ S⃗ × v⃗=m,

8Notice however that ∇δxaα ≠ 0 and ∇δxPα
hid ≠ 0.

9For a helical centroid z̄αðτÞ the spin vector that follows from
(54) is actually not exactly radial, since z̄αðτÞ is shifted from the
radial geodesic; that however amounts to corrections of order
OðS2Þ in F⃗.
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and using the expression for Eij in e.g. Eq. (88) of [15],

leading to mEijΔxj ≃ −Mðv⃗ × S⃗Þi=r3 ¼ ⃗F̄=3 (so it
amounts to one third of the force). This term counteracts
the tidal force between z̄α and zα (first term of (58), with
δx⃗ → Δx⃗), which is compressive, i.e., antiparallel to Δx⃗,
preventing the two worldlines from converging. To com-
pute the second term of Eq. (61), we first note that ∇Uδxβ

relates to the relative velocity vα between infinitesimally
close worldlines z̄αðτÞ and zαðτÞ by (cf. Eq. (4.27) of [37])

vα ¼ hαβ∇UðhβγδxγÞ ¼ hαγ∇Uδxγ þ aαUγδxγ;

reducing to vα ¼ hαγ∇Uδxγ in the present case that the
basis worldline zαðτÞ is geodesic. To leading post-
Newtonian order, one can thus write, for the second term

of (61), −Rα
jklϵ

kl
mSmvj=2, yielding −2Mv⃗× S⃗=r3¼2 ⃗̄F=3.

Two aspects of the latter term are worth mentioning:
(i) unlike the first term of the force variation (61) (which
is due to the dependence of the force on the centroid’s
position), this one is due to the dependence of the spin-
curvature force on the centroid’s velocity; (ii) it is only for
helical solutions of the MP SSC (where ∇Uδxβ ∼ v∼
Oðδx=SÞ) that this term is non-negligible. Under other
SSCs (see [12]), ∇Uδxβ ∼OðPhidÞ ∼OðSnÞ, with n ≥ 1, so
Rα

βμνSμν∇Uδxβ ≲Oðmρ2Þ is negligible to dipole order.
This means that, between centroids of other spin condi-
tions, the difference in the forces equals minus the tidal
term: ∇δxFα ¼ mEα

νδxν, and thus the relative acceleration
between centroids is solely down to the hidden momentum
term (cf. Sec. 3.3 of [12]).

B. Circular equatorial orbits in
Schwarzschild spacetime

A problem where the MP SSC is a convenient choice is
that of circular equatorial orbits (CEOs) of a spinning
particle in stationary axisymmetric spacetimes, where (as
shall be discussed in more detail elsewhere [38]), it allows
to obtain, in a very simple fashion, the exact analytical
solutions for CEOs. Here we briefly present the procedure
for the special case of the Schwarzschild spacetime.
One starts by taking the spin vector to be polar,

Sα ¼ Sθ∂α
θ . The spin evolution equation (14) ensures, in

this case, that the components Sα remain constant as long as
Ur ¼ Uθ ¼ 0 (as is the case for a CEO).
For a CEO, the four-velocity has the form

Uμ ¼ U0ð∂0 þ ω∂ϕÞ; U0 ¼
�
1 −

2M
r

− r2ω2

�
−1=2

ð63Þ

where ω≡ Uϕ=U0 is the (constant) angular velocity. We
take this as an ansatz for the centroid 4-velocity, and shall

now show that it is compatible with the equation of motion
for the centroid under the MP SSC,

maα ¼ Fα −
DPα

hid

dτ
; ð64Þ

with Fα and Pα
hid given by Eqs. (13) and (25).

The acceleration corresponding to (63) has only radial
component,

ar ¼ −
ðr − 2MÞ½r3ω2 −M�ðU0Þ2

r3
: ð65Þ

Now, for such 4-velocity and acceleration, and a polar spin
vector Sα ¼ Sθ∂α

θ, both the spin-curvature force (13) and
the covariant derivative of the hidden momentum along Uα

have, as only nonvanishing components,

Fr ¼ 3Mðr − 2MÞSθωðU0Þ2
r2

; ð66Þ

DPr
hid

dτ
¼ ðr − 2MÞð3M − rÞðM − r3ω2ÞSθωðU0Þ4

r3
: ð67Þ

They are purely radial, just like the acceleration; it then
follows from (65) that finding CEOs reduces to solving for
ω the radial equation

mar þDPr
hid

dτ
− Fr ¼ 0: ð68Þ

This is a fourth order equation for ω, leading to four distinct
solutions. Their explicit (lengthy) expressions, obtained
using Mathematica, are given in [39]. Two of the solutions
are spurious and do not reduce to the circular geodesics for
S ¼ 0. One of them (or both, depending on r and the
parameters M and S) is unphysical, as its speed is supra-
luminal. The other is a “giant” highly-relativistic helical
motion of radius r, whose speed approaches the speed of
light as r → ∞. It does not correspond to an orbital motion
of the physical body: its velocity remains nonzero and
highly relativistic even forM → 0 (Minkowski spacetime),
when it becomes an helical solution of a giant body at rest
in the static frame (i.e., P⃗ ¼ 0 in such frame), similar to
those depicted in body 1 of Fig. 1. More details on these
solutions shall be given in [38].
The remaining two solutions are the physically

relevant ones, corresponding to “prograde” and “retro-
grade” orbits (i.e., positive or negative angular velocity _ϕ,
respectively), which reduce to circular geodesics when
S ¼ 0 (and whose velocity appropriately reduces to zero
when M → 0). All four solutions match numerical results
in [40].
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Finally, concerning the problem of CEO’s under
other spin conditions, to our knowledge, exact, analytical
solutions, have so far been obtained only with the TD
condition [41], through lengthier computations.10

1. Helical centroids

To study helical centroids z̄αðτ̄Þ corresponding initially
(within the realm of the pole-dipole approximation) to
the same physical body as the one described by a given
circular orbit zαðτÞ, we shall consider radial shifts. This is
achieved by demanding in Eq. (49) the initial relative
velocity of z̄αðτ̄Þwith respect to zαðτÞ to be azimuthal, vμ ¼
vt∂μ

t þ vϕ∂μ
ϕ. In practice one needs only to prescribe its

magnitude v≡ ffiffiffiffiffiffiffiffiffiffi
vαvα

p
< 1 and sign; orthogonality to Uα

then yields the explicit components

vϕ ¼ � vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕ þ ω2ðgϕϕÞ2=g00

q ;

v0 ¼ −
ωgϕϕ
g00

vϕ: ð69Þ

This leads to Ūμjz ¼ Ū0jz∂μ
0 þ Ūϕjz∂μ

ϕ and to a radial shift
vector, cf. Eq. (43),

Δxαjin ¼ −
SαβŪβjz

m̄
¼ γ

ϵαβγδSγUδvβ

m̄
¼ Δxrδαr ; ð70Þ

where γ ≡ −UβŪβjz, cf. Eq. (49).
Herein no approximation will be made, so the starting

point z̄μ is obtained by exact application of the exponential
map z̄μ ¼ expμzðΔxÞ. For that, we first note that the radial
lines θ ¼ const, ϕ ¼ const, t ¼ const are spatial geodesics
in Schwarzschild’s spacetime.11 Along such a geodesic, the
line element is dl2 ¼ grrdr2. Hence, being zα and z̄α points
along that curve, by definition of the exponential map, the
arclength of the segment between zα and z̄α equals the
magnitude of Δxα: kΔxαk ¼ ∓ R

r̄
r

ffiffiffiffiffiffi
grr

p
dr, the þ (−) sign

applying when r̄ > r (r̄ < r). Integrating this leads to

r̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r̄

r
þM ln

�
r̄ −M þ r̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r̄

r �

¼ �kΔxαk þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
þM ln

�
r −M þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �

ð71Þ

which is an equation that yields r̄ (thus z̄α), given the values
of kΔxαk and r, to be solved numerically.
The parallel transport of the moments Pα and the

transformed spin tensor S̄αβjz, Eqs. (42)–(41), shall also
be calculated exactly. Let ηα ¼ δαrdr=ds denote the tangent
vector to the spatial geodesic cαðsÞ connecting zα to z̄α. It is
easy to check that the parallel transport conditions
∇ηPα ¼ 0 and ∇ηS̄αβ ¼ 0 are satisfied if these tensors
have constant components in the orthonormal tetrad eα̂, tied
to the Schwarzschild basis vectors ∂α, defined by

eî ¼ ð1= ffiffiffiffiffi
gii

p Þ∂i; e0̂ ¼ ð1= ffiffiffiffiffiffiffiffiffiffi
−g00

p Þ∂0:

That is, when one has

P0 ¼ P0̂=
ffiffiffiffiffiffiffiffiffiffi
−g00

p
; Pi ¼ Pî=

ffiffiffiffiffi
gii

p
;

S̄ij ¼ S̄î ĵ=
ffiffiffiffiffiffiffiffiffiffi
giigjj

p
; S̄i0 ¼ S̄î 0̂=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00gii

p
;

with Pα̂ and S̄α̂ β̂ constant. This leads to the relations

Pijz̄ ¼ Pijz
ffiffiffiffiffi
gii

p jzffiffiffiffiffi
gii

p jz̄
; P0jz̄ ¼ P0jz

ffiffiffiffiffiffiffiffiffiffi−g00
p jzffiffiffiffiffiffiffiffiffiffi−g00
p jz̄

; ð72Þ

S̄ijjz̄ ¼ S̄ijjz
ffiffiffiffiffiffiffiffiffiffigiigjj

p jzffiffiffiffiffiffiffiffiffiffigiigjj
p jz̄

; S̄i0jz̄ ¼ S̄i0jz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−giig00

p jzffiffiffiffiffiffiffiffiffiffiffiffiffiffi−giig00
p jz̄

: ð73Þ

For given values of zα, Pα, and Sαβ of the basis centroid,
and of the magnitude v of the initial relative velocity
of z̄α with respect to zα, Eqs. (69)–(73) yield the initial data
needed for helical solutions. The initial data are then
numerically evolved by the equations of motion (27)
[i.e., Eqs. (1)–(2) plus the momentum-velocity rela-
tion (19)].
They are plotted, together with the corresponding non-

helical solutions, in Figs. 5–6, for r ¼ 7M, r ¼ 10M and
r ¼ 30M. Initially the helices are winding about, approx-
imately, the nonhelical worldline, much like in the way they
do in flat spacetime (see Sec. I of [35]), as one would expect
for different worldlines of the same body (recall discussion
in Sec. VA). However, as the motion progresses, the plots
show that the helices start detaching one from another, in
the sense that the “peaks” do not meet. The effect is larger
the closer the orbit is to the horizon (i.e., the stronger the
field). For r ¼ 7M they visibly diverge outside the spatial
tube swept by the body’s minimum size, which is the size of
its disk of centroids, of radius RMoller ¼ S⋆=M ≃ S=m,

10CEO’s are obtained from the results in [41] through the
following algorithm: one expresses P0 and Pϕ in terms of the
conserved “energy” E and “angular momentum” J [Eqs. (37)–
(38), (40)–(41) therein]; then use the U − P relation (13),
(22)–(24) to express Uα also terms of E and J. The condition
Ur ¼ 0 eventually leads to Eq. (47) on the quantity (44), which is
solved for E and J. Substituting back into Eqs. (40)–(41), (13),
(22)–(24) therein, yields Pα, and, finally, the 4-velocity Uα of the
circular orbits.

11This is seen from the geodesic equation which, for a radial
tangent vector ηα ≡ δαr dr=ds, reads dηr=dsþ Γr

rrðηrÞ2 ¼ 0 ⇔
dηr=drþ Γr

rrη
r ¼ 0. This is a first order ODE with solution

ηr ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
, being C an arbitrary constant (C ¼ 1 if s is

chosen as the arclength of the curve, case in which ηαηα ¼ 1).
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cf. Eq. (56). Here m ¼ −PαUα and S are, respectively, the
mass and spin corresponding to the nonhelical centroid zα,
and in the approximate equality S⋆=M ≃ S=m we noted
that m ¼ γðP;UÞM [where γðP;UÞ is the Lorentz
factor between Uα and Pα=M], used the flat spacetime
relation (31) to estimate S ≃ S⋆=γðP;UÞ, and finally
noted that γðP;UÞ ≈ 1, since Uα is very nearly parallel
to Pα for a nonhelical centroid (e.g. for r ¼ 10M,
γðP;UÞ − 1 ¼ 10−8). For r ¼ 30M and r ¼ 10M, the
effect is less pronounced, and the trajectories of the helical
centroids stay contained within a spatial tube seemingly
consistent with the size of the body’s disk of centroids.
Although in Figs. 5–6 only one lap is depicted, the situation
does not change significantly after several laps (see addi-
tional plots in [35]). Nevertheless, even in these cases,
simultaneous points (in the sense of having the same
coordinate time t) on different worldlines become sepa-
rated, after some time, by “illegal” shifts, larger than the
body’s Møller radius RMoller. This is shown by the space-
time plot of position versus coordinate time t in Fig. 7. The
plot also reveals that the helical orbits have an overall
orbital velocity slightly smaller than the nonhelical cent-
roid. The effect grows with the radius of the helix, and it is
not affected on whether the initial shift points inwards or
outwards (cf. additional plots in [35]).
Now, the transition rules between centroids devised in

Sec. IV, as discussed therein, require λ ¼ kRkρ2 ≪ 1. As
mentioned above, in order to have a finite spin S, a body
must have a minimum radius ρ ≥ RMoller ≃ S=m; estimating
the Riemann tensor magnitude by kRk ≃M=r3, we have

λ ≃ kRkR2
Moller ∼

S2

m2

M
r3

¼
�

S
mM

�
2
�
r
M

�
−3
:

We are using S ¼ 0.5mM, so, for r ¼ 30M this yields
λ ∼ 10−5, and, for r ¼ 10M and r ¼ 7M, λ ∼ 10−4, which

FIG. 6. Similar plots to Fig. 5, now for r ¼ 30M. (Due to size
constrains, only the initial and final segments of the first lap are
shown. For the full plot, see [35]).
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FIG. 7. The left panel shows how the y=M evolves during the
first lap with respect to the coordinate time t for the trajectories in
Fig. 5 corresponding to r ¼ 10M. The color scheme is the same
as in Fig. 5. The right panel is a closeup of the final part of the first
lap. The separation between points of the different worldlines for
the same instant t becomes larger than the body’s disk of
centroids (of radius RMoller ¼ S⋆=M ≃ S=m ¼ 0.5M), signaling
a breakdown of the approximation scheme for these centroids.

v 0

v 0.5

v 0.9

10 5 0 5 10

x M

y
M

10

5

0

5

10

FIG. 5. Circular “prograde” orbits for r ¼ 7M and r ¼ 10M
(blue lines) and the helical solutions representing the same
physical motions, corresponding to two different values of the
relative velocity in Eq. (69) (v ¼ 0.5 and v ¼ 0.9). All the
trajectories start at ϕ ¼ 0, and only the first lap about the black
hole is plotted. The spin angular momentum of the body,
measured about the nonhelical centroid, has magnitude
S ¼ 0.5mM. As the motion progresses, the helices start “detach-
ing” one from another; for r ¼ 7M the trajectories visibly diverge
outside the body’s minimal worldtube (of radius RMoller ¼
S⋆=M ≃ S=m ¼ 0.5M). This signals a breakdown of the
approximation scheme for these centroids.
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well satisfies the restriction λ ≪ 1. The illegal shifts are
then likely down to a breakdown of the pole-dipole
approximation itself—more precisely, of the assumption
that one can represent the same body through different
centroids, while at the same time keeping a (dipole order)
cutoff in the multipole expansions. This is an unavoidable,
basic feature, that arises already in Newtonian mechanics
(or electromagnetism), when one describes an extended
body through different representative points.
Let us recall the Newtonian problem which is enlight-

ening for the problem at hand. Consider a homogeneous
spherical body in Newtonian mechanics. It is exactly a
monopole body only with respect to one point (the center of
mass zi); with respect to any other point z0i, it will have
dipole, quadrupole, and (infinite) higher order moments.
Under a nonuniform gravitational field G⃗ðxÞ, the monopole
force mG⃗ðz0Þ with respect to z0i ¼ zi þ Δxi is different
from the one at zi, mG⃗ðzÞ. That difference is, however,
exactly compensated by the dipole, quadrupole, …n-pole
forces that arise at z0i, so that the total Newtonian force is
the same in both cases, see Sec. 3.3 of [12] for more details.
The larger part of the compensation comes from the dipole
force F⃗dip ¼ −mΔx⃗ ·∇G⃗, and a smaller part from the
higher order moments. When one truncates the expansion
at a finite order, the compensation is not perfect. Then the
forces on the two points will no longer be exactly the same,
and the trajectories obtained generically will end up
diverging.
The relativistic problem herein is analogous, only now

the two points zα and z0α are both centers of mass, and
instead of the gradient of the monopole force mG⃗
(which has no place in general relativity) we talk about
tidal forces, cf. Sec. VA. Let us assume that the body is
well approximated by a pole-dipole particle with respect to
the nonhelical centroid; i.e., it is nearly “spherical” [15],
and centered at zα. When we shift to the helical centroid z0α
via Eqs. (70)–(71) and (72)–(73), only the momentum Pα

(of monopole order) and Sαβ (dipole order) are adjusted.
Thus, we are neglecting the quadrupole and higher order
moments that such shift generates. For a free particle in flat
spacetime this has no consequence in the dynamics. In a
curved spacetime however the gravitational field couples to
such moments, and the corresponding forces are needed for
a full consistency of the solutions.
For the nonhelical centroid having v ¼ 0.9 in

Figs. 5–6 (the one for which the shift from zα is larger,
Δx ¼ 0.9RMoller), the quadrupole force is of the order

FQ ∼mkRαβγδ;λkR2
Moller ∼mMR2

Moller=r
4

(cf. e.g., Eq. (43) of [29], Eq. (7.4) of [5]). The change in
the spin-curvature force in shifting from the nonhelical
centroid to the helical centroid for v ¼ 0.9 is of the order

ΔF ∼mkEα
νkRMoller ∼mMRMoller=r3;

cf. Eq. (61). Thus,

FQ

ΔF
∼
RMoller

r

�
∼

S
mr

�
:

In most astrophysical systems RMoller ≪ r, so the quadru-
pole-force correction is negligible compared to the spin-
curvature one (ΔF), and it is therefore appropriate to shift
between worldlines ignoring quadrupole and higher
moments, through the method proposed herein.
In the examples of Figs. 5–6, we are considering a

spin magnitude S ¼ 0.5mM, so FQ=ΔF ∼ 0.5M=r. For
r ¼ 30M, we have FQ=ΔF ∼ 0.01, and for r ¼ 7M,
FQ=ΔF ∼ 0.1, i.e. the quadrupole force is only one order
of magnitude smaller than ΔF and the spin-curvature force
itself. Given these orders of magnitude, the neglect of the
quadrupole order correction FQ is expected to be reflected
on the orbits, and is likely12 the cause for the detaching
of the helices and the inconsistent separation between
centroids in Figs. 5 and 7.
Finally, we note that in the examples of radial fall in

Sec. VA this effect also arose, but much less pronounced.
Namely, there is only a slight misalignment, close to the
horizon, in the “peaks” of the helices in Figs. 3 (right
bottom panel) and 4. The likely reason is that these orbits
are too short-lived, especially in the stronger field region,
for the effect to manifest itself. (One can infer about the
duration of the motion, in comparison with the progress of
the circular orbits, from the number of helical loops, since
the frequency of the helices is roughly the same in both
settings.)

VI. CONCLUSIONS

This paper concerns the role of the spin supplementary
condition in the spinning-particle problem, focusing mainly
on the Mathisson-Pirani (MP) version of the condition,
SαβUβ ¼ 0. We start by showing that the MP SSC has an
explicit, and very simple, momentum-velocity relation.
This result was long-sought in the literature, and once
even thought not to exist. We clarify the apparent paradox
between such definite relation and the fact that this
SSC is degenerate, solving the apparent conflicts in the
literature. We also explain the differences from other SSCs
regarding the initial data required to uniquely specify a
solution. These differences are seen to stem from MP’s
peculiar momentum-velocity relation, and a thorough
physical interpretation of this feature is provided. Then,

12The neglect of the quadrupole force in the pole-dipole
approximation seems also possibly the cause for the eventual
divergence of the centroids of different spin conditions for the
same body outside its “minimal worldtube,” that have been found
in [8].
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we explicitly show how, for a given body, this SSC yields
infinitely many possible representative worldlines, general-
izing, for a curved spacetime, the flat spacetime analysis
made in [18]. In the process we establish a method for
transition between different representative worldlines cor-
responding to the same body in a curved spacetime.
To illustrate these features, we considered settings, in

Schwarzschild spacetime, where this SSC is a convenient
choice. Namely, we consider (i) the case of a body (whose
bulk is) initially at rest, in which case it makes immediately
clear that the body moves radially, as its nonhelical centroid
follows a radial geodesic; and (ii) the case of the circular
equatorial orbits, where it yields a very simple way of
showing that such orbits are possible, and to obtain them
analytically. We then compare the evolution of different
centroids (helical and nonhelical) given by the MP SSC.
Such a comparison, for different solutions corresponding to
the same body, is done here for the first time. In the radial
motions case, we have found that (apart from an overall
increase in radial velocity as the body approaches the black
hole, due to its gravitational field), the helices are very
similar to their flat spacetime counterparts, even though
their description is substantially different (e.g. due to the
spin-curvature force). This we physically interpreted using
the worldline deviation equation for the congruence formed
by the worldlines of the centroids obeying this SSC.
A centroid shift implies a change in the body’s

multipole moments; but in a pole-dipole approximation
only moments up to the dipole order (i.e. Pα and Sαβ) are
adjusted. In flat spacetime this has no consequences. In a
curved spacetime, however, curvature couples to the higher
order moments, so ignoring them leads to the trajectories
that can no longer be exactly consistent. Given this fact, the
results (Figs. 3–4) show that the pole-dipole approximation
holds surprisingly well in the radial motion examples. On
the other hand, the CEOs provide trajectories lasting long
enough, in a strong field region, to seemingly reveal these
limitations.
An important point to emphasize, regarding the helical

motions, is their nature as pure gauge effects (in other
words, “noise”). Contrary to some suggestions made in the
literature, they are not wrong or unphysical, but they do not
contain any new physics either, nor are they down to any
mysterious forces: the physical body they represent does
not undergo any helical motion (so no experiment could
ever detect it), which is but a spurious motion of the
representative worldlines that this SSC does not exclude.
This is so in flat spacetime as shown in [18]; herein we
show that the same principle naturally holds in a curved
spacetime, just requiring a more subtle treatment. In
particular, by using proper transition rules to ensure that
one is dealing with solutions corresponding to a given
body, the different solutions (helical or nonhelical) remain
close and describe, within the scope of the pole-dipole
approximation, the same physics.

It is crucial to distinguish the physical, measurable
effects (i.e., those that reflect in the actual motion of the
body’s bulk), from the pure gauge ones: spin effects in
general relativity are typically small, frequently within the
same order of magnitude as the superfluous motions
induced by some spin conditions. For instance, the
pure gauge centroid acceleration induced by the CP or
NW SSC’s is of the same order of magnitude as that
originating from the actual spin-curvature force [12,34].
In the case of the helical solutions of the MP SSC, such
as those exemplified in Sec. V, it is even typically much
larger [42].
Concerning the practicality of the MP SSC, the

situation is ambivalent. In those special cases where it
is easy, e.g., thanks to the symmetries of the problem, to
prescribe the nonhelical solution, such as the cases in
Sec. V, or the ones treated in [15], this SSC can be of
advantage. It is also suitable for some approximate
treatments, namely linear in spin approximations, where
setting the nonhelical centroid amounts to simply addi-
tionally demanding the centroid’s 4-velocity Uα to be
parallel to the body’s momentum Pα. This can be seen by
noticing, from Eq. (3), that, for the centroid fixed by
the Tulczyjew-Dixon SSC (SαβPβ ¼ 0), one has Pα ¼
mUα þOðS2Þ, implying that, to such accuracy, it satisfies
as well the MP SSC, and therefore coincides with a
centroid of the latter (the nonhelical one, since the hidden
momentum, which is a necessary ingredient for the
helical motions, cf. Sec. VA 2, vanishes in this case
by definition). By definition, it also coincides with a
centroid of the OKS SSC (the one set up by initially
choosing Vα ¼ Pα=M). One may actually argue that
such an approximation is inherent to the spirit of the
pole-dipole approximation [43]. The same method can be
applied in post-Newtonian schemes. However, in the
framework of an “exact” approach, and in the generic
case when it is not clear how to set the initial conditions
for a nonhelical motion, the MP SSC should rather be
avoided, because the helices are superfluous. They are
just an unnecessarily complicated description of motions
that can be made simpler using other SSCs. Thus, future
prospects for a wider applicability of the MP SSC
crucially relies on finding a generic method for singling
out its nonhelical solution [44].
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