
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 934 (2018) 7–38

www.elsevier.com/locate/nuclphysb

Separation of Maxwell equations in Kerr–NUT–(A)dS 

spacetimes

Pavel Krtouš a,∗, Valeri P. Frolov b, David Kubizňák c
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Abstract

In this paper we explicitly demonstrate separability of the Maxwell equations in a wide class of higher-
dimensional metrics which include the Kerr–NUT–(A)dS solution as a special case. Namely, we prove such 
separability for the most general metric admitting the principal tensor (a non-degenerate closed conformal 
Killing–Yano 2-form). To this purpose we use a special ansatz for the electromagnetic potential, which we 
represent as a product of a (rank 2) polarization tensor with the gradient of a potential function, generalizing 
the ansatz recently proposed by Lunin. We show that for a special choice of the polarization tensor written 
in terms of the principal tensor, both the Lorenz gauge condition and the Maxwell equations reduce to a 
composition of mutually commuting operators acting on the potential function. A solution to both these 
equations can be written in terms of an eigenfunction of these commuting operators. When incorporating 
a multiplicative separation ansatz, it turns out that the eigenvalue equations reduce to a set of separated 
ordinary differential equations with the eigenvalues playing a role of separability constants. The remaining 
ambiguity in the separated equations is related to an identification of D − 2 polarizations of the electro-
magnetic field. We thus obtained a sufficiently rich set of solutions for the Maxwell equations in these 
spacetimes.
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1. Introduction

A method of separation of variables plays an important role in the theory of partial differential 
equations (PDEs). It allows one to reduce these equations to a set of ordinary differential equa-
tions (ODEs). The latter are simpler and can be solved either analytically or by simple numerical 
methods. In particular, the separation of variables in the equations for physical fields in a curved 
space of a stationary black hole allowed one to study many physical processes in the vicinity 
of these black holes such as propagation, scattering and capture of waves. Separated equations 
for quasinormal modes were used to study the black hole stability and its ringing radiation. The 
method of separation of variables is also used to study the quantum Hawking effect.

Separation of variables in the physical field equations in the rotating black hole spacetime 
described by the Kerr geometry has a long history. It started in 1968, when Carter demonstrated 
that a scalar field equation can be solved by a method of separation of variables [1]. In 1972, 
Teukolsky [2,3] decoupled equations for the electromagnetic and gravitational perturbations and 
demonstrated that decoupled equations can be solved by the separation of variables. The massless 
neutrino equations were separated by Teukolsky [3] and Unruh [4] in 1973, and the massive Dirac 
equations were separated by Chandrasekhar [5] and Page [6] in 1976.

More recently, the development of brane-world models and the discussion of the possibility 
of mini black-hole creation in colliders attracted a lot of attention to the problem of separation 
of variables in higher-dimensional black hole spacetimes. This problem is rather straightfor-
ward for the (spherically symmetric) Tangherlini metric, which is a simple generalization of 
the Schwarzschild geometry. However, in the presence of rotation and NUT parameters it be-
comes quite complicated. One of the reasons is that even if the equations are separable in a 
given geometry, the separation occurs only in a very special coordinate system which is a pri-
ori not known. Separation of variables in the Klein–Gordon equation in the five-dimensional 
Myers–Perry metric was first demonstrated in [7], see also [8] for the 5-dimensional Kerr–(A)dS 
generalization. Page and collaborators [9–11] discovered that the Klein–Gordon equation is sep-
arable in a special case of the higher-dimensional Kerr–(A)dS spacetime, provided the black 
hole spin is restricted to two sets of equal rotation parameters. Upon this restriction, the explicit 
symmetry of the spacetime is enhanced and makes the separation of variables possible. Similar 
results, exploiting the enhanced symmetry of black holes arising from a restriction on rotation 
parameters, were obtained in [12,13].

The discovery [14] of the principal tensor in the most general higher-dimensional Kerr–
NUT–(A)dS spacetime [15] made it possible to solve the problem of separability for the Klein–
Gordon equation without any restriction on rotation parameters [16]. The principal tensor is a 
non-degenerate rank-2 closed conformal Killing–Yano tensor. The discussion of its remarkable 
properties can be found in a comprehensive review [17]. This tensor generates a complete set 
(tower) of symmetries, which consists of Killing vectors and rank-2 Killing tensors. Moreover, 
the eigenvalues of the principal tensor, together with the appropriate choice of the Killing coordi-
nates, define special, the so called canonical coordinates. It is in these coordinates the separability 
property is valid for the Klein–Gordon equation. Later, it was shown that using the Killing vectors 
and Killing tensors in the Killing tower one can construct a full set of the corresponding first-
order and second-order covariant differential operators, all mutually commuting, such that their 
eigenvalues coincide with the corresponding separation constants of the Klein–Gordon equation 
[18–21]. This result demonstrated a close relationship between the separability structure of the 
spacetime and the existence of the principal tensor.
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Let us write D = 2N + ε for the number of spacetime dimensions, with ε = 1 for odd dimen-
sions and ε = 0 for even ones. As shown in [22,23], the most general metric that possesses the 
principal tensor admits N arbitrary metric functions of one variable. We call such metrics off-
shell. For the on-shell metric, when the Einstein equations are imposed, these metric functions 
reduce to polynomials, and, in the Lorentzian signature, we recover the Kerr–NUT–(A)dS solu-
tion [15]. Interestingly, the separation of variables in the Klein–Gordon equation remains valid 
for a general higher-dimensional off-shell geometry.

The separability of the massive Dirac equation in the higher-dimensional off-shell Kerr–NUT–
(A)dS spacetimes was proved in [24], see also [25–28] for the intrinsic characterization of this 
separability in terms of the commuting operators. A partial success regarding the separation of 
variables for the special type of gravitational perturbations in these spacetimes was achieved in 
[29,30].

The question of separability of Maxwell equations in higher-dimensional rotating black hole 
spacetimes remained open for a long time. In four dimensions both electromagnetic strength field 
F and its Hodge dual ∗F are 2-forms. The complex self-dual and anti-self-dual 2-forms F ± i ∗ F
describe independent right- and left-polarization states of propagating electromagnetic waves. 
This property was essentially used in various schemes of reduction of the Maxwell equations 
to a set of complex scalar equations and their further separation in the 4D Kerr–NUT–(A)dS 
metrics. Unfortunately, such a method cannot be generalized to higher dimensions.

A breakthrough in the problem of separability of the Maxwell equations in higher-dimensional 
rotating black hole spacetimes came in recent Lunin’s paper [31]. Lunin has proposed a special 
ansatz for the vector potential, which can be reformulated as Aa = Bab∇bZ, where Z is a complex 
scalar function and B is a special tensor, which we call the polarization tensor. In his work Lunin 
has written down the ansatz for the vector potential in a special frame, effectively specifying 
the polarization tensor. He used special coordinates, different from the Myers–Perry coordinates, 
which are closely related to the canonical coordinated connected with the principal tensor [32,
33]. In this setting Lunin demonstrated [31] that the Maxwell equations in the higher-dimensional 
Kerr–(A)dS spacetimes imply separable equations for the function Z.

In this paper we propose an essential development of Lunin’s approach. Our analysis is per-
formed for general off-shell metrics which admit a non-degenerate principal tensor h. We first 
find a covariant (coordinate-independent) expression for the polarization tensor B in terms of the 
principal tensor. Next we show that the Lorenz condition for the vector potential, which becomes 
a second-order wave-like operator acting on the function Z, can be understood as a composition 
of N second-order commuting operators. These, supplemented with derivatives along the ex-
plicit spacetime symmetries, form a system of D mutually commuting operators which possess 
a common system of eigenfunctions. Among these eigenfunctions one can find those solving the 
Lorenz condition. It turns out that these solutions are labeled by D eigenvalues and by a discrete 
choice of N − 1 (complex) polarizations.

Moreover, we show that the Maxwell equations can be reduced to the simultaneous validity of 
the Lorenz condition and of another wave-like equation. This additional equation is, surprisingly, 
also a composition of the same operators which have been identified in the Lorenz condition. 
Solution of the Maxwell equations can thus be constructed from the eigenfunctions of these op-
erators, provided that one of the eigenvalues is set to zero—the condition reflecting the massless 
character of the electromagnetic field.

Next we arrive at the key observation, namely that the structure of commuting operators allows 
one to find a system of eigenfunctions by the method of separation of variables. Each eigenfunc-
tion can be written as a product of functions of one variable. The Lorenz condition, as well as the 
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Maxwell equations, then require that a composition of conditions for these functions should van-
ish. Since these conditions depend on different variables, they must vanish independently, with 
a freedom of a choice of separation constants. These separation constants turn out to be exactly 
the eigenvalues of the eigenfunctions under investigation.

We thus demonstrate that a solution of the Maxwell equations can be found using a mul-
tiplicative separation ansatz and reduces to a solution of N second-order ordinary differential 
equations. Such solutions are labeled by D − 1 separation constants.

When constructing separable solutions we identify independent polarizations associated with 
each choice of the separation constants. This identification is done in a different manner than 
in the work of Lunin. Namely, we find D − 3 generic polarizations, we call them the magnetic 
polarizations, and one special stationary one, which we call the electric polarization. We discuss 
also different parametrizations of the space of solutions which may be closer to the method of 
Lunin.

Let us emphasize that our construction of the separable solutions of the Maxwell equations 
(i) is valid for an arbitrary off-shell metric admitting the principal tensor, and (ii) the proof of the 
separability is done in a totally analytic way and presented in the paper with all necessary details.

The paper is organized as follows. The properties of the principal tensor and of the off-shell
Kerr–NUT–(A)dS metrics are reviewed in section 2. In section 3 we introduce the ansatz for the 
polarization tensor and discuss its properties. The Lorenz condition and the form of the Maxwell 
equations for this ansatz are derived in section 4. The commuting operators with a common set 
of eigenfunctions are introduced in section 5. Sections 6 and 7 contain a discussion of special 
types of solutions of the higher-dimensional Maxwell equations. The separable character of these 
solutions and the meaning of the separation constants are a subject of section 8. Section 9 is 
devoted to a discussion of special aligned fields previously studied in the literature [34,35,19]. 
Section 10 contains the summary of obtained results, as well as a discussion of some unsolved 
problems. In this paper we extensively use the material and notations of review [17].

2. Off-shell Kerr–NUT–(A)dS geometry

This section contains a brief summary of properties of spacetimes admitting the principal 
tensor. A thorough discussion of these spacetimes, the principal tensor, the associated Killing 
tower, and the on-shell and off-shell Kerr–NUT–(A)dS geometries can be found in the recent 
review [17].

2.1. Principal tensor and metric

In what follows we denote by D = 2N + ε the number of dimensions. We are interested 
in spaces which possess the principal tensor: a non-degenerate closed conformal Killing–Yano 
2-form. The principal tensor h satisfies the following equation:

∇chab = gcaξb − gcbξa , (2.1)

where ξ is a primary Killing vector,

ξa = 1

D − 1
∇bhba . (2.2)

The non-degeneracy of the principal tensor essentially means that the principal tensor has non-
degenerate imaginary eigenvalues ±ixμ, (μ = 1, . . . , N), and that xμ are independent functions 
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which, when supplemented with an appropriate set of Killing angles, can be used as canonical 
coordinates. The metric can be written in a formally Euclidean Darboux frame in which the 
principal tensor has a semi-diagonal form:

g =
∑
μ

(
eμeμ + êμêμ

) + ε ê0ê0
, (2.3)

h =
∑
μ

xμ eμ ∧ êμ
. (2.4)

In the canonical coordinates, the metric reads1

g =
N∑

μ=1

[
Uμ

Xμ

dx2
μ + Xμ

Uμ

(N−1∑
j=0

A(j)
μ dψj

)2
]

+ ε
c

A(N)

( N∑
k=0

A(k)dψk

)2
, (2.5)

where A(k), A(j)
μ , and Uμ are explicit polynomial functions of coordinates x2

ν ,

A(k) =
∑

ν1,...,νk
ν1<···<νk

x2
ν1

. . . x2
νk

, A(j)
μ =

∑
ν1,...,νj

ν1<···<νj

νi �=μ

x2
ν1

. . . x2
νj

,

Uμ =
∏
ν

ν �=μ

(x2
ν − x2

μ) , (2.6)

and each metric function Xμ is a function of a single coordinate xμ:

Xμ = Xμ(xμ) . (2.7)

If these functions are chosen arbitrary, the geometry in general does not satisfy the Einstein 
equations and we call it off-shell. If the Einstein equations are imposed, Xμ must take a form of 
specific polynomials [15,22]:

Xμ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2bμ xμ +
N∑

k=0

ck x2k
μ for D even ,

− c

x2
μ

− 2bμ +
N∑

k=1

ck x2k
μ for D odd .

(2.8)

Here the parameter cN gives the cosmological constant, while other parameters are related to the 
mass, NUT parameters, and rotations, see [17] for more details. In particular, in the Lorentzian 
signature we would recover the on-shell Kerr–NUT–(A)dS spacetimes [15]. However, in what 
follows we do not assume this specific choice and the subsequent discussion is valid for the full 
off-shell family of spacetimes.

The Darboux frame of 1-forms eμ, êμ (μ = 1, . . . ,N ), and ê0 (in odd dimensions) read

eμ =
(Uμ

Xμ

)1
2
dxμ , êμ =

(Xμ

Uμ

)1
2

N−1∑
j=0

A(j)
μ dψj , ê0 =

( c

A(N)

)1
2

N∑
k=0

A(k)dψk , (2.9)

1 We write sums over coordinate indices μ, ν, . . . and k, l, . . . explicitly, but we usually do not indicate their ranges. If 
they are not indicated, we assume 

∑
μ = ∑N and 

∑
k = ∑N−1.
μ=1 k=0
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with the dual vector frame eμ, êμ and ê0 given by

eμ =
(Xμ

Uμ

)1
2
∂xμ , êμ =

(Uμ

Xμ

)1
2

N−1+ε∑
k=0

(−x2
μ)N−1−k

Uμ

∂ψk
, ê0 = (

cA(N)
)− 1

2 ∂ψN
.

(2.10)

The primary Killing vector in the canonical coordinates and the Darboux frame is

ξ = ∂ψ0 =
∑
μ

(Xμ

Uμ

)1
2
êμ + ε

( c

A(N)

)1
2
ê0 . (2.11)

The square of the principal tensor is a conformal Killing tensor,

Qab = hachbdgcd , (2.12)

which identifies eμ and êμ as its eigenvectors with the eigenvalue x2
μ:

Q =
∑
μ

x2
μ

(
eμeμ + êμêμ

)
. (2.13)

The metric (2.5) describes a wide class of geometries, both Riemannian and Lorentzian, sub-
ject to possible Wick rotations of coordinates and a choice of signs of metric functions. We 
will not attempt to classify this family of geometries here, see [17] for a discussion. We just 
recall that the family contains the on-shell Kerr–NUT–(A)dS black holes, which, when the NUT 
parameters are turned off, are equivalent to the Myers–Perry spacetimes [36] with possibly a 
cosmological constant [37,38]. The coordinates used here generalize Carter’s coordinates known 
in four dimension, with xN being the Wick rotated radial coordinate and other xν correspond-
ing to (cosine of) latitudinal angular coordinates. Killing coordinates ψk correspond to explicit 
symmetries of the space: time and longitudinal angles. However, this relation is not direct, see 
appendix A for more details.

2.2. Killing tower

The principal tensor guarantees the existence of a rich symmetry structure, the so called 
Killing tower of Killing and Killing–Yano objects [39]. Here we are going to introduce only the 
Killing tensors and Killing vectors since they are directly related to the symmetries of various 
fields in the studied spaces. The Killing tower can be defined in terms of generating functions. 
First we define a β-dependent conformal Killing tensor q(β),

q(β) = g + β2Q , (2.14)

and scalar functions A(β) and Aμ(β),

A(β) =
√

Detq(β)

Detg
=

∏
ν

(1 + β2x2
ν ) , (2.15)

Aμ(β) = A(β)

1 + β2x2
μ

=
∏
ν

ν �=μ

(1 + β2x2
ν ) . (2.16)

In the following, we usually skip the argument β to keep the expressions more compact.
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The generating Killing tensor k(β) and the generating Killing vector l(β) are defined as

k = Aq−1 , (2.17)

l = k · ξ . (2.18)

The Killing tower of Killing tensors k(j) and Killing vectors l(j) is given by an expansion in β

k(β) =
∑
j

k(j) β
2j , (2.19)

l(β) =
∑
j

l(j) β
2j . (2.20)

Note that only terms for j = 0, 1, . . . , N − 1 + ε are nonvanishing. One also has

A(β) =
N∑

j=0

A(j) β2j , Aμ(β) =
N−1∑
j=0

A(j)
μ β2j , (2.21)

with A(j), A(j)
μ being the standard symmetric polynomials introduced in (2.6).

In the Darboux frame, the generating Killing tensor and Killing vector are

k =
∑
μ

Aμ

(
eμeμ + êμêμ

) + εA ê0ê0 , (2.22)

l =
∑
μ

Aμ

(Xμ

Uμ

)1
2
êμ + εA

( c

A(N)

)1
2
ê0 , (2.23)

while in coordinates they read

k =
∑
μ

Aμ

Uμ

[
Xμ ∂2

xμ
+ 1

Xμ

(N−1+ε∑
k=0

(−x2
μ)N−1−k ∂ψk

)2
]

+ ε
A

A(N)
∂2

ψn
, (2.24)

l =
N−1+ε∑

j=0

β2j∂ψj
. (2.25)

Similar expressions for individual Killing tensors and Killing vectors from the tower are obtained 
by a simple β-expansion. We emphasize only

l(j) = ∂ψj
. (2.26)

A trace ka
a(β) of the generating Killing tensor is

ka
a = 2

∑
μ

Aμ + εA = −β
d

dβ
(β−DA) , (2.27)

since the traces of individual Killing tensors are

k(j)
a
a = 2

∑
μ

A(j)
μ + εA(j) = (D − 2j)A(j) , (2.28)

and

ka
a(β) =

N−1∑
k(j)

a
a β2j . (2.29)
j=0
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The covariant derivative of the generating Killing tensor is [17]

∇ckab = 2β2

A

(
kab kcn hn

m + hm
n kn(a kb)c + km(a kb)n hn

c
)
ξm . (2.30)

The contraction gives

∇nk
na = β2

A
(2ka

mkm
nh

n
lξ

l − kc
c ka

mhm
nξ

n) =
(
kan − 1

2
kc

c gan
) 1

A
∇nA , (2.31)

where we used another useful relation:
1

2
∇aA = β2 han ln . (2.32)

Finally, the generating Killing tensor commutes with the principal tensor in the sense of matrix 
multiplication

ha
nk

n
b = ka

nh
n
b . (2.33)

All these definitions and relations have been discussed in the literature and are reviewed 
in [17].

3. Field ansatz

We want to study a test electromagnetic field in the background of the off-shell Kerr–NUT–
(A)dS spacetime. We are looking for a field which solves the Maxwell equations in a separable 
form. However, we have to face the fact that the electromagnetic field has several components 
and that these components are coupled together. The long-standing problem of decoupling the 
Maxwell equations in higher dimension was successfully attacked by Lunin [31] in the case of 
the field in the background of the Myers–Perry and Kerr–(A)dS black holes.

In four dimension we have demonstrated [40] that Lunin’s ansatz for the field can be refor-
mulated covariantly in terms of the principal tensor. Similarly, in higher dimensions we assume 
that the electromagnetic vector potential2 A has the form

Aa = Bab∇bZ . (3.1)

Here, Z is an auxiliary complex scalar function that plays a role of a kind of scalar potential for 
the vector potential A. This function will be searched for and found in a multiplicative separated 
form.

Let us first concentrate on the polarization tensor B in the ansatz (3.1). It is defined in terms 
of the principal tensor h as

Bac(gcb − βhcb) = δa
b . (3.2)

B(β) thus depends on a parameter β , which is in general complex.
Since (3.2) means that B = (g − βh)−1, the ‘symmetric square’ of B is closely related to the 

generating Killing tensor k3

2 Unfortunately, the letter A is heavily used for various alternatives of metric functions, namely, A, Aμ , A(k), A(k)
μ . 

Therefore we use Serif font for the vector potential Aa to avoid a confusion. Consistently, we use Fab for the field 
strength.

3 Here and later we use a dot to denote a contraction of two subsequent tensors with respect to their two neighbor 
indices. For example, for two tensors with components Xab and Y cd , X · Y means a tensor with components XacY

cb .
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B · g · BT = (g − βh)−1 · g · (g + βh)−1 = (g + β2Q)−1 = 1

A
k , (3.3)

or in indices,

BakBblgkl = 1

A
kab . (3.4)

Inverting BT , we find

Bab = 1

A
gam(gmn + βhmn)k

nb . (3.5)

From here we can read off the symmetric and antisymmetric parts of B:

B(ab) = 1

A
kab ,

B[ab] = β

A
ha

nk
nb = β

A
kanhn

b .

(3.6)

Thanks to this, the trace of B is

Bn
n = ka

a

A
. (3.7)

Taking a covariant derivative of definition (3.2) and employing relation (2.1) and (3.2), one 
finds

∇cB
ab = β (Ba

c ξnB
nb − Banξn Bc

b) . (3.8)

Contractions yield

∇nB
nb = β

A
(ka

aξnB
nb − ξnk

nb) ,

∇nB
an = β

A
(ξnk

na − kb
bB

anξn) .

(3.9)

4. Field equations

We use the ansatz (3.1) to obtain solutions of the Maxwell equations in the higher dimensional 
off-shell Kerr–NUT–(A)dS spacetimes. We proceed as follows. First, we impose the Lorenz 
condition on the potential A and demonstrate that the obtained second order equation for the 
potential Z allows the separation of variables in the canonical coordinates. After this we show 
that the Maxwell field equations are satisfied provided (i) the Lorenz equation is valid and (ii) an 
additional equation for Z is valid. And finally, we show that this additional equation is also 
satisfied provided Z obeys the separable equation, obtained from the Lorenz condition.

For simplicity, starting with this section we restrict ourselves to even dimensions. Thanks to 
that the coordinate expressions for differential operators are slightly shorter. The full expression 
for scalar operators in odd dimensions can be found in [20]. Similar expressions could be written 
for the electromagnetic case.
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4.1. Covariant form of the Lorenz condition

Let us start investigating the Lorenz condition

∇aAa = 0 . (4.1)

In the appendix (see (D.4), (D.5)) we show that the divergence of the vector potential (3.1) reads

∇mAm = ∇m

(
Bmn∇nZ

) = ∇m

( 1

A
kmn∇nZ

)
+ β

A

(ka
a

A
− 1

)
ln∇nZ . (4.2)

Taking the factor 1/A out in the first term, one can also write

∇m

(
Bmn∇nZ

) = 1

A
∇m

(
kmn∇nZ

) + 1

A

(
− 1

A
(∇mA)kmn + β

(ka
a

A
− 1

)
ln

)
∇nZ . (4.3)

4.2. Coordinate form of the Lorenz condition

The first term in (4.3) is, up to a prefactor 1/A, the scalar wave operator associated with the 
Killing tensor k. Such operators have been studied in [20] and we can use its coordinate form 
(B.3) reviewed in the appendix B. Using (2.15) and (2.24), we find that the first term in the 
brackets in (4.3), which is linear in ∇Z, has the form

− 1

A
(∇mA)kmn∇nZ = −

∑
ν

Aν

Uν

Xν

2β2xν

1 + β2x2
ν

∂

∂xν

Z . (4.4)

In the appendix we prove the identity (D.8),

ka
a

A
− 1 = β2−D

∑
ν

Aν

Uν

1 − β2x2
ν

1 + β2x2
ν

, (4.5)

which allows us to express the second term in the brackets linear in ∇Z in (4.3),

β
(ka

a

A
− 1

)
ln∇nZ = β

∑
ν

Aν

Uν

1 − β2x2
ν

1 + β2x2
ν

β2(1−N)
∑
j

β2j ∂

∂ψj

Z . (4.6)

Putting these together, the coordinate expression for the divergence of the vector potential (4.3)
reads

∇m

(
Bmn∇nZ

) = 1

A

∑
ν

Aν

Uν

C̃νZ , (4.7)

where

C̃ν = (1 + β2x2
ν )

∂

∂xν

[ Xν

1 + β2x2
ν

∂

∂xν

]
+ 1

Xν

[∑
j

(−x2
ν )N−1−j ∂

∂ψj

]2

+ β
1 − β2x2

ν

1 + β2x2
ν

β2(1−N)
∑
j

β2j ∂

∂ψj

. (4.8)
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4.3. Covariant form of the Maxwell equations

The left-hand side of the Maxwell equations written in terms of the vector potential reads

∇nFan = −�Aa + Ra
nAn + ∇a

(∇nAn
)
, (4.9)

with � ≡ ∇m∇m. Inserting ansatz (3.1), we get

∇nFan = −∇m∇m(Ban∇nZ) + Ra
mBmn∇nZ + ∇a

(∇m(Bmn∇nZ)
)
. (4.10)

In appendix D we derive a nontrivial identity (D.11) for the first two terms, which gives us

∇nFan = −Bam∇m

(�Z + 2βξkB
kn∇nZ

)
+ 2βBakξk∇m(Bmn∇nZ) + ∇a

(∇m(Bmn∇nZ)
)
.

(4.11)

Clearly, if the Lorenz condition is satisfied, ∇m

(
Bmn∇nZ

) = 0, then the last two terms vanish 
and the vacuum Maxwell equations read

Bam∇m

(�Z + 2βξkB
kn∇nZ

)
= 0 . (4.12)

4.4. Coordinate form of the Maxwell equations

We already know the coordinate form of the Lorenz condition, so we concentrate on the 
operator

(� + 2βξkB
kn∇n

)
Z . (4.13)

The box operator is given by expression for K0 in (B.2). The second term in the bracket, using 
(3.5), (2.18), and (2.32), yields

2βξkB
kn∇nZ = β

2

A
ln∇nZ − 1

A
(∇nA)∇nZ . (4.14)

Employing identity (D.10) and the coordinate form (2.25) in the first term and 1
A

∇A = ∇ logA =∑
ν ∇ log(1 + β2x2

ν ) with the index raised using the coordinate metric component gνν = Xν

Uν
in 

the second term, we obtain

2βξkB
kn∇nZ = −

∑
ν

Xν

Uν

2β2xν

1 + β2x2
ν

∂

∂xν

Z + β
∑
ν

1

Uν

1 − β2x2
ν

1 + β2x2
ν

β2(1−N)
∑

k

β2k ∂

∂ψk

Z .

(4.15)

The first term nicely combines with the coordinate expression for the box, yielding

[� + 2βξkB
kn∇n

]
Z =

∑
ν

1

Uν

C̃νZ (4.16)

for the operator (4.13), with C̃ν defined by (4.8).
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4.5. Massive vector field equations

Although it is not the main topic of this paper, let us briefly comment on a generalization 
of the Maxwell field to the massive case. The vector Proca field A satisfies the following field 
equations [41–44]:

∇nFan + m2Aa = 0 . (4.17)

As a direct consequence, the Lorentz condition (4.1) must be satisfied. Employing (4.11), (4.17)
for our ansatz gives

Bam∇m

(�Z + 2βξkB
kn∇nZ

)
= m2Bam∇mZ . (4.18)

Clearly, it is satisfied if[� + 2βξkB
kn∇n

]
Z = m2 Z . (4.19)

The sufficient conditions for the Proca equations are thus the Lorentz condition (4.1) and the 
eigenfunction equation (4.19) of the operator (4.13).

In coordinates, the previous results (4.7) and (4.16) require

1

A

∑
ν

Aν

Uν

C̃νZ = 0 , (4.20)

∑
ν

1

Uν

C̃νZ = m2 Z . (4.21)

The electromagnetic case is recovered upon switching off the mass, m2 = 0.

5. Structure of the equations

In this section we are going to discuss the general structure of the obtained equations, the 
associated system of commuting operators, and the corresponding eigenvalue problem. We start 
with the following observation.

5.1. k–ν transform

Let Ok , k = 0, . . . , N − 1 be a set of N ‘objects’. Define the following ‘polynomials’:

Õν =
∑

k

(−x2
ν )N−1−kOk . (5.1)

Õν are thus polynomials in variable x2
ν with the same coefficients Ok . Applying the algebraic 

relation (D.1) we can write

Ok =
∑
ν

A
(k)
ν

Uν

Õν . (5.2)

Moreover, we can define the following ‘generating’ polynomial O , depending on an auxiliary 
variable β:

O ≡
∑

Okβ
2k =

∑ Aν

Uν

Õν . (5.3)

k ν
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We can think of the above relations as (k–ν)-transform between Ok and Õν objects. In particular, 
if Ok are ordinary numbers, Õν are normal polynomials. In what follows, however, we will use 
this transform also for the differential operators. In such a case, Õν will typically be an operator 
in variable xν only.

5.2. System of commuting operators

The Lorenz condition (4.7) and the modified box operator (4.16) are constructed using the 
same operators C̃ν (4.8). Introducing the Killing-vector operators Lk ,

Lk = −i
∂

∂ψk

, (5.4)

together (by employing the (k–ν)-transform) with the associated operators L̃ν and L

L̃ν =
∑

k

(−x2
ν )N−1−kLk , Lk =

∑
ν

A
(k)
ν

Uν

L̃ν , (5.5)

L =
∑

k

Lkβ
2k =

∑
ν

Aν

Uν

L̃ν , (5.6)

the operators C̃ν take the following form:

C̃ν = (1 + β2x2
ν )

∂

∂xν

[ Xν

1 + β2x2
ν

∂

∂xν

]
− 1

Xν

L̃2
ν + iβ

1 − β2x2
ν

1 + β2x2
ν

β2(1−N)L . (5.7)

In a similar manner, starting from C̃ν , we introduce Ck and C,

C̃ν =
∑

k

(−x2
ν )N−1−kCk , Ck =

∑
ν

A
(k)
ν

Uν

C̃ν , (5.8)

C =
∑

k

Ckβ
2k =

∑
ν

Aν

Uν

C̃ν . (5.9)

Using these definitions, we can present the operators (4.7) and (4.16) in the following form:

∇m

[
Bmn∇n

] = 1

A

∑
ν

Aν

Uν

C̃ν = 1

A
C , (5.10)

[� + 2βξkB
kn∇n

] =
∑
ν

1

Uν

C̃ν = C0 . (5.11)

It is important to notice that unlike operators Lk and L̃ν , operators Ck and C̃ν are β-dependent. 
We do not write this dependence explicitly but we should remember it. In case of the Killing-
vector operator L the expansion in β gives directly Lk . Since Ck depend on β , the same is not 
true for β-expansion of C, although the relation (5.9) still holds true.

Let us observe here that the operator ∇m

[
Bmn∇n

]
is symmetric for β imaginary. This follows 

from the fact that β enters the definition of B in a combination with antisymmetric h, cf. (3.2). 
This might suggest we set

β = −iμ , (5.12)
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assuming μ to be real; this notation has been used in [40]. However, such a choice would pos-
sibly restrict the ability to describe a sufficient set of independent polarizations as can be seen 
from discussion in [45]. For this reason in what follows we continue working with a general 
complex β .

An important property of the operators Ck and Lk is that, for a fixed value of β , these operators 
mutually commute

[Ck,Cl] = 0 , [Ck,Ll] = 0 , [Lk,Ll] = 0 . (5.13)

Beware, however, that for different values of β , this is no longer true, and [Ck(β1),Cl (β2)] �= 0.
The commutation of the Killing-vector operators Lk is obvious. The commutation of Ck fol-

lows from the commutation of operators C̃ν . Each C̃ν contains just one x-variable xν , derivatives 
with respect to xν , and derivatives with respect to all ψk . Therefore, for κ �= λ operators C̃κ and 
C̃λ trivially commute. For κ = λ they commute only for the same value of β , when they are 
identical. For fixed β , we thus have C̃κ C̃λ = C̃λC̃κ . Expanding the right operators using (5.8) we 
get ∑

l

(
(−x2

λ)N−1−l C̃κCl + δκ
λH l

κCl

)
=

∑
k

(
(−x2

κ )N−1−k C̃λCk + δλ
κHk

λCk

)
, (5.14)

where Hj
ν = C̃ν(−x2

ν )N−1−j . Sums of terms with H ’s on both sides are the same. Applying 
relation (5.8) once more we get∑

k,l

(−x2
κ )N−1−k(−x2

λ)N−1−l CkCl =
∑
k,l

(−x2
κ )N−1−k(−x2

κ )N−1−l ClCk . (5.15)

Since the matrix (−x2
ν )N−1−j (indexed by ν and j ) is nonsingular, the commutativity [Ck,Cl] = 0

follows.

5.3. System of eigenfunctions

For fixed β we have commuting operators Ck and Lk . We can thus introduce a system of 
common eigenfunctions Z ≡ Z(β;C0, . . . ,CN−1,L0, . . . ,LN−1) labeled by eigenvalues Ck and 
Lk ,

Ck Z = CkZ ,

Lk Z = LkZ .
(5.16)

The eigenvalues Lk are related to the explicit symmetries corresponding to coordinates ψk. For 
periodic angular coordinates, such operators would acquire discrete values. We refer to the ap-
pendix A for the corresponding discussion.

On the other hand, at the moment we do not have a covariant form for the operators Ck which 
would connect the eigenvalues Ck with some physical quantities. We expect that such operators 
are related to the hidden symmetries encoded by Killing tensors. Unfortunately, some obvious 
guesses for Cl as for example ∇ · k(l) · ∇ − 2iβl(l) · B · ∇ do not quite work. Although the 
operators Ck depend on β , we understand eigenvalues Ck , as well as Lk , to be β-independent.4

4 This is just a convention how to parameterize eigenfunctions Z for various values of β . Such a parametrization is 
possible if we assume that for different values of β the spectrum of operators remains the same. This assumption may be 
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In what follows, we shall use the eigenfunctions Z to generate solutions of the Maxwell equa-
tions.

Let us finish this section by introducing some auxiliary notation. Starting with constants 
Ck and Lk , and using the (k–ν)-transform as we did for operators, we define polynomials 
C̃ν ≡ C̃ν(xν) and C ≡ C(β), and L̃ν ≡ L̃ν(xν) and L ≡ L(β) as follows

C̃ν =
∑

k

(−x2
ν )N−1−kCk , Ck =

∑
ν

A
(k)
ν

Uν

C̃ν , (5.17)

C =
∑

k

Ckβ
2k =

∑
μ

Aν

Uν

C̃ν , (5.18)

L̃ν =
∑

k

(−x2
ν )N−1−kLk , Lk =

∑
ν

A
(k)
ν

Uν

L̃ν , (5.19)

L =
∑

k

Lkβ
2k =

∑
μ

Aν

Uν

L̃ν . (5.20)

6. Solutions: magnetic polarizations

6.1. Parametrization using polarizations

As it was shown above, the solution of the Maxwell equations can be generated through the 
ansatz (3.1) by function Z satisfying the Lorenz condition and the condition (4.12) which, using 
(5.10) and (5.11), are

CZ = 0 , C0 Z = 0 . (6.1)

The second condition can be easily satisfied by our eigenfunctions Z with C0 = 0. Note that 
the trivial C0 is no longer required for the massive vector field discussed in the previous sec-
tion, where we effectively require C0 = m2, cf. (4.21); see [45] for a discussion of interesting 
consequences. The first condition, when applied to Z, requires

C(β) ≡
∑

k

Ckβ
2k = 0 . (6.2)

This could be trivially satisfied by setting all Ck = 0, but it would reduce our system of eigen-
functions too much. Fortunately, we can utilize here the freedom in parameter β by setting it 
to one of N − 1 roots β0, . . . , βN−2 of the polynomial C(β). We thus define N − 1 “magnetic 
polarizations” ZP

mg, P = 0, . . . ,N − 2, each labeled by 2N − 1 constants,

ZP
mg(C1, . . . ,CN−1,L0, . . . ,LN−1) = Z(βP ;0,C1, . . . ,CN−1,L0, . . . ,LN−1) . (6.3)

Setting C0 = 0 implies that one of the roots, say β0, of the polynomial C(β) is zero, β0 = 0, 
cf. definition (5.18). However, for β = 0 our ansatz (3.1) gives a pure gauge field. We thus have 
only N − 2 magnetic polarizations P = 1, . . . ,N − 2 corresponding to nonvanishing roots. We 
will discuss the missing “electric polarization” below.

too strong for the detailed study of the spectrum following from e.g. regularity of the eigenfunctions. Since we do not do 
such a study here, we can ignore potential problems and assume that, at least in some range of β , the spectrum remains 
the same, and that we can use the same eigenvalues for different β to parameterize these eigenfunctions.
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Let us stress that we use the names “magnetic”, “electric” and “polarization” in a very vague 
and intuitive way. We are motivated partially by a notation of Lunin [31], although the solutions 
above do not correspond directly to those introduced by Lunin. No direct relation to the tradi-
tional concepts of polarization is indicated here. We just expect that for massless field in D = 2N

dimensions one should have D − 2 polarizations (or N − 1 complex polarizations), each labeled 
by 2N − 1 constants. At this moment we found N − 2 such complex polarizations.

6.2. Alternative parametrization

In the picture described above we use eigenvalues Ck, Lk to parameterize solutions and for 
each choice of them we set β to one of the roots βP . It gives us a discrete choice of the polar-
ization for given eigenvalues. Clearly, changing constants Ck, Lk varies the roots βP and these 
roots can mix their values. The nature of independence of the polarizations is thus not completely 
clear.

One can therefore prefer a different parametrization of functions satisfying the Lorenz condi-
tion CZ = 0. Instead of constants C0, . . . ,CN−1, which define a root β∗, one can use the root β∗
and constants C1, . . . ,CN−1 as independent and find a value of C0 so that C(β∗) = 0. Clearly, 
C0 must be given by

C̄0 = −β2∗
N−2∑
k=0

Ck+1β
2k∗ . (6.4)

The Maxwell equations then require C̄0 = 0. It can be achieved by setting β∗ = 0, which leads to 
a pure gauge as before, or by imposing a linear constraint

N−2∑
k=0

Ck+1β
2k∗ = 0 (6.5)

on the remaining constants C1, . . . ,CN−1. It can be solved, for example, by evaluating C1 in 
terms of other constants,

C̄1 = −β2∗
N−3∑
k=0

Ck+2β
2k∗ . (6.6)

The “magnetic” solutions of the Maxwell equations can thus be generated through the ansatz 
(3.1) using functions

Zmg(β∗;C2 . . . ,CN−1,L0, . . . ,LN−1) = Z(β∗;0, C̄1,C2, . . . ,CN−1,L0, . . . ,LN−1) .

(6.7)

In this parametrization we do not distinguish a discrete choice of the polarization, instead we 
have a direct control over the root β∗. However, changing β∗ and C2, . . . , CN−1, L0, . . . , LN−1
freely should cover the same set of function as ZP

mg introduced above.
This parametrization corresponds more to Lunin’s approach, as far as we are able to compare.

6.3. Yet another parametrization

Another way how to solve the Lorenz condition, i.e., to enforce that β∗ is a root of C(β), is to 
require that the polynomial C has the following form:
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C = (β2 − β2∗)Q , Q =
N−2∑
k=0

Qk β2(N−2−k) . (6.8)

It gives Ck in terms of Q0, . . . ,QN−2 and β∗, namely for C0,

C0 = −β2∗ QN−2 . (6.9)

Setting thus QN−2 = 0 guarantees the Maxwell equations. Hence, the solution is generated by 
function Zmg′

Zmg′(β∗;Q0 . . . ,QN−3,L0, . . . ,LN−1) = Z(β∗;0,C1,C2, . . . ,CN−1,L0, . . . ,LN−1) ,

(6.10)

with Ck evaluated from β∗ and Q0, . . . ,QN−3 using (6.8).
It will be useful in a discussion of the separation of variables to evaluate polynomials C̃ν in 

this parametrization. Employing (6.8) and (5.17), one easily gets

C̃ν = (1 + β2∗x2
ν ) Q̄ν , (6.11)

where we have introduced polynomials Q̄ν ≡ Q̄ν(xν)

Q̄ν =
N−2∑
k=0

Qk(−x2
ν )k , (6.12)

with the highest power missing when the Maxwell equations are imposed.

6.4. D=4

The last parametrization is suitable for a discussion of the four-dimensional spacetimes. 
Namely, for N = 2, both polynomials Q and Q̄ν reduce to a constant and the Maxwell equa-
tions require this constant to be zero. The solution is generated by the function Zmg′(β∗,L0,L1)

parameterized just by the root β∗ and Killing-vector constants L0,L1. Clearly, Ck = 0, as well 
as C̃ν = 0, and β∗ is unconstrained.

7. Solutions: electric polarization

In the discussion of magnetic polarizations we have lost one solution, since β = 0 leads to 
a pure gauge potential A = ∇Z. In this section we attempt to recover the missing polarization 
by investigating the behavior of our system of eigenfunctions (5.16) in the limit β → 0, see 
appendix C. The obtained results inspire the following new ansatz for the vector potential:

Aa = han∇nZ . (7.1)

The Lorenz condition and the Maxwell equations then read

∇nAn = (D − 1)ξn∇nZ = 0 , (7.2)

∇nFan = −han∇n�Z + 2ξa�Z + (D − 3)∇a(ξn∇nZ) = 0 . (7.3)

Both these equations can be satisfied by requiring
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�Z = 0 , (7.4)

ξn∇nZ = 0 . (7.5)

The solutions of the wave operator have been studied before [16,20]. In appendix B we recall 
that they are given by the eigenfunctions Z̃(K0, . . . ,KN−1,L0, . . . ,LN−1) of the operators Kk

and Lk , labeled by their eigenvalues. The first condition (7.4) sets the eigenvalue of the wave 
operator itself to zero, K0 = 0. The second condition (7.5) requires L0 = 0.

We can thus generate solutions to the Maxwell equations via ansatz (7.1) using functions

Zel(K1, . . . ,KN−1,L1, . . . ,LN−1) = Z̃(0,K1, . . . ,KN−1,0,L1, . . . ,LN−1) . (7.6)

We call these solutions the “electric polarization”. This family of solutions is degenerate since it 
is parameterized just by 2N − 2 constants.

8. Separation of variables

Until now our discussion of the solutions of the Maxwell equations has been rather abstract, 
based on the eigenfunctions of the operators Ck and Lk . Here we demonstrate that these eigen-
functions can be found using the method of separation of variables. This reduces the problem 
to solving ordinary differential equations instead of having to deal with the complicated partial 
differential operators.

We proceed as follows. First, we show that the eigenvalue problem for the operators Ck and 
Lk , and common eigenfunction Z, can be solved by employing the separation ansatz (8.2) below. 
Next, we discuss a refined method of separation of variables that is applicable to test fields in 
the higher-dimensional Kerr–NUT–(A)dS spacetimes and show that both the Lorenz condition 
and the remaining Maxwell equations can be solved by this method. By comparing the obtained 
separated equations with the equations for the eigenfunction Z we conclude that the separation 
constants are precisely the eigenvalues of the operators Ck and Lk .

8.1. Multiplicative separation ansatz

A possibility to use the method of separation of variables is based on the fact that the operators 
Ck and Lk have a special form5

Ck =
∑
ν

A
(k)
ν

Uν

C̃ν , Lk =
∑
ν

A
(k)
ν

Uν

L̃ν , (8.1)

where each C̃ν and L̃ν are operators in just one x-variable xν (and Killing variables ψk). We 
can take an advantage of this special coordinate dependence and of the additive structure by 
imposing the multiplicative separation ansatz for a function on which the operators act. Namely, 
we set

Z =
(∏

ν

Rν

)
exp

(
i
∑
j

Ljψj

)
, (8.2)

5 The same structure has been already recognized in the discussion of the scalar field in [20] with operators Kk and 
K̃ν , see appendix B for a short review. Naturally, we follow this case.
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where functions Rν are functions of just one variable, Rν = Rν(xν). Note that in terms of peri-
odic angular coordinates ϕν (A.1) and constants mν (A.7), the exponent reads∑

k

Lkψk =
∑
ν

mνϕν . (8.3)

8.2. Eigenvalue problem

Let us consider the eigenvalue problem (5.16), with the eigenfunction ansatz (8.2). The second 
set of equations, LkZ = LkZ, is automatically satisfied. The first set of equations reads

CkZ = CkZ . (8.4)

Writing the l.h.s. explicitly for the ansatz (8.2), we find

CkZ = Z
∑
ν

A
(k)
ν

Uν

1

Rν

(
(1 +β2x2

ν )
( Xν

1 + β2x2
ν

R′
ν

)′ − L̃2
ν

Xν

Rν + iβ
1 − β2x2

ν

1 + β2x2
ν

β2(1−N)LRν

)
,

(8.5)

where the prime denotes the derivative with respect to xν . Applying the k–ν transformation to 
(8.4), the sum in (8.5) disappears on the r.h.s. and polynomials C̃ν defined in (5.17) appear on 
l.h.s., yields the following ordinary differential equations for functions Rν :

(1 + β2x2
ν )

( Xν

1 + β2x2
ν

R′
ν

)′ − L̃2
ν

Xν

Rν + iβ
1 − β2x2

ν

1 + β2x2
ν

β2(1−N)LRν − C̃νRν = 0 . (8.6)

Functions Rν , each of one variable xν , satisfying equations (8.6) thus give eigenfunctions 
Z(β,C0, . . . ,L0, . . . ) via multiplicative ansatz (8.2).

8.3. Refined separation of variables

We now want to demonstrate that the eigenvalues, which label our eigenfunctions, can be 
interpreted as separation constants. We start by describing the refined method of separation of 
variables that is applicable in our case.

An elementary formulation of the method of separation of variables states that if one has N
functions fν , each of which depends on one variable only, fν = fν(xν), and if they add to zero, ∑

ν fν = 0, then each fν has to be a constant and these constants have to sum to zero,

fν = qν ,
∑
ν

qν = 0 . (8.7)

qν are called separation constants and only N − 1 of them are independent.
In the following we use a slightly different notion of separability. We formulate it as:

Separation lemma. Let fν are N functions of one variable only, fν = fν(xν). If they composite 
to a zero according to∑

ν

1

Uν

fν = 0 , (8.8)

then they have to be given by the same polynomial of degree N − 2:
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fν =
N−2∑
k=0

Qk(−x2
ν )k ≡ Q̄ν . (8.9)

We call the coefficients of these polynomials, Q0, . . . ,QN−2, the separation constants. There are 
N − 1 of them, one less than the number of independent variables.

The implication (8.9) to (8.8) follows directly from identity (D.1). The proof of the opposite 
implication has been sketched in [34].

The lemma encodes the greatest freedom in functions fν which compose to zero through the 
sum of type (8.8). It can be easily generalized to a non-trivial right hand side if one knows at 
least one particular solution fν for that right hand side. Namely, using again the identity (D.1), 
we find:

Generalized separation lemma. Functions fν of one variable satisfying∑
ν

1

Uν

fν = C0 , (8.10)

with C0 = const, must be given by a polynomial of degree N − 1,

fν =
N−1∑
k=0

Ck(−x2
ν )N−1−k ≡ C̃ν , (8.11)

where the constant C0 specifies the highest order term.

8.4. Separation constants

Using this insight, we can revisit the Lorenz condition 1
A
CZ = 0, cf. (5.10). Employing the 

separation ansatz (8.2), it yields

1

A

∑
ν

Aν

Uν

1

Rν

(
(1 + β2x2

ν )
( Xν

1 + β2x2
ν

R′
ν

)′ − L̃2
ν

Xν

Rν + iβ
1 − β2x2

ν

1 + β2x2
ν

β2(1−N)LRν

)
= 0 .

(8.12)

At first sight this equation does have the form (8.8) useful for the separation lemma since Aν is a 
function of all variables {xκ} except xν and we need the exact opposite. Fortunately, the definition 
(2.16) of Aν shows that Aν/A = (1 + β2x2

ν )−1 is function of just xν . The Lorenz condition thus 
takes the form (8.8) where

∑
ν

1

Uν

1

Rν

(( Xν

1 + β2x2
ν

R′
ν

)′ − L̃2
ν

(1 + β2x2
ν )Xν

Rν + iβ
1 − β2x2

ν

(1 + β2x2
ν )2 β2(1−N)LRν

)
= 0 ,

(8.13)

and the separation lemma gives

(1 + β2x2
ν )

( Xν

1 + β2x2
ν

R′
ν

)′ − L̃2
ν

Xν

Rν + iβ
1 − β2x2

ν

1 + β2x2
ν

β2(1−N)LRν − (1 + β2x2
ν )Q̄νRν = 0 .

(8.14)
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On the other hand, the remaining Maxwell equations reduce to C0Z = 0, cf. (5.11). Slightly 
more generally, we can consider the eigenfunction equation

C0 Z = C0Z , (8.15)

setting C0 = 0 later. Substituting the multiplicative separation ansatz (8.2), we obtain

∑
ν

1

Uν

(
(1 + β2x2

ν )
( Xν

1 + β2x2
ν

R′
ν

)′ − L̃2
ν

Xν

Rν + iβ
1 − β2x2

ν

1 + β2x2
ν

β2(1−N)LRν

)
= C0 .

(8.16)

The generalized separation lemma (8.10) above then implies that the brackets must be equal to 
the same polynomial C̃ν in the respective variable xν ,

(1 + β2x2
ν )

( Xν

1 + β2x2
ν

R′
ν

)′ − L̃2
ν

Xν

Rν + iβ
1 − β2x2

ν

1 + β2x2
ν

β2(1−N)LRν − C̃νRν = 0 . (8.17)

The eigenvalue C0 determine the highest order of the polynomials C̃ν and, as we said, the source-
free Maxwell equations require C0 = 0. We also realize that the separated equations (8.17) are 
identical to the conditions (8.6) obtained from the eigenfunction equations for operators Ck . It 
means that the separability constants Ck (coefficients of the polynomials C̃μ from the generalized 
separation lemma) are exactly the eigenvalues of operators Ck.

Moreover, by comparing (8.14) and (8.17), we recover the relation (6.11),

C̃ν = (1 + β2x2
ν )Q̄ν , (8.18)

which we derived originally from a completely different perspective. However, the basis for this 
relation remains the same. It reflects the requirement that the Lorenz condition CZ = 0 holds for 
given β .

9. Aligned electromagnetic fields

Let us return to the electric polarization discussed in section 7. One can apply the multi-
plicative separation ansatz as in the previous section and recover the separable structure of the 
eigenfunctions Z̃, see appendix B.

However, we will look at this case from a different perspective, restricting to the special case

Lk = 0 , (9.1)

i.e., to the field independent of ψk .
In section 7 we mentioned that the ansatz (7.1) for the vector potential and the field equations 

(7.4), (7.5) can be motivated by the limiting procedure β → 0 discussed in appendix C. It is 
then natural to assume that functions Rν in the multiplicative separation ansatz (8.2) also expand 
as

Rν = 1 + βSν +O(β2) , (9.2)

with functions Sν depending just on one variable, Sν = Sν(xν). The multiplicative separation 
ansatz thus reduces to

Z = 1 + β
∑

Sν +O(β2) . (9.3)

ν
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It motivates us to search for the electric polarization (7.1),

Aa = −han∇nS , (9.4)

in the form of an additive separation ansatz

S =
∑

ν

Sν . (9.5)

The vector potential yields

Aa = −han

∑
ν

S′
ν∇nxν =

∑
ν

xνXνS
′
ν

Uν

∑
k

A(k)
ν daψk . (9.6)

The Lorenz condition (7.5) is satisfied automatically since L0 = 0. The Maxwell condition 
(7.4) is the massless scalar wave equation K0S = 0, and upon inserting the additive separation 
ansatz, we get∑

ν

1

Uν

(
XνS

′
ν

)′ = 0 . (9.7)

The separability lemma gives us that Sν must satisfy the following differential equation:(
XνS

′
ν

)′ = Q̄ν , (9.8)

where Q̄ν are polynomials (8.9) of degree N − 2 in x2
ν . Eq. (9.8) can be integrated once, leading 

to

xνXνS
′
ν = qνxν + P̃ν , (9.9)

where qν is an integration constant and P̃ν is a polynomial of degree N − 1 in x2
ν without an 

absolute term, say

P̃ν =
N−2∑
l=0

Pl(−x2
ν )N−1−l . (9.10)

Substituting to the vector potential (9.6), and using (D.1), we obtain

A =
∑
ν

qνxν

Uν

N−1∑
k=0

A(k)
ν dψk +

N−2∑
k=0

Pk dψk . (9.11)

The second term is a pure gauge can be ignored. The first term reproduces exactly the electro-
magnetic fields aligned with the principal tensor found in [34] and discussed in [19]. In other 
words, we have just demonstrated that the aligned fields can be understood as a special case of 
the electric solutions for which the dependence on all Killing coordinates vanishes.

10. Summary

In this paper we have demonstrated the separability of the Maxwell equations in the back-
ground of the most general higher-dimensional spacetime admitting the principal tensor—the 
off-shell Kerr–NUT–(A)dS geometry. This goal was achieved by adopting a special ansatz (3.1)
for the vector potential of the electromagnetic field. We demonstrated that this ansatz solves the 
Maxwell equations if the corresponding potential function Z has the form (8.2) provided mode 
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functions Rν are solutions of the second-order ODEs (8.6). These equations contain the metric 
functions Xν . For a general off-shell metric, these are arbitrary functions of one variable xν . For 
the on-shell metric these functions become polynomials, so that the coefficients that enter the 
equations are rational functions of the corresponding variables.

In order to adapt the obtained separated equations to the physical Kerr–NUT–(A)dS black 
hole spacetimes (in Lorentzian signature), one needs to apply additionally the Wick rotation to 
the radial coordinate and the mass parameter [17]. Consequently, one of the separated equations 
will be in the radial sector, while the other equations become the latitudinal angle equations. 
The requirement that the solutions of these angular equations are regular fixes the spectrum of 
some of the separation constants. We did not discuss these important details in the present paper, 
but we would like to emphasize that the proof of the completeness of the set of the solutions, 
obtained by in this paper described method is an important open problem.

We also demonstrated that for the constructed potential function the electromagnetic field 
potential satisfies the Lorenz gauge condition.

Let us emphasize that the approach used in this paper is in its spirit similar to the one pro-
posed by Lunin [31]. However, there are number of differences. First, we considered the off-shell 
Kerr–NUT–(A)dS metrics, and in this sense, we obtained a non-trivial and far-reaching general-
ization of Lunin’s results. Second, contrary to Lunin’s paper our construction is totally covariant 
and entirely based on the principal tensor. Third, the proof of the separability of the Maxwell 
equations proposed in our paper is carried out in an analytic form.

The key role in this proof is played by the rich geometrical structure generated from the 
principal tensor. Using this tensor we defined a covariant form of the polarization tensor which 
modifies the gradient of a generating scalar function in the ansatz for the vector potential. The rich 
symmetry structure has a consequence that both the Lorenz condition and the Maxwell equations 
can be written as a composition of operators separated in latitudinal variables. This allowed us 
to construct the system of commuting operators, which define a set of common eigenfunctions. 
In terms of these eigenfunctions we have been able to identify the separable solutions. These are 
labeled, in general, by the correct number of D − 1 separation constants and we identified the 
correct number of polarizations.

Similar to the Klein–Gordon case, the obtained separated second-order ordinary differential 
equations for the potential function Z can be identified with the eigenfunctions of a com-
plete set of the first-order and second-order differential operators. For the Klein–Gordon field, 
the covariant form of these operators is well known—they are constructed from the Killing 
vectors and Killing tensors present in the Killing tower. A covariant form for the operators 
acting on Z is currently unknown and finding it poses an interesting problem for future stud-
ies.
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Appendix A. Angular coordinates

A.1. Periodic angular coordinates

In this appendix, let us return to the metric (2.5) and discuss the meaning of the Killing 
coordinates ψk . Such coordinates correspond to explicit symmetries and represent time and lon-
gitudinal angles. However, this relation is not direct. Even for vanishing NUT parameters these 
coordinates cannot be directly identified with the standard periodic angular coordinates around 
axes of rotation but instead are their linear combination [46,38,17]. With non-vanishing NUTs, 
the situation is even more complicated because it is not clear, what are the “correct” periodic 
angular coordinates [17,47–49].

The reason is that the metric (2.5) itself does not specify a global geometry. It has to be 
accompanied by a specification of what the ranges of coordinates are and which coordinates are 
periodic. In some cases (as vanishing NUTs, i.e., the Myers–Perry geometry) there is a natural 
choice of such angular coordinates which guarantees the regularity of axes of rotation. With 
non-vanishing NUTs or even for the off-shell geometries described by (2.5), the axes cannot be, 
in general, made regular. Physically it means that there are some linear sources along the axes 
and such sources cannot be eliminated.6 The specification of these sources is hidden exactly in 
an identification of the periodic longitudinal coordinates.

In any case, the coordinates ψk are not typically the periodic coordinates. ψ0 is a time co-
ordinate, but the periodic angular coordinates ϕν are given by a liner combination of ψ ’s. In 
even 2N dimensions, which we mainly considered in the main text, it is useful to write such 
transformation in the form

ϕν =
N−1∑
k=0

Å
(k)
ν

Ůν

ψk , ψk =
∑
ν

(−x̊2
ν )N−1−kϕν , (A.1)

where x̊ν are constants and all other quantitative as Å(k)
ν , Ůν are build from x̊ν in the same 

way as A(k)
ν , Uν from xν . A specification of the constants x̊ν thus defines the correct periodic 

coordinates ϕν . It has to be accompanied by setting correct ranges of this periodicity. All these 
choices identify what singular sources are present on the axes.

For vanishing NUT parameters, the relation to the Myers–Perry metric includes setting x̊ν to 
values of rotational parameters aν , see [17,47,48].

We will not discuss these issues in more detail. The only thing we need is that the periodic 
angular coordinates ϕk are related to ψk by transformation (A.1). Thus, when studying the spectra 
of operators related to Killing vectors, we can expect that operators ∂

∂ϕμ
have a simple discrete 

spectrum and spectra of ∂
∂ψk

must be derived from them using (A.1). For that it is useful to write 
down relations of the coordinate Killing vectors:

∂ψk
=

∑
ν

Å
(k)
ν

Ůν

∂ϕν , ∂ϕν =
N−1∑
k=0

(−x̊ν)
N−1−k∂ψk

, (A.2)

where we used the important identity (D.1).

6 Even in the regular case of the Myers–Perry black hole one can superimpose rotating strings along the axes which is 
effectively done exactly be changing ranges of angular coordinates and rewinding angular and time coordinates among 
themselves. This causes irregularities on the axes. The regularity of Myers–Perry solution means that such irregularities 
can be eliminated by a proper choice of time and angular coordinates.
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A.2. Operators Jν and Lk

Operators Lk , L̃ν , and L can be also expressed in terms of period coordinates ϕν introduced 
in (A.1). If we define

Jν = −i
∂

∂ϕν

=
∑

k

(−x̊2
ν )N−1−kLk , (A.3)

L’s operators are

Lk =
∑
ν

Å
(k)
ν

Ůν

Jν , (A.4)

L̃ν =
∑
ν

1

Ůν

∏
κ

κ �=ν

(x̊2
κ − x2

μ)Jν , (A.5)

L =
∑
ν

Åν

Ůν

Jν . (A.6)

Operators Jν commute with all operators Ck and Lk , since they are related to Lk just by 
a linear transformation (A.3) with constant coefficients. We can thus introduce eigenvalues of 
operators Jν ,

Jν Z = mνZ , (A.7)

which we expect to have a simple discrete spectrum. The eigenvalues Lk and polynomials L̃ν

and L are then related as

Lk =
∑
ν

Å
(k)
ν

Ůν

mν , (A.8)

L̃ν =
∑
ν

1

Ůν

∏
κ

κ �=ν

(x̊2
κ − x2

μ)mν , (A.9)

L =
∑
ν

Åν

Ůν

mν . (A.10)

In the main text, we continue to use eigenvalues Lk as basic ones. Transformation (A.8) can be 
always carried out at the end.

Appendix B. Separability of the scalar wave equation

On several places in the main text we refer to the separability of the scalar wave equation in 
the off-shell Kerr–NUT–(A)dS spacetime. For convenience of the reader, in this appendix we 
give a short overview of this result. The separability has been first demonstrated in [16] and later 
elaborated on in [20] where one can find also the results for odd dimensions. Here we restrict to 
even dimensions.

Using the Killing tensors k(j) one can construct the tower of symmetric second order operators

Kj = ∇a

[
kab∇b

]
. (B.1)
j
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In the canonical coordinates these operators read [20]

KjZ =
∑

ν

A
(j)
ν

Uν

[
∂

∂xν

[
Xν

∂

∂xν

]
+ 1

Xν

[∑
i

(−x2
ν )N−1−i ∂

∂ψi

]2
]
Z . (B.2)

Similarly, the generating Killing tensor k defined in (2.19), defines the operator

KZ ≡ ∇m

(
kmn∇nZ

) =
∑

ν

Aν

Uν

[
∂

∂xν

[
Xν

∂

∂xν

]
+ 1

Xν

[∑
j

(−x2
ν )N−1−j ∂

∂ψj

]2
]
Z . (B.3)

By a similar argument as for the operators Cj in section 5, one can show that these operators, 
together with the operators Lj , mutually commute,

[Kk,Kl] = 0 , [Kk,Ll] = 0 , [Lk,Ll] = 0 . (B.4)

Therefore, they have common eigenfunctions Z̄ labeled by eigenvalues Kj and Lj ,

Kj Z̄ = KkZ̄ ,

Lj Z̄ = LkZ̄ .
(B.5)

Let us concentrate on the eigenfunction equation of the zeroth operator K0 ≡ �,

K0Z = K0Z . (B.6)

Substituting the multiplicative separation ansatz (8.2), it boils to

∑
ν

1

Uν

(
1

Rν

(
XνR

′
ν

)′ − L̃2
ν

Xν

)
= K0 . (B.7)

The generalized separation lemma (8.10) then implies that the brackets must be equal to the same 
polynomial K̃ν in the respective variable xν with K0 governing the highest order term, i.e.,

(
XνR

′
ν

)′ − L̃2
ν

Xν

Rν − K̃νRν = 0 , (B.8)

where

K̃ν ≡
N−1∑
k=0

Kk(−x2
ν )N−1−k . (B.9)

Plugging this most general solution of (B.6) to the operators Kj we find that such Z is the 
eigenfunction Z̄ with eigenvalues Kj . Using the system of eigenfunctions of the operators Kj

is thus equivalent to solving equation (B.6) by the separation of variables and the eigenvalues 
correspond to the separation constants.

Note also that by plugging Z̄ into operator (B.3), we get

KZ̄ = KZ̄ , (B.10)

with

K =
∑
j

Kjβ
2j =

∑
μ

Aν

Uν

K̃ν . (B.11)
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Appendix C. Limiting procedure β → 0

In the discussion of magnetic polarizations we have lost one of the solutions, since β = 0
leads to a pure gauge potential A = ∇Z. In the hope to recover the missing polarization, let us 
investigate the behavior of our system of eigenfunctions (5.16) for β → 0. As we shall see, this 
will naturally lead to the definition of the electric polarization (7.1) in the main text. We shall 
also use this to recover the special solutions of Maxwell equations known as the aligned fields, 
see Sec. 9.

C.1. Behavior of eigenfunctions for β → 0

Observing the operators C̃ν given by (5.7), we see a potential problem with the last term which 
is proportional to β2(1−N). To investigate its behavior, we expand also the fractional factor in β ,

1 − β2x2
ν

1 + β2x2
ν

β2(1−N) = −1 + 2
1

1 + β2x2
ν

β2(1−N) = −1 + 2
∞∑

j=0

β2(j+1−N)(−x2
ν )j . (C.1)

We see that the sum contains plenty of terms with negative powers of β . However, operators Ck

are given as a sum (5.8) of operators C̃ν . Keeping just terms with non-positive powers of β and 
changing j → N − 1 − j , the contributions to Ck are

∑
ν

A
(k)
ν

Uν

1 − β2x2
ν

1 + β2x2
ν

β2(1−N) = −
∑
ν

A
(k)
ν

Uν

+ 2
N−1∑
j=0

β−2j
∑
ν

A
(k)
ν

Uν

(−x2
ν )N−1−j +O(β2) .

(C.2)

Sums over ν are easily evaluated using the identity (D.1), giving

∑
ν

A
(k)
ν

Uν

1 − β2x2
ν

1 + β2x2
ν

β2(1−N) = −δN−1
k β−2(N−1) + 2β−2k +O(β2) . (C.3)

Substituting it to (5.7), we get

Ck =Kk + 2iβ

k∑
l=0

β−2(k−l)Ll +O(β2) (C.4)

for k = 0, . . . ,N − 2 and

CN−1 =KN−1 + iβ

N−1∑
l=0

β−2(N−1−l)Ll +O(β2) (C.5)

for k = N − 1. Here we used operators Kk given in (B.2).
We see that the operators Ck are mostly divergent for β → 0. Therefore, one cannot expect 

the eigenfunctions Z to behave reasonably in this limit. However, one could avoid this problem 
for a subclass of eigenfunctions, namely for those with Lk = 0, i.e., for those independent of ψk . 
Operators Ck acting on such eigenfunctions reduce just to Kk (with the last term vanishing).

We can thus hope that by expanding the eigenfunctions Z with vanishing Lk we could find a 
subfamily of solutions of the Maxwell equations corresponding to the missing polarization.
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C.2. Behavior of Z for β → 0

On other side, we are not obliged to use eigenfunctions Z. We just want to solve (6.1): CZ = 0, 
and C0Z = 0. Fortunately, C0 is regular for small β ,

C0 =K0 + 2iβL0 +O(β2) , (C.6)

as well as operator C,

C =
∑

k

β2kCk =K0 + (2N − 1) iβ L0 +O(β2) . (C.7)

Unfortunately, they differ in the first order of β by a term proportional to L0. Therefore, if we 
want satisfy both conditions (6.1) up to the first order, the function Z must satisfy

K0 Z = 0 , (C.8)

L0 Z = 0 . (C.9)

The first condition is actually the scalar wave equation for Z. The second condition is milder 
than setting Lk = 0 for all k but it is still a non-trivial condition. The coordinate ψ0 represents 
time, so we are obtaining the condition of stationarity.

C.3. Behavior of field equations for β → 0

Let us now look at the first-order expansion of the field equations. Assuming

Z = Z0 + βZ1 +O(β2) , (C.10)

and B = g + βh +O(β2) following from (3.2), the ansatz (3.1) for the vector potential reads

A = ∇Z0 + β
(
h · ∇Z0 + ∇Z1

) +O(β2) . (C.11)

The leading term is a pure gauge, but the first order term is not. The nontrivial contribution comes 
from the zeroth-order function Z0.

The Lorenz condition reads

∇ · A = �Z0 + β
(
(D − 1)ξ · ∇Z0 + �Z1

)
+O(β2) , (C.12)

where we have used (2.2) and the antisymmetry of the principal tensor h. The Maxwell tensor 
F is sensitive only to the gauge non-trivial part of the vector potential and therefore it is of the 
first-order,

F = ∇ ∧ A = β ∇ ∧ (
h · ∇Z0

) +O(β2) . (C.13)

Calculating the Maxwell equations is more involved, but it essentially follows the same steps 
as in the case of arbitrary β discussed in section 4. Alternatively, one can just expand (4.11). It 
yields

∇ · F = β
(
h · ∇�Z0 − 2ξ�Z0 − (D − 3)∇(ξ · ∇Z0)

)
+O(β2) . (C.14)

We see that it can be set equal to zero up to the first-order in β provided that

�Z0 ≡K0Z0 = 0 , (C.15)

ξ · ∇Z0 ≡ iL0Z0 = 0 . (C.16)
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We recovered that the function Z0 must satisfy the scalar wave equation and the stationarity 
condition, the results (C.8) and (C.9) above.

Let us note that the same result can be obtained if one assumed function Z in the form

Z = 1 + βZ0 + β2Z1 +O(β2) . (C.17)

The expansions of the Lorenz condition and of the Maxwell equations look exactly the same as 
in (C.12) and (C.14), respectively, just with higher power of β .

Appendix D. Technicalities & proofs

In this appendix we gather some important technical results and present proofs that are re-
ferred to in the main text.

First we list some important identities for the symmetric polynomials:

∑
μ

A(k)
μ

(−x2
μ)N−1−l

Uμ

= δk
l , (D.1)

∑
μ

A
(k)
μ

x2
μUμ

= A(k)

A(N)
, (D.2)

A(N−1) =
∑
μ

A(N−1)
μ . (D.3)

Proof of (4.3). Employing expression (3.8) for the derivative of B , symmetric part (3.6) of B , 
relation (3.5), and definition (2.18), we can write

∇m

(
Bmn∇nZ

) = Bmn∇(m∇n)Z + (∇mBmn)∇nZ

= 1

A
kmn∇m∇nZ + β

A

(
ka

a ξmBmn − ξmkmn
)∇nZ

= 1

A
∇m

(
kmn∇nZ

) − 1

A
(∇mkmn)∇nZ + β

A

(ka
a

A
ln + β

ka
a

A
lmhm

n − ln
)
∇nZ .

(D.4)

Substituting (2.31), and using (2.32) we obtain

∇m

(
Bmn∇nZ

) = 1

A
∇m

(
kmn∇nZ

)
− 1

A2 (∇mA)
(
kmn − 1

2
kgmn

)∇nZ + 1

A

(
−1

2

ka
a

A
(∇nA) + β

(ka
a

A
− 1

)
ln

)
∇nZ

= 1

A
∇m

(
kmn∇nZ

) + 1

A

(
− 1

A
(∇mA)kmn + β

(ka
a

A
− 1

)
ln

)
∇nZ ,

= ∇m

( 1

A
kmn∇nZ

) + β

A

(ka
a

A
− 1

)
ln ∇nZ ,

(D.5)

which is what we wanted to show.

Proof of (4.5). Using identities (D.1), (D.2), and (D.3) for k, l = N − 1, one has

∑ A
(N−1)
μ

Uμ

( 2

x2
μ

− 1
)

= 2
A(N−1)

A(N)
− 1 =

∑
μ 2A

(N−1)
μ

A(N)
− 1 . (D.6)
μ
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Under substitution x2
ν → 1 +β2x2

ν functions Uμ, A(N−1)
μ , and A(N) behave as Uμ → β2(N−1)Uμ, 

A
(N−1)
μ → Aμ, and A(N) → A. It gives us the relation

β2−2N
∑
μ

Aμ

Uμ

( 2

1 + β2x2
μ

− 1
)

= 1

A

∑
μ

2Aμ − 1 . (D.7)

On the right-hand side we identify expression (2.27) for the trace ka
a of the generating Killing 

tensor and we obtain

ka
a

A
− 1 = β2−2N

∑
μ

Aμ

Uμ

1 − β2x2
μ

1 + β2x2
μ

. (D.8)

Proof of (D.9). We have

β2(N−1)

A
=

∑
ν

1

Uν

1

1 + β2x2
ν

. (D.9)

Indeed, it is just (D.2) with k = 0, in which we substitute x2
ν → 1 + β2x2

ν . Subtracting zero 
0 = ∑

ν
1

Uν
(cf. (D.1) with k = 0 and l = N − 1), we get

2

A
= β2(1−N)

∑
ν

1

Uν

1 − β2x2
ν

1 + β2x2
ν

. (D.10)

Proof of (D.11). We want to prove

− ∇m∇m(Ban∇nZ) + Ra
mBmn∇nZ

= −Ban∇n�Z + 2βBakξk∇m(Bmn∇nZ) − 2βBam∇m

(
ξkB

kn∇nZ
)
.

(D.11)

We start by pulling Ban from the covariant derivatives,

−∇m∇m(Ban∇nZ) + Ra
mBmn∇nZ

= − Ban∇m∇n∇mZ − 2(∇mBan)∇m∇nZ − (∇m∇mBan)∇nZ + Ra
mBmn∇nZ

= − Ban∇n�Z − 2β
(
BamξkB

kn − BakξkB
mn

)∇m∇nZ

− β
(∇m(BamξkB

kn − BakξkB
mn)

)∇nZ .

(D.12)

In the last step we used the Ricci identities to interchange covariant derivatives, producing a 
curvature term which canceled the term with Ricci tensor. Here we also used that Ba

b commutes 
with Ra

b as matrices, since ha
b commutes with Ra

b . Next we used twice the expression (3.8). 
Pushing ξkB

kn and Bmn in the second term in the last expression back under the derivative gives

−∇m∇m(Ban∇nZ) + Ra
mBmn∇nZ

= −Ban∇n�Z + 2βBakξk∇m(Bmn∇nZ) − 2βBam∇m

(
ξkB

kn∇nZ
)

+ β
(
Bam∇m(ξkB

kn) − ξkB
kn∇mBam + Bmn∇m(Bakξk) − Bakξk∇mBmn

)
∇nZ

= −Ban∇n�Z + 2βBakξk∇m(Bmn∇nZ) − 2βBam∇m

(
ξkB

kn∇nZ
)

(D.13)

+ β
(
Bam(∇mξk)B

kn + Bamξk(∇mBkn)
β

A

(
kamξm − kc

cB
amξm

)
ξkB

kn

+ Bam(∇kξm)Bkn + (∇mBak)ξkB
mn − β

Bakξk

(
kc

cξmBmn − ξmkmn
))∇nZ ,
A
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where we used relations (3.9). Because ξ is a Killing vector, terms with ∇ξ cancel each other, as 
well as terms proportional to k. Using once more (3.8), we obtain

−∇m∇m(Ban∇nZ) + Ra
mBmn∇nZ

= −Ban∇n�Z + 2βBakξk∇m(Bmn∇nZ) − 2βBam∇m

(
ξkB

kn∇nZ
)

+ β2
(
− 1

A

(
kamξmξkB

kn − Bakξkξmkmn
) + Bamξk

(
Bk

mξlB
ln − BklξlBm

n
)

+ (
Ba

mξlB
lk − BalξlBm

k
)
ξkB

mn
)
∇nZ (D.14)

= −Ban∇n�Z + 2βBakξk∇m(Bmn∇nZ) − 2βBam∇m

(
ξkB

kn∇nZ
)

+ β2

A

(
−kalξlξkB

kn + Bakξkξlk
ln + kakξkξlB

ln − Balξlξkk
kn

)
∇nZ

= −Ban∇n�Z + 2βBakξk∇m(Bmn∇nZ) − 2βBam∇m

(
ξkB

kn∇nZ
)
,

where we canceled the terms proportional to ξkξlB
kl and used relation (3.4).
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